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Chapter 1

Introduction

1.1 Themes'

From its beginnings in the late nineteenth century, electrical engineering has blossomed from focusing on
electrical circuits for power, telegraphy and telephony to focusing on a much broader range of disciplines.
However, the underlying themes are relevant today: Power creation and transmission and information
have been the underlying themes of electrical engineering for a century and a half. This course concentrates
on the latter theme: the representation, manipulation, transmission, and reception of information
by electrical means. This course describes what information is, how engineers quantify information, and
how electrical signals represent information.

Information can take a variety of forms. When you speak to a friend, your thoughts are translated by
your brain into motor commands that cause various vocal tract components—the jaw, the tongue, the lips—to
move in a coordinated fashion. Information arises in your thoughts and is represented by speech, which must
have a well defined, broadly known structure so that someone else can understand what you say. Utterances
convey information in sound pressure waves, which propagate to your friend’s ear. There, sound energy is
converted back to neural activity, and, if what you say makes sense, she understands what you say. Your
words could have been recorded on a compact disc (CD), mailed to your friend and listened to by her on her
stereo. Information can take the form of a text file you type into your word processor. You might send the
file via e-mail to a friend, who reads it and understands it. From an information theoretic viewpoint, all of
these scenarios are equivalent, although the forms of the information representation—sound waves, plastic
and computer files—are very different.

Engineers, who don’t care about information content, categorize information into two different forms:
analog and digital. Analog information is continuous valued; examples are audio and video. Digital
information is discrete valued; examples are text (like what you are reading now) and DNA sequences.

The conversion of information-bearing signals from one energy form into another is known as energy
conversion or transduction. All conversion systems are inefficient since some input energy is lost as heat,
but this loss does not necessarily mean that the conveyed information is lost. Conceptually we could use any
form of energy to represent information, but electric signals are uniquely well-suited for information repre-
sentation, transmission (signals can be broadcast from antennas or sent through wires), and manipulation
(circuits can be built to reduce noise and computers can be used to modify information). Thus, we will be
concerned with how to

represent all forms of information with electrical signals,

encode information as voltages, currents, and electromagnetic waves,

manipulate information-bearing electric signals with circuits and computers, and

receive electric signals and convert the information expressed by electric signals back into a useful
form.

IThis content is available online at http://cnx.org/content/m0000/2.18/.



2 CHAPTER 1. INTRODUCTION

Telegraphy represents the earliest electrical information system, and it dates from 1837. At that time,
electrical science was largely empirical, and only those with experience and intuition could develop telegraph
systems. Electrical science came of age when James Clerk Maxwell? proclaimed in 1864 a set of equations
that he claimed governed all electrical phenomena. These equations predicted that light was an electro-
magnetic wave, and that energy could propagate. Because of the complexity of Maxwell’s presentation, the
development of the telephone in 1876 was due largely to empirical work. Once Heinrich Hertz confirmed
Maxwell’s prediction of what we now call radio waves in about 1882, Maxwell’s equations were simplified
by Oliver Heaviside and others, and were widely read. This understanding of fundamentals led to a quick
succession of inventions—the wireless telegraph (1899), the vacuum tube (1905), and radio broadcasting—that
marked the true emergence of the communications age.

During the first part of the twentieth century, circuit theory and electromagnetic theory were all an
electrical engineer needed to know to be qualified and produce first-rate designs. Consequently, circuit theory
served as the foundation and the framework of all of electrical engineering education. At mid-century, three
“inventions” changed the ground rules. These were the first public demonstration of the first electronic
computer (1946), the invention of the transistor (1947), and the publication of A Mathematical Theory
of Communication by Claude Shannon (1948). Although conceived separately, these creations gave birth
to the information age, in which digital and analog communication systems interact and compete for design
preferences. About twenty years later, the laser was invented, which opened even more design possibilities.
Thus, the primary focus shifted from how to build communication systems (the circuit theory era) to what
communications systems were intended to accomplish. Only once the intended system is specified can an
implementation be selected. Today’s electrical engineer must be mindful of the system’s ultimate goal,
and understand the tradeoffs between digital and analog alternatives, and between hardware and software
configurations in designing information systems.

NOTE: Thanks to the translation efforts of Rice University’s Disability Support Services?, this
collection is now available in a Braille-printable version. Please click here* to download a .zip file
containing all the necessary .dxb and image files.

1.2 Signals Represent Information’

Whether analog or digital, information is represented by the fundamental quantity in electrical engineering;:
the signal. Stated in mathematical terms, a signal is merely a function. Analog signals are continuous-
valued; digital signals are discrete-valued. The independent variable of the signal could be time (speech, for
example), space (images), or the integers (denoting the sequencing of letters and numbers in the football
score).

1.2.1 Analog Signals

Analog signals are usually signals defined over continuous independent variable(s). Speech, as
described in Section 4.10, is produced by your vocal cords exciting acoustic resonances in your vocal tract.
The result is pressure waves propagating in the air, and the speech signal thus corresponds to a function
having independent variables of space and time and a value corresponding to air pressure: s (x,t) (Here we
use vector notation x to denote spatial coordinates). When you record someone talking, you are evaluating
the speech signal at a particular spatial location, x¢ say. An example of the resulting waveform s (xg,t) is
shown in Figure 1.1.

Photographs are static, and are continuous-valued signals defined over space. Black-and-white images
have only one value at each point in space, which amounts to its optical reflection properties. In Figure 1.2,
an image is shown, demonstrating that it (and all other images as well) are functions of two independent
spatial variables.

?http://www-groups.dcs.st-andrews.ac.uk/ history/Biographies/Maxwell.html
Shttp://www.dss.rice.edu/
4nttp://cnx.org/content/m0000/latest/FundElecEngBraille.zip

5This content is available online at http://cnx.org/content/m0001/2.27/.
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Figure 1.1: A speech signal’s amplitude relates to tiny air pressure variations. Shown is a recording of
the vowel “¢” (as in “speech”).

(b)

Figure 1.2: On the left is the classic Lena image, which is used ubiquitously as a test image. It contains
straight and curved lines, complicated texture, and a face. On the right is a perspective display of the
Lena image as a signal: a function of two spatial variables. The colors merely help show what signal
values are about the same size. In this image, signal values range between 0 and 255; why is that?

Color images have values that express how reflectivity depends on the optical spectrum. Painters long ago
found that mixing together combinations of the so-called primary colors—red, yellow and blue—can produce
very realistic color images. Thus, images today are usually thought of as having three values at every point
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00 | nul || 01 | soh|| 02 | stx || 03 | etx | 04 | eot || 05 | enq|| 06 | ack|| 07 | bel
08 | bs [| 09 | ht || OA | nl 0B | vt || 0C | np || OD | cr OE | so || OF | si
10 | dle || 11 | del || 12 | dc2|| 13 | dc3|| 14 | dc4 || 15 | nak|| 16 | syn|| 17 | etb
18 [ car || 19 | em || 1A | sub|| 1B | esc || 1C | fs 1D | gs 1E | rs 1F | us
20 | sp || 21 |! 22 | " 23 | # 24 | $ 25 | % 26 | & 27 |’
B 1C [[29]) [[2A[* |2+ [[2C|, [[2D[- [[2E|. [2F |/
30 [0 31 |1 32 |2 33 |3 34 | 4 35 | 5 36 | 6 37 |7
38 | 8 39 19 3A | : 3B | ; 3C | < 3D | = 3E | > 3F | 7
40 | @ 41 | A 42 | B 43 | C 44 | D 45 | E 46 | F 47 | G
48 | H 49 | 1 4A | J 4B | K 4C | L 4D | M || 4E | N 4F | 0
50 | P 51 | Q 52 | R 53 | S 54 | T 55 | U 5 | V 57 | W
58 | X 5 |'Y 5A | Z 5B | | 5C |\ 5D | | 5E | 5F |
60 |’ 61 | a 62 | b 63 | c 64 | d 65 | e 66 | f 67 | g
68 | h 69 | i 6A | j 6B | k 6C | 1 6D | m 6E | n 6F | o
70 | p 71 | q 72 | r 73 | s 74|t 75 | u 76 | v | w
78 | x 79 |y TA | z B | { 7C | | |} TE | ~ 7F | del

Table 1.1: The ASCII translation table shows how standard keyboard characters are represented
by integers. In pairs of columns, this table displays first the so-called 7-bit code (how many
characters in a seven-bit code?), then the character the number represents. The numeric codes
are represented in hexadecimal (base-16) notation. Mnemonic characters correspond to control
characters, some of which may be familiar (like cr for carriage return) and some not (bel means
a “bell”).

in space, but a different set of colors is used: How much of red, green and blue is present. Mathematically,
. . . T
color pictures are multivalued—vector-valued-signals: s (x) = (r (x),¢g(x),b(x))" .
Interesting cases abound where the analog signal depends not on a continuous variable, such as time, but
on a discrete variable. For example, temperature readings taken every hour have continuous—analog—values,
but the signal’s independent variable is (essentially) the integers.

1.2.2 Digital Signals

The word “digital” means discrete-valued and implies the signal depends on the integers rather than a
continuous variable. Digital information includes numbers and symbols (characters typed on the keyboard,
for example). Computers rely on the digital representation of information to manipulate and transform
information. Symbols do not have a numeric value, however each is typically represented by a unique
number but performing arithmetic with these representations makes no sense. The ASCII character code
shown in Table 1.1 has the upper- and lowercase characters, the numbers, punctuation marks, and various
other symbols represented by a seven-bit integer. For example, the ASCII code represents the letter a as
the number 97, the letter A with 65.

1.3 Structure of Communication Systems’

The fundamental model of communications is portrayed in Figure 1.3 (Fundamental model of communi-
cation). In this fundamental model, each message-bearing signal, exemplified by s(t), is analog and is a
function of time. A system operates on zero, one, or several signals to produce more signals or to simply
absorb them (Figure 1.4). In electrical engineering, we represent a system as a box, receiving input signals
(usually coming from the left) and producing from them new output signals. This graphical representation
is known as a block diagram. We denote input signals by lines having arrows pointing into the box,
output signals by arrows pointing away. As typified by the communications model, how information flows,
how it is corrupted and manipulated, and how it is ultimately received is summarized by interconnecting
block diagrams: The outputs of one or more systems serve as the inputs to others.

6This content is available online at http://cnx.org/content/m0002/2.17/.



s(t) X(t) r(t) 8(t)
Source > Transmitter— > Receiver > Sink
message modulated corrupted demodulated
message modulated message
message

Figure 1.3: The Fundamental Model of Communication.

x(t) y(t)
— > System | —>

Figure 1.4: A system operates on its input signal z (¢) to produce an output y ().

In the communications model, the source produces a signal that will be absorbed by the sink. Examples
of time-domain signals produced by a source are music, speech, and characters typed on a keyboard. Signals
can also be functions of two variables—an image is a signal that depends on two spatial variables—or more—
television pictures (video signals) are functions of two spatial variables and time. Thus, information sources
produce signals. In physical systems, each signal corresponds to an electrical voltage or current.
To be able to design systems, we must understand electrical science and technology. However, we first need
to understand the big picture to appreciate the context in which the electrical engineer works.

In communication systems, messages—signals produced by sources—must be recast for transmission.
The block diagram has the message s (¢) passing through a block labeled transmitter that produces the
signal z (¢). In the case of a radio transmitter, it accepts an input audio signal and produces a signal that
physically is an electromagnetic wave radiated by an antenna and propagating as Maxwell’s equations predict.
In the case of a computer network, typed characters are encapsulated in packets, attached with a destination
address, and launched into the Internet. From the communication systems “big picture” perspective, the
same block diagram applies although the systems can be very different. In any case, the transmitter should
not operate in such a way that the message s (¢t) cannot be recovered from z (¢). In the mathematical sense,
the inverse system must exist, else the communication system cannot be considered reliable. (It is ridiculous
to transmit a signal in such a way that no one can recover the original. However, clever systems exist that
transmit signals so that only the “in crowd” can recover them. Such cryptographic systems underlie secret
communications.)

Transmitted signals next pass through the next stage, the evil channel. Nothing good happens to a
signal in a channel: It can become corrupted by noise, distorted, and attenuated among many possibilities.
The channel cannot be escaped (the real world is cruel), and transmitter design and receiver design focus
on how best to jointly fend off the channel’s effects on signals. The channel is another system in our block
diagram, and produces r (t), the signal received by the receiver. If the channel were benign (good luck
finding such a channel in the real world), the receiver would serve as the inverse system to the transmitter,
and yield the message with no distortion. However, because of the channel, the receiver must do its best to
produce a received message § (t) that resembles s () as much as possible. Shannon” showed in his 1948 paper
that reliable—for the moment, take this word to mean error-free—digital communication was possible over
arbitrarily noisy channels. It is this result that modern communications systems exploit, and why many
communications systems are going “digital.” The module on Chapter 6, titled Information Communication,
details Shannon’s theory of information, and there we learn of Shannon’s result and how to use it.

Finally, the received message is passed to the information sink that somehow makes use of the message.

"http://www-gap.dcs.st-and.ac.uk/ history/Biographies/Shannon.html
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In the communications model, the source is a system having no input but producing an output; a sink has
an input and no output.

Understanding signal generation and how systems work amounts to understanding signals, the nature
of the information they represent, how information is transformed between analog and digital forms, and
how information can be processed by systems operating on information-bearing signals. This understanding
demands two different fields of knowledge. One is electrical science: How are signals represented and ma-
nipulated electrically? The second is signal science: What is the structure of signals, no matter what their
source, what is their information content, and what capabilities does this structure force upon communication
systems?

1.4 The Fundamental Signal: The Sinusoid®

The most ubiquitous and important signal in electrical engineering is the sinusoid.

Sine Definition
s(t)=Acos(2rft+ ¢) or Acos(wt+ @) (1.1)

A is known as the sinusoid’s amplitude, and determines the sinusoid’s size. The amplitude conveys the
sinusoid’s physical units (volts, lumens, etc). The frequency f has units of Hz (Hertz) or s~!, and determines
how rapidly the sinusoid oscillates per unit time. The temporal variable ¢ always has units of seconds, and
thus the frequency determines how many oscillations/second the sinusoid has. AM radio stations have carrier
frequencies of about 1 MHz (one mega-hertz or 10 Hz), while FM stations have carrier frequencies of about
100 MHz. Frequency can also be expressed by the symbol w, which has units of radians/second. Clearly,
w = 27 f. In communications, we most often express frequency in Hertz. Finally, ¢ is the phase, and
determines the sine wave’s behavior at the origin (¢ = 0). It has units of radians, but we can express it in
degrees, realizing that in computations we must convert from degrees to radians. Note that if ¢ = —7F, the
sinusoid corresponds to a sine function, having a zero value at the origin.

Asin (27 ft + ¢) = Acos (27rft+¢— g) (1.2)

Thus, the only difference between a sine and cosine signal is the phase; we term either a sinusoid.

We can also define a discrete-time variant of the sinusoid: Acos (27 fn + ¢). Here, the independent
variable is n and represents the integers. Frequency now has no dimensions, and takes on values between 0
and 1.

Exercise 1.1 (Solution on p. 9.)
Show that cos (27 fn) = cos (27 (f + 1) n), which means that a sinusoid having a frequency larger
than one corresponds to a sinusoid having a frequency less than one.

NOTE: Notice that we shall call either sinusoid an analog signal. Only when the discrete-time
signal takes on a finite set of values can it be considered a digital signal.

Exercise 1.2 (Solution on p. 9.)
Can you think of a simple signal that has a finite number of values but is defined in continuous
time? Such a signal is also an analog signal.

1.4.2 Communicating Information with Signals

The basic idea of communication engineering is to use a signal’s parameters to represent either real numbers or
other signals. The technical term is to modulate the carrier signal’s parameters to transmit information
from one place to another. To explore the notion of modulation, we can send a real number (today’s
temperature, for example) by changing a sinusoid’s amplitude accordingly. If we wanted to send the daily

8This content is available online at http://cnx.org/content/m0003/2.15/.



A sq(t)

-A

Figure 1.5

temperature, we would keep the frequency constant (so the receiver would know what to expect) and change
the amplitude at midnight. We could relate temperature to amplitude by the formula A = Ag (1 + kT),
where Ay and k are constants that the transmitter and receiver must both know.

If we had two numbers we wanted to send at the same time, we could modulate the sinusoid’s frequency
as well as its amplitude. This modulation scheme assumes we can estimate the sinusoid’s amplitude and
frequency; we shall learn that this is indeed possible.

Now suppose we have a sequence of parameters to send. We have exploited all of the sinusoid’s two
parameters. What we can do is modulate them for a limited time (say T seconds), and send two parameters
every T'. This simple notion corresponds to how a modem works. Here, typed characters are encoded into
eight bits, and the individual bits are encoded into a sinusoid’s amplitude and frequency. We’ll learn how
this is done in subsequent modules, and more importantly, we’ll learn what the limits are on such digital
communication schemes.

1.5 Introduction Problems’

Problem 1.1: RMS Values
The rms (root-mean-square) value of a periodic signal is defined to be

T
rms|s] = ,/%/0 $2 (1) dt

where T is defined to be the signal’s period: the smallest positive number such that s (¢t) = s (¢t + 7).

(a) What is the period of s (t) = Asin (27 fot + ¢)?

(b) What is the rms value of this signal? How is it related to the peak value?

(c) What is the period and rms value of the depicted (Figure 1.5) square wave, generically denoted by
sq (¢)?

(d) By inspecting any device you plug into a wall socket, you’ll see that it is labeled “110 volts AC.” What
is the expression for the voltage provided by a wall socket? What is its rms value?

Problem 1.2: Modems

The word “modem” is short for “modulator-demodulator.” Modems are used not only for connecting com-
puters to telephone lines, but also for connecting digital (discrete-valued) sources to generic channels. In this
problem, we explore a simple kind of modem, in which binary information is represented by the presence or
absence of a sinusoid (presence representing a “1” and absence a “0”). Consequently, the modem’s transmitted
signal that represents a single bit has the form

x(t) = Asin (2nfot) ,0<t<T
Within each bit interval T', the amplitude is either A or zero.

9This content is available online at http://cnx.org/content/m10353/2.17/.



8 CHAPTER 1. INTRODUCTION

(a) What is the smallest transmission interval that makes sense with the frequency fo?

(b) Assuming that ten cycles of the sinusoid comprise a single bit’s transmission interval, what is the
datarate of this transmission scheme?

(c¢) Now suppose instead of using “on-off” signaling, we allow one of several different values for the
amplitude during any transmission interval. If N amplitude values are used, what is the resulting
datarate?

(d) The classic communications block diagram applies to the modem. Discuss how the transmitter must
interface with the message source since the source is producing letters of the alphabet, not bits.

Problem 1.3: Advanced Modems

To transmit symbols, such as letters of the alphabet, RU computer modems use two frequencies (1600
and 1800 Hz) and several amplitude levels. A transmission is sent for a period of time 7' (known as the
transmission or baud interval) and equals the sum of two amplitude-weighted carriers.

x (t) = Arsin (2w f1t) + Aasin 27 fot) ,0<t < T

We send successive symbols by choosing an appropriate frequency and amplitude combination, and sending
them one after another.

(a) What is the smallest transmission interval that makes sense to use with the frequencies given above?
In other words, what should T be so that an integer number of cycles of the carrier occurs?

(b) Sketch (using Matlab) the signal that modem produces over several transmission intervals. Make sure
you axes are labeled.

(c) Using your signal transmission interval, how many amplitude levels are needed to transmit ASCII
characters at a datarate of 3,200 bits/s? Assume use of the extended (8-bit) ASCII code.

NOTE: We use a discrete set of values for A; and As. If we have N; values for amplitude A, and Ny
values for As, we have N7 N5 possible symbols that can be sent during each T second interval. To
convert this number into bits (the fundamental unit of information engineers use to qualify things),
compute log, (N1 N).



Solutions to Exercises in Chapter 1

Solution to Exercise 1.1 (p. 6)

As cos (a + 8) = cos () cos () — sin («) sin (8), cos (27 (f + 1) n) = cos (27 fn) cos (27n) — sin (27 fn) sin (27n) =
cos (27 fn).

Solution to Exercise 1.2 (p. 6)

A square wave takes on the values 1 and —1 alternately. See the plot in Section 2.2.6.
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Chapter 2

Signals and Systems

2.1 Complex Numbers'

While the fundamental signal used in electrical engineering is the sinusoid, it can be expressed mathematically
in terms of an even more fundamental signal: the complex exponential. Representing sinusoids in terms of
complex exponentials is not a mathematical oddity. Fluency with complex numbers and rational functions
of complex variables is a critical skill all engineers master. Understanding information and power system
designs and developing new systems all hinge on using complex numbers. In short, they are critical to
modern electrical engineering, a realization made over a century ago.

2.1.1 Definitions

The notion of the square root of —1 originated with the quadratic formula: the solution of certain quadratic
equations mathematically exists only if the so-called imaginary quantity v/—1 could be defined. Euler? first
used i for the imaginary unit but that notation did not take hold until roughly Ampére’s time. Ampére?
used the symbol i to denote current (intensité de current). It wasn’t until the twentieth century that the
importance of complex numbers to circuit theory became evident. By then, using i for current was entrenched
and electrical engineers chose j for writing complex numbers.

An imaginary number has the form jb = v/—b2. A complex number, z, consists of the ordered pair
(a,b), a is the real component and b is the imaginary component (the j is suppressed because the imaginary
component of the pair is always in the second position). The imaginary number jb equals (0,b). Note that
a and b are real-valued numbers.

Figure 2.1 shows that we can locate a complex number in what we call the complex plane. Here, a,
the real part, is the z-coordinate and b, the imaginary part, is the y-coordinate. From analytic geometry, we
know that locations in the plane can be expressed as the sum of vectors, with the vectors corresponding to
the z and y directions. Consequently, a complex number z can be expressed as the (vector) sum z = a + jb
where j indicates the y-coordinate. This representation is known as the Cartesian form of z. An imaginary
number can’t be numerically added to a real number; rather, this notation for a complex number represents
vector addition, but it provides a convenient notation when we perform arithmetic manipulations.

Some obvious terminology. The real part of the complex number z = a + jb, written as Re [z], equals
a. We consider the real part as a function that works by selecting that component of a complex number
not multiplied by j. The imaginary part of z, Im [z], equals b: that part of a complex number that is
multiplied by j. Again, both the real and imaginary parts of a complex number are real-valued.

The complex conjugate of z, written as z*, has the same real part as z but an imaginary part of the

IThis content is available online at http://cnx.org/content/m0081/2.27/.
?http://www-groups.dcs.st-and.ac.uk/ history/Biographies/Euler.html
Shttp://www-groups.dcs.st-and.ac.uk/ history/Biographies/Ampere.html
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(a,h) =a+jb =rLB

| .
L

a

Figure 2.1: A complex number is an ordered pair (a,b) that can be regarded as coordinates in the plane.
Complex numbers can also be expressed in polar coordinates as r/6.

opposite sign.
z=Re[z] + ]:Im [2] 2.1)
2" =Re[z] — jIm 2]

Using Cartesian notation, the following properties easily follow.

e If we add two complex numbers, the real part of the result equals the sum of the real parts and the
imaginary part equals the sum of the imaginary parts. This property follows from the laws of vector
addition.

a1 + jb1 + ag + jba = ay + az + j (b1 + b2)
In this way, the real and imaginary parts remain separate.

e The product of j and a real number is an imaginary number: ja. The product of j and an imaginary
number is a real number: j (jb) = —b because j? = —1. Consequently, multiplying a complex number
by j rotates the number’s position by 90 degrees.

Exercise 2.1 (Solution on p. 30.)
Use the definition of addition to show that the real and imaginary parts can be expressed as a
sum /difference of a complex number and its conjugate. Re[z] = % and Im [z] = =

Complex numbers can also be expressed in an alternate form, polar form, which we will find quite useful.
Polar form arises arises from the geometric interpretation of complex numbers. The Cartesian form of a
complex number can be re-written as

a b
a+'b:\/a2+b2( +J )
! VZ 12 E T B

By forming a right triangle having sides a and b, we see that the real and imaginary parts correspond to the
cosine and sine of the triangle’s base angle. We thus obtain the polar form for complex numbers.

z=a+jb=r/0

r=lz| =Va%+b? a=rcosf

0 = arctan (b/a) b=rsinf

The quantity r is known as the magnitude of the complex number z, and is frequently written as |z|. The
quantity € is the complex number’s angle. In using the arc-tangent formula to find the angle, we must take
into account the quadrant in which the complex number lies.

Exercise 2.2 (Solution on p. 30.)
Convert 3 — 25 to polar form.
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2.1.2 Euler’s Formula
Surprisingly, the polar form of a complex number z can be expressed mathematically as
z=rel? (2.2)

To show this result, we use Euler’s relations that express exponentials with imaginary arguments in terms
of trigonometric functions.

el = cos @ + jsinf (2.3)
J0 —350 Jo _ 30
cosf = e te” sinf = i (2.4)
2 23
The first of these is easily derived from the Taylor’s series for the exponential.
e _1. % z?2 28
e’ = +ﬁ+§+§+”.
Substituting j6 for x, we find that
» 6 62 63
]9 o T s
e —1—1—]1! 21 33!+...
because j2 = —1, j3 = —j, and j* = 1. Grouping separately the real-valued terms and the imaginary-valued
ones,
- 62 0 63
0 — 1 .. i
e’ =1 2!—1- +j<1! 3!—1—...)

The real-valued terms correspond to the Taylor’s series for cos (), the imaginary ones to sin (0), and Euler’s
first relation results. The remaining relations are easily derived from the first. Because of the relationship
r =+va? 4+ b?, we see that multiplying the exponential in (2.3) by a real constant corresponds to setting the
radius of the complex number by the constant.

2.1.3 Calculating with Complex Numbers

Adding and subtracting complex numbers expressed in Cartesian form is quite easy: You add (subtract) the
real parts and imaginary parts separately.

(Zl + 22) = (a1 + G,Q) -|—_] (bl + b2) (25)

To multiply two complex numbers in Cartesian form is not quite as easy, but follows directly from following

the usual rules of arithmetic. . ‘
z122 = (a1 + jby) (az + jb2)

= aja2 — b1b2 + j (a1b2 + agbl)
Note that we are, in a sense, multiplying two vectors to obtain another vector. Complex arithmetic provides
a unique way of defining vector multiplication.

(2.6)

Exercise 2.3 (Solution on p. 30.)
What is the product of a complex number and its conjugate?

Division requires mathematical manipulation. We convert the division problem into a multiplication problem
by multiplying both the numerator and denominator by the conjugate of the denominator.
z1 a1+ b
22 az+ jbo
a1+ jbyas — jby
as+ jboas — jbo
_ (a1 +4b1) (a2 — jb2)
B az? + by?
_ajag +biby + j (azby — a1bs)
B as? + by?

(2.7)
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Because the final result is so complicated, it’s best to remember how to perform division—multiplying
numerator and denominator by the complex conjugate of the denominator—than trying to remember the
final result.

The properties of the exponential make calculating the product and ratio of two complex numbers much
simpler when the numbers are expressed in polar form.

2120 = 11?0 rpe?% = iyl (01102)
(2.8)

j01 )
A _ne 7;163(01*92)

2o roedfz gy

To multiply, the radius equals the product of the radii and the angle the sum of the angles. To divide,
the radius equals the ratio of the radii and the angle the difference of the angles. When the original
complex numbers are in Cartesian form, it’s usually worth translating into polar form, then performing the
multiplication or division (especially in the case of the latter). Addition and subtraction of polar forms
amounts to converting to Cartesian form, performing the arithmetic operation, and converting back to polar
form.

Example 2.1

When we solve circuit problems, the crucial quantity, known as a transfer function, will always be

expressed as the ratio of polynomials in the variable s = j27 f. What we’ll need to understand the

circuit’s effect is the transfer function in polar form. For instance, suppose the transfer function

equals
s+ 2
2.9
s2+s5+1 (29)
s=j2nf (2.10)

Performing the required division is most easily accomplished by first expressing the numerator and
denominator each in polar form, then calculating the ratio. Thus,

s+2 j2mf +2
24 s54+1  —4m2f2 4+ 2nf +1
4 4 472 £2 j arctan(m f)
- VA + At e (2.12)

\/(1 _ 47T2f2)2 + 472 f2ed arctan(2n f/(1-472 f2))

(2.11)

_ 4+ 47T2f2 ej(arctan(Trf)—arctan(arctan(27rf/(1—47r2f2)))) (2.13)
1—4m2f2 + 1674 f4

2.2 Elemental Signals’

Elemental signals are the building blocks with which we build complicated signals. By definition,
elemental signals have a simple structure. Exactly what we mean by the “structure of a signal” will unfold in
this section of the course. Signals are nothing more than functions defined with respect to some independent
variable, which we take to be time for the most part. Very interesting signals are not functions solely of
time; one great example of which is an image. For it, the independent variables are x and y (two-dimensional
space). Video signals are functions of three variables: two spatial dimensions and time. Fortunately, most
of the ideas underlying modern signal theory can be exemplified with one-dimensional signals.

4This content is available online at http://cnx.org/content/m0004/2.29/.
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2.2.1 Sinusoids

Perhaps the most common real-valued signal is the sinusoid.
s(t) = Acos (27 fot + @) (2.14)
For this signal, A is its amplitude, fy its frequency, and ¢ its phase.
2.2.2 Complex Exponentials
The most important signal is complex-valued, the complex exponential.

s(t) = Aed (@ fot+e)

— Aedei2mfot (2.15)

Here, j denotes /—1. Ael? is known as the signal’s complex amplitude. Considering the complex
amplitude as a complex number in polar form, its magnitude is the amplitude A and its angle the signal phase.
The complex amplitude is also known as a phasor. The complex exponential cannot be further decomposed
into more elemental signals, and is the most important signal in electrical engineering! Mathematical
manipulations at first appear to be more difficult because complex-valued numbers are introduced. In fact,
early in the twentieth century, mathematicians thought engineers would not be sufficiently sophisticated
to handle complex exponentials even though they greatly simplified solving circuit problems. Steinmetz °
introduced complex exponentials to electrical engineering, and demonstrated that “mere” engineers could use
them to good effect and even obtain right answers! See Section 2.1 for a review of complex numbers and
complex arithmetic.

The complex exponential defines the notion of frequency: it is the only signal that contains only one
frequency component. The sinusoid consists of two frequency components: one at the frequency + f, and
the other at — fj.

EULER RELATION: This decomposition of the sinusoid can be traced to Euler’s relation.

ej27rft + e—j27rft

cos (2 ft) = 5 (2.16)
) 6j27rf75 _ 67j27rft

sin (27 ft) = — (2.17)

eI?™It = cos (27 ft) + jsin (27 ft) (2.18)

DEcompPOSITION: The complex exponential signal can thus be written in terms of its real and
imaginary parts using Euler’s relation. Thus, sinusoidal signals can be expressed as either the real
or the imaginary part of a complex exponential signal, the choice depending on whether cosine or
sine phase is needed, or as the sum of two complex exponentials. These two decompositions are
mathematically equivalent to each other.

Acos (2rft + ¢) = Re [Aej‘bejg’rft} (2.19)

Asin 27 ft + ¢) = Im [Aejd’ejg”ft} (2.20)

Using the complex plane, we can envision the complex exponential’s temporal variations as seen in the
above figure (Figure 2.2). The magnitude of the complex exponential is A, and the initial value of the
complex exponential at ¢ = 0 has an angle of ¢. As time increases, the locus of points traced by the complex
exponential is a circle (it has constant magnitude of A). The number of times per second we go around the
circle equals the frequency f. The time taken for the complex exponential to go around the circle once is
known as its period T, and equals % The projections onto the real and imaginary axes of the rotating
vector representing the complex expohential signal are the cosine and sine signal of Euler’s relation (2.16).

Shttp://www.edisontechcenter.org/CharlesProteusSteinmetz.html
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A sin(2nft+¢)

TR

|
—

Figure 2.2: Graphically, the complex exponential scribes a circle in the complex plane as time evolves.
Its real and imaginary parts are sinusoids. The rate at which the signal goes around the circle is the

frequency f and the time taken to go around is the period T. A fundamental relationship is T' = %

2.2.3 Real Exponentials
As opposed to complex exponentials which oscillate, real exponentials (Figure 2.3) decay.
s(t)y=e V" (2.21)

The quantity 7 is known as the exponential’s time constant, and corresponds to the time required for
the exponential to decrease by a factor of é, which approximately equals 0.368. A decaying complex
exponential is the product of a real and a complex exponential.

5(t) = AedPet/m it

— Aei$p(—1/T+i2mf)t (2.22)

In the complex plane, this signal corresponds to an exponential spiral. For such signals, we can define
complex frequency as the quantity multiplying .
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Exponential

I T >t

Figure 2.3: The real exponential.

2.2.4 Unit Step
The unit step function (Figure 2.4) is denoted by u(¢), and is defined to be

u(t) = {0 <0 (2.23)

1 t>0

Au(®)

1

-t

Figure 2.4: The unit step.

ORIGIN WARNING: This signal is discontinuous at the origin. Its value at the origin need not be
defined because the value doesn’t matter in signal theory.

This kind of signal is used to describe signals that “turn on” suddenly. For example, to mathematically repre-
sent turning on an oscillator, we can write it as the product of a sinusoid and a step: s (t) = Asin (27 ft) u(t).

2.2.5 Pulse

The unit pulse (Figure 2.5) describes turning a unit-amplitude signal on for a duration of A seconds, then
turning it off.

0, t<0
pa(t) =<1, 0<t<A (2.24)
0, t>A
AP,
1
A >t

Figure 2.5: The pulse.

We will find that this is the second most important signal in communications.
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2.2.6 Square Wave

The square wave (Figure 2.6) sq (t) is a periodic signal like the sinusoid. It too has an amplitude and a
period, which must be specified to characterize the signal. We find subsequently that the sine wave is a
simpler signal than the square wave.

A Square Wave

Figure 2.6: The square wave.

2.3 Signal Decomposition®

A signal’s complexity is not related to how wiggly it is. Rather, a signal expert looks for ways of decomposing
a given signal into a sum of simpler signals, which we term the signal decomposition. Though we will
never compute a signal’s complexity, it essentially equals the number of terms in its decomposition. In
writing a signal as a sum of component signals, we can change the component signal’s gain by multiplying
it by a constant and by delaying it. More complicated decompositions could contain derivatives or integrals
of simple signals.

Example 2.2
As an example of signal complexity, we can express the pulse pa (¢) as a sum of delayed unit steps.

pa () = u(t) —u(t — A) (2.25)
Thus, the pulse is a more complex signal than the step. Be that as it may, the pulse is very useful
to us.
Exercise 2.4 (Solution on p. 30.)

Express a square wave having period T and amplitude A as a superposition of delayed and
amplitude-scaled pulses.

Because the sinusoid is a superposition of two complex exponentials, the sinusoid is more complex. We could
not prevent ourselves from the pun in this statement. Clearly, the word “complex” is used in two different
ways here. The complex exponential can also be written (using Euler’s relation (2.16)) as a sum of a sine and
a cosine. We will discover that virtually every signal can be decomposed into a sum of complex exponentials,
and that this decomposition is very useful. Thus, the complex exponential is more fundamental, and Euler’s
relation does not adequately reveal its complexity.

2.4 Discrete-Time Signals’

So far, we have treated what are known as analog signals and systems. Mathematically, analog signals are
functions having continuous quantities as their independent variables, such as space and time. Discrete-time
signals are functions defined on the integers; they are sequences. One of the fundamental results of signal
theory details the conditions under which an analog signal can be converted into a discrete-time one and
retrieved without error. This result is important because discrete-time signals can be manipulated by

6This content is available online at http://cnx.org/content/m0008/2.12/.
"This content is available online at http://cnx.org/content/m0009/2.24/.
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systems instantiated as computer programs. Subsequent modules describe how virtually all analog signal
processing can be performed with software.

Discrete-time systems can act on discrete-time signals in ways similar to those found in analog signals
and systems. Because of the role of software in discrete-time systems, many more different systems can be
envisioned and “constructed” with programs than can be with analog signals. Consequently, discrete-time
systems can be easily produced in software, with equivalent analog realizations difficult, if not impossible,
to design.

As important as linking analog signals to discrete-time ones may be, discrete-time signals are more
general, encompassing signals derived from analog ones and signals that aren’t. For example, the characters
forming a text file form a sequence, which is also a discrete-time signal. We must deal with such symbolic
valued (p. 153) signals and systems as well.

As with analog signals, we seek ways of decomposing real-valued discrete-time signals into simpler com-
ponents. With this approach leading to a better understanding of signal structure, we can exploit that
structure to represent information (create ways of representing information with signals) and to extract in-
formation (retrieve the information thus represented). For symbolic-valued signals, the approach is different:
We develop a common representation of all symbolic-valued signals so that we can embody the information
they contain in a unified way. From an information representation perspective, the most important issue
becomes, for both real-valued and symbolic-valued signals, efficiency; What is the most parsimonious and
compact way to represent information so that it can be extracted later.

2.4.1 Real- and Complex-valued Signals

A discrete-time signal is represented symbolically as s (n), where n = {...,—1,0,1,...}. We usually draw
discrete-time signals as stem plots to emphasize the fact they are functions defined only on the integers.
We can delay a discrete-time signal by an integer just as with analog ones. A delayed unit sample has the
expression ¢ (n — m), and equals one when n = m.

Sn

S

Figure 2.7: The discrete-time cosine signal is plotted as a stem plot. Can you find the formula for this
signal?

2.4.2 Complex Exponentials

The most important signal is, of course, the complex exponential sequence.

s(n) = el?mm (2.26)

2.4.3 Sinusoids

Discrete-time sinusoids have the obvious form s(n) = Acos (27 fn+ ¢). As opposed to analog complex

exponentials and sinusoids that can have their frequencies be any real value, frequencies of their discrete-
time counterparts yield unique waveforms only when f lies in the interval (—%, %] This property can be

easily understood by noting that adding an integer to the frequency of the discrete-time complex exponential
has no effect on the signal’s value.
6]'271'(f+m)n _ 6j27rfnej2ﬂ'mn

_ jontn (2.27)
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This derivation follows because the complex exponential evaluated at an integer multiple of 27 equals one.

