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Preface 
 
Over the years, when reviewing books we found that many had been mainstreamed by 
the publishers in an effort to appeal to everyone, leaving them with very little 
character.  There were only a handful of books that had the conceptual and application 
driven focus we liked, and most of those were lacking in other aspects we cared about, 
like providing students sufficient examples and practice of basic skills. The largest 
frustration, however, was the never ending escalation of cost and being forced into new 
editions every three years.  We began researching open textbooks, however the ability for 
those books to be adapted, remixed, or printed were often limited by the types of licenses, 
or didn’t approach the material the way we wanted. 
 
This book is available online for free, in both Word and PDF format.  You are free to 
change the wording, add materials and sections or take them away.  We welcome 
feedback, comments and suggestions for future development at 
precalc@opentextbookstore.com. Additionally, if you add a section, chapter or problems, 
we would love to hear from you and possibly add your materials so everyone can benefit.   
 
In writing this book, our focus was on the story of functions.  We begin with function 
notation, a basic toolkit of functions, and the basic operation with functions: composition 
and transformation.  Building from these basic functions, as each new family of functions 
is introduced we explore the important features of the function: its graph, domain and 
range, intercepts, and asymptotes.  The exploration then moves to evaluating and solving 
equations involving the function, finding inverses, and culminates with modeling using 
the function.   
 
The "rule of four" is integrated throughout - looking at the functions verbally, 
graphically, numerically, as well as algebraically.  We feel that using the “rule of four” 
gives students the tools they need to approach new problems from various angles.  Often 
the “story problems of life” do not always come packaged in a neat equation.  Being able 
to think critically, see the parts and build a table or graph a trend, helps us change the 
words into meaningful and measurable functions that model the world around us. 
 
There is nothing we hate more than a chapter on exponential equations that begins 
"Exponential functions are functions that have the form f(x)=ax."  As each family of 
functions is introduced, we motivate the topic by looking at how the function arises from 
life scenarios or from modeling.  Also, we feel it is important that precalculus be the 
bridge in level of thinking between algebra and calculus.  In algebra, it is common to see 
numerous examples with very similar homework exercises, encouraging the student 
to mimic the examples.  Precalculus provides a link that takes students from the basic 
plug & chug of formulaic calculations towards building an understanding that equations 
and formulas have deeper meaning and purpose.  While you will find examples and 
similar exercises for the basic skills in this book, you will also find examples of multistep 
problem solving along with exercises in multistep problem solving.  Often times these 
exercises will not exactly mimic the exercises, forcing the students to employ their 
critical thinking skills and apply the skills they've learned to new situations.  By 
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developing students’ critical thinking and problem solving skills this course prepares 
students for the rigors of Calculus. 
 
While we followed a fairly standard ordering of material in the first half of the book, we 
took some liberties in the trig portion of the book.  It is our opinion that there is no need 
to separate unit circle trig from triangle trig, and instead integrated them in the first 
chapter.  Identities are introduced in the first chapter, and revisited throughout. Likewise, 
solving is introduced in the second chapter and revisited more extensively in the third 
chapter.  As with the first part of the book, an emphasis is placed on motivating the 
concepts and on modeling and interpretation. 
 

About the Second Edition 

 
About 4 years and several minor typo revisions after the original release of this book, we 
started contemplating creating a second edition.  We didn’t want to change much; we’ve 
always found it very annoying when new editions change things just for the sake of 
making it seem different.  However, in talking with instructors from around the country, 
we knew there were a few topics that we had left out that other schools need.  We didn’t 
want to suffer the same “content bloat” that many commercial books do, but we also 
wanted to make it easier for more schools to adopt open resources. 
 
We put our plans for a new revision on hold after OpenStax started working on a 
precalculus book, using the first edition of this text as a base.  After the final product 
came out, though, we felt it had strayed a bit far from our original vision.  We had written 
this text, not to be an encyclopedic reference text, but to be a concise, easy-to-read, 
student-friendly approach to precalculus.  We valued contextual motivation and 
conceptual understanding over procedural skills.  Our book took, in places, a non-
traditional approach to topics and content ordering.  Ultimately, we decided to go ahead 
with this second edition. 
 
The primary changes in the second edition are: 

• New, higher resolution graphs throughout 

• New sections added to Chapter 3: 
o 3.4 Factor theorem (includes long division of polynomials) 
o 3.5 Real zeros of polynomials (using rational roots theorem) 
o 3.6 Complex zeros of polynomials 

• Coverage of oblique asymptotes added to the rational equations section (now 3.7) 

• A new section 8.5 on dot product of vectors 

• A new chapter 9 on conic sections 
 
There were many additional refinements, some new examples added, and Try it Now 
answers expanded, but most of the book remains unchanged. 
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Instructor Resources 

 
As part of the Washington Open Course Library project, we developed a full course 
package to accompany this text.  The course shell was built for the IMathAS online 
homework platform, and is available for Washington State faculty at www.wamap.org 
and mirrored for others at www.myopenmath.com.  It contains: 
 

• Online homework for each section (algorithmically generated, free response), 

most with video help associated. 

• Video lessons for each section.  The videos were mostly created and selected by 

James Sousa, of Mathispower4u. 

• A selection of printable class worksheets, activities, and handouts 

• Support materials for an example course (does not include all sections): 

o Suggested syllabus and Day by day course guide 

o Instructor guide with lecture outlines and examples 

o Discussion forums 

o Diagnostic review 

o Chapter review problems 

o Sample quizzes and sample chapter exams 

The course shell was designed to follow Quality Matters (QM) guidelines, but has not yet 
been formally reviewed. 
 
Getting Started 
 
To get started using this textbook and the online supplementary materials, 

• Request an instructor account on WAMAP (in Washington) or MyOpenMath 

(outside Washington). 

• Review the table of contents of the text, and compare it to your course outcomes 

or student learning objectives.  Determine which sections you will need to cover, 

and which to omit.  If there are topics in your outcomes that are not in the text, 

explore other sources like the Stitz/Zeager Precalc or OpenStax Precalc to 

supplement from.  Also check the book’s website, as we may offer additional 

online-only topics. 

• Once your instructor account is approved, log in, and click Add New Course 

• From the “Use content from a template course”, select “Precalculus – 

Lippman/Rasmussen 2nd Ed”.  Note that you might also see two half-book 

templates, one covering chapters 1 – 4, and the other covering chapters 5 – 9.  

• Once you have copied the course, go through and remove any sections you don’t 

need for your course.  Refer to the Training Course Quickstart videos in 

MyOpenMath and WAMAP for more details on how to make those changes. 
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How To Be Successful In This Course 

This is not a high school math course, although for some of you the content may seem 
familiar. There are key differences to what you will learn here, how quickly you will be 
required to learn it and how much work will be required of you. 
 
You will no longer be shown a technique and be asked to mimic it repetitively as the only 
way to prove learning.  Not only will you be required to master the technique, but you 
will also be required to extend that knowledge to new situations and build bridges 
between the material at hand and the next topic, making the course highly cumulative. 
 
As a rule of thumb, for each hour you spend in class, you should expect this course will 
require an average of 2 hours of out-of-class focused study. This means that some of you 
with a stronger background in mathematics may take less, but if you have a weaker 
background or any math anxiety it will take you more.   
 
Notice how this is the equivalent of having a part time job, and if you are taking a 
fulltime load of courses as many college students do, this equates to more than a full time 
job.   If you must work, raise a family and take a full load of courses all at the same time, 
we recommend that you get a head start & get organized as soon as possible.  We also 
recommend that you spread out your learning into daily chunks and avoid trying to cram 
or learn material quickly before an exam.  
 
To be prepared, read through the material before it is covered in class and note or 
highlight the material that is new or confusing.  The instructor’s lecture and activities 
should not be the first exposure to the material.  As you read, test your understanding 
with the Try it Now problems in the book.  If you can’t figure one out, try again after 
class, and ask for help if you still can’t get it.   
 
As soon as possible after the class session recap the day’s lecture or activities into a 
meaningful format to provide a third exposure to the material.  You could summarize 
your notes into a list of key points, or reread your notes and try to work examples done in 
class without referring back to your notes.  Next, begin any assigned homework.  The 
next day, if the instructor provides the opportunity to clarify topics or ask questions, do 
not be afraid to ask.  If you are afraid to ask, then you are not getting your money’s 
worth!  If the instructor does not provide this opportunity, be prepared to go to a tutoring 
center or build a peer study group. Put in quality effort and time and you can get quality 
results. 
 
Lastly, if you feel like you do not understand a topic.  Don’t wait, ASK FOR HELP! 
 
ASK:  Ask a teacher or tutor, Search for ancillaries, Keep a detailed list of questions 
FOR: Find additional resources, Organize the material, Research other learning options 
HELP: Have a support network, Examine your weaknesses, List specific examples & Practice  
 

Best of luck learning! We hope you like the course & love the price. 
David  & Melonie 
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Section 1.1 Functions and Function Notation 

 

What is a Function? 

The natural world is full of relationships between quantities that change.  When we see 
these relationships, it is natural for us to ask “If I know one quantity, can I then determine 
the other?”  This establishes the idea of an input quantity, or independent variable, and a 
corresponding output quantity, or dependent variable.  From this we get the notion of a 
functional relationship in which the output can be determined from the input.    
 
For some quantities, like height and age, there are certainly relationships between these 
quantities.  Given a specific person and any age, it is easy enough to determine their 
height, but if we tried to reverse that relationship and determine age from a given height, 
that would be problematic, since most people maintain the same height for many years.  
 
 

Function 

Function:  A rule for a relationship between an input, or independent, quantity and an 
output, or dependent, quantity in which each input value uniquely determines one 
output value.  We say “the output is a function of the input.” 

 
 
Example 1 

In the height and age example above, is height a function of age?  Is age a function of 
height? 
 
In the height and age example above, it would be correct to say that height is a function 
of age, since each age uniquely determines a height.  For example, on my 18th birthday,  
I had exactly one height of 69 inches.   
 
However, age is not a function of height, since one height input might correspond with 
more than one output age. For example, for an input height of 70 inches, there is more 
than one output of age since I was 70 inches at the age of 20 and 21.  
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Example 2 

At a coffee shop, the menu consists of items and their prices.  Is price a function of the 
item?  Is the item a function of the price? 
 
We could say that price is a function of the item, since each input of an item has one 
output of a price corresponding to it.  We could not say that item is a function of price, 
since two items might have the same price. 

 
 
Example 3 

In many classes the overall percentage you earn in the course corresponds to a decimal 
grade point.  Is decimal grade a function of percentage?  Is percentage a function of 
decimal grade?   
 
For any percentage earned, there would be a decimal grade associated, so we could say 
that the decimal grade is a function of percentage. That is, if you input the percentage, 
your output would be a decimal grade.  Percentage may or may not be a function of 
decimal grade, depending upon the teacher’s grading scheme.  With some grading 
systems, there are a range of percentages that correspond to the same decimal grade. 

 
 

One-to-One Function 

Sometimes in a relationship each input corresponds to exactly one output, and every 
output corresponds to exactly one input.  We call this kind of relationship a one-to-

one function. 

 
 
From Example 3, if each unique percentage corresponds to one unique decimal grade 
point and each unique decimal grade point corresponds to one unique percentage then it 
is a one-to-one function. 
 
 

Try it Now 
Let’s consider bank account information. 
1. Is your balance a function of your bank account number?  

(if you input a bank account number does it make sense that the output is your balance?) 
 
2.  Is your bank account number a function of your balance? 

(if you input a balance  does it make sense that the output is your bank account number?) 
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Function Notation 

 
To simplify writing out expressions and equations involving functions, a simplified 
notation is often used.  We also use descriptive variables to help us remember the 
meaning of the quantities in the problem. 
 
Rather than write “height is a function of age”, we could use the descriptive variable h to 
represent height and we could use the descriptive variable a to represent age. 
 
“height is a function of age”  if we name the function f we write 
“h is f of a”       or more simply 
h = f(a)      we could instead name the function h and write 
h(a)    which is read “h of a” 
 
Remember we can use any variable to name the function; the notation h(a) shows us that 
h depends on a.  The value “a” must be put into the function “h” to get a result.  Be 
careful - the parentheses indicate that age is input into the function (Note: do not confuse 
these parentheses with multiplication!).   
 
 

Function Notation 

The notation output = f(input) defines a function named f.  This would be read “output 
is f of input” 

 
 
Example 4 

Introduce function notation to represent a function that takes as input the name of a 
month, and gives as output the number of days in that month. 
 
The number of days in a month is a function of the name of the month, so if we name 
the function f, we could write “days = f(month)” or  d = f(m). If we simply name the 
function d, we could write  d(m) 
 
For example, d(March) = 31, since March has 31 days. The notation d(m) reminds us 
that the number of days, d (the output) is dependent on the name of the month, m (the 
input) 

 
 
Example 5 

A function N = f(y) gives the number of police officers, N, in a town in year y.  What 
does f(2005) = 300 tell us? 
 
When we read f(2005) = 300, we see the input quantity is 2005, which is a value for the 
input quantity of the function, the year (y).  The output value is 300, the number of 
police officers (N), a value for the output quantity.  Remember N=f(y).  This tells us that 
in the year 2005 there were 300 police officers in the town. 
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Tables as Functions 

 
Functions can be represented in many ways:  Words (as we did in the last few examples), 
tables of values, graphs, or formulas.  Represented as a table, we are presented with a list 
of input and output values.   
In some cases, these values represent everything we know about the relationship, while in 
other cases the table is simply providing us a few select values from a more complete 
relationship. 
 
Table 1:  This table represents the input, number of the month (January = 1, February = 2, 
and so on) while the output is the number of days in that month. This represents 
everything we know about the months & days for a given year (that is not a leap year) 
 

(input) Month 
number, m 

1 2 3 4 5 6 7 8 9 10 11 12 

(output) Days 
in month, D 

31 28 31 30 31 30 31 31 30 31 30 31 

 
Table 2:  The table below defines a function Q = g(n).  Remember this notation tells us g 
is the name of the function that takes the input n and gives the output Q. 
 

n 1 2 3 4 5 

Q 8 6 7 6 8 

 
Table 3:  This table represents the age of children in years and their corresponding 
heights.  This represents just some of the data available for height and ages of children. 
 

(input) a, age 
in years 

5 5 6 7 8 9 10 

(output) h, 
height inches 

40 42 44 47 50 52 54 

 
 
Example 6 

Which of these tables define a function (if any)?  Are any of them one-to-one? 
 

 
The first and second tables define functions.  In both, each input corresponds to exactly 
one output.  The third table does not define a function since the input value of 5 
corresponds with two different output values. 
 

Input Output 

1 0 

5 2 

5 4 

 

Input Output 

-3 5 

0 1 

4 5 

 

Input Output 

2 1 

5 3 

8 6 
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Only the first table is one-to-one; it is both a function, and each output corresponds to 
exactly one input.  Although table 2 is a function, because each input corresponds to 
exactly one output, each output does not correspond to exactly one input so this 
function is not one-to-one.  Table 3 is not even a function and so we don’t even need to 
consider if it is a one-to-one function. 

 
 

Try it Now 
3. If each percentage earned translated to one letter grade, would this be a function?  Is it 

one-to-one?  

 
 
Solving and Evaluating Functions: 

 
When we work with functions, there are two typical things we do: evaluate and solve. 
 Evaluating a function is what we do when we know an input, and use the function to 
determine the corresponding output.  Evaluating will always produce one result, since 
each input of a function corresponds to exactly one output.   
 
Solving equations involving a function is what we do when we know an output, and use 
the function to determine the inputs that would produce that output.  Solving a function 
could produce more than one solution, since different inputs can produce the same 
output. 
 
 
Example 7 

Using the table shown, where Q=g(n) 
 
a) Evaluate g(3) 
 
Evaluating g(3) (read: “g of 3”) 
means that we need to determine the output value, Q, of the function g given the input 
value of n=3.  Looking at the table, we see the output corresponding to n=3 is Q=7, 
allowing us to conclude g(3) = 7. 
 
b) Solve g(n) = 6 
 
Solving g(n) = 6 means we need to determine what input values, n, produce an output 
value of 6.  Looking at the table we see there are two solutions: n = 2 and n = 4. 
 
When we input 2 into the function g, our output is Q = 6 
 
When we input 4 into the function g, our output is also Q = 6 

 
 

n 1 2 3 4 5 

Q 8 6 7 6 8 
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Try it Now 
4. Using the function in Example 7, evaluate g(4) 

 
 

Graphs as Functions 

 
Oftentimes a graph of a relationship can be used to define a 
function.  By convention, graphs are typically created with the 
input quantity along the horizontal axis and the output quantity 
along the vertical. 
 
The most common graph has y on the vertical axis and x on the 
horizontal axis, and we say y is a function of x, or y = f(x) when 
the function is named f. 
 
 
Example 8 

Which of these graphs defines a function y=f(x)?  Which of these graphs defines a one-
to-one function? 

        
 
Looking at the three graphs above, the first two define a function y=f(x), since for each 
input value along the horizontal axis there is exactly one output value corresponding, 
determined by the y-value of the graph.  The 3rd graph does not define a function y=f(x) 
since some input values, such as x=2, correspond with more than one output value. 
 
Graph 1 is not a one-to-one function.  For example, the output value 3 has two 
corresponding input values, -1 and 2.3 
 
Graph 2 is a one-to-one function; each input corresponds to exactly one output, and 
every output corresponds to exactly one input. 
 
Graph 3 is not even a function so there is no reason to even check to see if it is a one-to-
one function. 
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Vertical Line Test 

The vertical line test is a handy way to think about whether a graph defines the 
vertical output as a function of the horizontal input.  Imagine drawing vertical lines 
through the graph.  If any vertical line would cross the graph more than once, then the 
graph does not define only one vertical output for each horizontal input. 

 
 

Horizontal Line Test 

Once you have determined that a graph defines a function, an easy way to determine if 
it is a one-to-one function is to use the horizontal line test.  Draw horizontal lines 
through the graph. If any horizontal line crosses the graph more than once, then the 
graph does not define a one-to-one function. 

 
 
Evaluating a function using a graph requires taking the given input and using the graph to 
look up the corresponding output.  Solving a function equation using a graph requires 
taking the given output and looking on the graph to determine the corresponding input. 
 
 
Example 9 

Given the graph of f(x) 
a) Evaluate f(2) 
b) Solve f(x) = 4 
 
a) To evaluate f(2), we find the input of x=2 on the 
horizontal axis.  Moving up to the graph gives the 
point (2, 1), giving an output of y=1.   f(2) = 1. 
 
b) To solve f(x) = 4, we find the value 4 on the 
vertical axis because if f(x) = 4 then 4 is the output. 
 Moving horizontally across the graph gives two 
points with the output of 4: (-1,4) and (3,4).  These 
give the two solutions to f(x) = 4:  x = -1 or x = 3 
This means f(-1)=4 and f(3)=4, or when the input is -1 or 3, the output is 4. 

 
 
Notice that while the graph in the previous example is a function, getting two input 
values for the output value of 4 shows us that this function is not one-to-one. 
 
 

Try it Now 
5.  Using the graph from example 9, solve f(x)=1. 
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Formulas as Functions 

 
When possible, it is very convenient to define relationships using formulas.  If it is 
possible to express the output as a formula involving the input quantity, then we can 
define a function. 
 
 
Example 10 

Express the relationship 2n + 6p = 12 as a function p = f(n) if possible. 
 
To express the relationship in this form, we need to be able to write the relationship 
where p is a function of n, which means writing it as p = [something involving n].   
 
2n + 6p = 12    subtract 2n from both sides 
6p = 12 - 2n     divide both sides by 6 and simplify 
 

12 2 12 2 1
2

6 6 6 3

n n
p n

−
= = − = −  

 
Having rewritten the formula as p=, we can now express p as a function: 

1
( ) 2

3
p f n n= = −   

 
 
It is important to note that not every relationship can be expressed as a function with a 
formula. 
 
Note the important feature of an equation written as a function is that the output value can 
be determined directly from the input by doing evaluations - no further solving is 
required.  This allows the relationship to act as a magic box that takes an input, processes 
it, and returns an output.  Modern technology and computers rely on these functional 
relationships, since the evaluation of the function can be programmed into machines, 
whereas solving things is much more challenging. 
 
 
Example 11 

Express the relationship 2 2 1x y+ =  as a function y = f(x) if possible. 

 
If we try to solve for y in this equation: 

2 21y x= −  

21y x= ± −  

 
We end up with two outputs corresponding to the same input, so this relationship cannot 
be represented as a single function y = f(x). 
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As with tables and graphs, it is common to evaluate and solve functions involving 
formulas.  Evaluating will require replacing the input variable in the formula with the 
value provided and calculating.  Solving will require replacing the output variable in the 
formula with the value provided, and solving for the input(s) that would produce that 
output. 
 
 
Example 12 

Given the function 3( ) 2k t t= +  

a) Evaluate k(2) 
b) Solve k(t) = 1 
 
a) To evaluate k(2), we plug in the input value 2 into the formula wherever we see the 
input variable t, then simplify 

3(2) 2 2k = +  

(2) 8 2k = +  

So k(2) = 10 
 
b) To solve k(t) = 1, we set the formula for k(t) equal to 1, and solve for the input value 
that will produce that output 

k(t) = 1           substitute the original formula 3( ) 2k t t= +   
3 2 1t + =   subtract 2 from each side 
3 1t = −   take the cube root of each side 

1t = −  
 
When solving an equation using formulas, you can check your answer by using your 
solution in the original equation to see if your calculated answer is correct. 
 

We want to know if ( ) 1k t =  is true when 1t = − . 
3( 1) ( 1) 2k − = − +  

          = 1 2− +  
 =  1 which was the desired result. 

 
 
Example 13 

Given the function 2( ) 2h p p p= +  

a) Evaluate h(4) 
b) Solve h(p) = 3 
 
To evaluate h(4) we substitute the value 4 for the input variable p in the given function. 

a) 2(4) (4) 2(4)h = +  

          = 16 + 8 
   = 24 
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b) h(p) = 3  Substitute the original function 2( ) 2h p p p= +  
2 2 3p p+ =   This is quadratic, so we can rearrange the equation to get it = 0 
2 2 3 0p p+ − =  subtract 3 from each side  
2 2 3 0p p+ − =  this is factorable, so we factor it 

( 3)( 1) 0p p+ − =   

By the zero factor theorem since ( 3)( 1) 0p p+ − = , either ( 3) 0p + =  or ( 1) 0p − =  (or 

both of them equal 0) and so we solve both equations for p, finding p = -3 from the first 
equation and  p = 1 from the second equation. 
 
This gives us the solution: h(p) = 3 when p = 1 or p = -3               
 
We found two solutions in this case, which tells us this function is not one-to-one. 

 
 

Try it Now 

6. Given the function ( ) 4g m m= −  

a. Evaluate g(5) 
b. Solve g(m) = 2 

 
 
Basic Toolkit Functions 
 
In this text, we will be exploring functions – the shapes of their graphs, their unique 
features, their equations, and how to solve problems with them.  When learning to read, 
we start with the alphabet.  When learning to do arithmetic, we start with numbers.  
When working with functions, it is similarly helpful to have a base set of elements to 
build from.  We call these our “toolkit of functions” – a set of basic named functions for 
which we know the graph, equation, and special features. 
 
For these definitions we will use x as the input variable and f(x) as the output variable. 
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Toolkit Functions 

Linear   

Constant:  ( )f x c= , where c is a  constant (number) 

Identity:  ( )f x x=  

 

Absolute Value:    xxf =)(  

 

Power 

Quadratic:  2)( xxf =   

Cubic:   3)( xxf =  

 Reciprocal:  
1

( )f x
x

=  

Reciprocal squared: 
2

1
( )f x

x
=     

Square root:  2( )f x x x= =  

Cube root:  3( )f x x=     

 
 
You will see these toolkit functions, combinations of toolkit functions, their graphs and 
their transformations frequently throughout this book.  In order to successfully follow 
along later in the book, it will be very helpful if you can recognize these toolkit functions 
and their features quickly by name, equation, graph and basic table values.  
 
Not every important equation can be written as y = f(x).  An example of this is the 
equation of a circle.  Recall the distance formula for the distance between two points: 

( ) ( )2

12

2

12 yyxxdist −+−=  

A circle with radius r with center at (h, k) can be described as all points (x, y) a distance 

of r from the center, so using the distance formula, ( ) ( )22
kyhxr −+−= , giving 

 
 

Equation of a circle 

A circle with radius r with center (h, k) has equation ( ) ( )222 kyhxr −+−=  
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Graphs of the Toolkit Functions 

 

Constant Function: ( ) 2f x =     Identity: ( )f x x=   Absolute Value: xxf =)(   

   
 

Quadratic: 2)( xxf =   Cubic: 3)( xxf =   Square root: ( )f x x=  

 

    
 
 
 

Cube root: 3( )f x x=   Reciprocal: 
1

( )f x
x

=           Reciprocal squared: 
2

1
( )f x

x
=   
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Important Topics of this Section 

Definition of a function 

Input (independent variable) 

Output (dependent variable) 

Definition of a one-to-one function 

Function notation 

Descriptive variables 

Functions in words, tables, graphs & formulas 

Vertical line test 

Horizontal line test 

Evaluating a function at a specific input value 

Solving a function given a specific output value 

Toolkit Functions 

 
 

Try it Now Answers 
1. Yes: for each bank account, there would be one balance associated 

2. No:  there could be several bank accounts with the same balance 

3. Yes it’s a function; No, it’s not one-to-one (several percents give the same letter grade) 

4. When n=4, Q=g(4)=6 

5. There are two points where the output is 1:  x = 0 or x = 2 

6. a. 145)5( =−=g  

b. 24 =−m .  Square both sides to get 44 =−m .  m = 8 
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Section 1.1 Exercises 

 
1. The amount of garbage, G, produced by a city with population p is given by 

  ( )G f p= . G is measured in tons per week, and p is measured in thousands of people.   

a. The town of Tola has a population of 40,000 and produces 13 tons of garbage 

each week. Express this information in terms of the function f. 

b. Explain the meaning of the statement ( )5 2f = . 

 

2. The number of cubic yards of dirt, D, needed to cover a garden with area a square 

feet is given by ( )D g a= .   

a. A garden with area 5000 ft2 requires 50 cubic yards of dirt.  Express this 

information in terms of the function g. 

b. Explain the meaning of the statement ( )100 1g = . 

 
3. Let ( )f t  be the number of ducks in a lake t years after 1990.  Explain the meaning of 

each statement: 

a. ( )5 30f =   b. ( )10 40f =  

 
4. Let ( )h t  be the height above ground, in feet, of a rocket t seconds after launching.  

Explain the meaning of each statement: 

a. ( )1 200h =   b. ( )2 350h =  

 

5. Select all of the following graphs which represent y as a function of x. 

a   b     c  

d    e    f  
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6. Select all of the following graphs which represent y as a function of x. 

a     b   c  

 d    e   f  
  
7. Select all of the following tables which represent y as a function of x. 

a. x 5 10 15 

y 3 8 14 
 

b. x 5 10 15 

y 3 8 8 
 

c. x 5 10 10 

y 3 8 14 
 

 

8. Select all of the following tables which represent y as a function of x. 

a. x 2 6 13 

y 3 10 10 
 

b. x 2 6 6 

y 3 10 14 
 

c. x 2 6 13 

y 3 10 14 
 

 
9. Select all of the following tables which represent y as a function of x. 

a. x y 

0 -2 

3 1 

4 6 

8 9 

3 1 
 

b. x y 

-1 -4 

2 3 

5 4 

8 7 

12 11 
 

c. x y 

0 -5 

3 1 

3 4 

9 8 

16 13 
 

d. x y 

-1 -4 

1 2 

4 2 

9 7 

12 13 
 

        

10. Select all of the following tables which represent y as a function of x. 

a. x y 

-4 -2 

3 2 

6 4 

9 7 

12 16 
 

b. x y 

-5 -3 

2 1 

2 4 

7 9 

11 10 
 

c. x y 

-1 -3 

1 2 

5 4 

9 8 

1 2 
 

d. x y 

-1 -5 

3 1 

5 1 

8 7 

14 12 
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11. Select all of the following tables which represent y as a function of x and are one-to-

one. 

a. x 3 8 12 

y 4 7 7 
 

b. x 3 8 12 

y 4 7 13 
 

c. x 3 8 8 

y 4 7 13 
 

 
12. Select all of the following tables which represent y as a function of x and are one-to-

one. 

a. x 2 8 8 

y 5 6 13 
 

b. x 2 8 14 

y 5 6 6 
 

c. x 2 8 14 

y 5 6 13 
 

 
13. Select all of the following graphs which are one-to-one functions. 

a.   b.    c.  

d.   e.    f.  
  
14. Select all of the following graphs which are one-to-one functions. 

a  b   c  

 d  e   f   
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Given each function ( )f x  graphed, evaluate (1)f  and (3)f  

15.     16.  
 
17. Given the function ( )g x  graphed here, 

a.    Evaluate (2)g  

b. Solve ( ) 2g x =  

 

18. Given the function ( )f x  graphed here. 

a. Evaluate ( )4f  

b. Solve ( )  4f x =  

 

 
19. Based on the table below, 

a. Evaluate (3)f     b. Solve ( ) 1 f x =  

x 0 1 2 3 4 5 6 7 8 9 
( )f x  74 28 1 53 56 3 36 45 14 47 

 
20. Based on the table below, 

a. Evaluate (8)f     b. Solve ( )  7f x =  

x 0 1 2 3 4 5 6 7 8 9 
( )f x  62 8 7 38 86 73 70 39 75 34 

 

For each of the following functions, evaluate:  ( )2f − , ( 1)f − , (0)f , (1)f , and (2)f  

21. ( ) 4 2f x x= −     22. ( ) 8 3f x x= −  

23. ( ) 28  7   3f x x x= − +     24. ( ) 26  7   4f x x x= − +  

25. ( ) 3 2f x x x= − +     26. ( ) 4 25f x x x= +  

27. ( ) 3 3f x x= + +     28. ( ) 34 2f x x= − −   

29. ( ) ( )2 ( 3)f x x x= − +    30. ( ) ( ) ( )
2

3 1f x x x= + −  

31. ( )
3

1

x
f x

x

−
=

+
     32. ( )

2

2

x
f x

x

−
=

+
 

33. ( ) 2x
f x =      34. ( ) 3x

f x =  
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35. Suppose ( ) 2 8 4f x x x= + − . Compute the following: 

a. ( 1) (1)f f− +        b. ( 1) (1)f f− −  

 

36. Suppose ( ) 2 3f x x x= + + . Compute the following: 

a. ( 2) (4)f f− +    b. ( 2) (4)f f− −  

 

37.  Let ( ) 3 5f t t= +  

a. Evaluate (0)f   b. Solve ( ) 0f t =  

 

38. Let ( ) 6 2g p p= −  

a. Evaluate (0)g   b. Solve ( ) 0g p =  

 

39. Match each function name with its equation. 
a.  y x=  

b.  3
y x=  

c.  3y x=  

d. 
1

y
x

=  

e. 2
y x=  

f. y x=  

g. y x=  

h. 
2

1
y

x
=  

40.  Match each graph with its equation. 

a. y x=  

b. 3
y x=  

c. 3y x=  

d. 
1

y
x

=  

e. 2
y x=  

f. y x=  

g. y x=  

h. 
2

1
y

x
=  

 

i. ii. iii. iv. 

    
 
v. 

 
vi. 

 
vii. 

 
viii. 

    

i. Cube root 
ii. Reciprocal 

iii. Linear 
iv. Square Root 
v. Absolute Value 

vi. Quadratic 
vii. Reciprocal Squared 

viii. Cubic 
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41. Match each table with its equation. 

a. 2
y x=  

b. y x=  

c. y x=  

d. 1/y x=  

e. | |y x=  

f. 3
y x=  

 

  
  
 
 
 
 
42. Match each equation with its table 

a. Quadratic 
b. Absolute Value 
c. Square Root 
d. Linear 
e. Cubic 
f. Reciprocal 

  
  
  
  
 
 
 
 
 
 
43. Write the equation of the circle centered at  (3 , 9 )−   with radius 6.  

 
44. Write the equation of the circle centered at  (9 , 8 )−   with radius 11.   

 
45. Sketch a reasonable graph for each of the following functions.  [UW] 

a. Height of a person depending on age. 

b. Height of the top of your head as you jump on a pogo stick for 5 seconds. 

c. The amount of postage you must put on a first class letter, depending on the 

weight of the letter. 

 

i. In Out 

-2 -0.5 

-1 -1 

0 _ 

1 1 

2 0.5 

3 0.33 
 

ii. In Out 

-2 -2 

-1 -1 

0 0 

1 1 

2 2 

3 3 
 

iii. In Out 

-2 -8 

-1 -1 

0 0 

1 1 

2 8 

3 27 
 

      

iv. In Out 

-2 4 

-1 1 

0 0 

1 1 

2 4 

3 9 
 

v. In Out 

-2 _ 

-1 _ 

0 0 

1 1 

4 2 

9 3 
 

vi. In Out 

-2 2 

-1 1 

0 0 

1 1 

2 2 

3 3 
 

 

i. In Out 

-2 -0.5 

-1 -1 

0 _ 

1 1 

2 0.5 

3 0.33 
 

ii. In Out 

-2 -2 

-1 -1 

0 0 

1 1 

2 2 

3 3 
 

iii. In Out 

-2 -8 

-1 -1 

0 0 

1 1 

2 8 

3 27 
 

      

iv. In Out 

-2 4 

-1 1 

0 0 

1 1 

2 4 

3 9 
 

v. In Out 

-2 _ 

-1 _ 

0 0 

1 1 

4 2 

9 3 
 

vi. In Out 

-2 2 

-1 1 

0 0 

1 1 

2 2 

3 3 
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46. Sketch a reasonable graph for each of the following functions.  [UW] 

a. Distance of your big toe from the ground as you ride your bike for 10 seconds. 

b. Your height above the water level in a swimming pool after you dive off the high 

board.  

c. The percentage of dates and names you’ll remember for a history test, depending 

on the time you study. 

 

47. Using the graph shown, 

a. Evaluate ( )f c  

b. Solve ( )f x p=  

c. Suppose ( )f b z= .  Find ( )f z  

d. What are the coordinates of points L and K? 

 

 

 

48. Dave leaves his office in Padelford Hall on his way to teach in Gould Hall. Below are 

several different scenarios. In each case, sketch a plausible (reasonable) graph of the 

function s = d(t) which keeps track of Dave’s distance s from Padelford Hall at time t. 

Take distance units to be “feet” and time units to be “minutes.” Assume Dave’s path 

to Gould Hall is long a straight line which is 2400 feet long.  [UW] 

 
 

a. Dave leaves Padelford Hall and walks at a constant spend until he reaches Gould 

Hall 10 minutes later. 

 

b. Dave leaves Padelford Hall and walks at a constant speed. It takes him 6 minutes 

to reach the half-way point. Then he gets confused and stops for 1 minute. He 

then continues on to Gould Hall at the same constant speed he had when he 

originally left Padelford Hall. 

 

c. Dave leaves Padelford Hall and walks at a constant speed.  It takes him 6 minutes 

to reach the half-way point. Then he gets confused and stops for 1 minute to 

figure out where he is. Dave then continues on to Gould Hall at twice the constant 

speed he had when he originally left Padelford Hall. 

 

 

x 

f(x) 

a b c 

p 

r 
t 

K 

L 
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d. Dave leaves Padelford Hall and walks at a constant speed.  It takes him 6 minutes 

to reach the half-way point. Then he gets confused and stops for 1 minute to 

figure out where he is. Dave is totally lost, so he simply heads back to his office, 

walking the same constant speed he had when he originally left Padelford Hall. 

 

e. Dave leaves Padelford heading for Gould Hall at the same instant Angela leaves 

Gould Hall heading for Padelford Hall. Both walk at a constant speed, but Angela 

walks twice as fast as Dave. Indicate a plot of “distance from Padelford” vs. 

“time” for the both Angela and Dave. 

 

f. Suppose you want to sketch the graph of a new function s = g(t) that keeps track 

of Dave’s distance s from Gould Hall at time t. How would your graphs change in 

(a)-(e)? 
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Section 1.2 Domain and Range  

 
One of our main goals in mathematics is to model the real world with mathematical 
functions.  In doing so, it is important to keep in mind the limitations of those models we 
create.   
 
This table shows a relationship between circumference and height of a tree as it grows.   
 

Circumference, c 1.7 2.5 5.5 8.2 13.7 

Height, h 24.5 31 45.2 54.6 92.1 

 
While there is a strong relationship between the two, it would certainly be ridiculous to 
talk about a tree with a circumference of -3 feet, or a height of 3000 feet.  When we 
identify limitations on the inputs and outputs of a function, we are determining the 
domain and range of the function. 
 
 

Domain and Range 

Domain:  The set of possible input values to a function 

Range:  The set of possible output values of a function 

 
 
Example 1 

Using the tree table above, determine a reasonable domain and range. 
 
We could combine the data provided with our own experiences and reason to 
approximate the domain and range of the function h = f(c).  For the domain, possible 
values for the input circumference c, it doesn’t make sense to have negative values, so c 
> 0.  We could make an educated guess at a maximum reasonable value, or look up that 
the maximum circumference measured is about 119 feet1.  With this information, we 

would say a reasonable domain is 0 119c< ≤ feet.   
 
Similarly for the range, it doesn’t make sense to have negative heights, and the 
maximum height of a tree could be looked up to be 379 feet, so a reasonable range is 

0 379h< ≤ feet. 
 
 
 
 
 
 
 

                                                 
1 http://en.wikipedia.org/wiki/Tree, retrieved July 19, 2010 
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Example 2 

When sending a letter through the United States Postal Service, the price depends upon 
the weight of the letter2, as shown in the table below.  Determine the domain and range. 

 
Suppose we notate Weight by w and Price by p, and set up a function named P, where 
Price, p is a function of Weight, w.  p = P(w). 
 
Since acceptable weights are 3.5 ounces or less, and negative weights don’t make sense, 

the domain would be 0 3.5w< ≤ .  Technically 0 could be included in the domain, but 
logically it would mean we are mailing nothing, so it doesn’t hurt to leave it out. 
 
Since possible prices are from a limited set of values, we can only define the range of 
this function by listing the possible values.  The range is p = $0.44, $0.61, $0.78, or 
$0.95. 

 
 

Try it Now 
1. The population of a small town in the year 1960 was 100 people.  Since then the 

population has grown to 1400 people reported during the 2010 census. Choose 
descriptive variables for your input and output and use interval notation to write the 
domain and range. 

 
 
Notation 

 
In the previous examples, we used inequalities to describe the domain and range of the 
functions.  This is one way to describe intervals of input and output values, but is not the 
only way.  Let us take a moment to discuss notation for domain and range. 
 

Using inequalities, such as 0 163c< ≤ , 0 3.5w< ≤ , and 0 379h< ≤  imply that we are 
interested in all values between the low and high values, including the high values in 
these examples. 
 
However, occasionally we are interested in a specific list of numbers like the range for 
the price to send letters,  p = $0.44, $0.61, $0.78, or $0.95.  These numbers represent a set 
of specific values: {0.44, 0.61, 0.78, 0.95} 
 

                                                 
2 http://www.usps.com/prices/first-class-mail-prices.htm, retrieved July 19, 2010 

Letters 

Weight not Over Price 

1 ounce $0.44 

2 ounces $0.61 

3 ounces $0.78 

3.5 ounces $0.95 
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Representing values as a set, or giving instructions on how a set is built, leads us to 
another type of notation to describe the domain and range. 
 
Suppose we want to describe the values for a variable x that are 10 or greater, but less 

than 30.  In inequalities, we would write 10 30x≤ < .   
 
When describing domains and ranges, we sometimes extend this into set-builder 

notation, which would look like this: { }|10 30x x≤ < .  The curly brackets {} are read as 

“the set of”, and the vertical bar | is read as “such that”, so altogether we would read 

{ }|10 30x x≤ <  as “the set of x-values such that 10 is less than or equal to x and x is less 

than 30.” 
 
When describing ranges in set-builder notation, we could similarly write something like 

{ }( ) | 0 ( ) 100f x f x< < , or if the output had its own variable, we could use it.  So for our 

tree height example above, we could write for the range { }| 0 379h h< ≤ .  In set-builder 

notation, if a domain or range is not limited, we could write { }|  is a real numbert t , or 

{ }|t t ∈ℝ , read as “the set of t-values such that t is an element of the set of real numbers. 

 
A more compact alternative to set-builder notation is interval notation, in which 
intervals of values are referred to by the starting and ending values.  Curved parentheses 
are used for “strictly less than,” and square brackets are used for “less than or equal to.”  
Since infinity is not a number, we can’t include it in the interval, so we always use curved 
parentheses with ∞ and -∞.  The table below will help you see how inequalities 
correspond to set-builder notation and interval notation: 
 

Inequality Set Builder Notation Interval notation 

5 10h< ≤  { }| 5 10h h< ≤  (5, 10] 

5 10h≤ <  { }| 5 10h h≤ <  [5, 10) 

5 10h< <  { }| 5 10h h< <  (5, 10) 

10h <  { }| 10h h <  ( ,10)−∞  

10h ≥  { }| 10h h ≥  [10, )∞  

all real numbers { }|h h∈ℝ  ( , )−∞ ∞  

 
 
To combine two intervals together, using inequalities or set-builder notation we can use 
the word “or”.  In interval notation, we use the union symbol, ∪ , to combine two 
unconnected intervals together.   
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Example 3 

Describe the intervals of values shown on the line graph below using set builder and 
interval notations. 

  
 
To describe the values, x, that lie in the intervals shown above we would say, “x is a real 
number greater than or equal to 1 and less than or equal to 3, or a real number greater 
than 5.” 
 
As an inequality it is: 1 3 or 5x x≤ ≤ >  

In set builder notation: { }|1 3 or 5x x x≤ ≤ >    

In interval notation:  [1,3] (5, )∪ ∞  

 
 
Remember when writing or reading interval notation: 
Using a square bracket [ means the start value is included in the set 
Using a parenthesis ( means the start value is not included in the set  
 

 

Try it Now 
2.  Given the following interval, write its meaning in words, set builder notation, and 

interval notation. 

     

 

 

Domain and Range from Graphs 

 
We can also talk about domain and range based on graphs.  Since domain refers to the set 
of possible input values, the domain of a graph consists of all the input values shown on 
the graph.  Remember that input values are almost always shown along the horizontal 
axis of the graph.  Likewise, since range is the set of possible output values, the range of 
a graph we can see from the possible values along the vertical axis of the graph.   
 
Be careful – if the graph continues beyond the window on which we can see the graph, 
the domain and range might be larger than the values we can see. 
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Example 4 

Determine the domain and range of the graph below. 
 

 
 
In the graph above3, the input quantity along the horizontal axis appears to be “year”, 
which we could notate with the variable y.  The output is “thousands of barrels of oil per 
day”, which we might notate with the variable b, for barrels.  The graph would likely 
continue to the left and right beyond what is shown, but based on the portion of the 
graph that is shown to us, we can determine the domain is 1975 2008y≤ ≤ , and the 

range is approximately180 2010b≤ ≤ .   
 
In interval notation, the domain would be [1975, 2008] and the range would be about 
[180, 2010].  For the range, we have to approximate the smallest and largest outputs 
since they don’t fall exactly on the grid lines. 

 
 
Remember that, as in the previous example, x and y are not always the input and output 
variables.  Using descriptive variables is an important tool to remembering the context of 
the problem. 
 

 

 

 

 

 

 

                                                 
3 http://commons.wikimedia.org/wiki/File:Alaska_Crude_Oil_Production.PNG, CC-BY-SA, July 19, 2010 
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Try it Now 
3. Given the graph below write the domain and range in interval notation 
 

    

 

 

Domains and Ranges of the Toolkit functions 

 
We will now return to our set of toolkit functions to note the domain and range of each. 
 
Constant Function: ( )f x c=  

The domain here is not restricted; x can be anything.  When this is the case we say the 
domain is all real numbers.  The outputs are limited to the constant value of the function. 
Domain: ( , )−∞ ∞  

Range:  [c]    
Since there is only one output value, we list it by itself in square brackets. 

 
Identity Function: ( )f x x=  

Domain: ( , )−∞ ∞  

Range: ( , )−∞ ∞  

 

Quadratic Function: 2( )f x x=  

Domain: ( , )−∞ ∞  

Range: [0, )∞  

Multiplying a negative or positive number by itself can only yield a positive output.  

  

Cubic Function: 3( )f x x=  

Domain: ( , )−∞ ∞  

Range: ( , )−∞ ∞  
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Reciprocal: 
1

( )f x
x

=  

Domain: ( , 0) (0, )−∞ ∪ ∞  

Range: ( , 0) (0, )−∞ ∪ ∞  

We cannot divide by 0 so we must exclude 0 from the domain. 

One divide by any value can never be 0, so the range will not include 0. 

 

Reciprocal squared: 
2

1
( )f x

x
=  

Domain: ( , 0) (0, )−∞ ∪ ∞  

Range: (0, )∞  

We cannot divide by 0 so we must exclude 0 from the domain.   

 

Cube Root: 3( )f x x=   

Domain: ( , )−∞ ∞  

Range: ( , )−∞ ∞  

 

Square Root: 2( )f x x= , commonly just written as, ( )f x x=  

Domain: [0, )∞  

Range: [0, )∞  

When dealing with the set of real numbers we cannot take the square root of a negative 

number so the domain is limited to 0 or greater. 

 

Absolute Value Function: ( )f x x=  

Domain: ( , )−∞ ∞  

Range: [0, )∞     

Since absolute value is defined as a distance from 0, the output can only be greater than 

or equal to 0. 

 

 

Example 5 

Find the domain of each function:   a) 42)( += xxf       b) 
x

xg
36

3
)(

−
=  

 
a) Since we cannot take the square root of a negative number, we need the inside of the 
square root to be non-negative.   

04 ≥+x  when 4−≥x .   
The domain of f(x) is ),4[ ∞− . 

 
b) We cannot divide by zero, so we need the denominator to be non-zero.   

036 =− x  when x = 2, so we must exclude 2 from the domain.   
The domain of g(x) is ),2()2,( ∞∪−∞ . 
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Piecewise Functions 

 

In the toolkit functions we introduced the absolute value function ( )f x x= .  

With a domain of all real numbers and a range of values greater than or equal to 0, the 
absolute value can be defined as the magnitude or modulus of a number, a real number 
value regardless of sign, the size of the number, or the distance from 0 on the number 
line.  All of these definitions require the output to be greater than or equal to 0. 
 
If we input 0, or a positive value the output is unchanged 

( )f x x=     if   0x ≥  

 
If we input a negative value the sign must change from negative to positive. 

( )f x x= −   if   0x < ,     since multiplying a negative value by -1 makes it positive. 

 
Since this requires two different processes or pieces, the absolute value function is often 
called the most basic piecewise defined function. 
 
 

Piecewise Function 

A piecewise function is a function in which the formula used depends upon the 
domain the input lies in.  We notate this idea like: 

 

formula 1 if domain to use formula 1

( ) formula 2 if domain to use formula 2

formula 3 if domain to use formula 3

f x




= 



 

 
 
Example 6 

A museum charges $5 per person for a guided tour with a group of 1 to 9 people, or a 
fixed $50 fee for 10 or more people in the group.  Set up a function relating the number 
of people, n, to the cost, C. 
 
To set up this function, two different formulas would be needed.  C = 5n would work 
for n values under 10, and C = 50 would work for values of n ten or greater.   Notating 
this: 

5 0 10
( )

50 10

n if n
C n

if n

< <
= 

≥
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Example 7 

A cell phone company uses the function below to determine the cost, C, in dollars for g 
gigabytes of data transfer.   

25 0 2
( )

25 10( 2) 2

if g
C g

g if g

< <
= 

+ − ≥
 

Find the cost of using 1.5 gigabytes of data, and the cost of using 4 gigabytes of data. 
 
To find the cost of using 1.5 gigabytes of data, C(1.5), we first look to see which piece 
of domain our input falls in.  Since 1.5 is less than 2, we use the first formula, giving 
C(1.5) = $25. 
 
The find the cost of using 4 gigabytes of data, C(4), we see that our input of 4 is greater 
than 2, so we’ll use the second formula.  C(4) = 25 + 10(4-2) = $45. 

 
 
Example 8 

Sketch a graph of the function 








>−

≤<

≤

=

26

213

1

)(

2

xifx

xif

xifx

xf  

 
The first two component functions are from our library of Toolkit functions, so we 
know their shapes.  We can imagine graphing each function, then limiting the graph to 
the indicated domain.  At the endpoints of the domain, we put open circles to indicate 
where the endpoint is not included, due to a strictly-less-than inequality, and a closed 
circle where the endpoint is included, due to a less-than-or-equal-to inequality.   
 

    .     
 
For the third function, you should recognize this as a linear 
equation from your previous coursework.  If you remember how 
to graph a line using slope and intercept, you can do that.  
Otherwise, we could calculate a couple values, plot points, and 
connect them with a line.   
 
At x = 2, f(2) = 6 – 2 = 4.  We place an open circle here.  
At x = 3, f(3) = 6 – 3 = 3.  Connect these points with a line. 
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Now that we have each piece individually, we combine them onto the same graph: 

 
 
 

Try it Now 
4. At Pierce College during the 2009-2010 school year tuition rates for in-state residents 

were $89.50 per credit for the first 10 credits, $33 per credit for credits 11-18, and for 
over 18 credits the rate is $73 per credit4.  Write a piecewise defined function for the 
total tuition, T, at Pierce College during 2009-2010 as a function of the number of 
credits taken, c.  Be sure to consider a reasonable domain and range. 

 

 

Important Topics of this Section 

Definition of domain 

Definition of range 

Inequalities 

Interval notation 

Set builder notation 

Domain and Range from graphs 

Domain and Range of toolkit functions 

Piecewise defined functions 

 
 
 
 
 
 
 
 
 
 

                                                 
4 https://www.pierce.ctc.edu/dist/tuition/ref/files/0910_tuition_rate.pdf, retrieved August 6, 2010 
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Try it Now Answers 
1. Domain; y = years [1960,2010] ; Range, p = population,  [100,1400] 

 
2.  a. Values that are less than or equal to -2, or values that are greater than or equal to -1 

and less than 3 

b. { }| 2 1 3x x or x≤ − − ≤ <   

c. ( , 2] [ 1,3)−∞ − ∪ −  

 
3. Domain; y=years, [1952,2002] ; Range, p=population in millions, [40,88] 
 

4. 








>−+

≤<−+

≤

=

18)18(731159

1810)10(33895

105.89

)(

cifc

cifc

cifc

cT   Tuition, T, as a function of credits, c. 

  Reasonable domain should be whole numbers 0 to (answers may vary), e.g. [0, 23]  

  Reasonable range should be $0 – (answers may vary), e.g. [0,1524]  
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Section 1.2 Exercises 

 
Write the domain and range of the function using interval notation.  

1.  2.   
 
Write the domain and range of each graph as an inequality. 

3.   4.  

Suppose that you are holding your toy submarine under the water. You release it and it 
begins to ascend. The graph models the depth of the submarine as a function of time, 
stopping once the sub surfaces.  What is the domain and range of the function in the 
graph? 
 

5.   6.  
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Find the domain of each function 
 

7. ( ) 3 2f x x= −     8. ( ) 5 3f x x= +  

 

9. ( ) 3 6 2f x x= − −     10. ( ) 5 10 2f x x= − −     

 

11. ( )
9

  6
f x

x
=

−
      12. ( )

6

  8
f x

x
=

−
  

 

13. ( )
3 1

4 2

x
f x

x

+
=

+
     14. ( )

5 3

4 1

x
f x

x

+
=

−
 

 

15. ( )
4

4

x
f x

x

+
=

−
    16. ( )

5

6

x
f x

x

+
=

−
  

 

17. ( ) 2

 3

 9  22

x
f x

x x

−
=

+ −
    18. ( ) 2

 8

 8  9

x
f x

x x

−
=

+ −
 

 
 
 
Given each function, evaluate: ( 1)f − , (0)f , (2)f , (4)f  

19. ( )
7 3 0

7 6 0

x if x
f x

x if x

+ <
= 

+ ≥
    20. ( )

4 9 0

4 18 0

x if x
f x

x if x

− <
= 

− ≥
  

 

21. ( )
2 2 2

4 5 2

x if x
f x

x if x

 − <
= 

+ − ≥
   22. ( )

34 1

1 1

x if x
f x

x if x

 − <
= 

+ ≥
  

23. ( )
2

5 0

3 0 3

3

x if x

f x if x

x if x

<


= ≤ ≤
 >

   24. ( )

3 1 0

4 0 3

3 1 3

x if x

f x if x

x if x

 + <


= ≤ ≤
 + >
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Write a formula for the piecewise function graphed below. 

25.  26.  

27.  28.    

29.  30.  

Sketch a graph of each piecewise function 

31. ( )
2

5 2

x if x
f x

if x

 <
= 

≥
    32. ( )

4 0

0

if x
f x

x if x

<
= 

≥
  

33. ( )
2 0

2 0

x if x
f x

x if x

 <
= 

+ ≥
   34. ( ) 3

1 1

1

x if x
f x

x if x

+ <
= 

≥
  

35. ( )

3 2

1 2 1

3 1

if x

f x x if x

if x

≤ −


= − + − < ≤
 >

   36. ( )

3 2

1 2 2

0 2

if x

f x x if x

if x

− ≤ −


= − − < ≤
 >
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Section 1.3 Rates of Change and Behavior of Graphs 

 
Since functions represent how an output quantity varies with an input quantity, it is 
natural to ask about the rate at which the values of the function are changing.   
 
For example, the function C(t) below gives the average cost, in dollars, of a gallon of 
gasoline t years after 2000. 
 

t 2 3 4 5 6 7 8 9 

C(t) 1.47 1.69 1.94 2.30 2.51 2.64 3.01 2.14 

 
If we were interested in how the gas prices had changed between 2002 and 2009, we 
could compute that the cost per gallon had increased from $1.47 to $2.14, an increase of  
$0.67.  While this is interesting, it might be more useful to look at how much the price 
changed per year.  You are probably noticing that the price didn’t change the same 
amount each year, so we would be finding the average rate of change over a specified 
amount of time. 
 
The gas price increased by $0.67 from 2002 to 2009, over 7 years, for an average of 

096.0
7

67.0$
≈

years
dollars per year.  On average, the price of gas increased by about 9.6 

cents each year.  
 
 

Rate of Change 

A rate of change describes how the output quantity changes in relation to the input 
quantity.  The units on a rate of change are “output units per input units” 

 
 
Some other examples of rates of change would be quantities like: 

• A population of rats increases by 40 rats per week 

• A barista earns $9 per hour (dollars per hour) 

• A farmer plants 60,000 onions per acre 

• A car can drive 27 miles per gallon 

• A population of grey whales decreases by 8 whales per year 

• The amount of money in your college account decreases by $4,000 per quarter 
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Average Rate of Change 

The average rate of change between two input values is the total change of the 
function values (output values) divided by the change in the input values. 

Average rate of change = 
Input of Change

Output of Change
=

12

12

xx

yy

x

y

−

−
=

∆

∆
 

 
 
Example 1 

Using the cost-of-gas function from earlier, find the average rate of change between 
2007 and 2009 
 
From the table, in 2007 the cost of gas was $2.64.  In 2009 the cost was $2.14. 
 
The input (years) has changed by 2.  The output has changed by $2.14 - $2.64 = -0.50.  

The average rate of change is then 
years2

50.0$−
 = -0.25 dollars per year 

 
 

Try it Now 
1. Using the same cost-of-gas function, find the average rate of change between 2003 and 

2008 

 
 
Notice that in the last example the change of output was negative since the output value 
of the function had decreased.  Correspondingly, the average rate of change is negative. 
 
 
Example 2 

Given the function g(t) shown here, find the average rate of change on the interval  
[0, 3].  
 
At t = 0, the graph shows 1)0( =g  

At t = 3, the graph shows 4)3( =g  

 
The output has changed by 3 while the input has changed by 
3, giving an average rate of change of: 

1
3

3

03

14
==

−

−
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Example 3 

On a road trip, after picking up your friend who lives 10 miles away, you decide to 
record your distance from home over time.  Find your average speed over the first 6 
hours. 
 
 
 
 
Here, your average speed is the average rate of change.   
You traveled 282 miles in 6 hours, for an average speed of 
292 10 282

6 0 6

−
=

−
= 47 miles per hour 

 
 
We can more formally state the average rate of change calculation using function 
notation. 
 
 

Average Rate of Change using Function Notation 

Given a function f(x), the average rate of change on the interval [a, b] is 

Average rate of change = 
ab

afbf

−

−
=

)()(

Input of Change

Output of Change
 

 
 
Example 4 

Compute the average rate of change of 
x

xxf
1

)( 2
−=  on the interval [2, 4] 

 
We can start by computing the function values at each endpoint of the interval 

2

7

2

1
4

2

1
2)2( 2

=−=−=f  

4

63

4

1
16

4

1
4)4( 2

=−=−=f  

 
Now computing the average rate of change 

Average rate of change = 
8

49

2

4

49

24

2

7

4

63

24

)2()4(
==

−

−

=
−

− ff
 

 
 

Try it Now 

2. Find the average rate of change of xxxf 2)( −=  on the interval [1, 9] 

 

t (hours) 0 1 2 3 4 5 6 7 

D(t) (miles) 10 55 90 153 214 240 292 300 
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Example 5 

The magnetic force F, measured in Newtons, between two magnets is related to the 

distance between the magnets d, in centimeters, by the formula 
2

2
)(

d
dF = .  Find the 

average rate of change of force if the distance between the magnets is increased from 2 
cm to 6 cm. 
 

We are computing the average rate of change of 
2

2
)(

d
dF =  on the interval [2, 6]. 

Average rate of change = 
26

)2()6(

−

− FF
 Evaluating the function 

 
 

26

)2()6(

−

− FF
= 

26

2

2

6

2
22

−

−

     Simplifying 

4

4

2

36

2
−

      Combining the numerator terms 

4

36

16−

      Simplifying further  

9

1−
 Newtons per centimeter 

 
This tells us the magnetic force decreases, on average, by 1/9 Newtons per centimeter 
over this interval.   

 
 
 
Example 6 

Find the average rate of change of 13)( 2
++= tttg on the interval ],0[ a .  Your answer 

will be an expression involving a. 
 
Using the average rate of change formula 

0

)0()(

−

−

a

gag
     Evaluating the function 

0

)1)0(30()13( 22

−

++−++

a

aa
  Simplifying 
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a

aa 1132
−++

    Simplifying further, and factoring 

a

aa )3( +
     Cancelling the common factor a 

3+a  
 
This result tells us the average rate of change between t = 0 and any other point t = a.  
For example, on the interval [0, 5], the average rate of change would be 5+3 = 8. 

 
 

Try it Now 

3. Find the average rate of change of 2)( 3
+= xxf  on the interval ],[ haa + . 

 
 
Graphical Behavior of Functions 

 
As part of exploring how functions change, it is interesting to explore the graphical 
behavior of functions. 
 
 

Increasing/Decreasing 

A function is increasing on an interval if the function values increase as the inputs 
increase.  More formally, a function is increasing if f(b) > f(a) for any two input values 
a and b in the interval with b>a.  The average rate of change of an increasing function 
is positive. 

 

A function is decreasing on an interval if the function values decrease as the inputs 
increase.  More formally, a function is decreasing if f(b) < f(a) for any two input 
values a and b in the interval with b>a.  The average rate of change of a decreasing 
function is negative. 

 
 
Example 7 

Given the function p(t) graphed here, on what intervals 
does the function appear to be increasing? 
 
The function appears to be increasing from t = 1 to t = 3, 
and from t = 4 on.   
 
In interval notation, we would say the function appears to 
be increasing on the interval (1,3) and the interval ),4( ∞ . 
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Notice in the last example that we used open intervals (intervals that don’t include the 
endpoints) since the function is neither increasing nor decreasing at t = 1, 3, or 4.   
 
 

Local Extrema 

A point where a function changes from increasing to decreasing is called a local 

maximum.   

 

A point where a function changes from decreasing to increasing is called a local 

minimum. 

 

Together, local maxima and minima are called the local extrema, or local extreme 
values, of the function. 

 
 
Example 8 

Using the cost of gasoline function from the beginning of the section, find an interval on 
which the function appears to be decreasing.  Estimate any local extrema using the 
table. 
 
 
 
 
It appears that the cost of gas increased from t = 2 to t = 8. It appears the cost of gas 
decreased from t = 8 to t = 9, so the function appears to be decreasing on the interval  
(8, 9). 
 
Since the function appears to change from increasing to decreasing at t = 8, there is 
local maximum at t = 8. 

 
 
Example 9 

Use a graph to estimate the local extrema of the function 
3

2
)(

x

x
xf += .   Use these to 

determine the intervals on which the function is increasing. 
 
Using technology to graph the function, it appears there is a local minimum somewhere 
between x = 2 and x =3, and a symmetric local maximum somewhere between x = -3 
and x = -2. 
 
Most graphing calculators and graphing utilities can estimate the location of maxima 
and minima.  Below are screen images from two different technologies, showing the 
estimate for the local maximum and minimum. 
 

t 2 3 4 5 6 7 8 9 

C(t) 1.47 1.69 1.94 2.30 2.51 2.64 3.01 2.14 
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Based on these estimates, the function is increasing on the intervals )449.2,( −−∞ and 

),449.2( ∞ .  Notice that while we expect the extrema to be symmetric, the two different 

technologies agree only up to 4 decimals due to the differing approximation algorithms 
used by each. 

 
 

Try it Now 

4. Use a graph of the function 20156)( 23
+−−= xxxxf  to estimate the local extrema of 

the function.  Use these to determine the intervals on which the function is increasing 
and decreasing. 

 
 
Concavity 
 
The total sales, in thousands of dollars, for two companies over 4 weeks are shown.   

   
Company A     Company B 

    
As you can see, the sales for each company are increasing, but they are increasing in very 
different ways.  To describe the difference in behavior, we can investigate how the 
average rate of change varies over different intervals.  Using tables of values, 
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From the tables, we can see that the rate of change for company A is decreasing, while 
the rate of change for company B is increasing.   
 
   

     
  
When the rate of change is getting smaller, as with Company A, we say the function is 
concave down.  When the rate of change is getting larger, as with Company B, we say 
the function is concave up. 
 
 

Concavity 

A function is concave up if the rate of change is increasing.   

A function is concave down if the rate of change is decreasing. 

A point where a function changes from concave up to concave down or vice versa is 
called an inflection point. 

 
 
 
 
 

Company A 

Week Sales Rate of 
Change 

0 0  
  5 
1 5  
  2.1 
2 7.1  
  1.6 
3 8.7  
  1.3 
4 10  

 

Company B 

Week Sales Rate of 
Change 

0 0  
  0.5 
1 0.5  
  1.5 
2 2  
  2.5 
3 4.5  
  3.5 
4 8  
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Example 10 

An object is thrown from the top of a building.  The object’s height in feet above 

ground after t seconds is given by the function 216144)( tth −=  for 30 ≤≤ t .  Describe 

the concavity of the graph. 
 
Sketching a graph of the function, we can see that the function 
is decreasing.  We can calculate some rates of change to 
explore the behavior. 
 
 
 
 
 
 
 
 
 
 
 
Notice that the rates of change are becoming more negative, so the rates of change are 
decreasing.  This means the function is concave down. 

 
 
Example 11 

The value, V, of a car after t years is given in the table below.  Is the value increasing or 
decreasing?  Is the function concave up or concave down? 
 
 
Since the values are getting smaller, we can determine that the value is decreasing.  We 
can compute rates of change to determine concavity. 
 
 
 
 
 
Since these values are becoming less negative, the rates of change are increasing, so  
this function is concave up. 

 
 

Try it Now 
5. Is the function described in the table below concave up or concave down? 
 
 
 

t h(t) Rate of 
Change 

0 144  
  -16 
1 128  
  -48 
2 80  
  -80 
3 0  

 

t 0 2 4 6 8 

V(t) 28000 24342 21162 18397 15994 

 

t 0 2 4 6 8 

V(t) 28000 24342 21162 18397 15994 

Rate of change -1829 -1590 -1382.5 -1201.5  

 

x 0 5 10 15 20 

g(x) 10000 9000 7000 4000 0 
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Graphically, concave down functions bend downwards like a frown, and concave up 
function bend upwards like a smile. 

 
 
 
Example 12 

Estimate from the graph shown the intervals 
on which the function is concave down and 
concave up.   
 
On the far left, the graph is decreasing but 
concave up, since it is bending upwards.  It 
begins increasing at x = -2, but it continues to 
bend upwards until about x = -1.   
 
From x = -1 the graph starts to bend 
downward, and continues to do so until about 
x = 2.  The graph then begins curving upwards 
for the remainder of the graph shown. 
 
From this, we can estimate that the graph is concave up on the intervals )1,( −−∞  and 

),2( ∞ , and is concave down on the interval )2,1(− .  The graph has inflection points at  

x = -1 and x = 2. 
 
 
 
 
 

Increasing Decreasing 

Concave 
Down 

Concave 
Up 
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Try it Now 

6. Using the graph from Try it Now 4, 20156)( 23
+−−= xxxxf , estimate the intervals 

on which the function is concave up and concave down. 

 
 
Behaviors of the Toolkit Functions 

 
We will now return to our toolkit functions and discuss their graphical behavior. 
 

Function Increasing/Decreasing Concavity 

Constant Function 
( )f x c=  

Neither increasing nor 
decreasing 
 

Neither concave up nor down 

Identity Function 
( )f x x=  

Increasing Neither concave up nor down 
 

Quadratic Function 
2( )f x x=  

Increasing on ),0( ∞  

Decreasing on )0,(−∞  

Minimum at x = 0 

Concave up ( , )−∞ ∞  

Cubic Function  
3( )f x x=  

 

Increasing Concave down on )0,(−∞  

Concave up on ),0( ∞  

Inflection point at (0,0) 

Reciprocal  
1

( )f x
x

=  

 

Decreasing ),0()0,( ∞∪−∞  Concave down on )0,(−∞  

Concave up on ),0( ∞  

 

Function Increasing/Decreasing Concavity 

Reciprocal squared  

2

1
( )f x

x
=  

 

Increasing on )0,(−∞  

Decreasing on ),0( ∞  

 

Concave up on 
),0()0,( ∞∪−∞  

Cube Root  
3( )f x x=   

 

Increasing Concave down on ),0( ∞  

Concave up on )0,(−∞  

Inflection point at (0,0) 

Square Root  

( )f x x=  

 

Increasing on ),0( ∞  Concave down on ),0( ∞  

Absolute Value 

( )f x x=  

Increasing on ),0( ∞  

Decreasing on )0,(−∞  

 

Neither concave up or down 
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Important Topics of This Section 

Rate of Change 

Average Rate of Change 

Calculating Average Rate of Change using Function Notation 

Increasing/Decreasing 

Local Maxima and Minima (Extrema) 

Inflection points 

Concavity 

 
 

Try it Now Answers 

1. 
yearsyears 5

32.1$

5

69.1$01.3$
=

−
 = 0.264 dollars per year. 

 

2. Average rate of change = 
( ) ( ) ( ) ( )

2

1

8

4

19

13

19

121929

19

)1()9(
==

−

−−
=

−

−−−
=

−

− ff
 

 

3. 
( ) ( )

=
−−++++

=
+−++

=
−+

−+

h

ahahhaa

h

aha

aha

afhaf 223322)(

)(

)()( 3322333

 

    
( ) 22

22322

33
3333

haha
h

hahah

h

hahha
++=

++
=

++
 

 
4.  Based on the graph, the local maximum appears to 

occur at (-1, 28), and the local minimum occurs at (5,-
80).  The function is increasing on ),5()1,( ∞∪−−∞  

and decreasing on )5,1(− . 

 
5.  Calculating the rates of change, we see the rates of 

change become more negative, so the rates of change 
are decreasing.  This function is concave down. 

 
 
 
 
 
6. Looking at the graph, it appears the function is concave down on )2,(−∞  and concave 

up on ),2( ∞ . 

 
 
 

x 0 5 10 15 20 

g(x) 10000 9000 7000 4000 0 

Rate of change -1000 -2000 -3000 -4000  
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Section 1.3 Exercises 

 
1.  The table below gives the annual sales (in millions of dollars) of a product.  What was 

the average rate of change of annual sales… 
a) Between 2001 and 2002? b) Between 2001 and 2004? 

year 1998 1999 2000 2001 2002 2003 2004 2005 2006 

sales 201 219 233 243 249 251 249 243 233 

 

2.  The table below gives the population of a town, in thousands.  What was the average 
rate of change of population… 
a) Between 2002 and 2004? b) Between 2002 and 2006? 

year 2000 2001 2002 2003 2004 2005 2006 2007 2008 

population 87 84 83 80 77 76 75 78 81 

 
 
3.  Based on the graph shown, estimate the average rate of 

change from x = 1 to x = 4.  
 
4. Based on the graph shown, estimate the average rate of 

change from x = 2 to x = 5. 
 
 
 
 
Find the average rate of change of each function on the interval specified. 

5. 2)( xxf =  on [1, 5]    6. 3)( xxq =  on [-4, 2] 

7. 13)( 3
−= xxg  on [-3, 3]   8. 225)( xxh −=  on [-2, 4] 

9. 
3

2 4
6)(

t
ttk +=  on [-1, 3]   10. 

3

14
)(

2

2

+

+−
=

t

tt
tp  on [-3, 1]  

 
Find the average rate of change of each function on the interval specified.  Your answers 
will be expressions involving a parameter (b or h). 

11. 74)( 2
−= xxf  on [1, b]   12. 92)( 2

−= xxg  on [4, b]  

13. 43)( += xxh  on [2, 2+h]   14. 24)( −= xxk  on [3, 3+h] 

15. 
4

1
)(

+
=

t
ta  on [9, 9+h]   16. 

3

1
)(

+
=

x
xb  on [1, 1+h] 

17. 33)( xxj =  on [1, 1+h]   18. 34)( ttr =  on [2, 2+h] 

19. 12)( 2
+= xxf  on [x, x+h]  20. 23)( 2

−= xxg  on [x, x+h] 
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For each function graphed, estimate the intervals on which the function is increasing and 
decreasing. 
 

21.       22.  
 

23.        24.  
 
For each table below, select whether the table represents a function that is increasing or 

decreasing, and whether the function is concave up or concave down. 

25. x f(x) 

1 2 

2 4 

3 8 

4 16 

5 32 
 

26. x g(x) 

1 90 

2 80 

3 75 

4 72 

5 70 
 

27. x h(x) 

1 300 

2 290 

3 270 

4 240 

5 200 
 

28. x k(x) 

1 0 

2 15 

3 25 

4 32 

5 35 
 

        

29. x f(x) 

1 -10 

2 -25 

3 -37 

4 -47 

5 -54 
 

30. x g(x) 

1 -200 

2 -190 

3 -160 

4 -100 

5 0 
 

31. x h(x) 

1 -
100 

2 -50 

3 -25 

4 -10 

5 0 
 

32. x k(x) 

1 -50 

2 -100 

3 -200 

4 -400 

5 -900 
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For each function graphed, estimate the intervals on which the function is concave up and 
concave down, and the location of any inflection points. 

 
33.        34.  
 

35.  36.  
 
Use a graph to estimate the local extrema and inflection points of each function, and to 
estimate the intervals on which the function is increasing, decreasing, concave up, and 
concave down. 
 

37. 54)( 34
+−= xxxf    38. 110105)( 2345

−+++= xxxxxh  

39. 3)( += tttg     40. tttk −=
3/23)(  

41. 410122)( 234
+−−+= xxxxxm  42. 26188)( 234

+−+−= xxxxxn  
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Section 1.4 Composition of Functions 

 
Suppose we wanted to calculate how much it costs to heat a house on a particular day of 
the year.  The cost to heat a house will depend on the average daily temperature, and the 
average daily temperature depends on the particular day of the year.  Notice how we have 
just defined two relationships: The temperature depends on the day, and the cost depends 
on the temperature.  Using descriptive variables, we can notate these two functions. 
 
The first function, C(T), gives the cost C of heating a house when the average daily 
temperature is T degrees Celsius, and the second, T(d), gives the average daily 
temperature on day d of the year in some city.  If we wanted to determine the cost of 
heating the house on the 5th day of the year, we could do this by linking our two functions 
together, an idea called composition of functions.  Using the function T(d), we could 
evaluate T(5) to determine the average daily temperature on the 5th day of the year.  We 
could then use that temperature as the input to the C(T) function to find the cost to heat 
the house on the 5th day of the year:  C(T(5)). 
 

 

Composition of Functions 

When the output of one function is used as the input of another, we call the entire 
operation a composition of functions.  We write f(g(x)), and read this as “f of g of x” 
or “f composed with g at x”.   

 

An alternate notation for composition uses the composition operator: �  

))(( xgf �  is read “f of g of x” or “f composed with g at x”,  just like  f(g(x)). 

 

 

Example 1 

Suppose c(s) gives the number of calories burned doing s sit-ups, and s(t) gives the 
number of sit-ups a person can do in t minutes.  Interpret c(s(3)). 
 

When we are asked to interpret, we are being asked to explain the meaning of the 
expression in words.  The inside expression in the composition is s(3).  Since the input 
to the s function is time, the 3 is representing 3 minutes, and s(3) is the number of sit-
ups that can be done in 3 minutes.  Taking this output and using it as the input to the 
c(s) function will gives us the calories that can be burned by the number of sit-ups that 
can be done in 3 minutes. 

 
 
Note that it is not important that the same variable be used for the output of the inside 
function and the input to the outside function.  However, it is essential that the units on 
the output of the inside function match the units on the input to the outside function, if the 
units are specified. 
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Example 2 

Suppose f(x) gives miles that can be driven in x hours, and g(y) gives the gallons of gas 
used in driving y miles.  Which of these expressions is meaningful: f(g(y)) or g(f(x))? 
 
The expression g(y) takes miles as the input and outputs a number of gallons.  The 
function f(x) is expecting a number of hours as the input; trying to give it a number of 
gallons as input does not make sense.  Remember the units must match, and number of 
gallons does not match number of hours, so the expression f(g(y)) is meaningless. 
 
The expression f(x) takes hours as input and outputs a number of miles driven.  The 
function g(y) is expecting a number of miles as the input, so giving the output of the f(x) 
function (miles driven) as an input value for g(y), where gallons of gas depends on 
miles driven, does make sense.  The expression g(f(x)) makes sense, and will give the 
number of gallons of gas used, g, driving a certain number of miles, f(x), in x hours. 

 
 

Try it Now 
1. In a department store you see a sign that says 50% off clearance merchandise, so final 

cost C depends on the clearance price, p, according to the function C(p). Clearance 
price, p, depends on the original discount, d, given to the clearance item, p(d).  
Interpret C(p(d)). 

 

 

Composition of Functions using Tables and Graphs 

 
When working with functions given as tables and graphs, we can look up values for the 
functions using a provided table or graph, as discussed in section 1.1.  We start evaluation 
from the provided input, and first evaluate the inside function.  We can then use the 
output of the inside function as the input to the outside function.  To remember this, 
always work from the inside out. 
 
 
Example 3 

Using the tables below, evaluate ( (3))f g and ( (4))g f  

 
To evaluate ( (3))f g , we start from the inside with the value 3. We then evaluate the 

inside expression (3)g using the table that defines the function g: (3) 2g = .   

 

x g(x) 

1 3 

2 5 

3 2 

4 7 

 

 

x f(x) 

1 6 

2 8 

3 3 

4 1 
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We can then use that result as the input to the f function, so (3)g  is replaced by the 

equivalent value 2 and we can evaluate (2)f .  Then using the table that defines the 

function f, we find that (2) 8f = . 

( (3)) (2) 8f g f= = . 

 
To evaluate ( (4))g f , we first evaluate the inside expression (4)f using the first table: 

(4) 1f = .  Then using the table for g we can evaluate: 

( (4)) (1) 3g f g= = . 

 
 

Try it Now 
2. Using the tables from the example above, evaluate ( (1))f g  and ( (3))g f . 

 
 
Example 4 

Using the graphs below, evaluate ( (1))f g . 

   
 
To evaluate ( (1))f g , we again start with the inside evaluation.  We evaluate (1)g  using 

the graph of the g(x) function, finding the input of 1 on the horizontal axis and finding 
the output value of the graph at that input.  Here, (1) 3g = .   

 
Using this value as the input to the f function, ( (1)) (3)f g f= .  We can then evaluate 

this by looking to the graph of the f(x) function, finding the input of 3 on the horizontal 
axis, and reading the output value of the graph at this input.   

(3) 6f = , so 6))1(( =gf . 

 
 

Try it Now 
3. Using the graphs from the previous example, evaluate ( (2))g f . 
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Composition using Formulas 

 
When evaluating a composition of functions where we have either created or been given 
formulas, the concept of working from the inside out remains the same.  First, we 
evaluate the inside function using the input value provided, then use the resulting output 
as the input to the outside function. 
 
 
Example 5 

Given tttf −=
2)(  and 23)( += xxh , evaluate ( (1))f h . 

 
Since the inside evaluation is (1)h we start by evaluating the h(x) function at 1: 

52)1(3)1( =+=h  

 
Then ( (1)) (5)f h f= , so we evaluate the f(t) function at an input of 5: 

2055)5())1(( 2
=−== fhf  

 
 

Try it Now 
4. Using the functions from the example above, evaluate ( ( 2))h f − . 

 
 
While we can compose the functions as above for each individual input value, sometimes 
it would be really helpful to find a single formula which will calculate the result of a 
composition f(g(x)).  To do this, we will extend our idea of function evaluation.  Recall 

that when we evaluate a function like tttf −=
2)( , we put whatever value is inside the 

parentheses after the function name into the formula wherever we see the input variable.   
 
 
Example 6 

Given tttf −=
2)( , evaluate (3)f  and ( 2)f − . 

 

33)3( 2
−=f  

)2()2()2( 2
−−−=−f  

 
We could simplify the results above if we wanted to  

2(3) 3 3 9 3 6f = − = − =  
2( 2) ( 2) ( 2) 4 2 6f − = − − − = + =  
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We are not limited, however, to using a numerical value as the input to the function. We 
can put anything into the function: a value, a different variable, or even an algebraic 
expression, provided we use the input expression everywhere we see the input variable.   
 
 
Example 7 

Using the function from the previous example, evaluate f(a). 
 

This means that the input value for t is some unknown quantity a.  As before, we 
evaluate by replacing the input variable t with the input quantity, in this case a. 

aaaf −=
2)(  

 
 
The same idea can then be applied to expressions more complicated than a single letter.   
 
 
Example 8 

Using the same f(t) function from above, evaluate )2( +xf . 

 
Everywhere in the formula for f where there was a t, we would replace it with the input 
( 2)x + .  Since in the original formula the input t was squared in the first term, the entire 

input 2x+  needs to be squared when we substitute, so we need to use grouping 
parentheses.  To avoid problems, it is advisable to always use parentheses around 
inputs. 
 

)2()2()2( 2
+−+=+ xxxf  

 

We could simplify this expression further to 23)2( 2
++=+ xxxf  if we wanted to: 

( 2) ( 2)( 2) ( 2)f x x x x+ = + + − +   Use the “FOIL” technique (first, outside, inside, last) 
2( 2) 2 2 4 ( 2)f x x x x x+ = + + + − +   distribute the negative sign  
2( 2) 2 2 4 2f x x x x x+ = + + + − −      combine like terms 
2( 2) 3 2f x x x+ = + +   

 
 
Example 9 

Using the same function, evaluate )( 3
tf . 

 
Note that in this example, the same variable is used in the input expression and as the 
input variable of the function.  This doesn’t matter – we still replace the original input t 

in the formula with the new input expression, 3
t . 

363233 )()()( tttttf −=−=  
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Try it Now 

5. Given xxxg −= 3)( , evaluate )2( −tg . 

 
 
This now allows us to find an expression for a composition of functions.  If we want to 
find a formula for f(g(x)), we can start by writing out the formula for g(x).   We can then 
evaluate the function f(x) at that expression, as in the examples above.  
 
 
Example 10 

Let 2)( xxf =  and x
x

xg 2
1

)( −= , find f(g(x)) and g(f(x)). 

 
To find f(g(x)), we start by evaluating the inside, writing out the formula for g(x). 

x
x

xg 2
1

)( −=  

We then use the expression 
1

2x
x

 
− 

 
 as input for the function f. 









−= x

x
fxgf 2

1
))((  

 
We then evaluate the function f(x) using the formula for g(x) as the input. 

Since 2)( xxf = , 
2

2
1

2
1









−=








− x

x
x

x
f  

This gives us the formula for the composition:  
2

2
1

))(( 







−= x

x
xgf . 

 
Likewise, to find g(f(x)), we evaluate the inside, writing out the formula for f(x) 

( )2))(( xgxfg =  

 
Now we evaluate the function g(x) using x2 as the input. 

2

2
2

1
))(( x

x
xfg −=  

 
 

Try it Now 

6. Let xxxf 3)( 3
+=  and xxg =)( , find f(g(x)) and g(f(x)). 
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Example 11 

A city manager determines that the tax revenue, R, in millions of dollars collected on a 

population of p thousand people is given by the formula pppR += 03.0)( , and that 

the city’s population, in thousands, is predicted to follow the formula 
23.0260)( tttp ++= , where t is measured in years after 2010.  Find a formula for the 

tax revenue as a function of the year. 
 
Since we want tax revenue as a function of the year, we want year to be our initial input, 
and revenue to be our final output.  To find revenue, we will first have to predict the 
city population, and then use that result as the input to the tax function.  So we need to 
find R(p(t)).  Evaluating this, 
 

( ) ( ) 222 3.02603.026003.03.0260))(( ttttttRtpR +++++=++=  

 
This composition gives us a single formula which can be used to predict the tax revenue 
during a given year, without needing to find the intermediary population value.   
 
For example, to predict the tax revenue in 2017, when t = 7 (because t is measured in 
years after 2010), 
 

( ) 079.12)7(3.0)7(260)7(3.0)7(26003.0))7(( 22
≈+++++=pR million dollars 

 
 
Domain of Compositions 

 
When we think about the domain of a composition ( ) ( ( ))h x f g x= , we must consider 

both the domain of the inner function and the domain of the composition itself.  While it 
is tempting to only look at the resulting composite function, if the inner function were 
undefined at a value of x, the composition would not be possible. 
 
 
Example 12 

Let 
2

1
( )

1
f x

x
=

−
 and ( ) 2g x x= − .  Find the domain of ( )( )f g x . 

 
Since we want to avoid the square root of negative numbers, the domain of ( )g x  is the 

set of values where 2 0x − ≥ .  The domain is 2x ≥ . 
 

The composition is ( )
( )

2

1 1 1
( )

( 2) 1 32 1
f g x

x xx

= = =
− − −− −

.   

The composition is undefined when x = 3, so that value must also be excluded from the 
domain.  Notice that the composition doesn't involve a square root, but we still have to 
consider the domain limitation from the inside function. 
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Combining the two restrictions, the domain is all values of x greater than or equal to 2, 
except x = 3.   
 

In inequalities, the domain is:  2 3 or 3x x≤ < > . 

In interval notation, the domain is:  [ ) ( )2,3 3,∪ ∞ . 

 
 

Try it Now 

7. Let 
2

1
)(

−
=

x
xf  and 

x
xg

1
)( = . Find the domain of ( )( )f g x . 

 
 
Decomposing Functions 

 
In some cases, it is desirable to decompose a function – to write it as a composition of 
two simpler functions. 
 
 
Example 13 

Write 
253)( xxf −+=  as the composition of two functions. 

 
We are looking for two functions, g and h, so ))(()( xhgxf = .  To do this, we look for a 

function inside a function in the formula for f(x).  As one possibility, we might notice 

that 25 x−  is the inside of the square root.  We could then decompose the function as: 
25)( xxh −=  

xxg += 3)(  

 
We can check our answer by recomposing the functions: 

( ) 22 535))(( xxgxhg −+=−=  

 
Note that this is not the only solution to the problem.  Another non-trivial 

decomposition would be 2)( xxh =  and xxg −+= 53)(  
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Important Topics of this Section 

Definition of Composition of Functions 

Compositions using:  

  Words  

  Tables  

  Graphs  

  Equations  

Domain of Compositions 

Decomposition of Functions 

 
 

Try it Now Answers 
1. The final cost, C, depends on the clearance price, p, which is based on the original 

discount, d.  (Or the original discount d, determines the clearance price and the final 
cost is half of the clearance price.) 
 

2. ( (1)) (3) 3f g f= =   and      ( (3)) (3) 2g f g= =   

 
3. ( (2)) (5) 3g f g= =  

 
4. ( ( 2)) (6) 20h f h− = =   did you remember to insert your input values using parentheses? 

 

5. ( 2) 3( 2) ( 2)g t t t− = − − −    

 

6. ( ) ( ) ( )
3

( ( )) 3f g x f x x x= = +  

( ) ( )3 3( ( )) 3 3g f x g x x x x= + = +  

 

7. 
x

xg
1

)( =  is undefined at x = 0. 

The composition, ( )
1 1 1 1

( )
1 1 2 1 2 1 2

2

x
f g x f

x xx x

x x x x

 
= = = = =  − −  − −

 is undefined 

when 021 =− x , when 
2

1
=x .   

Restricting these two values, the domain is ( )
1 1

,0 0, ,
2 2

   
−∞ ∪ ∪ ∞   

   
. 
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Section 1.4 Exercises 

 

Given each pair of functions, calculate ( )( )0f g  and ( )( )0g f . 

1. ( ) 4 8f x x= + , ( ) 27g x x= −   2. ( ) 5 7f x x= + , ( ) 24 2g x x= −  

3. ( ) 4f x x= + , ( ) 312g x x= −   4. ( )
1

2
f x

x
=

+
, ( ) 4 3g x x= +  

 
Use the table of values to evaluate each expression 
5. ( (8))f g      

6. ( )( )5f g   

7. ( (5))g f    

8. ( )( )3g f   

9. ( (4))f f     

10. ( )( )1f f   

11. ( (2))g g   

12. ( )( )6g g   

Use the graphs to evaluate the expressions below.  
13. ( (3))f g   

14. ( )( )1f g   

15. ( (1))g f     

16. ( )( )0g f   

17. ( (5))f f     

18. ( )( )4f f    

19. ( (2))g g   

20. ( )( )0g g   

For each pair of functions, find ( )( )f g x  and ( )( )g f x .  Simplify your answers. 

21. ( )
1

6
f x

x
=

−
, ( )

7
6 g x

x
= +   22. ( )

1

4
f x

x
=

−
, ( )

2
4g x

x
= +  

23. ( ) 2 1f x x= + , ( ) 2g x x= +   24. ( ) 2f x x= + , ( ) 2 3g x x= +   

25. ( )f x x= , ( ) 5 1g x x= +    26. ( ) 3f x x=  , ( ) 3

1x
g x

x

+
=  

x  ( )f x  ( )g x  

0 7 9 

1 6 5 

2 5 6 

3 8 2 

4 4 1 

5 0 8 

6 2 7 

7 1 3 

8 9 4 

9 3 0 
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27. If  ( ) 4 6f x x= + ,  ( )  6 g x x= − and ( )  h x x= , find  ( ( ( )))f g h x   

 

28. If  ( ) 2 1f x x= + , ( )
1

g x
x

=  and ( )  3h x x= +  , find  ( ( ( )))f g h x   

 
29. The function ( )D p  gives the number of items that will be demanded when the price 

is p. The production cost, ( )C x  is the cost of producing x items. To determine the 

cost of production when the price is $6, you would do which of the following: 
a. Evaluate ( (6))D C    b. Evaluate ( (6))C D    

c. Solve ( ( ))  6D C x =     d. Solve ( ( ))  6C D p =  

 
30. The function ( )A d  gives the pain level on a scale of 0-10 experienced by a patient 

with d milligrams of a pain reduction drug in their system.  The milligrams of drug in 
the patient’s system after t minutes is modeled by ( )m t .  To determine when the 

patient will be at a pain level of 4, you would need to: 

a. Evaluate ( )( )4A m    b. Evaluate ( )( )4m A    

c. Solve ( )( )  4A m t =     d. Solve ( )( )  4m A d =  

 
31. The radius r, in inches, of a spherical balloon is related to the volume, V, by 

3
3

( )
4

V
r V

π
= .  Air is pumped into the balloon, so the volume after t seconds is given 

by ( ) 10 20V t t= + . 

a. Find the composite function  ( )( )r V t  

b. Find the radius after 20 seconds 
 
32. The number of bacteria in a refrigerated food product is given by 

( ) 223 56 1  N T T T= − + , 3 33T< < ,  where T is the temperature of the food. When the 

food is removed from the refrigerator, the temperature is given by ( ) 5 1.5T t t= + , 

where t is the time in hours. 

a. Find the composite function  ( )( )N T t  

b. Find the bacteria count after 4 hours  
 

33. Given ( )
x

xp
1

=  and ( ) 2 4m x x= − , find the domain of ( ( )) m p x . 

34. Given ( )
1

p x
x

=  and ( ) 29 xxm −= , find the domain of ( ( )) m p x . 

35. Given ( )
3

1

+
=

x
xf  and ( )

1

2

−
=

x
xg , find the domain of ( )( )f g x . 
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36. Given ( )
1+

=
x

x
xf  and ( )

x
xg

4
= , find the domain of ( )( )f g x . 

37. Given ( ) 2−= xxf  and ( )
3

2
2

−
=

x
xg , find the domain of ( )( )xfg . 

38. Given ( ) xxf −= 4  and ( )
2

1
2

−
=

x
xg , find the domain of ( )( )xfg . 

 
Find functions ( )f x  and ( )g x  so the given function can be expressed as

( ) ( )( )h x f g x= . 