2.4.4 Unit Sample

The second-most important discrete-time signal is the unit sample, which is defined to be

§(n) = {1 ifn=0 (2.28)

0 otherwise

n

Figure 2.8: The unit sample.

Examination of a discrete-time signal’s plot, like that of the cosine signal shown in Figure 2.7, reveals that
all discrete-time signals consist of a sequence of delayed and scaled unit samples. Because the value of
a sequence at each integer m is denoted by s(m) and the unit sample delayed to occur at m is written
d (n —m), we can decompose any signal as a sum of unit samples delayed to the appropriate location and

scaled by the signal value.

s(n)= > s(m)d(n—m) (2.29)

m=—0o0

This kind of decomposition is unique to discrete-time signals, and will prove useful subsequently.

2.4.5 Symbolic-valued Signals

Another interesting aspect of discrete-time signals is that their values do not need to be real numbers. We
do have real-valued discrete-time signals like the sinusoid, but we also have signals that denote the sequence
of characters typed on the keyboard. Such characters certainly aren’t real numbers, and as a collection of
possible signal values, they have little mathematical structure other than that they are members of a set.
More formally, each element of the symbolic-valued signal s (n) takes on one of the values {ay, ..., ax } which
comprise the alphabet A. This technical terminology does not mean we restrict symbols to being mem-
bers of the English or Greek alphabet. They could represent keyboard characters, bytes (8-bit quantities),
integers that convey daily temperature. Whether controlled by software or not, discrete-time systems are
ultimately constructed from digital circuits, which consist entirely of analog circuit elements. Furthermore,
the transmission and reception of discrete-time signals, like e-mail, is accomplished with analog signals and
systems. Understanding how discrete-time and analog signals and systems intertwine is perhaps the main
goal of this course.

2.5 Introduction to Systems®

Signals are manipulated by systems. Mathematically, we represent what a system does by the notation
y (t) = S|z (t)], with x representing the input signal and y the output signal.

8This content is available online at http://cnx.org/content/m0005/2.19/.
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— > System | —>

Figure 2.9: The system depicted has input z (t) and output y (¢). Mathematically, systems operate on
function(s) to produce other function(s). In many ways, systems are like functions, rules that yield a
value for the dependent variable (our output signal) for each value of its independent variable (its input
signal). The notation y (¢) = S [z (t)] corresponds to this block diagram. We term & [-] the input-output
relation for the system.

This notation mimics the mathematical symbology of a function: A system’s input is analogous to an
independent variable and its output the dependent variable. For the mathematically inclined, a system is a
functional: a function of a function (signals are functions).

Simple systems can be connected together—one system’s output becomes another’s input—to accomplish
some overall design. Interconnection topologies can be quite complicated, but usually consist of weaves of
three basic interconnection forms.

2.5.1 Cascade Interconnection

O sy YOS s YO,

Figure 2.10: Interconnecting systems so that one system’s output serves as the input to another is the
cascade configuration.

The simplest form is when one system’s output is connected only to another’s input. Mathematically,
w(t) = 51 [z (t)], and y (t) = Sz [w (¢)], with the information contained in x (t) processed by the first, then
the second system. In some cases, the ordering of the systems matter, in others it does not. For example, in
the fundamental model of communication (Figure 1.3) the ordering most certainly matters.

2.5.2 Parallel Interconnection

Ul Sq[°]

Y

\ y(t)

N >

> Syl J

X(t)

Figure 2.11: The parallel configuration.

A signal z (t) is routed to two (or more) systems, with this signal appearing as the input to all systems
simultaneously and with equal strength. Block diagrams have the convention that signals going to more
than one system are not split into pieces along the way. Two or more systems operate on z (¢) and their
outputs are added together to create the output y (¢). Thus, y (t) = S1 ]z (t)]+S2 [z (t)], and the information
in x (t) is processed separately by both systems.
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2.5.3 Feedback Interconnection

ST

Solr] [«

Figure 2.12: The feedback configuration.

The subtlest interconnection configuration has a system’s output also contributing to its input. Engineers
would say the output is “fed back” to the input through system 2, hence the terminology. The mathematical
statement of the feedback interconnection (Figure 2.12) is that the feed-forward system produces the output:
y (t) = S1[e(t)]. The input e (t) equals the input signal minus the output of some other system’s output to
y(t): e(t) =z (t) — Sa [y (¢)]. Feedback systems are omnipresent in control problems, with the error signal
used to adjust the output to achieve some condition defined by the input (controlling) signal. For example,
in a car’s cruise control system, x (t) is a constant representing what speed you want, and y (t) is the car’s
speed as measured by a speedometer. In this application, system 2 is the identity system (output equals
input).

2.6 Simple Systems’

Systems manipulate signals, creating output signals derived from their inputs. Why the following are cate-
gorized as “simple” will only become evident towards the end of the course.

2.6.1 Sources

Sources produce signals without having input. We like to think of these as having controllable parameters,
like amplitude and frequency. Examples would be oscillators that produce periodic signals like sinusoids and
square waves and noise generators that yield signals with erratic waveforms (more about noise subsequently).
Simply writing an expression for the signals they produce specifies sources. A sine wave generator might
be specified by y (t) = Asin (27 fot) u(t), which says that the source was turned on at ¢ = 0 to produce a
sinusoid of amplitude A and frequency fo.

2.6.2 Amplifiers

An amplifier (Figure 2.13) multiplies its input by a constant known as the amplifier gain.

y (t) = Gz (¢) (2.30)

A

- G—
ﬂ—’; Amplifi J—’
m%/ er

Figure 2.13: An amplifier.

9This content is available online at http://cnx.org/content/m0006/2.24/.
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The gain can be positive or negative (if negative, we would say that the amplifier inverts its input) and
can be greater than one or less than one. If less than one, the amplifier actually attenuates. A real-world
example of an amplifier is your home stereo. You control the gain by turning the volume control.

2.6.3 Delay

A system serves as a time delay (Figure 2.14) when the output signal equals the input signal at an earlier
time.

y(t)=a(t—r7) (2.31)
A I
o Delay T
e %Y

Figure 2.14: A delay.

Here, 7 is the delay. The way to understand this system is to focus on the time origin: The output at time
t = 7 equals the input at time t = 0. Thus, if the delay is positive, the output emerges later than the input,
and plotting the output amounts to shifting the input plot to the right. The delay can be negative, in which
case we say the system advances its input. Such systems are difficult to build (they would have to produce
signal values derived from what the input will be), but we will have occasion to advance signals in time.

2.6.4 Time Reversal

With a time-reversal system, the output signal equals the input signal flipped about the vertical axis (the
time origin).

y(t) =z(-1) (2.32)

=

Time
> Reverse >

Figure 2.15: A time reversal system.

Again, such systems are difficult to build, but the notion of time reversal occurs frequently in communications
systems.
Exercise 2.5 (Solution on p. 30.)
Mentioned earlier was the issue of whether the ordering of systems mattered. In other words, if
we have two systems in cascade, does the output depend on which comes first? Determine if the
ordering matters for the cascade of an amplifier and a delay and for the cascade of a time-reversal
system and a delay.

2.6.5 Derivative Systems and Integrators

Systems that perform calculus-like operations on their inputs can produce waveforms significantly different

than present in the input. Derivative systems operate in a straightforward way: A first-derivative system

would have the input-output relationship y (¢t) = %x (t). Integral systems have the complication that the
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integral’s limits must be defined. It is a signal theory convention that the elementary integral operation have
a lower limit of —oco, and that the value of all signals at ¢ = —oo equals zero. A simple integrator would
have input-output relation

y () = / 2(a) da (2.33)

2.6.6 Linear Systems

Linear systems are a class of systems rather than having a specific input-output relation. Linear systems
form the foundation of system theory, and are the most important class of systems in communications. They
have the property that when the input is expressed as a weighted sum of component signals, the output
equals the same weighted sum of the outputs produced by each component. When S [-] is linear,

S [Gll‘l (t) + G2JI2 (t)] = G18 [Il (t)] + GQS [.’L‘z (t)} (234)

for all choices of signals and gains.
This general input-output relation property can be manipulated to indicate specific properties shared by
all linear systems.

e S[Gx(t)] = GS [z (t)] The colloquialism summarizing this property is “Double the input, you double
the output.” Note that this property is consistent with alternate ways of expressing gain changes:
Since 2x (t) also equals x (t) + z (t), the linear system definition provides the same output no matter
which of these is used to express a given signal.

e S]0] = 0 If the input is identically zero for all time, the output of a linear system must be zero.
This property follows from the simple derivation S[0] =Sz (t) — 2 ()] =Sz ()] = S[z ()] = 0.

Just why linear systems are so important is related not only to their properties, which are divulged throughout
this course, but also because they lend themselves to relatively simple mathematical analysis. Said another
way, “They’re the only systems we thoroughly understand!”

We can find the output of any linear system to a complicated input by decomposing the input into simple
signals. The equation above (2.34) says that when a system is linear, its output to a decomposed input is
the sum of outputs to each input. For example, if

x(t) = e~ +sin (27 fot)
the output S (z (t)) of any linear system equals

y(t) =S [e7"] + Ssin (27 fot)]

2.6.7 Time-Invariant Systems

Systems that don’t change their input-output relation with time are said to be time-invariant. The mathe-
matical way of stating this property is to use the signal delay concept described in Section 2.6.3.

y(t) =Sl (] = y(t —7) = Sla(t 7] (2.35)

If you delay (or advance) the input, the output is similarly delayed (advanced). Thus, a time-invariant
system responds to an input you may supply tomorrow the same way it responds to the same input applied
today; today’s output is merely delayed to occur tomorrow.

The collection of linear, time-invariant systems are the most thoroughly understood systems. Much of
the signal processing and system theory discussed here concentrates on such systems. For example, electric
circuits are, for the most part, linear and time-invariant. Nonlinear ones abound, but characterizing them
so that you can predict their behavior for any input remains an unsolved problem.
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Input-Output Relation | Linear | Time-Invariant
y(t) = g (@) yes yes
y(t) =& () yes yes
y(t) = (% (917))2 no yes
y(t) =4 @)+ yes yes
y () = 2 + 22 yes yes
yt)=z({t—71) yes yes
y (t) = cos (2w ft) x (t) yes no
y(t) =z (-t) yes no
y(t) =22 (t) no yes
Y () = 2(0)] w0 yes
y(t)=maz(t)+b no yes

Table 2.1

2.7 Signals and Systems Problems™

Problem 2.1: Complex Number Arithmetic
Find the real part, imaginary part, the magnitude and angle of the complex numbers given by the following
expressions.

(a) -1
14 V/3j
(b) ~EY
(c) 1+j+ei
(d) €73 +eI™ + 775

Problem 2.2: Discovering Roots
Complex numbers expose all the roots of real (and complex) numbers. For example, there should be two
square-roots, three cube-roots, etc. of any number. Find the following roots.

(a) What are the cube-roots of 277 In other words, what is 2757
(b) What are the fifth roots of 3 (35)?
(c) What are the fourth roots of one?

Problem 2.3: Cool Exponentials
Simplify the following (cool) expressions.

(a) j7

(b) j*

(c)
Problem 2.4: Complex-valued Signals

Complex numbers and phasors play a very important role in electrical engineering. Solving systems for
complex exponentials is much easier than for sinusoids, and linear systems analysis is particularly easy.

10This content is available online at http://cnx.org/content/m10348/2.27/.
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(a) Express each as a sum of complex exponentials. Also, re-express each as the real and imaginary parts
of a complex exponential. What is the frequency (in Hz) of each? In general, are your answers unique?
If so, prove it; if not, find an alternative answer for the complex exponential representation.
i) 3sin (24t)
ii) v2cos (2m60t + T)
iii) 2cos (t+ §) +4sin (t - §)
(b) Show that for linear systems having real-valued outputs for real inputs, that when the input is the
real part of a complex exponential, the output is the real part of the system’s output to the complex
exponential (see Figure 2.16).

S [Re {Aeﬂ”ﬁ}] = Re {S [Aeﬂ”ft]}

Ael2mft S[Re[Aei2nft]]
——» Rel] —» St —»

Ael2nft Re[S[Ael2n]]
—»{ S +—» Rel] —»

Figure 2.16

Problem 2.5:

Express each of the indicated voltages as the real part of a complex exponential: v (t) = Re[Ve®!]. Explicitly
indicate the value of the complex amplitude V' and the complex frequency s. Represent each complex
amplitude as a vector in the V-plane, and indicate the location of the frequencies in the complex s-plane.

(a) v (t) = cos (5t) (b) v (t) =sin (8t + I)

(c)v(t)=et (d) v(t) =e 3 sin (4t + 2F)

(e) v (t) = 5e?! sin (8t + 2mr) ) v(t)=-2

(g) v (t) =4sin(2t) +3cos (2t) (h) v (t) = 2cos (1007t + %) — v/3sin (1007t + F)

Problem 2.6:
Express each of the depicted signals (Figure 2.17) as a linear combination of delayed and weighted step
functions and ramps (the integral of a step).
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s(t) s(t)
10— — 10— —
t t
1 1 2
(a) (b)
s(t) s(t)
2
10— —
P 1 t
_ \ ~1
1 2
(c) (d)

Figure

Problem 2.7: Linear, Time-Invariant Systems
When the input to a linear, time-invariant system is the signal x (¢), the output is the signal y (¢) (Figure 2.18).

2.17

(a) Find and sketch this system’s output when the input is the depicted signal (Figure 2.19).
(b) Find and sketch this system’s output when the input is a unit step.

1—

Ax(®)

1

AY()

-1

Figure

2.18
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Ax®)
1
0.5
>t
1 2 3
Figure 2.19
x(t)
Ax(t) t A
1 Ay 5 .
1/2
3 12 3 4 ™t
1 >t ] > {
-1/21 - - —21- -
(a) (b)
Figure 2.20
1AX(’[) ’ r(t)
1 -t ] 5 >t
Figure 2.21

Problem 2.8: Linear Systems
The depicted input (Figure 2.20a) x (¢) to a linear, time-invariant system yields the output y (¢).

(a) What is the system’s output to a unit step input u(t)?
(b) What will the output be when the input is the depicted square wave (Figure 2.20b)?

Problem 2.9: Communication Channel
A particularly interesting communication channel can be modeled as a linear, time-invariant system. When
the transmitted signal x (¢) is a pulse, the received signal r (¢) is as shown in Figure 2.21.

(a) What will be the received signal when the transmitter sends the pulse sequence z; () shown at the
top of Figure 2.227

(b) What will be the received signal when the transmitter sends the pulse signal x5 (t) shown at the bottom
of Figure 2.22 that has half the duration as the original?
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Axq(t)
1
o o o
Pt
1 2 3
Axo(t)
1
|l
1/2 1
Figure 2.22

Problem 2.10: Analog Computers
So-called analog computers use circuits to solve mathematical problems, particularly when they involve
differential equations. Suppose we are given the following differential equation to solve.

d
2y (O +ay(t) =z ()
In this equation, a is a constant.

(a) When the input is a unit step (z (¢) = u(t)), the output is given by y (¢) = (1 — e~ ) u(t). What is the
total energy expended by the input?

(b) Instead of a unit step, suppose the input is a unit pulse (unit-amplitude, unit-duration) delivered to
the circuit at time t = 10. What is the output voltage in this case? Sketch the waveform.
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Solutions to Exercises in Chapter 2

Solution to Exercise 2.1 (p. 12)

z4+z"=a+ jb+ a— jb=2a = 2Re|z]. Similarly, z — z* = a + jb — (a — jb) = 2jb = 2jIm [2]

Solution to Exercise 2.2 (p. 12)

To convert 3 — 2j to polar form, we first locate the number in the complex plane in the fourth quadrant.

The distance from the origin to the complex number is the magnitude r, which equals v/13 = /3% + (—2)2.

The angle equals — arctan (2) or —0.588 radians (—33.7 degrees). The final answer is v/13Z (—33.7) degrees.
Solution to Exercise 2.3 (p. 13)
22" = (a+ jb) (a — jb) = a® + b2. Thus, 22* = r? = |z|*.
Solution to Exercise 2.4 (p. 18)
sq () =202 oo (=1)" Appys (t —n7)
Solution to Exercise 2.5 (p. 23)
In the first case, order does not matter; in the second it does. “Delay” means t — ¢t — 7. “Time-reverse”
means t — —¢
Case 1 y(t) = Gz (t — 7), and the way we apply the gain and delay the signal gives the same result.
Case 2 Time-reverse then delay: y(t) = z(—(t — 7)) = z (=t + 7). Delay then time-reverse: y (t) =

x (=t —71).



Chapter 3

Analog Signal Processing

3.1 Voltage, Current, and Generic Circuit Elements'

We know that information can be represented by signals; now we need to understand how signals are
physically realized. Over the years, electric signals have been found to be the easiest to use. Voltage and
currents comprise the electric instantiations of signals. Thus, we need to delve into the world of electricity
and electromagnetism. The systems used to manipulate electric signals directly are called circuits, and they
refine the information representation or extract information from the voltage or current. In many cases, they
make nice examples of linear systems.

A generic circuit element places a constraint between the classic variables of a circuit: voltage and current.
Voltage is electric potential and represents the “push” that drives electric charge from one place to another.
What causes charge to move is a physical separation between positive and negative charge. A battery
generates, through electrochemical means, excess positive charge at one terminal and negative charge at the
other, creating an electric field. Voltage is defined across a circuit element, with the positive sign denoting
a positive voltage drop across the element. When a conductor connects the positive and negative potentials,
current flows, with positive current indicating that positive charge flows from the positive terminal to the
negative. Electrons comprise current flow in many cases. Because electrons have a negative charge, electrons
move in the opposite direction of positive current flow: Negative charge flowing to the right is equivalent to
positive charge moving to the left.

It is important to understand the physics of current flow in conductors to appreciate the innovation of
new electronic devices. Electric charge can arise from many sources, the simplest being the electron. When
we say that “electrons flow through a conductor,” what we mean is that the conductor’s constituent atoms
freely give up electrons from their outer shells. “Flow” thus means that electrons hop from atom to atom
driven along by the applied electric potential. A missing electron, however, is a virtual positive charge.
Electrical engineers call these holes, and in some materials, particularly certain semiconductors, current
flow is actually due to holes. Current flow also occurs in nerve cells found in your brain. Here, neurons
“communicate” using propagating voltage pulses that rely on the flow of positive ions (potassium and sodium
primarily, and to some degree calcium) across the neuron’s outer wall. Thus, current can come from many
sources, and circuit theory can be used to understand how current flows in reaction to electric fields.

IThis content is available online at http://cnx.org/content/m0011/2.14/.
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Figure 3.1: The generic circuit element.

Current flows through circuit elements, such as that depicted in Figure 3.1, and through conductors,
which we indicate by lines in circuit diagrams. For every circuit element we define a voltage and a current.
The element has a v-i relation defined by the element’s physical properties. In defining the v-i relation, we
have the convention that positive current flows from positive to negative voltage drop. Voltage has units of
volts, and both the unit and the quantity are named for Alessandro Volta?. Current has units of amperes,
and is named for the French physicist André-Marie Ampére3.

Voltages and currents also carry power. Again using the convention shown in Figure 3.1 for circuit
elements, the instantaneous power at each moment of time consumed by the element is given by the
product of the voltage and current.

p(t)=v(t)i(t)
A positive value for power indicates that at time ¢ the circuit element is consuming power; a negative value
means it is producing power. With voltage expressed in volts and current in amperes, power defined this
way has units of watts. Just as in all areas of physics and chemistry, power is the rate at which energy is
consumed or produced. Consequently, energy is the integral of power.

E<t>=/t p(a) da

— 00

Again, positive energy corresponds to consumed energy and negative energy corresponds to energy produc-
tion. Note that a circuit element having a power profile that is both positive and negative over some time
interval could consume or produce energy according to the sign of the integral of power. The units of energy
are joules since a watt equals joules/second.

Exercise 3.1 (Solution on p. 94.)

Residential energy bills typically state a home’s energy usage in kilowatt-hours. Is this really a unit

of energy? If so, how many joules equals one kilowatt-hour?

3.2 Ideal Circuit Elements’

The elementary circuit elements—the resistor, capacitor, and inductor— impose linear relationships between
voltage and current.

3.2.1 Resistor

Figure 3.2: Resistor. v = Ri

2https ://nationalmaglab.org/education/magnet-academy/history-of-electricity-magnetism/pioneers/
alessandro-volta

Shttp://wuw-groups.dcs.st-and.ac.uk/ history/Biographies/Ampere.html

4This content is available online at http://cnx.org/content/m0012/2.21/.
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The resistor is far and away the simplest circuit element. In a resistor, the voltage is proportional to the
current, with the constant of proportionality R, known as the resistance.

v (t) = Ri(t)

Resistance has units of ohms, denoted by €, named for the German electrical scientist Georg Ohm®. Some-
times, the v-i relation for the resistor is written ¢ = Gv, with G, the conductance, equal to %. Conductance
has units of Siemens (S), and is named for the German electronics industrialist Werner von SiemensS.

When resistance is positive, as it is in most cases, a resistor consumes power. A resistor’s instantaneous
power consumption can be written one of two ways.

p(t) = Ri*(t) = v* (t)

As the resistance approaches infinity, we have what is known as an open circuit: No current flows but a
non-zero voltage can appear across the open circuit. As the resistance becomes zero, the voltage goes to zero
for a non-zero current flow. This situation corresponds to a short circuit. A superconductor physically
realizes a short circuit.

3.2.2 Capacitor

oL

TZ

d
Figure 3.3: Capacitor. i = C@” (t)

The capacitor stores charge and the relationship between the charge stored and the resultant voltage is
g = Cv. The constant of proportionality, the capacitance, has units of farads (F), and is named for the
English experimental physicist Michael Faraday’. As current is the rate of change of charge, the v-i relation
can be expressed in differential or integral form.

i(t)= C%v (t) or v(t) = %/_Ooi(a) do (3.1)

If the voltage across a capacitor is constant, then the current flowing into it equals zero. In this situation,
the capacitor is equivalent to an open circuit. The power consumed/produced by a voltage applied to a
capacitor depends on the product of the voltage and its derivative.

d
t)=Cuv(t) —wv(t
p(t) = Co ) So ()
This result means that a capacitor’s total energy expenditure up to time ¢ is concisely given by

1
E(t) = 501;2 (t)
This expression presumes the fundamental assumption of circuit theory: all voltages and currents in
any circuit were zero in the far distant past (t = —oc0).

Shttp://www-groups.dcs.st-and.ac.uk/~history/Biographies/Ohm.html
Shttps://www.siemens.com/history/en/personalities/founder_generation.htm
"https://en.wikipedia.org/wiki/Michael_Faraday
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3.2.3 Inductor

Figure 3.4: Inductor. v = Ldil (t)

The inductor stores magnetic flux, with larger valued inductors capable of storing more flux. Inductance has
units of henries (H), and is named for the American physicist Joseph Henry®. The differential and integral
forms of the inductor’s v-i relation are

v(t):L%i(t) or i(l) = E/ v(a)da (3.2)

The power consumed/produced by an inductor depends on the product of the inductor current and its
derivative

p(t) = Li) i (1)

and its total energy expenditure up to time ¢ is given by
3.2.4 Sources

Vs

<
(‘fT-
<

(a) (b)

Figure 3.5: The voltage source on the left and current source on the right are like all circuit elements
in that they have a particular relationship between the voltage and current defined for them. For the
voltage source, v = vs for any current i; for the current source, i = —i, for any voltage v.

Sources of voltage and current are also circuit elements, but they are not linear in the strict sense of linear
systems. For example, the voltage source’s v-i relation is v = v, regardless of what the current might be.
As for the current source, i = —is regardless of the voltage. Another name for a constant-valued voltage
source is a battery, and can be purchased in any supermarket. Current sources, on the other hand, are much
harder to acquire; we’ll learn why later.

3.3 Ideal and Real-World Circuit Elements’

Source and linear circuit elements are ideal circuit elements. One central notion of circuit theory is combining
the ideal elements to describe how physical elements operate in the real world. For example, the 1 k)

8http://siarchives.si.edu/history/exhibits/joseph-henry
9This content is available online at http://cnx.org/content/m0013/2.9/.
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i1 + Vq{ -

R i lout

+ + *
(a) (b)
Vin(t) Vout(t)
Source > System —>

(©)

Figure 3.6: The circuit shown in the top two figures is perhaps the simplest circuit that performs a
signal processing function. On the bottom is the block diagram that corresponds to the circuit. The
input is provided by the voltage source vin, and the output is the voltage vout across the resistor label Ro.
As shown in the middle, we analyze the circuit—understand what it accomplishes—Dby defining currents
and voltages for all circuit elements, and then solving the circuit and element equations.

resistor you can hold in your hand is not exactly an ideal 1 k2 resistor. First of all, physical devices
are manufactured to close tolerances (the tighter the tolerance, the more money you pay), but never have
exactly their advertised values. The fourth band on resistors specifies their tolerance; 10% is common. More
pertinent to the current discussion is another deviation from the ideal: If a sinusoidal voltage is placed across
a physical resistor, the current will not be exactly proportional to it as frequency becomes high, say above
1 MHz. At very high frequencies, the way the resistor is constructed introduces inductance and capacitance
effects. Thus, the smart engineer must be aware of the frequency ranges over which his ideal models match
reality well.

On the other hand, physical circuit elements can be readily found that well approximate the ideal, but
they will always deviate from the ideal in some way. For example, a flashlight battery, like a C-cell, roughly
corresponds to a 1.5 V voltage source. However, it ceases to be modeled by a voltage source capable of
supplying any current (that’s what ideal ones can do!) when the resistance of the light bulb is too small.

3.4 Electric Circuits and Interconnection Laws"

A circuit connects circuit elements together in a specific configuration designed to transform the source
signal (originating from a voltage or current source) into another signal—the output—that corresponds to
the current or voltage defined for a particular circuit element. A simple resistive circuit is shown in Figure 3.6.
This circuit is the electrical embodiment of a system having its input provided by a source system producing
Vin (t)

To understand what this circuit accomplishes, we want to determine the voltage across the resistor labeled
by its value Ro. Recasting this problem mathematically, we need to solve some set of equations so that we
relate the output voltage vyt to the source voltage. It would be simple—a little too simple at this point—if
we could instantly write down the one equation that relates these two voltages. Until we have more knowledge
about how circuits work, we must write a set of equations that allow us to find all the voltages and currents
that can be defined for every circuit element. Because we have a three-element circuit, we have a total of six
voltages and currents that must be either specified or determined. You can define the directions for current
flow and positive voltage drop any way you like. When two people solve a circuit their own ways, the
signs of their variables may not agree, but current flow and voltage drop values for each element will agree.
Do recall in defining your voltage and current variables that the v-i relations for the elements presume that

10This content is available online at http://cnx.org/content/m0014/2.27/.



36 CHAPTER 3. ANALOG SIGNAL PROCESSING

positive current flow is in the same direction as positive voltage drop. Once you define voltages and currents,
we need six non-redundant equations to solve for the six unknown voltages and currents. By specifying the
source, we have one; this amounts to providing the source’s v-i relation. The v-i relations for the resistors
give us two more. We are only halfway there; where do we get the other three equations we need?

What we need to solve every circuit problem are mathematical statements that express how the circuit
elements are interconnected. Said another way, we need the laws that govern the electrical connection of
circuit elements. First of all, the places where circuit elements attach to each other are called nodes.
Two nodes are explicitly indicated in Figure 3.6; a third is at the bottom where the voltage source and
resistor Rg are connected. Electrical engineers tend to draw circuit diagrams—schematics— in a rectilinear
fashion. Thus the long line connecting the bottom of the voltage source with the bottom of the resistor
is intended to make the diagram look pretty. This line simply means that the two elements are connected
together. Kirchhoff’s Laws, one for voltage and one for current, determine what a connection among
circuit elements means. These laws can help us analyze this circuit.

3.4.1 Kirchhoff’s Current Law

At every node, the sum of all currents entering a node must equal zero. What this law means physically is
that charge cannot accumulate in a node; what goes in must come out. In our example circuit depicted in
Figure 3.6, we have a three-node circuit and thus have three KCL equations.

—1—11 =0
il—i2:0
1+ =0

Note that the current entering a node is the negative of the current leaving the node.

Given any two of these KCL equations, we can find the other by adding or subtracting them. Thus, one
of them is redundant and, in mathematical terms, we can discard any one of them. The convention is to
discard the equation for the (unlabeled) node at the bottom of the circuit.

Exercise 3.2 (Solution on p. 94.)
In writing KCL equations, you will find that in an m-node circuit, exactly one of them is always
redundant. Can you sketch a proof of why this might be true?

Hint: It has to do with the fact that charge won’t accumulate in one place on its own.

3.4.2 Kirchhoff’s Voltage Law (KVL)

The voltage law says that the sum of voltages around every closed loop in the circuit must equal zero. A
closed loop has the obvious definition: Starting at a node, trace a path through the circuit that returns you
to the origin node. KVL expresses the fact that electric fields are conservative: The total work performed
in moving a test charge around a closed path is zero. The KVL equation for our circuit is

v +ve—v=0

In writing KVL equations, we follow the convention that an element’s voltage enters with a plus sign when
traversing the closed path, we go from the positive to the negative of the voltage’s definition.

For the example circuit shown in Figure 3.6 (page 35), we have three v-i relations, two KCL equations,
and one KVL equation for solving for the circuit’s six voltages and currents.

v-ii v =y, KCL: —i—1i1 =0 KVL: —v+v1 + vous =0
v = Ryiy 11 — touy = 0
Vout = RZiout

We have exactly the right number of equations! Eventually, we will discover shortcuts for solving circuit
problems; for now, we want to eliminate all the variables but v, and determine how it depends on v;, and
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on resistor values. The KVL equation can be rewritten as vj, = v1 + vous- Substituting into it the resistor’s
v-i relation, we have vy, = Rii1 + Roious- Yes, we temporarily eliminate the quantity we seek. Though
not obvious, it is the simplest way to solve the equations. One of the KCL equations says i1 = ioyut, which
means that vy, = Riiout + Raiout = (R1 + R2) iout. Solving for the current in the output resistor, we have
. Vin
fout = Ri1 4+ Ro
sources and circuit-element values. To find any other circuit quantities, we can back substitute this answer
into our original equations or ones we developed along the way. Using the v-i relation for the output resistor,
we obtain the quantity we seek.

. We have now solved the circuit: We have expressed one voltage or current in terms of

oy = T2
out R1+R2 in

Exercise 3.3 (Solution on p. 94.)
Referring back to Figure 3.6 (page 35), a circuit should serve some useful purpose. What kind of
system does our circuit realize and, in terms of element values, what are the system’s parameter(s)?

3.5 Power Dissipation in Resistor Circuits"

We can find voltages and currents in simple circuits containing resistors and voltage or current sources. We
should examine whether these circuits variables obey the Conservation of Power principle: since a circuit is
a closed system, it should not dissipate or create energy. For the moment, our approach is to investigate
first a resistor circuit’s power consumption/creation. Later, we will prove that because of KVL and KCL
all circuits conserve power.

As defined on p. 32, the instantaneous power consumed/created by every circuit element equals the
product of its voltage and current. The total power consumed/created by a circuit equals the sum of each

element’s power.
P= E ’Ukik
k

Recall that each element’s current and voltage must obey the convention that positive current is defined to
enter the positive-voltage terminal. With this convention, a positive value of vgiy corresponds to consumed
power, a negative value to created power. Because the total power in a circuit must be zero (P = 0), some
circuit elements must create power while others consume it.

Consider the simple series circuit appearing in Figure 3.6 (page 35). In performing our calculations,
we defined the current i,y to flow through the positive-voltage terminals of both resistors and found it to

Vin . . .
equal oy = T The voltage across the resistor Ry is the output voltage and we found it to equal
1 2
Vout = 721)1,1. Consequently, calculating the power for this resistor yields
R+ R»

Ry 9

(Ry + Ry)*

Consequently, this resistor dissipates power because P; is positive. This result should not be surprising since
we showed (p. 33) that the power consumed by any resistor equals either of the following.
2

v 2
— or i“R 3.3

B (33)
Since resistors are positive-valued, resistors always dissipate power. But where does a resistor’s power
go? By Conversation of Power, the dissipated power must be absorbed somewhere. The answer is not
directly predicted by circuit theory, but is by physics. Current flowing through a resistor makes it hot; its
power is dissipated by heat.

HThis content is available online at http://cnx.org/content/m17305/1.5/.
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i1 + Vq{ -
R1 i iOUt
+ +
+
(a) (b)

Figure 3.7: The circuit shown is perhaps the simplest circuit that performs a signal processing function.
The input is provided by the voltage source vin and the output is the voltage vout across the resistor
labelled Rs.

NOTE: A physical wire has a resistance and hence dissipates power (it gets warm just like a resistor
in a circuit). In fact, the resistance of a wire of length L and cross-sectional area A is given by

pL
A
The quantity p is known as the resistivity and presents the resistance of a unit-length unit cross-
sectional area material constituting the wire. Resistivity has units of ohm-meters. Most materials
have a positive value for p, which means the longer the wire, the greater the resistance and thus
the power dissipated. The thicker the wire, the smaller the resistance. Superconductors have zero
resistivity and hence do not dissipate power. If a room-temperature superconductor could be found,
electric power could be sent through power lines without loss!

R

Exercise 3.4 (Solution on p. 94.)
Calculate the power consumed/created by the resistor R; in our simple circuit example.

We conclude that both resistors in our example circuit consume power, which points to the voltage source
as the producer of power. The current flowing into the source’s positive terminal is —is,¢. Consequently,
the power calculation for the source yields

1 2
— =75 Uin
Ry + Rs

—Vinlout =

We conclude that the source provides the power consumed by the resistors, no more, no less.

Exercise 3.5 (Solution on p. 94.)
Confirm that the source produces exactly the total power consumed by both resistors.

This result is quite general: sources produce power and the circuit elements, especially resistors, consume it.
But where do sources get their power? Again, circuit theory does not model how sources are constructed,
but the theory decrees that all sources must be provided energy to work.

3.6 Series and Parallel Circuits®

The results shown in Section 3.4 with regard to this circuit (Figure 3.7), and the values of other currents
and voltages in this circuit as well, have profound implications.

Resistors connected in such a way that current from one must flow only into another—currents in all
resistors connected this way have the same magnitude—are said to be connected in series. For the two
series-connected resistors in the example, the voltage across one resistor equals the ratio of that
resistor’s value and the sum of resistances times the voltage across the series combination.
This concept is so pervasive it has a name: voltage divider.

12This content is available online at http://cnx.org/content/m10674/2.8/.
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The input-output relationship for this system, found in this particular case by voltage divider, takes
the form of a ratio of the output voltage to the input voltage.

Vout Ry

Vin  Ri+ Ra

In this way, we express how the components used to build the system affect the input-output relationship.
Because this analysis was made with ideal circuit elements, we might expect this relation to break down if
the input amplitude is too high (Will the circuit survive if the input changes from 1 volt to one million volts?)
or if the source’s frequency becomes too high. In any case, this important way of expressing input-output
relationships—as a ratio of output to input—pervades circuit and system theory.

The current iy is the current flowing out of the voltage source. Because it equals i5, we have that the
ratio of the source’s voltage to the current flowing out of it equals 1;—1“ = R; + Rs. Consequently, from the
viewpoint of the source, it appears to be attached to a single resistor having resistance Ry + Rs.

RESISTORS IN SERIES: The series combination of two resistors acts, as far as the voltage source is
concerned, as a single resistor having a value equal to the sum of the two resistances.

This result is the first of several equivalent circuit ideas: In many cases, a complicated circuit when viewed
from its terminals (the two places to which you might attach a source) appears to be a single circuit element
(at best) or a simple combination of elements at worst. Thus, the equivalent circuit for a series combination
of resistors is a single resistor having a resistance equal to the sum of its component resistances.

= (D

L)
ke

g
+
0

N

Figure 3.8: The resistor (on the right) is equivalent to the two resistors (on the left) and has a resistance
equal to the sum of the resistances of the other two resistors.

Thus, the circuit the voltage source “feels” (through the current drawn from it) is a single resistor having
resistance R; 4+ R2. Note that in making this equivalent circuit, the output voltage can no longer be defined:
The output resistor labeled R, no longer appears. Thus, this equivalence is made strictly from the voltage
source’s viewpoint.

i1
_ ' + + +
'inC4> R4 R2 'inC*)v R1Svi R2<Svs

Figure 3.9: A simple parallel circuit.

One interesting simple circuit (Figure 3.9) has two resistors connected side-by-side, what we will term a
parallel connection, rather than in series. Here, applying KVL reveals that all the voltages are identical:
v1 = v and vo = v. This result typifies parallel connections. To write the KCL equation, note that the top
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node consists of the entire upper interconnection section. The KCL equation is ij, — i1 — i = 0. Using the
v-i relations, we find that

. Ry

lout = mlin

Exercise 3.6 (Solution on p. 94.)
Suppose that you replaced the current source in Figure 3.9 by a voltage source. How would iy be
related to the source voltage? Based on this result, what purpose does this revised circuit have?

This circuit highlights some important properties of parallel circuits. You can easily show that the parallel
-1
1 ) R Ry

combination of R; and Ry has the v-i relation of a resistor having resistance (R + s =
1 2

B R+ Ry '
A shorthand notation for this quantity is (R; || Rz). As the reciprocal of resistance is conductance, we can
say that for a parallel combination of resistors, the equivalent conductance is the sum of the
conductances.