39. ( ) ( )
2

2h x x= +     40. ( ) ( )
3

5h x x= −  

41. ( )
3

5
h x

x
=

−
    42. ( )

( )
2

4

2
h x

x
=

+
 

43. ( ) 3 2h x x= + −     44. ( ) 34h x x= +   

45. Let ( )f x  be a linear function, with form ( )f x ax b= +  for constants a and b.  [UW] 

a. Show that ( )( )f f x  is a linear function  

b. Find a function ( )g x  such that ( )( ) 6 8g g x x= −  

46. Let ( ) 3
2

1
+= xxf   [UW] 

a. Sketch the graphs of ( ) ( )( ) ( )( )( ), , f x f f x f f f x  on the interval −2 ≤ x ≤ 10. 

b. Your graphs should all intersect at the point (6, 6). The value x = 6 is called a 

fixed point of the function f(x)since (6) 6f = ; that is, 6 is fixed - it doesn’t move 

when f is applied to it. Give an explanation for why 6 is a fixed point for any 

function ( ( (... ( )...)))f f f f x . 

c. Linear functions (with the exception of ( )f x x= ) can have at most one fixed 

point. Quadratic functions can have at most two. Find the fixed points of the 

function ( ) 2 2g x x= − . 

d. Give a quadratic function whose fixed points are x = −2 and x = 3. 
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47.  A car leaves Seattle heading east. The speed of the car in mph after m minutes is 

given by the function ( )
2

2

70

10

m
C m

m
=

+
.   [UW] 

a. Find a function ( )m f s=  that converts seconds s into minutes m. Write out the 

formula for the new function ( ( ))C f s ; what does this function calculate? 

b. Find a function (m g h= ) that converts hours h into minutes m. Write out the 

formula for the new function ( ( ))C g h ; what does this function calculate? 

c. Find a function ( )z v s=  that converts mph s into ft/sec z. Write out the formula 

for the new function ( ( )v C m ; what does this function calculate? 
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Section 1.5 Transformation of Functions 

 
Often when given a problem, we try to model the scenario using mathematics in the form 
of words, tables, graphs and equations in order to explain or solve it. When building 
models, it is often helpful to build off of existing formulas or models.  Knowing the basic 
graphs of your tool-kit functions can help you solve problems by being able to model 
new behavior by adapting something you already know.  Unfortunately, the models and 
existing formulas we know are not always exactly the same as the ones presented in the 
problems we face. 
 
Fortunately, there are systematic ways to shift, stretch, compress, flip and combine 
functions to help them become better models for the problems we are trying to solve.  We 
can transform what we already know into what we need, hence the name, 
“Transformation of functions.” When we have a story problem, formula, graph, or table, 
we can then transform that function in a variety of ways to form new functions. 
 
Shifts 

 

Example 1 

To regulate temperature in a green building, air flow vents near the roof open and close 
throughout the day to allow warm air to escape.  The graph below shows the open vents 
V (in square feet) throughout the day, t in hours after midnight.  During the summer, the 
facilities staff decides to try to better regulate temperature by increasing the amount of 
open vents by 20 square feet throughout the day.  Sketch a graph of this new function. 
 

 
 
We can sketch a graph of this new function by 
adding 20 to each of the output values of the 
original function.  This will have the effect of 
shifting the graph up. 
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Notice that in the second graph, for each input value, the output value has increased by 
twenty, so if we call the new function S(t), we could write ( ) ( ) 20S t V t= + .   

 
Note that this notation tells us that for any value of t, S(t) can be found by evaluating the 
V function at the same input, then adding twenty to the result.  
This defines S as a transformation of the function V, in this case a vertical shift up 20 
units.   
 
Notice that with a vertical shift the input values stay the same and only the output 
values change. 

 
 

Vertical Shift 

Given a function f(x), if we define a new function g(x) as  

( ) ( )g x f x k= + , where k is a constant 

then g(x) is a vertical shift of the function f(x), where all the output values have been 
increased by k.   

If k is positive, then the graph will shift up 

If k is negative, then the graph will shift down 

 
 
Example 2 

A function f(x) is given as a table below.  Create a table for the function ( ) ( ) 3g x f x= −  

 
 
 
 
The formula ( ) ( ) 3g x f x= −  tells us that we can find the output values of the g function 

by subtracting 3 from the output values of the f function.  For example, 
(2) 1f =    is found from the given table 

( ) ( ) 3g x f x= −    is our given transformation 

(2) (2) 3 1 3 2g f= − = − = −   

 
Subtracting 3 from each f(x) value, we can complete a table of values for g(x) 
 
 
 

 
 
As with the earlier vertical shift, notice the input values stay the same and only the output 
values change. 
 

 

x 2 4 6 8 

f(x) 1 3 7 11 

 

x 2 4 6 8 

g(x) -2 0 4 8 
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Try it Now 

1. The function 2( ) 4.9 30h t t t= − +  gives the height h of a ball (in meters) thrown 

upwards from the ground after t seconds.  Suppose the ball was instead thrown from 
the top of a 10 meter building.  Relate this new height function b(t) to h(t), then find a 
formula for b(t). 

 
 
The vertical shift is a change to the output, or outside, of the function.  We will now look 
at how changes to input, on the inside of the function, change its graph and meaning. 
 
 
Example 3 

Returning to our building air flow example from the beginning of the section, suppose 
that in Fall, the facilities staff decides that the original venting plan starts too late, and 
they want to move the entire venting program to start two hours earlier.  Sketch a graph 
of the new function. 
 

      
    V(t) = the original venting plan                        F(t) = starting 2 hours sooner 
           

In the new graph, which we can call F(t), at each time, the air flow is the same as the 
original function V(t) was two hours later.  For example, in the original function V, the 
air flow starts to change at 8am, while for the function F(t) the air flow starts to change 
at 6am.  The comparable function values are (8) (6)V F= . 

 
Notice also that the vents first opened to 220 sq. ft. at 10 a.m. under the original plan, 
while under the new plan the vents reach 220 sq. ft. at 8 a.m., so (10) (8)V F= . 

 
In both cases we see that since F(t) starts 2 hours sooner, the same output values are 
reached when, ( ) ( 2)F t V t= +  

 
Note that ( 2)V t +  had the effect of shifting the graph to the left. 
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Horizontal changes or “inside changes” affect the domain of a function (the input) instead 
of the range and often seem counterintuitive.  The new function F(t) uses the same 
outputs as V(t), but matches those outputs to inputs two hours earlier than those of V(t).  
Said another way, we must add 2 hours to the input of V to find the corresponding output 
for F:  ( ) ( 2)F t V t= + . 

 
 

Horizontal Shift 

Given a function f(x), if we define a new function g(x) as  

( ) ( )g x f x k= + , where k is a constant 

then g(x) is a horizontal shift of the function f(x) 

If k is positive, then the graph will shift left 

If k is negative, then the graph will shift right 

 
 
Example 4 

A function f(x) is given as a table below.  Create a table for the function ( ) ( 3)g x f x= −  

 
 
 
 
The formula ( ) ( 3)g x f x= −  tells us that the output values of g are the same as the 

output value of f with an input value three smaller.  For example, we know that (2) 1f = .  

To get the same output from the g function, we will need an input value that is 3 larger: 
We input a value that is three larger for g(x) because the function takes three away 
before evaluating the function f. 
 

(5) (5 3) (2) 1g f f= − = =  

 
 
 
 
The result is that the function g(x) has been shifted to the right by 3. Notice the output 
values for g(x) remain the same as the output values for f(x) in the chart, but the 
corresponding input values, x, have shifted to the right by 3:  2 shifted to 5, 4 shifted to 
7, 6 shifted to 9 and 8 shifted to 11.   

 
 
 
 
 
 
 
Example 5 

x 2 4 6 8 

f(x) 1 3 7 11 

 

x 5 7 9 11 

g(x) 1 3 7 11 
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The graph shown is a transformation of the toolkit function 
2( )f x x= .  Relate this new function g(x) to f(x), and then 

find a formula for g(x). 
 
Notice that the graph looks almost identical in shape to the 

2( )f x x=  function, but the x values are shifted to the right 

two units.  The vertex used to be at (0, 0) but now the 
vertex is at (2, 0) .  The graph is the basic quadratic 
function shifted two to the right, so 

( ) ( 2)g x f x= −   

 
Notice how we must input the value x = 2, to get the output value y = 0;  the x values 
must be two units larger, because of the shift to the right by 2 units. 
 
We can then use the definition of the f(x) function to write a formula for g(x) by 
evaluating ( 2)f x − : 

Since 2( )f x x=  and  ( ) ( 2)g x f x= −  
2( ) ( 2) ( 2)g x f x x= − = −  

 
If you find yourself having trouble determining whether the shift is +2 or -2, it might 
help to consider a single point on the graph.  For a quadratic, looking at the bottom-
most point is convenient.  In the original function, (0) 0f = .  In our shifted function, 

(2) 0g = .  To obtain the output value of 0 from the f function, we need to decide 

whether a +2 or -2 will work to satisfy (2) (2 ? 2) (0) 0g f f= = = .  For this to work, we 

will need to subtract 2 from our input values. 
 
When thinking about horizontal and vertical shifts, it is good to keep in mind that vertical 
shifts are affecting the output values of the function, while horizontal shifts are affecting 
the input values of the function. 
 
 
Example 6 

The function G(m) gives the number of gallons of gas required to drive m miles.  
Interpret ( ) 10G m +  and ( 10)G m + . 

 
( ) 10G m +  is adding 10 to the output, gallons.  This is 10 gallons of gas more than is 

required to drive m miles. So, this is the gas required to drive m miles, plus another 10 
gallons of gas. 
 

( 10)G m +  is adding 10 to the input, miles.  This is the number of gallons of gas 

required to drive 10 miles more than m miles. 
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Try it Now 

2. Given the function xxf =)(   graph the original function )(xf and the 

transformation )2()( += xfxg . 

a. Is this a horizontal or a vertical change? 
b. Which way is the graph shifted and by how many units? 
c. Graph f(x) and g(x) on the same axes. 

 
 
Now that we have two transformations, we can combine them together. 
 
Remember: 
Vertical Shifts are outside changes that affect the output (vertical) axis values shifting the 
transformed function up or down.  
 
Horizontal Shifts are inside changes that affect the input (horizontal) axis values shifting 
the transformed function left or right. 
 
 
Example 7 

Given ( )f x x= , sketch a graph of ( ) ( 1) 3h x f x= + − . 

 
The function f  is our toolkit absolute value function.  We know that this graph has a V 
shape, with the point at the origin.  The graph of h has transformed f  in two ways:  

( 1)f x +  is a change on the inside of the function, giving a horizontal shift left by 1, 

then the subtraction by 3 in ( 1) 3f x + −  is a change to the outside of the function, giving 

a vertical shift down by 3.  Transforming the graph gives  

 

 

We could also find a formula for this transformation by evaluating the expression for 
h(x): 

( ) ( 1) 3

( ) 1 3

h x f x

h x x

= + −

= + −
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Example 8 

Write a formula for the graph shown, a transformation 
of the toolkit square root function. 
 
The graph of the toolkit function starts at the origin, so 
this graph has been shifted 1 to the right, and up 2.  In 
function notation, we could write that as 

( ) ( 1) 2h x f x= − + .  Using the formula for the square 

root function we can write 

( ) 1 2h x x= − +  

 
Note that this transformation has changed the domain 
and range of the function.  This new graph has domain 
[1, )∞  and range [2, )∞ . 

 
 
Reflections 
 
Another transformation that can be applied to a function is a reflection over the horizontal 
or vertical axis.   
 
 
Example 9 

Reflect the graph of ( )s t t=  both vertically and horizontally. 

 
Reflecting the graph vertically, each output value will be reflected over the horizontal t 
axis: 

            

 

Since each output value is the opposite of the original output value, we can write 
( ) ( )V t s t= −  

( )V t t= −  

 
Notice this is an outside change or vertical change that affects the output s(t) values so 
the negative sign belongs outside of the function. 
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Reflecting horizontally, each input value will be reflected over the vertical axis. 
 

Since each input value is the opposite of the original input 
value, we can write 

( ) ( )H t s t= −  

( )H t t= −  

 
Notice this is an inside change or horizontal change that 
affects the input values so the negative sign is on the inside 
of the function. 
 
Note that these transformations can affect the domain and 
range of the functions.  While the original square root function has domain [0, )∞  and 

range [0, )∞ , the vertical reflection gives the V(t) function the range ( , 0]−∞ , and the 

horizontal reflection gives the H(t) function the domain ( , 0]−∞ . 

 

 

Reflections 

Given a function f(x), if we define a new function g(x) as  

( ) ( )g x f x= − ,  

then g(x) is a vertical reflection of the function f(x), sometimes called a reflection 
about the x-axis 

 

If we define a new function g(x) as  

( ) ( )g x f x= − ,  

then g(x) is a horizontal reflection of the function f(x), sometimes called a reflection 
about the y-axis 

 
 
Example 10 

A function f(x) is given as a table below.  Create a table for the function ( ) ( )g x f x= −  

and ( ) ( )h x f x= −  

 
 
 
 
For g(x), this is a vertical reflection, so the x values stay the same and each output value 
will be the opposite of the original output value  
 
For h(x), this is a horizontal reflection, and each input value will be the opposite of the 
original input value and the h(x) values stay the same as the f(x) values: 
 
 

x 2 4 6 8 

f(x) 1 3 7 11 

 

x -2 -4 -6 -8 

h(x) 1 3 7 11 
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Example 11 

A common model for learning has an equation similar 

to ( ) 2 1t
k t

−
= − + , where k is the percentage of mastery 

that can be achieved after t practice sessions.  This is a 

transformation of the function ( ) 2t
f t =  shown here.  

Sketch a graph of k(t). 
 
This equation combines three transformations into one 
equation.   

A horizontal reflection:   ( ) 2 t
f t

−
− =     combined with 

A vertical reflection:  ( ) 2 t
f t

−
− − = −   combined with 

A vertical shift up 1:  ( ) 1 2 1t
f t

−
− − + = − +  

 
We can sketch a graph by applying these transformations one at a time to the original 
function: 
The original graph  Horizontally reflected  Then vertically reflected 

      

 
Then, after shifting up 1, we get the final graph. 
   

( ) ( ) 1 2 1t
k t f t

−
= − − + = − + . 

 

Note:  As a model for learning, this function would 

be limited to a domain of 0t ≥ , with corresponding 
range [0,1) . 

 
 
 
 

 
 

Try it Now 

3.  Given the toolkit function 2( )f x x= , graph g(x) = −f(x)  and h(x) = f(−x). 

Do you notice anything surprising?   
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Some functions exhibit symmetry, in which reflections result in the original graph.  For 

example, reflecting the toolkit functions 2( )f x x=  or ( )f x x=  about the y-axis will 

result in the original graph.  We call these types of graphs symmetric about the y-axis. 
 

Likewise, if the graphs of 3( )f x x=  or 
1

( )f x
x

=  were reflected over both axes, the 

result would be the original graph: 
 

3( )f x x=    ( )f x−      ( )f x− −  

 
 
We call these graphs symmetric about the origin. 
 

 

Even and Odd Functions 

A function is called an even function if 

( ) ( )f x f x= −  

The graph of an even function is symmetric about the vertical axis 

 

A function is called an odd function if 

( ) ( )f x f x= − −  

The graph of an odd function is symmetric about the origin 

 
 
Note:  A function can be neither even nor odd if it does not exhibit either symmetry.  For 

example, the ( ) 2x
f x =  function is neither even nor odd. 

 
 
Example 12 

Is the function 3( ) 2f x x x= +  even, odd, or neither? 

 
Without looking at a graph, we can determine this by finding formulas for the 
reflections, and seeing if they return us to the original function: 
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3 3( ) ( ) 2( ) 2f x x x x x− = − + − = − −  

This does not return us to the original function, so this function is not even.   
 
We can now try also applying a horizontal reflection: 

( )3 3( ) 2 2f x x x x x− − = − − − = +  

 
Since ( ) ( )f x f x− − = , this is an odd function. 

 
 

Stretches and Compressions 
 
With shifts, we saw the effect of adding or subtracting to the inputs or outputs of a 
function.  We now explore the effects of multiplying the inputs or outputs. 
 
Remember, we can transform the inside (input values) of a function or we can transform 
the outside (output values) of a function. Each change has a specific effect that can be 
seen graphically. 
 
 
Example 13 

A function P(t) models the growth of a population of 
fruit flies.  The growth is shown in the graph.  A 
scientist is comparing this to another population, Q, that 
grows the same way, but starts twice as large.  Sketch a 
graph of this population. 
 
Since the population is always twice as large, the new 
population’s output values are always twice the original 
function output values.  Graphically, this would look 
like the second graph shown. 
 
Symbolically, )(2)( tPtQ =  

 
This means that for any input t, the value of the Q 
function is twice the value of the P function.   Notice the 
effect on the graph is a vertical stretching of the graph, 
where every point doubles its distance from the 
horizontal axis. The input values, t, stay the same while 
the output values are twice as large as before. 
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Vertical Stretch/Compression 

Given a function f(x), if we define a new function g(x) as  

)()( xkfxg = , where k is a constant 

then g(x) is a vertical stretch or compression of the function f(x). 

 

If k > 1, then the graph will be stretched 

If 0< k < 1, then the graph will be compressed 

If k < 0, then there will be combination of a vertical stretch or compression with a 
vertical reflection 

 
 
Example 14 

A function f(x) is given as a table below.  Create a table for the function )(
2

1
)( xfxg =  

 
 
 

The formula )(
2

1
)( xfxg =  tells us that the output values of g are half of the output 

values of f with the same inputs.  For example, we know that 3)4( =f .  Then 

2

3
)3(

2

1
)4(

2

1
)4( === fg  

 
 
 
 
The result is that the function g(x) has been compressed vertically by ½.  Each output 
value has been cut in half, so the graph would now be half the original height. 

 
 
Example  15 

The graph shown is a transformation of the toolkit 

function 3)( xxf = .  Relate this new function g(x) to 

f(x), then find a formula for g(x). 
 
When trying to determine a vertical stretch or shift, it 
is helpful to look for a point on the graph that is 
relatively clear.  In this graph, it appears that 2)2( =g .  

With the basic cubic function at the same input, 

82)2( 3
==f .   

x 2 4 6 8 

f(x) 1 3 7 11 

 

x 2 4 6 8 

g(x) 1/2 3/2 7/2 11/2 
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Based on that, it appears that the outputs of g are ¼ the outputs of the function f, since 

)2(
4

1
)2( fg = .   

 
From this we can fairly safely conclude that: 

)(
4

1
)( xfxg =  

 
We can write a formula for g by using the definition of the function f

3

4

1
)(

4

1
)( xxfxg ==  

 
 
Now we consider changes to the inside of a function. 
 
 
Example 16 

Returning to the fruit fly population we looked at earlier, suppose the scientist is now 
comparing it to a population that progresses through its lifespan twice as fast as the 
original population.  In other words, this new population, R, will progress in 1 hour the 
same amount the original population did in 2 hours, and in 2 hours, will progress as 
much as the original population did in 4 hours.  Sketch a graph of this population. 
 
Symbolically, we could write 

)2()1( PR =  

)4()2( PR = , and in general, 

)2()( tPtR =  

 
Graphing this, 
 
     Original population, P(t)   Transformed, R(t) 

         
 

Note the effect on the graph is a horizontal compression, where all input values are half 
their original distance from the vertical axis.  
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Horizontal Stretch/Compression 

Given a function f(x), if we define a new function g(x) as  

)()( kxfxg = , where k is a constant 

then g(x) is a horizontal stretch or compression of the function f(x). 

 

If k > 1, then the graph will be compressed by 
k

1  

If 0< k < 1, then the graph will be stretched by 
k

1  

If k < 0, then there will be combination of a horizontal stretch or compression with a 
horizontal reflection. 

 
 
Example 17 

A function f(x) is given as a table below.  Create a table for the function 







= xfxg

2

1
)(  

 
 
 
 

The formula 







= xfxg

2

1
)(  tells us that the output values for g are the same as the 

output values for the function f at an input half the size.  Notice that we don’t have 

enough information to determine )2(g since )1(2
2

1
)2( ffg =








⋅= , and we do not 

have a value for )1(f  in our table.  Our input values to g will need to be twice as large 

to get inputs for f that we can evaluate.  For example, we can determine )4(g since 

1)2(4
2

1
)4( ==








⋅= ffg .    

 
 
 
 
Since each input value has been doubled, the result is that the function g(x) has been 
stretched horizontally by 2.   

 
 
 
 
 
 
 
 

x 2 4 6 8 

f(x) 1 3 7 11 

 

x 4 8 12 16 

g(x) 1 3 7 11 
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Example 18 

Two graphs are shown below.  Relate the function g(x) to f(x). 
 

      
 
The graph of g(x) looks like the graph of f(x) horizontally compressed. Since f(x) ends at 
(6,4) and g(x) ends at (2,4) we can see that the x values have been compressed by 1/3, 

because 6(1/3) = 2. We might also notice that ( )6)2( fg = , and ( )3)1( fg = .  Either 

way, we can describe this relationship as ( )xfxg 3)( = .  This is a horizontal 

compression by 1/3. 
 

 

Notice that the coefficient needed for a horizontal stretch or compression is the 
reciprocal of the stretch or compression.  To stretch the graph horizontally by 4, we need 

a coefficient of 1/4 in our function: 
1

4
f x
 
 
 

.  This means the input values must be four 

times larger to produce the same result, requiring the input to be larger, causing the 
horizontal stretching. 
 
 

Try it Now 
4. Write a formula for the toolkit square root function horizontally stretched by three. 

 
 
It is useful to note that for most toolkit functions, a horizontal stretch or vertical stretch 
can be represented in other ways.  For example, a horizontal compression of the function 

( ) 2
f x x=  by ½ would result in a new function ( ) ( )

2
2g x x= , but this can also be written 

as ( ) 24g x x= , a vertical stretch of f(x) by 4.  When writing a formula for a transformed 

toolkit, we only need to find one transformation that would produce the graph. 
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Combining Transformations 
 
When combining transformations, it is very important to consider the order of the 
transformations.  For example, vertically shifting by 3 and then vertically stretching by 2 
does not create the same graph as vertically stretching by 2 then vertically shifting by 3.   
 
When we see an expression like 3)(2 +xf , which transformation should we start with?  

The answer here follows nicely from order of operations, for outside transformations.  
Given the output value of f(x), we first multiply by 2, causing the vertical stretch, then 
add 3, causing the vertical shift.  (Multiplication before Addition) 
 
 

Combining Vertical Transformations 

When combining vertical transformations written in the form kxaf +)( , 

first vertically stretch by a, then vertically shift by k. 

 
 
Horizontal transformations are a little trickier to think about.  When we write 

)32()( += xfxg for example, we have to think about how the inputs to the g function 

relate to the inputs to the f function.  Suppose we know 12)7( =f .  What input to g 

would produce that output?  In other words, what value of x will allow 

)12()32()( fxfxg =+= ?  We would need 1232 =+x .  To solve for x, we would first 

subtract 3, resulting in horizontal shift, then divide by 2, causing a horizontal 
compression.   
 
 

Combining Horizontal Transformations 

When combining horizontal transformations written in the form )( pbxf + , 

first horizontally shift by p, then horizontally stretch by 1/b. 

 
 
This format ends up being very difficult to work with, since it is usually much easier to 
horizontally stretch a graph before shifting.  We can work around this by factoring inside 
the function. 

)( pbxf + = 















+

b

p
xbf  

Factoring in this way allows us to horizontally stretch first, then shift horizontally. 
 
 

Combining Horizontal Transformations (Factored Form) 

When combining horizontal transformations written in the form ))(( hxbf + , 

first horizontally stretch by 1/b, then horizontally shift by h. 
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Independence of Horizontal and Vertical Transformations 

Horizontal and vertical transformations are independent.  It does not matter 
whether horizontal or vertical transformations are done first. 

 
 
Example 19 

Given the table of values for the function f(x) below, create a table of values for the 
function 1)3(2)( += xfxg  

 
 
 
 
There are 3 steps to this transformation and we will work from the inside out.  Starting 
with the horizontal transformations, )3( xf  is a horizontal compression by 1/3, which 

means we multiply each x value by 1/3. 
 
 
 
 
Looking now to the vertical transformations, we start with the vertical stretch, which 
will multiply the output values by 2.  We apply this to the previous transformation. 
 
 
 
 
Finally, we can apply the vertical shift, which will add 1 to all the output values. 
 
 
 

 
 
Example 20 

Using the graph of f(x) below, sketch a graph of  31
2

1
)( −








+= xfxk  

 

To make things simpler, we’ll start by factoring out 
the inside of the function 

3)2(
2

1
31

2

1
−







+=−








+ xfxf  

 
By factoring the inside, we can first horizontally 
stretch by 2, as indicated by the ½ on the inside of 
the function.  Remember twice the size of 0 is still 
0, so the point (0,2) remains at (0,2) while the point 
(2,0) will stretch to (4,0). 

x 6 12 18 24 

f(x) 10 14 15 17 

 

x 2 4 6 8 
)3( xf  10 14 15 17 

x 2 4 6 8 
)3(2 xf  20 28 30 34 

x 2 4 6 8 
1)3(2)( += xfxg  21 29 31 35 
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Next, we horizontally shift left by 2 units, as indicated by the x+2. 
 
Last, we vertically shift down by 3 to complete our sketch, as indicated by the -3 on the 
outside of the function. 
 
Horizontal stretch by 2 Horizontal shift left by 2  Vertical shift down 3 

   
 
 
Example 21 

Write an equation for the transformed graph of the quadratic function shown. 
 
Since this is a quadratic function, first consider what 
the basic quadratic tool kit function looks like and how 
this has changed.  Observing the graph, we notice 
several transformations: 
 
The original tool kit function has been flipped over the 
x axis, some kind of stretch or compression has 
occurred, and we can see a shift to the right 3 units and 
a shift up 1 unit. 
 
In total there are four operations: 
Vertical reflection, requiring a negative sign outside the function 
Vertical Stretch or Horizontal Compression* 
Horizontal Shift Right 3 units, which tells us to put x-3 on the inside of the function 
Vertical Shift up 1 unit, telling us to add 1 on the outside of the function 
 
* It is unclear from the graph whether it is showing a vertical stretch or a horizontal 
compression.  For the quadratic, it turns out we could represent it either way, so we’ll 
use a vertical stretch.  You may be able to determine the vertical stretch by observation. 
 
By observation, the basic tool kit function has a vertex at (0, 0) and symmetrical points 
at (1, 1) and (-1, 1).  These points are one unit up and one unit over from the vertex.  
The new points on the transformed graph are one unit away horizontally but 2 units 
away vertically.  They have been stretched vertically by two. 
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Not everyone can see this by simply looking at the graph.  If you can, great, but if not, 
we can solve for it.  First, we will write the equation for this graph, with an unknown 
vertical stretch. 
 

2)( xxf =     The original function 
2)( xxf −=−    Vertically reflected 

2)( axxaf −=−    Vertically stretched  
2)3()3( −−=−− xaxaf   Shifted right 3 

1)3(1)3( 2
+−−=+−− xaxaf  Shifted up 1 

 

We now know our graph is going to have an equation of the form 1)3()( 2
+−−= xaxg .  

To find the vertical stretch, we can identify any point on the graph (other than the 
highest point), such as the point (2,-1), which tells us 1)2( −=g .  Using our general 

formula, and substituting 2 for x, and -1 for g(x)  

a

a

a

a

=

−=−

+−=−

+−−=−

2

2

11

1)32(1 2

 

 
This tells us that to produce the graph we need a vertical stretch by two.   

The function that produces this graph is therefore 1)3(2)( 2
+−−= xxg . 

 
 

Try it Now 
5. Consider the linear function 12)( +−= xxg .  Describe its transformation in words 

using the identity tool kit function f(x) = x as a reference. 

 
 
Example 22 

On what interval(s) is the function 
( )

3
1

2
)(

2
+

−

−
=

x
xg  increasing and decreasing? 

 

This is a transformation of the toolkit reciprocal squared function, 
2

1
)(

x
xf = : 

2

2
)(2

x
xf

−
=−    A vertical flip and vertical stretch by 2 

( )2
1

2
)1(2

−

−
=−−

x
xf   A shift right by 1 

( )
3

1

2
3)1(2

2
+

−

−
=+−−

x
xf  A shift up by 3 
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The basic reciprocal squared function is increasing on 
)0,(−∞ and decreasing on ),0( ∞ .  Because of the vertical 

flip, the g(x) function will be decreasing on the left and 
increasing on the right.  The horizontal shift right by 1 will 
also shift these intervals to the right one.  From this, we can 
determine g(x) will be increasing on ),1( ∞  and decreasing 

on )1,(−∞ .  We also could graph the transformation to help 

us determine these intervals.  
 

 
 

Try it Now 

6.  On what interval(s) is the function 2)3()( 3
+−= tth  concave up and down? 

 
 
 

Important Topics of This Section 

Transformations 

Vertical Shift (up & down) 

Horizontal Shifts (left & right) 

Reflections over the vertical & horizontal axis 

Even & Odd functions 

Vertical Stretches & Compressions 

Horizontal Stretches & Compressions 

Combinations of Transformation 
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Try it Now Answers 

1. 2( ) ( ) 10 4.9 30 10b t h t t t= + = − + +   

 
2. a. Horizontal shift 
    b. The function is shifted to the LEFT by 2 units. 
    c. Shown to the right 
 
 
 
3. Shown to the right 
  Notice: g(x) = f(-x) looks the same as f(x) 
 

4. 







= xfxg

3

1
)(  so using the square root function we get 

1
( )

3
g x x=  

 
5.  The identity tool kit function f(x) = x  has been 

transformed in 3 steps 
      a.  Vertically stretched by 2.  
      b.  Vertically reflected over the x axis. 
      c.  Vertically shifted up by 1 unit.  
 
6. h(t) is concave down on )3,(−∞ and concave up on ),3( ∞  
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Section 1.5 Exercises 

 
Describe how each function is a transformation of the original function ( )f x  

1. ( )49f x −     2. ( 43)f x +  

3. ( 3)f x +     4. ( 4)f x −  

5. ( ) 5f x +     6. ( ) 8f x +  

7. ( ) 2f x −     8. ( ) 7f x −     

9. ( )2 3f x − +    10. ( )4 1f x + −   

 

11. Write a formula for ( )f x x=  shifted up 1 unit and left 2 units. 

12. Write a formula for ( )f x x=  shifted down 3 units and right 1 unit. 

13. Write a formula for 
1

( )f x
x

=  shifted down 4 units and right 3 units. 

14. Write a formula for 
2

1
 ( )f x

x
=  shifted up 2 units and left 4 units. 

 
15. Tables of values for  ( )f x , ( )g x , and ( )h x  are given below.   Write ( )g x  and ( )h x  

as transformations of ( )f x . 

x f(x)  x g(x)  x h(x) 

-2 -2  -1 -2  -2 -1 

-1 -1  0 -1  -1 0 

0 -3  1 -3  0 -2 

1 1  2 1  1 2 

2 2  3 2  2 3 

 
16. Tables of values for  ( )f x , ( )g x , and ( )h x  are given below.   Write ( )g x  and ( )h x  

as transformations of ( )f x . 

x f(x)  x g(x)  x h(x) 

-2 -1  -3 -1  -2 -2 

-1 -3  -2 -3  -1 -4 

0 4  -1 4  0 3 

1 2  0 2  1 1 

2 1  1 1  2 0 
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The graph of ( ) 2x
f x =  is shown.  Sketch a graph of each 

transformation of ( )f x . 

17. ( ) 2 1x
g x = +  

18. ( ) 2 3x
h x = −  

19. ( ) 12x
w x

−
=  

20. ( ) 32x
q x

+
=  

 
Sketch a graph of each function as a transformation of a toolkit function. 

21. ( ) 2( 1) 3f t t= + −  

22. ( ) 1 4h x x= − +  

23. ( ) ( )
3

2 1k x x= − −  

24. ( ) 3 2m t t= + +  

 Write an equation for each function graphed below. 

25.   26.  

27.   28.  
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Find a formula for each of the transformations of the square root whose graphs are given 
below.  

29.   30.  
  
  

The graph of ( ) 2x
f x =  is shown.  Sketch a graph of each 

transformation of ( )f x   

31. ( ) 2 1x
g x = − +  

32. ( ) 2 x
h x

−
=  

 

33. Starting with the graph of  ( )  6x
f x =  write the equation of 

the graph that results from  
a. reflecting ( )f x  about the x-axis and the y-axis 

b. reflecting ( )f x  about the x-axis, shifting left 2 units, and down 3 units 

  

34. Starting with the graph of  ( )  4x
f x =  write the equation of the graph that results from  

a. reflecting ( )f x  about the x-axis 

b. reflecting ( )f x  about the y-axis, shifting right 4 units, and up 2 units 

 
Write an equation for each function graphed below. 

 

35.   36.  
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37.   38.   
 
39. For each equation below, determine if the function is Odd, Even, or Neither. 

a. ( ) 43 f x x=   

b. ( )g x x=   

c. ( )
1

3 h x x
x

= +   

  
40. For each equation below, determine if the function is Odd, Even, or Neither. 

a. ( ) ( )
2

2f x x= −   

b. ( ) 42 g x x=   

c. ( ) 32 h x x x= −   

  
Describe how each function is a transformation of the original function ( )f x . 

41. ( )f x−     42. ( )f x−   

43. 4 ( )f x      44. 6 ( )f x  

45. (5 )f x     46. (2 )f x  

47. 
1

3
f x
 
 
 

    48. 
1

5
f x
 
 
 

 

49. ( )3 f x−     50. (3 )f x−   

 
Write a formula for the function that results when the given toolkit function is 
transformed as described. 

51. ( )f x x=  reflected over the y axis and horizontally compressed by a factor of 
1

4
. 

 

52. ( )f x x=  reflected over the x axis and horizontally stretched by a factor of 2. 

 

53. 
2

1
( )f x

x
=  vertically compressed by a factor of 

1

3
, then shifted to the left 2 units and 

down 3 units. 
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54. 
1

( )f x
x

=  vertically stretched by a factor of 8, then shifted to the right 4 units and up 

2 units. 
 

55. 2( )f x x=  horizontally compressed by a factor of 
1

2
, then shifted to the right 5 units 

and up 1 unit. 
 

56. 2( )f x x=  horizontally stretched by a factor of 3, then shifted to the left 4 units and 

down 3 units. 
 

Describe how each formula is a transformation of a toolkit function.  Then sketch a graph 
of the transformation. 
 

57. ( ) ( )
2

4 1 5f x x= + −    58. ( )
2

( ) 5 3 2g x x= + −  

 

59. ( ) 2 4 3h x x= − − +    60. ( ) 3 1k x x= − −  

 

61. ( ) 31

2
m x x=      62. ( )

1
2

3
n x x= −  

 

63. ( )
2

1
3

3
p x x

 
= − 
 

    64. ( )
3

1
1

4
q x x

 
= + 
 

  

 

65. ( ) 4a x x= − +     66. ( ) 3 6−−= xxb  

 
 

Determine the interval(s) on which the function is increasing and decreasing. 
 

67. ( ) ( )
2

4 1 5f x x= + −    68. ( )
2

( ) 5 3 2g x x= + −  

 

69. ( ) 4a x x= − +     70. ( ) 3 1k x x= − −  

 
Determine the interval(s) on which the function is concave up and concave down. 

 

71. ( ) 1)3(2 3
++−= xxm    72. ( ) 3 6b x x= − −  

 

73. ( )
2

1
3

3
p x x

 
= − 
 

    74. ( ) 3 1k x x= − −  



90  Chapter 1 

The function ( )f x  is graphed here.  Write an equation for each 

graph below as a transformation of ( )f x . 

 
 
 
 
 

75. 76. 77.  
 

78. 79. 80.  
 

81. 82. 83.  

84. 85. 86.  
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Write an equation for each transformed toolkit function graphed below. 
 

87. 88. 89.  

90. 91. 92.

93. 94. 95.  

96. 97. 98.   
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Write a formula for the piecewise function graphed below. 

99.  100.  
 

101.  102.  
 
 
103. Suppose you have a function   ( )y f x=  such that the domain of ( )f x  is 1 ≤ x ≤ 6 and 

the range of ( )f x  is −3 ≤ y ≤ 5.  [UW] 

a. What is the domain of  (2( 3)) f x − ? 

b. What is the range of ))3(2( −xf  ? 

c. What is the domain of 2 ( ) 3f x −  ? 

d. What is the range of 2 ( ) 3f x −  ? 

e. Can you find constants B and C so that the domain of ( ( ))f B x C−  is 8 ≤ x ≤ 9? 

f. Can you find constants A and D so that the range of ( )  Af x D+  is 0 ≤ y ≤ 1? 
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Section 1.6 Inverse Functions 

 
A fashion designer is travelling to Milan for a fashion show.  He asks his assistant, Betty, 
what 75 degrees Fahrenheit is in Celsius, and after a quick search on Google, she finds 

the formula )32(
9

5
−= FC .  Using this formula, she calculates 24)3275(

9

5
≈− degrees 

Celsius.  The next day, the designer sends his assistant the week’s weather forecast for 
Milan, and asks her to convert the temperatures to Fahrenheit. 

     
 
At first, Betty might consider using the formula she has already found to do the 
conversions.  After all, she knows her algebra, and can easily solve the equation for F 
after substituting a value for C.  For example, to convert 26 degrees Celsius, she could 
write: 

7932
5

9
26

32
5

9
26

)32(
9

5
26

≈+⋅=

−=⋅

−=

F

F

F

 

 
After considering this option for a moment, she realizes that solving the equation for each 
of the temperatures would get awfully tedious, and realizes that since evaluation is easier 
than solving, it would be much more convenient to have a different formula, one which 
takes the Celsius temperature and outputs the Fahrenheit temperature.  This is the idea of 
an inverse function, where the input becomes the output and the output becomes the 
input. 
 
 

Inverse Function 

If baf =)( , then a function g(x) is an inverse of f  if abg =)( . 

The inverse of f(x) is typically notated )(1
xf

− , which is read “f inverse of x”, so 

equivalently, if baf =)(  then abf =
− )(1 . 

 
 
Important:  The raised -1 used in the notation for inverse functions is simply a notation, 
and does not designate an exponent or power of -1. 
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Example 1 

If for a particular function, 4)2( =f , what do we know about the inverse? 

 
The inverse function reverses which quantity is input and which quantity is output, so if 

4)2( =f , then 2)4(1
=

−
f .  

 
Alternatively, if you want to re-name the inverse function g(x), then g(4) = 2 

 
 

Try it Now 

1. Given that 2)6(1
=

−
h , what do we know about the original function h(x)? 

 
 
Notice that original function and the inverse function undo each other.  If baf =)( , then 

1( )f b a
−

= , returning us to the original input.  More simply put, if you compose these 

functions together you get the original input as your answer. 

( )1 ( )f f a a
−

=   and  ( )1( )f f b b
−

=  

 
 
 
 
 
 
 

Since the outputs of the function f are the inputs to 1−
f , the range of f is also the domain 

of 1−
f .  Likewise, since the inputs to f are the outputs of 1−

f , the domain of f is the 

range of 1−
f . 

 
Basically, like how the input and output values switch, the domain & ranges switch as 
well.  But be careful, because sometimes a function doesn’t even have an inverse 
function, or only has an inverse on a limited domain.  For example, the inverse of 

( )f x x=  is 1 2( )f x x
−

= , since a square “undoes” a square root, but it is only the inverse 

of f(x) on the domain [0,∞), since that is the range of ( )f x x= . 

 
 
Example 2 

The function x
xf 2)( =  has domain ),( ∞−∞  and range ),0( ∞ , what would we expect 

the domain and range of 1−
f  to be? 

 

We would expect 1−
f  to swap the domain and range of f, so 1−

f  would have domain

),0( ∞  and range ( , )−∞ ∞ . 

Domain of f Range of f 

a b 

)(1
xf

−

 

)(xf  
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Example 3 

A function f(t) is given as a table below, showing distance in miles that a car has 

traveled in t minutes.  Find and interpret )70(1−
f  

 
 
 
 
The inverse function takes an output of f and returns an input for f.  So in the expression

)70(1−
f , the 70 is an output value of the original function, representing 70 miles.  The 

inverse will return the corresponding input of the original function f, 90 minutes, so

90)70(1
=

−
f .  Interpreting this, it means that to drive 70 miles, it took 90 minutes. 

 

Alternatively, recall the definition of the inverse was that if baf =)(  then abf =
− )(1 .  

By this definition, if you are given af =
− )70(1  then you are looking for a value a so 

that 70)( =af .  In this case, we are looking for a t so that 70)( =tf , which is when t = 

90. 
 
 

Try it Now 
2.  Using the table below 
 
 
 
    Find and interpret the following 
 a. )60(f  

 b. )60(1−
f  

 
 
Example 4 

A function g(x) is given as a graph below.  Find )3(g  and )3(1−
g  

 
To evaluate )3(g , we find 3 on the horizontal 

axis and find the corresponding output value 
on the vertical axis. The point (3, 1) tells us 
that 1)3( =g  

To evaluate )3(1−
g , recall that by definition 

)3(1−
g means g(x) = 3.  By looking for the 

output value 3 on the vertical axis we find 
the point (5, 3) on the graph, which means 

g(5) = 3, so by definition 5)3(1
=

−
g . 

 
 

t (minutes) 30 50 70 90 

f(t) (miles) 20 40 60 70 

 

t (minutes) 30 50 60 70 90 

f(t) (miles) 20 40 50 60 70 

 



96  Chapter 1 

Try it Now 
3. Using the graph in Example 4 above  

     a. find )1(1−
g  

     b. estimate )4(1−
g  

 
 
Example 5 

Returning to our designer’s assistant, find a formula for the inverse function that gives 
Fahrenheit temperature given a Celsius temperature. 
 
A quick Google search would find the inverse function, but alternatively, Betty might 
look back at how she solved for the Fahrenheit temperature for a specific Celsius value, 
and repeat the process in general 

32
5

9

32
5

9

)32(
9

5

+=

−=⋅

−=

CF

FC

FC

 

 
By solving in general, we have uncovered the inverse function.  If  

)32(
9

5
)( −== FFhC  

Then 

32
5

9
)(1

+==
−

CChF  

In this case, we introduced a function h to represent the conversion since the input and 

output variables are descriptive, and writing 1−
C could get confusing. 

 
 
It is important to note that not all functions will have an inverse function.  Since the 

inverse )(1
xf

−  takes an output of f and returns an input of f, in order for 1−
f  to itself be 

a function, then each output of f (input to 1−
f ) must correspond to exactly one input of f 

(output of 1−
f ) in order for 1−

f  to be a function.  You might recall that this is the 

definition of a one-to-one function. 
 
 

Properties of Inverses 

In order for a function to have an inverse, it must be a one-to-one function. 
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In some cases, it is desirable to have an inverse for a function even though the function is 
not one-to-one.  In those cases, we can often limit the domain of the original function to 
an interval on which the function is one-to-one, then find an inverse only on that interval. 
 
If you have not already done so, go back to the toolkit functions that were not one-to-one 
and limit or restrict the domain of the original function so that it is one-to-one.  If you are 
not sure how to do this, proceed to Example 6. 
 
 
Example 6 

The quadratic function 2)( xxh =  is not one-to-one.  Find a domain on which this 

function is one-to-one, and find the inverse on that domain. 
 
We can limit the domain to ),0[ ∞ to restrict the graph to a 

portion that is one-to-one, and find an inverse on this limited 
domain. 
 
You may have already guessed that since we undo a square 

with a square root, the inverse of 2)( xxh =  on this domain 

is xxh =
− )(1 .   

 

You can also solve for the inverse function algebraically.  If 2)( xxh = , we can 

introduce the variable y to represent the output values, allowing us to write 2
xy = .  To 

find the inverse we solve for the input variable 
 

To solve for x we take the square root of each side.  
2

xy =  and get y x= , so  

x y= ± .  We have restricted x to being non-negative, so we’ll use the positive square 

root, yx =  or yyh =
− )(1 .  In cases like this where the variables are not descriptive, 

it is common to see the inverse function rewritten with the variable x:  xxh =
− )(1 .  

Rewriting the inverse using the variable x is often required for graphing inverse 
functions using calculators or computers. 
 
Note that the domain and range of the square root function do 
correspond with the range and domain of the quadratic function 
on the limited domain.  In fact, if we graph h(x) on the 

restricted domain and )(1
xh

−  on the same axes, we can notice 

symmetry: the graph of )(1
xh

−  is the graph of  h(x) reflected 

over the line y = x. 
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Example 7 

Given the graph of f(x) shown, sketch a graph of )(1
xf

− . 

 
This is a one-to-one function, so we will be able to sketch 
an inverse.  Note that the graph shown has an apparent 
domain of (0,∞) and range of (-∞,∞), so the inverse will 
have a domain of (-∞,∞) and range of (0,∞). 
 
Reflecting this graph of the line y = x, the point (1, 0) 
reflects to (0, 1), and the point (4, 2) reflects to (2, 4).  
Sketching the inverse on the same axes as the original 
graph: 

 
 
 

Important Topics of this Section 

Definition of an inverse function 

Composition of inverse functions yield the original input value 

Not every function has an inverse function 

To have an inverse a function must be one-to-one 

Restricting the domain of functions that are not one-to-one. 

 
 

Try it Now Answers 
1. 6)2( =g  

 
2.a. 50)60( =f .   In 60 minutes, 50 miles are traveled. 

   b. 70)60(1
=

−
f .  To travel 60 miles, it will take 70 minutes. 

 

3. a. 3)1(1
=

−
g  

    b. 5.5)4(1
=

−
g   (this is an approximation – answers may vary slightly) 
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Section 1.6 Exercises 

 
Assume that the function f is a one-to-one function.  

1. If  (6) 7f =  , find  1(7)f
−     2. If  (3) 2f =  , find  1(2)f

−  

3. If ( )1 4 8f
−

− = − , find ( 8)f −   4. If ( )1 2 1f
−

− = − , find ( 1)f −  

5. If ( )5 2f = , find ( )( )
1

5f
−

   6. If ( )1 4f = , find ( )( )
1

1f
−

 

 
7. Using the graph of ( )f x  shown 

a. Find ( )0f  

b. Solve ( ) 0f x =   

c. Find ( )1 0f
−  

d. Solve ( )1 0f x
−

=   

  
 
 
8. Using the graph shown  

a. Find (1)g  

b. Solve ( ) 1g x =   

c. Find 1(1)g
−  

d. Solve ( )1 1g x
−

=   

 
 
 
9. Use the table below to find the indicated quantities. 

x 0 1 2 3 4 5 6 7 8 9 

f(x) 8 0 7 4 2 6 5 3 9 1 

 

a. Find ( )1f  

b. Solve ( ) 3f x =  

c. Find ( )1 0f
−  

d. Solve ( )1 7f x
−

=   
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10. Use the table below to fill in the missing values. 

t 0 1 2 3 4 5 6 7 8 

h(t) 6 0 1 7 2 3 5 4 9 

 

a. Find ( )6h  

b. Solve ( ) 0h t =  

c. Find ( )1 5h
−  

d. Solve ( )1 1h t
−

=   

 

For each table below, create a table for ( )1 .f x
−  

11. x 3 6 9 13 14 

f(x) 1 4 7 12 16 
 

12. x 3 5 7 13 15 

f(x) 2 6 9 11 16 
 

 

For each function below, find 1( )f x
−   

13. ( ) 3f x x= +     14. ( ) 5f x x= +  

15. ( )  2 – f x x=     16. ( ) 3f x x= −  

17. ( ) 11 7f x x= +     18. ( ) 9 10f x x= +  

 
For each function, find a domain on which f is one-to-one and non-decreasing, then find 
the inverse of f restricted to that domain. 

19. ( ) ( )
2

  7f x x= +     20. ( ) ( )
2

6f x x= −  

21. ( ) 2 5f x x= −      22. ( ) 2 1f x x= +  

 

23. If ( ) 3 5f x x= −  and 3( ) 5g x x= + , find 

a.  ( ( ))f g x   

b.  ( ( ))g f x   

c. What does this tell us about the relationship between ( )f x  and ( )g x ? 

 

24. If ( )
2

x
f x

x
=

+
 and 

2
( )

1

x
g x

x
=

−
, find 

a.  ( ( ))f g x   

b.  ( ( ))g f x   

c. What does this tell us about the relationship between ( )f x  and ( )g x ? 
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Chapter 2:  
Linear Functions 
Chapter one was a window that gave us a peek into the entire course.  Our goal was to 
understand the basic structure of functions and function notation, the toolkit functions, 
domain and range, how to recognize and understand composition and transformations of 
functions and how to understand and utilize inverse functions.  With these basic 
components in hand we will further research the specific details and intricacies of each 
type of function in our toolkit and use them to model the world around us. 
 
 

Mathematical Modeling 

As we approach day to day life we often need to quantify the things around us, giving 
structure and numeric value to various situations. This ability to add structure enables 
us to make choices based on patterns we see that are weighted and systematic.  With 
this structure in place we can model and even predict behavior to make decisions.  
Adding a numerical structure to a real world situation is called Mathematical 

Modeling. 

 
 
When modeling real world scenarios, there are some common growth patterns that are 
regularly observed.  We will devote this chapter and the rest of the book to the study of 
the functions used to model these growth patterns. 
 

Section 2.1 Linear Functions ...................................................................................... 101 
Section 2.2 Graphs of Linear Functions ..................................................................... 114 
Section 2.3 Modeling with Linear Functions .............................................................. 129 
Section 2.4 Fitting Linear Models to Data .................................................................. 141 
Section 2.5 Absolute Value Functions ........................................................................ 149 

 

Section 2.1 Linear Functions 

 
As you hop into a taxicab in Las Vegas, the meter will immediately read $3.50; this is the 
“drop” charge made when the taximeter is activated.  After that initial fee, the taximeter 
will add $2.76 for each mile the taxi drives1.  In this scenario, the total taxi fare depends 
upon the number of miles ridden in the taxi, and we can ask whether it is possible to 
model this type of scenario with a function. Using descriptive variables, we choose m for 
miles and C for Cost in dollars as a function of miles: C(m).  

                                                 
1 Nevada Taxicab Authority, retrieved May 8, 2017.  There is also a waiting fee assessed when the taxi is 
waiting at red lights, but we’ll ignore that in this discussion. 
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We know for certain that 50.3)0( =C , since the $3.50 drop charge is assessed regardless 

of how many miles are driven.  Since $2.67 is added for each mile driven, then  
17.667.250.3)1( =+=C . 

 
If we then drove a second mile, another $2.67 would be added to the cost: 

84.8)2(67.250.367.267.250.3)2( =+=++=C  

 
If we drove a third mile, another $2.67 would be added to the cost: 

51.11)3(67.250.367.267.267.250.3)3( =+=+++=C  

 
From this we might observe the pattern, and conclude that if m miles are driven,

mmC 67.250.3)( +=  because we start with a $3.50 drop fee and then for each mile 

increase we add $2.67. 
 
It is good to verify that the units make sense in this equation.  The $3.50 drop charge is 
measured in dollars; the $2.67 charge is measured in dollars per mile. 

( )milesm
mile

dollars
dollarsmC 








+= 67.250.3)(  

When dollars per mile are multiplied by a number of miles, the result is a number of 
dollars, matching the units on the 3.50, and matching the desired units for the C function.   
 
Notice this equation mmC 67.250.3)( +=  consisted of two quantities.  The first is the 

fixed $3.50 charge which does not change based on the value of the input.  The second is 
the $2.67 dollars per mile value, which is a rate of change.  In the equation, this rate of 
change is multiplied by the input value. 
 
Looking at this same problem in table format we can also see the cost changes by $2.67 
for every 1 mile increase. 
 

m 0 1 2 3 

C(m)  3.50 6.17 8.84 11.51 

 
It is important here to note that in this equation, the rate of change is constant; over any 
interval, the rate of change is the same. 
 
Graphing this equation, mmC 67.250.3)( +=  we see 

the shape is a line, which is how these functions get 
their name: linear functions. 
  

When the number of miles is zero the cost is $3.50, 
giving the point (0, 3.50) on the graph.  This is the 
vertical or C(m) intercept.  The graph is increasing in a 
straight line from left to right because for each mile 
the cost goes up by $2.67; this rate remains consistent. 
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In this example, you have seen the taxicab cost modeled in words, an equation, a table 
and in graphical form.  Whenever possible, ensure that you can link these four 
representations together to continually build your skills.  It is important to note that you 
will not always be able to find all 4 representations for a problem and so being able to 
work with all 4 forms is very important. 
 
 

Linear Function 

A linear function is a function whose graph produces a line.  Linear functions can 
always be written in the form 

mxbxf +=)(  or  bmxxf +=)( ;  they’re equivalent 

where  

 b is the initial or starting value of the function (when input, x = 0), and 

 m is the constant rate of change of the function  

 

Many people like to write linear functions in the form mxbxf +=)(  because it 

corresponds to the way we tend to speak:  “The output starts at b and increases at a 
rate of m.” 

 

For this reason alone we will use the mxbxf +=)(  form for many of the examples, 

but remember they are equivalent and can be written correctly both ways. 

 
 

Slope and Increasing/Decreasing 

m is the constant rate of change of the function (also called slope).  The slope 
determines if the function is an increasing function or a decreasing function. 

mxbxf +=)(  is an increasing function if 0m >  

mxbxf +=)(  is a decreasing function if 0m <  

If 0m = , the rate of change  zero, and the function ( ) 0f x b x b= + =  is just a 

horizontal line passing through the point (0, b), neither increasing nor decreasing. 

 
 
Example 1 

Marcus currently owns 200 songs in his iTunes collection.  Every month, he adds 15 
new songs.  Write a formula for the number of songs, N, in his iTunes collection as a 
function of the number of months, m.  How many songs will he own in a year? 
 
The initial value for this function is 200, since he currently owns 200 songs, so 

200)0( =N .  The number of songs increases by 15 songs per month, so the rate of 

change is 15 songs per month.  With this information, we can write the formula: 
mmN 15200)( += . 
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N(m) is an increasing linear function.  With this formula we can predict how many 
songs he will have in 1 year (12 months): 

380180200)12(15200)12( =+=+=N . Marcus will have 380 songs in 12 months. 

 
 

Try it Now 
1. If you earn $30,000 per year and you spend $29,000 per year write an equation for the 

amount of money you save after y years, if you start with nothing.  
“The most important thing, spend less than you earn!2” 

 
 

Calculating Rate of Change 

Given two values for the input, 21  and xx , and two corresponding values for the output, 

21  and yy ,  or a set of points, )  ,( 11 yx  and )  ,( 22 yx , if we wish to find a linear 

function that contains both points we can calculate the rate of change, m: 

12

12

inputin  change

outputin  change

xx

yy

x

y
m

−

−
=

∆

∆
==  

 

Rate of change of a linear function is also called the slope of the line. 

 

Note in function notation, )( 11 xfy =  and )( 22 xfy = , so we could equivalently write 

( ) ( )2 1

2 1

f x f x
m

x x

−
=

−
 

 
 
Example 2 

The population of a city increased from 23,400 to 27,800 between 2002 and 2006.  Find 
the rate of change of the population during this time span. 
 
The rate of change will relate the change in population to the change in time.  The 

population increased by 44002340027800 =− people over the 4 year time interval.  To 
find the rate of change, the number of people per year the population changed by: 

year

people

years

people
1100

4

4400
=  = 1100 people per year 

 
Notice that we knew the population was increasing, so we would expect our value for m 

to be positive.  This is a quick way to check to see if your value is reasonable. 
 
 

                                                 
2 http://www.thesimpledollar.com/2009/06/19/rule-1-spend-less-than-you-earn/  
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Example 3 

The pressure, P, in pounds per square inch (PSI) on a diver depends upon their depth 
below the water surface, d, in feet, following the equation ddP 434.0696.14)( += .  

Interpret the components of this function. 
 

The rate of change, or slope, 0.434 would have units 
ft

PSI

depth

pressure

input

output
== .  This 

tells us the pressure on the diver increases by 0.434 PSI for each foot their depth 
increases. 
 
The initial value, 14.696, will have the same units as the output, so this tells us that at a 
depth of 0 feet, the pressure on the diver will be 14.696 PSI. 

 
 
Example 4 

If )(xf is a linear function, 2)3( −=f , and 1)8( =f , find the rate of change. 

 
2)3( −=f  tells us that the input 3 corresponds with the output -2, and 1)8( =f  tells us 

that the input 8 corresponds with the output 1.  To find the rate of change, we divide the 
change in output by the change in input: 
 

5

3

38

)2(1

inputin  change

outputin  change
=

−

−−
==m .  If desired we could also write this as m = 0.6 

 
Note that it is not important which pair of values comes first in the subtractions so long 
as the first output value used corresponds with the first input value used. 

 
 

Try it Now 
2. Given the two points (2, 3) and (0, 4), find the rate of change.  Is this function 

increasing or decreasing? 

 
 
We can now find the rate of change given two input-output pairs, and can write an 
equation for a linear function once we have the rate of change and initial value.  If we 
have two input-output pairs and they do not include the initial value of the function, then 
we will have to solve for it. 
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Example 5 

Write an equation for the linear function graphed to the 
right. 
 

Looking at the graph, we might notice that it passes 
through the points (0, 7) and (4, 4).  From the first 
value, we know the initial value of the function is b = 7, 
so in this case we will only need to calculate the rate of 
change: 
 

4

3

04

74 −
=

−

−
=m  

 
This allows us to write the equation: 

xxf
4

3
7)( −=      

 
 
Example 6 

If )(xf is a linear function, 2)3( −=f , and 1)8( =f , find an equation for the function. 

 

In example 3, we computed the rate of change to be 
5

3
=m .  In this case, we do not 

know the initial value )0(f , so we will have to solve for it.  Using the rate of change, 

we know the equation will have the form xbxf
5

3
)( += .   Since we know the value of 

the function when x = 3, we can evaluate the function at 3. 
 

)3(
5

3
)3( += bf  Since we know that 2)3( −=f , we can substitute on the left side 

)3(
5

3
2 +=− b  This leaves us with an equation we can solve for the initial value 

5

19

5

9
2

−
=−−=b  

 
Combining this with the value for the rate of change, we can now write a formula for 
this function: 

xxf
5

3

5

19
)( +

−
=  

 
 
 
 
 



Section 2.1 Linear Functions   

 

107

Example 7 

Working as an insurance salesperson, Ilya earns a base salary and a commission on each 
new policy, so Ilya’s weekly income, I, depends on the number of new policies, n, he 
sells during the week.  Last week he sold 3 new policies, and earned $760 for the week.  
The week before, he sold 5 new policies, and earned $920.  Find an equation for I(n), 
and interpret the meaning of the components of the equation. 
 
The given information gives us two input-output pairs:  (3,760) and (5,920).  We start 
by finding the rate of change.   

80
2

160

35

760920
==

−

−
=m  

 
Keeping track of units can help us interpret this quantity.  Income increased by $160 
when the number of policies increased by 2, so the rate of change is $80 per policy; Ilya 
earns a commission of $80 for each policy sold during the week. 
 
We can then solve for the initial value 

nbnI 80)( +=   then when n = 3, (3) 760I = , giving 

)3(80760 += b   this allows us to solve for b 

520)3(80760 =−=b  

 
This value is the starting value for the function.  This is Ilya’s income when n = 0, 
which means no new policies are sold.  We can interpret this as Ilya’s base salary for 
the week, which does not depend upon the number of policies sold.   
 
Writing the final equation: 

nnI 80520)( +=  

Our final interpretation is: Ilya’s base salary is $520 per week and he earns an 
additional $80 commission for each policy sold each week. 

 
 

Flashback 
Looking at Example 7: 

Determine the independent and dependent variables. 
What is a reasonable domain and range? 
Is this function one-to-one? 

 
 

Try it Now 
3. The balance in your college payment account, C, is a function of the number of 

quarters, q, you attend.  Interpret the function C(a) = 20000 – 4000q in words.  How 
many quarters of college can you pay for until this account is empty? 
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Example 8 

Given the table below write a linear equation that represents the table values 
 

 
We can see from the table that the initial value of rats is 1000 so in the linear format  

( )P w b mw= + , b = 1000.   

 
Rather than solving for m, we can notice from the table that the population goes up by 
80 for every 2 weeks that pass.  This rate is consistent from week 0, to week 2, 4, and 6.  
The rate of change is 80 rats per 2 weeks. This can be simplified to 40 rats per week and 
we can write 

( )P w b mw= +  as wwP 401000)( +=  

 
If you didn’t notice this from the table you could still solve for the slope using any two 
points from the table.  For example, using (2, 1080) and (6, 1240), 

1240 1080 160
40

6 2 4
m

−
= = =

−
rats per week 

 
 

Important Topics of this Section 

Definition of Modeling 

Definition of a linear function 

Structure of a linear function 

Increasing & Decreasing functions 

Finding the vertical intercept (0, b) 

Finding the slope/rate of change, m 

Interpreting linear functions 

 
 

Try it Now Answers 
1. yyyyS 1000000,29000,30)( =−=   $1000 is saved each year.    

2. 
2

1

2

1

20

34
−=

−
=

−

−
=m   ;  Decreasing because m < 0 

3. Your College account starts with $20,000 in it and you withdraw $4,000 each quarter 
(or your account contains $20,000 and decreases by $4000 each quarter.)   
Solving C(a) = 0 gives a = 5.  You can pay for 5 quarters before the money in this 
account is gone. 

w, number of 
weeks 

0 2 4 6 

P(w), number 
of rats 

1000 1080 1160 1240 
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Flashback Answers 
n (number of policies sold) is the independent variable 
I(n) (weekly income as a function of policies sold) is the dependent variable. 
 
A reasonable domain is (0, 15)* 
A reasonable range is ($540, $1740)* 
*answers may vary given reasoning is stated; 15 is an arbitrary upper limit based on 
selling 3 policies per day in a 5 day work week and $1740 corresponds with the domain. 
 
Yes this function is one-to-one   
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Section 2.1 Exercises 

 
1. A town's population has been growing linearly. In 2003, the population was 45,000, 

and the population has been growing by 1700 people each year.  Write an equation,

( ) , P t for the population t years after 2003. 

 

2. A town's population has been growing linearly. In 2005, the population was 69,000, 

and the population has been growing by 2500 people each year.  Write an equation,

( ) , P t for the population t years after 2005. 

 

3. Sonya is currently 10 miles from home, and is walking further away at 2 miles per 

hour.  Write an equation for her distance from home t hours from now. 

 

4. A boat is 100 miles away from the marina, sailing directly towards it at 10 miles per 

hour.  Write an equation for the distance of the boat from the marina after t hours. 

 

5. Timmy goes to the fair with $40.  Each ride costs $2.  How much money will he have 

left after riding n rides? 

 

6. At noon, a barista notices she has $20 in her tip jar.  If she makes an average of $0.50 

from each customer, how much will she have in her tip jar if she serves n more 

customers during her shift? 

Determine if each function is increasing or decreasing 

7. ( ) 4 3f x x= +     8. ( ) 5 6g x x= +  

9. ( ) 5 2a x x= −     10. ( ) 8 3b x x= −   

11. ( ) 2 4h x x= − +     12. ( ) 4 1k x x= − +  

13. ( )
1

3
2

j x x= −     14. ( )
1

5
4

p x x= −  

15. ( )
1

2
3

n x x= − −      16. ( )
3

3
8

m x x= − +  

 
Find the slope of the line that passes through the two given points 
17. (2, 4) and (4, 10)    18. (1, 5) and (4, 11) 
19. (-1,4) and (5, 2)    20. (-2, 8) and (4, 6) 
21. (6,11) and (-4,3)    22. (9,10) and (-6,-12) 
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Find the slope of the lines graphed 

23.    24.  
 

25. Sonya is walking home from a friend’s house.  After 2 minutes she is 1.4 miles from 

home.  Twelve minutes after leaving, she is 0.9 miles from home.  What is her rate? 

 

26. A gym membership with two personal training sessions costs $125, while gym 

membership with 5 personal training sessions costs $260.  What is the rate for 

personal training sessions? 

 

27. A city's population in the year 1960 was 287,500. In 1989 the population was 

275,900.  Compute the slope of the population growth (or decline) and make a 

statement about the population rate of change in people per year.  

 

28. A city's population in the year 1958 was 2,113,000. In 1991 the population was 

2,099,800. Compute the slope of the population growth (or decline) and make a 

statement about the population rate of change in people per year. 

 

29. A phone company charges for service according to the formula: ( ) 24 0.1C n n= + , 

where n is the number of minutes talked, and ( )C n  is the monthly charge, in dollars. 

Find and interpret the rate of change and initial value.  

 

30. A phone company charges for service according to the formula: ( ) 26 0.04C n n= + , 

where n is the number of minutes talked, and ( )C n  is the monthly charge, in dollars. 

Find and interpret the rate of change and initial value. 

 

31. Terry is skiing down a steep hill. Terry's elevation, ( )E t , in feet after t seconds is 

given by ( ) 3000 70E t t= − .  Write a complete sentence describing Terry’s starting 

elevation and how it is changing over time. 
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32. Maria is climbing a mountain. Maria's elevation, ( )E t , in feet after t minutes is given 

by ( ) 1 200 40E t t= + .  Write a complete sentence describing Maria’s starting 

elevation and how it is changing over time. 

  

Given each set of information, find a linear equation satisfying the conditions, if possible 
33. ( 5)  4f − = − , and (5)  2f =    34. ( 1)  4f − = , and (5) 1 f =  

35. Passes through (2, 4) and (4, 10)  36. Passes through (1, 5) and (4, 11) 

37. Passes through (-1,4) and (5, 2)  38. Passes through (-2, 8) and (4, 6) 

39. x intercept at (-2, 0) and y intercept at (0, -3) 

40. x intercept at (-5, 0) and y intercept at (0, 4) 

 
Find an equation for the function graphed 

41.    42.  
 

43.    44.  
 
 
45. A clothing business finds there is a linear relationship between the number of shirts, 

n, it can sell and the price, p, it can charge per shirt. In particular, historical data 

shows that 1000  shirts can be sold at a price of $30 , while 3000  shirts can be sold at 

a price of $22 . Find a linear equation in the form p mn b= +  that gives the price p 

they can charge for n shirts.  
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46. A farmer finds there is a linear relationship between the number of bean stalks, n, she 

plants and the yield, y, each plant produces.  When she plants 30 stalks, each plant 

yields 30 oz of beans.  When she plants 34 stalks, each plant produces 28 oz of beans.  

Find a linear relationships in the form y mn b= +  that gives the yield when n stalks 

are planted. 

  

47. Which of the following tables could represent a linear function?  For each that could 

be linear, find a linear equation models the data. 

x g(x) 

0 5 

5 -10 

10 -25 

15 -40 
 

x h(x) 

0 5 

5 30 

10 105 

15 230 
 

x f(x) 

0 -5 

5 20 

10 45 

15 70 
 

x k(x) 

5 13 

10 28 

20 58 

25 73 
 

 
48. Which of the following tables could represent a linear function?  For each that could 

be linear, find a linear equation models the data.    

x g(x) 

0 6 

2 -19 

4 -44 

6 -69 
 

x h(x) 

2 13 

4 23 

8 43 

10 53 
 

x f(x) 

2 -4 

4 16 

6 36 

8 56 
 

x k(x) 

0 6 

2 31 

6 106 

8 231 
 

 
 
49. While speaking on the phone to a friend in Oslo, Norway, you learned that the current 

temperature there was -23 Celsius (-23oC). After the phone conversation, you wanted 

to convert this temperature to Fahrenheit degrees, oF, but you could not find a 

reference with the correct formulas. You then remembered that the relationship 

between oF and oC is linear.  [UW] 

a. Using this and the knowledge that 32oF = 0 oC and 212 oF = 100 oC, find an 

equation that computes Celsius temperature in terms of Fahrenheit; i.e. an 

equation of the form C = “an expression involving only the variable F.” 

b. Likewise, find an equation that computes Fahrenheit temperature in terms of 

Celsius temperature; i.e. an equation of the form F = “an expression involving 

only the variable C.” 

c. How cold was it in Oslo in oF? 
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Section 2.2 Graphs of Linear Functions 

 
When we are working with a new function, it is useful to know as much as we can about 
the function: its graph, where the function is zero, and any other special behaviors of the 
function.  We will begin this exploration of linear functions with a look at graphs. 
 
When graphing a linear function, there are three basic ways to graph it: 

1) By plotting points (at least 2) and drawing a line through the points 
2) Using the initial value (output when x = 0) and rate of change (slope) 
3) Using transformations of the identity function xxf =)(  

 
 
Example 1 

Graph xxf
3

2
5)( −=  by plotting points 

 
In general, we evaluate the function at two or more inputs to find at least two points on 
the graph.  Usually it is best to pick input values that will “work nicely” in the equation.  

In this equation, multiples of 3 will work nicely due to the 
3

2
 in the equation, and of 

course using x = 0 to get the vertical intercept.  Evaluating f(x) at x = 0, 3 and 6: 

1)6(
3

2
5)6(

3)3(
3

2
5)3(

5)0(
3

2
5)0(

=−=

=−=

=−=

f

f

f

 

 
These evaluations tell us that the points (0,5), 
(3,3), and (6,1) lie on the graph of the line.  
Plotting these points and drawing a line through 
them gives us the graph. 

 
 
When using the initial value and rate of change to graph, we need to consider the 
graphical interpretation of these values.  Remember the initial value of the function is the 
output when the input is zero, so in the equation mxbxf +=)( , the graph includes the 

point (0, b).  On the graph, this is the vertical intercept – the point where the graph 
crosses the vertical axis. 
 
For the rate of change, it is helpful to recall that we calculated this value as  

input of change

output of change
=m  
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From a graph of a line, this tells us that if we 
divide the vertical difference, or rise, of the 
function outputs by the horizontal difference, 
or run, of the inputs, we will obtain the rate 
of change, also called slope of the line. 
 

run

rise
m ==

input of change

output of change
 

 
Notice that this ratio is the same regardless of 
which two points we use. 
 

 

Graphical Interpretation of a Linear Equation 

Graphically, in the equation mxbxf +=)( , 

 

b is the vertical intercept of the graph and tells us we can start our graph at (0, b) 

 

m is the slope of the line and tells us how far to rise & run to get to the next point 

 

Once we have at least 2 points, we can extend the graph of the line to the left and 
right. 

 
 
Example 2 

Graph xxf
3

2
5)( −=  using the vertical intercept and slope. 

 
The vertical intercept of the function is (0, 5), giving us a point on the graph of the line. 
   

The slope is 
3

2
− .  This tells us that for every 3 units the graph “runs” in the horizontal, 

the vertical “rise” decreases by 2 units.   
 
In graphing, we can use this by first plotting 
our vertical intercept on the graph, then using 
the slope to find a second point.  From the 
initial value (0, 5) the slope tells us that if we 
move to the right 3, we will move down 2, 
moving us to the point (3, 3).  We can continue 
this again to find a third point at (6, 1).  
Finally, extend the line to the left and right, 
containing these points. 
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Try it Now 

1. Consider that the slope 
2

3
−  could also be written as 

2

3−
.  Using 

2

3−
, find another 

point on the graph that has a negative x value. 

 
 
Another option for graphing is to use transformations of the identity function xxf =)( .   

 
 
In the equation mxxf =)( , the m is 

acting as the vertical stretch of the 
identity function.  When m is 
negative, there is also a vertical 
reflection of the graph. Looking at 
some examples: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In bmxxf +=)( , the b acts as the 

vertical shift, moving the graph up 
and down without affecting the 
slope of the line.  Some examples: 
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Using Vertical Stretches or Compressions along with Vertical Shifts is another way to 
look at identifying different types of linear functions.  Although this may not be the 
easiest way for you to graph this type of function, make sure you practice each method. 
 

 

Example 3 

Graph xxf
2

1
3)( +−=  using transformations. 

 
The equation is the graph of the identity function vertically compressed by ½ and 
vertically shifted down 3. 
 
Vertical compression   combined with Vertical shift 

       

 
 
Notice how this nicely compares to the other method where the vertical intercept is found 
at (0, -3) and to get to another point we rise (go up vertically) by 1 unit and run (go 
horizontally) by 2 units to get to the next point (2, -2), and the next one (4, -1).  In these 
three points (0, -3), (2, -2), and (4, -1), the output values change by +1, and the x values 
change by +2, corresponding with the slope m = ½. 
 
 
Example 4 

Match each equation with one of the lines in the graph below 

3
2

1
)(

32)(

32)(

32)(

+=

+−=

−=

+=

xxj

xxh

xxg

xxf

 

 

 

Only one graph has a vertical intercept of -
3, so we can immediately match that graph 
with g(x).   
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For the three graphs with a vertical 
intercept at 3, only one has a negative 
slope, so we can match that line with h(x).  
Of the other two, the steeper line would 
have a larger slope, so we can match that 
graph with equation f(x), and the flatter 
line with the equation j(x). 
 
 
 
 
 

 
 
In addition to understanding the basic behavior of a linear function (increasing or 
decreasing, recognizing the slope and vertical intercept), it is often helpful to know the 
horizontal intercept of the function – where it crosses the horizontal axis. 
 
 

Finding Horizontal Intercepts 

The horizontal intercept of the function is where the graph crosses the horizontal 
axis.  If a function has a horizontal intercept, you can always find it by solving  
f(x) = 0. 

 
 
Example 5 

Find the horizontal intercept of xxf
2

1
3)( +−=  

 
Setting the function equal to zero to find what input will put us on the horizontal axis, 

6

2

1
3

2

1
30

=

=

+−=

x

x

x

 

 
The graph crosses the horizontal axis at (6,0) 
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There are two special cases of lines: a horizontal line and a 
vertical line.  In a horizontal line like the one graphed to the 
right, notice that between any two points, the change in the 
outputs is 0.  In the slope equation, the numerator will be 0, 
resulting in a slope of 0.  Using a slope of 0 in the 

mxbxf +=)( , the equation simplifies to bxf =)( . 

 
Notice a horizontal line has a vertical intercept, but no 
horizontal intercept (unless it’s the line f(x) = 0). 
 
In the case of a vertical line, notice that between any two 
points, the change in the inputs is zero.  In the slope equation, 
the denominator will be zero, and you may recall that we 
cannot divide by the zero; the slope of a vertical line is 
undefined.  You might also notice that a vertical line is not a 
function.  To write the equation of vertical line, we simply 

write input=value, like x b= . 

Notice a vertical line has a horizontal intercept, but no vertical 
intercept (unless it’s the line x = 0). 
 
 

Horizontal and Vertical Lines 

Horizontal lines have equations of the form bxf =)(  

Vertical lines have equations of the form x = a 

 
 
Example 6 

Write an equation for the horizontal line graphed above. 
 
This line would have equation ( ) 2f x =  

 
 
Example 7 

Write an equation for the vertical line graphed above. 
 

This line would have equation 2x =  

 
 

Try it Now 
2. Describe the function xxf 36)( −=  in terms of transformations of the identity 

function and find its horizontal intercept.   
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Parallel and Perpendicular Lines 

 

When two lines are graphed together, the lines will be parallel if they are increasing at 
the same rate – if the rates of change are the same.  In this case, the graphs will never 
cross (unless they’re the same line). 
 
 

Parallel Lines 

Two lines are parallel if the slopes are equal (or, if both lines are vertical).   

 

In other words, given two linear equations xmbxf 1)( +=  and xmbxg 2)( += , the 

lines will be parallel if 21 mm = . 

 
 
Example 8 

Find a line parallel to xxf 36)( +=  that passes through the point (3, 0) 

 
We know the line we’re looking for will have the same slope as the given line, m = 3.  
Using this and the given point, we can solve for the new line’s vertical intercept: 

xbxg 3)( +=   then at (3, 0), 

9

)3(30

−=

+=

b

b
 

 
The line we’re looking for is xxg 39)( +−=  

If two lines are not parallel, one other interesting possibility is that the lines are 
perpendicular, which means the lines form a right angle (90 degree angle – a square 
corner) where they meet.  In this case, the slopes when multiplied together will equal -1.  
Solving for one slope leads us to the definition: 
 
 

Perpendicular Lines 

Given two linear equations xmbxf 1)( +=  and xmbxg 2)( +=  

The lines will be perpendicular if  121 −=mm , and so 
1

2

1

m
m

−
=  

We often say the slope of a perpendicular line is the “negative reciprocal” of the other 
line’s slope. 
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Example 9 

Find the slope of a line perpendicular to a line with: 

a) a slope of 2. b) a slope of  -4.    c) a slope of 
3

2
. 

 

If the original line had slope 2, the perpendicular line’s slope would be 
2

1
2

−
=m  

If the original line had slope -4, the perpendicular line’s slope would be 
4

1

4

1
2 =

−

−
=m  

If the original line had slope 
3

2
, the perpendicular line’s slope would be 

2

3

3
2

1
2

−
=

−
=m  

 
 
Example 10 

Find the equation of a line perpendicular to xxf 36)( +=  and passing through the point 

(3, 0) 
 

The original line has slope m = 3.  The perpendicular line will have slope 
3

1−
=m .  

Using this and the given point, we can find the equation for the line. 

xbxg
3

1
)( −=   then at (3, 0), 

1

)3(
3

1
0

=

−=

b

b
 

 

The line we’re looking for is xxg
3

1
1)( −= . 

 
 

Try it Now 
3. Given the line tth 24)( +−= , find an equation for the line passing through (0, 0) that 

is:    a) parallel to h(t). b) perpendicular to h(t). 

 
 
Example 12 

A line passes through the points (-2, 6) and (4, 5).  Find the equation of a perpendicular 
line that passes through the point (4, 5). 
 
From the two given points on the reference line, we can calculate the slope of that line: 

6

1

)2(4

65
1

−
=

−−

−
=m  
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The perpendicular line will have slope 

6

6
1

1
2 =

−

−
=m  

 
We can then solve for the vertical intercept that makes the line pass through the desired 
point: 

xbxg 6)( +=   then at (4, 5), 

19

)4(65

−=

+=

b

b
 

Giving the line xxg 619)( +−=  

 
 
 
Intersections of Lines 

 
The graphs of two lines will intersect if they are not parallel.  They will intersect at the 
point that satisfies both equations.  To find this point when the equations are given as 
functions, we can solve for an input value so that )()( xgxf = .  In other words, we can 

set the formulas for the lines equal, and solve for the input that satisfies the equation. 
 
 
Example 13 

Find the intersection of the lines 43)( −= tth  and ttj −= 5)(  

 
Setting )()( tjth = , 

4

9

94

543

=

=

−=−

t

t

tt

 

This tells us the lines intersect when the input is 
4

9
.   

We can then find the output value of the intersection point 
by evaluating either function at this input 

4

11

4

9
5

4

9
=−=








j  

 

These lines intersect at the point 








4

11
,

4

9
.  Looking at the 

graph, this result seems reasonable. 
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Two parallel lines can also intersect if they happen to be the same line.  In that case, they 
intersect at every point on the lines. 
 
 

Try it Now 
4. Look at the graph in example 13 above and answer the following for the function h(t): 

a. Vertical intercept coordinates 
b. Horizontal intercepts coordinates 
c. Slope 
d. Is j(t) parallel or perpendicular to h(t) (or neither) 
e. Is h(t) an Increasing or Decreasing function (or neither) 
f. Write a transformation description from the identity toolkit function f(x) = x 

 

 

Finding the intersection allows us to answer other questions as well, such as discovering 
when one function is larger than another. 
 
 
Example 14 

Using the functions from the previous example, for what values of t is )()( tjth >  

 
To answer this question, it is helpful first to know where the functions are equal, since 
that is the point where h(t) could switch from being greater to smaller than j(t) or vice-

versa.  From the previous example, we know the functions are equal at 
4

9
=t .   

By examining the graph, we can see that h(t), the function with positive slope, is going 
to be larger than the other function to the right of the intersection.  So )()( tjth >  when 

4

9
>t  

 
 

Important Topics of this Section 

Methods for graphing linear functions 

Another name for slope = rise/run 

Horizontal intercepts (a,0) 

Horizontal lines 

Vertical lines 

Parallel lines 

Perpendicular lines 

Intersecting lines 
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Try it Now Answers 
1. (-3,7)  found by starting at the vertical intercept, going up 2 units and 3 in the negative 

horizontal direction. You could have also answered, (-6, 9) or (-9, 11) etc… 
 
2. Vertically stretched by a factor of 3, Vertically flipped (flipped over the x axis),  

Vertically shifted up by 6 units.   
Horizontal intercept:  6−3x=0  when x=2 

 

3. Parallel ttf 2)( =  ;  Perpendicular 
1

( )
2

g t t= −  

 
4. Given 43)( −= tth  

  a. (0,-4) 

  b. 







0,

3

4
 

  c. Slope 3 
  d. Neither parallel nor perpendicular 
  e. Increasing function 
  f. Given the identity function, vertically stretch by 3 and shift down 4 units. 
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Section 2.2 Exercises 

  
Match each linear equation with its graph 
 

1. ( ) 1f x x= − −  

2. ( ) 2 1f x x= − −  

3. ( )
1

1
2

f x x= − −  

4. ( ) 2f x =  

5. ( ) 2f x x= +  

6. ( ) 3 2f x x= +  

 
 
Sketch a line with the given features 
7. An x-intercept of (-4, 0) and y-intercept of (0, -2) 

8. An x-intercept of (-2, 0) and y-intercept of (0, 4) 

9. A vertical intercept of (0, 7) and slope 
3

2
−  

10. A vertical intercept of (0, 3) and slope 
2

5
 

11. Passing through the points (-6,-2) and (6,-6) 

12. Passing through the points (-3,-4) and (3,0) 

 
Sketch the graph of each equation 

13. ( ) 2 1f x x= − −    14. ( ) 3 2g x x= − +  

15. ( )
1

2
3

h x x= +    16. ( )
2

3
3

k x x= −  

17. ( ) 3 2k t t= +    18. ( ) 2 3p t t= − +  

19. 3x =     20. 2x = −  

21. ( ) 4r x =     22. ( ) 3q x =   
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23. If ( )g x  is the transformation of ( )f x x=  after a vertical compression by 3 / 4 , a 

shift left by 2, and a shift down by 4 

a. Write an equation for ( )g x  

b. What is the slope of this line? 
c. Find the vertical intercept of this line.  

 

24.  If ( )g x  is the transformation of ( )f x x=  after a vertical compression by 1/ 3 , a shift 

right by 1, and a shift up by 3 

a. Write an equation for ( )g x  

b. What is the slope of this line? 
c. Find the vertical intercept of this line.  

  
Write the equation of the line shown 

25.     26.  
 

27.    28.  
 
 
Find the horizontal and vertical intercepts of each equation 

29. ( ) 2f x x= − +     30. ( ) 2 4g x x= +  

31. ( ) 3 5h x x= −     32. ( ) 5 1k x x= − +   

33. 2 5 20x y− + =     34. 7 2 56x y+ =  
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Given below are descriptions of two lines. Find the slopes of Line 1 and Line 2.  Is each 
pair of lines parallel, perpendicular or neither? 
 
35. Line 1: Passes through (0,6)  and (3, 24)−  

Line 2: Passes through ( 1,19)−  and (8, 71)−  

 
36. Line 1: Passes through ( 8, 55)− −  and (10, 89)  

Line 2: Passes through (9, 44)−  and (4, 14)−  

 
37. Line 1: Passes through (2,3)  and (4, 1)−  

Line 2: Passes through (6,3)  and (8,5)  

 
38. Line 1: Passes through (1, 7)  and (5,5)  

Line 2: Passes through ( 1, 3)− −  and (1,1)  

 
39. Line 1: Passes through (0, 5)  and (3,3)  

Line 2: Passes through (1, 5)−  and (3, 2)−  

 

40. Line 1: Passes through (2,5)  and (5, 1)−  

Line 2: Passes through ( 3,7)−  and (3, 5)−  

 

41. Write an equation for a line parallel to ( ) 5 3f x x= − −  and passing through the point 

(2,-12) 
 

42. Write an equation for a line parallel to ( ) 3 1g x x= −  and passing through the point 

(4,9) 
  

43. Write an equation for a line perpendicular to ( ) 2 4h t t= − +  and passing through the 

point (-4,-1) 
 

44. Write an equation for a line perpendicular to ( ) 3 4p t t= +  and passing through the 

point (3,1) 
 

45. Find the point at which the line ( ) 2 1f x x= − −  intersects the line ( )g x x= −  

 
46. Find the point at which the line ( ) 2 5f x x= +  intersects the line ( ) 3 5g x x= − −  
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47. Use algebra to find the point at which the line ( )
4 274

  
5 25

f x x=− +  intersects the line 

( )
9 73

 
4 10

h x x= +  

 

48. Use algebra to find the point at which the line ( )
7 457

 
4 60

f x x= +  intersects the line 

( )
4 31

 
3 5

g x x= +  

  
49. A car rental company offers two plans for renting a car.  

Plan A: 30 dollars per day and 18 cents per mile  
Plan B: 50 dollars per day with free unlimited mileage  
How many miles would you need to drive for plan B to save you money?  
 

50. You’re comparing two cell phone companies. 
Company A: $20/month for unlimited talk and text, and $10/GB for data. 

Company B:  $65/month for unlimited talk, text, and data. 

Under what circumstances will company A save you money? 

 
Find a formula for each piecewise defined function. 

51.   52.  

53.  Sketch an accurate picture of the line having equation ( )
1

2
2

f x x= − . Let c be an 

unknown constant.  [UW] 
a. Find the point of intersection between the line you have graphed and the 

line ( ) 1g x cx= + ; your answer will be a point in the xy plane whose 

coordinates involve the unknown c. 
b. Find c so that the intersection point in (a) has x-coordinate 10. 
c. Find c so that the intersection point in (a) lies on the x-axis. 
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Section 2.3 Modeling with Linear Functions 

 
When modeling scenarios with a linear function and solving problems involving 
quantities changing linearly, we typically follow the same problem solving strategies that 
we would use for any type of function: 
 
 

Problem solving strategy 

1) Identify changing quantities, and then carefully and clearly define descriptive 
variables to represent those quantities.  When appropriate, sketch a picture or 
define a coordinate system. 

2) Carefully read the problem to identify important information.  Look for 
information giving values for the variables, or values for parts of the functional 
model, like slope and initial value. 

3) Carefully read the problem to identify what we are trying to find, identify, solve, 
or interpret.   

4) Identify a solution pathway from the provided information to what we are trying to 
find.  Often this will involve checking and tracking units, building a table or even 
finding a formula for the function being used to model the problem.  

5) When needed, find a formula for the function. 

6) Solve or evaluate using the formula you found for the desired quantities. 

7) Reflect on whether your answer is reasonable for the given situation and whether it 
makes sense mathematically. 

8) Clearly convey your result using appropriate units, and answer in full sentences 
when appropriate. 

 
 
Example 1 

Emily saved up $3500 for her summer visit to Seattle.  She anticipates spending $400 
each week on rent, food, and fun.  Find and interpret the horizontal intercept and 
determine a reasonable domain and range for this function. 
 
In the problem, there are two changing quantities:  time and money.  The amount of 
money she has remaining while on vacation depends on how long she stays.  We can 
define our variables, including units. 
Output: M, money remaining, in dollars 
Input: t, time, in weeks 
 
Reading the problem, we identify two important values.  The first, $3500, is the initial 
value for M.  The other value appears to be a rate of change – the units of dollars per 
week match the units of our output variable divided by our input variable.  She is 
spending money each week, so you should recognize that the amount of money 
remaining is decreasing each week and the slope is negative.   
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To answer the first question, looking for the horizontal intercept, it would be helpful to 
have an equation modeling this scenario.  Using the intercept and slope provided in the 
problem, we can write the equation: ttM 4003500)( −= .   

 
To find the horizontal intercept, we set the output to zero, and solve for the input: 

75.8
400

3500

40035000

==

−=

t

t

 

 
The horizontal intercept is 8.75 weeks.  Since this represents the input value where the 
output will be zero, interpreting this, we could say:  Emily will have no money left after 
8.75 weeks. 
 
When modeling any real life scenario with functions, there is typically a limited domain 
over which that model will be valid – almost no trend continues indefinitely.  In this 
case, it certainly doesn’t make sense to talk about input values less than zero.  It is also 
likely that this model is not valid after the horizontal intercept (unless Emily’s going to 
start using a credit card and go into debt).   
 
The domain represents the set of input values and so the reasonable domain for this 

function is 75.80 ≤≤ t .  

 
However, in a real world scenario, the rental might be weekly or nightly.  She may not 
be able to stay a partial week and so all options should be considered.  Emily could stay 
in Seattle for 0 to 8 full weeks (and a couple of days), but would have to go into debt to 
stay 9 full weeks, so restricted to whole weeks, a reasonable domain without going in to 

debt would be 80 ≤≤ t , or 90 ≤≤ t if she went into debt to finish out the last week. 

 
The range represents the set of output values and she starts with $3500 and ends with $0 
after 8.75 weeks so the corresponding range is 3500)(0 ≤≤ tM .  If we limit the rental 

to whole weeks, however, the range would change.  If she left after 8 weeks because she 
didn’t have enough to stay for a full 9 weeks, she would have M(8) = 3500−400(8) = 
$300 dollars left after 8 weeks, giving a range of 3500)(300 ≤≤ tM .  If she wanted to 

stay the full 9 weeks she would be $100 in debt giving a range of 3500)(100 ≤≤− tM . 

 
Most importantly remember that domain and range are tied together, and what ever you 
decide is most appropriate for the domain (the independent variable) will dictate the 
requirements for the range (the dependent variable). 

 
 

Try it Now 
1.  A database manager is loading a large table from backups.  Getting impatient, she 

notices 1.2 million rows had been loaded.  Ten minutes later, 2.5 million rows had 
been loaded.  How much longer will she have to wait for all 80 million rows to load? 
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Example 2 

Jamal is choosing between two moving companies.  The first, U-Haul, charges an up-
front fee of $20, then 59 cents a mile.  The second, Budget, charges an up-front fee of 
$16, then 63 cents a mile3.  When will U-Haul be the better choice for Jamal? 
 
The two important quantities in this problem are the cost, and the number of miles that 
are driven.  Since we have two companies to consider, we will define two functions: 
 
Input:  m, miles driven 
Outputs:   
Y(m):  cost, in dollars, for renting from U-Haul 
B(m):  cost, in dollars, for renting from Budget 
 
Reading the problem carefully, it appears that we were given an initial cost and a rate of 
change for each company.  Since our outputs are measured in dollars but the costs per 
mile given in the problem are in cents, we will need to convert these quantities to match 
our desired units:  $0.59 a mile for U-Haul, and $0.63 a mile for Budget. 
 
Looking to what we’re trying to find, we want to know when U-Haul will be the better 
choice.  Since all we have to make that decision from is the costs, we are looking for 
when U-Haul will cost less, or when )()( mBmY < .  The solution pathway will lead us 

to find the equations for the two functions, find the intersection, then look to see where 
the Y(m) function is smaller.  Using the rates of change and initial charges, we can write 
the equations: 

mmB

mmY

63.016)(

59.020)(

+=

+=
 

 
These graphs are sketched to the right, with 
Y(m) drawn dashed. 
 
To find the intersection, we set the 
equations equal and solve: 
Y(m) = B(m) 

100

04.04

63.01659.020

=

=

+=+

m

m

mm

 

 
This tells us that the cost from the two companies will be the same if 100 miles are 
driven.  Either by looking at the graph, or noting that Y(m) is growing at a slower rate, 
we can conclude that U-Haul will be the cheaper price when more than 100 miles are 
driven. 

 
 

                                                 
3 Rates retrieved Aug 2, 2010 from http://www.budgettruck.com and http://www.uhaul.com/  
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Example 3 

A town’s population has been growing linearly.  In 2004 the population was 6,200.  By 
2009 the population had grown to 8,100.  If this trend continues, 
a. Predict the population in 2013 
b. When will the population reach 15000? 
 