O | O—t+— |
| |
| | | |
| | | |
R1R
| R1 R2 | @ | 1 2 |
: | | < Ri1+R2 |
| | | |
| | | |
O J O_'L_ |
Figure 3.10

Similar to voltage divider (p. 38) for series resistances, we have current divider for parallel resistances.
The current through a resistor in parallel with another is the ratio of the conductance of the first to the

G
sum of the conductances. Thus, for the depicted circuit, is = ﬁz Expressed in terms of resistances,
1 2
current divider takes the form of the resistance of the other resistor divided by the sum of resistances:
) R
lg = ——1.
7 Ri+ R
i
o> .
12
R1 Ro2
O

Figure 3.11
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Figure 3.12: The simple attenuator circuit (Figure 3.7) is attached to an oscilloscope’s input. The
Ro

input-output relation for the above circuit without a load is: vout = ————Vin.
R+ R»

Suppose we want to pass the output signal into a voltage measurement device, such as an oscilloscope or
a voltmeter. In system-theory terms, we want to pass our circuit’s output to a sink. For most applications,
we can represent these measurement devices as a resistor, with the current passing through it driving the
measurement device through some type of display. In circuits, a sink is called a load; thus, we describe a
system-theoretic sink as a load resistance R;. Thus, we have a complete system built from a cascade of
three systems: a source, a signal processing system (simple as it is), and a sink.

We must analyze afresh how this revised circuit, shown in Figure 3.12, works. Rather than defining eight
variables and solving for the current in the load resistor, let’s take a hint from other analysis (series rules
(p. 38), parallel rules (p. 40)). Resistors Ry and Ry, are in a parallel configuration: The voltages across
each resistor are the same while the currents are not. Because the voltages are the same, we can find the
current through each from their v-i relations: iy = ”}3‘; and iy, = 7}3‘2‘ . Considering the node where all three
resistors join, KCL says that the sum of the three currents must equal zero. Said another way, the current
entering the node through R; must equal the sum of the other two currents leaving the node. Therefore,

i1 = 19 + i1, which means that i; = vout (R% + %L)

Let R.q denote the equivalent resistance of the parallel combination of Ry and Ry. Using R;’s v-i
relation, the voltage across it is v; = R%:’“t. The KVL equation written around the leftmost loop has
Vin = U1 + Uouy; substituting for vy, we find

Vin = Vout (;?1 + 1)
eq

Vout Req
Vin Ri + Req

or

Thus, we have the input-output relationship for our entire system having the form of voltage divider,
but it does not equal the input-output relation of the circuit without the voltage measurement device. We
can not measure voltages reliably unless the measurement device has little effect on what we are trying to
measure. We should look more carefully to determine if any values for the load resistance would lessen its
impact on the circuit. Comparing the input-output relations before and after, what we need is Roq ~ Rs.

-1
As Req = <1 + 1) , the approximation would apply if 1 > * or Ry <« Ry. This is the condition
Ry  Rp Ry~ Rp
we seek:

VOLTAGE MEASUREMENT: Voltage measurement devices must have large resistances compared with
that of the resistor across which the voltage is to be measured.

Exercise 3.7 (Solution on p. 94.)
Let’s be more precise: How much larger would a load resistance need to be to affect the input-output
relation by less than 10%? by less than 1%?
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Example 3.1

R2< R3
R1

R4

O——

Figure 3.13

We want to find the total resistance of the example circuit. To apply the series and parallel
combination rules, it is best to first determine the circuit’s structure: What is in series with what
and what is in parallel with what at both small- and large-scale views. We have Rs in parallel
with Rj3; this combination is in series with R4. This series combination is in parallel with R;. Note
that in determining this structure, we started away from the terminals, and worked toward them.
In most cases, this approach works well; try it first. The total resistance expression mimics the
structure:

Rr = R; H (RQ H Rs + R4)
B RiRsRs + R1RoRy + R1RsRy
RiRys 4+ R1R3 + RoR3 + RoRy + R3Ry

Such complicated expressions typify circuit “simplifications.” A simple check for accuracy is the
units: Each component of the numerator should have the same units (here Q3) as well as in the
denominator (22). The entire expression is to have units of resistance; thus, the ratio of the
numerator’s and denominator’s units should be ohms. Checking units does not guarantee accuracy,
but can catch many errors.

Another valuable lesson emerges from this example concerning the difference between cascading systems and
cascading circuits. In system theory, systems can be cascaded without changing the input-output relation
of intermediate systems. In cascading circuits, this ideal is rarely true unless the circuits are so designed.
Design is in the hands of the engineer; he or she must recognize what have come to be known as loading
effects. In our simple circuit, you might think that making the resistance Ry, large enough would do the trick.
Because the resistors Ry and Ry can have virtually any value, you can never make the resistance of your
voltage measurement device big enough. Said another way, a circuit cannot be designed in isolation
that will work in cascade with all other circuits. Electrical engineers deal with this situation through
the notion of specifications: Under what conditions will the circuit perform as designed? Thus, you will
find that oscilloscopes and voltmeters have their internal resistances clearly stated, enabling you to determine
whether the voltage you measure closely equals what was present before they were attached to your circuit.

Furthermore, since our resistor circuit functions as an attenuator, with the attenuation (a fancy word for
21

gains less than one) depending only on the ratio of the two resistor values Rliz& = (1 + %) , We can
select any values for the two resistances we want to achieve the desired attenuation. The designer of this
circuit must thus specify not only what the attenuation is, but also the resistance values employed so that
integrators—people who put systems together from component systems—can combine systems together and
have a chance of the combination working.

Figure 3.14 summarizes the series and parallel combination results. These results are easy to remember
and very useful. Keep in mind that for series combinations, voltage and resistance are the key quantities,
while for parallel combinations current and conductance are more important. In series combinations, the

currents through each element are the same; in parallel ones, the voltages are the same.
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Figure 3.14: Series and parallel combination rules. (a) Ry = Z_:l Ry, vn, = g—;v (b) Gr = 2_:1 Gh,
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Exercise 3.8 (Solution on p. 94.)

Contrast a series combination of resistors with a parallel one. Which variable (voltage or current)
is the same for each and which differs? What are the equivalent resistances? When resistors are
placed in series, is the equivalent resistance bigger, in between, or smaller than the component
resistances? What is this relationship for a parallel combination?

3.7 Equivalent Circuits: Resistors and Sources”

We have found that the way to think about circuits is to locate and group parallel and series resistor
combinations. Those resistors not involved with variables of interest can be collapsed into a single resistance.
This result is known as an equivalent circuit: from the viewpoint of a pair of terminals, a group of resistors
functions as a single resistor, the resistance of which can usually be found by applying the parallel and series
rules.

VT TR

| R4 :

:Vin CD Ro i Y

| |

| T

T .
Figure 3.15

This result generalizes to include sources in a very interesting and useful way. Let’s consider our simple
attenuator circuit (shown in Figure 3.15) from the viewpoint of the output terminals. We want to find
the v-i relation for the output terminal pair, and then find the equivalent circuit for the boxed circuit. To
perform this calculation, use the circuit laws and element relations, but do not attach anything to the output
terminals. We seek the relation between v and ¢ that describes the kind of element that lurks within the

dashed box. The result is
Ry

- 5 Uin
Ri+ Ry

13This content is available online at http://cnx.org/content/m0020/2.23/.

v=(R1| Rz)i+ (3.4)
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If the source were zero, it could be replaced by a short circuit, which would confirm that the circuit does
indeed function as a parallel combination of resistors. However, the source’s presence means that the circuit
is not well modeled as a resistor.

)
\/

Figure 3.16: The Thévenin equivalent circuit.

If we consider the simple circuit of Figure 3.16, we find it has the v-i relation at its terminals of

U= Reqi + Veq (35)
Comparing the two v-i relations, we find that they have the same form. In this case the Thévenin equiva-
R
lent resistance is Req = (R1 || R2) and the Thévenin equivalent source has voltage veq = ﬁvi“'
1 2

Thus, from viewpoint of the terminals, you cannot distinguish the two circuits. Because the equivalent
circuit has fewer elements, it is easier to analyze and understand than any other alternative.
For any circuit containing resistors and sources, the v-i relation will be of the form

v = Reqi + Veq (36)

and the Thévenin equivalent circuit for any such circuit is that of Figure 3.16. This equivalence applies no
matter how many sources or resistors may be present in the circuit. In the example (Example 3.2) below, we
know the circuit’s construction and element values, and derive the equivalent source and resistance. Because
Thévenin’s theorem applies in general, we should be able to make measurements or calculations only from
the terminals to determine the equivalent circuit.

To be more specific, consider the equivalent circuit of Figure 3.16. Let the terminals be open-circuited,
which has the effect of setting the current i to zero. Because no current flows through the resistor, the voltage
across it is zero (remember, Ohm’s Law says that v = Ri). Consequently, by applying KVL we have that
the so-called open-circuit voltage vo. equals the Thévenin equivalent voltage. Now consider the situation
when we set the terminal voltage to zero (short-circuit it) and measure the resulting current. Referring to
the equivalent circuit, the source voltage now appears entirely across the resistor, leaving the short-circuit

. U, . . . .
current to be iy = ——=+. From this property, we can determine the equivalent resistance.
eq
Veq = Voc (3.7)
v
Req = ——= (3.8)
ZSC
Exercise 3.9 (Solution on p. 94.)

Use the open/short-circuit approach to derive the Thévenin equivalent of the circuit shown in
Figure 3.17.
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Example 3.2
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Figure 3.18

For the circuit depicted in Figure 3.18, let’s derive its Thévenin equivalent two different ways.
Starting with the open/short-circuit approach, let’s first find the open-circuit voltage vo.. We have
a current divider relationship as R is in parallel with the series combination of Ry and R3z. Thus,

_ R3Ry y
Voc = Ry +R2+R3Zl
thus no current flows through it. In short, R3 does not affect the short-circuit current, and can be

Ry
————14in. Thus, the Thévenin
Ri+ R,

n- When we short-circuit the terminals, no voltage appears across Rs, and

eliminated. We again have a current divider relationship: 5. =

R; (Ry + Rs)
Ri1 4+ Rs 4+ R3 '

To verify, let’s find the equivalent resistance by reaching inside the circuit and setting the current
source to zero. Because the current is now zero, we can replace the current source by an open circuit.
From the viewpoint of the terminals, resistor R3 is now in parallel with the series combination of
Ry and Ry. Thus, Req = (R3 || R1 + R2), and we obtain the same result.

As you might expect, equivalent circuits come in two forms: the voltage-source oriented Thévenin equiva-
lent'* and the current-source oriented Mayer-Norton equivalent (Figure 3.19). To derive the latter, the
v-i relation for the Thévenin equivalent can be written as

equivalent resistance is

U = Reqi + Veq (3.9)
or v

1= R—eq — feq (3.10)
where ioq = Yeq is the Mayer-Norton equivalent source. The Mayer-Norton equivalent shown in Figure 3.19

eq
can be easily shown to have this v-i relation. Note that both variations have the same equivalent resistance.
The short-circuit current equals the negative of the Mayer-Norton equivalent source.

M«Finding Thévenin Equivalent Circuits” http://cnx.org/content/m0021/latest/
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Figure 3.19: All circuits containing sources and resistors can be described by simpler equivalent circuits.
Choosing the one to use depends on the application, not on what is actually inside the circuit.

Exercise 3.10 (Solution on p. 94.)
Find the Mayer-Norton equivalent circuit for the circuit below.
C
R2
lin R1 R3
C
Figure 3.20

Equivalent circuits can be used in two basic ways. The first is to simplify the analysis of a complicated
circuit by realizing the any portion of a circuit can be described by either a Thévenin or Mayer-Norton
equivalent. Which one is used depends on whether what is attached to the terminals is a series configuration
(making the Thévenin equivalent the best) or a parallel one (making Mayer-Norton the best).

Another application is modeling. When we buy a flashlight battery, either equivalent circuit can accu-
rately describe it. These models help us understand the limitations of a battery. Since batteries are labeled
with a voltage specification, they should serve as voltage sources and the Thévenin equivalent serves as the
natural choice. If a load ?zesistance Ry is placed across its terminals, the voltage output can be found using

L
Rp + Req
resistance, then, to a good approximation, the battery does serve as a voltage source. If the load resistance
is much smaller, we certainly don’t have a voltage source (the output voltage depends directly on the load
resistance). Consider now the Mayer-Norton equivalent; the current through the load resistance is given by
_ feq
Ry + Req
this resistance should be much smaller than the equivalent resistance. If the load resistance is comparable
to the equivalent resistance, the battery serves neither as a voltage source or a current course. Thus, when

voltage divider: v = Veq- 1f we have a load resistance much larger than the battery’s equivalent

current divider, and equals i = — ) ieq- For a current that does not vary with the load resistance,
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you buy a battery, you get a voltage source if its equivalent resistance is much smaller than the equivalent
resistance of the circuit to which you attach it. On the other hand, if you attach it to a circuit having a
small equivalent resistance, you bought a current source.

LEoN CHARLES THEVENIN: He was an engineer with France’s Postes, Télégraphe et Téléphone. In
1883, he published (twice!) a proof of what is now called the Thévenin equivalent while developing
ways of teaching electrical engineering concepts at the Ecole Polytechnique. He did not realize that
the same result had been published by Hermann Helmholtz,'® the renowned nineteenth century
physicist, thirty years earlier.

HaNs FERDINAND MAYER: After earning his doctorate in physics in 1920, he turned to com-
munications engineering when he joined Siemens & Halske in 1922. In 1926, he published in a
German technical journal the Mayer-Norton equivalent. During his interesting career, he rose to
lead Siemens’s Central Laboratory in 1936, surreptitiously leaked to the British all he knew of
German warfare capabilities a month after the Nazis invaded Poland, was arrested by the Gestapo
in 1943 for listening to BBC radio broadcasts, spent two years in Nazi concentration camps, and
went to the United States for four years working for the Air Force and Cornell University before
returning to Siemens in 1950. He rose to a position on Siemens’s Board of Directors before retiring.

EDWARD L. NorTON: Edward Norton'® was an electrical engineer who worked at Bell Laboratory
from its inception in 1922. In the same month when Mayer’s paper appeared, Norton wrote in an
internal technical memorandum a paragraph describing the current-source equivalent. No evidence
suggests Norton knew of Mayer’s publication.

3.8 Circuits with Capacitors and Inductors”

Let’s consider a circuit having something other than resistors and sources, such as shown in Figure 3.21.
Because of KVL, we know that vi, = vg 4+ vous. The current through the capacitor is given by i = C' %vout,
and this current equals that passing through the resistor. Substituting vgp = Ri into the KVL equation and
using the v-i relation for the capacitor, we arrive at

d
Rcavout + Vout = Vin (311)

The input-output relation for circuits involving energy storage elements takes the form of an ordinary differ-
ential equation, which we must solve to determine what the output voltage is for a given input. In contrast
to resistive circuits, where we obtain an explicit input-output relation, we now have an implicit relation
that requires more work to obtain answers.

At this point, we could learn how to solve differential equations. Note first that even finding the differential
equation relating an output variable to a source is often very tedious. The parallel and series combination
rules that apply to resistors don’t directly apply when capacitors and inductors occur. We would have to slog
our way through the circuit equations, simplifying them until we finally found the equation that related the
source(s) to the output. At the turn of the twentieth century, a method was discovered that not only made
finding the differential equation easy, but also simplified the solution process in the most common situation.
Although not original with him, Charles Steinmetz'® presented the key paper describing the impedance
approach in 1893. It allows circuits containing capacitors and inductors to be solved with the same methods
we have learned to solved resistor circuits. To use impedances, we must master complex numbers. Though
the arithmetic of complex numbers is mathematically more complicated than with real numbers, the increased
insight into circuit behavior and the ease with which circuits are solved with impedances is well worth the
diversion. But more importantly, the impedance concept is central to engineering and physics, having a
reach far beyond just circuits.

http://www-gap.dcs.st-and.ac.uk/ history/Biographies/Helmholtz.html
Uhttp://www.ece.rice.edu/~dhj/norton

17This content is available online at http://cnx.org/content/m0023/2.12/.
8http://www.edisontechcenter.org/CharlesProteusSteinmetz.html
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Figure 3.21: A simple RC circuit.
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Figure 3.22: (a) Resistor: Zr = R (b) Capacitor: Z¢ = 2nfC

(c¢) Inductor: Zr = j2nfL

3.9 The Impedance Concept”

Rather than solving the differential equation that arises in circuits containing capacitors and inductors, let’s
pretend that all sources in the circuit are complex exponentials having the same frequency. Although this
pretense can only be mathematically true, this fiction will greatly ease solving the circuit no matter what
the source really is.

For the above example RC circuit (Figure 3.21), let vy, = Vine??™ft . The complex amplitude Vi, deter-
mines the size of the source and its phase. The critical consequence of assuming that sources have this form
is that all voltages and currents in the circuit are also complex exponentials, having amplitudes governed
by KVL, KCL, and the v-i relations and the same frequency as the source. To appreciate why this should
be true, let’s investigate how each circuit element behaves when either the voltage or current is a complex

exponential. For the resistor, v = Ri. When v = Ve/?™/t; then i = Eeﬂ”ﬁ. Thus, if the resistor’s voltage is

a complex exponential, so is the current, with an amplitude I = — (determined by the resistor’s v-i relation)

and a frequency the same as the voltage. Clearly, if the current were assumed to be a complex exponential,
so would the voltage. For a capacitor, i = C % (v). Letting the voltage be a complex exponential, we have
i = CVj2nfel? ft. The amplitude of this complex exponential is I = C'Vj2rf. Finally, for the inductor,
where v = L% (), assuming the current to be a complex exponential results in the voltage having the form
v = LIj2rfe’?™ft making its complex amplitude V = LIj27f.

The major consequence of assuming complex exponential voltage and currents is that the

v
ratio Z = T for each element does not depend on time, but does depend on source frequency.

This quantity is known as the element’s impedance.

The impedance is, in general, a complex-valued, frequency-dependent quantity. For example, the magni-
tude of the capacitor’s impedance is inversely related to frequency, and has a phase of — /2. This observation
means that if the current is a complex exponential and has constant amplitude, the amplitude of the voltage
decreases with frequency.

Let’s consider Kirchhoff’s circuit laws. When voltages around a loop are all complex exponentials of the

19This content is available online at http://cnx.org/content/m0024/2.23/.
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same frequency, we have

Z Uy = Z V,el?m It = (3.12)

which means

> Vu=0 (3.13)

the complex amplitudes of the voltages obey KVL. We can easily imagine that the complex amplitudes
of the currents obey KCL.

What we have discovered is that source(s) equaling a complex exponential of the same frequency forces
all circuit variables to be complex exponentials of the same frequency. Consequently, the ratio of voltage to
current for each element equals the ratio of their complex amplitudes, which depends only on the source’s
frequency and element values.

This situation occurs because the circuit elements are linear and time-invariant. For example, suppose we
had a circuit element where the voltage equaled the square of the current: v (t) = Ki? (t). If i (t) = Ie?>™/t,
v (t) = KI?e72"2ft meaning that voltage and current no longer had the same frequency and that their ratio
was time-dependent.

Because for linear circuit elements the complex amplitude of voltage is proportional to the complex
amplitude of current— V = ZI — assuming complex exponential sources means circuit elements behave
as if they were resistors, where instead of resistance, we use impedance. Because complex amplitudes
for voltage and current also obey Kirchhoff’s laws, we can solve circuits using voltage and
current divider and the series and parallel combination rules by considering the elements to
be impedances.

3.10 Time and Frequency Domains™

When we find the differential equation relating the source and the output, we are faced with solving the
circuit in what is known as the time domain. What we emphasize here is that it is often easier to find
the output if we use impedances. Because impedances depend only on frequency, we find ourselves in the
frequency domain. A common error in using impedances is keeping the time-dependent part, the complex
exponential, in the fray. The entire point of using impedances is to get rid of time and concentrate on
frequency. Only after we find the result in the frequency domain do we go back to the time domain and put
things back together again.

To illustrate how the time domain, the frequency domain and impedances fit together, consider the time
domain and frequency domain to be two work rooms. Since you can’t be two places at the same time, you
are faced with solving your circuit problem in one of the two rooms at any point in time. Impedances and
complex exponentials are the way you get between the two rooms. Security guards make sure you don’t try
to sneak time domain variables into the frequency domain room and vice versa. Figure 3.23 shows how this
works.

20This content is available online at http://cnx.org/content/m10708/2.9/.
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Figure 3.23: The time and frequency domains are linked by assuming signals are complex exponentials.
In the time domain, signals can have any form. Passing into the frequency domain “work room,” signals
are represented entirely by complex amplitudes.

As we unfold the impedance story, we’ll see that the powerful use of impedances suggested by Steinmetz?!
greatly simplifies solving circuits, alleviates us from solving differential equations, and suggests a general way
of thinking about circuits. Because of the importance of this approach, let’s go over how it works.

1. Even though it’s not, pretend the source is a complex exponential. We do this because the impedance
approach simplifies finding how input and output are related. If it were a voltage source having voltage
vin = p (1) (a pulse), still let v, = Vine??™F. We'll learn how to “get the pulse back” later.

2. With a source equaling a complex exponential, all variables in a linear circuit will also be complex
exponentials having the same frequency. The circuit’s only remaining “mystery” is what each variable’s
complex amplitude might be. To find these, we consider the source to be a complex number (Vj, here)
and the elements to be impedances.

3. We can now solve using series and parallel combination rules how the complex amplitude of any variable
relates to the sources complex amplitude.

Example 3.3

To illustrate the impedance approach, we refer to the RC circuit shown in Figure 3.24, and we
assume that v;, = Vi,e/2™/t.

21ht:tp ://wuw.edisontechcenter.org/CharlesProteusSteinmetz.html
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Figure 3.24: (a) A simple RC circuit. (b) The impedance counterpart for the RC' circuit. Note that
the source and output voltage are now complex amplitudes.

Using impedances, the complex amplitude of the output voltage V, can be found using voltage
divider:
Zc

Vu: Vvin
out ZC+ZR

1
o iQﬂ'fC Vin
12w fC +R
_ 1
~ j2nfRC +1

Vin

Referring to the differential equation for this circuit (shown in Section 3.8, page 47, to be
RC’%vout + Uout = Vin), when we let the output and input voltages be complex exponentials, we obtain
the same relationship between their complex amplitudes. Thus, using impedances is equivalent to using the
differential equation and solving it when the source(s) is a complex exponential.

In fact, we can find the differential equation directly using impedances. If we cross-multiply the relation
between input and output amplitudes,

Vout (j2m fRC + 1) = Viy
and then put the complex exponentials back in, we have
RCj27 fVour ™" 4 Vo™ = V>t
In the process of defining impedances, note that the factor j2x f arises from the derivative of a complex

exponential. We can reverse the impedance process, and revert back to the differential equation.

d
Rcavout + Vout = Vin

This is the same equation that was derived much more tediously in Section 3.8. Finding the differential

equation relating output to input is far simpler when we use impedances than with any other technique.
Exercise 3.11 (Solution on p. 94.)
Suppose you had an expression where a complex amplitude was divided by j27 f. What time-domain
operation corresponds to this division?

3.11 Power in the Frequency Domain®

Recalling that the instantaneous power consumed by a circuit element or an equivalent circuit that represents
a collection of elements equals the voltage times the current entering the positive-voltage terminal, p (t) =

22This content is available online at http://cnx.org/content/m17308/1.2/.
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v (t)i(t), what is the equivalent expression using impedances? The resulting calculation reveals more about
power consumption in circuits and the introduction of the concept of average power.

When all sources produce sinusoids of frequency f, the voltage and current for any circuit element or
collection of elements are sinusoids of the same frequency.

v (t) = |V]cos (2 ft + @)
i(t) = |I]cos(2mft+0)

Here, the complex amplitude of the voltage V equals |V |e’® and that of the current is |I|e’?. We can also
write the voltage and current in terms of their complex amplitudes using Euler’s formula (Section 2.1.2).

v(t) = % (Vei2nft 4 yremi2nity
i) = L (114 et
Multiplying these two expressions and simplifying gives
= i (VI* + VI + VIeHnIt 4 e [re-itnit)

1 1 ,
= SRe[VI] + SRe [VIeltTIt]

1 1
= SRe[VI] 4+ S |VI|I| cos (4n ft + ¢ + 0)

p(t)

We define %VI * to be complex power. The real-part of complex power is the first term and since it does
not change with time, it represents the power consistently consumed/produced by the circuit. The second
term varies with time at a frequency twice that of the source. Conceptually, this term details how power
“sloshes” back and forth in the circuit because of the sinusoidal source.

From another viewpoint, the real-part of complex power represents long-term energy consump-
tion/production. Energy is the integral of power and, as the integration interval increases, the first term
appreciates while the time-varying term “sloshes.” Consequently, the most convenient definition of the av-
erage power consumed/produced by any circuit is in terms of complex amplitudes.

1
Pase = 3Re[VI"] (3.14)

Exercise 3.12 (Solution on p. 94.)
Suppose the complex amplitudes of the voltage and current have fixed magnitudes. What phase
relationship between voltage and current maximizes the average power? In other words, how are ¢
and 6 related for maximum power dissipation?

Because the complex amplitudes of the voltage and current are related by the equivalent impedance, average
power can also be written as
1 s 1 1 2
Pye = =Re|Z]|I|" = zRe |= | |V
o = el = 3Re| 7| V]
These expressions generalize the results (3.3) we obtained for resistor circuits. We have derived a fundamental
result: Only the real part of impedance contributes to long-term power dissipation. Of the circuit
elements, only the resistor dissipates power. Capacitors and inductors dissipate no power in the long term.
It is important to realize that these statements apply only for sinusoidal sources. If you turn on a constant
voltage source in an RC-circuit, charging the capacitor does consume power.
Exercise 3.13 (Solution on p. 95.)
In an earlier problem (Problem 1.1), we found that the rms value of a sinusoid was its amplitude
divided by /2. What is average power expressed in terms of the rms values of the voltage and
current (Vs and Ip,s respectively)?
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(b) Equivalent circuits with impedances.

Figure 3.25: Comparing the first, simpler, figure with the slightly more complicated second figure, we
see two differences. First of all, more circuits (all those containing linear elements in fact) have equivalent
circuits that contain equivalents. Secondly, the terminal and source variables are now complex amplitudes,
which carries the implicit assumption that the voltages and currents are single complex exponentials, all
having the same frequency.

3.12 Equivalent Circuits: Impedances and Sources™

When we have circuits with capacitors and /or inductors as well as resistors and sources, Thévenin and Mayer-
Norton equivalent circuits can still be defined by using impedances and complex amplitudes for voltage and
currents. For any circuit containing sources, resistors, capacitors, and inductors, the input-output relation
for the complex amplitudes of the terminal voltage and current is

V = Zeol + Vig
1%
I=——1,

Zoq @

with Voq = Zeqleq- Thus, we have Thévenin and Mayer-Norton equivalent circuits as shown in Figure 3.25.
Example 3.4
Let’s find the Thévenin and Mayer-Norton equivalent circuits for the circuit shown in Figure 3.26.
The open-circuit voltage and short-circuit current techniques still work, except we use impedances

23This content is available online at http://cnx.org/content/m0030/2.20/.
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Figure 3.26

and complex amplitudes. The open-circuit voltage corresponds to the transfer function we have

already found. When we short the terminals, the capacitor no longer has any effect on the circuit,
Ve

and the short-circuit current I;. equals 0?‘“ The equivalent impedance can be found by setting

the source to zero, and finding the impedance using series and parallel combination rules. In

our case, the resistor and capacitor are in parallel once the voltage source is removed (setting it
1 R

j2nfC ~ 1+ j2rnfRC’

to zero amounts to replacing it with a short-circuit). Thus, Z.q, = R)||

Consequently, we have
1

Vea = ————5~Vin
T 1+ 27 fRC
1
Ie = *V;
1R
R

Loy = —————
‘14 2 fRC
Again, we should check the units of our answer. Note in particular that j27 f RC' must be dimen-
sionless. Is it?

3.13 Transfer Functions™

The ratio of the output and input amplitudes for Figure 3.27, known as the transfer function or the

frequency response, is given by
Vrout

Vin

= H(f)

B 1

~ j2rfRC +1
Implicit in using the transfer function is that the input is a complex exponential, and the output is also a
complex exponential having the same frequency. The transfer function reveals how the circuit modifies the
input amplitude in creating the output amplitude. Thus, the transfer function completely describes how
the circuit processes the input complex exponential to produce the output complex exponential. The circuit’s
function is thus summarized by the transfer function. In fact, circuits are often designed to meet transfer
function specifications. Because transfer functions are complex-valued, frequency-dependent quantities, we
can better appreciate a circuit’s function by examining the magnitude and phase of its transfer function
(Figure 3.28).

This transfer function has many important properties and provides all the insights needed to determine
how the circuit functions. First of all, note that we can compute the frequency response for both positive and
negative frequencies. Recall that sinusoids consist of the sum of two complex exponentials, one having the
negative frequency of the other. We will consider how the circuit acts on a sinusoid soon. Do note that the

(3.15)

24This content is available online at http://cnx.org/content/m0028/2.19/.
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Figure 3.27: A simple RC circuit.

A H(f)l

Figure 3.28: Magnitude and phase of the transfer function of the RC circuit shown in Figure 3.27 when

RC=1. (a) |H(f)| = ——— (b) ZH(f) = — arctan (27 fRC)

(2rfRC)* +1

magnitude has even symmetry: The negative frequency portion is a mirror image of the positive frequency
portion: |H (—f)| = |H (f)|. The phase has odd symmetry: ZH (—f) = —ZH (f). These properties of
this specific example apply for all transfer functions associated with circuits. Consequently, we don’t need
to plot the negative frequency component; we know what it is from the positive frequency part.

The magnitude equals 1/v/2 of its maximum gain (one at f = 0) when 27rfRC = 1 (the two terms in

the denominator of the magnitude are equal). The frequency f. = defines the boundary between two

. 2rRC
operating ranges.
e For frequencies below this frequency, the circuit does not much alter the amplitude of the complex
exponential source.
e For frequencies greater than f., the circuit strongly attenuates the amplitude. Thus, when the source
frequency is in this range, the circuit’s output has a much smaller amplitude than that of the source.

For these reasons, this frequency is known as the cutoff frequency. In this circuit the cutoff frequency
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depends only on the product of the resistance and the capacitance. Thus, a cutoff frequency of 1 kHz occurs

-3
— 10° or RC = 2
100 nF 7(T)r 10 2 and 1.59 pF resﬁlt in the same cutoff frequency.

The phase shift caused by the circuit at the cutoff frequency precisely equals —m/4. Thus, below the
cutoff frequency, phase is little affected, but at higher frequencies, the phase shift caused by the circuit
becomes —m /2. This phase shift corresponds to the difference between a cosine and a sine.

We can use the transfer function to find the output when the input voltage is a sinusoid for two reasons.
First of all, a sinusoid is the sum of two complex exponentials, each having a frequency equal to the negative
of the other. Secondly, because the circuit is linear, superposition applies. If the source is a sine wave, we
know that

when = 1.59 x 10~%. Thus resistance-capacitance combinations of 1.59 k) and

vin (t) = Asin (27 ft)
A

= 2 (eIt — o2t (3.16)

2j
Since the input is the sum of two complex exponentials, we know that the output is also a sum of two similar
complex exponentials, the only difference being that the complex amplitude of each is multiplied by the

transfer function evaluated at each exponential’s frequency.

A ;i
Vout (t) = ZH (f) eJQﬂ-ft -

A .

ZH(—f)ed2mt 3.17
Sl (1) (317)
As noted earlier, the transfer function is most conveniently expressed in polar form: H (f) = |H (f)|e?<H (/).
Furthermore, |H (—f)| = |H (f)| (even symmetry of the magnitude) and ZH (—f) = —ZH (f) (odd sym-
metry of the phase). The output voltage expression simplifies to

A . A .
e () = 2V H (f) |ed@rftr2a() _ 2 —j@n ft+ ZH(f))
Vout (1) le (f) e le (f)le (3.18)

— A|H (f)|sin (2xft + ZH (f))

The circuit’s output to a sinusoidal input is also a sinusoid, having a gain equal to the magnitude
of the circuit’s transfer function evaluated at the source frequency and a phase equal to the
phase of the transfer function at the source frequency. It will turn out that this input-output relation
description applies to any linear circuit having a sinusoidal source.

Exercise 3.14 (Solution on p. 95.)
This input-output property is a special case of a more general result. Show that if the source can
be written as the imaginary part of a complex exponential— vy, (t) = Im [Veﬂ”f t] — the output

is given by vot (£) = Im [V H (f) e/*™/*]. Show that a similar result also holds for the real part.

The notion of impedance arises when we assume the sources are complex exponentials. This assumption
may seem restrictive; what would we do if the source were a unit step? When we use impedances to find the
transfer function between the source and the output variable, we can derive from it the differential equation
that relates input and output. The differential equation applies no matter what the source may be. As
we have argued, it is far simpler to use impedances to find the differential equation (because we can use
series and parallel combination rules) than any other method. In this sense, we have not lost anything by
temporarily pretending the source is a complex exponential.

In fact we can also solve the differential equation using impedances! Thus, despite the apparent restric-
tiveness of impedances, assuming complex exponential sources is actually quite general.

3.14 Designing Transfer Functions™

If the source consists of two (or more) signals, we know from linear system theory that the output voltage
equals the sum of the outputs produced by each signal alone. In short, linear circuits are a special case

25This content is available online at http://cnx.org/content/m0031/2.21/.
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Figure 3.29

of linear systems, and therefore superposition applies. In particular, suppose these component signals are
complex exponentials, each of which has a frequency different from the others. The transfer function portrays
how the circuit affects the amplitude and phase of each component, allowing us to understand how the circuit
works on a complicated signal. Those components having a frequency less than the cutoff frequency pass
through the circuit with little modification while those having higher frequencies are suppressed. The circuit
is said to act as a filter, filtering the source signal based on the frequency of each component complex
exponential. Because low frequencies pass through the filter, we call it a lowpass filter to express more
precisely its function.

We have also found the ease of calculating the output for sinusoidal inputs through the use of the transfer
function. Once we find the transfer function, we can write the output directly as indicated by the output of
a circuit for a sinusoidal input (3.18).

Example 3.5

Let’s apply these results to a final example, in which the input is a voltage source and the output
is the inductor current. The source voltage equals Vi, = 2cos (2r60t) + 3. We want the circuit to
pass constant (offset) voltage essentially unaltered (save for the fact that the output is a current
rather than a voltage) and remove the 60 Hz term. Because the input is the sum of two sinusoids—a
constant is a zero-frequency cosine—our approach is

find the transfer function using impedances;

use it to find the output due to each input component;
add the results;

find element values that accomplish our design criteria.

Ll

Because the circuit is a series combination of elements, let’s use voltage divider to find the transfer
function between Vi, and V', then use the v-i relation of the inductor to find its current.

Iowe  j27fL 1
Vin R+ j2nfL j2nfL
_ v (3.19)
ji2rfL+ R
=H(f)
where .
voltage divider = #Qfﬂ'f[/
and

inductor admittance =

72 fL

[Do the units check?] The form of this transfer function should be familiar; it is a lowpass filter,
and it will perform our desired function once we choose element values properly.
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Figure 3.30: Input and output waveforms for the example RL circuit when the element values are
R =6.2802 and L = 100mH.

3
The constant term is easiest to handle. The output is given by 3|H (0) | = VR Thus, the value we

choose for the resistance will determine the scaling factor of how voltage is converted into current.
For the 60 Hz component signal, the output current is 2|H (60) | cos (2760t + ZH (60)). The total
output due to our source is

iout = 2|H (60) | cos (2760t + £ H (60)) + 3H (0) (3.20)
The cutoff frequency for this filter occurs when the real and imaginary parts of the transfer function’s
denominator equal each other. Thus, 27 f.L = R, which gives f. = ——. We want this cutoff
7r
frequency to be much less than 60 Hz. Suppose we place it at, say, 10 Hz. This specification would

R
require the component values to be related by 7= 20mr = 62.8. The transfer function at 60 Hz

would be

1 ‘_1‘1‘_11

1
- |== — ~0.16— 3.21
j2m60L+ R| R|6j+1| R+/37 R (3:21)

which yields an attenuation (relative to the gain at zero frequency) of about 1/6, and result in
an output amplitude of 0.3/R relative to the constant term’s amplitude of 3/R. A factor of ten
difference between the relative sizes of the two components seems reasonable. Having a 100 mH
inductor would require a 6.28 2 resistor. An easily available resistor value is 6.8 ; thus, this
choice results in cheaply and easily purchased parts. To make the resistance bigger would require a
proportionally larger inductor. Unfortunately, even a 1 H inductor is physically large; consequently
low cutoff frequencies require small-valued resistors and large-valued inductors. The choice made
here represents only one compromise.

The phase of the 60 Hz component will very mnearly be —m/2, leaving it to be
0.3/Rcos (260t — %) = 0.3/Rsin (2r60t). The waveforms for the input and output are shown
in Figure 3.30.

Note that the sinusoid’s phase has indeed shifted; the lowpass filter not only reduced the 60 Hz signal’s
amplitude, but also shifted its phase by 90 °.
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3.15 Formal Circuit Methods: Node Method*

In some (complicated) cases, we cannot use the simplification techniques—such as parallel or series combi-
nation rules—to solve for a circuit’s input-output relation. In other modules, we wrote v-i relations and
Kirchhoff’s laws haphazardly, solving them more on intuition than procedure. We need a formal method
that produces a small, easy set of equations that lead directly to the input-output relation we seek. One
such technique is the node method.

The node method begins by finding all nodes—places where circuit elements attach to each other—in the
circuit. We call one of the nodes the reference node; the choice of reference node is arbitrary, but it is
usually chosen to be a point of symmetry or the “bottom” node. For the remaining nodes, we define node
voltages e, that represent the voltage between the node and the reference. These node voltages constitute
the only unknowns; all we need is a sufficient number of equations to solve for them. In our example, we
have two node voltages. The very act of defining node voltages is equivalent to using all the KVL
equations at your disposal. The reason for this simple, but astounding, fact is that a node voltage is
uniquely defined regardless of what path is traced between the node and the reference. Because two paths
between a node and reference have the same voltage, the sum of voltages around the loop equals zero.

In some cases, a node voltage corresponds exactly to the voltage across a voltage source. In such cases,
the node voltage is specified by the source and is not an unknown. For example, in our circuit, e; = vjp;
thus, we need only to find one node voltage.