The two changing quantities are the population and time.  While we could use the actual 
year value as the input quantity, doing so tends to lead to very ugly equations, since the 
vertical intercept would correspond to the year 0, more than 2000 years ago!   
To make things a little nicer, and to make our lives easier too, we will define our input 
as years since 2004: 
Input:  t, years since 2004 
Output:  P(t), the town’s population 
 
The problem gives us two input-output pairs.  Converting them to match our defined 
variables, the year 2004 would correspond to t = 0, giving the point (0, 6200).  Notice 
that through our clever choice of variable definition, we have “given” ourselves the 
vertical intercept of the function.  The year 2009 would correspond to t = 5, giving the 
point (5, 8100).   
 
To predict the population in 2013 (t = 9), we would need an equation for the population.  
Likewise, to find when the population would reach 15000, we would need to solve for 
the input that would provide an output of 15000.  Either way, we need an equation.  To 
find it, we start by calculating the rate of change: 

380
5

1900

05

62008100
==

−

−
=m people per year 

 
Since we already know the vertical intercept of the line, we can immediately write the 
equation: 

ttP 3806200)( +=  

 
To predict the population in 2013, we evaluate our function at t = 9 

9620)9(3806200)9( =+=P  

If the trend continues, our model predicts a population of 9,620 in 2013. 
 
To find when the population will reach 15,000, we can set P(t) = 15000 and solve for t. 

158.23

3808800

380620015000

≈

=

+=

t

t

t

 

 
Our model predicts the population will reach 15,000 in a little more than 23 years after 
2004, or somewhere around the year 2027. 
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Example 4 

Anna and Emanuel start at the same intersection.  Anna walks east at 4 miles per hour 
while Emanuel walks south at 3 miles per hour.  They are communicating with a two-
way radio with a range of 2 miles.  How long after they start walking will they fall out 
of radio contact? 
 
In essence, we can partially answer this question by saying they will fall out of radio 
contact when they are 2 miles apart, which leads us to ask a new question: how long 
will it take them to be 2 miles apart? 
 
In this problem, our changing quantities are time and the two peoples’ positions, but 
ultimately we need to know how long will it take for them to be 2 miles apart.  We can 
see that time will be our input variable, so we’ll define 
Input:  t, time in hours.  
 
Since it is not obvious how to define our output variables, we’ll start by drawing a 
picture. 
 
 
 
 
 
 
 
 
 
Because of the complexity of this question, it may be helpful to introduce some 
intermediary variables.  These are quantities that we aren’t directly interested in, but 
seem important to the problem.  For this problem, Anna’s and Emanuel’s distances 
from the starting point seem important.  To notate these, we are going to define a 
coordinate system, putting the “starting point” at the intersection where they both 
started, then we’re going to introduce a variable, A, to represent Anna’s position, and 
define it to be a measurement from the starting point, in the eastward direction.  
Likewise, we’ll introduce a variable, E, to represent Emanuel’s position, measured from 
the starting point in the southward direction.  Note that in defining the coordinate 
system we specified both the origin, or starting point, of the measurement, as well as the 
direction of measure.   
 
While we’re at it, we’ll define a third variable, D, to be the measurement of the distance 
between Anna and Emanuel.  Showing the variables on the picture is often helpful: 
Looking at the variables on the picture, we remember we need to know how long it 
takes for D, the distance between them, to equal 2 miles. 
 
 
 
 

Anna walking east, 4 miles/hour 

Emanuel walking south, 3 miles/hour 

Distance between them 
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Seeing this picture we remember that in order to find the distance 
between the two, we can use the Pythagorean Theorem, a 
property of right triangles.   
 
From here, we can now look back at the problem for relevant information.  Anna is 
walking 4 miles per hour, and Emanuel is walking 3 miles per hour, which are rates of 
change.  Using those, we can write formulas for the distance each has walked.   
 
They both start at the same intersection and so when t = 0, the distance travelled by each 
person should also be 0, so given the rate for each, and the initial value for each, we get: 
 

 
 
Using the Pythagorean theorem we get: 
 

2 2 2( ) ( ) ( )D t A t E t= +     substitute in the function formulas 
2 2 2 2 2 2( ) (4 ) (3 ) 16 9 25D t t t t t t= + = + =   solve for D(t) using the square root 

2( ) 25 5D t t t= ± = ±  

 
Since in this scenario we are only considering positive values of t and our distance D(t) 
will always be positive, we can simplify this answer to ( ) 5D t t=  

 
Interestingly, the distance between them is also a linear function.  Using it, we can now 
answer the question of when the distance between them will reach 2 miles: 

 
 
They will fall out of radio contact in 0.4 hours, or 24 minutes. 

 
 
 
 

( ) 4

( ) 3

A t t

E t t

=

=

( ) 2

5 2

2
0.4

5

D t

t

t

=

=

= =

A 

E 

D 

 
 
 

 

a 

b 

c 
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Example 5 

There is currently a straight road leading from the town of Westborough to a town 30 
miles east and 10 miles north.  Partway down this road, it junctions with a second road, 
perpendicular to the first, leading to the town of Eastborough.  If the town of 
Eastborough is located 20 miles directly east of the town of Westborough, how far is the 
road junction from Westborough? 
 
It might help here to draw a picture of 
the situation.  It would then be helpful to 
introduce a coordinate system.  While we 
could place the origin anywhere, placing 
it at Westborough seems convenient.  
This puts the other town at coordinates 
(30, 10), and Eastborough at (20, 0). 
 
Using this point along with the origin, we can find the slope of the line from 

Westborough to the other town:  
3

1

030

010
=

−

−
=m  .   This gives the equation of the road 

from Westborough to the other town to be xxW
3

1
)( = . 

 
From this, we can determine the perpendicular road to Eastborough will have slope 

3−=m .  Since the town of Eastborough is at the point (20, 0), we can find the equation: 

bxxE +−= 3)(    plug in the point (20, 0) 

b+−= )20(30  

60=b     
603)( +−= xxE  

 
We can now find the coordinates of the junction of the roads by finding the intersection 
of these lines.  Setting them equal, 

603
3

1
+−= xx  

60
3

10
=x  

18010 =x  

18=x     Substituting this back into W(x) 

6)18(
3

1
)18( === Wy  

The roads intersect at the point (18, 6).  Using the distance formula, we can now find 
the distance from Westborough to the junction: 

934.18)06()018( 22
≈−+−=dist  miles. 

 
 
 

Westborough 

Other town 

(30, 10) 

20 miles Eastborough 

(20, 0) (0, 0) 
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Important Topics of this Section 

The problem solving process 

1) Identify changing quantities, and then carefully and clearly define descriptive 
variables to represent those quantities.  When appropriate, sketch a picture or 
define a coordinate system. 

2) Carefully read the problem to identify important information.  Look for 
information giving values for the variables, or values for parts of the functional 
model, like slope and initial value. 

3) Carefully read the problem to identify what we are trying to find, identify, solve, 
or interpret.   

4) Identify a solution pathway from the provided information to what we are trying to 
find.  Often this will involve checking and tracking units, building a table or even 
finding a formula for the function being used to model the problem.  

5) When needed, find a formula for the function. 

6) Solve or evaluate using the formula you found for the desired quantities. 

7) Reflect on whether your answer is reasonable for the given situation and whether it 
makes sense mathematically. 

8) Clearly convey your result using appropriate units, and answer in full sentences 
when appropriate. 

 
 
 

Try it Now 
1.  Letting t be the number of minutes since she got impatient, and N be the number rows 

loaded, in millions, we have two points: (0, 1.2) and (10, 2.5).  
 

The slope is 13.0
10

3.1

010

2.15.2
==

−

−
=m  million rows per minute.   

We know the N intercept, so we can write the equation:  
2.113.0 += tN  

 
To determine how long she will have to wait, we need to solve for when N = 80. 

802.113.0 =+= tN  

8.7813.0 =t  

606
13.0

8.78
≈=t .  She’ll have to wait another 606 minutes, about 10 hours. 
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Section 2.3 Exercises 

 
1. In 2004, a school population was 1001. By 2008 the population had grown to 1697.  

Assume the population is changing linearly. 
a. How much did the population grow between the year 2004 and 2008?  
b. How long did it take the population to grow from 1001 students to 1697 

students?  
c. What is the average population growth per year?  
d. What was the population in the year 2000?  
e. Find an equation for the population, P, of the school t years after 2000.  
f. Using your equation, predict the population of the school in 2011.  

 
2. In 2003, a town’s population was 1431. By 2007 the population had grown to 2134.  

Assume the population is changing linearly. 
a. How much did the population grow between the year 2003 and 2007?  
b. How long did it take the population to grow from 1431 people to 2134?  
c. What is the average population growth per year?  
d. What was the population in the year 2000?  
e. Find an equation for the population, P, of the town t years after 2000.  
f. Using your equation, predict the population of the town in 2014.  

 

3. A phone company has a monthly cellular plan where a customer pays a flat monthly 
fee and then a certain amount of money per minute used on the phone. If a customer 
uses 410 minutes, the monthly cost will be $71.50. If the customer uses 720 minutes, 
the monthly cost will be $118.  

a. Find a linear equation for the monthly cost of the cell plan as a function of x, 
the number of monthly minutes used. 

b. Interpret the slope and vertical intercept of the equation. 
c. Use your equation to find the total monthly cost if 687 minutes are used. 

 

4. A phone company has a monthly cellular data plan where a customer pays a flat 
monthly fee and then a certain amount of money per megabyte (MB) of data used on 
the phone. If a customer uses 20 MB, the monthly cost will be $11.20. If the customer 
uses 130 MB, the monthly cost will be $17.80.  

a. Find a linear equation for the monthly cost of the data plan as a function of x, 
the number of MB used. 

b. Interpret the slope and vertical intercept of the equation. 
c. Use your equation to find the total monthly cost if 250 MB are used. 
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5. In 1991, the moose population in a park was measured to be 4360. By 1999, the 
population was measured again to be 5880. If the population continues to change 
linearly, 

a. Find a formula for the moose population, P. 
b. What does your model predict the moose population to be in 2003? 

 

6. In 2003, the owl population in a park was measured to be 340. By 2007, the 
population was measured again to be 285. If the population continues to change 
linearly, 

a. Find a formula for the owl population, P. 
b. What does your model predict the owl population to be in 2012? 

 

7. The Federal Helium Reserve held about 16 billion cubic feet of helium in 2010, and is 
being depleted by about 2.1 billion cubic feet each year.   

a. Give a linear equation for the remaining federal helium reserves, R, in terms 
of t, the number of years since 2010.  

b. In 2015, what will the helium reserves be? 
c. If the rate of depletion doesn’t change, when will the Federal Helium Reserve 

be depleted? 
 

8. Suppose the world's current oil reserves are 1820 billion barrels. If, on average, the 
total reserves is decreasing by 25 billion barrels of oil each year: 

a. Give a linear equation for the remaining oil reserves, R, in terms of t, the 
number of years since now.  

b. Seven years from now, what will the oil reserves be? 
c. If the rate of depletion isn’t change, when will the world’s oil reserves be 

depleted? 
 

9. You are choosing between two different prepaid cell phone plans. The first plan 
charges a rate of 26 cents per minute. The second plan charges a monthly fee of 
$19.95 plus 11 cents per minute. How many minutes would you have to use in a 
month in order for the second plan to be preferable?  
 

10. You are choosing between two different window washing companies.  The first 
charges $5 per window.  The second charges a base fee of $40 plus $3 per window.  
How many windows would you need to have for the second company to be 
preferable? 
 

11. When hired at a new job selling jewelry, you are given two pay options: 
Option A: Base salary of $17,000 a year, with a commission of 12% of your sales 
Option B: Base salary of $20,000 a year, with a commission of 5% of your sales 
How much jewelry would you need to sell for option A to produce a larger income? 
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12. When hired at a new job selling electronics, you are given two pay options: 
Option A: Base salary of $14,000 a year, with a commission of 10% of your sales 
Option B: Base salary of $19,000 a year, with a commission of 4% of your sales 
How much electronics would you need to sell for option A to produce a larger 
income? 
 

13. Find the area of a triangle bounded by the y axis, the line ( )
6

9
7

f x x= − , and the line 

perpendicular to ( )f x  that passes through the origin. 

 

14. Find the area of a triangle bounded by the x axis, the line ( )
1

12
3

f x x= − , and the 

line perpendicular to ( )f x  that passes through the origin. 

 

15. Find the area of a parallelogram bounded by the y axis, the line 3x = , the line 

( ) 1 2f x x= + , and the line parallel to ( )f x  passing through (2, 7) 

 

16. Find the area of a parallelogram bounded by the x axis, the line ( ) 2g x = , the line 

( ) 3f x x= , and the line parallel to ( )f x  passing through (6, 1) 

 

17. If 0b >  and 0m < , then the line ( )f x b mx= +  cuts off a triangle from the first 

quadrant.  Express the area of that triangle in terms of m and b.   [UW] 
 

18. Find the value of m so the lines ( ) 5f x mx= +  and ( )g x x=  and the y-axis form a 

triangle with an area of 10.   [UW] 
 

19. The median home values in Mississippi and Hawaii (adjusted for inflation) are shown 
below.   If we assume that the house values are changing linearly, 

Year Mississippi Hawaii 

1950 25200 74400 

2000 71400 272700 

a. In which state have home values increased at a higher rate?  
b. If these trends were to continue, what would be the median home value in 

Mississippi in 2010?  
c.  If we assume the linear trend existed before 1950 and continues after 2000, 

the two states' median house values will be (or were) equal in what year? (The 
answer might be absurd) 
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20. The median home value ins Indiana and Alabama (adjusted for inflation) are shown 
below.  If we assume that the house values are changing linearly, 

Year Indiana Alabama 

1950 37700 27100 

2000 94300 85100 

a. In which state have home values increased at a higher rate?  
b. If these trends were to continue, what would be the median home value in 

Indiana in 2010? 
c.  If we assume the linear trend existed before 1950 and continues after 2000, 

the two states' median house values will be (or were) equal in what year? (The 
answer might be absurd) 
 

21. Pam is taking a train from the town of Rome to the town of Florence. Rome is located 
30 miles due West of the town of Paris. Florence is 25 miles East, and 45 miles North 
of Rome.  On her trip, how close does Pam get to Paris?  [UW] 
 

22. You’re flying from Joint Base Lewis-McChord (JBLM) to an undisclosed location 
226 km south and 230 km east. Mt. Rainier is located approximately 56 km east and 
40 km south of JBLM. If you are flying at a constant speed of 800 km/hr, how long 
after you depart JBLM will you be the closest to Mt. Rainier? 
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Section 2.4 Fitting Linear Models to Data 

 
In the real world, rarely do things follow trends perfectly.  When we expect the trend to 
behave linearly, or when inspection suggests the trend is behaving linearly, it is often 
desirable to find an equation to approximate the data. Finding an equation to approximate 
the data helps us understand the behavior of the data and allows us to use the linear 
model to make predictions about the data, inside and outside of the data range.   
 
 
Example 1 

The table below shows the number of cricket chirps in 15 seconds, and the air 
temperature, in degrees Fahrenheit4.  Plot this data, and determine whether the data 
appears to be linearly related. 

 
Plotting this data, it appears there may be a trend, and that the trend appears roughly 
linear, though certainly not perfectly so.   
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The simplest way to find an equation to approximate this data is to try to “eyeball” a line 
that seems to fit the data pretty well, then find an equation for that line based on the slope 
and intercept.   
 
You can see from the trend in the data that the number of chirps increases as the 
temperature increases.  As you consider a function for this data you should know that you 
are looking at an increasing function or a function with a positive slope. 
 
 
 

                                                 
4 Selected data from http://classic.globe.gov/fsl/scientistsblog/2007/10/. Retrieved Aug 3, 2010 

chirps 44 35 20.4 33 31 35 18.5 37 26 

Temp 80.5 70.5 57 66 68 72 52 73.5 53 
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Flashback 
1. a. What descriptive variables would you choose to represent Temperature & Chirps? 
    b. Which variable is the independent variable and which is the dependent variable? 
    c. Based on this data and the graph, what is a reasonable domain & range? 
    d. Based on the data alone, is this function one-to-one, explain? 

 
 
Example 2 

Using the table of values from the previous example, find a linear function that fits the 
data by “eyeballing” a line that seems to fit. 
 
On a graph, we could try sketching in a line.  
Note the scale on the axes have been adjusted 
to start at zero to include the vertical axis and 
vertical intercept in the graph. 
 
Using the starting and ending points of our 
“hand drawn” line, points (0, 30) and (50, 90), 

this graph has a slope of  
60

1.2
50

m = =  and a 

vertical intercept at 30, giving an equation of  
 

( ) 30 1.2T c c= +  

where c is the number of chirps in 15 seconds, 
and T(c) is the temperature in degrees Fahrenheit. 

 
 
This linear equation can then be used to approximate the solution to various questions we 
might ask about the trend.  While the data does not perfectly fall on the linear equation, 
the equation is our best guess as to how the relationship will behave outside of the values 
we have data for.  There is a difference, though, between making predictions inside the 
domain and range of values we have data for, and outside that domain and range.   
 
 

Interpolation and Extrapolation 

Interpolation: When we predict a value inside the domain and range of the data 

Extrapolation: When we predict a value outside the domain and range of the data 

 
 
For the Temperature as a function of chirps in our hand drawn model above, 

• Interpolation would occur if we used our model to predict temperature when the 

values for chirps are between 18.5 and 44. 

• Extrapolation would occur if we used our model to predict temperature when the 

values for chirps are less than 18.5 or greater than 44. 
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 Example 3 

a) Would predicting the temperature when crickets are chirping 30 times in 15 seconds 
be interpolation or extrapolation?  Make the prediction, and discuss if it is reasonable. 
 
b) Would predicting the number of chirps crickets will make at 40 degrees be 
interpolation or extrapolation?  Make the prediction, and discuss if it is reasonable. 
 
With our cricket data, our number of chirps in the data provided varied from 18.5 to 44.  
A prediction at 30 chirps per 15 seconds is inside the domain of our data, so would be 
interpolation.  Using our model: 

(30) 30 1.2(30) 66T = + = degrees. 

 
Based on the data we have, this value seems reasonable. 
 
The temperature values varied from 52 to 80.5.   Predicting the number of chirps at 40 
degrees is extrapolation since 40 is outside the range of our data.  Using our model: 
40 30 1.2

10 1.2

8.33

c

c

c

= +

=

≈

 

 
Our model predicts the crickets would chirp 8.33 times in 15 seconds.  While this might 
be possible, we have no reason to believe our model is valid outside the domain and 
range.  In fact, generally crickets stop chirping altogether below around 50 degrees. 

 
 
When our model no longer applies after some point, it is sometimes called model 

breakdown.  
 
 

Try it Now  
1. What temperature would you predict if you counted 20 chirps in 15 seconds? 

 
 
Fitting Lines with Technology 
 
While eyeballing a line works reasonably well, there are statistical techniques for fitting a 
line to data that minimize the differences between the line and data values5.  This 
technique is called least-square regression, and can be computed by many graphing 
calculators, spreadsheet software like Excel or Google Docs, statistical software, and 
many web-based calculators6. 
 

                                                 
5 Technically, the method minimizes the sum of the squared differences in the vertical direction between 
the line and the data values. 
6 For example, http://www.shodor.org/unchem/math/lls/leastsq.html  
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Example 4 

Find the least-squares regression line using the cricket chirp data from above. 
 
Using the cricket chirp data from earlier, 
with technology we obtain the equation: 

( ) 30.281 1.143T c c= +  

 
Notice that this line is quite similar to the 
equation we “eyeballed”, but should fit the 
data better.  Notice also that using this 
equation would change our prediction for 
the temperature when hearing 30 chirps in 
15 seconds from 66 degrees to: 

(30) 30.281 1.143(30) 64.571 64.6T = + = ≈

degrees. 
 
 
 Most calculators and computer software will also provide you with the correlation 

coefficient, a measure of how closely the line fits the data. 
 
 

Correlation Coefficient 

The correlation coefficient is a value, r, between -1 and 1.   

r > 0 suggests a positive (increasing) relationship 

r < 0 suggests a negative (decreasing) relationship 

The closer the value is to 0, the more scattered the data 

The closer the value is to 1 or -1, the less scattered the data is 

 
 
The correlation coefficient provides an easy way to get some idea of how close to a line 
the data falls. 
 
We should only compute the correlation coefficient for data that follows a linear pattern; 
if the data exhibits a non-linear pattern, the correlation coefficient is meaningless.  To get 
a sense for the relationship between the value of r and the graph of the data, here are 
some large data sets with their correlation coefficients: 
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Year '94 '95 '96 '97 '98 '99 '00 '01 '02 '03 '04 

Consumption 
(billions of 
gallons) 113 116 118 119 123 125 126 128 131 133 136 

 

 

Examples of Correlation Coefficient Values 

 

7 
 
 
Example 5 

Calculate the correlation coefficient for our cricket data. 
 
Because the data appears to follow a linear pattern, we can use technology to calculate  
r = 0.9509.  Since this value is very close to 1, it suggests a strong increasing linear 
relationship. 

 
 
Example 6 

Gasoline consumption in the US has been increasing steadily.  Consumption data from 
1994 to 2004 is shown below.8   Determine if the trend is linear, and if so, find a model 
for the data.  Use the model to predict the consumption in 2008. 
 
 
 
 
 
 
To make things simpler, a new 
input variable is introduced, t, 
representing years since 1994.  
 
Using technology, the correlation 
coefficient was calculated to be 
0.9965, suggesting a very strong 
increasing linear trend.   

                                                 
7 http://en.wikipedia.org/wiki/File:Correlation_examples.png  
8 http://www.bts.gov/publications/national_transportation_statistics/2005/html/table_04_10.html 
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The least-squares regression equation is: 
ttC 209.2318.113)( += .  

 
Using this to predict consumption in 2008 (t = 14),  

(14) 113.318 2.209(14) 144.244C = + =  billions of gallons 

 
The model predicts 144.244 billion gallons of gasoline will be consumed in 2008. 

 
 

Try it Now 
2. Use the model created by technology in example 6 to predict the gas consumption in 

2011.  Is this an interpolation or an extrapolation?  

 
 

Important Topics of this Section 

Fitting linear models to data by hand 

Fitting linear models to data using technology 

Interpolation 

Extrapolation 

Correlation coefficient 

 
 

Flashback Answers 
1. a. T = Temperature,  C = Chirps (answers may vary) 
    b. Independent (Chirps) , Dependent (Temperature) 
    c. Reasonable Domain (18.5, 44) , Reasonable Range (52, 80.5) (answers may vary) 
    d. NO, it is not one-to-one, there are two different output values for 35 chirps. 

 
 

Try it Now Answers 
1. 54 degrees Fahrenheit 
2. 150.871 billion gallons; extrapolation  
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Section 2.4 Exercises 

 
1. The following is data for the first and second quiz scores for 8 students in a class. Plot 

the points, then sketch a line that fits the data. 
 

First Quiz 11 20 24 25 33 42 46 49 

Second Quiz 10 16 23 28 30 39 40 49 

 
 
2. Eight students were asked to estimate their score on a 10 point quiz.   Their estimated 

and actual scores are given.  Plot the points, then sketch a line that fits the data.  
 

Predicted 5 7 6 8 10 9 10 7 

Actual 6 6 7 8 9 9 10 6 

 

 

Based on each set of data given, calculate the regression line using your calculator or 
other technology tool, and determine the correlation coefficient. 

3. x y 

5 4 

7 12 

10 17 

12 22 

15 24 
 

4. x y 

8 23 

15 41 

26 53 

31 72 

56 103 
 

5. x y 

3 21.9 

4 22.22 

5 22.74 

6 22.26 

7 20.78 

8 17.6 

9 16.52 

10 18.54 

11 15.76 

12 13.68 

13 14.1 

14 14.02 

15 11.94 

16 12.76 

17 11.28 

18 9.1 
 

6. x y 

4 44.8 

5 43.1 

6 38.8 

7 39 

8 38 

9 32.7 

10 30.1 

11 29.3 

12 27 

13 25.8 

14 24.7 

15 22 

16 20.1 

17 19.8 

18 16.8 
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7. A regression was run to determine if there is a relationship between hours of TV 
watched per day (x) and number of situps a person can do (y).  The results of the 
regression are given below.  Use this to predict the number of situps a person who 
watches 11 hours of TV can do. 

y=ax+b 

a=-1.341 

b=32.234 

r2=0.803 

r=-0.896 

 

8. A regression was run to determine if there is a relationship between the diameter of a 
tree (x, in inches) and the tree’s age (y, in years).  The results of the regression are 
given below.  Use this to predict the age of a tree with diameter 10 inches. 

y=ax+b 

a=6.301 

b=-1.044 

r2=0.940 

r=-0.970 

 
Match each scatterplot shown below with one of the four specified correlations. 
9. r = 0.95  10. r = -0.89  11. r = 0.26  12. r = -0.39 

A  B   C   D  

13. The US census tracks the percentage of persons 25 years or older who are college 
graduates.  That data for several years is given below.  Determine if the trend appears 
linear.  If so and the trend continues, in what year will the percentage exceed 35%? 

 

Year 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 

Percent 
Graduates 

21.3 21.4 22.2 23.6 24.4 25.6 26.7 27.7 28 29.4 

 
 
14. The US import of wine (in hectoliters) for several years is given below.  Determine if 

the trend appears linear.  If so and the trend continues, in what year will imports 
exceed 12,000 hectoliters? 

 

Year 1992 1994 1996 1998 2000 2002 2004 2006 2008 2009 

Imports 2665 2688 3565 4129 4584 5655 6549 7950 8487 9462 
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Section 2.5 Absolute Value Functions 

 
So far in this chapter we have been studying the behavior of linear functions. The 
Absolute Value Function is a piecewise-defined function made up of two linear 
functions.  The name, Absolute Value Function, should be familiar to you from 

Section 1.2.  In its basic form ( )f x x=  it is one of our toolkit functions.   

 
 

Absolute Value Function 

The absolute value function can be defined as 

0
( )

0

x if x
f x x

x if x

≥
= = 

− <
 

 
 
The absolute value function is commonly used to determine the distance between 

two numbers on the number line.  Given two values a and b, then ba −  will give 

the distance, a positive quantity, between these values, regardless of which value is 
larger. 
 
 
Example 1 

Describe all values, x, within a distance of 4 from the number 5. 
 
We want the distance between x and 5 to be less than or equal to 4.  The distance can be 
represented using the absolute value, giving the expression 

45 ≤−x  

 
 
Example 2 

A 2010 poll reported 78% of Americans believe that people who are gay should be able 
to serve in the US military, with a reported margin of error of 3%9.  The margin of error 
tells us how far off the actual value could be from the survey value10.  Express the set of 
possible values using absolute values. 
 
Since we want the size of the difference between the actual percentage, p, and the 
reported percentage to be less than 3%, 

378 ≤−p  

 

                                                 
9 http://www.pollingreport.com/civil.htm, retrieved August 4, 2010 
10 Technically, margin of error usually means that the surveyors are 95% confident that actual value falls 
within this range. 
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Try it Now 
1. Students who score within 20 points of  80 will pass the test.  Write this as a distance 

from 80 using the absolute value notation.  

 
 
Important Features 

 
The most significant feature of the absolute value graph is the corner point where the 
graph changes direction.  When finding the equation for a transformed absolute 
value function, this point is very helpful for determining the horizontal and vertical 
shifts. 
 
 
Example 3 

Write an equation for the function graphed. 
 
The basic absolute value function changes direction at 
the origin, so this graph has been shifted to the right 3 
and down 2 from the basic toolkit function.   
 
We might also notice that the graph appears stretched, 
since the linear portions have slopes of 2 and -2.  
From this information we could write the write the 
equation in two ways: 
 

232)( −−= xxf ,  treating the stretch as a vertical stretch 

2)3(2)( −−= xxf ,  treating the stretch as a horizontal compression 

 
Note that these equations are algebraically equivalent – the stretch for an absolute value 
function can be written interchangeably as a vertical or horizontal stretch/compression. 
 
If you had not been able to determine the stretch based on the slopes of the lines, you 
can solve for the stretch factor by putting in a known pair of values for x and f(x) 

23)( −−= xaxf   Now substituting in the point (1, 2) 

2

24

2312

=

=

−−=

a

a

a

 

 
 

Try it Now 
2. Given the description of the transformed absolute value function write the equation.  

The absolute value function is horizontally shifted left 2 units, is vertically flipped, and 
vertically shifted up 3 units. 



Section 2.5 Absolute Value Functions      151 

 

The graph of an absolute value function will have a vertical intercept when the input 
is zero.  The graph may or may not have horizontal intercepts, depending on how the 
graph has been shifted and reflected.  It is possible for the absolute value function to 
have zero, one, or two horizontal intercepts. 
 
Zero horizontal intercepts  One    Two 

     
 
To find the horizontal intercepts, we will need to solve an equation involving an 
absolute value. 
 
Notice that the absolute value function is not one-to-one, so typically inverses of 
absolute value functions are not discussed. 
 
 
Solving Absolute Value Equations 

 

To solve an equation like 628 −= x , we can notice that the absolute value will be 

equal to eight if the quantity inside the absolute value were 8 or -8.  This leads to 
two different equations we can solve independently: 

862 =−x  or 862 −=−x  

142 =x   22 −=x  

7=x    1−=x  

 
 

Solutions to Absolute Value Equations 

An equation of the form BA = , with 0≥B , will have solutions when  

BA =  or BA −=  

 
 
Example 4 

Find the horizontal intercepts of the graph of 714)( −+= xxf  

 
The horizontal intercepts will occur when 0)( =xf .  Solving, 
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7140 −+= x   Isolate the absolute value on one side of the equation 

147 += x    Now we can break this into two separate equations: 

 

2

3

4

6

46

147

==

=

+=

x

x

x

 or 

2
4

8

48

147

−=
−

=

=−

+=−

x

x

x

 

 

The graph has two horizontal intercepts, at 
2

3
=x  and x = -2 

 
 
Example 5 

Solve 2241 +−= x  

 
Isolating the absolute value on one side the equation, 

2241 +−= x  

241 −=− x  

2
4

1
−=− x  

 
At this point, we notice that this equation has no solutions – the absolute value always 
returns a positive value, so it is impossible for the absolute value to equal a negative 
value. 

 
 

Try it Now 

3. Find the horizontal & vertical intercepts for the function 32)( ++−= xxf  

 
 
Solving Absolute Value Inequalities 

 
When absolute value inequalities are written to describe a set of values, like the 

inequality 45 ≤−x  we wrote earlier, it is sometimes desirable to express this set of 

values without the absolute value, either using inequalities, or using interval 
notation. 
 
We will explore two approaches to solving absolute value inequalities: 

1) Using the graph 
2) Using test values 
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Example 6 

Solve 45 ≤−x  

 
With both approaches, we will need to know first where the corresponding equality is 

true.  In this case, we first will find where 45 =−x .  We do this because the absolute 

value is a nice friendly function with no breaks, so the only way the function values can 
switch from being less than 4 to being greater than 4 is by passing through where the 

values equal 4.  Solve 45 =−x , 

9

45

=

=−

x

x
 or 

1

45

=

−=−

x

x
 

 

To use a graph, we can sketch the function 5)( −= xxf .  To help us see where the 

outputs are 4, the line 4)( =xg  could also be sketched. 

 

On the graph, we can see that indeed the output 
values of the absolute value are equal to 4 at x = 1 
and x = 9.  Based on the shape of the graph, we 
can determine the absolute value is less than or 
equal to 4 between these two points, when 

91 ≤≤ x .  In interval notation, this would be the 

interval [1,9].  
 
As an alternative to graphing, after determining 
that the absolute value is equal to 4 at x = 1 and x 
= 9, we know the graph can only change from 
being less than 4 to greater than 4 at these values.  This divides the number line up into 
three intervals:  x<1, 1<x<9, and x>9.  To determine when the function is less than 4, we 
could pick a value in each interval and see if the output is less than or greater than 4. 
 
Interval Test x   f(x)  <4 or >4? 

x<1  0  550 =−  greater 

1<x<9 6  156 =−  less 

x>9  11  6511 =−  greater 

 

Since 91 ≤≤ x  is the only interval in which the output at the test value is less than 4, 

we can conclude the solution to 45 ≤−x  is 91 ≤≤ x .  
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Example 7 

Given the function 354
2

1
)( +−−= xxf , determine for what x values the function 

values are negative. 
 

We are trying to determine where f(x) < 0, which is when 0354
2

1
<+−− x .  We begin 

by isolating the absolute value: 

354
2

1
−<−− x  when we multiply both sides by -2, it reverses the inequality 

654 >−x  

 

Next we solve for the equality 654 =−x  

4

11

114

654

=

=

=−

x

x

x

 or 

4

1

14

654

−
=

−=

−=−

x

x

x

 

 
We can now either pick test values or sketch a graph of the function to determine on 
which intervals the original function value are negative.  Notice that it is not even really 
important exactly what the graph looks like, as long as we know that it crosses the 

horizontal axis at 
4

1−
=x  and 

4

11
=x , and that the graph has been reflected vertically.   

 

 
From the graph of the function, we can see the 
function values are negative to the left of the first 

horizontal intercept at 
4

1−
=x , and negative to the 

right of the second intercept at 
4

11
=x .  This gives 

us the solution to the inequality: 
 

4

11

4

1
>

−
< xorx  

 

In interval notation, this would be 







∞∪







 −
∞− ,

4

11

4

1
,  
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Try it Now 

4.  Solve 642 −≤−− k  

 
 

Important Topics of this Section 

The properties of the absolute value function  

Solving absolute value equations 

Finding intercepts 

Solving absolute value inequalities 

 
 

Try it Now Answers 

1.  Using the variable p, for passing,  2080 ≤−p  

 

2. 32)( ++−= xxf  

 
3. f(0) = 1, so the vertical intercept is at (0,1).   

f(x)= 0 when 

032 =++− x  

32 =+x  

32 =+x  or 32 −=+x  

x = 1 or  x = -5  so the horizontal intercepts are at (-5,0) & (1,0)  
 

4. 642 −≤−− k  

34 ≥−k  

Solving the equality 34 =−k , k – 4 = 3 or k – 4 = –3, so 

k = 1 or k = 7. 
Using a graph or test values, we can determine the 

intervals that satisfy the inequality are 1k ≤ or 7k ≥ ; in 

interval notation this would be ( ] [ ),1 7,−∞ ∪ ∞  
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Section 2.5 Exercises 

 
Write an equation for each transformation of ( ) | |f x x=  

 

1.    2.  
 

3.    4.  
 
 
Sketch a graph of each function 

5. ( )  | 1 | 1f x x= − − −     6. ( )  3 4f x x=− + +  

7. ( )  2 3 1f x x= + +     8. ( ) 3 2 3f x x= − −  

9. ( ) 2 4 3f x x= − −     10. ( ) 3 9 2f x x= + +  

 
Solve each the equation 
11. | 5 2 | 11 x − =     12. | 4 2 | 15x + =   

13. 2 | 4 | 7 x− =     14. 3 | 5 | 5x− =   

15. 3 1 4 2 x + − = −     16. 5 4 7 2x − − =   

 

 



Section 2.5 Absolute Value Functions      157 

 

Find the horizontal and vertical intercepts of each function 

17. ( )  2 | 1 | 10f x x= + −     18. ( )  4 3 4f x x= − +   

19. ( ) 3 2 1f x x= − − −    20. ( )  2 1 6f x x= − + +  

 

Solve each inequality 

21. | 5 | 6x + <      22. | 3 | 7x − <  

23. | 2 | 3x − ≥      24. | 4 | 2x + ≥  

25. | 3 9 | 4x + <     26. | 2 9 | 8x − ≤  
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Section 3.1 Power Functions & Polynomial Functions 
A square is cut out of cardboard, with each side having length L.  If we wanted to write a 
function for the area of the square, with L as the input and the area as output, you may 
recall that the area of a rectangle can be found by multiplying the length times the width.  
Since our shape is a square, the length & the width are the same, giving the formula: 

2)( LLLLA   
 
Likewise, if we wanted a function for the volume of a cube with each side having some 
length L, you may recall volume of a rectangular box can be found by multiplying length 
by width by height, which are all equal for a cube, giving the formula: 

3)( LLLLLV   
 
These two functions are examples of power functions, functions that are some power of 
the variable. 
 
 

Power Function 

A power function is a function that can be represented in the form 
pxxf )(  

Where the base is a variable and the exponent, p, is a number. 
 
 
Example 1 

Which of our toolkit functions are power functions? 
 
The constant and identity functions are power functions, since they can be written as 

0)( xxf   and 1)( xxf   respectively. 
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The quadratic and cubic functions are both power functions with whole number powers: 
2)( xxf   and 3)( xxf  . 

 
The reciprocal and reciprocal squared functions are both power functions with negative 
whole number powers since they can be written as 1)(  xxf and 2)(  xxf . 
 
The square and cube root functions are both power functions with fractional powers 
since they can be written as 21)( xxf  or 31)( xxf  . 

 
 

Try it Now 
1. What point(s) do the toolkit power functions have in common? 

 
 
Characteristics of Power Functions 
 
Shown to the right are the graphs of 

642 )(and,)(,)( xxfxxfxxf  , all even whole number 
powers.  Notice that all these graphs have a fairly similar 
shape, very similar to the quadratic toolkit, but as the power 
increases the graphs flatten somewhat near the origin, and 
become steeper away from the origin. 
 
To describe the behavior as numbers become larger and 
larger, we use the idea of infinity.  The symbol for positive infinity is , and   for 
negative infinity.  When we say that “x approaches infinity”, which can be symbolically 
written as x , we are describing a behavior – we are saying that x is getting large in 
the positive direction.   
 
With the even power functions, as the x becomes large in either the positive or negative 
direction, the output values become very large positive numbers.  Equivalently, we could 
describe this by saying that as x approaches positive or negative infinity, the f(x) values 
approach positive infinity.  In symbolic form, we could write: as x , )(xf . 
 
Shown here are the graphs of 

753 )(and,)(,)( xxfxxfxxf  , all odd whole number 
powers.  Notice all these graphs look similar to the cubic 
toolkit, but again as the power increases the graphs flatten 
near the origin and become steeper away from the origin. 
 
For these odd power functions, as x approaches negative 
infinity, f(x) approaches negative infinity.  As x approaches 
positive infinity, f(x) approaches positive infinity.  In 
symbolic form we write:  as x , )(xf  and as x , )(xf . 
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Long Run Behavior 

The behavior of the graph of a function as the input takes on large negative values,
x , and large positive values, x , is referred to as the long run behavior of 

the function. 
 
 
Example 2 

Describe the long run behavior of the graph of 8)( xxf  . 
 
Since 8)( xxf   has a whole, even power, we would expect this function to behave 
somewhat like the quadratic function.  As the input gets large positive or negative, we 
would expect the output to grow without bound in the positive direction.  In symbolic 
form, as x , )(xf .  

 
 
Example 3 

Describe the long run behavior of the graph of 9)( xxf   
 
Since this function has a whole odd power, we would expect it to behave somewhat like 
the cubic function.  The negative in front of the 9x  will cause a vertical reflection, so as 
the inputs grow large positive, the outputs will grow large in the negative direction, and 
as the inputs grow large negative, the outputs will grow large in the positive direction.  
In symbolic form, for the long run behavior we would write: as x , )(xf
and as x , )(xf . 
 
You may use words or symbols to describe the long run behavior of these functions. 

 
 

Try it Now 
2. Describe in words and symbols the long run behavior of 4)( xxf   

 
 
Treatment of the rational and radical forms of power functions will be saved for later. 
 
 
Polynomials 
 
An oil pipeline bursts in the Gulf of Mexico, causing an oil slick in a roughly circular 
shape.  The slick is currently 24 miles in radius, but that radius is increasing by 8 miles 
each week.   If we wanted to write a formula for the area covered by the oil slick, we 
could do so by composing two functions together.  The first is a formula for the radius, r, 
of the spill, which depends on the number of weeks, w, that have passed.   
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Hopefully you recognized that this relationship is linear:   
wwr 824)(   

 
We can combine this with the formula for the area, A, of a circle:  

2)( rrA   
 
Composing these functions gives a formula for the area in terms of weeks: 

2)824()824())(()( wwAwrAwA    
 
Multiplying this out gives the formula 

264384576)( wwwA    
 
This formula is an example of a polynomial.  A polynomial is simply the sum of terms 
each consisting of a transformed power function with positive whole number power. 
 
 

Terminology of Polynomial Functions 

A polynomial is function that can be written as n
n xaxaxaaxf  2

210)(  

 

Each of the ai constants are called coefficients and can be positive, negative, or zero, 
and be whole numbers, decimals, or fractions. 

 

A term of the polynomial is any one piece of the sum, that is any i
i xa . Each 

individual term is a transformed power function. 

 

The degree of the polynomial is the highest power of the variable that occurs in the 
polynomial. 

 

The leading term is the term containing the highest power of the variable: the term 
with the highest degree.  

 

The leading coefficient is the coefficient of the leading term. 

 

Because of the definition of the “leading” term we often rearrange polynomials so that 
the powers are descending. 

01
2

2.....)( axaxaxaxf n
n   
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Example 4 
Identify the degree, leading term, and leading coefficient of these polynomials: 
 
a) 32 423)( xxxf   b) ttttg 725)( 35   c) 26)( 3  ppph  
 
a) For the function f(x), the degree is 3, the highest power on x.  The leading term is the 
term containing that power, 34x .  The leading coefficient is the coefficient of that 
term, -4. 
 
b) For g(t), the degree is 5, the leading term is 55t , and the leading coefficient is 5. 
 
c) For h(p), the degree is 3, the leading term is 3p , so the leading coefficient is -1. 

 
 

Long Run Behavior of Polynomials 

For any polynomial, the long run behavior of the polynomial will match the long run 
behavior of the leading term. 

 
 
Example 5 

What can we determine about the long run behavior and 
degree of the equation for the polynomial graphed here? 
 
Since the output grows large and positive as the inputs 
grow large and positive, we describe the long run 
behavior symbolically by writing: as x , 

)(xf .  Similarly, as x , )(xf . 
 
In words, we could say that as x values approach 
infinity, the function values approach infinity, and as x 
values approach negative infinity the function values 
approach negative infinity. 
 
We can tell this graph has the shape of an odd degree power function which has not 
been reflected, so the degree of the polynomial creating this graph must be odd, and the 
leading coefficient would be positive. 

 
 

Try it Now 
3. Given the function )5)(1)(2(2.0)(  xxxxf use your algebra skills to write the 

function in standard polynomial form (as a sum of terms) and determine the leading 
term, degree, and long run behavior of the function.  
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Short Run Behavior 
 
Characteristics of the graph such as vertical and horizontal intercepts and the places the 
graph changes direction are part of the short run behavior of the polynomial.   
 
Like with all functions, the vertical intercept is where the graph crosses the vertical axis, 
and occurs when the input value is zero.  Since a polynomial is a function, there can only 
be one vertical intercept, which occurs at the point ),0( 0a .  The horizontal intercepts 

occur at the input values that correspond with an output value of zero.  It is possible to 
have more than one horizontal intercept. 
 
Horizontal intercepts are also called zeros, or roots of the function. 
 
 
Example 6 

Given the polynomial function )4)(1)(2()(  xxxxf , written in factored form for 
your convenience, determine the vertical and horizontal intercepts.   
 
The vertical intercept occurs when the input is zero.   

8)40)(10)(20()0( f .   
 
The graph crosses the vertical axis at the point (0, 8). 
 
The horizontal intercepts occur when the output is zero. 

)4)(1)(2(0  xxx  when x = 2, -1, or 4. 
f(x) has zeros, or roots, at x = 2, -1, and 4. 
 
The graph crosses the horizontal axis at the points (2, 0), (-1, 0), and (4, 0) 

 
 
Notice that the polynomial in the previous example, which would be degree three if 
multiplied out, had three horizontal intercepts and two turning points – places where the 
graph changes direction.  We will now make a general statement without justifying it – 
the reasons will become clear later in this chapter. 
 
 

Intercepts and Turning Points of Polynomials 

A polynomial of degree n will have: 

At most n horizontal intercepts.  An odd degree polynomial will always have at least 
one. 

At most n−1 turning points 
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Example 7 
What can we conclude about the graph of the 
polynomial shown here? 
 
Based on the long run behavior, with the graph 
becoming large positive on both ends of the graph, we 
can determine that this is the graph of an even degree 
polynomial.  The graph has 2 horizontal intercepts, 
suggesting a degree of 2 or greater, and 3 turning points, 
suggesting a degree of 4 or greater.  Based on this, it 
would be reasonable to conclude that the degree is even 
and at least 4, so it is probably a fourth degree 
polynomial. 

 
 

Try it Now 
4. Given the function )5)(1)(2(2.0)(  xxxxf , determine the short run behavior. 

 
 

Important Topics of this Section 

Power Functions 

Polynomials 

Coefficients 

Leading coefficient 

Term 

Leading Term 

Degree of a polynomial  

Long run behavior 

Short run behavior 
 
 

Try it Now Answers 
1. (0, 0) and (1, 1) are common to all power functions. 
2. As x approaches positive and negative infinity, f(x) approaches negative infinity:  as 

x , )(xf  because of the vertical flip. 

3. The leading term is 32.0 x , so it is a degree 3 polynomial. 
As x approaches infinity (or gets very large in the positive direction) f(x) approaches 
infinity; as x approaches negative infinity (or gets very large in the negative direction) 
f(x) approaches negative infinity.  (Basically the long run behavior is the same as the 
cubic function). 

4. Horizontal intercepts are (2, 0) (-1, 0) and (5, 0), the vertical intercept is (0, 2) and 
there are 2 turns in the graph. 
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Section 3.1 Exercises 
 
Find the long run behavior of each function as x   and x   

1.   4f x x   2.   6f x x    3.   3f x x   4.   5f x x  

5.   2f x x    6.   4f x x    7.   7f x x    8.   9f x x   

 
Find the degree and leading coefficient of each polynomial 
9. 74x       10. 65x    
11. 25 x      12. 36 3 4x x   
13. 4 22  3  1 x x x          14. 5 4 26 2   3x x x    

15.   2 3 4 (3 1)x x x      16.   3 1 1 (4 3)x x x     

 
Find the long run behavior of each function as x   and x   
17. 4 22  3  1 x x x          18. 5 4 26 2   3x x x    
19. 23  2x x       20. 3 22  3x x x     
 
21. What is the maximum number of x-intercepts and turning points for a polynomial of 
degree 5?  
 
22. What is the maximum number of x-intercepts and turning points for a polynomial of 
degree 8?  
 
What is the least possible degree of the polynomial function shown in each graph? 

23. 24. 25. 26.  

27. 28. 29. 30.  
 
Find the vertical and horizontal intercepts of each function. 

31.     2 1 2 ( 3)f t t t t      32.     3 1 4 ( 5)f x x x x     

33.    2 3 1 (2 1)g n n n      34.    3 4 (4 3)k u n n       
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Section 3.2 Quadratic Functions 
 
In this section, we will explore the family of 2nd degree polynomials, the quadratic 
functions.  While they share many characteristics of polynomials in general, the 
calculations involved in working with quadratics is typically a little simpler, which makes 
them a good place to start our exploration of short run behavior.  In addition, quadratics 
commonly arise from problems involving area and projectile motion, providing some 
interesting applications. 
 
 
Example 1 

A backyard farmer wants to enclose a rectangular space for a new garden.  She has 
purchased 80 feet of wire fencing to enclose 3 sides, and will put the 4th side against the 
backyard fence.  Find a formula for the area enclosed by the fence if the sides of fencing 
perpendicular to the existing fence have length L. 
 
In a scenario like this involving geometry, it is often 
helpful to draw a picture.  It might also be helpful to 
introduce a temporary variable, W, to represent the side 
of fencing parallel to the 4th side or backyard fence.   
 
Since we know we only have 80 feet of fence available, 
we know that 80 LWL , or more simply, 

802 WL .  This allows us to represent the width, W, in terms of L:  LW 280   
 
Now we are ready to write an equation for the area the fence encloses.  We know the 
area of a rectangle is length multiplied by width, so  

)280( LLLWA   
2280)( LLLA    

This formula represents the area of the fence in terms of the variable length L. 
 
 
Short run Behavior: Vertex 
 
We now explore the interesting features of the graphs of quadratics.  In addition to 
intercepts, quadratics have an interesting feature where they change direction, called the 
vertex.  You probably noticed that all quadratics are related to transformations of the 
basic quadratic function 2)( xxf  . 
 
 
 
 
 
 

Backyard 

Garden 

W 

L 
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Example 2 

Write an equation for the quadratic graphed below as a transformation of 2)( xxf  , 
then expand the formula and simplify terms to write the equation in standard 
polynomial form. 

 
We can see the graph is the basic quadratic shifted to the left 2 and down 3, giving a 
formula in the form 3)2()( 2  xaxg .  By plugging in a point that falls on the grid, 
such as (0,-1), we can solve for the stretch factor: 

2

1

42

3)20(1 2






a

a

a

 

 

Written as a transformation, the equation for this formula is 3)2(
2

1
)( 2  xxg .  To 

write this in standard polynomial form, we can expand the formula and simplify terms: 

12
2

1
)(

322
2

1
)(

3)44(
2

1
)(

3)2)(2(
2

1
)(

3)2(
2

1
)(

2

2

2

2











xxxg

xxxg

xxxg

xxxg

xxg

 

 
 
Notice that the horizontal and vertical shifts of the basic quadratic determine the location 
of the vertex of the parabola; the vertex is unaffected by stretches and compressions. 
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Try it Now 
1. A coordinate grid has been superimposed 

over the quadratic path of a basketball1.  
Find an equation for the path of the ball.  
Does he make the basket? 

 
 
 
 

 
 

Forms of Quadratic Functions 

The standard form of a quadratic function is cbxaxxf  2)(  

The transformation form of a quadratic function is khxaxf  2)()(  

The vertex of the quadratic function is located at (h, k), where h and k are the numbers 
in the transformation form of the function.  Because the vertex appears in the 
transformation form, it is often called the vertex form. 

 
 
In the previous example, we saw that it is possible to rewrite a quadratic function given in 
transformation form and rewrite it in standard form by expanding the formula.  It would 
be useful to reverse this process, since the transformation form reveals the vertex. 
 
Expanding out the general transformation form of a quadratic gives: 

kahahxaxkhxhxaxf

khxhxakhxaxf




2222

2

2)2()(

))(()()(
 

 
This should be equal to the standard form of the quadratic: 

cbxaxkahahxax  222 2  
 
The second degree terms are already equal.  For the linear terms to be equal, the 
coefficients must be equal: 

bah  2 , so 
a

b
h

2
  

 
This provides us a method to determine the horizontal shift of the quadratic from the 
standard form.  We could likewise set the constant terms equal to find: 

ckah 2 , so 
a

b
c

a

b
ac

a

b
acahck

442

2

2

22
2 






  

                                                 
1 From http://blog.mrmeyer.com/?p=4778, © Dan Meyer, CC-BY 
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In practice, though, it is usually easier to remember that k is the output value of the 
function when the input is h, so )(hfk  . 
 

Finding the Vertex of a Quadratic 

For a quadratic given in standard form, the vertex (h, k) is located at: 

a

b
h

2
 ,   ( )

2

b
k f h f

a

    
 

 

 
 
Example 3 

Find the vertex of the quadratic 762)( 2  xxxf .  Rewrite the quadratic into 
transformation form (vertex form). 
 

The horizontal coordinate of the vertex will be at 
2

3

4

6

)2(2

6

2





a

b
h  

The vertical coordinate of the vertex will be at 
2

5
7

2

3
6

2

3
2

2

3
2























f  

 
Rewriting into transformation form, the stretch factor will be the same as the a in the 
original quadratic.  Using the vertex to determine the shifts,  

2

5

2

3
2)(

2







  xxf  

 
 

Try it Now 
2. Given the equation xxxg 613)( 2   write the equation in standard form and then in 

transformation/vertex form. 

 
 
As an alternative to using a formula for finding the vertex, the equation can also be 
written into vertex form by completing the square.  This process is most easily 
explained through example.  In most cases, using the formula for finding the vertex will 
be quicker and easier than completing the square, but completing the square is a useful 
technique when faced with some other algebraic problems. 
 
 
Example 4 

Rewrite 14122)( 2  xxxf  into vertex form by completing the square. 
 
We start by factoring the leading coefficient from the quadratic and linear terms. 
  1462 2  xx  
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Next, we are going to add something inside the parentheses so that the quadratic inside 
the parentheses becomes a perfect square.  In other words, we are looking for values p 
and q so that   22 )(6 qxpxx  .   
 
Notice that if multiplied out on the right, the middle term would be -2q, so q must be 
half of the middle term on the left; q = -3.  In that case, p must be (-3)2 = 9.  
  22 )3(96  xxx  
 
Now, we can’t just add 9 into the expression – that would change the value of the 
expression.  In fact, adding 9 inside the parentheses actually adds 18 to the expression, 
since the 2 outside the parentheses will distribute.  To keep the expression balanced, we 
can subtract 18. 
  1814962 2  xx  

 
Simplifying, we are left with vertex form. 
  432 2 x  

 
 
In addition to enabling us to more easily graph a quadratic written in standard form, 
finding the vertex serves another important purpose – it allows us to determine the 
maximum or minimum value of the function, depending on which way the graph opens. 
 
 
Example 5 

Returning to our backyard farmer from the beginning of the section, what dimensions 
should she make her garden to maximize the enclosed area? 
 
Earlier we determined the area she could enclose with 80 feet of fencing on three sides 
was given by the equation 2280)( LLLA  .  Notice that quadratic has been vertically 
reflected, since the coefficient on the squared term is negative, so the graph will open 
downwards, and the vertex will be a maximum value for the area. 
 
In finding the vertex, we take care since the equation is not written in standard 
polynomial form with decreasing powers.  But we know that a is the coefficient on the 
squared term, so a = -2, b = 80, and c = 0.   
Finding the vertex: 

20
)2(2

80



h ,   800)20(2)20(80)20( 2  Ak  

 
The maximum value of the function is an area of 800 square feet, which occurs when L 
= 20 feet.  When the shorter sides are 20 feet, that leaves 40 feet of fencing for the 
longer side.  To maximize the area, she should enclose the garden so the two shorter 
sides have length 20 feet, and the longer side parallel to the existing fence has length 40 
feet. 
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Example 6 
A local newspaper currently has 84,000 subscribers, at a quarterly charge of $30.  
Market research has suggested that if they raised the price to $32, they would lose 5,000 
subscribers.  Assuming that subscriptions are linearly related to the price, what price 
should the newspaper charge for a quarterly subscription to maximize their revenue? 
 
Revenue is the amount of money a company brings in.  In this case, the revenue can be 
found by multiplying the charge per subscription times the number of subscribers.  We 
can introduce variables, C for charge per subscription and S for the number subscribers, 
giving us the equation 
Revenue = CS 
 
Since the number of subscribers changes with the price, we need to find a relationship 
between the variables.  We know that currently S = 84,000 and C = 30, and that if they 
raise the price to $32 they would lose 5,000 subscribers, giving a second pair of values, 
C = 32 and S = 79,000.  From this we can find a linear equation relating the two 
quantities.  Treating C as the input and S as the output, the equation will have form 

bmCS  .  The slope will be  

500,2
2

000,5

3032

000,84000,79








m  

 
This tells us the paper will lose 2,500 subscribers for each dollar they raise the price.  
We can then solve for the vertical intercept 
 

bCS  2500     Plug in the point S = 84,000 and C = 30 
b )30(2500000,84    Solve for b 

000,159b  
 
This gives us the linear equation 000,159500,2  CS  relating cost and subscribers.  
We now return to our revenue equation. 
 

CSRevenue     Substituting the equation for S from above 
)000,159500,2(Revenue  CC   Expanding 

CC 000,159500,2Revenue 2   
 
We now have a quadratic equation for revenue as a function of the subscription charge.  
To find the price that will maximize revenue for the newspaper, we can find the vertex: 

8.31
)500,2(2

000,159



h  

 
The model tells us that the maximum revenue will occur if the newspaper charges 
$31.80 for a subscription.  To find what the maximum revenue is, we can evaluate the 
revenue equation: 
Maximum Revenue =  )8.31(000,159)8.31(500,2 2 $2,528,100 
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Short run Behavior: Intercepts 
 
As with any function, we can find the vertical intercepts of a quadratic by evaluating the 
function at an input of zero, and we can find the horizontal intercepts by solving for when 
the output will be zero.  Notice that depending upon the location of the graph, we might 
have zero, one, or two horizontal intercepts. 
 

  
zero horizontal intercepts one horizontal intercept two horizontal intercepts

 
 
Example 7 

Find the vertical and horizontal intercepts of the quadratic 253)( 2  xxxf  
 
We can find the vertical intercept by evaluating the function at an input of zero: 

22)0(5)0(3)0( 2 f   Vertical intercept at (0,-2) 
 
For the horizontal intercepts, we solve for when the output will be zero 

2530 2  xx  
 
In this case, the quadratic can be factored easily, providing the simplest method for 
solution 

)2)(13(0  xx  

3

1

130





x

x

 or 
2

20




x

x
  Horizontal intercepts at 








0,
3

1
 and (-2,0) 

 
 
Notice that in the standard form of a quadratic, the constant term c reveals the vertical 
intercept of the graph. 
 
 
Example 8 

Find the horizontal intercepts of the quadratic 442)( 2  xxxf  
 
Again we will solve for when the output will be zero 

4420 2  xx  
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Since the quadratic is not easily factorable in this case, we solve for the intercepts by 
first rewriting the quadratic into transformation form. 

1
)2(2

4

2


a

b
h  64)1(4)1(2)1( 2  fk  

6)1(2)( 2  xxf  
 
Now we can solve for when the output will be zero 

31

31

)1(3

)1(26

6)1(20

2

2

2











x

x

x

x

x

  

 
The graph has horizontal intercepts at )0,31(  and )0,31(   

 
 

Try it Now 
3. In Try it Now problem 2 we found the standard & transformation form for the function 

xxxg 613)( 2  .  Now find the Vertical & Horizontal intercepts (if any). 

 
 
The process in the last example is done commonly enough that sometimes people find it 
easier to solve the problem once in general and remember the formula for the result, 
rather than repeating the process each time.  Based on our previous work we showed that 
any quadratic in standard form can be written into transformation form as: 

a

b
c

a

b
xaxf

42
)(

22







   

 
Solving for the horizontal intercepts using this general equation gives: 

a

b
c

a

b
xa

42
0

22







   start to solve for x by moving the constants to the other side 

22

24






 

a

b
xac

a

b
  divide both sides by a 

2

2

2

24






 

a

b
x

a

c

a

b
  find a common denominator to combine fractions 

2

22

2

24

4

4






 

a

b
x

a

ac

a

b
 combine the fractions on the left side of the equation 
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2

2

2

24

4






 


a

b
x

a

acb
  take the square root of both sides 

a

b
x

a

acb

24

4
2

2




  subtract b/2a from both sides 

x
a

acb

a

b





2

4

2

2

 combining the fractions 

a

acbb
x

2

42 
   Notice that this can yield two different answers for x 

 
 

Quadratic Formula 

For a quadratic function given in standard form 2( )f x ax bx c   , the quadratic 
formula gives the horizontal intercepts of the graph of this function. 

a

acbb
x

2

42 
  

 
 
Example 9 

A ball is thrown upwards from the top of a 40-foot-tall building at a speed of 80 feet per 
second.  The ball’s height above ground can be modeled by the equation 

2( ) 16 80 40H t t t    .   
What is the maximum height of the ball? 
When does the ball hit the ground? 
 
To find the maximum height of the ball, we would need to know the vertex of the 
quadratic. 

2

5

32

80

)16(2

80



h ,   

2
5 5 5

16 80 40 140
2 2 2

k H                
     

 

 
The ball reaches a maximum height of 140 feet after 2.5 seconds. 
To find when the ball hits the ground, we need to determine when the height is zero – 
when H(t) = 0.  While we could do this using the transformation form of the quadratic, 
we can also use the quadratic formula: 

32

896080

)16(2

)40)(16(48080 2








t  

 
Since the square root does not simplify nicely, we can use a calculator to approximate 
the values of the solutions: 
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458.5
32

896080





t  or  458.0
32

896080





t  

 
The second answer is outside the reasonable domain of our model, so we conclude the 
ball will hit the ground after about 5.458 seconds. 

 

Try it Now 
4. For these two equations determine if the vertex will be a maximum value or a 

minimum value. 
a.  78)( 2  xxxg  

b.  2)3(3)( 2  xxg  

 
 

Important Topics of this Section 

Quadratic functions 

 Standard form 

 Transformation form/Vertex form 

 Vertex as a maximum / Vertex as a minimum 

Short run behavior 

 Vertex / Horizontal & Vertical intercepts  

Quadratic formula 
 
 

Try it Now Answers 
1. The path passes through the origin with vertex at (-4, 7).  

27
( ) ( 4) 7

16
h x x    .  To make the shot, h(-7.5) would 

need to be about 4.  ( 7.5) 1.64h   ; he doesn’t make it. 
 
2. 136)( 2  xxxg  in Standard form;   

Finding the vertex, 3
)1(2

)6(



h .  413)3(63)3( 2  gk . 

4)3()( 2  xxg in Transformation form 
 
3. Vertical intercept at (0, 13),  No horizontal intercepts since the vertex is above the x-

axis and the graph opens upwards. 
 
4. a. Vertex is a minimum value, since a > 0 and the graph opens upwards 
    b. Vertex is a maximum value, since a < 0 and the graph opens downwards
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Section 3.2 Exercises 
 
Write an equation for the quadratic function graphed. 

1.    2.  

3.     4.  

5.       6.  
 
For each of the follow quadratic functions, find a) the vertex, b) the vertical intercept, and 
c) the horizontal intercepts. 
7.   22 10 12y x x x      8.   23 6 9z p x x     

9.   22 10 4f x x x      10.   22 14 12g x x x     

11.   24 6 1h t t t       12.   22 4 15 k t x x     

 
Rewrite the quadratic function into vertex form. 
13.   2 12 32f x x x      14.   2 2 3g x x x    

15.   22 8 10h x x x      16.   23 6 9k x x x     

 
17. Find the values of b and c so   28f x x bx c     has vertex  2, 7  

18. Find the values of b and c so   26f x x bx c    has vertex (7, 9)  
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Write an equation for a quadratic with the given features 
 
19. x-intercepts (-3, 0) and (1, 0), and y intercept (0, 2) 
20. x-intercepts (2, 0) and (-5, 0), and y intercept (0, 3) 
21. x-intercepts (2, 0) and (5, 0), and y intercept (0, 6) 
22. x-intercepts (1, 0) and (3, 0), and y intercept (0, 4) 
23. Vertex at (4, 0), and y intercept (0, -4) 
24. Vertex at (5, 6), and y intercept (0, -1) 
25. Vertex at (-3, 2), and passing through (3, -2) 
26. Vertex at (1, -3), and passing through (-2, 3) 

 
27. A rocket is launched in the air.  Its height, in meters above sea level, as a function of 

time, in seconds, is given by   24.9 229 234h t t t    .   

a. From what height was the rocket launched? 
b. How high above sea level does the rocket reach its peak? 
c. Assuming the rocket will splash down in the ocean, at what time does 

splashdown occur? 
 

28. A ball is thrown in the air from the top of a building.  Its height, in meters above 

ground, as a function of time, in seconds, is given by   24.9 24 8h t t t    .   

a. From what height was the ball thrown? 
b. How high above ground does the ball reach its peak? 
c. When does the ball hit the ground? 

 

29. The height of a ball thrown in the air is given by   21
6 3

12
h x x x    , where x is 

the horizontal distance in feet from the point at which the ball is thrown. 
a. How high is the ball when it was thrown? 
b. What is the maximum height of the ball? 
c. How far from the thrower does the ball strike the ground? 

 

30. A javelin is thrown in the air.  Its height is given by   21
8 6

20
h x x x    , where x 

is the horizontal distance in feet from the point at which the javelin is thrown. 
a. How high is the javelin when it was thrown? 
b. What is the maximum height of the javelin? 
c. How far from the thrower does the javelin strike the ground? 
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31. A box with a square base and no top is to be made from a square piece of cardboard 
by cutting 6 in. squares out of each corner and folding up the sides. The box needs to 
hold 1000 in3. How big a piece of cardboard is needed? 
 

32. A box with a square base and no top is to be made from a square piece of cardboard 
by cutting 4 in. squares out of each corner and folding up the sides. The box needs to 
hold 2700 in3. How big a piece of cardboard is needed? 
 

33. A farmer wishes to enclose two pens with fencing, as shown.  
If the farmer has 500 feet of fencing to work with, what 
dimensions will maximize the area enclosed? 
 

34. A farmer wishes to enclose three pens with fencing, as shown.  
If the farmer has 700 feet of fencing to work with, what 
dimensions will maximize the area enclosed? 

 
35. You have a wire that is 56 cm long. You wish to cut it into two pieces. One piece will 

be bent into the shape of a square. The other piece will be bent into the shape of a 
circle. Let A represent the total area enclosed by the square and the circle. What is the 
circumference of the circle when A is a minimum? 
 

36. You have a wire that is 71 cm long. You wish to cut it into two pieces. One piece will 
be bent into the shape of a right triangle with legs of equal length. The other piece 
will be bent into the shape of a circle. Let A represent the total area enclosed by the 
triangle and the circle. What is the circumference of the circle when A is a minimum? 
 

37. A soccer stadium holds 62,000 spectators. With a ticket price of $11, the average 
attendance has been 26,000. When the price dropped to $9, the average attendance 
rose to 31,000. Assuming that attendance is linearly related to ticket price, what ticket 
price would maximize revenue? 
 

38. A farmer finds that if she plants 75 trees per acre, each tree will yield 20 bushels of 
fruit. She estimates that for each additional tree planted per acre, the yield of each tree 
will decrease by 3 bushels. How many trees should she plant per acre to maximize her 
harvest? 
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39. A hot air balloon takes off from the 
edge of a mountain lake. Impose a 
coordinate system as pictured and 
assume that the path of the balloon 
follows the graph of 

  22 4

2500 5
f x x x   . The land rises 

at a constant incline from the lake at the 
rate of 2 vertical feet for each 20 
horizontal feet. [UW] 

a. What is the maximum height of the balloon above water level? 
b. What is the maximum height of the balloon above ground level? 
c. Where does the balloon land on the ground? 
d. Where is the balloon 50 feet above the ground? 

  
 
40. A hot air balloon takes off from 

the edge of a plateau. Impose a 
coordinate system as pictured 
below and assume that the path 
the balloon follows is the graph 
of the quadratic function 

  24 4

2500 5
f x x x   . The 

land drops at a constant incline 
from the plateau at the rate of 1 
vertical foot for each 5 
horizontal feet. [UW] 

a. What is the maximum height of the balloon above plateau level? 
b. What is the maximum height of the balloon above ground level? 
c. Where does the balloon land on the ground? 
d. Where is the balloon 50 feet above the ground? 
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Section 3.3 Graphs of Polynomial Functions 
 
In the previous section, we explored the short run behavior of quadratics, a special case 
of polynomials.  In this section, we will explore the short run behavior of polynomials in 
general. 
 
Short run Behavior:  Intercepts 
 
As with any function, the vertical intercept can be found by evaluating the function at an 
input of zero.  Since this is evaluation, it is relatively easy to do it for a polynomial of any 
degree. 
 
To find horizontal intercepts, we need to solve for when the output will be zero.  For 
general polynomials, this can be a challenging prospect.  While quadratics can be solved 
using the relatively simple quadratic formula, the corresponding formulas for cubic and 
4th degree polynomials are not simple enough to remember, and formulas do not exist for 
general higher-degree polynomials.  Consequently, we will limit ourselves to three cases: 

1) The polynomial can be factored using known methods: greatest common 
factor and trinomial factoring.   

2) The polynomial is given in factored form. 
3) Technology is used to determine the intercepts. 

 
Other techniques for finding the intercepts of general polynomials will be explored in the 
next section. 
 
 
Example 1 

Find the horizontal intercepts of 246 23)( xxxxf  . 
 
We can attempt to factor this polynomial to find solutions for f(x) = 0. 

023 246  xxx   Factoring out the greatest common factor 
  023 242  xxx   Factoring the inside as a quadratic in x2 

   021 222  xxx  Then break apart to find solutions 

0

02




x

x  or 

 

1

1

01
2

2






x

x

x

 or  

 

2

2

02
2

2







x

x

x

 

 
This gives us 5 horizontal intercepts. 
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Example 2 

Find the vertical and horizontal intercepts of )32()2()( 2  tttg  
 
The vertical intercept can be found by evaluating g(0).   

12)3)0(2()20()0( 2 g  
 
The horizontal intercepts can be found by solving g(t) = 0 

0)32()2( 2  tt    Since this is already factored, we can break it apart: 

2

02

0)2( 2






t

t

t

 or 

2

3

0)32(






t

t
 

 
We can always check our answers are reasonable by graphing the polynomial. 

 
 
Example 3 

Find the horizontal intercepts of 64)( 23  tttth  
 
Since this polynomial is not in factored form, has no 
common factors, and does not appear to be factorable 
using techniques we know, we can turn to technology to 
find the intercepts.   
 
Graphing this function, it appears there are horizontal 
intercepts at t = -3, -2, and 1. 
 
We could check these are correct by plugging in these 
values for t and verifying that ( 3) ( 2) (1) 0h h h     . 

 
 

Try it Now 
1. Find the vertical and horizontal intercepts of the function 24 4)( tttf  . 

 
 
Graphical Behavior at Intercepts 
 
If we graph the function 32 )1()2)(3()(  xxxxf , 
notice that the behavior at each of the horizontal 
intercepts is different. 
 
At the horizontal intercept x = -3, coming from the 

)3( x  factor of the polynomial, the graph passes 
directly through the horizontal intercept.   
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The factor )3( x  is linear (has a power of 1), so the behavior near the intercept is like 
that of a line - it passes directly through the intercept. We call this a single zero, since the 
zero corresponds to a single factor of the function. 
 
At the horizontal intercept x = 2, coming from the 2)2( x  factor of the polynomial, the 
graph touches the axis at the intercept and changes direction.  The factor is quadratic 
(degree 2), so the behavior near the intercept is like that of a quadratic – it bounces off 
the horizontal axis at the intercept.  Since )2)(2()2( 2  xxx , the factor is repeated 
twice, so we call this a double zero. We could also say the zero has multiplicity 2. 
 
At the horizontal intercept x = -1, coming from the 3)1( x  factor of the polynomial, the 
graph passes through the axis at the intercept, but flattens out a bit first.  This factor is 
cubic (degree 3), so the behavior near the intercept is like that of a cubic, with the same 
“S” type shape near the intercept that the toolkit 3x  has. We call this a triple zero. We 
could also say the zero has multiplicity 3.  
 
By utilizing these behaviors, we can sketch a reasonable graph of a factored polynomial 
function without needing technology. 
 
 

Graphical Behavior of Polynomials at Horizontal Intercepts 

If a polynomial contains a factor of the form phx )(  , the behavior near the horizontal 
intercept h is determined by the power on the factor. 

 p = 1    p = 2    p = 3  

   
 Single zero      Double zero          Triple zero  

  Multiplicity 1      Multiplicity 2         Multiplicity 3 

 

For higher even powers 4,6,8 etc.… the graph will still bounce off the horizontal axis 
but the graph will appear flatter with each increasing even power as it approaches and 
leaves the axis. 

 

For higher odd powers, 5,7,9 etc… the graph will still pass through the horizontal axis 
but the graph will appear flatter with each increasing odd power as it approaches and 
leaves the axis. 
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Example 4 

Sketch a graph of )5()3(2)( 2  xxxf . 
 
This graph has two horizontal intercepts.  At x = -3, the factor is squared, indicating the 
graph will bounce at this horizontal intercept.  At x = 5, the factor is not squared, 
indicating the graph will pass through the axis at this intercept. 
 
Additionally, we can see the leading term, if this polynomial were multiplied out, would 
be 32x , so the long-run behavior is that of a vertically reflected cubic, with the 
outputs decreasing as the inputs get large positive, and the inputs increasing as the 
inputs get large negative. 
 
To sketch this we consider the following: 
As x  the function )(xf  so we know the graph starts in the 2nd quadrant 
and is decreasing toward the horizontal axis. 
 
At (-3, 0) the graph bounces off the horizontal axis and so the function must start 
increasing. 
 
At (0, 90) the graph crosses the vertical axis at the vertical intercept. 
 
Somewhere after this point, the graph must turn back down or start decreasing toward 
the horizontal axis since the graph passes through the next intercept at (5,0). 
 
As x  the function )(xf  so we know the 
graph continues to decrease and we can stop drawing 
the graph in the 4th quadrant. 
 
Using technology we can verify the shape of the 
graph. 
 
 
 
 

  
 

Try it Now 
2. Given the function xxxxg 6)( 23   use the methods that we have learned so far to 

find the vertical & horizontal intercepts, determine where the function is negative and 
positive, describe the long run behavior and sketch the graph without technology. 
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Solving Polynomial Inequalities 
 
One application of our ability to find intercepts and sketch a graph of polynomials is the 
ability to solve polynomial inequalities.  It is a very common question to ask when a 
function will be positive and negative.  We can solve polynomial inequalities by either 
utilizing the graph, or by using test values. 
 
 
 
Example 5 

Solve 0)4()1)(3( 2  xxx  
 
As with all inequalities, we start by solving the equality 0)4()1)(3( 2  xxx , 
which has solutions at x = -3, -1, and 4.  We know the function can only change from 
positive to negative at these values, so these divide the inputs into 4 intervals.   
 
We could choose a test value in each interval and evaluate the function 

)4()1)(3()( 2  xxxxf  at each test value to determine if the function is positive or 
negative in that interval 
 

 
 
On a number line this would look like: 
 

 
 
From our test values, we can determine this function is positive when x < -3 or x > 4, or 
in interval notation, ),4()3,(   

 
 
We could have also determined on which intervals the function was positive by sketching 
a graph of the function.  We illustrate that technique in the next example 
 
 
 
 
 
 
 

Interval Test x in interval f( test value) >0 or <0? 
x < -3 -4 72 > 0 
-3 < x < -1 -2 -6 < 0 
-1 < x < 4 0 -12 < 0 
x > 4 5 288 > 0 

0 0 0 positive negative negative positive 
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Example 6 

Find the domain of the function 256)( tttv  . 
 
A square root is only defined when the quantity we are taking the square root of, the 
quantity inside the square root, is zero or greater.  Thus, the domain of this function will 
be when 056 2  tt . 
 
We start by solving the equality 056 2  tt .  While we could use the quadratic 
formula, this equation factors nicely to 0)1)(6(  tt , giving horizontal intercepts t = 
1 and t = -6.   
 
 
 
Sketching a graph of this quadratic will allow us to 
determine when it is positive. 
 
From the graph we can see this function is positive 
for inputs between the intercepts.  So 056 2  tt  
for 16  t , and this will be the domain of the v(t) 
function. 

 
 
 
Writing Equations using Intercepts 
 
Since a polynomial function written in factored form will have a horizontal intercept 
where each factor is equal to zero, we can form a function that will pass through a set of 
horizontal intercepts by introducing a corresponding set of factors. 
 
 

Factored Form of Polynomials 

If a polynomial has horizontal intercepts at nxxxx ,,, 21  , then the polynomial can 

be written in the factored form 
np

n
pp xxxxxxaxf )()()()( 21

21    

where the powers pi on each factor can be determined by the behavior of the graph at 
the corresponding intercept, and the stretch factor a can be determined given a value 
of the function other than the horizontal intercept. 
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Example 7  
Write a formula for the polynomial function 
graphed here. 
 
 
This graph has three horizontal intercepts: x = -3, 
2, and 5.  At x = -3 and 5 the graph passes through 
the axis, suggesting the corresponding factors of 
the polynomial will be linear.  At x = 2 the graph 
bounces at the intercept, suggesting the 
corresponding factor of the polynomial will be 2nd 
degree (quadratic).   
 
Together, this gives us: 

)5()2)(3()( 2  xxxaxf  
 
To determine the stretch factor, we can utilize another point on the graph.  Here, the 
vertical intercept appears to be (0,-2), so we can plug in those values to solve for a: 

30

1

602

)50()20)(30(2 2






a

a

a

 

 
The graphed polynomial appears to represent the function 

)5()2)(3(
30

1
)( 2  xxxxf . 

 
 

Try it Now 
3. Given the graph, write a formula for the function shown. 
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Estimating Extrema 
 
With quadratics, we were able to algebraically find the maximum or minimum value of 
the function by finding the vertex.  For general polynomials, finding these turning points 
is not possible without more advanced techniques from calculus.  Even then, finding 
where extrema occur can still be algebraically challenging.  For now, we will estimate the 
locations of turning points using technology to generate a graph. 
 
 
Example 8 

An open-top box is to be constructed by cutting out squares from each corner of a 14cm 
by 20cm sheet of plastic then folding up the sides.  Find the size of squares that should 
be cut out to maximize the volume enclosed by the box. 
 
We will start this problem by drawing a picture, labeling the 
width of the cut-out squares with a variable, w.       
 
Notice that after a square is cut out from each end, it leaves a 

)214( w cm by )2120( w cm rectangle for the base of the 
box, and the box will be w cm tall.  This gives the volume: 

32 468280)220)(214()( wwwwwwwV   
 
Using technology to sketch a graph allows us to estimate the maximum value for the 
volume, restricted to reasonable values for w: values from 0 to 7. 
 

 
 
From this graph, we can estimate the maximum value is around 340, and occurs when 
the squares are about 2.75cm square.  To improve this estimate, we could use advanced 
features of our technology, if available, or simply change our window to zoom in on our 
graph. 

w 

w 
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From this zoomed-in view, we can refine our estimate for the max volume to about 339, 
when the squares are 2.7cm square. 

 
 

Try it Now 
4. Use technology to find the maximum and minimum values on the interval [-1, 4] of the 

function )4()1()2(2.0)( 23  xxxxf .  

 
 

Important Topics of this Section 

Short Run Behavior 

 Intercepts (Horizontal & Vertical) 

Methods to find Horizontal intercepts 

 Factoring Methods 

 Factored Forms 

 Technology 

Graphical Behavior at intercepts 

Single, Double and Triple zeros (or multiplicity 1, 2, and 3 behaviors) 

Solving polynomial inequalities using test values & graphing techniques 

Writing equations using intercepts 

Estimating extrema 
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Try it Now Answers 
1.  Vertical intercept (0, 0).  24 40 tt   factors as     2240 222  ttttt  

Horizontal intercepts (0, 0), (-2, 0), (2, 0) 
 
2. Vertical intercept (0, 0),  

Horizontal intercepts (-2, 0), (0, 0), (3, 0) 
    The function is negative on (  , -2) and (0, 3) 
    The function is positive on (-2, 0) and (3, ) 
    The leading term is 3x so as x , )(xg and as

x , )(xg  
 
3. Double zero at x=-1, triple zero at x=2. Single zero at x=4. 

)4()1()2()( 23  xxxaxf .  Substituting (0,-4) and solving for a,  

3 21
( ) ( 2) ( 1) ( 4)

8
f x x x x      

 
4.  The minimum occurs at approximately the point (0, -6.5), and the maximum occurs at 

approximately the point (3.5, 7). 
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Section 3.3 Exercises 
 
Find the C and t intercepts of each function. 
1.     2 4 1 ( 6)C t t t t      2.     3 2 3 ( 5)C t t t t      

3.    2
4 2 ( 1)C t t t t      4.     2

2 3 1C t t t t    

5.   4 3 22 8 6C t t t t      6.   4 3 24 12 40C t t t t    

 
Use your calculator or other graphing technology to solve graphically for the zeros of the 
function. 
7.   3 27 4 30f x x x x       8.   3 26 28g x x x x      

 
Find the long run behavior of each function as t and t  

9.      3 3
3 5 3 ( 2)h t t t t      10.      2 3

2 3 1 ( 2)k t t t t     

11.     2
2 1 3p t t t t       12.     3

4 2 1q t t t t     

 
Sketch a graph of each equation. 

13.    2
3 ( 2)f x x x      14.     2

4 1g x x x    

15.      3 2
1 3h x x x      16.      3 2

3 2k x x x    

17.    2 1 ( 3)m x x x x       18.    3 2 ( 4)n x x x x       

 
Solve each inequality. 

19.   2
3 2 0x x     20.   2

5 1 0x x    

21.    1 2 3 0x x x       22.    4 3 6 0x x x       

 
Find the domain of each function. 

23.   242 19 2f x x x       24.   228 17 3g x x x    

25.   24 5h x x x      26.   22 7 3k x x x    

27.     2
3 2n x x x      28.    2

1 ( 3)m x x x    

29.   2

1

2 8
p t

t t


 
    30.   2

4

4 5
q t

x x
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Write an equation for a polynomial the given features. 
31. Degree 3.  Zeros at x = -2, x = 1, and x = 3.  Vertical intercept at (0, -4) 

32. Degree 3.  Zeros at x = -5, x = -2, and x = 1.  Vertical intercept at (0, 6) 

33. Degree 5.  Roots of multiplicity 2 at x = 3 and x = 1, and a root of multiplicity 1 at     
x = -3.  Vertical intercept at (0, 9) 

34. Degree 4.  Root of multiplicity 2 at x = 4, and a roots of multiplicity 1 at x = 1 and     
x = -2.  Vertical intercept at (0, -3) 

35. Degree 5.  Double zero at x = 1, and triple zero at x = 3.  Passes through the point    
(2, 15) 

36. Degree 5.  Single zero at x = -2 and x = 3, and triple zero at x = 1.  Passes through the 
point (2, 4) 

 
Write a formula for each polynomial function graphed. 

37.  38.  39.  
 

40.  41.  42.   
 

43.  44.  
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Write a formula for each polynomial function graphed. 
 

45.   46.  
 

47.   48.  
 

49.   50.  
 
51. A rectangle is inscribed with its base on the x axis and its upper corners on the 

parabola 25y x  .  What are the dimensions of such a rectangle that has the greatest 

possible area? 
 

52. A rectangle is inscribed with its base on the x axis and its upper corners on the curve 
416y x  .  What are the dimensions of such a rectangle that has the greatest 

possible area?
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Section 3.4 Factor Theorem and Remainder Theorem 
 
In the last section, we limited ourselves to finding the intercepts, or zeros, of polynomials 
that factored simply, or we turned to technology.  In this section, we will look at 
algebraic techniques for finding the zeros of polynomials like 64)( 23  tttth . 
 
Long Division 
 
In the last section we saw that we could write a polynomial as a product of factors, each 
corresponding to a horizontal intercept.  If we knew that x = 2 was an intercept of the 
polynomial 1454 23  xxx , we might guess that the polynomial could be factored as 

)something)(2(1454 23  xxxx .   To find that "something," we can use 
polynomial division. 
 
 
Example 1 

Divide 1454 23  xxx  by 2x  
 
Start by writing the problem out in long division form 

14542 23  xxxx    

 
Now we divide the leading terms: 23 xxx  .  It is best to align it above the same-
powered term in the dividend.  Now, multiply that 2x  by 2x  and write the result 
below the dividend. 
 

2

23

23

2

14542

x

xx

xxxx



   Now subtract that expression from the dividend. 

 

 

2

2

23

23

1456

2

14542

x

xx

xx

xxxx





    

 
Again, divide the leading term of the remainder by the leading term of the divisor.  

xxx 66 2  .  We add this to the result, multiply 6x by 2x , and subtract. 
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xx

x

xx

xx

xx

xxxx

6

147

126

1456

2

14542

2

2

2

23

23











   Repeat the process one last time. 

 

 

 

 

76

0

147

147

126

1456

2

14542

2

2

2

23

23













xx

x

x

xx

xx

xx

xxxx  

 
This tells us 1454 23  xxx  divided by 2x  is 762  xx , with a remainder of 
zero.  This also means that we can factor 1454 23  xxx  as   762 2  xxx . 

 
 
This gives us a way to find the intercepts of this polynomial. 
 
 
Example 2 

Find the horizontal intercepts of  1454)( 23  xxxxh . 
 
To find the horizontal intercepts, we need to solve h(x) = 0.  From the previous 
example, we know the function can be factored as   762)( 2  xxxxh .   
 

   0762)( 2  xxxxh  when x = 2 or when 0762  xx .  This doesn't factor 
nicely, but we could use the quadratic formula to find the remaining two zeros. 

23
)1(2

)7)(1(466 2




x . 

 

The horizontal intercepts will be at )0,2( ,  0,23 , and  0,23 . 
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Try it Now 
1. Divide 372 3  xx  by 3x  using long division. 

 
 
The Factor and Remainder Theorems 
 
When we divide a polynomial, p(x) by some divisor polynomial d(x), we will get a 
quotient polynomial q(x) and possibly a remainder r(x).  In other words,  

)()()()( xrxqxdxp  . 
 
Because of the division, the remainder will either be zero, or a polynomial of lower 
degree than d(x).  Because of this, if we divide a polynomial by a term of the form cx  , 
then the remainder will be zero or a constant.   
 
If rxqcxxp  )()()( , then rrrcqcccp  0)()()( , which establishes the 
Remainder Theorem. 
 
 

The Remainder Theorem 

If )(xp  is a polynomial of degree 1 or greater and c is a real number, then when p(x) 
is divided by cx  , the remainder is )(cp . 

 
 
If cx   is a factor of the polynomial p, then )()()( xqcxxp   for some polynomial q.  
Then 0)()()(  cqcccp , showing c is a zero of the polynomial.  This shouldn't 
surprise us - we already knew that if the polynomial factors it reveals the roots. 
 
If 0)( cp , then the remainder theorem tells us that if p is divided by cx  , then the 
remainder will be zero, which means cx   is a factor of p.  
 
 

The Factor Theorem 

If )(xp  is a nonzero polynomial, then the real number c is a zero of )(xp  if and only 
if cx   is a factor of )(xp . 

 
 
Synthetic Division 
 
Since dividing by cx   is a way to check if a number is a zero of the polynomial, it 
would be nice to have a faster way to divide by cx   than having to use long division 
every time.  Happily, quicker ways have been discovered. 
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Let's look back at the long division we did in Example 1 and try to streamline it. First, 
let's change all the subtractions into additions by distributing through the negatives. 
 

76

0

147

147

126

1456

2

14542

2

2

2

23

23













xx

x

x

xx

xx

xx

xxxx  

Next, observe that the terms 3x , 26x , and x7  are the exact opposite of the terms 
above them.  The algorithm we use ensures this is always the case, so we can omit them 
without losing any information. Also note that the terms we ‘bring down’ (namely the 
−5x and −14) aren’t really necessary to recopy, so we omit them, too. 
 

76

0

14

7

12

6

2

14542

2

2

2

23




xx

x

x

x

x

xxxx  

 
Now, let’s move things up a bit and, for reasons which will become clear in a moment, 
copy the 3x  into the last row. 
 

76

076

14122

14542

2

23

2

23



xx

xxx

xx

xxxx  

 
Note that by arranging things in this manner, each term in the last row is obtained by 
adding the two terms above it. Notice also that the quotient polynomial can be obtained 
by dividing each of the first three terms in the last row by x and adding the results. If you 
take the time to work back through the original division problem, you will find that this is 
exactly the way we determined the quotient polynomial.  
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This means that we no longer need to write the quotient polynomial down, nor the x in 
the divisor, to determine our answer. 
 

076

14122

14542

23

2

23

xxx

xx

xxxx   

 
We’ve streamlined things quite a bit so far, but we can still do more.  Let’s take a 
moment to remind ourselves where the 22x , 12x and 14 came from in the second row.  
Each of these terms was obtained by multiplying the terms in the quotient, 2x , 6x and 7, 
respectively, by the −2 in x − 2, then by −1 when we changed the subtraction to addition.  
Multiplying by −2 then by −1 is the same as multiplying by 2, so we replace the −2 in the 
divisor by 2.  Furthermore, the coefficients of the quotient polynomial match the 
coefficients of the first three terms in the last row, so we now take the plunge and write 
only the coefficients of the terms to get 
 

2 1 4 -5 -14 
  2 12 14 
 1 6 7 0 

 
We have constructed a synthetic division tableau for this polynomial division problem.  
Let’s re-work our division problem using this tableau to see how it greatly streamlines the 
division process.  To divide 1454 23  xxx  by 2x , we write 2 in the place of the 
divisor and the coefficients of 1454 23  xxx in for the dividend.  Then "bring down" 
the first coefficient of the dividend. 
 

 
Next, take the 2 from the divisor and multiply by the 1 that was "brought down" to get 2.  
Write this underneath the 4, then add to get 6. 
 

 
 
Now take the 2 from the divisor times the 6 to get 12, and add it to the −5 to get 7. 
 

 
 

2 1 4 -5 -14
↓ 2 12
1 6 7

2 1 4 -5 -14 
 ↓ 2 12  
 1 6  

2 1 4 -5 -14
↓ 2
1 6

2 1 4 -5 -14 
 ↓ 2  
 1   

2 1 4 -5 -14
↓
1

2 1 4 -5 -14 
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Finally, take the 2 in the divisor times the 7 to get 14, and add it to the −14 to get 0. 
 

 
 
The first three numbers in the last row of our tableau are the coefficients of the quotient 
polynomial.  Remember, we started with a third degree polynomial and divided by a first 
degree polynomial, so the quotient is a second degree polynomial. Hence the quotient is 

762  xx .  The number in the box is the remainder.  Synthetic division is our tool of 
choice for dividing polynomials by divisors of the form x − c.  It is important to note that 
it works only for these kinds of divisors.  Also take note that when a polynomial (of 
degree at least 1) is divided by x − c, the result will be a polynomial of exactly one less 
degree.  Finally, it is worth the time to trace each step in synthetic division back to its 
corresponding step in long division.   
 
 
Example 3 

Use synthetic division to divide 125 23  xx  by 3x . 
 
When setting up the synthetic division tableau, we need to enter 0 for the coefficient of 
x in the dividend.  Doing so gives 
 

 
 
Since the dividend was a third degree polynomial, the quotient is a quadratic 
polynomial with coefficients 5, 13 and 39.  Our quotient is 39135)( 2  xxxq  and 
the remainder is r(x) = 118.  This means 

118)39135)(3(125 223  xxxxx .   
 
It also means that 3x  is not a factor of 125 23  xx . 

 
 
Example 4 

Divide 83 x  by 2x  
 
For this division, we rewrite 2x  as  2x  and proceed as before. 

 

-2 1 0 0 8
 ↓ -2 4 -8
 1 -2 4 0

3 5 -2 0 1
 ↓ 15 39 117
 5 13 39 118

2 1 4 -5 -14
↓ 2 12 14
1 6 7 0

2 1 4 -5 -14
 ↓ 2 12 14
 1 6 7 
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The quotient is 422  xx  and the remainder is zero.  Since the remainder is zero, 
2x  is a factor of 83 x . 

 
 42)2(8 23  xxxx  

 
 

Try it Now 
2. Divide xxx 584 24   by 3x  using synthetic division. 

 
 
Using this process allows us to find the real zeros of polynomials, presuming we can 
figure out at least one root.  We'll explore how to do that in the next section. 
 