The equations governing the node voltages are obtained by writing KCL equations at each node having
an unknown node voltage, using the v-i relations for each element. In our example, the only circuit equation
is

€2 — Uin €2 €2
Ri Ry Ry
A little reflection reveals that when writing the KCL equations for the sum of currents leaving a node, that
node’s voltage will always appear with a plus sign, and all other node voltages with a minus sign. Systematic
application of this procedure makes it easy to write node equations and to check them before solving them.
Also remember to check units at this point: Every term should have units of current. In our example, solving
for the unknown node voltage is easy:

0 (3.22)

B RyRs .
" RiRy+ RiRs+ RyRs "

Have we really solved the circuit with the node method? Along the way, we have used KVL, KCL, and
the v-i relations. Previously, we indicated that the set of equations resulting from applying these laws is
necessary and sufficient. This result guarantees that the node method can be used to “solve” any circuit.
One fallout of this result is that we must be able to find any circuit variable given the node voltages and
sources. All circuit variables can be found using the v-i relations and voltage divider. For example, the

€2 (3.23)

e
current through Rj3 equals Ri
3

26This content is available online at http://cnx.org/content/m0032/2.20/.
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The presence of a current source in the circuit does not affect the node method greatly; just include it in
writing KCL equations as a current leaving the node. The circuit has three nodes, requiring us to define
two node voltages. The node equations are

€1 €1 — €2
Ry Ry

€2 — €1 €2
—= =0 Node 2
7 R (Node 2)

—in =0 (Node 1)

Note that the node voltage corresponding to the node that we are writing KCL for enters with a positive
sign, the others with a negative sign, and that the units of each term is given in amperes. Rewrite these
equations in the standard set-of-linear-equations form.

1 1 1 .
o (7 + ) oo =

1 1 1
(—61)E+€2 (R2+Rg> =0

Solving these equations gives

o — Ry + Rge
1 — R3 2
R1R3

€2

=iy
Ri+Ry+ R3

e
To find the indicated current, we simply use ¢ = R—Q
3

Example 3.6: Node Method Example

In the circuit shown in Figure 3.33, we cannot use the series/parallel combination rules: The vertical
resistor at node 1 keeps the two horizontal 1 € resistors from being in series, and the 2 {2 resistor
prevents the two 1 2 resistors at node 2 from being in series. We really do need the node method
to solve this circuit! Despite having six elements, we need only define two node voltages. The node
equations are

€1 —VUn €1 €1 — €2

1 T = 0 (Node 1)
€y —Vip €2  €2—€1
S22 =0 (Node2)

Solving these equations yields e; = Sv;, and ez = Zvi,. The output current equals 2 = vy,
One unfortunate consequence of using the element’s numeric values from the outset is that it
becomes impossible to check units while setting up and solving equations.
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Figure 3.33

Exercise 3.15 (Solution on p. 95.)
What is the equivalent resistance seen by the voltage source in Figure 3.337

The node method applies to RLC circuits, without significant modification from the methods used on simple
resistive circuits, if we use complex amplitudes. We rely on the fact that complex amplitudes satisfy KVL,
KCL, and impedance-based v-i relations. In the example circuit shown in Figure 3.34, we define complex
amplitudes for the input and output variables and for the node voltages. We need only one node voltage
here, and its KCL equation is
ETl‘/m+Ej27rfC+R£2 =0
with the result
E= f2
Ry + Ry + j2nfR1R,C

Vin

E

To find the transfer function between input and output voltages, we compute the ratio —. The transfer
in

function’s magnitude and angle are

R
H (f)| = — -

V/(By + Ro)* + (2nf Ry RxC)
ZH (f) = —arctan (%)

This circuit differs from the one shown previously (Figure 3.27) in that the resistor Ry has been added across
the output. What effect has it had on the transfer function, which in the original circuit was a lowpass filter

having cutoff frequency f. = ?7 As shown in Figure 3.35, adding the second resistor has two effects:

271'R1 C
it lowers the gain in the passband (the range of frequencies for which the filter has little effect on the input)
and increases the cutoff frequency. E
+
R1
Vin C— R2§ Vout

Figure 3.34: Modification of the circuit shown on the left to illustrate the node method and the effect
of adding the resistor Rs.
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Rq=1, Ro=1

I 1 1 1 1 > f
0 1 1 Rq1+R2 1
2nRC 27:R1C° Ro

Figure 3.35: Transfer functions of the circuits shown in Figure 3.34. Here, Ry =1, Ro =1, and C = 1.

When Ry = R;, as shown on the plot, the passband gain becomes half of the original, and the cutoff
frequency increases by the same factor. Thus, adding Rs provides a 'knob’ by which we can trade passband
gain for cutoff frequency.

Exercise 3.16 (Solution on p. 95.)
We can change the cutoff frequency without affecting passband gain by changing the resistance in
the original circuit. Does the addition of the Ry resistor help in circuit design?

3.16 Power Conservation in Circuits”

Now that we have a formal method—the node method—for solving circuits, we can use it to prove a powerful
result: KVL and KCL are all that are required to show that all circuits conserve power, regardless of what
elements are used to build the circuit.

First of all, define node voltages for all nodes in a given circuit. Any node chosen as the reference will
do. For example, in the portion of a large circuit depicted in Figure 3.36, we define node voltages for nodes
a, b and c¢. With these node voltages, we can express the voltage across any element in terms of them. For
example, the voltage across element 1 is given by v; = ey, — e5. The instantaneous power for element 1
becomes

vlil = (eb — ea) il = ebi1 — eail

Writing the power for the other elements, we have
Vglo = €clz — €aln
1)313 = ecig — ebig
When we add together the element power terms, we discover that once we collect terms involving a particular

node voltage, it is multiplied by the sum of currents leaving the node minus the sum of currents entering.
For example, for node b, we have ey, (i3 — i1). We see that the currents will obey KCL that multiply each

27This content is available online at http://cnx.org/content/m17317/1.2/.
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Figure 3.36

node voltage. Consequently, we conclude that the sum of element powers must equal zero in any
circuit regardless of the elements used to construct the circuit.

Z’Ukik =0
k

The simplicity and generality with which we proved this results generalizes to other situations as well.
In particular, note that the complex amplitudes of voltages and currents obey KVL and KCL, respectively.
Consequently, we have that ), Vili = 0. Furthermore, the complex-conjugate of currents also satisfies
KCL, which means we also have >~, ViI,* = 0. And finally, we know that evaluating the real-part of an
expression is linear. Finding the real-part of this power conservation gives the result that average power
is also conserved in any circuit.

1
Z iRe [Vk-[k*] =0
k

NOTE: This proof of power conservation can be generalized in another very interesting way. All we
need is a set of voltages that obey KVL and a set of currents that obey KCL. Thus, for a given
circuit topology (the specific way elements are interconnected), the voltages and currents can be
measured at different times and the sum of v-i products is zero.

Z’Uk (tl) ik (tz) =0
k

Even more interesting is the fact that the elements don’t matter. We can take a circuit and measure
all the voltages. We can then make element-for-element replacements and, if the topology has not
changed, we can measure a set of currents. The sum of the product of element voltages and currents
will also be zero!

3.17 Electronics®

So far we have analyzed electrical circuits: The source signal has more power than the output variable,
be it a voltage or a current. Power has not been explicitly defined, but no matter. Resistors, inductors,
and capacitors as individual elements certainly provide no power gain, and circuits built of them will not
magically do so either. Such circuits are termed electrical in distinction to those that do provide power
gain: electronic circuits. Providing power gain, such as your stereo reading a CD and producing sound, is
accomplished by semiconductor circuits that contain transistors. The basic idea of the transistor is to let the
weak input signal modulate a strong current provided by a source of electrical power—the power supply—to
produce a more powerful signal. A physical analogy is a water faucet: By turning the faucet back and
forth, the water flow varies accordingly, and has much more power than expended in turning the handle.
The waterpower results from the static pressure of the water in your plumbing created by the water utility
pumping the water up to your local water tower. The power supply is like the water tower, and the faucet

28This content is available online at http://cnx.org/content/m0035/2.8/.
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is the transistor, with the turning achieved by the input signal. Just as in this analogy, a power supply is a
source of constant voltage as the water tower is supposed to provide a constant water pressure.

A device that is much more convenient for providing gain (and other useful features as well) than the
transistor is the operational amplifier, also known as the op-amp. An op-amp is an integrated circuit (a
complicated circuit involving several transistors constructed on a chip) that provides a large voltage gain if
you attach the power supply. We can model the op-amp with a new circuit element: the dependent source.

3.18 Dependent Sources™

A dependent source is either a voltage or current source whose value is proportional to some other voltage
or current in the circuit. Thus, there are four different kinds of dependent sources; to describe an op-amp, we
need a voltage-dependent voltage source. However, the standard circuit-theoretical model for a transistor3°
contains a current-dependent current source. Dependent sources do not serve as inputs to a circuit like
independent sources. They are used to model active circuits: those containing electronic elements. The
RLC circuits we have been considering so far are known as passive circuits.

kv

Figure 3.37: Of the four possible dependent sources, depicted is a voltage-dependent voltage source in
the context of a generic circuit.

Figure 3.38 shows the circuit symbol for the op-amp and its equivalent circuit in terms of a voltage-
dependent voltage source.
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b
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Figure 3.38: The op-amp has four terminals to which connections can be made. Inputs attach to nodes
a and b, and the output is node c. As the circuit model on the right shows, the op-amp serves as an
amplifier for the difference of the input node voltages.

Here, the output voltage equals an amplified version of the difference of node voltages appearing across
its inputs. The dependent source model portrays how the op-amp works quite well. As in most active circuit
schematics, the power supply is not shown, but must be present for the circuit model to be accurate. Most
operational amplifiers require both positive and negative supply voltages for proper operation.

29This content is available online at http://cnx.org/content/m0053/2.14/.
30«Small Signal Model for Bipolar Transistor” http://cnx.org/content/m1019/latest/
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Because dependent sources cannot be described as impedances, and because the dependent variable
cannot “disappear” when you apply parallel/series combining rules, circuit simplifications such as current
and voltage divider should not be applied in most cases. Analysis of circuits containing dependent sources
essentially requires use of formal methods, like the node method (Section 3.15). Using the node method for
such circuits is not difficult, with node voltages defined across the source treated as if they were known (as
with independent sources). Consider the circuit shown on the top in Figure 3.39.

R
RoRD
I I
: . +
+ I I
Vin | |
C‘) 1- -~~~ - RLSS vout
R | R ]
—A\N\—— + +
Rout

+ "D + :

Figure 3.39: The top circuit depicts an op-amp in a feedback amplifier configuration. On the bottom
is the equivalent circuit, and integrates the op-amp circuit model into the circuit.

Note that the op-amp is placed in the circuit “upside-down,” with its inverting input at the top and
serving as the only input. As we explore op-amps in more detail in the next section, this configuration will
appear again and again, and its usefulness demonstrated. To determine how the output voltage is related to
the input voltage, we apply the node method. Only two node voltages— v and vo,t—mneed be defined; the
remaining nodes are across sources or serve as the reference. The node equations are

U — Vin v U — Vout
I R + Rr 0 (3.24)
Vout — (—GV) | Vout —V | Vout

Rous Rr Rr

=0 (3.25)

Note that no special considerations were used in applying the node method to this dependent-source circuit.
Solving these to learn how v,y relates to vy, yields

Ry Rout 1 1 1 11 1 1 1
t—F s+t *+5 ) — 5| vous = 30 3.26
[Rout —~GRp \Rowe  Rw  Ri)\R " Rw Re) Re] ™ R (326)
This expression represents the general input-output relation for this circuit, known as the standard feed-
back configuration. Once we learn more about op-amps, in particular what its typical element values

are, the expression will simplify greatly. Do note that the units check, and that the parameter G of the
dependent source is a dimensionless gain.
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3.19 Operational Amplifiers™

Rout
ao——, c
a
¢ Rin G(ea—eb)
b
bO—
O o O O | O

Figure 3.40: The op-amp has four terminals to which connections can be made. Inputs attach to nodes
a and b, and the output is node c. As the circuit model on the right shows, the op-amp serves as an
amplifier for the difference of the input node voltages.

Op-amps not only have the circuit model shown in Figure 3.40, but their element values are very special.

e The input resistance, R;,, is typically large, on the order of 1 M.
e The output resistance, Ry, is small, usually less than 100 €.
e The voltage gain, G, is large, exceeding 10°.

The large gain catches the eye; it suggests that an op-amp could turn a 1 mV input signal into a 100 V one.
If you were to build such a circuit—attaching a voltage source to node a, attaching node b to the reference,
and looking at the output—you would be disappointed. In dealing with electronic components, you cannot
forget the unrepresented but needed power supply.

UNMODELED LIMITATIONS IMPOSED BY POWER SUPPLIES: It is impossible for electronic compo-
nents to yield voltages that exceed those provided by the power supply or for them to yield currents
that exceed the power supply’s rating.

Typical power supply voltages required for op-amp circuits are +15 V. Attaching the 1 mv signal not
only would fail to produce a 100 V signal, the resulting waveform would be severely distorted. While a
desirable outcome if you are a rock & roll aficionado, high-quality stereos should not distort signals. Another
consideration in designing circuits with op-amps is that these element values are typical: Careful control of
the gain can only be obtained by choosing a circuit so that its element values dictate the resulting gain,
which must be smaller than that provided by the op-amp.

31This content is available online at http://cnx.org/content/m0036/2.31/.
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Figure 3.41: The top circuit depicts an op-amp in a feedback amplifier configuration. On the bottom
is the equivalent circuit, and integrates the op-amp circuit model into the circuit.

3.19.1 Inverting Amplifier

The feedback configuration shown in Figure 3.41 is the most common op-amp circuit for obtaining what is
known as an inverting amplifier.

RpRou 11 1\/1 1 1 1 1
[ L ( ++><+ + ) ]voutzRvin (3.27)

Rout - G(RF Rout Rin RL R Rin R7F B RiF

provides the exact input-output relationship. In choosing element values with respect to op-amp character-
istics, we can simplify the expression dramatically.

e Make the load resistance, Ry, much larger than R,.;. This situation drops the term 1/Ry from the
second factor of (3.27).
e Make the resistor, R, smaller than R;,, which means that the 1/R;, term in the third factor is negligible.

With these two design criteria, the expression (3.27) becomes

Rp 1 1 1 1
) - = = = 3.28
{Rout —GRy (R - RF> RF} Pout = T Vout (3.28)
Because the gain is large and the resistance Roy¢ is small, the first term becomes —1/G, leaving us with
1 1 n 1 1 1 (3.29)
- =\ 5 S )] 7 5| Yout = 5 Vin .
G \R ' Rr) Rr] "™ R

e If we select the values of Rp and R so that (GR > Rp), this factor will no longer depend on the

1
op-amp’s inherent gain, and it will equal R
F
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Under these conditions, we obtain the classic input-output relationship for the op-amp-based inverting am-

plifier.
R
Vout = *%Uin (330)

Consequently, the gain provided by our circuit is entirely determined by our choice of the feedback resistor
Rp and the input resistor R. It is always negative, and can be less than one or greater than one in
magnitude. It cannot exceed the op-amp’s inherent gain and should not produce such large outputs that
distortion results (remember the power supply!). Interestingly, note that this relationship does not depend
on the load resistance. This effect occurs because we use load resistances large compared to the op-amp’s
output resistance. Thus observation means that, if careful, we can place op-amp circuits in cascade, without
incurring the effect of succeeding circuits changing the behavior (transfer function) of previous ones; see this
problem (Problem 3.43).

3.19.2 Active Filters

As long as design requirements are met, the input-output relation for the inverting amplifier also applies
when the feedback and input circuit elements are impedances (resistors, capacitors, and inductors).

s I ey
z ZF
— -
_O +
+
Vin <+>
- Vout
O —
Figure 3.42: “/;ut = fZ—ZF

Example 3.7

Let’s design an op-amp circuit that functions as a lowpass filter. We want the transfer function
between the output and input voltage to be

K

1+

H(f)

where K equals the passband gain and f. is the cutoff frequency. Let’s assume that the inversion
(negative gain) does not matter. With the transfer function of the above op-amp circuit in mind,
let’s consider some choices.

e /r=K,Z=1+ ﬁ This choice means the feedback impedance is a resistor and that the

c
input impedance is a series combination of an inductor and a resistor. In circuit design, we

try to avoid inductors because they are physically bulkier than capacitors.

1 1
o Ip= i Z = e Consider the reciprocal of the feedback impedance (its admittance):
_l’_ JJ
Zp =1+ ﬁ Since this admittance is a sum of admittances, this expression suggests
C
1
the parallel combination of a resistor (value = 1 Q) and a capacitor (value = — F). We

have the right idea, but the values (like 1 2) are not right. Consider the general RCC’ parallel
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¥ - ¥ :
Vin<_> :Rm v _ >—Gv :RL Vout

Figure 3.43

1
combination; its admittance is e +j27 fC. Letting the input resistance equal R, the transfer
F

Rp/R

function of the op-amp inverting amplifier now is H (f) = —m
Jem ] op

Rp 1

R RpC’

Creating a specific transfer function with op-amps does not have a unique answer. As opposed to design
with passive circuits, electronics is more flexible (a cascade of circuits can be built so that each has little
effect on the others; see Problem 3.43) and gain (increase in power and amplitude) can result. To complete
our example, let’s assume we want a lowpass filter that emulates what the telephone companies do. Signals
transmitted over the telephone have an upper frequency limit of about 3 kHz. For the second design choice,
we require RpC' = 5.3 x 107°. Thus, many choices for resistance and capacitance values are possible. A
1 puF capacitor and a 330 €2 resistor, 10 nF and 33 k{2, and 10 pF and 33 M2 would all theoretically work.

R R
Let’s also desire a voltage gain of ten: =F = 10, which means R = —E  Recall that we must have R < Ri,.

Thus, we have the gain equal to and the cutoff frequency

As the op-amp’s input impedance is about 1 M, we don’t want R too large, and this requirement means
that the last choice for resistor/capacitor values won’t work. We also need to ask for less gain than the
op-amp can provide itself. Because the feedback “element” is an impedance (a parallel resistor capacitor

Z 5
combination), we need to examine the gain requirement more carefully. We must have M < 10 for all

Rp

frequencies of interest. Thus, | ———————
d <|1 + j2nfR#C|

> /R < 10°. As this impedance decreases with frequency, the

design specification of ZF — 10 means that this criterion is easily met. Thus, the first two choices for the

resistor and capacitor values (as well as many others in this range) will work well. Additional considerations
like parts cost might enter into the picture. Unless you have a high-power application (this isn’t one) or ask
for high-precision components, costs don’t depend heavily on component values as long as you stay close to
standard values. For resistors, having values 710%, easily obtained values of r are 1, 1.4, 3.3, 4.7, and 6.8,
and the decades span 0-8.

Exercise 3.17 (Solution on p. 95.)
What is special about the resistor values; why these rather odd-appearing values for r?

3.19.3 Intuitive Way of Solving Op-Amp Circuits

When we meet op-amp design specifications, we can simplify our circuit calculations greatly, so much so that
we don’t need the op-amp’s circuit model to determine the transfer function. Here is our inverting amplifier.

When we take advantage of the op-amp’s characteristics—large input impedance, large gain, and small
output impedance—we note the two following important facts.
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Figure 3.44

e The current 4;, must be very small. The voltage produced by the dependent source is 10° times the
v .
voltage v. Thus, the voltage v must be small, which means that i;, = —— must be tiny. For example,

1n
if the output is about 1 V, the voltage v = 107°V, making the current i;, = 107 '*A. Consequently,
we can ignore i, in our calculations and assume it to be zero.
e Because of this assumption—essentially no current flow through R;,—the voltage v must also be
essentially zero. This means that in op-amp circuits, the voltage across the op-amp’s input is basically
Zero.

Armed with these approximations, let’s return to our original circuit as shown in Figure 3.44. The node
voltage e is essentially zero, meaning that it is essentially tied to the reference node. Thus, the current
through the resistor R equals fin Furthermore, the feedback resistor appears in parallel with the load
resistor. Because the current going into the op-amp is zero, all of the current flowing through R flows

vinRF‘
. Because

through the feedback resistor (i = ¢)! The voltage across the feedback resistor v equals

the left end of the feedback resistor is essentially attached to the reference node, the voltage across it equals
’UinR

the negative of that across the output resistor: vy = —v = _ntE Using this approach makes analyzing

new op-amp circuits much easier. When using this technique, check to make sure the results you obtain
are consistent with the assumptions of essentially zero current entering the op-amp and nearly zero voltage
across the op-amp’s inputs.

Example 3.8

Figure 3.45: Two-source, single-output op-amp circuit example.
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Let’s try this analysis technique on a simple extension of the inverting amplifier configuration shown
in Figure 3.45. If either of the source-resistor combinations were not present, the inverting amplifier
remains, and we know that transfer function. By superposition, we know that the input-output

relation is
Rp (1) Rp )
v — —

Vout = TR, o R, i
When we start from scratch, the node joining the three resistors is at the same potential as the

reference, e &~ 0, and the sum of currents flowing into that node is zero. Thus, the current ¢ flowing
1) (2)
in the resistor Rp equals =2~ + 2. Because the feedback resistor is essentially in parallel with

Ry Ry

the load resistor, the voltages must satisfy v = —vgys. In this way, we obtain the input-output
relation given above.

What utility does this circuit have? Can the basic notion of the circuit be extended without
bound?

(3.31)

3.20 The Diode™

The resistor, capacitor, and inductor are linear circuit elements in that their v-i relations are linear in the
mathematical sense. Voltage and current sources are (technically) nonlinear devices: stated simply, doubling
the current through a voltage source does not double the voltage. A more blatant, and very useful, nonlinear
circuit element is the diode (learn more3?). Its input-output relation has an exponential form.

i) =1Io - (eﬁ“ (t) 1) (3.32)

Here, the quantity g represents the charge of a single electron in coulombs, k is Boltzmann’s constant, and

Ai(LA)
50 | .
40 ¢ !
30 ¢ \“:
20 ¢ v
10 1
10 o5 og vV

Figure 3.46: v-i relation and schematic symbol for the diode. Here, the diode parameters were room
temperature and Ip = 1 pA.

kT
T is the diode’s temperature in K. At room temperature, the ratio — = 25 mV. The constant I is the

leakage current, and is usually very small. Viewing this v-i relation in Fqigure 3.46, the nonlinearity becomes
obvious. When the voltage is positive, current flows easily through the diode. This situation is known as
forward biasing. When we apply a negative voltage, the current is quite small, and equals Iy, known as
the leakage or reverse-bias current. A less detailed model for the diode has any positive current flowing
through the diode when it is forward biased, and no current when negative biased. Note that the diode’s
schematic symbol looks like an arrowhead; the direction of current flow corresponds to the direction the
arrowhead points.

32This content is available online at http://cnx.org/content/m0037/2.16/.
33«P_N Junction: Part IT” http://cnx.org/content/m1004/latest/
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+
Wn<:;:> RS vout
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Figure 3.47

Because of the diode’s nonlinear nature, we cannot use impedances nor series/parallel combination rules
to analyze circuits containing them. The reliable node method can always be used; it only relies on KVL for
its application, and KVL is a statement about voltage drops around a closed path regardless of whether
the elements are linear or not. Thus, for this simple circuit we have

L Jy - (e (o) 1) (3.33)

R

This equation cannot be solved in closed form. We must understand what is going on from basic principles,
using computational and graphical aids. As an approximation, when vy, is positive, current flows through
the diode so long as the voltage voyt is smaller than vy, (so the diode is forward biased). If the source is
negative or vy, “tries” to be bigger than v;,, the diode is reverse-biased, and the reverse-bias current flows
through the diode. Thus, at this level of analysis, positive input voltages result in positive output voltages
with negative ones resulting in vouy = —Rlj.

Aigiode A
- Vin
T Vout
Vout
T R
" -t

| Vout

Vout .

) = Vot

Vin  Vin :
Figure 3.48

We need to detail the exponential nonlinearity to determine how the circuit distorts the input voltage
waveform. We can of course numerically solve the circuit shown in Figure 3.47 to determine the output
voltage when the input is a sinusoid. To learn more, let’s express this equation graphically. We plot each
term as a function of v,y for various values of the input voltage vi,; where they intersect gives us the output
voltage. The left side, the current through the output resistor, does not vary itself with v,, and thus we
have a fixed straight line. As for the right side, which expresses the diode’s v-i relation, the point at which
the curve crosses the v,y axis gives us the value of vy,. Clearly, the two curves will always intersect just once
for any value of vy, and for positive vy, the intersection occurs at a value for v,y smaller than vy,. This
reduction is smaller if the straight line has a shallower slope, which corresponds to using a bigger output
resistor. For negative v, the diode is reverse-biased and the output voltage equals —RIj.

What utility might this simple circuit have? The diode’s nonlinearity cannot be escaped here, and the
clearly evident distortion must have some practical application if the circuit were to be useful. This circuit,
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known as a half-wave rectifier, is present in virtually every AM radio twice and each serves very different
functions! We'll learn what functions later.

™~
L1
R
—0 +
Vi
In
Vout
QO —
Figure 3.49

Here is a circuit involving a diode that is actually simpler to analyze than the previous one. We know that
the current through the resistor must equal that through the diode. Thus, the diode’s current is proportional
to the input voltage. As the voltage across the diode is related to the logarithm of its current, we see that

the input-output relation is
kT in
Vous = — = In ( Uin 1) (3.34)
q

Clearly, the name logarithmic amplifier is justified for this circuit.

3.21 Analog Signal Processing Problems™
Problem 3.1: Simple Circuit Analysis

[ [
+ + +
1 1 L
\Y \Y \'
2 1 C
_ . ol
(a) Circuit a (b) Circuit b (¢) Circuit ¢
Figure 3.50

For each circuit shown in Figure 3.50, the current ¢ equals cos (27t).

(a) What is the voltage across each element and what is the voltage v in each case?

(b) For the last circuit, are there element values that make the voltage v equal zero for all time? If so,
what element values work?

(c) Again, for the last circuit, if zero voltage were possible, what circuit element could substitute for the
capacitor-inductor series combination that would yield the same voltage?

Problem 3.2: Solving Simple Circuits
(a) Write the set of equations that govern Circuit A’s behavior (Figure 3.51).

34This content is available online at http://cnx.org/content/m10349/2.42/.



74 CHAPTER 3. ANALOG SIGNAL PROCESSING

(b) Solve these equations for 1: In other words, express this current in terms of element and source values
by eliminating non-source voltages and currents.

(c) For Circuit B, find the value for Ry, that results in a current of 5 A passing through it.

(d) What is the power dissipated by the load resistor Ry, in this case?

R2

(D T Om w®) g on

(a) Circuit A (b) Circuit B

Figure 3.51

Problem 3.3: Equivalent Resistance
For each of the circuits shown in Figure 3.52, find the equivalent resistance using series and parallel combi-
nation rules.

Calculate the conductance seen at the terminals for circuit (c) in terms of each element’s conductance.
Compare this equivalent conductance formula with the equivalent resistance formula you found for circuit
(b). How is the circuit (¢) derived from circuit (b)?

Problem 3.4: Superposition Principle

One of the most important consequences of circuit laws is the Superposition Principle: The current or
voltage defined for any element equals the sum of the currents or voltages produced in the element by the
independent sources. This Principle has important consequences in simplifying the calculation of circuit
variables in multiple source circuits.

(a) For the circuit depicted in Figure 3.53, find the indicated current using any technique you like (you
should use the simplest).

(b) You should have found that the current ¢ is a linear combination of the two source values: i =
C1vin +Caiiy. This result means that we can think of the current as a superposition of two components,
each of which is due to a source. We can find each component by setting the other sources to zero.
Thus, to find the voltage source component, you can set the current source to zero (an open circuit) and
use the usual tricks. To find the current source component, you would set the voltage source to zero
(a short circuit) and find the resulting current. Calculate the total current ¢ using the Superposition
Principle. Is applying the Superposition Principle easier than the technique you used in part (1)?

Problem 3.5: Current and Voltage Divider

Use current or voltage divider rules to calculate the indicated circuit variables in Figure 3.54.

Problem 3.6: Thévenin and Mayer-Norton Equivalents
Find the Thévenin and Mayer-Norton equivalent circuits for the circuits shown in Figure 3.55.

Problem 3.7: Detective Work
In the circuit depicted in Figure 3.56, the circuit N; has the v-i relation v; = 341 + 7 when iz = 2.

(a) Find the Thévenin equivalent circuit for circuit Ns.
(b) With is = 2, determine R such that i; = —1.

Problem 3.8: Bridge Circuits
Circuits having the form of one shown in Figure 3.57 are termed bridge circuits.
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Figure 3.53

(a) What resistance does the current source see when nothing is connected to the output terminals?

(b) What resistor values, if any, will result in a zero voltage for vou?

(c) Assume Ry = 19, Ry = 2, R3 = 2Q2 and R4 = 49). Find the current ¢ when the current source i, is
Im [(4 +2j5) eﬂ”zm]. Express your answer as a sinusoid.

Problem 3.9: Cartesian to Polar Conversion
Convert the following expressions into polar form. Plot their location in the complex plane3®.

(a) (1+v=3)" (b) 3+ j*
© (2_ y\%> / (z+ ]jg) (d) (4 ) (1+j/2)
(e) 3eI™ + 4ei7/? (£) (V3 +j) 2v/2e /4

3
®) 1 e

Problem 3.10: The Complex Plane
The complex variable z is related to the real variable u according to

z=1+¢"

(a) Sketch the contour of values z takes on in the complex plane.

35¢The Complex Plane” http://cnx.org/content/m10596/latest/
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(b) circuit b

20

(c) circuit ¢

Figure 3.54
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(c) circuit ¢

Figure 3.55

(b) What are the maximum and minimum values attainable by |z|?

z—1
(c) Sketch the contour the rational function 1 traces in the complex plane.
z

Problem 3.11: Cool Curves
In the following expressions, the variable x runs from zero to infinity. What geometric shapes do the following
trace in the complex plane?
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Figure 3.57

(a) e* (b) 1+ e
(c) e ®e/® (d) e/® + ef(@tm/4)

Problem 3.12: Trigonometric Identities and Complex Exponentials
Show the following trigonometric identities using complex exponentials. In many cases, they were derived
using this approach.

(a) sin2u = 2sinucosu  (b) cos®u = 1 (1 + cos2u)

(c) cos?u + sin®u = 1 (d) £ sinu = cosu

Problem 3.13: Transfer Functions
Find the transfer function relating the complex amplitudes of the indicated variable and the source shown
in Figure 3.58. Plot the magnitude and phase of the transfer function over the range of 0.01 Hz to 100 Hz
on logarithmic vertical and horizontal coordinates.

o o

il 1 1
* ) * 10 1
1 1 + +
Vin 1S 2=—=v  Vin <+> 2<v C—) out*In <—> out
1 1
(a) circuit a (b) circuit b (c) circuit ¢ (d) circuit d

Figure 3.58



78 CHAPTER 3. ANALOG SIGNAL PROCESSING

Problem 3.14: Using Impedances
Find the differential equation relating the indicated variable to the source(s) using impedances for each
circuit shown in Figure 3.59.

R1
iout C i R1 Ro
+ lout
Vi +
" C—) - c L% i 4 ) vin(__
R2
(a) circuit a (b) circuit b
m + )
L1 i
iinC*) R L2§ C=—— vV iin<+> 1 1% 2—— 1<
(¢) circuit ¢ (d) circuit d
Figure 3.59

Problem 3.15: Measurement Chaos
The simple circuit shown in Figure 3.60 was constructed but the signal measurements were made hap-

2
hazardly. When the source was sin (27 fyt), the current i (¢) equaled % sin (27 fot + 7/4) and the voltage
1
vy () = 3 sin (27 fot).

(a) What is the voltage vy (¢)?
(b) Find the impedances Z; and Zs.
(c) Construct these impedances from elementary circuit elements.

Problem 3.16: Transfer Functions
In the circuit shown in Figure 3.61, the voltage source equals vy, (t) = 10sin (%)

(a) Find the transfer function between the source an((ti) the indicated output voltage.
+ Vq

Oz

- +
v. () C_) @ volt)

Figure 3.60
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(b) For the given source, find the output voltage.

+
1
+
Vin C_) 2 4 % Vout
Figure 3.61
Problem 3.17: A Simple Circuit
You are given this “simple” circuit.
% i10ut
i CD 1 2
1
2
Figure 3.62

(a) What is the transfer function between the source and the indicated output current?
(b) If the output current is measured to be cos (2t), what was the source?

Problem 3.18: Circuit Design

(a) Find the transfer function between the input and the output voltages for the circuits shown in Fig-
ure 3.63.

(b) At what frequency does the transfer function have a phase shift of zero? What is the circuit’s gain at
this frequency?

(c) Specifications demand that this circuit have an output impedance (its equivalent impedance) less than
802 for frequencies above 1 kHz, the frequency at which the transfer function is maximum. Find element
values that satisfy this criterion.

O+
R
+
Vi C=— L% Vout
O -
Figure 3.63

Problem 3.19: Equivalent Circuits and Power
Suppose we have an arbitrary circuit of resistors that we collapse into an equivalent resistor using the series
and parallel rules. Is the power dissipated by the equivalent resistor equal to the sum of the powers dissipated
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by the actual resistors comprising the circuit? Let’s start with simple cases and build up to a complete proof.

(a) Suppose resistors Ry and Ry are connected in parallel. Show that the power dissipated by (R; || R2)
equals the sum of the powers dissipated by the component resistors.

(b) Now suppose Ry and Ry are connected in series. Show the same result for this combination.

(c) Use these two results to prove the general result we seek.

Problem 3.20: Power Transmission
The network shown in Figure 3.64a represents a simple power transmission system. The generator produces

| \ \
| \ | O
| \ |
\ ‘ ! = 1
\ | -
| | | <)1.2m
| \ \
[ ‘ ‘ O
e e L \ - \
power generator  lossy power load
transmission line
(a) Simple power transmission system (b) Modified load circuit

Figure 3.64

60 Hz and is modeled by a simple Thévenin equivalent. The transmission line consists of a long length of
copper wire and can be accurately described as a 50f2 resistor.

(a) Determine the load current Ry, and the average power the generator must produce so that the load
receives 1,000 watts of average power. Why does the generator need to generate more than 1,000 watts
of average power to meet this requirement?

(b) Suppose the load is changed to that shown in Figure 3.64b. Now how much power must the generator
produce to meet the same power requirement? Why is it more than it had to produce to meet the
requirement for the resistive load?

(c) The load can be compensated to have a unity power factor(see Exercise 3.13) so that the voltage
and current are in phase for maximum power efficiency. The compensation technique is to place a
circuit in parallel to the load circuit. What element works and what is its value?

(d) With this compensated circuit, how much power must the generator produce to deliver 1,000 watts
average power to the load?

Problem 3.21: Optimal Power Transmission

Figure 3.65 shows a general model for power transmission. The power generator is represented by a Thévenin
equivalent and the load by a simple impedance. In most applications, the source components are fixed while
there is some latitude in choosing the load.

(a) Suppose we wanted the maximize “voltage transmission:” make the voltage across the load as large as
possible. What choice of load impedance creates the largest load voltage? What is the largest load
voltage?

(b) If we wanted the maximum current to pass through the load, what would we choose the load impedance
to be? What is this largest current?

(c) What choice for the load impedance maximizes the average power dissipated in the load? What is
most power the generator can deliver?
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Figure 3.65

NOTE: One way to maximize a function of a complex variable is to write the expression in terms
of the variable’s real and imaginary parts, evaluate derivatives with respect to each, set both
derivatives to zero and solve the two equations simultaneously.

Problem 3.22: Big is Beautiful
Sammy wants to choose speakers that produce very loud music. He has an amplifier and notices that the
speaker terminals are labeled “8 £ source.”

(a) What does this mean in terms of the amplifier’s equivalent circuit?

(b) Any speaker Sammy attaches to the terminals can be well-modeled as a resistor. Choosing a speaker
amounts to choosing the values for the resistor. What choice would maximize the voltage across the
speakers?

(¢) Sammy decides that maximizing the power delivered to the speaker might be a better choice. What
values for the speaker resistor should be chosen to maximize the power delivered to the speaker?

Problem 3.23: Sharing a Channel

Two transmitter-receiver pairs want to share the same digital communications channel. The transmitter
signals will be added together by the channel. Receiver design is greatly simplified if first we remove the
unwanted transmission (as much as possible). Each transmitter signal has the form

x; (t) = Asin(2rfit) , 0<t<T

where the amplitude is either zero or A and each transmitter uses its own frequency f;. Each frequency is
harmonically related to the bit interval duration 7', where the transmitter one uses the the frequency 1/7.
The datarate is 10 Mbps.

(a) Draw a block diagram that expresses this communication scenario.

(b) Find circuits that the receivers could employ to separate unwanted transmissions. Assume the received
signal is a voltage and the output is to be a voltage as well.

(c) Find the second transmitter’s frequency so that the receivers can suppress the unwanted transmission
by at least a factor of ten.

Problem 3.24: Circuit Detective Work
In the lab, the open-circuit voltage measured across an unknown circuit’s terminals equals sin (¢). When a

1
1€ resistor is placed across the terminals, a voltage of ﬁ sin (t 4+ w/4) appears.
(a) What is the Thévenin equivalent circuit?
(b) What voltage will appear if we place a 1F capacitor across the terminals?

Problem 3.25: Mystery Circuit

We want to determine as much as we can about the circuit lurking in the impenetrable box shown in
Figure 3.66. A voltage source v;, = 2 volts has been attached to the left-hand terminals, leaving the right
terminals for tests and measurements.

(a) Sammy measures v = 10 V when a 1 2 resistor is attached to the terminals. Samantha says he is
wrong. Who is correct and why?
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+
Vin C_) Resistors \Y;

Figure 3.66

(b) When nothing is attached to the right-hand terminals, a voltage of v = 1 V is measured. What circuit
could produce this output?

(c) When a current source is attached so that i = 2 A, the voltage v is now 3 V. What resistor circuit
would be consistent with this and the previous part?

Problem 3.26: More Circuit Detective Work
The left terminal pair of a two terminal-pair circuit is attached to a testing circuit as shown in Figure 3.67.
The test source vy, (t) equals sin ().

We make the following measurements.

1
e With nothing attached to the terminals on the right, the voltage v (¢) equals Wi cos (t + m/4).

e When a wire is placed across the terminals on the right, the current ¢ (¢) was — sin ().