 
Example 5 

The polynomial 3121144)( 234  xxxxxp  has a horizontal intercept at 
2

1
x  

with multiplicity 2.  Find the other intercepts of p(x). 
 

Since 
2

1
x  is an intercept with multiplicity 2, then 

2

1
x  is a factor twice.  Use 

synthetic division to divide by 
2

1
x  twice. 

 

 

 
 

From the first division, we get  624
2

1
3121144 23234 






  xxxxxxxx  

The second division tells us 

 124
2

1

2

1
3121144 2234 






 





  xxxxxxx . 

 

To find the remaining intercepts, we set 0124 2 x  and get 3x . 
 

Note this also means   33
2

1

2

1
43121144 234 






 





  xxxxxxxx . 

1/2 4 -2 -1 -6 
 ↓ 2 0 -6 
 4 0 -12 0 

1/2 4 -4 -11 12 -3 
 ↓ 2 -1 -6 3 
 4 -2 -1 -6 0 
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Important Topics of this Section 

Long division of polynomials 

Remainder Theorem 

Factor Theorem 

Synthetic division of polynomials 
 
 

Try it Now Answers 
1. 

 

 

 

1162

30

3311

311

186

376

62

37023

2

2

2

23

23
















xx

x

x

xx

xx

xx

xxxx            The quotient is 1162 2  xx  with remainder -30. 

2.  

 
 

xxx 584 24   divided by 3x  is 7928124 23  xxx  with remainder 237 

3 4 0 -8 -5 0
 ↓ 12 36 84 237
 4 12 28 79 237
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Section 3.4 Exercises 
 
Use polynomial long division to perform the indicated division. 
 
1.   3)(134 2  xxx    2.    112 23  xxxx  

3.    41235 2234  xxxx   4.    17 2335  xxxxx  

5.    3259 3  xx     6.    1234 22  xxx  

 
Use synthetic division to perform the indicated division. 
 
7.    1123 2  xxx    8.    552  xx  

9.    1243 2  xxx    10.    3354 2  xxx  

11.    283  xx     12.    3324 3  xxx  

13.   





 

3

5
251518 2 xxx    14.   






 

2

1
14 2 xx  

15.   





 

2

1
122 23 xxxx   16.   






 

3

2
43 3 xxx  

17.   





 

2

1
132 3 xxx    18.   






 

2

3
91213124 234 xxxxx  

19.    396 24  xxx    20.    28126 246  xxxx  

 
Below you are given a polynomial and one of its zeros. Use the techniques in this section 
to find the rest of the real zeros and factor the polynomial. 
21. 1=6,116 23 cxxx     22. 8=512,19224 23 cxxx   

23. 
3

2
=2,43 23 cxxx     24. 

2

1
=6,1132 23 cxxx   

25. 2=6,32 23  cxxx    26. 
2

1
=5,102 23 cxxx   

27. 94261284 234  xxxx , 
2

1
=c  is a zero of multiplicity 2 

28. 123738122 2345  xxxxx , 1=c  is a zero of multiplicity 3 
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Section 3.5 Real Zeros of Polynomials 
 
In the last section, we saw how to determine if a real number 
was a zero of a polynomial.  In this section, we will learn how 
to find good candidates to test using synthetic division.  In the 
days before graphing technology was commonplace, 
mathematicians discovered a lot of clever tricks for determining 
the likely locations of zeros.  Technology has provided a much 
simpler approach to narrow down potential candidates, but it is 
not always sufficient by itself.  For example, the function 
shown to the right does not have any clear intercepts. 
 
There are two results that can help us identify where the zeros of a polynomial are.  The 
first gives us an interval on which all the real zeros of a polynomial can be found. 
 
 

Cauchy's Bound 

Given a polynomial 01
1

1)( axaxaxaxf n
n

n
n  

  , let M be the largest of the 

coefficients in absolute value.  Then all the real zeros of f(x) lie in the interval 












 1,1

nn a

M

a

M
 

 
 
Example 1 

Let 3642)( 234  xxxxxf .  Determine an interval which contains all the real 
zeros of f. 
 
To find the M from Cauchy's Bound, we take the absolute value of the coefficients and 
pick the largest, in this case 66  .  Divide this by the absolute value of the leading 

coefficient, 2, to get 3.  All the real zeros of f lie in the interval  

  ]4,4[13,131
2

6
,1

2

6













 .  

 
 
Knowing this bound can be very helpful when using a graphing calculator, since we can 
use it to set the display bounds.  This helps avoid missing a zero because it is graphed 
outside of the viewing window. 
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Try it Now 
1. Determine an interval which contains all the real zeros of 86123)( 23  xxxxf  

 
 
Now that we know where we can find the real zeros, we still need a list of possible real 
zeros.  The Rational Roots Theorem provides us a list of potential integer and rational 
zeros.   
 
 

Rational Roots Theorem 

Given a polynomial 01
1

1)( axaxaxaxf n
n

n
n  

   with integer coefficients, if 

r is a rational zero of f, then r is of the form 
q

p
r  , where p is a factor of the 

constant term 0a , and q is a factor of the leading coefficient, na . 

 
 
This gives us a list of numbers to try in our synthetic division, which is a nicer place to 
start than simply guessing.  If none of the numbers in the list are zeros, then either the 
polynomial has no real zeros at all, or all the real zeros are irrational numbers. 
 
 
Example 2 

Let 3642)( 234  xxxxxf .  Use the Rational Roots Theorem to list all the 
possible rational zeros of f(x). 
 
To generate a complete list of rational zeros, we need to take each of the factors of the 
constant term, 30 a , and divide them by each of the factors of the leading coefficient 

24 a .  The factors of −3 are ±1 and ±3. Since the Rational Roots Theorem tacks on a 
± anyway, for the moment, we consider only the positive factors 1 and 3. The factors of 
2 are 1 and 2, so the Rational Roots Theorem gives the list  







 

2

3
,

1

3
,

2

1
,

1

1
, or 







 

2

3
,3,

2

1
,1  

 
 
Now we can use synthetic division to test these possible zeros.  To narrow the list first, 
we could use graphing technology to help us identify some good possibilities. 
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Example 3 

Find the horizontal intercepts of 3642)( 234  xxxxxf . 
 
From Example 1, we know that the real zeros lie in the interval [-4, 4].  Using a 
graphing calculator, we could set the window accordingly and get the graph below. 

      

In Example 2, we learned that any rational zero must be on the list 






 

2

3
,3,

2

1
,1 . 

From the graph, it looks like −1 is a good possibility, so we try that using synthetic 
division. 
 

 
 
Success!  Remembering that f was a fourth degree polynomial, we know that our 
quotient is a third degree polynomial.  If we can do one more successful division, we 
will have knocked the quotient down to a quadratic, and, if all else fails, we can use the 
quadratic formula to find the last two zeros.  Since there seems to be no other rational 
zeros to try, we continue with −1.  Also, the shape of the crossing at x = −1 leads us to 
wonder if the zero x = −1 has multiplicity 3. 
 

 
 
Success again!  Our quotient polynomial is now 32 2 x .  Setting this to zero gives 

032 2 x , giving 
2

6

2

3
x .  Since a fourth degree polynomial can have at 

most four zeros, including multiplicities, then the intercept x = -1 must only have 
multiplicity 2, which we had found through division, and not 3 as we had guessed. 

 
 
 
 
 

-1 2 2 -3 -3
 ↓ -2 0 3
 2 0 -3 0

-1 2 4 -1 -6 -3
 ↓ -2 -2 3 3
 2 2 -3 -3 0
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It is interesting to note that we could greatly improve on the graph of )(xfy  in the 
previous example given to us by the calculator.  For instance, from our determination of 

the zeros of f and their multiplicities, we know the graph crosses at 
2

6
x ≈ −1.22 

then turns back upwards to touch the x−axis at x = −1.  This tells us that, despite what the 
calculator showed us the first time, there is a relative maximum occurring at x = −1 and 
not a "flattened crossing" as we originally believed.   
 
After resizing the window, we see not only the relative maximum but also a relative 
minimum just to the left of x = −1.   
 

    
 
In this case, mathematics helped reveal something that was hidden in the initial graph. 
 
 
Example 4 

Find the real zeros of 22104)( 23  xxxxf . 
 
Cauchy's Bound tells us that the real zeros lie in 

the interval ]5.3,5.3[1
4

10
,1

4

10













 .   

 
Graphing on this interval reveals no clear integer 
zeros.  Turning to the rational roots theorem, we 
need to take each of the factors of the constant 
term, 20 a , and divide them by each of the 

factors of the leading coefficient 43 a .  The 

factors of 2 are 1 and 2. The factors of 4 are 1, 2, and 4, so the Rational Roots Theorem 
gives the list  







 

4

2
,

2

2
,

1

2
,

4

1
,

2

1
,

1

1
, or 







  2,

4

1
,

2

1
,1  

 

The two most likely candidates are 
2

1
 .   
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Trying 
2

1
, 

 
 

The remainder is not zero, so this is not a zero.  Trying 
2

1
 , 

 

Success!  This tells us  4124
2

1
22104 223 






  xxxxxx , and that the graph 

has a horizontal intercept at 
2

1
x . 

 
To find the remaining two intercepts, we can use the quadratic equation, setting 

04124 2  xx .  First, we might pull out the common factor,   0134 2  xx . 

382.0,618.2
2

53

)1(2

)1)(1(4)3(3 2







x  

 
 

Try it Now 
2. Find the real zeros of 263)( 23  xxxxf  

 
 

Important Topics of this Section 

Cauchy’s Bound for all real zeros of a polynomial 

Rational Roots Theorem 

Finding real zeros of a polynomial 
 
  

-1/2 4 -10 -2 2
 ↓ -2 6 -2
 4 -12 4 0

1/2 4 -10 -2 2
 ↓ 2 -4 -3
 4 -8 -6 -1
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Try it Now Answers 
1. The maximum coefficient in absolute value is 12.  Cauchy’s Bound for all real zeros is 

]5,5[1
3

12
,1

3

12













  

 

2. Cauchy’s Bound tells us the zeros lie in the interval ]3,3[1
3

6
,1

3

6













 .  

 
The rational roots theorem tells us the possible rational 
zeros of the polynomial are on the list 







 







 

3

2
,2,

3

1
,1

3

2
,

1

2
,

3

1
,

1

1
. 

 

Looking at a graph, the only likely candidate is 
3

1
 

 
Using synthetic division, 

 
 

   2
3

1
363

3

1
263 2223 






 






  xxxxxxx .   

 
Solving 022 x  gives zeros 2x . 

The real zeros of the polynomial are 
3

1
,2,2 x . 

 

1/3 3 -1 -6 2 
 ↓ 1 0 -2 
 3 0 -6 0 
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Section 3.5 Exercises 
 
For each of the following polynomials, use Cauchy’s Bound to find an interval containing 
all the real zeros, then use Rational Roots Theorem to make a list of possible rational 
zeros. 
 
1. 652=)( 23  xxxxf    2. 3240122=)( 234  xxxxxf  

3. 1249=)( 24  xxxxf    4. 6114=)( 23  xxxxf  

5. 77=)( 23  xxxxf    6. 2049192=)( 23  xxxxf  

7. 1034517=)( 23  xxxxf   8. 12111236=)( 234  xxxxxf  

9. 101133=)( 23  xxxxf    10. 3372=)( 234  xxxxxf  

 
Find the real zeros of each polynomial. 
11. 652=)( 23  xxxxf    12. 3240122=)( 234  xxxxxf  

13. 1249=)( 24  xxxxf    14. 6114=)( 23  xxxxf  

15. 77=)( 23  xxxxf    16. 2049192=)( 23  xxxxf  

17. 1034517=)( 23  xxxxf   18. 12111236=)( 234  xxxxxf  

19. 101133=)( 23  xxxxf    20. 3372=)( 234  xxxxxf  

21. xxxxf  23 59=)(    22. 234 956=)( xxxxf   

23. 152=)( 24  xxxf    24. 149=)( 24  xxxf  

25. 5143=)( 24  xxxf    26. 672=)( 24  xxxf  

27. 103=)( 36  xxxf    28. 1092=)( 36  xxxf  

29. 842=)( 45  xxxxf    30. 271832=)( 45  xxxxf  

31. 23049608060=)( 235  xxxxxf   

32. 95714217410525=)( 2345  xxxxxxf  
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Section 3.6 Complex Zeros 
 
When finding the zeros of polynomials, at some point you're faced with the problem 

12 x .  While there are clearly no real numbers that are solutions to this equation, 
leaving things there has a certain feel of incompleteness.  To address that, we will need 
utilize the imaginary unit, i. 
 
 

Imaginary Number i 

The most basic complex number is i, defined to be 1i , commonly called an 
imaginary number.  Any real multiple of i is also an imaginary number. 

 
 
Example 1 

Simplify 9 . 
 

We can separate 9  as 19  .  We can take the square root of 9, and write the 
square root of -1 as i.   

9 = i319   
 
 
A complex number is the sum of a real number and an imaginary number. 
 
 

Complex Number 

A complex number is a number biaz  , where a and b are real numbers 

a  is the real part of the complex number 

b  is the imaginary part of the complex number 

1i  
 
 
Arithmetic on Complex Numbers 
 
Before we dive into the more complicated uses of complex numbers, let’s make sure we 
remember the basic arithmetic involved.  To add or subtract complex numbers, we simply 
add the like terms, combining the real parts and combining the imaginary parts. 
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Example 3 
Add i43   and i52  . 
 
Adding )52()43( ii  , we add the real parts and the imaginary parts 

ii 5423   
i5  

 
 

Try it Now 
1. Subtract i52   from i43  . 

 
 
We can also multiply and divide complex numbers. 
 
 
Example 4 

Multiply:  )52(4 i . 
 
To multiply the complex number by a real number, we simply distribute as we would 
when multiplying polynomials. 
 

)52(4 i  
= i5424   

i208   
 
 
Example 5 

Divide (2 5 )

(4 )

i

i




. 

 
To divide two complex numbers, we have to devise a way to write this as a complex 
number with a real part and an imaginary part.   
 
We start this process by eliminating the complex number in the denominator.  To do 
this, we multiply the numerator and denominator by a special complex number so that 
the result in the denominator is a real number.  The number we need to multiply by is 
called the complex conjugate, in which the sign of the imaginary part is changed.   
 
Here, 4+i  is the complex conjugate of 4–i.  Of course, obeying our algebraic rules, we 
must multiply by 4+i  on both the top and bottom. 
(2 5 ) (4 )

(4 ) (4 )

i i

i i
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To multiply two complex numbers, we expand the product as we would with 
polynomials (the process commonly called FOIL – “first outer inner last”).  In the 
numerator: 
(2 5 )(4 )i i     Expand 

28 20 2 5i i i       Since 1i , 12 i  
8 20 2 5( 1)i i        Simplify 
3 22i   

 
Following the same process to multiply the denominator  
(4 )(4 )i i      Expand 

2(16 4 4 )i i i       Since 1i , 12 i  
(16 ( 1))     

=17 
 

Combining this we get 
3 22 3 22

17 17 17

i i
    

 
 

Try it Now 
2.  Multiply i43   and 2 3i . 

 
 
In the last example, we used the conjugate of a complex number 
 
 

Complex Conjugate 

The conjugate of a complex number bia   is the number bia  . 

 

The notation commonly used for conjugation is a bar:  biabia   
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Complex Zeros of Polynomials 
 
Complex numbers allow us a way to write solutions to quadratic equations that do not 
have real solutions. 
 
 
Example 6 

Find the zeros of 52)( 2  xxxf . 
 
Using the quadratic formula,  

i
i

x 21
2

42

2

162

)1(2

)5)(1(4)2(2 2










 . 

 
 

Try it Now 
3.  Find the zeros of 432)( 2  xxxf . 

 
 
Two things are important to note.  First, the zeros i21  and i21  are complex 
conjugates.  This will always be the case when we find non-real zeros to a quadratic 
function with real coefficients.   
 
Second, we could write      ixixxxxf 212152)( 2   if we really wanted 
to, so the Factor and Remainder Theorems hold. 
 
How do we know if a general polynomial has any complex zeros?  We have seen 
examples of polynomials with no real zeros; can there be polynomials with no zeros at 
all?  The answer to that last question, which comes from the Fundamental Theorem of 
Algebra, is "No."  
 
 

Fundamental Theorem of Algebra 

A non-constant polynomial f with real or complex coefficients will have at least one 
real or complex zero. 

 
 
This theorem is an example of an "existence" theorem in mathematics.  It guarantees the 
existence of at least one zero, but provides no algorithm to use for finding it. 
 
Now suppose we have a polynomial f(x) of degree n.  The Fundamental Theorem of 
Algebra guarantees at least one zero 1z , then the Factor Theorem guarantees that f can be 

factored as   )()( 11 xqzxxf  , where the quotient )(1 xq  will be of degree n-1.   
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If this function is non-constant, than the Fundamental Theorem of Algebra applies to it, 
and we can find another zero.  This can be repeated n times. 
 
 

Complex Factorization Theorem 

If f is a polynomial f with real or complex coefficients with degree n ≥ 1, then f has 
exactly n real or complex zeros, counting multiplicities. 

 

If kzzz ,,, 21   are the distinct zero of f with multiplicities kmmm ,,, 21   respectively, 

then       km
k

mm zxzxzxaxf  21

21)(  

 
 
Example 7 

Find all the real and complex zeros of 126192012)( 2345  xxxxxxf . 
 
Using the Rational Roots Theorem, the possible real rational 
roots are  







 

12

1
,

6

1
,

4

1
,

3

1
,

2

1
,

1

1
 

 

Testing 
2

1
, 

 
 
Success!  Because the graph bounces at this intercept, it is likely that this zero has 
multiplicity 2.  We can try synthetic division again to test that. 
 

 
 

The other real root appears to be 
3

1
  or 

4

1
 .  Testing 

3

1
 , 

 
 

-1/3 12 -8 8 -4 
 ↓ -4 4 -4 
 12 -12 12 0 

1/2 12 -14 12 0 -2
 ↓ 6 -4 4 2
 12 -8 8 -4 0

1/2 12 -20 19 -6 -2 1
 ↓ 6 -7 6 0 -1
 12 -14 12 0 -2 0
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Excellent!  So far, we have factored the polynomial to 

   1
3

1

2

1
12121212

3

1

2

1
)( 2

2
2

2







 






 






 






  xxxxxxxxxf  

 
We can use the quadratic formula to find the two remaining zeros by setting 

012  xx , which are likely complex zeros. 

2

31

2

31

)1(2

)1)(1(4)1(1 2 i
x








 .   

 

The zeros of the function are 
2

31
,

2

31
,

3

1
,

2

1 ii
x


 .  We could write the function 

fully factored as 






 








 







 






 

2

31

2

31

3

1

2

1
12)(

2
i

x
i

xxxxf . 

 
 
When factoring a polynomial like we did at the end of the last example, we say that it is 
factored completely over the complex numbers, meaning it is impossible to factor the 
polynomial any further using complex numbers.  If we wanted to factor the function over 

the real numbers, we would have stopped at  1
3

1

2

1
12)( 2

2







 






  xxxxxf .  Since 

the zeros of 12  xx  are nonreal, we call 12  xx  an irreducible quadratic meaning 
it is impossible to break it down any further using real numbers. 
 
It turns out that a polynomial with real number coefficients can be factored into a product 
of linear factors corresponding to the real zeros of the function and irreducible quadratic 
factors which give the nonreal zeros of the function.  Consequently, any nonreal zeros 
will come in conjugate pairs, so if z is a zero of the polynomial, so is z . 
 
 

Try it Now 
4.  Find the real and complex zeros of 1094)( 23  xxxxf . 

 
 

Important Topics of This Section 

Complex and Imaginary numbers 

Finding Complex zeros of polynomials 
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Try it Now Answers 
1. (3 4 ) (2 5 ) 1 9i i i       
 
2. (3 4 )(2 3 ) 18i i i      
 

3. i
i

x
4

23

4

3

4

233

4

233

)2(2

)4)(2(4)3(3 2













  

4. Cauchy’s Bound limits us to the interval [-11, 11].  The rational roots theorem gives a 
list of potential zeros:   10,5,2,1  .  A quick graph shows that the likely rational 
root is x = 2. 

 
 
   Verifying this, 

 
 
So )52)(2()( 2  xxxxf  
 
Using quadratic formula, we can find the complex roots from the irreducible quadratic. 

i
i

x 21
2

42

2

162

)1(2

)5)(1(4)2()2( 2










 . 

 
The zeros of this polynomial are iix 21,21,2   

2 1 -4 9 -10 
 ↓ 2 -4 10 
 1 -2 5 0 
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Section 3.6 Exercises 
 
Simplify each expression to a single complex number. 

1. 9    2. 16    3. 6 24     

4. 3 75     5. 
2 12

2

 
   6. 

4 20

2

 
 

 
Simplify each expression to a single complex number. 
7.  3 2 (5 3 )i i       8.    2 4 1 6i i     

9.  5 3 (6 )i i        10.  2 3 (3 2 )i i    

11.  2 3 (4 )i i     12.  5 2 (3 )i i  

13.  6 2 (5)i      14.   2 4 8i   

15.  2 3 (4 )i i      16.  1 2 ( 2 3 )i i     

17.  4 2 (4 2 )i i      18.   3 4 3 4i i   

19. 
3 4

2

i
     20. 

6 2

3

i
 

21. 
5 3

2

i

i

 
     22. 

6 4i

i


 

23. 
2 3

4 3

i

i




     24. 
3 4

2

i

i




 

 
Find all of the zeros of the polynomial then completely factor it over the real numbers 
and completely factor it over the complex numbers. 
 
25. 134=)( 2  xxxf     26. 52=)( 2  xxxf  

27. 1023=)( 2  xxxf    28. 1892=)( 23  xxxxf  

29. 566=)( 23  xxxxf    30. 1343133=)( 23  xxxxf  

31. 1243=)( 23  xxxxf    32. 15864=)( 23  xxxxf  

33. 297=)( 23  xxxxf    34. 129=)( 3  xxxf  

35. 3121344=)( 234  xxxxxf   36. 6151472=)( 234  xxxxxf  

37. 1897=)( 234  xxxxxf   38. 121655176=)( 234  xxxxxf  

39. 5121283=)( 234  xxxxxf   40. 4243508=)( 234  xxxxxf  

41. 209=)( 24  xxxf    42. 245=)( 24  xxxf  
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Section 3.7 Rational Functions 
 
In the previous sections, we have built polynomials based on the positive whole number 
power functions.  In this section, we explore functions based on power functions with 
negative integer powers, called rational functions. 
 
 
Example 1 

You plan to drive 100 miles.  Find a formula for the time the trip will take as a function 
of the speed you drive. 
 
You may recall that multiplying speed by time will give you distance.  If we let t 
represent the drive time in hours, and v represent the velocity (speed or rate) at which 
we drive, then distancevt .  Since our distance is fixed at 100 miles, 100vt .  
Solving this relationship for the time gives us the function we desired: 

1100
100

)(  v
v

vt  

 
 
While this type of relationship can be written using the negative exponent, it is more 
common to see it written as a fraction.   
 
This particular example is one of an inversely proportional relationship – where one 

quantity is a constant divided by the other quantity, like 
5

y
x

 .  

Notice that this is a transformation of the reciprocal toolkit function, 
1

( )f x
x

  

 
Several natural phenomena, such as gravitational force and volume of sound, behave in a 
manner inversely proportional to the square of another quantity.  For example, the 

volume, V, of a sound heard at a distance d from the source would be related by 
2d

k
V   

for some constant value k. 
 

These functions are transformations of the reciprocal squared toolkit function 2

1
( )f x

x
 . 

 
We have seen the graphs of the basic reciprocal function and the squared reciprocal 
function from our study of toolkit functions.  These graphs have several important 
features. 
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1
( )f x

x
  

 

2

1
( )f x

x


Let’s begin by looking at the reciprocal function, 
1

( )f x
x

 .  As you well know, dividing 

by zero is not allowed and therefore zero is not in the domain, and so the function is 
undefined at an input of zero. 
 
Short run behavior:  
As the input values approach zero from the left side (taking on very small, negative 
values), the function values become very large in the negative direction (in other words, 
they approach negative infinity). 
We write: as  0x , )(xf . 
 
As we approach zero from the right side (small, positive input values), the function 
values become very large in the positive direction (approaching infinity). 
We write: as  0x , )(xf . 
 
This behavior creates a vertical asymptote.  An asymptote is a line that the graph 
approaches. In this case the graph is approaching the vertical line x = 0 as the input 
becomes close to zero.   
 
Long run behavior:  
As the values of x approach infinity, the function values approach 0. 
As the values of x approach negative infinity, the function values approach 0. 
Symbolically: as x , 0)( xf  
 
Based on this long run behavior and the graph we can see that the function approaches 0 
but never actually reaches 0, it just “levels off” as the inputs become large.  This behavior 
creates a horizontal asymptote.  In this case the graph is approaching the horizontal line 

( ) 0f x  as the input becomes very large in the negative and positive directions. 
 
 

Vertical and Horizontal Asymptotes 

A vertical asymptote of a graph is a vertical line x = a where the graph tends towards 
positive or negative infinity as the inputs approach a.  As ax , )(xf . 

 

A horizontal asymptote of a graph is a horizontal line y b  where the graph 

approaches the line as the inputs get large. As x , bxf )( . 
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Try it Now: 
1. Use symbolic notation to describe the long run behavior and 

short run behavior for the reciprocal squared function. 
 
 

 
 
Example 2 

Sketch a graph of the reciprocal function shifted two units to the left and up three units.  
Identify the horizontal and vertical asymptotes of the graph, if any. 
 
Transforming the graph left 2 and up 3 would result in the function 

3
2

1
)( 




x
xf , or equivalently, by giving the terms a common denominator, 

2

73
)(





x

x
xf . 

 
Shifting the toolkit function would give us 
this graph.  Notice that this equation is 
undefined at x = -2, and the graph also is 
showing a vertical asymptote at x = -2. 
As 2x  , ( )f x  , and  

as 2x  , ( )f x   
 
As the inputs grow large, the graph appears 
to be leveling off at output values of 3, 
indicating a horizontal asymptote at 3y  .  
As x , 3)( xf . 
  
Notice that horizontal and vertical asymptotes get shifted left 2 and up 3 along with the 
function. 

 
 

Try it Now 
2. Sketch the graph and find the horizontal and vertical asymptotes of the reciprocal 

squared function that has been shifted right 3 units and down 4 units.  

 
 
In the previous example, we shifted a toolkit function in a way that resulted in a function 

of the form 
2

73
)(





x

x
xf .  This is an example of a more general rational function. 
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Rational Function 

A rational function is a function that can be written as the ratio of two polynomials, 
P(x) and Q(x). 

2
0 1 2

2
0 1 2

( )
( )

( )

p
p

q
q

a a x a x a xP x
f x

Q x b b x b x b x

   
 

   




   

 
 
Example 3 

A large mixing tank currently contains 100 gallons of water, into which 5 pounds of 
sugar have been mixed.  A tap will open pouring 10 gallons per minute of water into the 
tank at the same time sugar is poured into the tank at a rate of 1 pound per minute.  Find 
the concentration (pounds per gallon) of sugar in the tank after t minutes.   
 
Notice that the amount of water in the tank is changing linearly, as is the amount of 
sugar in the tank.  We can write an equation independently for each: 

twater 10100   
tsugar 15  

 
The concentration, C, will be the ratio of pounds of sugar to gallons of water 

t

t
tC

10100

5
)(




  

 
 
Finding Asymptotes and Intercepts 
 
Given a rational function, as part of investigating the short run behavior we are interested 
in finding any vertical and horizontal asymptotes, as well as finding any vertical or 
horizontal intercepts, as we have done in the past. 
 
To find vertical asymptotes, we notice that the vertical asymptotes in our examples occur 
when the denominator of the function is undefined.  With one exception, a vertical 
asymptote will occur whenever the denominator is undefined. 
 
 
Example 4 

Find the vertical asymptotes of the function 
2

2

2

25
)(

xx

x
xk




  

 
To find the vertical asymptotes, we determine where this function will be undefined by 
setting the denominator equal to zero: 

1,2

0)1)(2(

02 2






x

xx

xx
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This indicates two vertical asymptotes, which a look 
at a graph confirms. 
 
 
 
 
 

 
 
The exception to this rule can occur when both the numerator and denominator of a 
rational function are zero at the same input. 
 
 
Example 5 

Find the vertical asymptotes of the function 2

2
( )

4

x
k x

x





. 

 
To find the vertical asymptotes, we determine where this function will be undefined by 
setting the denominator equal to zero: 

2

2

4 0

4

2, 2

x

x

x

 


 

 

 
However, the numerator of this function is also 
equal to zero when x = 2.  Because of this, the 

function will still be undefined at 2, since 
0

0
 is 

undefined, but the graph will not have a vertical 
asymptote at x = 2.   
 
The graph of this function will have the vertical 
asymptote at x = -2, but at x = 2 the graph will 
have a hole: a single point where the graph is 
not defined, indicated by an open circle. 

 
 

Vertical Asymptotes and Holes of Rational Functions 

The vertical asymptotes of a rational function will occur where the denominator of 
the function is equal to zero and the numerator is not zero. 

 

A hole occurs in the graph of a rational function if an input causes both numerator and 
denominator to be zero. In this case, factor the numerator and denominator and 
simplify; if the simplified expression still has a zero in the denominator at the original 
input the original function has a vertical asymptote at the input, otherwise it has a hole. 
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To find horizontal asymptotes, we are interested in the behavior of the function as the 
input grows large, so we consider long run behavior of the numerator and denominator 
separately.  Recall that a polynomial’s long run behavior will mirror that of the leading 
term.  Likewise, a rational function’s long run behavior will mirror that of the ratio of the 
leading terms of the numerator and denominator functions. 
 
There are three distinct outcomes when this analysis is done: 
 
 
Case 1:  The degree of the denominator > degree of the numerator 

Example: 
54

23
)(

2 



xx

x
xf  

In this case, the long run behavior is 2

3 3
( )

x
f x

x x
  .  This tells us that as the inputs grow 

large, this function will behave similarly to the function 
3

( )g x
x

 .  As the inputs grow 

large, the outputs will approach zero, resulting in a horizontal asymptote at 0y  . 
As x , 0)( xf  
 
 
Case 2:  The degree of the denominator < degree of the numerator 

Example: 
5

23
)(

2





x

x
xf  

In this case, the long run behavior is
23

( ) 3
x

f x x
x

  .  This tells us that as the inputs 

grow large, this function will behave similarly to the function ( ) 3g x x .  As the inputs 
grow large, the outputs will grow and not level off, so this graph has no horizontal 
asymptote.  
As x , )(xf , respectively. 
 
 
Case 3:  The degree of the denominator = degree of the numerator 

Example: 
54

23
)(

2

2





xx

x
xf  

In this case, the long run behavior is 
2

2

3
( ) 3

x
f x

x
  .  This tells us that as the inputs grow 

large, this function will behave like the function ( ) 3g x  , which is a horizontal line. As 
x , 3)( xf , resulting in a horizontal asymptote at 3y  . 
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Horizontal Asymptote of Rational Functions 

The horizontal asymptote of a rational function can be determined by looking at the 
degrees of the numerator and denominator. 

Degree of denominator > degree of numerator: Horizontal asymptote at 0y   

Degree of denominator < degree of numerator: No horizontal asymptote 

Degree of denominator = degree of numerator: Horizontal asymptote at ratio of 
leading coefficients. 

 
 
Example 6 

In the sugar concentration problem from earlier, we created the equation 

t

t
tC

10100

5
)(




 .   

Find the horizontal asymptote and interpret it in context of the scenario. 
 
Both the numerator and denominator are linear (degree 1), so since the degrees are 
equal, there will be a horizontal asymptote at the ratio of the leading coefficients.  In the 
numerator, the leading term is t, with coefficient 1.  In the denominator, the leading 
term is 10t, with coefficient 10.  The horizontal asymptote will be at the ratio of these 

values: As t, 
1

( )
10

C t  .  This function will have a horizontal asymptote at 

1

10
y  . 

 
This tells us that as the input gets large, the output values will approach 1/10.  In 
context, this means that as more time goes by, the concentration of sugar in the tank will 
approach one tenth of a pound of sugar per gallon of water or 1/10 pounds per gallon. 

 
 
Example 7 

Find the horizontal and vertical asymptotes of the function 

)5)(2)(1(

)3)(2(
)(





xxx

xx
xf  

 
First, note this function has no inputs that make both the numerator and denominator 
zero, so there are no potential holes.  The function will have vertical asymptotes when 
the denominator is zero, causing the function to be undefined.  The denominator will be 
zero at x = 1, -2, and 5, indicating vertical asymptotes at these values. 
 
The numerator has degree 2, while the denominator has degree 3.  Since the degree of 
the denominator is greater than that of the numerator, the denominator will grow faster 
than the numerator, causing the outputs to tend towards zero as the inputs get large, and 
so as x , 0)( xf .  This function will have a horizontal asymptote at 0y  . 
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Try it Now 

3. Find the vertical and horizontal asymptotes of the function 
)3)(2(

)12)(12(
)(





xx

xx
xf  

 
 
Intercepts 
 
As with all functions, a rational function will have a vertical intercept when the input is 
zero, if the function is defined at zero.  It is possible for a rational function to not have a 
vertical intercept if the function is undefined at zero. 
 
Likewise, a rational function will have horizontal intercepts at the inputs that cause the 
output to be zero (unless that input corresponds to a hole).  It is possible there are no 
horizontal intercepts.  Since a fraction is only equal to zero when the numerator is zero, 
horizontal intercepts will occur when the numerator of the rational function is equal to 
zero. 
 
 
Example 8 

Find the intercepts of 
)5)(2)(1(

)3)(2(
)(





xxx

xx
xf  

 
We can find the vertical intercept by evaluating the function at zero 

5

3

10

6

)50)(20)(10(

)30)(20(
)0( 







f  

 
 
The horizontal intercepts will occur when the function is equal to zero: 

)5)(2)(1(

)3)(2(
0





xxx

xx   This is zero when the numerator is zero 

3,2

)3)(2(0




x

xx
 

 
 

Try it Now 
4. Given the reciprocal squared function that is shifted right 3 units and down 4 units, 

write this as a rational function and find the horizontal and vertical intercepts and the 
horizontal and vertical asymptotes. 
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From the previous example, you probably noticed that the numerator of a rational 
function reveals the horizontal intercepts of the graph, while the denominator reveals the 
vertical asymptotes of the graph.  As with polynomials, factors of the numerator may 
have integer powers greater than one.  Happily, the effect on the shape of the graph at 
those intercepts is the same as we saw with polynomials.  
 
When factors of the denominator have integer powers greater than one, the behavior at 
the corresponding vertical asymptote will mirror one of the two toolkit reciprocal 
functions. 

 
We get this behavior when the degree of the factor in the 
denominator is odd.   The distinguishing characteristic is that on 
one side of the vertical asymptote the graph heads towards positive 
infinity, and on the other side the graph heads towards negative 
infinity. 
 
 
 
We get this behavior when the degree of the factor in the 
denominator is even.   The distinguishing characteristic is that the 
graph either heads toward positive infinity on both sides of the 
vertical asymptote, or heads toward negative infinity on both sides. 
 
 
 

 
For example, the graph of  

)2()3(

)3()1(
)(

2

2





xx

xx
xf  is shown here. 

 
At the horizontal intercept x = -1 
corresponding to the 2)1( x factor of 
the numerator, the graph bounces at the 
intercept, consistent with the quadratic 
nature of the factor.   
 
At the horizontal intercept x = 3 
corresponding to the )3( x factor of the numerator, the graph passes through the axis as 
we’d expect from a linear factor.   
 
At the vertical asymptote x = -3 corresponding to the 2)3( x  factor of the denominator, 
the graph heads towards positive infinity on both sides of the asymptote, consistent with 

the behavior of the  
2

1

x
 toolkit. 



3.7 Rational Functions   227

At the vertical asymptote x = 2 corresponding to the )2( x  factor of the denominator, 
the graph heads towards positive infinity on the left side of the asymptote and towards 

negative infinity on the right side, consistent with the behavior of the  
x

1
 toolkit. 

 
 
Example 9 

Sketch a graph of 
2

( 2)( 3)
( )

( 1) ( 2)

x x
f x

x x

 


 
. 

 
We can start our sketch by finding intercepts and asymptotes.  Evaluating the function 
at zero gives the vertical intercept: 

2

(0 2)(0 3)
(0) 3

(0 1) (0 2)
f

 
 

 
 

 
Looking at when the numerator of the function is zero, we can determine the graph will 
have horizontal intercepts at x = -2 and x = 3.  At each, the behavior will be linear, with 
the graph passing through the intercept. 
 
Looking at when the denominator of the function is zero, we can determine the graph 
will have vertical asymptotes at x = -1 and x = 2.   
 
Finally, the degree of denominator is larger than the 
degree of the numerator, telling us this graph has a 
horizontal asymptote at y = 0. 
To sketch the graph, we might start by plotting the three 
intercepts.  Since the graph has no horizontal intercepts 
between the vertical asymptotes, and the vertical 
intercept is positive, we know the function must remain 
positive between the asymptotes, letting us fill in the 
middle portion of the graph. 
 
Since the factor associated with the vertical asymptote at x = -1 was squared, we know 
the graph will have the same behavior on both sides of the asymptote.  Since the graph 
heads towards positive infinity as the inputs approach the asymptote on the right, the 
graph will head towards positive infinity on the left as 
well.  For the vertical asymptote at x = 2, the factor was 
not squared, so the graph will have opposite behavior on 
either side of the asymptote. 
 
After passing through the horizontal intercepts, the graph 
will then level off towards an output of zero, as indicated 
by the horizontal asymptote. 
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Try it Now 

5. Given the function 
)3()1(2

)2()2(
)(

2

2





xx

xx
xf , use the characteristics of polynomials and 

rational functions to describe its behavior and sketch the function. 

 
 
Since a rational function written in factored form will have a horizontal intercept where 
each factor of the numerator is equal to zero, we can form a numerator that will pass 
through a set of horizontal intercepts by introducing a corresponding set of factors.  
Likewise, since the function will have a vertical asymptote where each factor of the 
denominator is equal to zero, we can form a denominator that will produce the vertical 
asymptotes by introducing a corresponding set of factors. 
 
 

Writing Rational Functions from Intercepts and Asymptotes 

If a rational function has horizontal intercepts at nxxxx ,,, 21  , and vertical 

asymptotes at mvvvx ,,, 21   then the function can be written in the form 

n

n

q
m

qq

p
n

pp

vxvxvx

xxxxxx
axf

)()()(

)()()(
)(

21

21

21

21








 

where the powers pi or qi on each factor can be determined by the behavior of the 
graph at the corresponding intercept or asymptote, and the stretch factor a can be 
determined given a value of the function other than the horizontal intercept, or by the 
horizontal asymptote if it is nonzero. 

 
 
Example 10 

Write an equation for the rational function 
graphed here. 
 
The graph appears to have horizontal 
intercepts at x = -2 and x = 3.  At both, the 
graph passes through the intercept, 
suggesting linear factors. 
 
The graph has two vertical asymptotes.  
The one at x = -1 seems to exhibit the basic 

behavior similar to 
x

1
, with the graph 

heading toward positive infinity on one 
side and heading toward negative infinity on the other.   
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The asymptote at x = 2 is exhibiting a behavior similar to 
2

1

x
, with the graph heading 

toward negative infinity on both sides of the asymptote.   
 
Utilizing this information indicates an function of the form 

2)2)(1(

)3)(2(
)(





xx

xx
axf  

 
To find the stretch factor, we can use another clear point on the graph, such as the 
vertical intercept (0,-2): 

3

4

6

8
4

6
2

)20)(10(

)30)(20(
2

2















a

a

a

 

 

This gives us a final function of 
2)2)(1(3

)3)(2(4
)(





xx

xx
xf  

 
 
Oblique Asymptotes 
 
Earlier we saw graphs of rational functions that had no horizontal asymptote, which 
occurs when the degree of the numerator is larger than the degree of the denominator.  
We can, however, describe in more detail the long-run behavior of a rational function.   
 
 
Example 11 

Describe the long-run behavior of 
5

23
)(

2





x

x
xf  

 
Earlier we explored this function when discussing horizontal asymptotes.  We found the 

long-run behavior is
23

( ) 3
x

f x x
x

  , meaning that x , )(xf , respectively, 

and there is no horizontal asymptote. 
 
If we were to do polynomial long division, we could get a better understanding of the 
behavior as x . 
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2

2

3 15

5 3 0 2

3 15

15 2

15 75

77

x

x x x

x x

x

x


  

 



 

 

This means 
5

23
)(

2





x

x
xf  can be rewritten as 

77
( ) 3 15

5
f x x

x
  


. 

As x , the term 
77

5x 
 will become very 

small and approach zero, becoming insignificant.  
The remaining 3 15x  then describes the long-run 
behavior of the function:  as x , 

( ) 3 15f x x  .   
 
We call this equation 3 15y x   the oblique 
asymptote of the function.   
 
In the graph, you can see how the function is 
approaching the line on the far left and far right.  

 
 

Oblique Asymptotes 

To explore the long-run behavior of a rational function, 

1) Perform polynomial long division (or synthetic division) 

2) The quotient will describe the asymptotic behavior of the function 

 

When this result is a line, we call it an oblique asymptote, or slant asymptote.  
 
 
Example 12 

Find the oblique asymptote of 
2 2 1

( )
1

x x
f x

x

  



 

 
Performing polynomial long division: 
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2

2

3

1 2 1

3 1

3 3

2

x

x x x

x x

x

x

 
   

  



 



 

This allows us to rewrite the function as 
2

( ) 3
1

f x x
x

   


. 

 
The quotient, 3y x   , is the oblique asymptote 
of f(x).  Just like functions we saw earlier 
approached their horizontal asymptote in the long 
run, this function will approach this oblique 
asymptote in the long run. 

 
 

Try it Now 

6. Find the oblique asymptote of 
21 7 2

( )
2

x x
f x

x

 



 

 
 
While we primarily concern ourselves with oblique asymptotes, this same approach can 
describe other asymptotic behavior. 
 
 
Example 13 

Describe the long-run shape of 
3 2 4 2

( )
1

x x x
f x

x

   



 

 
We could rewrite this using long division as 

2 2
( ) 4

1
f x x

x
   


. 

 
Just looking at the quotient gives us the 
asymptote, 2 4y x   .   
 
This suggests that in the long run, the function 
will behave like a downwards opening parabola.  
The function will also have a vertical asymptote 
at 1x   .   
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Important Topics of this Section 

Inversely proportional; Reciprocal toolkit function 

Inversely proportional to the square; Reciprocal squared toolkit function 

Horizontal Asymptotes 

Vertical Asymptotes 

Rational Functions 

 Finding intercepts, asymptotes, and holes. 

 Given equation sketch the graph  

 Identifying a function from its graph 

Oblique Asymptotes 
 
 

Try it Now Answers 
1. Long run behavior, as x , 0)( xf   
    Short run behavior, as 0x , )(xf  (there are no horizontal or vertical intercepts) 
 
2. The function and the asymptotes are shifted 3 units 

right and 4 units down.   
As 3x , )(xf  and as x , 4)( xf  

 
 
3. Vertical asymptotes at x = 2 and x = -3; horizontal 

asymptote at y = 4 
 
4. For the transformed reciprocal squared function, we 

find the rational form. 

96

35244

)3)(3(

)96(41

)3(

)3(41
4

)3(

1
)(

2

22

2

2

2 














xx

xx

xx

xx

x

x

x
xf  

 
Since the numerator is the same degree as the denominator we know that as x ,

4)( xf .  4y    is the horizontal asymptote.  Next, we set the denominator equal 
to zero to find the vertical asymptote at x = 3, because as 3x , )(xf .  We set 
the numerator equal to 0 and find the horizontal intercepts are at (2.5,0) and (3.5,0), 

then we evaluate at 0 and the vertical intercept is at 





 

9

35
,0   
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Try it Now Answers, Continued 
5.  Horizontal asymptote at y = 1/2.   

Vertical asymptotes are at x = 1, and x = 3. 
Vertical intercept at (0, 4/3),  
Horizontal intercepts (2, 0) and (-2, 0)  
(-2, 0) is a double zero and the graph bounces off the 
axis at this point.   
(2, 0) is a single zero and crosses the axis at this point.  

 
6. Using long division:  

 

 

2

2

2 3

2 2 7 1

2 4

3 1

3 6

7

x

x x x

x x

x

x

 
   

  



 

 

21 7 2 7
( ) 2 3

2 2

x x
f x x

x x

 
    

 
 

 
The oblique asymptote is 2 3y x    
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Section 3.7 Exercises 
 
Match each equation form with one of the graphs. 

1.   x A
f x

x B





 2.    2

x A
g x

x B





 3.  

 2

x A
h x

x B





 4.    

 

2

2

x A
k x

x B





 

 

A  B   C   D  
 
For each function, find the horizontal intercepts, the vertical intercept, the vertical 
asymptotes, and the horizontal asymptote.  Use that information to sketch a graph. 
 

5.   2 3

4

x
p x

x





    6.   5

3 1

x
q x

x





 

 

7.  
 2

4

2
s x

x



    8.  

 2

5

1
r x

x



 

 

9.  
2

2

3 14 5

3 8 16

x x
f x

x x

 


 
    10.  

2

2

2 7 15

3 14 15

x x
g x

x

 


 
 

 
 

11.  
2

2

2 3

1

x x
a x

x

 



   12.  

2

2

6

4

x x
b x

x

 



 

 

13.  
22  1

4

x x
h x

x

 



    14.  