I+O+

Vin Circuit v

Figure 3.67

(a) What is the impedance “seen” from the terminals on the right?
(b) Find the voltage v (¢) if a current source is attached to the terminals on the right so that ¢ (¢) = sin (¢).

Problem 3.27: Linear, Time-Invariant Systems

For a system to be completely characterized by a transfer function, it needs not only be linear, but also
to be time-invariant. A system is said to be time-invariant if delaying the input delays the output by the
same amount. Mathematically, if S [z (¢)] = y (¢), meaning y (¢) is the output of a system S [¢] when z (¥)
is the input, S[e] is the time-invariant if S|z (¢t — 7)) = y (¢t — 7) for all delays 7 and all inputs z (¢). Note
that both linear and nonlinear systems have this property. For example, a system that squares its input is
time-invariant.

(a) Show that if a circuit has fixed circuit elements (their values don’t change over time), its input-output
relationship is time-invariant. Hint: Consider the differential equation that describes a circuit’s input-
output relationship. What is its general form? Examine the derivative(s) of delayed signals.

(b) Show that impedances cannot characterize time-varying circuit elements (R, L, and C). Consequently,
show that linear, time-varying systems do not have a transfer function.

(¢) Determine the linearity and time-invariance of the following. Find the transfer function of the linear,
time-invariant (LTT) one(s).
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i) diode ii) y (t) = x (¢t) sin (27 fot)
iii) y (¢) = x (t — 70) iv)y(t)==x(t)+ N (t)
Problem 3.28: Long and Sleepless Nights
Sammy went to lab after a long, sleepless night, and constructed the circuit shown in Figure 3.68. He cannot

remember what the circuit, represented by the impedance Z, was. Clearly, this forgotten circuit is important
as the output is the current passing through it.

(a) What is the Thévenin equivalent circuit seen by the impedance?
(b) In searching his notes, Sammy finds that the circuit is to realize the transfer function

1

BN = Aonf 12

Find the impedance Z as well as values for the other circuit elements.

Figure 3.68

Problem 3.29: A Testing Circuit
The simple circuit shown in Figure 3.69 was given on a test. When the voltage source is v/5sin (t), the
current i (t) = v/2 cos (t — arctan (2) — 7/4).

(a) What is voltage vout ()7
(b) What is the impedance Z at the frequency of the source?

+
Vin _ 1 Vout

Figure 3.69

Problem 3.30: Black-Box Circuit

You are given the circuit shown in Figure 3.70 that has two terminals for attaching circuit elements.
When you attach a voltage source equaling sin (¢) to the terminals, the current through the source equals
4sin (t + m/4) — 2sin (4¢). When no source is attached (open-circuited terminals), the voltage across the
terminals has the form Asin (4t + ¢).

(a) What will the terminal current be when you replace the source by a short circuit?
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v(t) Circuit
— O—
Figure 3.70

(b) If you were to build a circuit that was identical (from the viewpoint of the terminals) to the given one,
what would your circuit be?
(c) For your circuit, what are A and ¢?

Problem 3.31: Solving a Mystery Circuit

Sammy must determine as much as he can about a mystery circuit by attaching elements to the terminal
and measuring the resulting voltage. When he attaches a 1€ resistor to the circuit’s terminals, he measures
the voltage across the terminals to be 3sin (). When he attaches a 1F capacitor across the terminals, the
voltage is now 3v/2sin (t — 7/4).

(a) What voltage should he measure when he attaches nothing to the mystery circuit?
(b) What voltage should Sammy measure if he doubled the size of the capacitor to 2 F and attached it to
the circuit?

Problem 3.32: Find the Load Impedance
The circuit depicted in Figure 3.71 has a transfer function between the output voltage and the source equal
to

B —8m2f?
") = —87m2f2 + 4+ j6nf
[
[ +
1/2
Vi”(i) 4 |:Z] Vout

Figure 3.71

(a) Sketch the magnitude and phase of the transfer function.

(b) At what frequency does the phase equal 7/27

(c) Find a circuit that corresponds to this load impedance. Is your answer unique? If so, show it to be so;
if not, give another example.

Problem 3.33: Analog “Hum” Rejection

“Hum” refers to corruption from wall socket power that frequently sneaks into circuits. “Hum” gets its name
because it sounds like a persistent humming sound. We want to find a circuit that will remove hum from any
signal. A Rice engineer suggests using a simple voltage divider circuit consisting of two series impedances
(Figure 3.72).

(a) The impedance Z; is a resistor. The Rice engineer must decide between two circuits for the impedance
Zs (Figure 3.73). Which of these will work?
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Figure 3.73

(b) Picking one circuit that works, choose circuit element values that will remove hum.
(c) Sketch the magnitude of the resulting frequency response.

Problem 3.34: An Interesting Circuit

(a) For the circuit shown in Figure 3.74, find the transfer function.
(b) What is the output voltage when the input has the form #;, = 5 sin (20007t)?

3

6
im@) s Vout

Figure 3.74

Problem 3.35: A Simple Circuit
You are given the circuit depicted in Figure 3.75.

(a) What is the transfer function between the source and the output voltage?

(b) What will the voltage be when the source equals sin (¢)?

(¢) Many function generators produce a constant offset in addition to a sinusoid. If the source equals
1+ sin (¢), what is the output voltage?

Problem 3.36: An Interesting and Useful Circuit

The circuit depicted in Figure 3.76 has interesting properties, which are exploited in high-performance
oscilloscopes. The portion of the circuit labeled “Oscilloscope” represents the scope’s input impedance.
Ry =1 MQ and Cs = 30 pF (note the label under the channel 1 input in the lab’s oscilloscopes). A probe
is a device to attach an oscilloscope to a circuit, and it has the indicated circuit inside it.
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Figure 3.75
_______ robe
: A"
| W '~ _ _ _ oscilloscope
+ O 4'1’ - v
| Ct1 !
Vin Ro S Co—— Vout !
- O : -
Figure 3.76

(a) Suppose for a moment that the probe is merely a wire and that the oscilloscope is attached to a circuit
that has a resistive Thévenin equivalent impedance. What would be the effect of the oscilloscope’s
input impedance on measured voltages?

(b) Using the node method, find the transfer function relating the indicated voltage to the source when
the probe is used.

(c) Plot the magnitude and phase of this transfer function when Ry = 9 MQ and Cy = 2 pF.

(d) For a particular relationship among the element values, the transfer function is quite simple. Find that
relationship and describe what is so special about it.

(e) The arrow through C indicates that its value can be varied. Select the value for this capacitor to
make the special relationship valid. What is the impedance seen by the circuit being measured for this
special value?

Problem 3.37: A Circuit Problem
You are given the circuit depicted in Figure 3.77.

-]
1/3 1/6

Vin C) 2 4

Figure 3.77
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(a) Find the differential equation relating the output voltage to the source.
(b) What is the impedance “seen” by the capacitor?

Problem 3.38: Analog Computers

Because the differential equations arising in circuits resemble those that describe mechanical motion, we
can use circuit models to describe mechanical systems. An ELEC 241 student wants to understand the
suspension system on his car. Without a suspension, the car’s body moves in concert with the bumps in the
road. A well-designed suspension system will smooth out bumpy roads, reducing the car’s vertical motion.
If the bumps are very gradual (think of a hill as a large but very gradual bump), the car’s vertical motion
should follow that of the road. The student wants to find a simple circuit that will model the car’s motion.
He is trying to decide between two circuit models (Figure 3.78).

_fzj;m
+ +
Vroad | 1= 1>Vear Vroad ( _ 1% 1> Vear

Figure 3.78

Here, road and car displacements are represented by the voltages vyoad (t) and vea, (t), respectively.

(a) Which circuit would you pick? Why?
(b) For the circuit you picked, what will be the amplitude of the car’s motion if the road has a displacement
given by vpoaq (t) = 1 + sin (2¢)?

Problem 3.39: Transfer Functions and Circuits
You are given the network shown in Figure 3.79.

+
Vin{ 2> 3/4—— Vout

Figure 3.79

(a) Find the transfer function between Vi, and Voyu.

(b) Sketch the magnitude and phase of your transfer function. Label important frequency, amplitude and
phase values.

(c) Find voys () when vy, (t) = sin (£ + 7/4).

Problem 3.40: Fun in the Lab

You are given an un-openable box that has two terminals sticking out. You assume the box contains a
circuit. You measure the voltage sin (¢ + 7/4) across the terminals when nothing is connected to them and
the current /2 cost when you place a wire across the terminals.

(a) Find a circuit that has these characteristics.
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(b) You attach a 1 H inductor across the terminals. What voltage do you measure?

Problem 3.41: Dependent Sources
Find the voltage v,y in each of the circuits depicted in Figure 3.80.

i .
> AP TAAN
5 1/3 * 3
iin(*) R1 Ro RLS vout 1 CJ’) -6 C*) Vout h a5
(a) circuit a (b) circuit b
Figure 3.80

Problem 3.42: Operational Amplifiers
Find the transfer function between the source voltage(s) and the indicated output voltage for the circuits
shown in Figure 3.81.

Problem 3.43: Op-Amp Circuit
The circuit shown in Figure 3.82 is claimed to serve a useful purpose.

(a) What is the transfer function relating the complex amplitude of the output signal, the current I, to
the complex amplitude of the input, the voltage Vi,?

(b) What equivalent circuit does the load resistor Ry, see?

(c) Find the output current when vy, = Voe_t/T.

Problem 3.44: Why Op-Amps are Useful
The cascade of op-amp circuits shown in Figure 3.83 illustrates the reason why op-amp realizations of transfer
functions are so useful.

(a) Find the transfer function relating the complex amplitude of the voltage vout () to the source. Show
that this transfer function equals the product of each stage’s transfer function.

(b) What is the load impedance appearing across the first op-amp’s output?

(c) Figure 3.84 illustrates that sometimes “designs” can go wrong. Find the transfer function for this
op-amp circuit, and then show that it can’t work! Why can’t it?

Problem 3.45: Operational Amplifiers
Consider the circuit of Figure 3.85.

(a) Find the transfer function relating the voltage voy (t) to the source.
(b) In particular, Ry = 530 Q, C; = 1 uF, Ry = 5.3 kQ, Co = 0.01 pF, and Ry = Ry = 5.3 k.
Characterize the resulting transfer function and determine what use this circuit might have.

Problem 3.46: Designing a Bandpass Filter
We want to design a bandpass filter that has transfer the function

j2rf
gloes
Here, f; is the cutoff frequency of the low-frequency edge of the passband and f, is the cutoff frequency of
the high-frequency edge. We want f; =1 kHz and f;, = 10 kHz.

H(f) = 10
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(a) op-amp a
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(d) op-amp d

Figure 3.81
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Figure 3.84

(a) Plot the magnitude and phase of this frequency response. Label important amplitude and phase values
and the frequencies at which they occur.
(b) Design a bandpass filter that meets these specifications. Specify component values.

Problem 3.47: Pre-emphasis or De-emphasis?
In audio applications, prior to analog-to-digital conversion signals are passed through what is known as a
pre-emphasis circuit that leaves the low frequencies alone but provides increasing gain at increasingly
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Figure 3.85

higher frequencies beyond some frequency fy,. De-emphasis circuits do the opposite and are applied after
digital-to-analog conversion. After pre-emphasis, digitization, conversion back to analog and de-emphasis,
the signal’s spectrum should be what it was.

The op-amp circuit in Figure 3.86 has been designed for pre-emphasis or de-emphasis (Samantha can’t
recall which).

R

R R=1kQ
RF =1kQ
| _ C=80nF
I L o4

+
Vin <+>
_ Vout

Figure 3.86

(a) Is this a pre-emphasis or de-emphasis circuit? Find the frequency fp that defines the transition from
low to high frequencies.

(b) What is the circuit’s output when the input voltage is sin (27 ft), with f = 4kHz?

(c) What circuit could perform the opposite function to your answer for the first part?

Problem 3.48: Active Filter
Find the transfer function of the active filter depicted Figure 3.87.

Problem 3.49: This is a filter?
You are given a circuit as shown in Figure 3.88.

(a) What is this circuit’s transfer function? Plot the magnitude and phase.
(b) If the input signal is the sinusoid sin (27 fot), what will the output be when fy is larger than the filter’s
“cutoff frequency?”

Problem 3.50: Optical Receivers
In your optical telephone, the receiver circuit had the form shown in Figure 3.89. This circuit served as a
transducer, converting light energy into a voltage voyut. The photodiode acts as a current source, producing
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- VOUT

Figure 3.87

Figure 3.88

a current proportional to the light intensity falling upon it. As is often the case in this crucial stage, the
signals are small and noise can be a problem. Thus, the op-amp stage serves to boost the signal and to filter

out-of-band noise.
\ — Vout

Figure 3.89

(a) Find the transfer function relating light intensity to voyt.

(b) What should the circuit realizing the feedback impedance Z; be so that the transducer acts as a 5 kHz
lowpass filter?

(c) A clever engineer suggests an alternative circuit (Figure 3.90) to accomplish the same task. Determine
whether the idea works or not. If it does, find the impedance Z;,, that accomplishes the lowpass filtering
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task. If not, show why it does not work.

— Vout

Figure 3.90

Problem 3.51: Reverse Engineering

The circuit depicted in Figure 3.91 has been developed by the TBBG Electronics design group. They are
trying to keep its use secret; we, representing RU Electronics, have discovered the schematic and want to
figure out the intended application. Assume the diode is ideal.

Ro
Ri=1kQ
C =31.8nF [
R1 C
> -
—O +
: +
Vin Vout
O —

Figure 3.91

(a) Assuming the diode is a short-circuit (it has been removed from the circuit), what is the circuit’s
transfer function?

(b) With the diode in place, what is the circuit’s output when the input voltage is sin (27 fot)?

(c) What function might this circuit have?
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Solutions to Exercises in Chapter 3

Solution to Exercise 3.1 (p. 32)

One kilowatt-hour equals 3,600,000 watt-seconds, which indeed directly corresponds to 3,600,000 joules.
Solution to Exercise 3.2 (p. 36)

KCL says that the sum of currents entering or leaving a node must be zero. If we consider two nodes together
as a “supernode,” KCL applies as well to currents entering the combination. Since no currents enter an entire
circuit, the sum of currents must be zero. If we had a two-node circuit, the KCL equation of one must
be the negative of the other, We can combine all but one node in a circuit into a supernode; KCL for the
supernode must be the negative of the remaining node’s KCL equation. Consequently, specifying n —1 KCL
equations always specifies the remaining one.
Solution to Exercise 3.3 (p. 37)

The circuit serves as an amplifier having a gain of &
Ry + Ro
Solution to Exercise 3.4 (p. 38)

The power consumed by the resistor R; can be expressed as

R
('Uin - Uout) iout = 712’01211
(R1 + Ra)
Solution to Exercise 3.5 (p. 38)
1 R R
AU = g, ],
Ry + Ry (R1 + R2) (R1 + R2)

Solution to Exercise 3.6 (p. 40)
Replacing the current source by a voltage source does not change the fact that the voltages are identical.

Vin . . .
Consequently, vy, = Raiout Or iout = ——. This result does not depend on the resistor Ry, which means that

Ry
we simply have a resistor (Rs) across a voltage source. The two-resistor circuit has no apparent use.
Solution to Exercise 3.7 (p. 41)

Ry = Mﬁ;ﬁ Thus, a 10% change means that the ratio % must be less than 0.1. A 1% change

means that % < 0.01.

Solution to ]éxercise 3.8 (p. 42)

In a series combination of resistors, the current is the same in each; in a parallel combination, the voltage
is the same. For a series combination, the equivalent resistance is the sum of the resistances, which will be
larger than any component resistor’s value; for a parallel combination, the equivalent conductance is the sum
of the component conductances, which is larger than any component conductance. The equivalent resistance
is therefore smaller than any component resistance.

Solution to Exercise 3.9 (p. 44)

Ry . Vin . . . . Ry
Voe = ————j, and igc = ——— (resistor Ry is shorted out in this case). Thus, veq = ————vin and
oc R1+R2 in sc Rl ( 2 ) eq R1+R2 in
_ RiR
TR+ Ry

Solution to Exercise 3.10 (p. 46)

) 1.

eq = 5 tin and Req = (R3 || R1 + Ra2).

fea = Ry R im 80 Reg (Rs || By + Ry)

Solution to Exercise 3.11 (p. 51)

Division by j27 f arises from integrating a complex exponential. Consequently,
1

j27rftdt
j%fV — /Ve
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Solution to Exercise 3.12 (p. 52)
For maximum power dissipation, the imaginary part of complex power should be zero. As the complex power
is given by VI* = |V||I|e?(?~9 zero imaginary part occurs when the phases of the voltage and currents
agree.
Solution to Exercise 3.13 (p. 52)
Pive = Vimslrms cos (¢ — 0). The cosine term is known as the power factor.
Solution to Exercise 3.14 (p. 56)
The key notion is writing the imaginary part as the difference between a complex exponential and its complex
conjugate: ; ;
jom ft % —jom ft
Im [Vel?™/t] = Ve —vie (3.35)
2]

The response to Vel2™/t is VH (f)el?"/t which means the response to V*e 27/t is V*H (—f) e~ 927/t
As H(-f) = (H (f)*), the Superposition Principle says that the output to the imaginary part is
Im [V H (f)e/>/!]. The same argument holds for the real part: Re [Ve/?™/*] — Re [VH (f)e?™/t].
Solution to Exercise 3.15 (p. 61)
To find the equivalent resistance, we need to find the current flowing through the voltage source. This current
equals the current we have just found plus the current flowing through the other vertical 1 ) resistor. This

6 11
current equals €T1 = 1—3vin, making the total current through the voltage source (flowing out of it) 1—31}1,1.

3
Thus, the equivalent resistance is ﬁQ
Solution to Exercise 3.16 (p. 62)
Not necessarily, especially if we desire individual knobs for adjusting the gain and the cutoff frequency.
Solution to Exercise 3.17 (p. 69)
The ratio between adjacent values is about /2.
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Chapter 4

Frequency Domain

4.1 Introduction to the Frequency Domain'

In developing ways of analyzing linear circuits, we invented the impedance method because it made solving
circuits easier. Along the way, we developed the notion of a circuit’s frequency response or transfer function.
This notion, which also applies to all linear, time-invariant systems, describes how the circuit responds to a
sinusoidal input when we express it in terms of a complex exponential. We also learned the Superposition
Principle for linear systems: The system’s output to an input consisting of a sum of two signals is the sum
of the system’s outputs to each individual component.

The study of the frequency domain combines these two notions—a system’s sinusoidal response is easy to
find and a linear system’s output to a sum of inputs is the sum of the individual outputs—to develop the
crucial idea of a signal’s spectrum. We begin by finding that those signals that can be represented as a
sum of sinusoids is very large. In fact, all signals can be expressed as a superposition of sinusoids.

As this story unfolds, we’ll see that information systems rely heavily on spectral ideas. For example,
radio, television, and cellular telephones transmit over different portions of the spectrum. In fact, spectrum
is so important that communications systems are regulated as to which portions of the spectrum they can use
by the Federal Communications Commission in the United States and by International Treaty for the world
(see Frequency Allocation Chart in Section 7.3). Calculating the spectrum is easy: The Fourier transform
defines how we can find a signal’s spectrum.

4.2 Fourier Series’

In an earlier module (Exercise 2.4), we showed that a square wave could be expressed as a superposition of
pulses. As useful as this decomposition was in this example, it does not generalize well to other periodic
signals: How can a superposition of pulses equal a smooth signal like a sinusoid? Because of the importance
of sinusoids to linear systems, you might wonder whether they could be added together to represent a large
number of periodic signals. You would be right and in good company as well. Leonhard Euler? and Carl
Friedrich Gauss* in particular worried about this problem, and Jean Baptiste Fourier® got the credit even
though tough mathematical issues were not settled until later. They worked on what is now known as the
Fourier series: representing any periodic signal as a superposition of sinusoids.

But the Fourier series goes well beyond being another signal decomposition method. Rather, the Fourier
series begins our journey to appreciate how a signal can be described in either the time-domain or the
frequency-domain with no compromise. Let s(¢) be a periodic signal with period T. We want to show
that periodic signals, even those that have constant-valued segments like a square wave, can be expressed

IThis content is available online at http://cnx.org/content/m0038/2.10/.
2This content is available online at http://cnx.org/content/m0042/2.28/.
Shttp://www-groups.dcs.st-and.ac.uk/ history/Biographies/Euler.html
4http://www-groups.dcs.st-and.ac.uk/“history/Biographies/Gauss.html
Shttp://www-groups.dcs.st-and.ac.uk/ history/Biographies/Fourier.html
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as sum of harmonically related sine waves: sinusoids having frequencies that are integer multiples of
the fundamental frequency. Because the signal has period T, the fundamental frequency is 1/T. The
Fourier series expresses the signal as a superposition of complex exponentials having frequencies k/T, k =

{...,—1,0,1,...}.
st)= > e T (4.1)

The zeroth coefficient equals the signal’s average value and is real-valued for real-valued signals: ¢y =

1
T fOTs(t) dt. In general, the other Fourier coefficients are complex-valued; we will find many special cases

.27kt
wherein come coefficients are real-valued. The family of functions {e] T 3 are called basis functions and

form the foundation of the Fourier series. No matter what the periodic signal might be, these functions are
always present and form the representation’s building blocks. They depend on the signal period T', and are
indexed by k.

KEY POINT: Assuming we know the period, knowing the Fourier coefficients is equivalent to
knowing the signal. Thus, it makes no difference if we have a time-domain or a frequency-domain
characterization of the signal.

Exercise 4.1 (Solution on p. 139.)
What is a sinusoid’s Fourier series? You can find this expression by inspection!

To find the Fourier coefficients, we note the orthogonality property

T orkt 2wt if k =
/ T T dt = T 1 b=l_ Té(k —1) (4.2)
0 0, ifk#1

d(n) is the unit-sample defined in equation (2.28). Using this definition, §(k — ) equals one when k —1 =0
(k =1) and zero when k — 1 # 0 (k # 1). Assuming for the moment that the Fourier series “works,” we can
find a signal’s Fourier coeflicients, its spectrum, by exploiting this orthogonality property. Simply multiply
each side of (4.1) by e /2™ and integrate over the interval [0, 7).

1 [T 2mlt
o = —/ s(t)e™ T dt (4.3)
T Jo

Example 4.1
Finding the Fourier series coefficients for the square wave sqp (t) is very simple. Mathematically,
this signal can be expressed over one period as

1, 0<t<?Z
SqT(t):{l Z<t<2T
? 2

The expression for the Fourier coeflicients has the form

1 [% jogkt 1 T i s
= = T dt — = T dt .
Ck T/o e T/g e (4.4)

NOTE: When integrating an expression containing j, treat it just like any other constant.

The two integrals are very similar, one equaling the negative of the other. The final expression
becomes

_ {_2 k odd (4.5)

0 k even
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Thus, the Fourier series for the square wave is

sq (t) = Z ,leﬂa%kt (4.6)

jrk
ke{...,—3,-1,1,3,...}

Consequently, the square wave equals a sum of complex exponentials, but only those having fre-
quencies equal to odd multiples of the fundamental frequency % The coefficients decay slowly as
the frequency index k increases. This index corresponds to the k-th harmonic of the signal’s period.

4.2.1 Fourier coefficients properties
A signal’s Fourier series spectrum cj has interesting properties.

Property 4.1:

If s (t) is real, ¢, = ¢*;, (real-valued periodic signals have conjugate-symmetric spectra).
This result follows from the integral that calculates the ¢; from the signal. Furthermore, this result means
that Re[cy] = Rec_g]: The real part of the Fourier coefficients for real-valued signals is even. Similarly,
Im [c;] = —Im[c_;]: The imaginary parts of the Fourier coefficients have odd symmetry. Consequently, if
you are given the Fourier coefficients for positive indices and zero and are told the signal is real-valued, you
can find the negative-indexed coefficients, hence the entire spectrum. This kind of symmetry, ¢, = ¢*,, is
known as conjugate symmetry.

Property 4.2:
If s (—t) = s (t), which says the signal has even symmetry about the origin, c_j = ¢.

Given the previous property for real-valued signals, the Fourier coefficients of even signals are real-valued.
A real-valued Fourier expansion amounts to an expansion in terms of only cosines, which is the simplest
example of an even signal.

Property 4.3:
If s (—t) = —s(t), which says the signal has odd symmetry, c_ = —cj.

Therefore, the Fourier coefficients are purely imaginary. The square wave is a great example of an odd-
symmetric signal.
Property 4.4:

j27kT
The spectral coefficients for a periodic signal delayed by 7, s (t — 7), are ce™ T , where ¢i denotes

the spectrum of s (t). Delaying a signal by 7 seconds results in a spectrum having a linear phase

shift of — 27T

magnitude is unaffected. Showing this property is easy.

1 (7T 2mkt 1 (T-7 27k (t+7)
T/ s(t—7)e ) T dt:f/ s(t)ye T dt
0 —T
4.7
1 2wkt T—r 2wkt ( )
= Te_] T / S(t) e_J T dt

-7

in comparison to the spectrum of the un-delayed signal. Note that the spectral

Note that the range of integration extends over a period of the integrand. Consequently, it should
not matter how we integrate over a period, which means that fT;T () dt = fOT () dt, and we have
our result.

By the way, you can easily show that no matter how you integrate a periodic signal over a period, you get
the same answer. Let x(¢) be period with period T'.

[ i_;(t) dt = 1 ng(t) dt + /0 ) dt
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Work on the first integral

:/T x(u—T)du+/0T_Tx(t)dt [u=t+T]

T—T1

:/ x(u)du—&—/o _;(t)dt [x(uw—T) = z(t)]

T—1

Reversing the order of the intergrals and combining them, we get

T—1 T
/ x(t) dt :/ x(t)dt
—T 0
Property 4.5:

The Fourier series obeys Parseval’s Theorem,® one of the most important results in signal anal-
ysis. Parseval’s Theorem states that you can calculate a signal’s power in either the time domain
or the frequency domain with very similar formulas.

6

Theorem 4.1: Parseval’s Theorem

Average power calculated in the time domain equals the power calculated in the frequency domain.
oo

1 (7
o /O LWdi= 3 Jexl? (4.8)
k=—0o0
Proof:
Proving Parseval’s Theorem is easy when we use the orthogonality property of harmonically related
complex exponentials (equation 4.2). First of all, re-write the square of the signal as a magnitude-
squared and substitute the Fourier series of the signal into the integral.

1 [T ) 1 T/ &= j2mkt ° 2t
— — T . T
T/o s(t) dt T/o <k_z_:oocke Z ce dt

l=—00
.27kt 2mlt

7300 .- T] I
7TZ ZCkCZ/OGTGTdt

k=—o0l=—00

T jomkt omlt
Using the fact that / e T ¢ T dt =T6(k+1), we find that
0

e =
[ lsrde= 3 e
0

k=—oc0
= Z lex|?  [For real x(t), c_p = c}]

k=—o0

4.2.2 A signal’s spectrum

The Fourier series expression of (4.2) has a very deep interpretation. The time-domain signal s(t) is there
expressed as a weighted sum of complex exponentials that differ only in their frequency k/T. In this way,
we have a frequency-domain representation of the signal. The “deep” part is that either representation can
be used to characterize a signal: we can specify a signal in the time-domain or in the frequency domain.
Because of the Fourier series, we can find how to represent the signal in the “other” domain. How the Fourier

6Parseval’s biography can be found at http://www-history.mcs.st-andrews.ac.uk/Biographies/Parseval.html.
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coeflicients depend on frequency is termed the signal’s spectrum. When we plot the magnitude and phase
of the coefficients to display which harmonics are present in a periodic signal, we are plotting the spectrum.
Let’s calculate the spectrum of the periodic pulse signal shown in Figure 4.1.

A p(t)

A— —

A A

Figure 4.1: Periodic pulse signal.

The pulse width is A, the period T', and the amplitude A. The spectrum of this signal is given by

1 A jorkt A j2mkA
ck:—/ Ae” T dt=——— (e T —1)
T Jo

At this point, simplifying this expression requires knowing an interesting property.
1— =39 — o—30/2. <€+j0/2 _ efj0/2> — ¢799/2 9 gin <9)
2

Armed with this result, we can simply express the Fourier series coefficients for our pulse sequence.

_imkA sin (732)

- (4.9)

c, = Ae
Because this signal is real-valued, we find that the coefficients do indeed have conjugate symmetry: ¢, = c_x*.
Because of this property, we do not need to plot the spectrum for negative k; it can easily be found from the
spectrum for positive k. The magnitude of a real-valued signal’s spectrum has even symmetry,
the angle has odd symmetry.
|C,k| = ‘Ck‘ ZC,k = —ch

The periodic pulse signal has neither even nor odd symmetry in the time domain; consequently, neither
properties 4.2 or 4.3 apply. To plot the spectrum, we need to calculate its magnitude and phase.

sin (M)
=Al—L= 4.1
k] s (4.10)
B kA sin (%) .
Lep = — <T) + 7neg (71'1@‘ sign (k)

The function neg () equals —1 if its argument is negative and zero otherwise. The somewhat complicated
expression for the phase results because the sine term in (4.9) can be negative. Because magnitudes must
be positive, the occasional negative values of the sine function must be accounted for by a phase shift of 7.
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Figure 4.2: The magnitude and phase of the periodic pulse sequence’s spectrum is shown for positive-

. . A
frequency indices. Here = = 0.2 and A = 1.

Also note the presence of a linear phase term (the first term in Zc¢y is proportional to frequency k/T).
Comparing this term with that predicted from delaying a signal, a delay of A/2 is present in our signal.
Advancing the signal by this amount centers the pulse about the origin, leaving an even signal, which in
turn means that its spectrum is real-valued. Thus, our calculated spectrum is consistent with the properties
of the Fourier spectrum.

Exercise 4.2 (Solution on p. 139.)
What is the value of ¢y? Recalling that this spectral coefficient corresponds to the signal’s average
value, does your answer make sense?

The phase plot shown in Figure 4.2 (Periodic Pulse Sequence) requires some explanation as it does not seem
to agree with what (4.10) suggests. There, the phase has a linear component, with a jump of 7 every time
the sinusoidal term changes sign. We must realize that any integer multiple of 27 can be added to a phase
at each frequency without affecting the value of the complex spectrum. We see that at frequency index 4,
the phase is nearly —m. The phase at index 5 is undefined because the magnitude is zero in this example. At
index 6, the formula suggests that the phase of the linear term should be less than (more negative than) —.
In addition, we expect a shift of —7 in the phase between indices 4 and 6. Thus, the phase value predicted
by the formula is a little less than —27. Because we can add 27 without affecting the value of the spectrum
at index 6, the result is a slightly negative number as shown. Thus, the formula and the plot do agree. In
phase calculations like those made in MATLAB, values are usually confined to the range [—,7) by adding
some (possibly negative) multiple of 27 to each phase value.

Another aspect of the spectrum needs to be emphasized and this example demonstrates it well. Note
that the period T enters into the spectrum only through the ratio of the pulse width A and the period. If
the period is changed in such a way that this ratio remains constant, the spectral plot in Figure (4.2) is
unchanged when considered as a function of coefficient index k. However, when we plot a spectrum as a
function of frequency k/T, the plot stretches or compresses horizontally as we change the period. We will
find that what is important in applications is what frequencies, not what harmonic indices, are contained in
a periodic signal.
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4.3 Classic Fourier Series’

The classic Fourier series as derived originally by Euler and Fourier expressed a periodic signal (period T')
in terms of harmonically related sines and cosines.

_ao+Zakcos< ) Zbk m( 7Tkt) (4.11)

The Fourier series and the sine-cosine series are different versions of the same idea, each
representing a signal’s spectrum. The classic Fourier coefficients, a; and by, express the real and imaginary
parts respectively of the spectrum while the coefficients ¢ of the Fourier series express the spectrum as a
magnitude and phase. Equating the classic Fourier series (4.11) to the Fourier series (4.1), an extra factor
of two and a complex conjugate become necessary to relate the Fourier coefficients in each.

an k=0
Cr = .
%(ak—]bk) k;«éO

Exercise 4.3 (Solution on p. 139.)
Derive this relationship between the coefficients of the two Fourier series.

Just as with the Fourier series, we can find the sine-cosine Fourier coeflicients using the orthogonality
properties of sinusoids. Note that the cosine and sine of harmonically related frequencies, even the same
frequency, are orthogonal.

T
/ sin <W> COS(QW“) dt=0, keZleclZ
0 T T

T T ...
/ Sm<27rkt) Sin<27rlt) P Y ifk=land k#0andl#0
0 T T 0, k#lork=0=1 (4.12)
T
/T . 9kt . Qth . 7 k=land k#0and!#0
; 5 7 =T k=0=1
0, k£l

These orthogonality relations follow from the following important trigonometric identities.

sin (@) sin (8) = %(cos (o — B) —cos (a+ ﬁ))
cos (a) cos (B) = %(cos (o + B) + cos (a — B)) (4.13)
sin (a) cos (8) = %(sin (a+B) +sin(a—3))

These identities allow you to substitute a sum of sines and/or cosines for a product of them. Each term in
the sum can be integrated by noticing one of two important properties of sinusoids.

e The integral of a sinusoid over an integer number of periods equals zero.
e The integral of the square of a unit-amplitude sinusoid over a period T equals T'/2.

To use these, let’s, for example, multiply the Fourier series for a signal by the cosine of the [*" harmonic

2wt
cos <;> and integrate. The idea is that, because integration is linear, the integration will sift out all but

"This content is available online at http://cnx.org/content/m0039/2.22/.



104 CHAPTER 4. FREQUENCY DOMAIN

the term involving a;.
T T o0 T
2mlt 2mlt 2mkt 2mlt
/0 s (t) cos <;> dt:/o ag Cos (;) dt+,§_lak/0 cos( 7; )cos( ; )dt

oo T
2kt 2mlt
+ kzlbk/o sin (7;> cos (7;) dt

The first and third terms are zero; in the second, the only non-zero term in the sum results when the indices

(4.14)

T
k and [ are equal (but not zero), in which case we obtain alT. If £k =0 =1, we obtain a¢T. Consequently,

2 (T 2nlt
al:T/O S(t)COS(T>dt 5 l7é0

All of the Fourier coefficients can be found similarly.

1 (T
= — t)dt
ao = /0 s(t)
2 (T 27kt
a = T/o s (t) cos (7TT> dt , k#0 (4.15)
2 (7T 2rkt
by, = T/o s (t) sin (7;) dt
Exercise 4.4 (Solution on p. 139.)
The expression for ag is referred to as the average value of s (t). Why?
Exercise 4.5 (Solution on p. 139.)
What is the Fourier series for a unit-amplitude square wave?
Example 4.2
Let’s find the Fourier series representation for the half-wave rectified sinusoid shown in Figure 4.5
(page 108).
. (27t T
sin | — 0<t< —
s(t) = T T 2 (4.16)
0 7 <t<T

We have a choice: we can find the complex spectral coeflicients ¢, or we can find the classic
series coefficients. Given one result, we can find the other. In general, finding the complex-valued
coeflicients is easier, but in this case let’s find the classic series coeflicients because of the presence
of the sinusoid in the signal’s expression. Begin with the sine terms in the series; to find by, we must

calculate the integral
T
2 [z 2wt 2mkt
by = T/() sin (;) sin (2’) dt (4.17)

Using our trigonometric identities turns our integral of a product of sinusoids into a sum of integrals
of individual sinusoids, which are much easier to evaluate.

T

[ () (7 ams [[ om () -on (1)

(4.18)
_ )5 k=1
0 otherwise
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Thus,
1
b1=§ bo=bz3=---=0

On to the cosine terms. The average value, which corresponds to ag, equals 1/7. The remainder
of the cosine coeflicients are easy to find, but yield the complicated result

2 1
———— k 2,4,...
ap = Tk2 -1 6{73 }

0 k odd

(4.19)

Thus, the Fourier series for the half-wave rectified sinusoid has non-zero terms for its average,
fundamental, and even harmonics. The expression for the complex series coefficients concisely
represents this structure. Because the signal is real-valued, conjugate symmetry applies to the
coeflicients; we need only specify ¢y for k > 0.

1
- k=0
1
= 4]1 1
——— k=2,4,...
Tk -1 T
0 k=3,5,...

4.4 A Signal’s Power Spectrum®

A periodic signal, such as the half-wave rectified sinusoid, consists of a sum of elemental sinusoids. A plot
of the Fourier coefficients as a function of the frequency index, such as shown in Figure 4.3 (Fourier Series
spectrum of a half-wave rectified sine wave), displays the signal’s spectrum. The word “spectrum” implies
that the independent variable, here k, corresponds somehow to frequency. Each coefficient is directly related
to a sinusoid having a frequency of k/T'. Thus, if we half-wave rectified a 1 kHz sinusoid, k¥ = 1 corresponds
to 1 kHz, k = 2 to 2 kHz, etc.

ak ekl
0.5 0.5
0 k 0 k
0 2 4 6 8 10
ACk
-0.5 T
b,
K 2
0.
0 k
—T/2
0 k
0 2 4 6 8 10 —TC

Figure 4.3: The Fourier series spectrum of a half-wave rectified sinusoid is shown. The index indicates
the multiple of the fundamental frequency at which the signal has energy. The left column shows the
spectrum in terms of the classic Fourier series, the right in terms of the Fourier series coefficients. We
will find the latter representation more useful.

8This content is available online at http://cnx.org/content/m0040/2.20/.
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Figure 4.4: Power spectrum of a half-wave rectified sinusoid.

A subtle, but very important, aspect of the Fourier spectrum is its uniqueness: You can unambiguously
find the spectrum from the signal (decomposition (4.15)) and the signal from the spectrum (composition).
Thus, any aspect of the signal can be found from the spectrum and vice versa. A signal’s frequency
domain expression is its spectrum. A periodic signal can be defined either in the time domain (as a
function) or in the frequency domain (as a spectrum).

A fundamental aspect of solving electrical engineering problems is whether the time or frequency domain
provides the most understanding of a signal’s properties and the simplest way of manipulating it. The
uniqueness property says that either domain can provide the right answer. As a simple example, suppose
we want to know the (periodic) signal’s maximum value. Clearly the time domain provides the answer
directly. To use a frequency domain approach would require us to find the spectrum, form the signal from
the spectrum and calculate the maximum; we’re back in the time domain!

Another feature of a signal is its average power. A signal’s instantaneous power is defined to be its
square. The average power is the average of the instantaneous power over some time interval. For a periodic
signal, the natural time interval is clearly its period; for non-periodic signals, a better choice would be entire
time or time from onset. For a periodic signal, the average power is the square of its root-mean-squared
(rms) value. We define the rms value of a periodic signal to be

f T
rms (s) = %/0 s2(t)dt (4.20)

1 T
power (s) = rms? (s) = T/ s2(t) dt (4.21)
0
Exercise 4.6 (Solution on p. 139.)

What is the rms value of the half-wave rectified sinusoid?

and thus its average power is

To find the average power in the frequency domain, we only need Parseval’s Theorem.
1/Ts2(t)dt: i |ck|2:a2+1§:(a2+b2) (4.22)
T 0 0 2 k k N
k=—o0 k=1
It could well be that computing the sum is easier than integrating the signal’s square. Furthermore,
the contribution of each term in the Fourier series toward representing the signal can be measured by its
contribution to the signal’s average power. Thus, the power contained in a signal at its kth harmonic is
2 2
a b
Gk + 0k or |ck|2. The power spectrum, P (k), such as shown in Figure 4.4, plots each harmonic’s

contribution to the total power.
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Exercise 4.7 (Solution on p. 139.)
In high-end audio, deviation of a sine wave from the ideal is measured by the total harmonic
distortion, which equals the total power in the harmonics higher than the first compared to the
signal’s total power. Find an expression for the total harmonic distortion for any periodic signal.
Is this calculation most easily performed in the time or frequency domain?

4.5 Fourier Series Approximation of Signals’

It is interesting to consider the sequence of signals that we obtain as we incorporate more terms into the
Fourier series approximation of the half-wave rectified sine wave (Example 4.2). Define sk (t) to be the
signal containing only those terms up to and including the K*" harmonic.

K K
2wkt . 2wkt
E ag cos (T) + 371 by, sin (T)

k=0

SK (t)

(4.23)
.27kt

K
= E cpe’ T
k=—K

Figure 4.5 shows how this sequence of signals portrays the signal more accurately as more terms are added.
We need to assess quantitatively the accuracy of the Fourier series approximation so that we can judge

how rapidly the series approaches the signal. When we use a truncated series, the error—the difference

between the signal and the K*"-harmonic series—corresponds to the unused terms from the series.

e} oo
2mkt . [ 2mkt
ex (t) = k}KH aj; COS (T) + k}K—H by, sin (T)
e a (4.24)
.2kt
= g cpe’ T
|k|=K+1

To find the rms error, we must square this expression and integrate it over a period. Again, the integral of

most cross-terms is zero, leaving
(o)

> (ap+b)

k=K+1

=2 ) ol

k=K+1

rms? (ex) =

N | =

(4.25)

Figure 4.6 shows how the error in the Fourier series for the half-wave rectified sinusoid decreases as more
terms are incorporated. In particular, the use of four terms, as shown in the bottom plot of Figure 4.5, has
a rms error (relative to the rms value of the signal) of about 3%. The Fourier series in this case converges
quickly to the signal.

We can look at Figure 4.7 to see the power spectrum and the rms approximation error for the square
wave. Because the Fourier coefficients decay more slowly here than for the half-wave rectified sinusoid, the
rms error is not decreasing quickly. Said another way, the square-wave’s spectrum contains more power at
higher frequencies than does the half-wave-rectified sinusoid. This difference between the two Fourier series

1
results because the half-wave rectified sinusoid’s Fourier coefficients are proportional to — while those of the

1
square wave are proportional to —. If fact, after 99 terms of the square wave’s approximation, the error is

bigger than 10 terms of the approximation for the half-wave rectified sinusoid. Mathematicians have shown
that no signal has an rms approximation error that decays more slowly than it does for the square wave.

9This content is available online at http://cnx.org/content/m10687/2.9/.
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Fourier Series spectrum of a half-wave rectified sine wave

ak
0.5

Figure 4.5: The Fourier series spectrum of a half-wave rectified sinusoid is shown in the upper portion.
The index indicates the multiple of the fundamental frequency at which the signal has energy. The
cumulative effect of adding terms to the Fourier series for the half-wave rectified sine wave is shown in
the bottom portion. The dashed line is the actual signal, with the solid line showing the finite series
approximation to the indicated number of terms, K + 1.

Exercise 4.8 (Solution on p. 140.)
Calculate the harmonic distortion for the square wave.

More than just decaying slowly, Fourier series approximation shown in Figure 4.8 exhibits interesting behav-
ior. Although the square wave’s Fourier series requires more terms for a given representation accuracy, when
comparing plots it is not clear that the two are equal. Does the Fourier series really equal the square wave
at all values of ¢t? In particular, at each step-change in the square wave, the Fourier series exhibits a peak
followed by rapid oscillations. As more terms are added to the series, the oscillations seem to become more
rapid and smaller, but the peaks are not decreasing. For the Fourier series approximation for the half-wave
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Figure 4.6: The rms error calculated according to (4.25) is shown as a function of the number of terms
in the series for the half-wave rectified sinusoid. The error has been normalized by the rms value of the
signal.
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Figure 4.7: The upper plot shows the power spectrum of the square wave, and the lower plot the rms
error of the finite-length Fourier series approximation to the square wave. The asterisk denotes the rms
error when the number of terms K in the Fourier series equals 99.

rectified sinusoid (Figure 4.5), no such behavior occurs. What is happening?

Consider this mathematical question intuitively: Can a discontinuous function, like the square wave, be
expressed as a sum, even an infinite one, of continuous signals? One should at least be suspicious, and in fact,
it can’t be thus expressed. The extraneous peaks in the square wave’s Fourier series never disappear; they
are termed Gibbs’ phenomenon after the American physicist Josiah Willard Gibbs. They occur whenever
the signal is discontinuous, and will always be present whenever the signal has jumps. This issue brought
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Figure 4.8: Fourier series approximation to sq (¢). The number of terms in the Fourier sum is indicated
in each plot, and the square wave is shown as a dashed line over two periods.

Fourier!® much criticism from the French Academy of Science (Laplace, Lagrange, Monge and LaCroix

comprised the review committee) for several years after its presentation on 1807. It was not resolved for
almost a century, with ultimate solution interesting and important to understand.

Let’s return to the question of equality; how can the equal sign in the definition of the Fourier series be
justified? The partial answer is that point wise—each and every value of t—equality is not guaranteed.
However, mathematicians later in the nineteenth century showed that the rms error of the Fourier series was
always zero.

lim rms(eg) =0
K—oo

What this means is that the error between a signal and its Fourier series approximation may not be zero,
but that its rms value will be zero! It is through the eyes of the rms value that we redefine equality: The
usual definition of equality is called point wise equality: Two signals s (t), s2 (t) are said to be equal
point wise if s1 (t) = s2 (t) for all values of t. A new definition of equality is mean-square equality: Two
signals are said to be equal in the mean square if rms (s — s2) = 0. For Fourier series, Gibbs’ phenomenon
peaks have finite height and zero width. The error differs from zero only at isolated points—whenever the
periodic signal contains discontinuities—and equals about 9% of the size of the discontinuity. The value of
a function at a finite set of points does not affect its integral. This effect underlies the reason why defining
the value of a discontinuous function at its discontinuity, like when we defined the step function on page 17,

Onttp://www-groups.dcs.st-and.ac.uk/ history/Biographies/Fourier.html
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is has no effect: Whatever you pick for a value has no practical relevance for either the signal’s spectrum or
for how a system responds to the signal. The Fourier series value “at” the discontinuity is the average of the
values on either side of the jump.

4.6 Encoding Information in the Frequency Domain"

To emphasize the fact that every periodic signal has both a time and frequency domain representation, we
can exploit both to encode information into a signal. Refer to the Fundamental Model of Communication
(Figure 1.3). We have an information source, and want to construct a transmitter that produces a signal
x (t). For the source, let’s assume we have information to encode every T seconds. For example, we want
to represent typed letters produced by an extremely good typist (a key is struck every T seconds). Let’s
consider the Fourier series formula in the light of trying to encode information.

K 2mht
r(t)= Y e T (4.26)

k=—K

We use a finite sum here merely for simplicity (fewer parameters to determine). An important aspect of
the spectrum is that each frequency component ¢, can be manipulated separately: Instead of finding the
Fourier spectrum from a time-domain specification, let’s construct it in the frequency domain by selecting
the ¢i according to some rule that relates coefficient values to the alphabet. In defining this rule, we want to
always create a real-valued signal x (t). Because of the Fourier spectrum’s properties (Property 4.1, p. 99),
the spectrum must have conjugate symmetry. This requirement means that we can only assign positive-
indexed coefficients (positive frequencies), with negative-indexed ones equaling the complex conjugate of the
corresponding positive-indexed ones.

Assume we have N letters to encode: {ai,...,an}. One simple encoding rule could be to make a single
Fourier coefficient be non-zero and all others zero for each letter. For example, if a,, occurs, we make ¢, = 1
and ¢; = 0, k # n. In this way, the n** harmonic of the frequency 1/7 is used to represent a letter. Note
that the bandwidth—the range of frequencies required for the encoding—equals N/T. Another possibility
is to consider the binary representation of the letter’s index. For example, if the letter a3 occurs, converting
13 to its base-2 representation, we have 13 = 11015. We can use the pattern of zeros and ones to represent
directly which Fourier coeflicients we “turn on” (set equal to one) and which we “turn off.”

Exercise 4.9 (Solution on p. 140.)
Compare the bandwidth required for the direct encoding scheme (one nonzero Fourier coefficient
for each letter) to the binary number scheme. Compare the bandwidths for a 128-letter alphabet.
Since both schemes represent information without loss — we can determine the typed letter uniquely
from the signal’s spectrum — both are viable. Which makes more efficient use of bandwidth and
thus might be preferred?

Exercise 4.10 (Solution on p. 140.)
Can you think of an information-encoding scheme that makes even more efficient use of the spec-
trum? In particular, can we use only one Fourier coefficient to represent N letters uniquely?

We can create an encoding scheme in the frequency domain (p. 111) to represent an alphabet of letters. But,
as this information-encoding scheme stands, we can represent one letter for all time. However, we note that
the Fourier coefficients depend only on the signal’s characteristics over a single period. We could change
the signal’s spectrum every T as each letter is typed. In this way, we turn spectral coefficients on and off as
letters are typed, thereby encoding the entire typed document. For the receiver in the Fundamental Model
of Communication (Figure 1.3) to retrieve the typed letter, it would simply use the Fourier formula for the
Fourier spectrum'? for each T-second interval to determine what each typed letter was. Figure 4.9 shows
such a signal in the time-domain.

HThis content is available online at http://cnx.org/content/m0043/2.17/.
I2«Fourier Series and Their Properties,” (2) http://cnx.org/content/m0065/1atest/\#complex
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Figure 4.9: The encoding of signals via the Fourier spectrum is shown over three “periods.” In this ex-
ample, only the third and fourth harmonics are used, as shown by the spectral magnitudes corresponding
to each T-second interval plotted below the waveforms. Can you determine the phase of the harmonics
from the waveform?

In this Fourier-series encoding scheme, we have used the fact that spectral coefficients can be indepen-
dently specified and that they can be uniquely recovered from the time-domain signal over one “period.” Do
note that the signal representing the entire document is no longer periodic. By understanding the Fourier se-
ries’ properties (in particular that coefficients are determined only over a T-second interval, we can construct
a communications system. This approach represents a simplification of how modern modems represent text
that they transmit over telephone lines.

4.7 Filtering Periodic Signals”

The Fourier series representation of a periodic signal makes it easy to determine how a linear, time-invariant
filter reshapes such signals in general. The fundamental property of a linear system is that its input-output
relation obeys superposition: S [a1s1 (t) + azs2 (t)] = a1S[s1 ()] + a2S [s2 (t)]. Because the Fourier series
represents a periodic signal as a linear combination of complex exponentials, we can exploit the superposition
property. Furthermore, we found for linear circuits that their output to a complex exponential input is just the

frequency response evaluated at the signal’s frequency times the complex exponential. Said mathematically,
k 2wkt k
ifx(t) = ej 7 , then the output y (t) = H (T e/ T because f = T Thus, if x (t) is periodic thereby

having a Fourier series, a linear circuit’s output to this signal will be the superposition of the output to each
component.

y(t) = i e H (;) T (4.27)

k=—o0

Thus, the output has a Fourier series, which means that it too is periodic. Its Fourier coefficients equal
k
c. H <T> To obtain the spectrum of the output, we simply multiply the input spectrum by

the frequency response. The circuit modifies the magnitude and phase of each Fourier coefficient. Note
especially that while the Fourier coefficients do not depend on the signal’s period, the circuit’s transfer
function does depend on frequency, which means that the circuit’s output will differ as the period varies.

13 This content is available online at http://cnx.org/content/m0044/2.10/.
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Figure 4.10: A periodic pulse signal, such as shown on the left part (A/T = 0.2), serves as the input to
an RC lowpass filter. The input’s period was 1 ms (millisecond). The filter’s cutoff frequency was set to
the various values indicated in the top row, which display the output signal’s spectrum and the filter’s
transfer function. The bottom row shows the output signal derived from the Fourier series coefficients
shown in the top row. (a) Periodic pulse signal (b) Top plots show the pulse signal’s spectrum for various
cutoff frequencies. Bottom plots show the filter’s output signals.

Example 4.3
The periodic pulse signal shown on the left above serves as the input to a RC-circuit shown in
Figure 3.28 that has the transfer function (calculated elsewhere)

1

H = 4.28
(f) 1+ 72nfRC ( )
Figure 4.10 shows the output changes as we vary the filter’s cutoff frequency. Note how the signal’s
spectrum extends well above its fundamental frequency. Having a cutoff frequency ten times higher
than the fundamental does perceptibly change the output waveform, rounding the leading and
trailing edges. As the cutoff frequency decreases (center, then left), the rounding becomes more

prominent, with the leftmost waveform showing a small ripple.

Exercise 4.11 (Solution on p. 140.)
What is the average value of each output waveform? The correct answer may surprise you.

This example also illustrates the impact a lowpass filter can have on a waveform. The simple RC filter used
here has a rather gradual frequency response, which means that higher harmonics are smoothly suppressed.
Later, we will describe filters that have much more rapidly varying frequency responses, allowing a much
more dramatic selection of the input’s Fourier coefficients.

More importantly, we have calculated the output of a circuit to a periodic input without writing,
much less solving, the differential equation governing the circuit’s behavior. Furthermore, we made these
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calculations entirely in the frequency domain. Using Fourier series, we can calculate how any linear circuit
will respond to a periodic input.

4.8 Derivation of the Fourier Transform"

Fourier series clearly open the frequency domain as an interesting and useful way of determining how circuits
and systems respond to periodic input signals. Can we use similar techniques for non-periodic signals? What
is the response of the filter to a single pulse? Addressing these issues requires us to find the Fourier spectrum
of all signals, both periodic and non-periodic ones. We need a definition for the Fourier spectrum of a signal,
periodic or not. This spectrum is calculated by what is known as the Fourier transform.

Let st (t) be a periodic signal having period T. We want to consider what happens to this signal’s
spectrum as we let the period become longer and longer. We denote the spectrum for any assumed value of
the period by ¢ (T'). We calculate the spectrum according to the familiar formula

1 (T2 2mkt
e, (T) = T /T/2 sp(t)ye™ T dit (4.29)

where we have used a symmetric placement of the integration interval about the origin for subsequent deriva-
tional convenience. Let f be a fixed frequency equaling k/T'; we vary the frequency index k proportionally
as we increase the period. Define

T/2 ‘
St (f)=Te, (T) = / sp (t) e 92t dt (4.30)
—T/2
making the corresponding Fourier series
- ompe L
sr(t)= Y. Sr(f) 6J2ﬂftf (4.31)

k=—o0

As the period increases, the spectral lines become closer together, becoming a continuum. Therefore,

TIEI;O sT(t)=s(t) = /: S (f)ed*Itdf (4.32)
with -
S(f) = / s (t) 2Tty (4.33)

S (f) is the Fourier transform of s (¢) (the Fourier transform is symbolically denoted by the uppercase version
of the signal’s symbol) and is defined for any signal for which the integral ((4.33)) converges.

Example 4.4
Let’s calculate the Fourier transform of the pulse signal p ().

0o A
P(f :/ p(t e*j%ftdt:/ eI ftgr = — —  (e=d2mfA
D=0 0 ST )
_jrpasin(tfA)
=e - - 7
mf

Note how closely this result resembles the expression for Fourier series coefficients of the periodic
pulse signal (4.10).

Figure 4.11 shows how increasing the period does indeed lead to a continuum of coefficients, and that the

sin (t)

Fourier transform does correspond to what the continuum becomes. The quantity — has a special name,

M This content is available online at http://cnx.org/content/m0046/2.21/.
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Figure 4.11: The upper plot shows the magnitude of the Fourier series spectrum for the case of T'=1
with the Fourier transform of p (¢) shown as a dashed line. For the bottom panel, we expanded the period
to T = 5, keeping the pulse’s duration fixed at 0.2, and computed its Fourier series coefficients.

the sinc (pronounced “sink”) function, and is denoted by sinc (¢). Thus, the magnitude of the pulse’s Fourier
transform equals |Asinc (7 fA) |.

The Fourier transform relates a signal’s time and frequency domain representations to each other. The
direct Fourier transform (or simply the Fourier transform) calculates a signal’s frequency domain repre-
sentation from its time-domain variant (4.34). The inverse Fourier transform (4.35) finds the time-domain
representation from the frequency domain. Rather than explicitly writing the required integral, we often
symbolically express these transform calculations as F (s) and F~! (.9), respectively.

F(s)=5(/)
) /oo A (4.34)

F 18 =s
- (4.35)

()
[ stperiar
F(F1

We must have s (t) = F~ 1 (F(s(t))) and S(f) =
minor exceptions.

(S(f))), and these results are indeed valid with

NOTE: Recall that the Fourier series for a square wave gives a value for the signal at the dis-
continuities equal to the average value of the jump. This value may differ from how the signal is
defined in the time domain, but being unequal at a point is indeed minor.

Showing that you “get back to where you started” is difficult from an analytic viewpoint, and we won’t try
here. Note that the direct and inverse transforms differ only in the sign of the exponent.

Exercise 4.12 (Solution on p. 140.)
The differing exponent signs means that some curious results occur when we use the wrong sign.
What is F (S (f))? In other words, use the wrong exponent sign in evaluating the inverse Fourier
transform.
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Properties of the Fourier transform and some useful transform pairs are provided in the accompanying tables
(Table 4.1: Short Table of Fourier Transform Pairs and Table 4.2: Fourier Transform Properties). Especially
important among these properties is Parseval’s Theorem, which states that power computed in either
domain equals the power in the other.

/ T2 (ydi= / T s ()1 (4.36)

Of practical importance is the conjugate symmetry property: When s (t) is real-valued, the spectrum at
negative frequencies equals the complex conjugate of the spectrum at the corresponding positive frequencies.
Consequently, we need only plot the positive frequency portion of the spectrum (we can easily determine the
remainder of the spectrum).

Exercise 4.13 (Solution on p. 140.)

How many Fourier transform operations need to be applied to get the original signal back:

F (- (F(s) =s(t)?
Note that the mathematical relationships between the time domain and frequency domain versions of the
same signal are termed transforms. We are transforming (in the nontechnical meaning of the word) a
signal from one representation to another. We express Fourier transform pairs as (s(t) «— S(f)). A
signal’s time and frequency domain representations are uniquely related to each other. A signal thus “exists”
in both the time and frequency domains, with the Fourier transform bridging between the two. We can
define an information carrying signal in either the time or frequency domains; it behooves the wise engineer
to use the simpler of the two.

A common misunderstanding is that while a signal exists in both the time and frequency domains, a single
formula expressing a signal must contain only time or frequency: Both cannot be present simultaneously.
This situation mirrors what happens with complex amplitudes in circuits: As we reveal how communications
systems work and are designed, we will define signals entirely in the frequency domain without explicitly find-
ing their time domain variants. This idea is shown in Section 4.6, where we define Fourier series coefficients
according to letter to be transmitted. Thus, a signal, though most familiarly defined in the time-domain,
really can be defined equally as well (and sometimes more easily) in the frequency domain. For example,
impedances depend on frequency and the time variable cannot appear.

We will learn that finding a linear, time-invariant system’s output in the time domain can be most easily
calculated by determining the input signal’s spectrum, performing a simple calculation in the frequency
domain, and inverse transforming the result. Furthermore, understanding communications and information
processing systems requires a thorough understanding of signal structure and of how systems work in both
the time and frequency domains.

The only difficulty in calculating the Fourier transform of any signal occurs when we have periodic signals
(in either domain). Realizing that the Fourier series is a special case of the Fourier transform, we simply
calculate the Fourier series coefficients instead, and plot them along with the spectra of non-periodic signals
on the same frequency axis.

s () 5(f)
1
e_“t U.(t) m
e—altl _ 2a
42 f2 + a2

L < 2 | sin (nfA)
p(t)_{o, |t|>§ f
sin (2nWWt) )L fl< W

it S(f){o, If] > W




Table 4.1
Time Domain Frequency Domain
Linearity a181 (t) + a289 (t) a1 S (f) + asSs (f)
Conjugate Symmetry s(t)eR S(f)y=S(=f)"
Even Symmetry s(t)=s(—t) S(fy=S(-f)
Odd Symmetry s(t)=—s(—t) S(f)=-S(-f)
Scale Change s (at) iS )
o] " \a
Time Delay s(t—r1) e I2ITS(f)
Complex Modulation el2mfots (t) S(f - fo)
Amplitude Modulation by Cosine | s (t)cos (27 fot) S/ = fo) ; S+ fo)
Amplitude Modulation by Sine s (t) sin (27 fot) SU = fo) 2_ S+ o)
J
Differentiation %s (t) j2rfS(f)
7
. 1 . _
Integration [ws (o) dav WS (fHif S(0)=0
Multiplication by ¢ s (1) L dgip
ultiplication by s o dl
Area / s(t)dt S (0)
Value at Origin s(0) S(f)df
Parseval’s Theorem / s (t)[*dt / 1S (f)2df
Table 4.2

Example 4.5

In communications, a very important operation on a signal s (¢) is to amplitude modulate it.
Using this operation more as an example rather than elaborating the communications aspects here,
we want to compute the Fourier transform — the spectrum — of

(1+5(t)) cos (27 f.t)

Thus,
(14 s(t)) cos (2m fet) = cos (27 fet) + s () cos (27 fot)
't

For the spectrum of cos (27 f.t), we use the Fourier series. Its period is 1/ f., and its only nonzero
Fourier coefficients are c4; = % The second term is not periodic unless s (t) has the same period
as the sinusoid. Using Euler’s relation, the spectrum of the second term can be derived as

s(t) cos (2mfot) = /OO S (f)e?™Itdf - cos (27 fet)
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Using Euler’s relation for the cosine,

5 (t) cos (2m fot) = % / h S (f) edrFHftgs 4 % / b S (f) e?2r—fotgy

3 sU-geta ey [T s gyt

:/oo S(f_fc);s(f"’_fc)ejwatdf

— 00

Exploiting the uniqueness property of the Fourier transform, we have

F[s (t) cos (2nfut)] = S = fc);S o+ Je) (4.37)

This component of the spectrum consists of the original signal’s spectrum delayed and advanced in
frequency. The spectrum of the amplitude modulated signal is shown in Figure 4.12.

A s
- -
AX()
S(f+g) S(i—fg)
oW —fg —TgtW oW o oW ™

Figure 4.12: A signal which has a triangular shaped spectrum is shown in the top plot. Its highest
frequency — the largest frequency containing power — is W Hz. Once amplitude modulated, the resulting
spectrum has “lines” corresponding to the Fourier series components at +f. and the original triangular
spectrum shifted to components at & f. and scaled by %

Note how in this figure the signal s (t) is defined in the frequency domain. To find its time domain
representation, we simply use the inverse Fourier transform.

Exercise 4.14 (Solution on p. 140.)
What is the signal s (t) that corresponds to the spectrum shown in the upper panel of Figure 4.127
Exercise 4.15 (Solution on p. 140.)

What is the power in z (t), the amplitude-modulated signal? Try the calculation in both the time
and frequency domains.

In this example, we call the signal s (t) a baseband signal because its power is contained at low frequencies.
Signals such as speech and the Dow Jones averages are baseband signals. The baseband signal’s bandwidth
equals W, the highest frequency at which it has power. Since x (¢)’s spectrum is confined to a frequency band
not close to the origin (we assume (f. > W)), we have a bandpass signal. The bandwidth of a bandpass
signal is not its highest frequency, but the range of positive frequencies where the signal has power. Thus,
in this example, the bandwidth is 2WHz. Why a signal’s bandwidth should depend on its spectral shape
will become clear once we develop communications systems.
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4.9 Linear Time Invariant Systems"”

When we apply a periodic input to a linear, time-invariant system, the output is periodic and has Fourier
series coefficients equal to the product of the system’s frequency response and the input’s Fourier coefficients
(Filtering Periodic Signals (4.27)). The way we derived the spectrum of non-periodic signal from periodic
ones makes it clear that the same kind of result works when the input is not periodic: If x (t) serves as
the input to a linear, time-invariant system having frequency response H (f), the spectrum of
the output is X (f) H (f).

Example 4.6

Let’s use this frequency-domain input-output relationship for linear, time-invariant systems to find
a formula for the RC-circuit’s response to a pulse input. We have expressions for the input’s
spectrum and the system’s frequency response.

P(f) = e—j’ffAsmeJfA) (4.38)
1
H(f) = 1+ j2n/RC (4.39)

Thus, the output’s Fourier transform equals

(mfA) 1
mf 1+ j2rfRC

You won’t find this Fourier transform in our table, and the required integral is difficult to evaluate
as the expression stands. This situation requires cleverness and an understanding of the Fourier
transform’s properties. In particular, recall Euler’s relation for the sinusoidal term and note the
fact that multiplication by a complex exponential in the frequency domain amounts to a time delay.
Let’s momentarily make the expression for Y (f) .

Y (f) = e-insa Sl (4.40)

i iTfA _ o=imfA
p—imrasm (mfA) — imfA e’" e "

mf i2nf (4.41)
- (1 i)
jom
Consequently,
; 1
Y = (1—e 7™/ —— 4.42
(£) j27rf( € )1+j27rfRC (442)

The table of Fourier transform properties (Table 4.2) suggests thinking about this expression as a
product of terms.

1
e Multiplication by To 7 Teans integration.

Jem -
e Multiplication by the complex exponential e~727f2 means delay by A seconds in the time
domain.
e The term 1 — e 727f2 means, in the time domain, subtract the time-delayed signal from its
original.

1
e The inverse transform of the frequency response is %e_t/ RO u(t).

We can translate each of these frequency-domain products into time-domain operations in any

order we like because the order in which multiplications occur doesn’t affect the result. Let’s
start with the product of 1/j27 f (integration in the time domain) and the transfer function:
1 1

j2rf 1+ 32nfRC

15This content is available online at http://cnx.org/content/m0048/2.18/.

s (1 _ ~t/RC ) u(t) (4.43)
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The middle term in the expression for Y (f) consists of the difference of two terms: the constant
1 and the complex exponential e 7272, Because of the Fourier transform’s linearity, we simply
subtract the results.

Y (f) (1 - e—f/Rc) u(t) — (1 - e_(t_A)/RC) u(t — A) (4.44)

Note that in delaying the signal how we carefully included the unit step. The second term in this
result does not begin until ¢ = A. Thus, the waveforms shown in the Filtering Periodic Signals
example (Figure 4.10) mentioned above are exponentials. We say that the time constant of an
exponentially decaying signal equals the time it takes to decrease by 1/e of its original value. Thus,
the time-constant of the rising and falling portions of the output equal the product of the circuit’s
resistance and capacitance.

Exercise 4.16 (Solution on p. 140.)
Derive the filter’s output by considering the terms in (4.41) in the order given. Integrate last rather
than first. You should get the same answer.

In this example, we used the table extensively to find the inverse Fourier transform, relying mostly on

what multiplication by certain factors, like and e727/A

1
2 f , meant. We essentially treated multiplication
j2m

by these factors as if they were transfer functions of some fictitious circuit. The transfer function

j2nf
corresponded to a circuit that integrated, and e =727/ to one that delayed. We even implicitly interpreted
the circuit’s transfer function as the input’s spectrum! This approach to finding inverse transforms — breaking
down a complicated expression into products and sums of simple components — is the engineer’s way of
breaking down the problem into several subproblems that are much easier to solve and then gluing the results
together. Along the way we may make the system serve as the input, but in the rule Y (f) = X (f) H (f),
which term is the input and which is the transfer function is merely a notational matter (we labeled one
factor with an X and the other with an H).

4.9.1 Transfer Functions

The notion of a transfer function applies well beyond linear circuits. Although we don’t have all we need
to demonstrate the result as yet, all linear, time-invariant systems have a frequency-domain input-output
relation given by the product of the input’s Fourier transform and the system’s transfer function. Thus,
linear circuits are a special case of linear, time-invariant systems. As we tackle more sophisticated problems
in transmitting, manipulating, and receiving information, we will assume linear systems having certain
properties (transfer functions) without worrying about what circuit has the desired property. At this point,
you may be concerned that this approach is glib, and rightly so. Later we’ll show that by involving software
that we really don’t need to be concerned about constructing a transfer function from circuit elements and
op-amps.

4.9.2 Commutative Transfer Functions

Another interesting notion arises from the commutative property of multiplication (exploited in an example
above (Example 4.6)): We can arbitrarily choose an order in which to apply each product. Consider a
cascade of two linear, time-invariant systems. Because the Fourier transform of the first system’s output is
X (f) Hy (f) and it serves as the second system’s input, the cascade’s output spectrum is X (f) Hy (f) Ha (f).
Because this product also equals X (f) Ha (f) Hy (f), the cascade having the linear systems in the
opposite order yields the same result. Furthermore, the cascade acts like a single linear system,
having transfer function H; (f) Hs (f). This result applies to other configurations of linear, time-invariant
systems as well; see this Frequency Domain Problem (Problem 4.13). Engineers exploit this property by
determining what transfer function they want, then breaking it down into components arranged according to
standard configurations. Using the fact that op-amp circuits can be connected in cascade with the transfer
function equaling the product of its component’s transfer function (see this analog signal processing problem
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Tongue Oral Cavity
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Air Flow

Figure 4.13: The vocal tract is shown in cross-section. Air pressure produced by the lungs forces air
through the vocal cords that, when under tension, produce puffs of air that excite resonances in the vocal
and nasal cavities. What are not shown are the brain and the musculature that control the entire speech
production process.

(Problem 3.43)), we find a ready way of realizing designs. We now understand why op-amp implementations
of transfer functions are so important.

4.10 Modeling the Speech Signal™

The information contained in the spoken word is conveyed by the speech signal. Because we shall analyze
several speech transmission and processing schemes, we need to understand the speech signal’s structure
— what’s special about the speech signal — and how we can describe and model speech production. This
modeling effort consists of finding a system’s description of how relatively unstructured signals, arising from
simple sources, are given structure by passing them through an interconnection of systems to yield speech.
For speech and for many other situations, system choice is governed by the physics underlying the actual

16This content is available online at http://cnx.org/content/m0049/2.27/.
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Figure 4.14: The systems model for the vocal tract. The signals I (t), pr (t), and s(t) are the air
pressure provided by the lungs, the periodic pulse output provided by the vocal cords, and the speech
output respectively. Control signals from the brain are shown as entering the systems from the top.
Clearly, these come from the same source, but for modeling purposes we describe them separately since
they control different aspects of the speech signal.

production process. Because the fundamental equation of acoustics — the wave equation — applies here and
is linear, we can use linear systems in our model with a fair amount of accuracy. The naturalness of linear
system models for speech does not extend to other situations. In many cases, the underlying mathematics
governed by the physics, biology, and/or chemistry of the problem are nonlinear, leaving linear systems
models as approximations. Nonlinear models are far more difficult at the current state of knowledge to
understand, and information engineers frequently prefer linear models because they provide a greater level
of comfort, but not necessarily a sufficient level of accuracy.

Figure 4.13 shows the actual speech production system and Figure 4.14 the model speech production
system. The characteristics of the model depends on whether you are saying a vowel or a consonant. We
concentrate first on the vowel production mechanism. When the vocal cords are placed under tension by
the surrounding musculature, air pressure from the lungs causes the vocal cords to vibrate. To visualize this
effect, take a rubber band and hold it in front of your lips. If held open when you blow through it, the air
passes through more or less freely; this situation corresponds to “breathing mode.” If held tautly and close
together, blowing through the opening causes the sides of the rubber band to vibrate. This effect works best
with a wide rubber band. You can imagine what the airflow is like on the opposite side of the rubber band
or the vocal cords. Your lung power is the simple source referred to earlier; it can be modeled as a constant
supply of air pressure. The vocal cords respond to this input by vibrating, which means the output of this
system is some periodic function.

Exercise 4.17 (Solution on p. 140.)
Note that the vocal cord system takes a constant input and produces a periodic airflow that corre-
sponds to its output signal. Is this system linear or nonlinear? Justify your answer.

Singers modify vocal cord tension to change the pitch to produce the desired musical note. Vocal cord
tension is governed by a control input to the musculature; in system’s models we represent control inputs as
signals coming into the top or bottom of the system. Certainly in the case of speech and in many other cases
as well, it is the control input that carries information, impressing it on the system’s output. The change of
signal structure resulting from varying the control input enables information to be conveyed by the signal,
a process generically known as modulation. In singing, musicality is largely conveyed by pitch; in western
speech, pitch is much less important. A sentence can be read in a monotone fashion without completely
destroying the information expressed by the sentence. However, the difference between a statement and a
question is frequently expressed by pitch changes. For example, note the sound differences between “Let’s
go to the park” and “Let’s go to the park?”,

For some consonants, the vocal cords vibrate just as in vowels. For example, the so-called nasal sounds
“n” and “m” have this property. For others, the vocal cords do not produce a periodic output. Going back to
mechanism, when consonants such as “f” are produced, the vocal cords are placed under much less tension,
which results in turbulent flow. The resulting output airflow is quite erratic, so much so that we describe it
as being noise. We define noise carefully later when we delve into communication problems.

The vocal cords’ periodic output can be well described by the periodic pulse train pr (¢) as shown in
the periodic pulse signal (Figure 4.1), with T' denoting the pitch period. The spectrum of this signal (4.9)
contains harmonics of the frequency 1/T, what is known as the pitch frequency or the fundamental
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Figure 4.15: The ideal frequency response of the vocal tract as it produces the sounds “oh” and “ee”
are shown on the top left and top right, respectively. The spectral peaks are known as formants, and
are numbered consecutively from low to high frequency. The bottom plots show speech waveforms
corresponding to these sounds.

frequency F0. The primary difference between adult male and female/prepubescent speech is pitch. Before
puberty, pitch frequency for normal speech ranges between 150-400 Hz for both males and females. After
puberty, the vocal cords of males undergo a physical change, which has the effect of lowering their pitch
frequency to the range 80-160 Hz. If we could examine the vocal cord output, we could probably discern
whether the speaker was male or female. This difference is also readily apparent in the speech signal itself.

To simplify our speech modeling effort, we shall assume that the pitch period is constant. With this
simplification, we collapse the vocal-cord-lung system as a simple source that produces the periodic pulse
signal (Figure 4.14). The sound pressure signal thus produced enters the mouth behind the tongue, creates
acoustic disturbances, and exits primarily through the lips and to some extent through the nose. Speech
specialists tend to name the mouth, tongue, teeth, lips, and nasal cavity the vocal tract. The physics
governing the sound disturbances produced in the vocal tract and those of an organ pipe are quite similar.
Whereas the organ pipe has the simple physical structure of a straight tube, the cross-section of the vocal
tract “tube” varies along its length because of the positions of the tongue, teeth, and lips. It is these positions
that are controlled by the brain to produce the vowel sounds. Spreading the lips, bringing the teeth together,
and bringing the tongue toward the front portion of the roof of the mouth produces the sound “ee.” Rounding
the lips, spreading the teeth, and positioning the tongue toward the back of the oral cavity produces the
sound “oh.” These variations result in a linear, time-invariant system that has a frequency response typified
by several peaks, as shown in Figure 4.15.

These peaks are known as formants. Thus, speech signal processors would say that the sound “oh” has
a higher first formant frequency than the sound “ee,” with F2 being much higher during “ee.” F2 and F3
(the second and third formants) have more energy in “ee” than in “oh.” Rather than serving as a filter,
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rejecting high or low frequencies, the vocal tract serves to shape the spectrum of the vocal cords. In the
time domain, we have a periodic signal, the pitch, serving as the input to a linear system. We know that
the output—the speech signal we utter and that is heard by others and ourselves—will also be periodic.
Example time-domain speech signals are shown in Figure 4.15, where the periodicity is quite apparent.

Exercise 4.18 (Solution on p. 140.)
From the waveform plots shown in Figure 4.15, determine the pitch period and the pitch frequency.

Since speech signals are periodic, speech has a Fourier series representation given by a linear circuit’s response
to a periodic signal (4.27). Because the acoustics of the vocal tract are linear, we know that the spectrum of
the output equals the product of the pitch signal’s spectrum and the vocal tract’s frequency response. We
thus obtain the fundamental model of speech production.

S(f)=Pr(f)Hv (f) (4.45)
Here, Hy (f) is the transfer function of the vocal tract system. The Fourier series for the vocal cords’ output,
derived in this equation (p. 100), is
. (kA
gma S (T)
cr = Ae” T ———— 7 (446)

wk

and is plotted on the top in Figure 4.16. If we had, for example, a male speaker with about a 110 Hz
pitch (T &~ 9.1ms) saying the vowel “oh,” the spectrum of his speech predicted by our model is shown in
Figure 4.16(b).

The model spectrum idealizes the measured spectrum, and captures all the important features. The
measured spectrum certainly demonstrates what are known as pitch lines, and we realize from our model
that they are due to the vocal cord’s periodic excitation of the vocal tract. The vocal tract’s shaping of the
line spectrum is clearly evident, but difficult to discern exactly, especially at the higher frequencies. The
model transfer function for the vocal tract makes the formants much more readily evident.

Exercise 4.19 (Solution on p. 141.)
The Fourier series coefficients for speech are related to the vocal tract’s transfer function only at
the frequencies k/T', k € {1,2,...}; see previous result (4.9). Would male or female speech tend to
have a more clearly identifiable formant structure when its spectrum is computed? Consider, for
example, how the spectrum shown on the right in Figure 4.16 would change if the pitch were twice
as high (~ 300Hz).
When we speak, pitch and the vocal tract’s transfer function are not static; they change according to their
control signals to produce speech. Engineers typically display how the speech spectrum changes over time
with what is known as a spectrogram (detailed in Section 5.10), an example of which is shown in Figure 4.17.
Note how the line spectrum, which indicates how the pitch changes, is visible during the vowels, but not
during the consonants (like the ce in “Rice”).

The fundamental model for speech indicates how engineers use the physics underlying the signal gen-
eration process and exploit its structure to produce a systems model that suppresses the physics while
emphasizing how the signal is “constructed.” From everyday life, we know that speech contains a wealth of
information. We want to determine how to transmit and receive it. Efficient and effective speech transmis-
sion requires us to know the signal’s properties and its structure (as expressed by the fundamental model of
speech production). We see from Figure 4.17, for example, that speech contains significant energy from zero
frequency up to around 5 kHz.

Effective speech transmission systems must be able to cope with signals having this bandwidth. It
is interesting that one system that does not support this 5 kHz bandwidth is the telephone: Telephone
systems act like a bandpass filter passing energy between about 200 Hz and 3.2 kHz. The most important
consequence of this filtering is the removal of high frequency energy. In our sample utterance, the “ce” sound
in “Rice” contains most of its energy above 3.2 kHz; this filtering effect is why it is extremely difficult to
distinguish the sounds “s” and “f” over the telephone. Try this yourself: Call a friend and determine if they
can distinguish between the words “six” and “fix.” If you say these words in isolation so that no context
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Figure 4.16: The vocal tract’s transfer function, shown as the thin, smooth line, is superimposed on
the spectrum of actual male speech corresponding to the sound “oh.” The pitch lines corresponding to
harmonics of the pitch frequency are indicated. (a) The vocal cords’ output spectrum Pr (f). (b) The
vocal tract’s transfer function, Hy (f) and the speech spectrum.

provides a hint about which word you are saying, your friend will not be able to tell them apart. Radio does
support this bandwidth (see more about AM and FM radio systems in Section 6.11).

Efficient speech transmission systems exploit the speech signal’s special structure: What makes speech
speech? You can conjure many signals that span the same frequencies as speech—car engine sounds, violin
music, dog barks—but don’t sound at all like speech. We shall learn later that transmission of any 5 kHz
bandwidth signal requires about 80 kbps (thousands of bits per second) to transmit digitally. Speech signals
can be transmitted using less than 1 kbps because of its special structure. To reduce the “digital bandwidth”
so drastically means that engineers spent many years to develop signal processing and coding methods that
could capture the special characteristics of speech without destroying how it sounds. If you used a speech
transmission system to send a violin sound, it would arrive horribly distorted; speech transmitted the same
way would sound fine.

Exploiting the special structure of speech requires going beyond the capabilities of analog signal processing
systems. Many speech transmission systems work by finding the speaker’s pitch and the formant frequencies.
Fundamentally, we need to do more than filtering to determine the speech signal’s structure; we need to
manipulate signals in more ways than are possible with analog systems. Such flexibility is achievable (but
not without some loss) with programmable digital systems.
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Figure 4.17: Displayed is the spectrogram of the author saying “Rice University.” Blue indicates low
energy portion of the spectrum, with red indicating the most energetic portions. Below the spectrogram
is the time-domain speech signal, where the periodicities can be seen.

4.11 Frequency Domain Problems"’

Problem 4.1: Simple Fourier Series
Find the Fourier series representations of the following signals without explicitly calculating Fourier integrals.
What is the signal’s period in each case?

(a) s(t) = sin (¢) (b) 5 (t) = sin? (¢)
(c) s(t) = cos(t) + 2cos(2t) (d) s(t) = cos (2t) cos (t)
(€) s(t) = cos (107t + E) (1 + cos (2xt))  (f) s(t) given by the waveform depicted in Figure 4.18.

Problem 4.2: Fourier Series

Find the Fourier series representation for the periodic signals shown in Figure 4.19. For the third signal,
find the complex Fourier series for the triangle wave without performing the usual Fourier integrals. Hint:
How is this signal related to one for which you already have the series?

Problem 4.3: Phase Distortion
We can learn about phase distortion by returning to circuits and investigate the circuit shown in Figure 4.20.

7This content is available online at http://cnx.org/content/m10350/2.38/.
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(a) Find this filter’s transfer function.

(b) Find the magnitude and phase of this transfer function. How would you characterize this circuit?

(c) Let vy (t) be a square-wave of period T. What is the Fourier series for the output voltage?

(d) Use Matlab to find the output’s waveform for the cases T' = 0.01 and T' = 2. What value of T' delineates
the two kinds of results you found? The software in fourier2.m might be useful.

(e) Instead of the depicted circuit, the square wave is passed through a system that delays its input, which
applies a linear phase shift to the signal’s spectrum. Let the delay 7 be %. Use the transfer function
of a delay to compute using Matlab the Fourier series of the output. Show that the square wave is
indeed delayed.

Problem 4.4: Approximating Periodic Signals
Often, we want to approximate a reference signal by a somewhat simpler signal. To assess the quality of
an approximation, the most frequently used error measure is the mean-squared error. For a periodic signal

s (1), .,
= %/O (s(t) —3(t))2dt

where s (t) is the reference signal and § (¢) its approximation. One convenient way of finding approximations
for periodic signals is to truncate their Fourier series.

2wkt

K
5(t) = Z cre! T
k=—K

The point of this problem is to analyze whether this approach is the best (i.e., always minimizes the mean-
squared error).

(a) Find a frequency-domain expression for the approximation error when we use the truncated Fourier
series as the approximation.

(b) Instead of truncating the series, let’s generalize the nature of the approximation to including any set of
2K + 1 terms: We'll always include the ¢y and the negative indexed term corresponding to c;. What
selection of terms minimizes the mean-squared error? Find an expression for the mean-squared error
resulting from your choice.

(c) Find the Fourier series for the signal depicted in Figure 4.21. Use Matlab to find the truncated
approximation and best approximation involving two terms. Plot the mean-squared error as a function
of K for both approximations.

Figure 4.21

Problem 4.5: Long, Hot Days

The daily temperature is a consequence of several effects, one of them being the sun’s heating. If this were
the dominant effect, then daily temperatures would be proportional to the number of daylight hours. The
map shows that the hottest day of the year varies around the country, but does not occur on the longest day
of the year: June 20-21 (except in the desert Southwest). The plot details the average daily high temperature
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in Houston. In this problem, we want to understand the temperature component of our environment using
Fourier series and linear system theory. The file temperature.mat contains these data (daylight hours in
the variable daylight, average high temperature in high) for Houston, Texas.

(a) Let the length of day serve as the sole input to a system having an output equal to the average daily
temperature. Examining the plots of input and output, would you say that the system is linear or not?
How did you reach you conclusion?

(b) Find the first five terms (cg,...,cq4) of the Fourier series for each signal using MATLAB. Approximate
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the integral needed to calculate Fourier series coefficients by a Riemann sum as follows.

365 ‘
Z s(n)e*ﬂ””k/%ﬁ, k=0,...,4

n=0

1
Ck = 70—
" 366
(c) What is the harmonic distortion in the two signals? Exclude ¢y from this calculation.
(d) Because the harmonic distortion is small, let’s concentrate only on the first harmonic. What is the
phase shift between input and output signals, expressed both in degrees and weeks?

This phase shift is very important in developing a simple circuit model for the system that describes how
daily temperatures are related to the number of daylight hours. For example, because there is a phase shift,
we know that a simple gain (a resistive circuit) won’t work.

(e) Find the transfer function of the simplest possible linear model (a first-order filter, either lowpass or
highpass) that would describe the data. Note that the phase shift is negative: the output lags (occurs
later) than the input. Based on this observation, which first-order model fits the data and what is its
transfer function?

(f) Characterize and interpret the structure of this model. Here, let the input (length of day) be a voltage
source and the output (daily high) a voltage. Give a physical explanation for the phase shift.

Problem 4.6: Fourier Transform Pairs
Find the Fourier or inverse Fourier transform of the following.

(a) = (t) = el (b) x (t) = te~**u(t)

() X (f) = {; o

(d) z (t) = e cos (2 fot) u(t)

Problem 4.7: Duality in Fourier Transforms

“Duality” means that the Fourier transform and the inverse Fourier transform are very similar. Consequently,
the waveform s (¢) in the time domain and the spectrum s (f) have a Fourier transform and an inverse Fourier
transform, respectively, that are very similar.

(a) Calculate the Fourier transform of the signal shown below (Figure 4.23(a)).

(b) Calculate the inverse Fourier transform of the spectrum shown below (Figure 4.23(b)).

(c) How are these answers related? What is the general relationship between the Fourier transform of s ()
and the inverse transform of s (f)?

() (b)
Figure 4.23

Problem 4.8: Spectra of Pulse Sequences
Pulse sequences occur often in digital communication and in other fields as well. What are their spectral
properties?

(a) Calculate the Fourier transform of the single pulse shown below (Figure 4.24(a)).
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(b) Calculate the Fourier transform of the two-pulse sequence shown below (Figure 4.24(b)).

(c) Calculate the Fourier transform for the ten-pulse sequence shown in below (Figure 4.24(c)). You
should look for a general expression that holds for sequences of any length.

(d) Using Matlab, plot the magnitudes of the three spectra. Describe how the spectra change as the
number of repeated pulses increases.

Figure 4.24

Problem 4.9: Spectra of Digital Communication Signals

One way to represent bits with signals is shown in Figure 4.25. If the value of a bit is a “1,” it is represented
by a positive pulse of duration 7. If it is a “0,” it is represented by a negative pulse of the same duration.
To represent a sequence of bits, the appropriately chosen pulses are placed one after the other.

(a) What is the spectrum of the waveform that represents the alternating bit sequence “...01010101...7”

(b) This signal’s bandwidth is defined to be the frequency range over which 90% of the power is contained.
What is this signal’s bandwidth?

(c) Suppose the bit sequence becomes “...00110011....” Now what is the bandwidth?

Problem 4.10: Lowpass Filtering a Square Wave
Let a square wave (period T') serve as the input to a first-order lowpass system constructed as a RC filter.
We want to derive an expression for the time-domain response of the filter to this input.

(a) First, consider the response of the filter to a simple pulse, having unit amplitude and width % Derive
an expression for the filter’s output to this pulse.

(b) Noting that the square wave is a superposition of a sequence of these pulses, what is the filter’s response
to the square wave?

(c) The nature of this response should change as the relation between the square wave’s period and the
filter’s cutoff frequency change. How long must the [?‘elr’iod be so that the response does not achieve

AT

>t L

Figure 4.25
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a relatively constant value between transitions in the square wave? What is the relation of the filter’s
cutoff frequency to the square wave’s spectrum in this case?

Problem 4.11: Mathematics with Circuits

Simple circuits can implement simple mathematical operations, such as integration and differentiation. We
want to develop an active circuit (it contains an op-amp) having an output that is proportional to the
integral of its input. For example, you could use an integrator in a car to determine distance traveled from
the speedometer.

(a) What is the transfer function of an integrator?
(b) Find an op-amp circuit so that its voltage output is proportional to the integral of its input for all
signals.

Problem 4.12: Where is that sound coming from?

We determine where sound is coming from because we have two ears and a brain. Sound travels at a
relatively slow speed and our brain uses the fact that sound will arrive at one ear before the other. As shown
in Figure 4.26, a sound coming from the right arrives at the left ear 7 seconds after it arrives at the right
ear.

Once the brain finds this propagation delay, it can determine the sound direction. In an attempt to
model what the brain might do, RU signal processors want to design an optimal system that delays each
ear’s signal by some amount then adds them together. A; and A, are the delays applied to the left and right
signals respectively. The idea is to determine the delay values according to some criterion that is based on
what is measured by the two ears.

(a) What is the transfer function between the sound signal s (¢) and the processor output y (¢
(b) One way of determining the delay 7 is to choose A; and A, to maximize the power in y (
these maximum-power processing delays related to 77

)?
t). How are

Problem 4.13: Arrangements of Systems
Architecting a system of modular components means arranging them in various configurations to achieve
some overall input-output relation. For each of the configurations shown in Figure 4.27, determine the overall
transfer function between x (¢) and y (t).

The overall transfer function for the cascade (first depicted system) is particularly interesting. What
does it say about the effect of the ordering of linear, time-invariant systems in a cascade?

Problem 4.14: Filtering
i t
Let the signal s (t) = sin ()

shown in Figure 4.28. Find the expression for y (¢), the filter’s output.

be the input to a linear, time-invariant filter having the transfer function
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Problem 4.15: Circuits Filter!
A unit-amplitude pulse with duration of one second serves as the input to an RC-circuit having transfer

function o f
_ )T
H(f)= 4+ j2nf

(a) How would you categorize this transfer function: lowpass, highpass, bandpass, other?
(b) Find a circuit that corresponds to this transfer function.
(c) Find an expression for the filter’s output.

Problem 4.16: Reverberation
Reverberation corresponds to adding to a signal its delayed version.

(a) Assuming 7 represents the delay, what is the input-output relation for a reverberation system? Is
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the system linear and time-invariant? If so, find the transfer function; if not, what linearity or time-
invariance criterion does reverberation violate.

(b) A music group known as the ROwls is having trouble selling its recordings. The record company’s
engineer gets the idea of applying different delay to the low and high frequencies and adding the result
to create a new musical effect. Thus, the ROwls’ audio would be separated into two parts (one less
than the frequency fy, the other greater than fj), these would be delayed by 7; and 7, respectively,
and the resulting signals added. Draw a block diagram for this new audio processing system, showing
its various components.

(c) How does the magnitude of the system’s transfer function depend on the two delays?

Problem 4.17: Echoes in Telephone Systems

A frequently encountered problem in telephones is echo. Here, because of acoustic coupling between the ear
piece and microphone in the handset, what you hear is also sent to the person talking. That person thus
not only hears you, but also hears her own speech delayed (because of propagation delay over the telephone
network) and attenuated (the acoustic coupling gain is less than one). Furthermore, the same problem
applies to you as well: The acoustic coupling occurs in her handset as well as yours.

(a) Develop a block diagram that describes this situation.

(b) Find the transfer function between your voice and what the listener hears.

(c) Each telephone contains a system for reducing echoes using electrical means. What simple system
could null the echoes?

Problem 4.18: Effective Drug Delivery

In most patients, it takes time for the concentration of an administered drug to achieve a constant level
in the blood stream. Typically, if the drug concentration in the patient’s intravenous line is Cqu(t), the
concentration in the patient’s blood stream is C), (1 — e~%) u(t).

(a) Assuming the relationship between drug concentration in the patient’s drug and the delivered concen-
tration can be described as a linear, time-invariant system, what is the transfer function?

(b) Sometimes, the drug delivery system goes awry and delivers drugs with little control. What would the
patient’s drug concentration be if the delivered concentration were a ramp? More precisely, if it were
Catu(t)?

(c) A clever doctor wants to have the flexibility to slow down or speed up the patient’s drug concentration.
In other words, the concentration is to be C, (1 — e_bt) u(t), with b bigger or smaller than a. How
should the delivered drug concentration signal be changed to achieve this concentration profile?

Problem 4.19: Catching Speeders with Radar

RU Electronics has been contracted to design a Doppler radar system. Radar transmitters emit a signal that
bounces off any conducting object. Signal differences between what is sent and the radar return is processed
and features of interest extracted. In Doppler systems, the object’s speed along the direction of the radar
beam is the feature the design must extract. The transmitted signal is a sinusoid: x (t) = A cos (27 f.t). The
measured return signal equals B COS(27T ((fe+ADt+ 90)), where the Doppler offset frequency Af equals
10v, where v is the car’s velocity coming toward the transmitter.

(a) Design a system that uses the transmitted and return signals as inputs and produces Af.

(b) One problem with designs based on overly simplistic design goals is that they are sensitive to unmodeled
assumptions. How would you change your design, if at all, so that whether the car is going away or
toward the transmitter could be determined?

(c) Suppose two objects traveling different speeds provide returns. How would you change your design, if
at all, to accommodate multiple returns?

Problem 4.20: Demodulating an AM Signal
Let m (t) denote the signal that has been amplitude modulated.

z(t) = A(1+m (1)) sin (2 ft)
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Figure 4.29

Radio stations try to restrict the amplitude of the signal m (¢) so that it is less than one in magnitude. The
frequency f. is very large compared to the frequency content of the signal. What we are concerned about
here is not transmission, but reception.

(a) The so-called coherent demodulator simply multiplies the signal x (¢) by a sinusoid having the same
frequency as the carrier and lowpass filters the result. Analyze this receiver and show that it works.
Assume the lowpass filter is ideal.

(b) One issue in coherent reception is the phase of the sinusoid used by the receiver relative to that used
by the transmitter. Assuming that the sinusoid of the receiver has a phase ¢, how does the output
depend on ¢? What is the worst possible value for this phase?

(c) The incoherent receiver is more commonly used because of the phase sensitivity problem inherent in
coherent reception. Here, the receiver full-wave rectifies the received signal and lowpass filters the
result (again ideally). Analyze this receiver. Does its output differ from that of the coherent receiver
in a significant way?

Problem 4.21: Unusual Amplitude Modulation

We want to send a band-limited signal having the depicted spectrum (Figure 4.29(a)) using amplitude
modulation. I.B. Different suggests using the square-wave carrier shown below (Figure 4.29(b)). Well, it is
different, but his friends wonder if any technique can demodulate it.

(a) Find an expression for X (f), the Fourier transform of the modulated signal.

(b) Sketch the magnitude of X (f), being careful to label important magnitudes and frequencies.

(¢) What demodulation technique obviously works?

(d) L.B. challenges three of his friends to demodulate x () some other way. One friend suggests modulating
z (t) with cos (%), another wants to try modulating with cos () and the third thinks cos (23%) will
work. Sketch the magnitude of the Fourier transform of the signal each student’s approach produces.

Which student comes closest to recovering the original signal? Why?

Problem 4.22: Sammy Falls Asleep...

While sitting in ELEC 241 class, he falls asleep during a critical time when an AM receiver is being described.
The received signal has the form 7 (£) = A(1 + m (t)) cos (2w f.t + ¢) where the phase ¢ is unknown. The
message signal is m (t); it has a bandwidth of W Hz and a magnitude less than 1 (|m ()| < 1). The phase ¢
is unknown. The instructor drew a diagram (Figure 4.30) for a receiver on the board; Sammy slept through
the description of what the unknown systems where.

(a) What are the signals . (t) and x5 (t)?
(b) What would you put in for the unknown systems that would guarantee that the final output contained
the message regardless of the phase?

HiINT: Think of a trigonometric identity that would prove useful.

(c) Sammy may have been asleep, but he can think of a far simpler receiver. What is it?
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Problem 4.23: Jamming

Sid Richardson college decides to set up its own AM radio station KSRR. The resident electrical engineer
decides that she can choose any carrier frequency and message bandwidth for the station. A rival college
decides to jam its transmissions by transmitting a high-power signal that interferes with radios that try to
receive KSRR. The jamming signal jam (¢) is what is known as a sawtooth wave (depicted in Figure 4.31)
having a period known to KSRR’s engineer.

jam(t)
A

, : : >t
T 2T

Figure 4.31

(a) Find the spectrum of the jamming signal.

(b) Can KSRR entirely circumvent the attempt to jam it by carefully choosing its carrier frequency and
transmission bandwidth? If so, find the station’s carrier frequency and transmission bandwidth in
terms of T, the period of the jamming signal; if not, show why not.

Problem 4.24: AM Stereo

A stereophonic signal consists of a “left” signal [ (¢) and a “right” signal r (¢) that conveys sounds coming from
an orchestra’s left and right sides, respectively. To transmit these two signals simultaneously, the transmitter
first forms the sum signal s; (t) = [(¢) + r (t) and the difference signal s_ (t) = [(t) — r (t). Then, the
transmitter amplitude-modulates the difference signal with a sinusoid having frequency 2W, where W is the
bandwidth of the left and right signals. The sum signal and the modulated difference signal are added, the
sum amplitude-modulated to the radio station’s carrier frequency f., and transmitted. Assume the spectra
of the left and right signals are as shown in Figure 4.32.

L(f) A R(f)

| W>f W W>f

Figure 4.32

(a) What is the expression for the transmitted signal? Sketch its spectrum.
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(b) Show the block diagram of a stereo AM receiver that can yield the left and right signals as separate

outputs.
(c) What signal would be produced by a conventional coherent AM receiver that expects to receive a

standard AM signal conveying a message signal having bandwidth W?

Problem 4.25: Novel AM Stereo Method

A clever engineer has submitted a patent for a new method for transmitting two signals simultaneously
in the same transmission bandwidth as commercial AM radio. As shown in Figure 4.33, her approach is to
modulate the positive portion of the carrier with one signal and the negative portion with a second. In detail

Example Transmitter Waveform

Amplitude

) 1 2 3 4 5 6 7 8 9 10
Time

Figure 4.33

the two message signals my (t) and mq (t) are bandlimited to W Hz and have maximal amplitudes equal to
1. The carrier has a frequency f. much greater than W. The transmitted signal x (¢) is given by

() = A1+ amq (t))sin (2nfet) if sin(2nfet) >0
VA1 4 amy () sin (2nf.t) if sin (2w f.t) <O

In all cases, 0 < a < 1. The plot shows the transmitted signal when the messages are sinusoids:
my (t) = sin (27 fint) and mg (t) = sin (272 f,,t) where 2f,,, < W. You, as the patent examiner, must de-
termine whether the scheme meets its claims and is useful.

(a) Provide a more concise expression for the transmitted signal z (¢) than given above.

(b) What is the receiver for this scheme? It would yield both m; (t) and ma (¢) from x (t).

(c) Find the spectrum of the positive portion of the transmitted signal.

(d) Determine whether this scheme satisfies the design criteria, allowing you to grant the patent. Explain
your reasoning.

Problem 4.26: A Radical Radio Idea
An ELEC 241 student has the bright idea of using a square wave instead of a sinusoid as an AM carrier.

The transmitted signal would have the form
z(t) = A(1+m(t))sqp (t)

where the message signal m (t) would be amplitude-limited: |m (¢)| < 1
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(a) Assuming the message signal is lowpass and has a bandwidth of W Hz, what values for the square
wave’s period T are feasible. In other words, do some combinations of W and T prevent reception?

(b) Assuming reception is possible, can standard radios receive this innovative AM transmission? If so,
show how a coherent receiver could demodulate it; if not, show how the coherent receiver’s output
would be corrupted. Assume that the message bandwidth W = 5 kHz.

Problem 4.27: Secret Communication
An amplitude-modulated secret message m (t) has the following form.

r(t) = A(1+m(t)) - cos(2m(fe + fo)t)

The message signal has a bandwidth of W Hz and a magnitude less than 1 (Jm (¢)| < 1). The idea is to
offset the carrier frequency by fo Hz from standard radio carrier frequencies. Thus, “off-the-shelf” coherent
demodulators would assume the carrier frequency has f. Hz. Here, fo < W.

(a) Sketch the spectrum of the demodulated signal produced by a coherent demodulator tuned to f. Hz.
(b) Will this demodulated signal be a “scrambled” version of the original? If so, how so; if not, why not?
(c) Can you develop a receiver that can demodulate the message without knowing the offset frequency f.?

Problem 4.28: Signal Scrambling

An excited inventor announces the discovery of a way of using analog technology to render music unlistenable
without knowing the secret recovery method. The idea is to modulate the bandlimited message m (t) by a
special periodic signal s (t) that is zero during half of its period, which renders the message unlistenable and
superficially, at least, unrecoverable (Figure 4.34).

TT T
4 2
Figure 4.34

(a) What is the Fourier series for the periodic signal?

(b) What are the restrictions on the period T so that the message signal can be recovered from m (t) s (¢)?

(c) ELEC 241 students think they have “broken” the inventor’s scheme and are going to announce it to
the world. How would they recover the original message without having detailed knowledge of the
modulating signal?
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Solutions to Exercises in Chapter 4

Solution to Exercise 4.1 (p. 98)
Because of Euler’s relation,

1 . 1 .
sin (27 ft) = —e 2/t — —mi2mit (4.47)
2j 2j

1 1
Thus, ¢; = 27 c_1 = 50 and the other coefficients are zero.
J J

Solution to Exercise 4.2 (p. 102)
AA
co = - This quantity clearly corresponds to the periodic pulse signal’s average value.

Solution to Exercise 4.3 (p. 103)
Write the coefficients of the Fourier series in Cartesian form as ¢, = Ai + jBj and substitute into the
expression for the Fourier series.

> 2wkt > 2wkt
Z cel T = Z (Ag+jBr)e T

k=—o00 k=—oc0

Simplifying each term in the sum using Euler’s formula,
25kt 2kt 2kt
(Ar +jBr)e’ T = (A +jBy) (COS (?) + jsin (7TT>)

2kt . 2kt . . 2kt 2kt
= Ay, cos (T) — By, sin (T) +7 (Ak sin (T) + By, cos (T)>

We now combine terms that have the same frequency index in magnitude. Because the signal is real-valued,
the coefficients of the Fourier series have conjugate symmetry: c_x = ¢;* or A_ = Ay and B_; = —Bj.
After we add the positive-indexed and negative-indexed terms, each term in the Fourier series becomes

2kt 2kt
24, cos (7;) — 2By, sin (7;) To obtain the classic Fourier series (4.11), we must have 245 = aj and

2By, = —by.

Solution to Exercise 4.4 (p. 104)

The average of a set of numbers is the sum divided by the number of terms. Viewing signal integration as
the limit of a Riemann sum, the integral corresponds to the average.

Solution to Exercise 4.5 (p. 104)

We found that the Fourier series coefficients are given by ¢, = j%k The coeflicients are pure imaginary,
which means a; = 0. The coefficients of the sine terms are given by b, = —2Im [cx] so that
4
—, k odd
=< 7k °
0, k even
Thus, the Fourier series for the square wave is
4 2kt
sq (t) = — i 4.48
ay= 3 —osinr (4.49)
ke{1,3,... }

Solution to Exercise 4.6 (p. 106)
The rms value of a sinusoid equals its amplitude divided by /2. As a half-wave rectified sine wave is zero
during half of the period, its rms value is A/2 since the integral of the squared half-wave rectified sine wave
equals half that of a squared sinusoid.



140 CHAPTER 4. FREQUENCY DOMAIN

Solution to Exercise 4.7 (p. 107)

2> el

k=2

— .
2> el

k=1
harmonic distortion calculations. The factor of two in the numerator and denominator arises because we
need to sum over negative as well as positive frequency. Because for real-valued signals, c_; = ¢, the sums
over these frequency regions are the same. Clearly, the factors of two cancel. Total harmonic distortion
is most easily computed in the frequency domain. However, the numerator can be computed in the time
domain by noting that it equals equals the square of the signal’s rms value (after subtracting the signal’s
average value) minus the power in the first harmonic.
Solution to Exercise 4.8 (p. 108)

Total harmonic distortion in the square wave is 1 — %(%)2 = 20%.
Solution to Exercise 4.9 (p. 111)

Total harmonic distortion equals The signal’s average value, represented by cg, is ignored in

logo N

N signals directly encoded require a bandwidth of N/T. Using a binary representation, we need

7
For N = 128, the binary-encoding scheme has a factor of 128 = 0.05 smaller bandwidth. Clearly, binary
encoding is superior.

Solution to Exercise 4.10 (p. 111)

We can use N different amplitude values at only one frequency to represent the various letters.

Solution to Exercise 4.11 (p. 113)

Because the filter’s gain at zero frequency equals one, the average output values equal the respective average
input values.

Solution to Exercise 4.12 (p. 115)

Fsun= [ TS (et = / TS () PN = 5 (1)

Solution to Exercise 4.13 (p. 116)
F(F(F(F (s (1) = 5(t). We know that F (S (f)) = [%, S(f)e2fdf = [<, S(f) et -Dap —
s(—t). Therefore, two Fourier transforms applied to s(t) yields s (—t). We need two more to get us back
where we started.
Solution to Exercise 4.14 (p. 118)

The signal is the inverse Fourier transform of the triangularly shaped spectrum, and equals s(t) =

W sin (7Wt)\?

( Wi )

Solution to Exercise 4.15 (p. 118)

The result is most easily found in the spectrum’s formula: the power in the signal-related part of x (¢) is half
the power of the signal s (t).

Solution to Exercise 4.16 (p. 120)

The inverse transform of the frequency response is R—%e’t/ RCy(t). Multiplying the frequency response
by 1 — e 7272 means subtract from the original signal its time-delayed version. Delaying the frequency
response’s time-domain version by A results in %e‘“‘A)/RC u(t — A). Subtracting from the undelayed
signal yields %e*t/RC u(t) — %e*(“A)/RC u(t — A). Now we integrate this sum. Because the integral of
a sum equals the sum of the component integrals (integration is linear), we can consider each separately.
Because integration and signal-delay are linear, the integral of a delayed signal equals the delayed version of
the integral. The integral is provided in the example (4.44).

Solution to Exercise 4.17 (p. 122)

If the glottis were linear, a constant input (a zero-frequency sinusoid) should yield a constant output. The
periodic output indicates nonlinear behavior.
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Solution to Exercise 4.18 (p. 124)

In the bottom-left panel, the period is about 0.009 s, which equals a frequency of 111 Hz. The bottom-right
panel has a period of about 0.0065 s, a frequency of 154 Hz.

Solution to Exercise 4.19 (p. 124)

Because males have a lower pitch frequency, the spacing between spectral lines is smaller. This closer spacing
more accurately reveals the formant structure. Doubling the pitch frequency to 300 Hz for Figure 4.16 would
amount to removing every other spectral line.
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Chapter 5

Digital Signal Processing

5.1 Introduction to Digital Signal Processing’

Not only do we have analog signals — signals that are real- or complex-valued functions of a continuous
variable such as time or space — we can define digital ones as well. Digital signals are sequences, functions
defined only for the integers. We thus use the notation s (n) to denote a discrete-time one-dimensional signal
such as a digital music recording and s (m, n) for a discrete-“time” two-dimensional signal like a photo taken
with a digital camera. Sequences are fundamentally different than continuous-time signals. For example,
continuity has no meaning for sequences.

Despite such fundamental differences, the theory underlying digital signal processing mirrors that for ana-
log signals: Fourier transforms, linear filtering, and linear systems parallel what previous chapters described.
These similarities make it easy to understand the definitions and why we need them, but the similarities
should not be construed as “analog wannabes.” We will discover that digital signal processing is not an
approximation to analog processing. We must explicitly worry about the fidelity of converting analog signals
into digital ones. The music stored on CDs, the speech sent over digital cellular telephones, and the video
carried by digital television all evidence that analog signals can be accurately converted to digital ones and
back again.

The key reason why digital signal processing systems have a technological advantage today is the com-
puter: computations, like the Fourier transform, can be performed quickly enough to be calculated as the
signal is produced,? and programmability means that the signal processing system can be easily changed.
This flexibility has obvious appeal, and has been widely accepted in the marketplace. Programmability
means that we can perform signal processing operations impossible with analog systems (circuits). We will
also discover that digital systems enjoy an algorithmic advantage that contributes to rapid processing
speeds: Computations can be restructured in non-obvious ways to speed the processing. This flexibility
comes at a price, a consequence of how computers work. How do computers perform signal processing?

5.2 Introduction to Computer Organization®
5.2.1 Computer Architecture

To understand digital signal processing systems, we must understand a little about how computers compute.
The modern definition of a computer is an electronic device that performs calculations on data, presenting
the results to humans or other computers in a variety of (hopefully useful) ways.

IThis content is available online at http://cnx.org/content/m10781/2.3/.

2Taking a systems viewpoint for the moment, a system that produces its output as rapidly as the input arises is said to
be a real-time system. All analog systems operate in real time; digital ones that depend on a computer to perform system
computations may or may not work in real time. Clearly, we need real-time signal processing systems. Only recently have
computers become fast enough to meet real-time requirements while performing non-trivial signal processing.

3This content is available online at http://cnx.org/content/m10263/2.28/.
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CPU |« >
A
Y Memory
I/0
Interface

|Keyboard | CRT || Disks| Network|

Figure 5.1: Generic computer hardware organization.

The generic computer contains input devices (keyboard, mouse, A/D (analog-to-digital) converter, etc.),
a computational unit, and output devices (monitors, printers, D/A converters). The computational unit
is the computer’s heart, and usually consists of a central processing unit (CPU), a memory, and an
input/output (I/O) interface. What I/O devices might be present on a given computer vary greatly.

e A simple computer operates fundamentally in discrete time. Computers are clocked devices,
in which computational steps occur periodically according to ticks of a clock. This description belies
clock speed: When you say “I have a 1 GHz computer,” you mean that your computer takes 1 nanosec-
ond to perform each step. That is incredibly fast! A “step” does not, unfortunately, necessarily mean
a computation like an addition; computers break such computations down into several stages, which
means that the clock speed need not express the computational speed. Computational speed is ex-
pressed in units of millions of instructions/second (Mips). Your 1 GHz computer (clock speed) may
have a computational speed of 200 Mips.

e Computers perform integer (discrete-valued) computations. Computer calculations can be
numeric (obeying the laws of arithmetic), logical (obeying the laws of an algebra), or symbolic (obeying
any law you like).* Each computer instruction that performs an elementary numeric calculation —
an addition, a multiplication, or a division — does so only for integers. The sum or product of two
integers is also an integer, but the quotient of two integers is likely to not be an integer. How does
a computer deal with numbers that have digits to the right of the decimal point? This problem is
addressed by using the so-called floating-point representation of real numbers. At its heart, however,
this representation relies on integer-valued computations.

5.2.2 Representing Numbers

Focusing on numbers, all numbers can represented by the positional notation system.® The b-ary po-
sitional representation system uses the position of digits ranging from 0 to b-1 to denote a number. The
quantity b is known as the base of the number system. Mathematically, positional systems represent the
positive integer n as

n=>Y db* , dye{0,....b—1} (5.1)
k=0
and we succinctly express n in base-b as ny, = dydy_1 . . . do. The number 25 in base-10 equals 2x10*+5x10°,

so that the digits representing this number are dy = 5, d; = 2, and all other dy equal zero. This same
number in binary (base-2) equals 11001 (1 x 2% 4+ 1 x 23 40 x 22 40 x 2! + 1 x 2°) and 19 in hexadecimal

4 An example of a symbolic computation is sorting a list of names.

5 Alternative number representation systems exist. For example, we could use stick figure counting or Roman numerals.
These were useful in ancient times, but very limiting when it comes to arithmetic calculations: ever tried to divide two Roman
numerals?
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(base-16). Fractions between zero and one are represented the same way.

-1
f=Y dbt , diefo,....b—1} (5.2)

k=—o0

All numbers can be represented by their sign, integer and fractional parts. Complex numbers can be thought
of as two real numbers that obey special rules to manipulate them.

Humans use base-10, commonly assumed to be due to us having ten fingers. Digital computers use the
base-2 or binary number representation, each digit of which is known as a bit (binary digit).

07/dp| ds| da d3|d2[d1|do.
unsigned 8-bit integer
s | dg| d5|dg d3|d2[dqdp|
signed 8-bit integer

si s |
exponent mantissa
floating point

Figure 5.2: The various ways numbers are represented in binary are illustrated. The number of bytes
for the exponent and mantissa components of floating point numbers varies.

Here, each bit is represented as a voltage that is either “high” or “low,” thereby representing “1” or “0,”
respectively. To represent signed values, we tack on a special bit—the sign bit—to express the sign. The
computer’s memory consists of an ordered sequence of bytes, a collection of eight bits. A byte can therefore
represent an unsigned number ranging from 0 to 255. If we take one of the bits and make it the sign bit, we
can make the same byte to represent numbers ranging from —128 to 127. But a computer cannot represent
all possible real numbers. The fault is not with the binary number system; rather having only a finite number
of bytes is the problem. While a gigabyte of memory may seem to be a lot, it takes an infinite number of bits
to represent w. Since we want to store many numbers in a computer’s memory, we are restricted to those
that have a finite binary representation. Large integers can be represented by an ordered sequence of bytes.
Common lengths, usually expressed in terms of the number of bits, are 16, 32, and 64. Thus, an unsigned
32-bit number can represent integers ranging between 0 and 232 — 1 (4,294,967,295), a number almost big
enough to enumerate every human in the world!®

Exercise 5.1 (Solution on p. 191.)
For both 32-bit and 64-bit integer representations, what are the largest numbers that can be rep-
resented if a sign bit must also be included.

While this system represents integers well, how about numbers having nonzero digits to the right of the
decimal point? In other words, how are numbers that have fractional parts represented? For such numbers,
the binary representation system is used, but with a little more complexity. The floating-point system
uses a number of bytes—typically 4 or 8—to represent the number, but with one byte (sometimes two
bytes) reserved to represent the exponent e of a power-of-two multiplier for the number—the mantissa
m—expressed by the remaining bytes.

x =m2° (5.3)

The mantissa is usually taken to be a binary fraction having a magnitude in the range [%, 1), which means
that the binary representation is such that d_; = 1.7 The number zero is an exception to this rule, and it is

6You need one more bit to do that.
7In some computers, this normalization is taken to an extreme: the leading binary digit is not explicitly expressed, providing
an extra bit to represent the mantissa a little more accurately. This convention is known as the hidden-ones notation.
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the only floating point number having a zero fraction. The sign of the mantissa represents the sign of the
number and the exponent can be a signed integer.

A computer’s representation of integers is either perfect or only approximate, the latter situation occurring
when the integer exceeds the range of numbers that a limited set of bytes can represent. Floating point
representations have similar representation problems: if the number = can be multiplied/divided by enough
powers of two to yield a fraction lying between 1/2 and 1 that has a finite binary-fraction representation, the
number is represented exactly in floating point. Otherwise, we can only represent the number approximately,
not catastrophically in error as with integers. For example, the number 2.5 equals 0.625 x 22, the fractional
part of which has an exact binary representation.® However, the number 2.6 does not have an exact binary
representation, and only be represented approximately in floating point. In single precision floating point
numbers, which require 32 bits (one byte for the exponent and the remaining 24 bits for the mantissa), the
number “2.6” will be represented as 2.600000079 . ... Note that this approximation has a much longer decimal
expansion. This level of accuracy may not suffice in numerical calculations. Double precision floating
point numbers consume 8 bytes, and quadruple precision 16 bytes. The more bits used in the mantissa,
the greater the accuracy. This increasing accuracy means that more numbers can be represented exactly, but
there are always some that cannot. Such inexact numbers have an infinite binary representation.” Realizing
that real numbers can be only represented approximately is quite important, and underlies the entire field
of numerical analysis, which seeks to predict the numerical accuracy of any computation.

Exercise 5.2 (Solution on p. 191.)
What are the largest and smallest numbers that can be represented in 32-bit floating point? in
64-bit floating point that has sixteen bits allocated to the exponent? Note that both exponent and
mantissa require a sign bit.

So long as the integers aren’t too large, they can be represented exactly in a computer using the binary
positional notation. Electronic circuits that make up the physical computer can add and subtract integers
without error. (This statement isn’t quite true; when does addition cause problems?)

5.2.3 Computer Arithmetic and Logic

The binary addition and multiplication tables are

0+0=0 0x0=0
0+1=1 0x1=0
1+41=10 1x1=1
1+40=1 1x0=0

(5.4)

Note that if carries are ignored,'® subtraction of two single-digit binary numbers yields the same bit as
addition. Computers use high and low voltage values to express a bit, and an array of such voltages express
numbers akin to positional notation. Logic circuits perform arithmetic operations.

Exercise 5.3 (Solution on p. 191.)
Add twenty-five and seven in base-2. Note the carries that might occur. Why is the result “nice?”

The variables of logic indicate truth or falsehood. A() B, the AND of A and B, represents a statement
that both A and B must be true for the statement to be true. You use this kind of statement to tell search
engines that you want to restrict hits to cases where both of the events A and B occur. A|J B, the OR of
A and B, yields a value of truth if either is true. Note that if we represent truth by a “1” and falsehood
by a “0,” binary multiplication corresponds to AND and addition (ignoring carries) to XOR.
XOR, the exclusive or operator, equals the union of A|JB and A() B. The Irish mathematician George

8See if you can find this representation.

9Note that there will always be numbers that have an infinite representation in any chosen positional system. The choice
of base defines which do and which don’t. If you were thinking that base-10 numbers would solve this inaccuracy, note that
1/3 = 0.333333.... has an infinite representation in decimal (and binary for that matter), but has finite representation in base-3.

10A carry means that a computation performed at a given position affects other positions as well. Here, 1 + 1 = 10 is an
example of a computation that involves a carry.
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Boole!! discovered this equivalence in the mid-nineteenth century. It laid the foundation for what we now
call Boolean algebra, which expresses as equations logical statements. More importantly, any computer
using base-2 representations and arithmetic can also easily evaluate logical statements. This fact makes an
integer-based computational device much more powerful than might be apparent.

5.3 The Sampling Theorem™
5.3.1 Analog-to-Digital Conversion

Because of the way computers are organized, signal must be represented by a finite number of bytes. This
restriction means that both the time axis and the amplitude axis must be quantized: They must each be
a multiple of the integers.'® Quite surprisingly, the Sampling Theorem allows us to quantize the time axis
without error for some signals. The signals that can be sampled without introducing error are interesting,
and as described in the next section, we can make a signal “samplable” by filtering. In contrast, no one
has found a way of performing the amplitude quantization step without introducing an unrecoverable error.
Thus, a signal’s value can no longer be any real number. Signals processed by digital computers must
be discrete-valued: their values must be proportional to the integers. Consequently, analog-to-digital
conversion introduces error.

5.3.2 The Sampling Theorem

Digital transmission of information and digital signal processing all require signals to first be “acquired” by
a computer. One of the most amazing and useful results in electrical engineering is that signals can be
converted from a function of time into a sequence of numbers without error: We can convert the numbers
back into the signal with (theoretically) no error. Harold Nyquist, a Bell Laboratories engineer, first derived
this result, known as the Sampling Theorem, in the 1920s. It found no real application back then. Claude
Shannon, also at Bell Laboratories, revived the result once computers were made public after World War II.

The sampled version of the analog signal s (¢) is s (nTs), with Ty known as the sampling interval.
Clearly, the value of the original signal at the sampling times is preserved; the issue is how the signal
values between the samples can be reconstructed since they are lost in the sampling process. To char-
acterize sampling, we approximate it as the product z (¢t) = s(t) Pr, (t), with Pr, (¢) being the periodic
pulse signal. The resulting signal, as shown in Figure 5.3, has nonzero values only during the time intervals
(nTy — £,nTs+%5),ne{...,—1,0,1,...}. For our purposes here, we center the periodic pulse signal about
the origin so that its Fourier series coefficients are real (the signal is even).

0 j2mkt
pr, ()= Y e T (5.5)
k=—o0
where
sin (%)
= "/ 5.6
Ck 7k (5.6)

If the properties of s (¢) and the periodic pulse signal are chosen properly, we can recover s (t) from z (¢) by
filtering.

To understand how signal values between the samples can be “filled” in, we need to calculate the sampled
signal’s spectrum. Using the Fourier series representation of the periodic sampling signal,

z(t) = Z ckejz%rskts(t) (5.7)

k=—o0

Hhttp://www-groups.dcs.st-and.ac.uk/ history/Biographies/Boole.html
12This content is available online at http://cnx.org/content/m0050/2.19/.
13We assume that we do not use floating-point A /D converters.
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Figure 5.3: The waveform of an example signal is shown in the top plot and its sampled version in the
bottom.

Considering each term in the sum separately, we need to know the spectrum of the product of the complex
exponential and the signal. Evaluating this transform directly is quite easy.

s j2nkt o ol -
/ s(t)e T e—i2wftgy — / stye (v T5>tdt:S<f—1]f> (5.8)

— 0o — 00

Thus, the spectrum of the sampled signal consists of weighted (by the coefficients ¢;) and delayed versions
of the signal’s spectrum (Figure 5.4).

X(f)= i xS (f - ;f) (5.9)

k=—o00

In general, the terms in this sum overlap each other in the frequency domain, rendering recovery of the
original signal impossible. This unpleasant phenomenon is known as aliasing. If, however, we satisfy two
conditions:

e The signal s (¢) is bandlimited—has power in a restricted frequency range—to W Hz, and
e the sampling interval T is small enough so that the individual components in the sum do not overlap—
T, < 1/2W,

aliasing will not occur. In this delightful case, we can recover the original signal by lowpass filtering x (¢)
with a filter having a cutoff frequency equal to W Hz. These two conditions ensure the ability to recover a
bandlimited signal from its sampled version: We thus have the Sampling Theorem.

Exercise 5.4 (Solution on p. 191.)
The Sampling Theorem (as stated) does not mention the pulse width A. What is the effect of this
parameter on our ability to recover a signal from its samples (assuming the Sampling Theorem’s
two conditions are met)?

1
The frequency T known today as the Nyquist frequency and the Shannon sampling frequency,

corresponds to the highest frequency at which a signal can contain energy and remain compatible with
the Sampling Theorem. High-quality sampling systems ensure that no aliasing occurs by unceremoniously
lowpass filtering the signal (cutoff frequency being slightly lower than the Nyquist frequency) before sampling.
Such systems therefore vary the anti-aliasing filter’s cutoff frequency as the sampling rate varies. Because
such quality features cost money, many sound cards do not have anti-aliasing filters or, for that matter,
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Figure 5.4: The spectrum of some bandlimited (to W Hz) signal is shown in the top plot. If the
sampling interval T is chosen too large relative to the bandwidth W, aliasing will occur. In the bottom
plot, the sampling interval is chosen sufficiently small to avoid aliasing. Note that if the signal were not
bandlimited, the component spectra would always overlap.

post-sampling filters. They sample at high frequencies, 44.1 kHz for example, and hope the signal contains
no frequencies above the Nyquist frequency (22.05 kHz in our example). If, however, the signal contains
frequencies beyond the sound card’s Nyquist frequency, the resulting aliasing can be impossible to remove.

Exercise 5.5 (Solution on p. 191.)
To gain a better appreciation of aliasing, sketch the spectrum of a sampled square wave. For

simplicity consider only the spectral repetitions centered at T 0, T Let the sampling interval

S S
T be 1; consider two values for the square wave’s period: 3.5 and 4. Note in particular where the
spectral lines go as the period decreases; some will move to the left and some to the right. What
property characterizes the ones going the same direction?

If we satisfy the Sampling Theorem’s conditions, the signal will change only slightly during each pulse. As
we narrow the pulse, making A smaller and smaller, the nonzero values of the signal s (t) pr, (t) will simply
be s (nTy), the signal’s samples. If indeed the Nyquist frequency equals the signal’s highest frequency, at
least two samples will occur within the period of the signal’s highest frequency sinusoid. In these ways, the
sampling signal captures the sampled signal’s temporal variations in a way that leaves all the original signal’s
structure intact.

Exercise 5.6 (Solution on p. 191.)
What is the simplest bandlimited signal? Using this signal, convince yourself that less than two
samples/period will not suffice to specify it. If the sampling rate T is not high enough, what signal

would your resulting under-sampled signal become? ’
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5.4 Amplitude Quantization™

The Sampling Theorem says that if we sample a bandlimited signal s (¢) fast enough, it can be recovered with-
out error from its samples s (nTs), n € {...,—1,0,1,...}. Sampling is only the first phase of acquiring data
into a computer: Computational processing further requires that the samples be quantized: analog values
are converted into digital form. In short, we will have performed analog-to-digital (A /D) conversion.

signal amplitude-quantized

15 and sampled signal
_— J0®
| [\ s o a»
| ) 02514 & .
\‘ a\ 0 © o0 § > o 00 00 @® @
0 ‘\ \/ o6 99 O@O 3 0O 00 ©® am
\ -0.25 0 Y %o i
| T o a o
| 05— 1
\/ [o¢]
\ 0.752
oL o

Figure 5.5: A three-bit A/D converter assigns voltage in the range [—1,1] to one of eight integers
between 0 and 7. For example, all inputs having values lying between 0.5 and 0.75 are assigned the
integer value six and, upon conversion back to an analog value, they all become 0.625. The width of a

2
single quantization interval A equals ok The bottom panel shows a signal going through the analog-
to-digital converter, where B is the number of bits used in the A/D conversion process (3 in the case
depicted here). First it is sampled, then amplitude-quantized to three bits. Note how the sampled signal
waveform becomes distorted after amplitude quantization. For example the two signal values between 0.5

and 0.75 become 0.625. This distortion is irreversible; it can be reduced (but not eliminated) by using
more bits in the A/D converter.

A phenomenon reminiscent of the errors incurred in representing numbers on a computer prevents signal
amplitudes from being converted with no error into a binary number representation. In analog-to-digital
conversion, the signal is assumed to lie within a predefined range. Assuming we can scale the signal without
affecting the information it expresses, we’ll define this range to be [—1, 1]. Furthermore, the A/D converter
assigns amplitude values in this range to a set of integers. A B-bit converter produces one of the integers
{0, 1,...,28 — 1} for each sampled input. Figure 5.5 shows how a three-bit A/D converter assigns input
values to the integers. We define a quantization interval to be the range of values assigned to the same

integer. Thus, for our example three-bit A/D converter, the quantization interval A is 0.25; in general, it is
2

2B”
Exercise 5.7 (Solution on p. 191.)

Recalling the plot of average daily highs in this frequency domain problem (Problem 4.5), why is
this plot so jagged? Interpret this effect in terms of analog-to-digital conversion.

Because values lying anywhere within a quantization interval are assigned the same value for computer
processing, the original amplitude value cannot be recovered without error. Typically, the D/A

14 This content is available online at http://cnx.org/content/m0051/2.22/.
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converter, the device that converts integers to amplitudes, assigns an amplitude equal to the value lying
halfway in the quantization interval. The integer 6 would be assigned to the amplitude 0.625 in this scheme.
The error introduced by converting a signal from analog to digital form by sampling and amplitude quanti-
zation then back again would be half the quantization interval for each amplitude value. Thus, the so-called
A /D error equals half the width of a quantization interval: 2% As we have fixed the input-amplitude range,
the more bits available in the A/D converter, the smaller the quantization error.

To analyze the amplitude quantization error more deeply, we need to compute the signal-to-noise ratio,
which equals the ratio of the signal power and the quantization error power. Assuming the signal is a

2
sinusoid, the signal power is the square of the rms amplitude: power (s) = (%) = % The illustration

(Figure 5.6) details a single quantization interval. Its width is A and the quantization error is denoted by

s(nTg) Q[s(nTg)]

Figure 5.6: A single quantization interval is shown, along with a typical signal’s value before amplitude
quantization s (nTs) and after Q (s (nT%)). € denotes the error thus incurred.

€. To find the power in the quantization error, we note that no matter into which quantization interval the
signal’s value falls, the error will have the same characteristics. To calculate the rms value, we must square
the error and average it over the interval.

N
rms () = —/ €2 de
A J ns
) (5.10)

A2 2

3

2
Since the quantization interval width for a B-bit converter equals — = 2~(F~1) we find that the signal-to-

2B
noise ratio for the analog-to-digital conversion process equals
1
_ 2 _ 35 _
12

Thus, every bit increase in the A /D converter yields a 6 dB increase in the signal-to-noise ratio. The constant
term 10log;y 1.5 equals 1.76.
Exercise 5.8 (Solution on p. 191.)
This derivation assumed the signal’s amplitude lay in the range [—1, 1]. What would the amplitude
quantization signal-to-noise ratio be if it lay in the range [— A, A]?
Exercise 5.9 (Solution on p. 191.)
How many bits would be required in the A/D converter to ensure that the maximum amplitude
quantization error was less than 60 db smaller than the signal’s peak value?
Exercise 5.10 (Solution on p. 191.)
Music on a CD is stored to 16-bit accuracy. To what signal-to-noise ratio does this correspond?
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Once we have acquired signals with an A /D converter, we can process them using digital hardware or software.
It can be shown that if the computer processing is linear, the result of sampling, computer processing, and
un-sampling is equivalent to some analog linear system. Why go to all the bother if the same function can
be accomplished using analog techniques? Knowing when digital processing excels and when it does not is
an important issue.

5.5 Discrete-Time Signals and Systems”

Mathematically, analog signals are functions having as their independent variables continuous quantities,
such as space and time. Discrete-time signals are functions defined on the integers; they are sequences. As
with analog signals, we seek ways of decomposing discrete-time signals into simpler components. Because
this approach leads to a better understanding of signal structure, we can exploit that structure to represent
information (create ways of representing information with signals) and to extract information (retrieve the
information thus represented). For symbolic-valued signals, the approach is different: We develop a common
representation of all symbolic-valued signals so that we can embody the information they contain in a
unified way. From an information representation perspective, the most important issue becomes, for both
real-valued and symbolic-valued signals, efficiency: what is the most parsimonious and compact way to
represent information so that it can be extracted later.

5.5.1 Real- and Complex-valued Signals

A discrete-time signal is represented symbolically as s (n), where n = {...,-1,0,1,...}.

Sn

R P—

Figure 5.7: The discrete-time cosine signal is plotted as a stem plot. Can you find the formula for this
signal?

We usually draw discrete-time signals as stem plots to emphasize the fact they are functions defined only on
the integers. We can delay a discrete-time signal by an integer just as with analog ones. A signal delayed
by m samples has the expression s (n —m).

5.5.2 Complex Exponentials

The most important signal is, of course, the complex exponential sequence.
s(n) = eI (5.12)

Note that the frequency variable f is dimensionless and that adding an integer to the frequency of the
discrete-time complex exponential has no effect on the signal’s value.

6]271'(f+m)n _ 6]27Tf’ﬂej27Tm’ﬂ

_ it (5.13)

This derivation follows because the complex exponential evaluated at an integer multiple of 27 equals one.
Thus, we need only consider frequency to have a value in some unit-length interval.

15This content is available online at http://cnx.org/content/m10342/2.15/.
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5.5.3 Sinusoids

Discrete-time sinusoids have the obvious form s(n) = Acos (27 fn + ¢). As opposed to analog complex
exponentials and sinusoids that can have their frequencies be any real value, frequencies of their discrete-
time counterparts yield unique waveforms only when f lies in the interval (—%, %} This choice of frequency
interval is arbitrary; we can also choose the frequency to lie in the interval [0, 1). How to choose a unit-length
interval for a sinusoid’s frequency will become evident later.

5.5.4 Unit Sample

The second-most important discrete-time signal is the unit sample, which is defined to be

§(n) = {1 n=0 (5.14)

0 otherwise

dn

Figure 5.8: The unit sample.

Examination of a discrete-time signal’s plot, like that of the cosine signal shown in Figure 5.7, reveals that
all signals consist of a sequence of delayed and scaled unit samples. Because the value of a sequence at
each integer m is denoted by s (m) and the unit sample delayed to occur at m is written 6 (n —m), we can
decompose any signal as a sum of unit samples delayed to the appropriate location and scaled by the signal

value.
oo

s(n)= > s(m)d(n—m) (5.15)

This kind of decomposition is unique to discrete-time signals, and will prove useful subsequently.
5.5.5 Unit Step

The unit step in discrete-time is well-defined at the origin, as opposed to the situation with analog signals.

1 n>0
u(n):{o h <0 (5.16)

5.5.6 Symbolic Signals

An interesting aspect of discrete-time signals is that their values do not need to be real numbers. We do
have real-valued discrete-time signals like the sinusoid, but we also have signals that denote the sequence of
characters typed on the keyboard. Such characters certainly aren’t real numbers, and as a collection of pos-
sible signal values, they have little mathematical structure other than that they are members of a set. More
formally, each element of the symbolic-valued signal s(n) takes on one of the values {ay,...,ax} which
comprise the alphabet A. This technical terminology does not mean we restrict symbols to being mem-
bers of the English or Greek alphabet. They could represent keyboard characters, bytes (8-bit quantities),
integers that convey daily temperature. Whether controlled by software or not, discrete-time systems are
ultimately constructed from digital circuits, which consist entirely of analog circuit elements. Furthermore,
the transmission and reception of discrete-time signals, like e-mail, is accomplished with analog signals and
systems. Understanding how discrete-time and analog signals and systems intertwine is perhaps the main
goal of this course.
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5.5.7 Discrete-Time Systems

Discrete-time systems can act on discrete-time signals in ways similar to those found in analog signals and
systems. Because of the role of software in discrete-time systems, many more different systems can be
envisioned and “constructed” with programs than can be with analog signals. In fact, a special class of
analog signals can be converted into discrete-time signals, processed with software, and converted back into
an analog signal, all without the incursion of error. For such signals, systems can be easily produced in
software, with equivalent analog realizations difficult, if not impossible, to design.

5.6 Discrete-Time Fourier Transform (DTFT)"
The Fourier transform of the discrete-time signal s (n) is defined to be

oo

S (ej%f) = Z s (n) e I2mfn (5.17)

n=—oo

Frequency here has no units. As should be expected, this definition is linear, with the transform of a
sum of signals equaling the sum of their transforms. Real-valued signals have conjugate-symmetric spectra:
S (c=72f) = §* (3277,

Exercise 5.11 (Solution on p. 192.)

A special property of the discrete-time Fourier transform is that it is periodic with period one:

S (eﬂ”(fﬂ)) =S5 (ej2”f). Derive this property from the definition of the DTFT.

Because of this periodicity, we need only plot the spectrum over one period to understand completely the
spectrum’s structure; typically, we plot the spectrum over the frequency range [—%, %] When the signal
is real-valued, we can further simplify our plotting chores by showing the spectrum only over [O, %], the
spectrum at negative frequencies can be derived from positive-frequency spectral values.

When we obtain the discrete-time signal via sampling an analog signal, the Nyquist frequency (p. 148)

corresponds to the discrete-time frequency % To show this, note that a sinusoid having a frequency equal

1
to the Nyquist frequency 5T has a sampled waveform that equals

S

cos (27rlnTs) — cos (wn) = (=1)"

2T's
.2mn R
The exponential in the DTFT at frequency % equals e 772 = e 7™ = (—1)", meaning that discrete-time
frequency equals analog frequency multiplied by the sampling interval
fp = faT; (5.18)

fp and f,4 represent discrete-time and analog frequency variables, respectively. Figure 5.4 inspires another
way of deriving this result. As the duration of each pulse in the periodic sampling signal pr, (¢) narrows, the
amplitudes of the signal’s spectral repetitions, which are governed by the Fourier series coefficients (4.10) of
pr, (t), become increasingly equal. Examination of the periodic pulse signal (Figure 4.1) reveals that as A

decreases, the value of ¢g, the largest Fourier coefficient, decreases to zero: |co| = . Thus, to maintain

S
a mathematically viable Sampling Theorem, the amplitude A must increase as N becoming infinitely large

as the pulse duration decreases. Practical systems use a small value of A, say 0.1 - T and use amplifiers to

1
rescale the signal. Thus, the sampled signal’s spectrum becomes periodic with period T Thus, the Nyquist
S

1
frequency 5T

corresponds to the frequency 5
S

16 This content is available online at http://cnx.org/content/m10247/2.31/.
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Example 5.1

Let’s compute the discrete-time Fourier transform of the exponentially decaying sequence s (n) =
a™u(n), where u(n) is the unit-step sequence. Simply plugging the signal’s expression into the
Fourier transform formula,

S (ej%f) = Z a” u(n)e_ﬂ”f"
t (5.19)
= Z (aeiﬂﬂf)n
n=0
This sum is a special case of the geometric series.
[ee]
1
n = — 1 .2
Sat= ol < (5.20)
n=0
Let a = ae 72"/, As long as |a| < 1, |a| < 1. We find our Fourier transform to be
S () = _ la| <1 (5.21)
1 —ae—i27f’ ’
Using Euler’s relation, we can express the magnitude and phase of this spectrum.
1S (e | = (5.22)

\/(1 —acos (27f))* + a2sin® (27 f)

P asin (27 f)
£8 (e*™) = —tan (1 Sp— (27rf)) (5.23)
No matter what value of a we choose, the above formulae clearly demonstrate the periodic nature

of the spectra of discrete-time signals. Figure 5.9 shows indeed that the spectrum is a periodic
function. We need only consider the spectrum between —% and % to unambiguously define it.
When a > 0, we have a lowpass spectrum—the spectrum diminishes as frequency increases from 0

to %—with increasing a leading to a greater low frequency content; for a < 0, we have a highpass
spectrum (Figure 5.10).

Example 5.2
Analogous to the analog pulse signal, let’s find the spectrum of the length-/N pulse sequence.

1, f0<n<N-1
sy=4 " T ="= (5.24)
0, otherwise
The Fourier transform of this sequence has the form of a truncated geometric series.
N—1
S () =Y emimin (5.25)
n=0

For the so-called finite geometric series, we know that

N4ng—1 N
1—
> at=am f‘a (5.26)

n=no

for all values of a.

Exercise 5.12 (Solution on p. 192.)
Derive this formula for the finite geometric series sum. The “trick” is to consider the difference
between the series’ sum and the sum of the series multiplied by a.
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A is(ei2 )
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Figure 5.9: The spectrum of the exponential signal (a = 0.5) is shown over the frequency range [—2, 2],
clearly demonstrating the periodicity of all discrete-time spectra. The angle has units of degrees.

Spectral Magnitude (dB)

2

o 45

> =-05

s 0 p f
0.5

2 45{\ a=05

< a=09

-90

Figure 5.10: The spectra of several exponential signals are shown. What is the apparent relationship
between the spectra for ¢ = 0.5 and a = —0.57

Applying this result yields (Figure 5.11)

. 1 — e J2nfN
2
S (e7m1) = 1_ e—J2nf

_ emimfV-1) Slsflln(? 7{ JJC\)[ ) (5.27)
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sin (Nz)
sin (z) ’

function dsinc (). Thus, our transform can be concisely expressed as S (e/2™f) = e=/™F(N=Udsinc (n f).
The discrete-time pulse’s spectrum contains many ripples, the number of which increase with N, the pulse’s

duration.
A
10 \/\M
0.5

180A

N N N N
NI NANAVIN

-180

The ratio of sine functions has the generic form of which is known as the discrete-time sinc

Spectral Magnitude
(6]

Angle (degrees)
o

Figure 5.11: The spectrum of a length-ten pulse is shown. Can you explain the rather complicated
appearance of the phase?

The inverse discrete-time Fourier transform is easily derived from the following relationship:
1 .
/2 efj27rfmej27rfn df _ 1; ifm=n
-1 0, ifm#mn
=d(m—n) (5.28)

Therefore, we find that

/5 S(ejgﬂf j27rf’ﬂdf /

Z s (m) eijwfmejZﬂ'fndf

1
2

=

_ ® —i2nf(m—n) (5.29)
R /; ¥
=s(n)
The Fourier transform pairs in discrete-time are
S (ej%f) = i s(n)ei2m/n
R (5.30)

s(n) = /:S (ejg’rf) eI2mIn qf
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The properties of the discrete-time Fourier transform mirror those of the analog Fourier transform. The
DTFT properties table!” shows similarities and differences. One important common property is Parseval’s

Theorem.
[e'e] 1

> |s(n)|2:/2 1S (e7271) | df (5.31)

1
n=-—o0 2

To show this important property, we simply substitute the Fourier transform expression into the frequency-
domain expression for power.

/_ 1S () [*df = /_ (Zs (n) e—ﬂﬂf“) (Zs* (n)eﬂ”f’”> df

=Y syt ) [ ey

_1
2

(5.32)

Using the orthogonality relation (5.28), the integral equals ¢ (m — n), where § (n) is the unit sample (Fig-
ure 5.8). Thus, the double sum collapses into a single sum because nonzero values occur only when n = m,
giving Parseval’s Theorem as a result. We term ), s? (n) the energy in the discrete-time signal s (n) in spite
of the fact that discrete-time signals don’t consume (or produce for that matter) energy. This terminology
is a carry-over from the analog world.

Exercise 5.13 (Solution on p. 192.)
Suppose we obtained our discrete-time signal from values of the product s (¢)pr, (t), where the
duration of the component pulses in pr, (¢) is A. How is the discrete-time signal energy related to
the total energy contained in s (¢)? Assume the signal is bandlimited and that the sampling rate
was chosen appropriate to the Sampling Theorem’s conditions.

The following table (5.1) summarizes the properties of the discrete-time Fourier transform. Note the
similarities and differences with the corresponding properties of the Fourier transform of analog signals
(page 117). The notable differences are the scaling properties that, for analog signals, are expressed as s(at).
For discrete-time signals, the scaling factor a must be an integer and the resulting spectrum must be periodic
with period 1. For example, the spectrum of z(n) = s(n/2), n even, z(n) = 0, n odd, is derived as follows.

Z s(n/2)e‘j2ﬂf" = Zs(m)e_ﬂ”f'%” [n = 2m]

n even m

=9 (ej27r2f)

Exercise 5.14 (Solution on p. 192)
Note that the spectrum of this stretched-signal example has a period equal to 1/2 and that the
spectrum is a “compressed” version of s(n)’s spectrum. Suppose that this stretched signal were
passed through a lowpass filter having a cutoff frequency of 1/4. What effect would this filtering
have on the stretched signal? How would you interpret this effect?

5.7 Discrete Fourier Transforms (DFT)"

The discrete-time Fourier transform (and the continuous-time transform as well) can be evaluated when we
have an analytic expression for the signal. Suppose we just have a signal, such as the speech signal used in the
previous chapter, for which there is no formula. How then would you compute the spectrum? For example,
how did we compute a spectrogram such as the one shown in the speech signal example (Figure 4.17)? The
Discrete Fourier Transform allows the computation of spectra from discrete-time data. While in discrete-
time we can exactly calculate spectra, for analog signals no similar exact spectrum computation exists.
For analog-signal spectra, use must build special devices, which turn out in most cases to consist of A/D

17“Discrete-Time Fourier Transform Properties” http<://cnx.org/content/m0506/latest/
18 This content is available online at http://cnx.org/content/m10249/2.27/.
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Index Domain

Frequency Domain

Linearity ays1(n) + aszss(n) a1S1 (e7271) + asS (e7271)
Periodicity (period 1) | all s(n) e2mf)y = § (ej27f(f+1))
Conjugate Symmetry | s(n) € R

Even Symmetry

= § (e=921)

Odd Symmetry

s(n) = —s(—n)

(/)
(ej%f) = g% (e—j%f)
(/)
(/)

M = ..., —M,0,M,2M, ... .
Signal Stretch z(n) = s(n/M) n ’ > ’ X (eJZﬂf) -9 (e]27'r]\lf)
0 otherwise
M—1
Downsampling s(nM) Z g (ej27r(f—m)/M)
m=0
Delay s(n —ngp) e=I2mImo g (327 1)
Complex Modulation | e/2™fons(n) S (er2m(f=1o))
S (27— 10)) 1 § (ed2r(F 7o)
Cosine Modulation cos(27 fon)s(n) (e ) ; (e )
S (127 —T0)) — § (ed27 (T +10)
Sine Modulation sin(2mw fon)s(n) (e )2 - (e )
J
Multiplication by n ns(n) _iig (e7%71)
j2m df
Sum Zn s(n) g (ej271'0)
1/2 -
Value at Origin s(0) S (632”) df
—1/2
172 ' )
Parseval’s Theorem >, s%(n) / S (ej%f)’ df
—1/2
Table 5.1

converters and discrete-time computations. Certainly discrete-time spectral analysis is more flexible than
continuous-time spectral analysis.
The formula for the DTFT (5.17) is a sum, which conceptually can be easily computed save for two

issues.

e Signal duration. The sum extends over the signal’s duration, which must be finite to compute the

signal’s spectrum.

assume that the signal extends over [0, N — 1].
e Continuous frequency. Subtler than the signal duration issue is the fact that the frequency variable
is continuous: It may only need to span one period, like [—l l] or [0, 1], but the DTFT formula as it

272

It is exceedingly difficult to store an infinite-length signal in any case, so we’ll

stands requires evaluating the spectra at all frequencies within a period. Let’s compute the spectrum

at a few frequencies; the most obvious ones are the equally spaced ones f = e ke{0,...,K —1}.
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We thus define the discrete Fourier transform(DFT) to be

Nl 2mnk

Sk)y=Y sme? K, ke{0,....K-1} (5.33)

n=0

Lk
Here, S (k) is shorthand for S | /"X .

By choosing the value of K, we can compute the spectrum at as many equally spaced frequencies as
we like. Note that you can think about this computationally motivated choice as sampling the spectrum;
more about this interpretation later. The issue now is how many frequencies are enough to capture how
the spectrum changes with frequency. One way of answering this question is determining an inverse discrete
Fourier transform formula: given S (k), k¥ = {0,...,K — 1} how do we find s(n), n = {0,...,N —1}7

K-1
Presumably, the formula will be of the form s (n) = Z S (k) e % Substituting the DFT formula in this
k=0

prototype inverse transform yields

K-l /N-1 2mmk 2mnk
s(n) = Z (Z s(m) 6_]K> el K (5.34)

k=0 \m=0

Note that the orthogonality relation we use so often has a different character now.

K—-1 .

2mkm . 2mwkn =
Zeﬂ L eJK:{K’ ifm={n,(ntK),(nt2K),...}
k=0

. (5.35)
0, otherwise

We obtain nonzero value whenever the two indices differ by multiples of K. We can express this result as
K3, (6(m—n—IK)). Thus, our formula becomes

N-1 o'}
s(n):Zs(m)K Zé(m—n—lK) (5.36)
m=0 l=—o00
The integers n and m both range over {0, ..., N — 1}. To have an inverse transform, we need the sum to be a

single unit sample for m, n in this range. If it did not, then s (n) would equal a sum of values, and we would
not have a valid transform: Once going into the frequency domain, we could not get back unambiguously!
Clearly, the term [ = 0 always provides a unit sample (we’ll take care of the factor of K soon). If we evaluate
the spectrum at fewer frequencies than the signal’s duration, the term corresponding to m = n + K will
also appear for some values of m, n = {0,..., N — 1}. This situation means that our prototype transform
equals s (n) + s (n + K) for some values of n. The only way to eliminate this problem is to require K > N:
We must have at least as many frequency samples as the signal’s duration. In this way, we can return from
the frequency domain we entered via the DFT.

Exercise 5.15 (Solution on p. 192.)
When we have fewer frequency samples than the signal’s duration, some discrete-time signal values
equal the sum of the original signal values. Given the sampling interpretation of the spectrum,
characterize this effect a different way.
Another way to understand this requirement is to use the theory of linear equations. If we write out the
expression for the DFT as a set of linear equations,

s +s(1)+---+s(N—-1)=5(0)

27 2 (N—1)
s(0)+s()e?K +---+s(N-1)e?77 K =5(1)
(5.37)
(K1) 2r(N—1)(K—1)

s(0)+s(1)e ™ K 4 ts(N—1)ed K  =8§(K-1)
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we have K equations in N unknowns if we want to find the signal from its sampled spectrum. This require-
ment is impossible to fulfill if K < N; we must have K > N. Our orthogonality relation essentially says that
if we have a sufficient number of equations (frequency samples), the resulting set of equations can indeed be
solved.

By convention, the number of DFT frequency values K is chosen to equal the signal’s duration N. The
discrete Fourier transform pair consists of

Discrete Fourier Transform Pair

N-1 2mnk
S(k)= s(nye? N
n=0
5.38
1 Nﬁls 1 j27rnk: ( )
= N
s) =5 > 5k
k=0

Since the DFT is merely a sampled version of the DTFT, the table shown on page 159 applies to the DF'T
as well, but with one notable exception: signals having even or odd symmetry. Because signals amenable to
the DFT are defined only for n =0..., N — 1, what does s(—n) mean? Because the result of computing the
DFT, then the IDFT of the result, is a periodic version of the original signal, we consider the original signal
to be periodic with period N. In this case, an even signal would satisfy s(—n) = s(N — n). Computing
the DFT of an even or odd signal would yield the result s(n) = +s(N —n) +— £S(N — k). Also note
that using the table for real-valued signals, we would conclude that S(k) = S*(—k). However, the DFT’s
result is only defined for positive k. Note that the DFT spectrum is periodic with period N, implying that
S(—k) = S(N — k). Therefore, the DFT of all real-valued signals must have the property S(k) = S*(N — k).

Exercise 5.16 (Solution on p. ?7)
What does this conjugate symmetry property say about S(N/2) when N, the transform length, is
even?

5.8 DFT: Computational Complexity"”

We now have a way of computing the spectrum for an arbitrary signal: The Discrete Fourier Transform
(DFT) (5.33) computes the spectrum at N equally spaced frequencies from a length- N sequence. An issue
that never arises in analog “computation,” like that performed by a circuit, is how much work it takes to
perform the signal processing operation such as filtering. In computation, this consideration translates to
the number of basic computational steps required to perform the needed processing. The number of steps,
known as the complexity, becomes equivalent to how long the computation takes (how long must we wait
for an answer). Complexity is not so much tied to specific computers or programming languages but to how
many steps are required on any computer. Thus, a procedure’s stated complexity says that the time taken
will be proportional to some function of the amount of data used in the computation and the amount
demanded.

For example, consider the formula for the discrete Fourier transform. For each frequency we choose, we
must multiply each signal value by a complex number and add together the results. For a real-valued signal,
each real-times-complex multiplication requires two real multiplications, meaning we have 2/N multiplications
to perform. To add the results together, we must keep the real and imaginary parts separate. Adding N
numbers requires N — 1 additions. Consequently, each frequency requires 2N 4+ 2 (N — 1) = 4N — 2 basic
computational steps. As we have N frequencies, the total number of computations is N (4N — 2).

In complexity calculations, we only worry about what happens as the data lengths increase, and take the
dominant term—here the 4N? term—as reflecting how much work is involved in making the computation.
As multiplicative constants don’t matter since we are making a “proportional to” evaluation, we find the
DFT is an O (N 2) computational procedure. This notation is read “order N-squared.” Thus, if we double
the length of the data, we would expect that the computation time to approximately quadruple.

9This content is available online at http://cnx.org/content/m0503/2.11/.
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Exercise 5.17 (Solution on p. 192.)
In making the complexity evaluation for the DFT, we assumed the data to be real. Three questions
emerge. First of all, the spectra of such signals have conjugate symmetry, meaning that negative

N
frequency components (k = {2 +1,....,N+ 1} in the DFT (5.33)) can be computed from the

corresponding positive frequency components. Does this symmetry change the DFT’s complexity?
Secondly, suppose the data are complex-valued; what is the DFT’s complexity now? Finally, a less
important but interesting question is suppose we want K frequency values instead of N; now what
is the complexity?

5.9 Fast Fourier Transform (FFT)*

One wonders if the DFT can be computed faster: Does another computational procedure — an algorithm-—
exist that can compute the same quantity, but more efficiently. We could seek methods that reduce the
constant of proportionality, but do not change the DFT’s complexity O (N 2). Here, we have something
more dramatic in mind: Can the computations be restructured so that a smaller complexity results?

In 1965, IBM researcher James Cooley?! and Princeton faculty member John Tukey?? developed what is
now known as the Fast Fourier Transform (FFT). It is an algorithm for computing that DET that has order
O (NlogN) for certain length inputs. Now when the length of data doubles, the spectral computational
time will not quadruple as with the DFT algorithm; instead, it approximately doubles. Later research showed
that no algorithm for computing the DFT could have a smaller complexity than the FFT. Surprisingly,
historical work has shown that Gauss?? in the early nineteenth century developed the same algorithm, but
did not publish it! After the FFT’s red