22 3 20

5

x x
k x

x

 



 

 

15.  
2

3 2

3 4 4

4

x x
n x

x x

 



    16.   2

5

2 7 3

x
m x

x x




 
 

 

17.      
 2

1 3 5

2 ( 4)

x x x
w x

x x

  


 
  18.      

   

2
2 5

3 1 4

x x
z x

x x x
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Write an equation for a rational function with the given characteristics. 
 
19. Vertical asymptotes at 5x   and 5x    

x intercepts at (2, 0)  and ( 1, 0)   y intercept at  0, 4  

 
20. Vertical asymptotes at 4x    and 1x    

x intercepts at  1, 0  and  5, 0   y intercept at (0, 7)  

 
21. Vertical asymptotes at 4x    and 5x    

x intercepts at  4, 0  and  6, 0   Horizontal asymptote at 7y   

 
22. Vertical asymptotes at 3x    and 6x   

x intercepts at  2, 0  and  1, 0   Horizontal asymptote at 2y    

 
23. Vertical asymptote at 1x     

Double zero at 2x    y intercept at (0, 2)  

 
24. Vertical asymptote at 3x    

Double zero at 1x    y intercept at (0, 4)  

 
Write an equation for the function graphed. 

25.     26.  
 

27.    28.  
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Write an equation for the function graphed. 
 

29.    30.  
 

31.   32.  
 

33.  34.  
 

35.  36.  
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Write an equation for the function graphed. 
 

37.  38.  
 
Find the oblique asymptote of each function. 
 

39.  
23 4

( )
2

x x
f x

x





    40.  

22 3 8
( )

1

x x
g x

x

 



 

 

41.  
2 3

( )
2 6

x x
h x

x

 



    42.  

25 2
( )

2 1

x x
k x

x

 



 

 

43.  
3 2

2

2 6 7
( )

3

x x x
m x

x

   



  44.  

3 2

2

2
( )

1

x x x
n x

x x

 


 
 

 
45. A scientist has a beaker containing 20 mL of a solution containing 20% acid.  To 

dilute this, she adds pure water.   
a. Write an equation for the concentration in the beaker after adding n mL of 

water. 
b. Find the concentration if 10 mL of water has been added. 
c. How many mL of water must be added to obtain a 4% solution? 
d. What is the behavior as n , and what is the physical significance of this? 

 
46. A scientist has a beaker containing 30 mL of a solution containing 3 grams of 

potassium hydroxide.  To this, she mixes a solution containing 8 milligrams per mL 
of potassium hydroxide.   

a. Write an equation for the concentration in the tank after adding n mL of the 
second solution. 

b. Find the concentration if 10 mL of the second solution has been added. 
c. How many mL of water must be added to obtain a 50 mg/mL solution? 
d. What is the behavior as n , and what is the physical significance of this? 
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47. Oscar is hunting magnetic fields with his gauss meter, a device for measuring the 
strength and polarity of magnetic fields. The reading on the meter will increase as 
Oscar gets closer to a magnet. Oscar is in a long hallway at the end of which is a 
room containing an extremely strong magnet. When he is far down the hallway from 
the room, the meter reads a level of 0.2. He then walks down the hallway and enters 
the room. When he has gone 6 feet into the room, the meter reads 2.3. Eight feet into 
the room, the meter reads 4.4.  [UW] 

a. Give a rational model of form   ax b
m x

cx d





 relating the meter reading ( )m x  

to how many feet x Oscar has gone into the room. 
b. How far must he go for the meter to reach 10? 100? 
c. Considering your function from part (a) and the results of part (b), how far 

into the room do you think the magnet is? 
48. The more you study for a certain exam, the better your performance on it. If you 

study for 10 hours, your score will be 65%. If you study for 20 hours, your score will 
be 95%. You can get as close as you want to a perfect score just by studying long 
enough. Assume your percentage score, ( )p n , is a function of the number of hours, n, 

that you study in the form ( )
an b

p n
cn d





. If you want a score of 80%, how long do 

you need to study? [UW] 
 

49. A street light is 10 feet north of a 
straight bike path that runs east-
west. Olav is bicycling down the 
path at a rate of 15 miles per 
hour. At noon, Olav is 33 feet 
west of the point on the bike path 
closest to the street light. (See the 
picture). The relationship between the intensity C of light (in candlepower) and the 

distance d (in feet) from the light source is given by 2

k
C

d
 , where k is a constant 

depending on the light source.  [UW] 
a. From 20 feet away, the street light has an intensity of 1 candle. What is k? 
b. Find a function which gives the intensity of the light shining on Olav as a 

function of time, in seconds. 
c. When will the light on Olav have maximum intensity? 
d. When will the intensity of the light be 2 candles? 
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Section 3.8 Inverses and Radical Functions 
 
In this section, we will explore the inverses of polynomial and rational functions, and in 
particular the radical functions that arise in the process. 
 
 
Example 1 

A water runoff collector is built in the shape of a parabolic trough as shown below.  
Find the surface area of the water in the trough as a function of the depth of the water. 
 
 
 
 
 
 
 
 
Since it will be helpful to have an equation for the parabolic cross-sectional shape, we 
will impose a coordinate system at the cross section, with x measured horizontally and y 
measured vertically, with the origin at the vertex of the parabola.   
 

        
 
From this we find an equation for the parabolic shape.  Since we placed the origin at the 
vertex of the parabola, we know the equation will have form 2)( axxy  .  Our equation 
will need to pass through the point (6,18), from which we can solve for the stretch 
factor a: 

2

1

36

18

618 2





a

a
 

Our parabolic cross section has equation 2

2

1
)( xxy   

 
Since we are interested in the surface area of the water, we are interested in determining 
the width at the top of the water as a function of the water depth.  For any depth y the 
width will be given by 2x, so we need to solve the equation above for x.  However 
notice that the original function is not one-to-one, and indeed given any output there are 
two inputs that produce the same output, one positive and one negative. 

3ft 
12 in 

18 in 

x 



Chapter 3 240

To find an inverse, we can restrict our original function to a limited domain on which it 
is one-to-one.  In this case, it makes sense to restrict ourselves to positive x values.  On 
this domain, we can find an inverse by solving for the input variable: 

2

2

2

2

1

xy

xy




 

yx 2   

 
This is not a function as written.  Since we are limiting ourselves to positive x values, 
we eliminate the negative solution, giving us the inverse function we’re looking for 

yyx 2)(   

 
Since x measures from the center out, the entire width of the water at the top will be 2x.  
Since the trough is 3 feet (36 inches) long, the surface area will then be 36(2x), or in 
terms of y: 

yxArea 27272   

 
 
The previous example illustrated two important things:  

1) When finding the inverse of a quadratic, we have to limit ourselves to a domain      
on which the function is one-to-one. 

2) The inverse of a quadratic function is a square root function.  Both are toolkit 
functions and different types of power functions.  

 
Functions involving roots are often called radical functions. 
 
 
Example  2 

Find the inverse of 143)2()( 22  xxxxf  
 
From the transformation form of the function, we can see this is a transformed quadratic 
with vertex at (2,-3) that opens upwards.   Since the graph will be decreasing on one 
side of the vertex, and increasing on the other side, we can restrict this function to a 
domain on which it will be one-to-one by limiting the domain to 2x . 
 
To find the inverse, we will use the vertex form of the quadratic.  We start by replacing 
the f(x) with a simple variable y, then solve for x. 

3)2( 2  xy    Add 3 to both sides 
2)2(3  xy    Take the square root 

23  xy    Add 2 to both sides 

xy  32  
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Of course, as written this is not a function.  Since we restricted our original function to a 
domain of 2x , the outputs of the inverse should be the same, telling us to utilize the 
positive case: 

32)(1   yyfx  

 
If the quadratic had not been given in vertex form, rewriting it into vertex form is 
probably the best approach.  Alternatively, we could have taken the standard equation 
and rewritten it equal to zero: 

yxx  140 2  
 
We would then be able to use the quadratic formula with 1a  , 4b   , and (1 )c y  , 
resulting in the same solutions we found above: 

2( 4) ( 4) 4(1)(1 ) 12 4
2 2 3

2 2

y y
x y

      
       

 
 

Try it Now 
1. Find the inverse of the function 2( ) 1f x x  , on the domain 0x  . 

 
 
While it is not possible to find an inverse of most polynomial functions, some other basic 
polynomials are invertible. 
 
 
Example 3 

Find the inverse of the function 15)( 3  xxf . 
 
This is a transformation of the basic cubic toolkit function, and based on our knowledge 
of that function, we know it is one-to-one.  Solving for the inverse by solving for x 

31

3

3

3

5

1
)(

5

1

51

15











 y
yfx

x
y

xy

xy

 

 
 
Notice that this inverse is also a transformation of a power function with a fractional 
power, x1/3. 
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Try it Now 
2.  Which toolkit functions have inverse functions without restricting their domain?  

 
 
Besides being important as an inverse function, radical functions are common in 
important physical models. 
 
 
Example 4 

The velocity, v in feet per second, of a car that slammed on its brakes can be determined 
based on the length of skid marks that the tires left on the ground.  This relationship is 
given by 

gfddv 2)(   

In this formula, g represents acceleration due to gravity (32 ft/sec2), d is the length of 
the skid marks in feet, and f is a constant representing the friction of the surface.  A car 
lost control on wet asphalt, with a friction coefficient of 0.5, leaving 200 foot skid 
marks.  How fast was the car travelling when it lost control? 
 
Using the given values of f = 0.5 and d = 200, we can evaluate the given formula: 

(200) 2(32)(0.5)(200) 80 ft/secv   , which is about 54.5 miles per hour. 

 
 
When radical functions are composed with other functions, determining domain can 
become more complicated. 
 
 
Example 5 

Find the domain of the function 
)1(

)3)(2(
)(





x

xx
xf . 

 
Since a square root is only defined when the quantity under the radical is non-negative, 

we need to determine where 0
)1(

)3)(2(





x

xx .  A rational function can change signs 

(change from positive to negative or vice versa) at horizontal intercepts and at vertical 
asymptotes.  For this equation, the graph could change signs at x = -2, 1, and 3.   
 
To determine on which intervals the rational expression is positive, we could evaluate 
the expression at test values, or sketch a graph.  While both approaches work equally 
well, for this example we will use a graph. 
 
This function has two horizontal intercepts, both of which exhibit linear behavior, 
where the graph will pass through the intercept.  There is one vertical asymptote, 
corresponding to a linear factor, leading to a behavior similar to the basic reciprocal 
toolkit function.  There is a vertical intercept at (0, 6).  This graph does not have a 
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horizontal asymptote, since the degree of the numerator is larger than the degree of the 
denominator.   
 
From the vertical intercept and horizontal intercept at x = -2, we can sketch the left side 
of the graph.  From the behavior at the asymptote, 
we can sketch the right side of the graph. 
 
 
 
From the graph, we can now tell on which 
intervals this expression will be non-negative, so 
the original function f(x) will be defined. 
f(x) has domain 312  xorx , or in interval 
notation, ),3[)1,2[  . 

 
 
Like with finding inverses of quadratic functions, it is sometimes desirable to find the 
inverse of a rational function, particularly of rational functions that are the ratio of linear 
functions, such as our concentration examples. 
 
 
Example 6 

The function 
n

n
nC





100

4.020
)(  was used in the previous section to represent the 

concentration of an acid solution after n mL of 40% solution has been added to 100 mL 
of a 20% solution.  We might want to be able to determine instead how much 40% 
solution has been added based on the current concentration of the mixture.  
 
To do this, we would want the inverse of this function: 

n

n
C





100

4.020
  multiply both sides by the denominator 

nnC 4.020)100(   distribute 
nCnC 4.020100   group everything with n on one side 

CnnC  4.020100  factor out n 
nCC )4.0(20100   divide to find the inverse 

C

C
Cn





4.0

20100
)(  

 
If, for example, we wanted to know how many mL of 40% solution need to be added to 
obtain a concentration of 35%, we can simply evaluate the inverse rather than solving 
an equation involving the original function: 

300
05.0

15

35.04.0

20)35.0(100
)35.0( 




n mL of 40% solution would need to be added. 
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Try it Now 

3. Find the inverse of the function 
3

( )
2

x
f x

x





. 

 
 

Important Topics of this Section 

Imposing a coordinate system 

Finding an inverse function 

 Restricting the domain 

Invertible toolkit functions 

Radical Functions  

Inverses of rational functions 
 
 

Try it Now Answers 
1. 12  xy  

21 xy   

1)(1   yyfx  

 
2. identity, cubic, square root, cube root 
 

3. 
2

3





x

x
y  

3)2(  xxy  
32  xyyx  
32  yxyx  

32)1(  yyx  

1 2 3
( )

1

y
f y

y
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Section 3.8 Exercises 
 
For each function, find a domain on which the function is one-to-one and non-decreasing, 
then find an inverse of the function on this domain. 

1.    2
4f x x     2.    2

2f x x   

3.   212f x x     4.   29f x x   

5.   33 1f x x     6.   34 2f x x   

 
Find the inverse of each function. 

7.   9 4 4f x x      8.   6 8 5f x x    

9.   39 2f x x     10.   33f x x   

11.   2

8
f x

x



   12.   3

4
f x

x



 

13.   3

7

x
f x

x





   14.   2

7

x
f x

x





 

15.   3 4

5 4

x
f x

x





    16.   5 1

2 5

x
f x

x





 

 
Police use the formula 20v L  to estimate the speed of a car, v, in miles per hour, 
based on the length, L, in feet, of its skid marks when suddenly braking on a dry, asphalt 
road.  
 
17. At the scene of an accident, a police officer measures a car's skid marks to be 215 feet 

long. Approximately how fast was the car traveling? 
 

18. At the scene of an accident, a police officer measures a car's skid marks to be 135 feet 
long. Approximately how fast was the car traveling? 

The formula 2.7v r  models the maximum safe speed, v, in miles per hour, at which a 
car can travel on a curved road with radius of curvature r, in feet.  
 
19. A highway crew measures the radius of curvature at an exit ramp on a highway as 

430 feet. What is the maximum safe speed? 
 

20. A highway crew measures the radius of curvature at a tight corner on a highway as 
900 feet. What is the maximum safe speed? 
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21. A drainage canal has a cross-
section in the shape of a parabola. 
Suppose that the canal is 10 feet 
deep and 20 feet wide at the top. 
If the water depth in the ditch is 5 
feet, how wide is the surface of 
the water in the ditch? [UW] 
 
 

22. Brooke is located 5 miles out from the 
nearest point A along a straight shoreline in 
her sea kayak. Hunger strikes and she 
wants to make it to Kono’s for lunch; see 
picture. Brooke can paddle 2 mph and walk 
4 mph. [UW] 

a. If she paddles along a straight line 
course to the shore, find an 
expression that computes the total time to reach lunch in terms of the location 
where Brooke beaches her kayak. 

b. Determine the total time to reach Kono’s if she paddles directly to the point A. 
c. Determine the total time to reach Kono’s if she paddles directly to Kono’s. 
d. Do you think your answer to b or c is the minimum time required for Brooke 

to reach lunch? 
e. Determine the total time to reach Kono’s if she paddles directly to a point on 

the shore half way between point A and Kono’s. How does this time compare 
to the times in parts b or c?  Do you need to modify your answer to part d?  
 

23. Clovis is standing at the edge of a dropoff, which slopes 4 feet downward from him 
for every 1 horizontal foot. He launches a small model rocket from where he is 
standing. With the origin of the coordinate system located where he is standing, and 
the x-axis extending horizontally, the path of the rocket is described by the formula 

22 120y x x   . [UW] 

a. Give a function ( )h f x  relating the height h of the rocket above the sloping 

ground to its x-coordinate. 
b. Find the maximum height of the rocket above the sloping ground. What is its 

x-coordinate when it is at its maximum height? 
c. Clovis measures the height h of the rocket above the sloping ground while it is 

going up. Give a function  x g h  relating the x-coordinate of the rocket to 

h. 
d. Does the function from (c) still work when the rocket is going down? Explain. 
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24. A trough has a semicircular 

cross section with a radius 
of 5 feet. Water starts 
flowing into the trough in 
such a way that the depth of 
the water is increasing at a 
rate of 2 inches per hour. 
[UW] 

a. Give a function 

 w f t  relating 

the width w of the surface of the water to the time t, in hours. Make sure to 
specify the domain and compute the range too. 

b. After how many hours will the surface of the water have width of 6 feet? 

c. Give a function  1t f w  relating the time to the width of the surface of the 

water. Make sure to specify the domain and compute the range too. 
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Section 4.1 Exponential Functions 

 
India is the second most populous country in the world, with a population in 2008 of 
about 1.14 billion people.  The population is growing by about 1.34% each year1.  We 
might ask if we can find a formula to model the population, P, as a function of time, t, in 
years after 2008, if the population continues to grow at this rate. 
 
In linear growth, we had a constant rate of change – a constant number that the output 
increased for each increase in input.  For example, in the equation 43)( += xxf , the 

slope tells us the output increases by three each time the input increases by one.  This 
population scenario is different – we have a percent rate of change rather than a constant 
number of people as our rate of change.   
 
To see the significance of this difference consider these two companies: 
 
Company A has 100 stores, and expands by opening 50 new stores a year 
 
Company B has 100 stores, and expands by increasing the number of stores by 50% of 
their total each year.  
 
Looking at a few years of growth for these companies: 
 
 
 
 

                                                 
1 World Bank, World Development Indicators, as reported on http://www.google.com/publicdata, retrieved 
August 20, 2010 
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Year Stores, company A  Stores, company B 

0 100 Starting with  100 each 
 

100 

1 100 + 50 = 150 They both grow by 50 
stores in the first year. 
 

100 + 50% of 100 
100 + 0.50(100) = 150 

2 150 + 50 = 200 Store A grows by 50, 
Store B grows by 75 
 

150 + 50% of 150 
150 + 0.50(150) = 225 

3 200 + 50 = 250 Store A grows by 50, 
Store B grows by 112.5 
 

225 + 50% of 225 
225 + 0.50(225) = 337.5 

 
Notice that with the percent growth, each year the company is grows by 50% of the 
current year’s total, so as the company grows larger, the number of stores added in a year 
grows as well. 
 
To try to simplify the calculations, notice that after 1 year the number of stores for 
company B was: 

)100(50.0100 +   or equivalently by factoring  

150)50.01(100 =+  

  
We can think of this as “the new number of stores is the original 100% plus another 
50%”. 
 
After 2 years, the number of stores was: 

)150(50.0150 +  or equivalently by factoring 

)50.01(150 +  now recall the 150 came from 100(1+0.50).  Substituting that, 

225)50.01(100)50.01)(50.01(100 2
=+=++  

 
After 3 years, the number of stores was: 

)225(50.0225 +  or equivalently by factoring 

)50.01(225 +  now recall the 225 came from 2)50.01(100 + . Substituting that, 

5.337)50.01(100)50.01()50.01(100 32
=+=++  

 
From this, we can generalize, noticing that to show a 50% increase, each year we 
multiply by a factor of (1+0.50), so after n years, our equation would be 

nnB )50.01(100)( +=  

 
In this equation, the 100 represented the initial quantity, and the 0.50 was the percent 
growth rate.  Generalizing further, we arrive at the general form of exponential functions. 
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Exponential Function 

An exponential growth or decay function is a function that grows or shrinks at a 
constant percent growth rate.  The equation can be written in the form 

xraxf )1()( +=     or     xabxf =)(     where b = 1+r 

 

Where 

a is the initial or starting value of the function 

r is the percent growth or decay rate, written as a decimal 

b is the growth factor or growth multiplier.  Since powers of negative numbers behave 
strangely, we limit b to positive values. 

 
 
To see more clearly the difference between exponential and linear growth, compare the 
two tables and graphs below, which illustrate the growth of company A and B described 
above over a longer time frame if the growth patterns were to continue. 
         

years Company A Company B 

2 200 225 

4 300 506 

6 400 1139 

8 500 2563 

10 600 5767 

               
 
 
 
Example 1 

Write an exponential function for India’s population, and use it to predict the population 
in 2020. 
  
At the beginning of the chapter we were given India’s population of 1.14 billion in the 
year 2008 and a percent growth rate of 1.34%.  Using 2008 as our starting time (t = 0), 
our initial population will be 1.14 billion.  Since the percent growth rate was 1.34%, our 
value for r is 0.0134.   

Using the basic formula for exponential growth xraxf )1()( +=  we can write the 

formula,  ttf )0134.01(14.1)( +=  

 
To estimate the population in 2020, we evaluate the function at t = 12, since 2020 is 12 
years after 2008. 

337.1)0134.01(14.1)12( 12
≈+=f billion people in 2020 
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Try it Now 
1. Given the three statements below, identify which represent exponential functions. 
 
A. The cost of living allowance for state employees increases salaries by 3.1% each year. 
B. State employees can expect a $300 raise each year they work for the state. 
C. Tuition costs have increased by 2.8% each year for the last 3 years. 

 
 
Example 2 

A certificate of deposit (CD) is a type of savings account offered by banks, typically 
offering a higher interest rate in return for a fixed length of time you will leave your 
money invested.  If a bank offers a 24 month CD with an annual interest rate of 1.2% 
compounded monthly, how much will a $1000 investment grow to over those 24 
months? 
 
First, we must notice that the interest rate is an annual rate, but is compounded monthly, 
meaning interest is calculated and added to the account monthly.  To find the monthly 
interest rate, we divide the annual rate of 1.2% by 12 since there are 12 months in a 
year:  1.2%/12 = 0.1%.  Each month we will earn 0.1% interest.  From this, we can set 
up an exponential function, with our initial amount of $1000 and a growth rate of r = 
0.001, and our input m measured in months. 

m

mf 







+=

12

012.
11000)(   

mmf )001.01(1000)( +=  

After 24 months, the account will have grown to 24(24) 1000(1 0.001) $1024.28f = + =  

 
 

Try it Now 
2. Looking at these two equations that represent the balance in two different savings 

accounts, which account is growing faster, and which account will have a higher 
balance after 3 years? 

( )t
tA 05.11000)( =   ( )t

tB 075.1900)( =  

 
 
In all the preceding examples, we saw exponential growth.  Exponential functions can 
also be used to model quantities that are decreasing at a constant percent rate.  An 
example of this is radioactive decay, a process in which radioactive isotopes of certain 
atoms transform to an atom of a different type, causing a percentage decrease of the 
original material over time. 
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Example 3 

Bismuth-210 is an isotope that radioactively decays by about 13% each day, meaning 
13% of the remaining Bismuth-210 transforms into another atom (polonium-210 in this 
case) each day.  If you begin with 100 mg of Bismuth-210, how much remains after one 
week? 
 
With radioactive decay, instead of the quantity increasing at a percent rate, the quantity 
is decreasing at a percent rate.  Our initial quantity is a = 100 mg, and our growth rate 
will be negative 13%, since we are decreasing:  r = -0.13.  This gives the equation: 

dddQ )87.0(100)13.01(100)( =−=  

This can also be explained by recognizing that if 13% decays, then 87 % remains. 
 
After one week, 7 days, the quantity remaining would be 

73.37)87.0(100)7( 7
==Q mg of Bismuth-210 remains. 

 
 

Try it Now  
3.  A population of 1000 is decreasing 3% each year.  Find the population in 30 years. 

 
 
Example 4 

T(q) represents the total number of Android smart phone contracts, in thousands, held 
by a certain Verizon store region measured quarterly since January 1, 2016,  

Interpret all the parts of the equation 3056.231)64.1(86)2( 2
==T . 

 
Interpreting this from the basic exponential form, we know that 86 is our initial value. 
This means that on Jan. 1, 2016 this region had 86,000 Android smart phone contracts.  
Since b = 1 + r = 1.64, we know that every quarter the number of smart phone contracts 
grows by 64%.  T(2) = 231.3056 means that in the 2nd quarter (or at the end of the 
second quarter) there were approximately 231,306 Android smart phone contracts. 

 
 
Finding Equations of Exponential Functions 

 
In the previous examples, we were able to write equations for exponential functions since 
we knew the initial quantity and the growth rate.  If we do not know the growth rate, but 
instead know only some input and output pairs of values, we can still construct an 
exponential function. 
 
 
Example 5 

In 2009, 80 deer were reintroduced into a wildlife refuge area from which the 
population had previously been hunted to elimination.  By 2015, the population had 
grown to 180 deer.  If this population grows exponentially, find a formula for the 
function. 
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By defining our input variable to be t, years after 2009, the information listed can be 
written as two input-output pairs:  (0,80) and (6,180).  Notice that by choosing our input 
variable to be measured as years after the first year value provided, we have effectively 
“given” ourselves the initial value for the function:  a = 80.  This gives us an equation 
of the form  

tbtf 80)( = . 

 
Substituting in our second input-output pair allows us to solve for b: 

6180 80b=    Divide by 80 

6 180 9

80 4
b = =   Take the 6th root of both sides.   

6
9

1.1447
4

b = =    

 
This gives us our equation for the population: 

ttf )1447.1(80)( =  

 
Recall that since b = 1+r, we can interpret this to mean that the population growth rate 
is r = 0.1447, and so the population is growing by about 14.47% each year.   

 
 
In this example, you could also have used (9/4)^(1/6) to evaluate the 6th root if your 
calculator doesn’t have an nth root button. 
 

In the previous example, we chose to use the xabxf =)(  form of the exponential 

function rather than the xraxf )1()( +=  form.  This choice was entirely arbitrary – 

either form would be fine to use. 
 
When finding equations, the value for b or r will usually have to be rounded to be written 
easily.  To preserve accuracy, it is important to not over-round these values.  Typically, 
you want to be sure to preserve at least 3 significant digits in the growth rate.  For 
example, if your value for b was 1.00317643, you would want to round this no further 
than to 1.00318.   
 
In the previous example, we were able to “give” ourselves the initial value by clever 
definition of our input variable.  Next, we consider a situation where we can’t do this. 
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Example 6 

Find a formula for an exponential function passing through the points (-2,6) and (2,1). 
 
Since we don’t have the initial value, we will take a general approach that will work for 
any function form with unknown parameters:  we will substitute in both given input-

output pairs in the function form xabxf =)(  and solve for the unknown values, a and b. 

Substituting in (-2, 6) gives 26 −
= ab  

Substituting in (2, 1) gives 21 ab=  

 
We now solve these as a system of equations.  To do so, we could try a substitution 
approach, solving one equation for a variable, then substituting that expression into the 
second equation. 

Solving 26 −
= ab  for a: 

2

2

6
6a b

b
−

= =  

 

In the second equation, 21 ab= , we substitute the expression above for a: 

6389.0
6

1

6

1

61

)6(1

4

4

4

22

≈=

=

=

=

b

b

b

bb

 

 

Going back to the equation 26ba =  lets us find a: 

4492.2)6389.0(66 22
=== ba  

 

Putting this together gives the equation  x
xf )6389.0(4492.2)( =  

 
 

Try it Now 
4. Given the two points (1, 3) and (2, 4.5) find the equation of an exponential function 

that passes through these two points. 
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Example 7 

Find an equation for the exponential function 
graphed. 
 

The initial value for the function is not clear in this 
graph, so we will instead work using two clearer 
points.  There are three clear points: (-1, 1), (1, 2), 
and (3, 4).  As we saw in the last example, two 
points are sufficient to find the equation for a 
standard exponential, so we will use the latter two 
points.   
 

Substituting in (1,2) gives 12 ab=  

Substituting in (3,4) gives 34 ab=  

 

Solving the first equation for a gives 
b

a
2

= .   

 
Substituting this expression for a into the second equation: 

34 ab=  

b

b
b

b

3
3 22

4 ==   Simplify the right-hand side 

2

2

24

2

2

±=

=

=

b

b

b

 

 

Since we restrict ourselves to positive values of b, we will use 2=b .  We can then go 

back and find a: 

2
2

22
===

b
a  

 

This gives us a final equation of xxf )2(2)( = . 

 
 
Compound Interest 

 
In the bank certificate of deposit (CD) example earlier in the section, we encountered 
compound interest.  Typically bank accounts and other savings instruments in which 
earnings are reinvested, such as mutual funds and retirement accounts, utilize compound 
interest.  The term compounding comes from the behavior that interest is earned not on 
the original value, but on the accumulated value of the account. 
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In the example from earlier, the interest was compounded monthly, so we took the annual 
interest rate, usually called the nominal rate or annual percentage rate (APR) and 
divided by 12, the number of compounds in a year, to find the monthly interest.  The 
exponent was then measured in months.   
 
Generalizing this, we can form a general formula for compound interest.  If the APR is 
written in decimal form as r, and there are k compounding periods per year, then the 
interest per compounding period will be r/k.  Likewise, if we are interested in the value 
after t years, then there will be kt compounding periods in that time.   
 
 

Compound Interest Formula 

Compound Interest can be calculated using the formula 
kt

k

r
atA 








+= 1)(  

Where 

A(t) is the account value 

t is measured in years 

a is the starting amount of the account, often called the principal 

r is the annual percentage rate (APR), also called the nominal rate 

k is the number of compounding periods in one year 

 
 
Example 8 

If you invest $3,000 in an investment account paying 3% interest compounded 
quarterly, how much will the account be worth in 10 years? 
 
Since we are starting with $3000, a = 3000 
Our interest rate is 3%, so r = 0.03 
Since we are compounding quarterly, we are compounding 4 times per year, so k = 4 
We want to know the value of the account in 10 years, so we are looking for A(10), the 
value when t = 10. 
 

05.4045$
4

03.0
13000)10(

)10(4

=







+=A  

 
The account will be worth $4045.05 in 10 years. 
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Example 9 

A 529 plan is a college savings plan in which a relative can invest money to pay for a 
child’s later college tuition, and the account grows tax free.  If Lily wants to set up a 
529 account for her new granddaughter, wants the account to grow to $40,000 over 18 
years, and she believes the account will earn 6% compounded semi-annually (twice a 
year), how much will Lily need to invest in the account now? 
 
Since the account is earning 6%, r = 0.06 
Since interest is compounded twice a year, k = 2 
 
In this problem, we don’t know how much we are starting with, so we will be solving 
for a, the initial amount needed.  We do know we want the end amount to be $40,000, 
so we will be looking for the value of a so that A(18) = 40,000.   

801,13$
8983.2

000,40

)8983.2(000,40

2

06.0
1)18(000,40

)18(2

≈=

=









+==

a

a

aA

 

 
Lily will need to invest $13,801 to have $40,000 in 18 years. 

 
 

Try it now 
5. Recalculate example 2 from above with quarterly compounding. 

 
 
Because of compounding throughout the year, with compound interest the actual increase 
in a year is more than the annual percentage rate.  If $1,000 were invested at 10%, the 
table below shows the value after 1 year at different compounding frequencies: 
 

Frequency Value after 1 year 

Annually $1100 

Semiannually $1102.50 

Quarterly $1103.81 

Monthly $1104.71 

Daily $1105.16 

 
If we were to compute the actual percentage increase for the daily compounding, there 
was an increase of $105.16 from an original amount of $1,000, for a percentage increase 

of 10516.0
1000

16.105
= = 10.516% increase.  This quantity is called the annual percentage 

yield (APY). 
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Notice that given any starting amount, the amount after 1 year would be 
k

k

r
aA 








+= 1)1( .  To find the total change, we would subtract the original amount, then 

to find the percentage change we would divide that by the original amount: 

11

1

−







+=

−







+ k

k

k

r

a

a
k

r
a

 

 
 

Annual Percentage Yield 

The annual percentage yield is the actual percent a quantity increases in one year.  It 
can be calculated as  

11 −







+=

k

k

r
APY  

 
 
This is equivalent to finding the value of $1 after 1 year, and subtracting the original 
dollar. 
 
 
Example 10 

Bank A offers an account paying 1.2% compounded quarterly.  Bank B offers an 
account paying 1.1% compounded monthly.  Which is offering a better rate? 
 
We can compare these rates using the annual percentage yield – the actual percent 
increase in a year. 

Bank A:  012054.01
4

012.0
1

4

=−







+=APY  = 1.2054% 

Bank B: 011056.01
12

011.0
1

12

=−







+=APY  = 1.1056% 

 
Bank B’s monthly compounding is not enough to catch up with Bank A’s better APR.  
Bank A offers a better rate. 

 
 
A Limit to Compounding 

 

As we saw earlier, the amount we earn increases as we increase the compounding 
frequency.  The table, though, shows that the increase from annual to semi-annual 
compounding is larger than the increase from monthly to daily compounding.  This might 
lead us to believe that although increasing the frequency of compounding will increase 
our result, there is an upper limit to this process. 
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To see this, let us examine the value of $1 invested at 100% interest for 1 year.   
 

Frequency Value 

Annual $2 

Quarterly $2.441406 

Monthly $2.613035 

Daily $2.714567 

Hourly $2.718127 

Once per minute $2.718279 

Once per second $2.718282 

 
These values do indeed appear to be approaching an upper limit.  This value ends up 
being so important that it gets represented by its own letter, much like how π represents a 

number. 
 
 

Euler’s Number: e 

e is the letter used to represent the value that 

k

k








+

1
1  approaches as k gets big. 

718282.2≈e  

 
 
Because e is often used as the base of an exponential, most scientific and graphing 
calculators have a button that can calculate powers of e, usually labeled ex.  Some 
computer software instead defines a function exp(x), where exp(x) = ex. 
 
Because e arises when the time between compounds becomes very small, e allows us to 

define continuous growth and allows us to define a new toolkit function, ( ) x
f x e= . 

 
 

Continuous Growth Formula 

Continuous Growth can be calculated using the formula  
rx

aexf =)(  

where 

a is the starting amount  

r is the continuous growth rate 

 
 
This type of equation is commonly used when describing quantities that change more or 
less continuously, like chemical reactions, growth of large populations, and radioactive 
decay.   
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Example 11 

Radon-222 decays at a continuous rate of 17.3% per day.  How much will 100mg of 
Radon-222 decay to in 3 days? 
 
Since we are given a continuous decay rate, we use the continuous growth formula.  
Since the substance is decaying, we know the growth rate will be negative: r = -0.173 

512.59100)3( )3(173.0
≈=

−
ef mg of Radon-222 will remain. 

 
 

Try it Now 

6.  Interpret the following: 0.12( ) 20 t
S t e= if S(t) represents the growth of a substance in 

grams, and time is measured in days. 

 
 
Continuous growth is also often applied to compound interest, allowing us to talk about 
continuous compounding. 
 
 
Example 12 

If $1000 is invested in an account earning 10% compounded continuously, find the 
value after 1 year. 
 
Here, the continuous growth rate is 10%, so r = 0.10.  We start with $1000, so a = 1000. 
To find the value after 1 year, 

17.1105$1000)1( )1(10.0
≈= ef  

 
Notice this is a $105.17 increase for the year.  As a percent increase, this is 

%517.1010517.0
1000

17.105
==  increase over the original $1000. 

 
 
Notice that this value is slightly larger than the amount generated by daily compounding 
in the table computed earlier. 
 
The continuous growth rate is like the nominal growth rate (or APR) – it reflects the 
growth rate before compounding takes effect.  This is different than the annual growth 

rate used in the formula x
raxf )1()( += , which is like the annual percentage yield – it 

reflects the actual amount the output grows in a year.   
 
While the continuous growth rate in the example above was 10%, the actual annual yield 
was 10.517%.  This means we could write two different looking but equivalent formulas 
for this account’s growth: 

0.10( ) 1000 t
f t e=   using the 10% continuous growth rate 

( ) 1000(1.10517)t
f t =  using the 10.517% actual annual yield rate. 
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Important Topics of this Section 

Percent growth  

Exponential functions 

 Finding formulas 

 Interpreting equations 

 Graphs 

Exponential Growth & Decay 

Compound interest 

Annual Percent Yield 

Continuous Growth 

  
 
 

Try it Now Answers 
1. A & C are exponential functions, they grow by a % not a constant number. 
 
2. B(t) is growing faster (r = 0.075 > 0.05), but after 3 years A(t) still has a higher 

account balance 
 

3. tt
tP )97.0(1000)03.01(1000)( =−=  

0071.401)97.0(1000)30( 30
==P  

 

4. 13 ab= , so 
b

a
3

= ,   

25.4 ab= , so 23
5.4 b

b
= .  b35.4 =  

b = 1.5.  2
5.1

3
==a  

( )x
xf 5.12)( =  

 

5. 24 months = 2 years.  

)2(4

4

012.
11000 








+ = $1024.25 

 
6. An initial substance weighing 20g is growing at a continuous rate of 12% per day. 
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Section 4.1 Exercises 

 
For each table below, could the table represent a function that is linear, exponential, or 
neither? 

1. x 1 2 3 4 

f(x) 70 40 10 -20 
 

2. x 1 2 3 4 

g(x) 40 32 26 22 
 

3. x 1 2 3 4 

h(x) 70 49 34.3 24.01 
 

4. x 1 2 3 4 

k(x) 90 80 70 60 
 

5. x 1 2 3 4 

m(x) 80 61 42.9 25.61 
 

6. x 1 2 3 4 

n(x) 90 81 72.9 65.61 
 

 
7. A population numbers 11,000 organisms initially and grows by 8.5% each year.  

Write an exponential model for the population. 

 

8. A population is currently 6,000 and has been increasing by 1.2% each day.  Write an 

exponential model for the population. 

 

9. The fox population in a certain region has an annual growth rate of 9 percent per year. 

It is estimated that the population in the year 2010 was 23,900.  Estimate the fox 

population in the year 2018. 

 

10. The amount of area covered by blackberry bushes in a park has been growing by 12% 

each year. It is estimated that the area covered in 2009 was 4,500 square feet.  

Estimate the area that will be covered in 2020. 

 

11. A vehicle purchased for $32,500 depreciates at a constant rate of 5% each year. 

Determine the approximate value of the vehicle 12 years after purchase. 

 

12. A business purchases $125,000 of office furniture which depreciates at a constant rate 

of 12% each year.  Find the residual value of the furniture 6 years after purchase. 

 

 

 

 

 

 

 

 



Chapter 4 264

Find a formula for an exponential function passing through the two points. 

13. ( )0, 6 , (3, 750)    14. ( )0, 3 , (2, 75)     

15. ( )0, 2000 , (2, 20)    16. ( )0, 9000 , (3, 72)   

17. ( )
3

1, , 3, 24
2

 
− 
 

   18. ( )
2

1, , 1,10
5

 
− 
 

  

19. ( ) ( )2,6 , 3,1−     20. ( )3,4 , (3, 2)−  

21. ( )3,1 , (5, 4)     22. ( )2,5 , (6, 9)  

 

23. A radioactive substance decays exponentially. A scientist begins with 100 milligrams 

of a radioactive substance. After 35 hours, 50 mg of the substance remains. How 

many milligrams will remain after 54 hours? 

  

24. A radioactive substance decays exponentially. A scientist begins with 110 milligrams 

of a radioactive substance. After 31 hours, 55 mg of the substance remains. How 

many milligrams will remain after 42 hours? 

 

25. A house was valued at $110,000 in the year 1985. The value appreciated to $145,000 

by the year 2005.  What was the annual growth rate between 1985 and 2005?  

Assume that the house value continues to grow by the same percentage. What did the 

value equal in the year 2010? 

  

26. An investment was valued at $11,000 in the year 1995. The value appreciated to 

$14,000 by the year 2008.  What was the annual growth rate between 1995 and 2008?  

Assume that the value continues to grow by the same percentage. What did the value 

equal in the year 2012? 

 

27. A car was valued at $38,000 in the year 2003. The value depreciated to $11,000 by 

the year 2009.  Assume that the car value continues to drop by the same percentage. 

What was the value in the year 2013? 

 

28. A car was valued at $24,000 in the year 2006. The value depreciated to $20,000 by 

the year 2009.  Assume that the car value continues to drop by the same percentage. 

What was the value in the year 2014? 

 

29. If $4,000 is invested in a bank account at an interest rate of 7 per cent per year, find 

the amount in the bank after 9 years if interest is compounded annually, quarterly, 

monthly, and continuously. 
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30. If $6,000 is invested in a bank account at an interest rate of 9 per cent per year, find 

the amount in the bank after 5 years if interest is compounded annually, quarterly, 

monthly, and continuously. 

 

31. Find the annual percentage yield (APY) for a savings account with annual percentage 

rate of 3% compounded quarterly. 

 

32. Find the annual percentage yield (APY) for a savings account with annual percentage 

rate of 5% compounded monthly. 

 

33. A population of bacteria is growing according to the equation 0.21 ( ) 1 600 t
P t e= , with t 

measured in years.  Estimate when the population will exceed 7569. 

 

34. A population of bacteria is growing according to the equation 0.17  ( ) 1 200 t
P t e= , with t 

measured in years.  Estimate when the population will exceed 3443. 

 

35. In 1968, the U.S. minimum wage was $1.60 per hour. In 1976, the minimum wage 

was $2.30 per hour. Assume the minimum wage grows according to an exponential 

model ( )w t , where t represents the time in years after 1960.  [UW] 

a. Find a formula for ( )w t . 

b. What does the model predict for the minimum wage in 1960? 

c. If the minimum wage was $5.15 in 1996, is this above, below or equal to what 

the model predicts? 

 

36. In 1989, research scientists published a model for predicting the cumulative number 

of AIDS cases (in thousands) reported in the United States: ( )
3

1980
155

10

t
a t

− 
=  

 
, 

where t is the year.  This paper was considered a “relief”, since there was a fear the 

correct model would be of exponential type. Pick two data points predicted by the 

research model ( )a t  to construct a new exponential model ( )b t  for the number of 

cumulative AIDS cases. Discuss how the two models differ and explain the use of the 

word “relief.”  [UW] 
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37. You have a chess board as pictured, with 

squares numbered 1 through 64. You also 

have a huge change jar with an unlimited 

number of dimes. On the first square you 

place one dime. On the second square you 

stack 2 dimes. Then you continue, always 

doubling the number from the previous 

square.  [UW] 

a. How many dimes will you have 

stacked on the 10th square? 

b. How many dimes will you have 

stacked on the nth square? 

c. How many dimes will you have 

stacked on the 64th square? 

d. Assuming a dime is 1 mm thick, how high will this last pile be? 

e. The distance from the earth to the sun is approximately 150 million km. 

Relate the height of the last pile of dimes to this distance. 
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Section 4.2 Graphs of Exponential Functions 

 
Like with linear functions, the graph of an exponential function is determined by the 
values for the parameters in the function’s formula.   
 
To get a sense for the behavior of exponentials, let us begin by looking more closely at 

the function x
xf 2)( = .  Listing a table of values for this function: 

x -3 -2 -1 0 1 2 3 

f(x) 
8

1
 

4

1
 

2

1
 1 2 4 8 

 
Notice that: 

1) This function is positive for all values of x. 
2) As x increases, the function grows faster and faster (the rate of change 

increases). 
3) As x decreases, the function values grow smaller, approaching zero. 
4) This is an example of exponential growth. 

 

Looking at the function 

x

xg 







=

2

1
)(  

x -3 -2 -1 0 1 2 3 

g(x) 8 4 2 1 
2

1
 

4

1
 

8

1
 

 
Note this function is also positive for all values of x, but in this case grows as x decreases, 
and decreases towards zero as x increases.  This is an example of exponential decay.  You 
may notice from the table that this function appears to be the horizontal reflection of the 

x
xf 2)( =  table.  This is in fact the case: 

)(
2

1
)2(2)( 1

xgxf

x

xx
=








===−

−−  

 
Looking at the graphs also confirms this 
relationship. 
 

Consider a function of the form x
abxf =)( .  

Since a, which we called the initial value in the 
last section, is the function value at an input of 
zero, a will give us the vertical intercept of the 
graph.   
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From the graphs above, we can see that an exponential graph will have a horizontal 
asymptote on one side of the graph, and can either increase or decrease, depending upon 
the growth factor.  This horizontal asymptote will also help us determine the long run 
behavior and is easy to determine from the graph.  
 
The graph will grow when the growth rate is positive, which will make the growth factor 
b larger than one.  When it’s negative, the growth factor will be less than one. 
 
 

Graphical Features of Exponential Functions 

Graphically, in the function x
abxf =)(  

a is the vertical intercept of the graph 

b determines the rate at which the graph grows.  When a is positive, 

 the function will increase if b > 1 

 the function will decrease if 0 < b < 1 

The graph will have a horizontal asymptote at y = 0 

The graph will be concave up if a > 0;  concave down if a < 0. 

 

The domain of the function is all real numbers 

The range of the function is (0, )∞  

 
 
When sketching the graph of an exponential function, it can be helpful to remember that 
the graph will pass through the points (0, a) and (1, ab). 
 
The value b will determine the function’s long run behavior: 
If b > 1, as ∞→x  , ∞→)(xf  and as −∞→x ,  0)( →xf . 

If 0 < b < 1, as ∞→x , 0)( →xf  and as −∞→x , ∞→)(xf . 

 
 
Example 1 

Sketch a graph of 

x

xf 







=

3

1
4)(  

 
This graph will have a vertical intercept at (0,4), and pass 

through the point 








3

4
,1 .  Since b < 1, the graph will be 

decreasing towards zero.  Since a > 0, the graph will be 
concave up. 
 

We can also see from the graph the long run behavior: as 
∞→x , 0)( →xf  and as −∞→x , ∞→)(xf . 
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To get a better feeling for the effect of a and b on the graph, examine the sets of graphs 
below.  The first set shows various graphs, where a remains the same and we only change 
the value for b. 
 

 
  

Notice that the closer the value of b is to 1, the less steep the graph will be.    
 
In the next set of graphs, a is altered and our value for b remains the same. 
 
 

 
 

 

Notice that changing the value for a changes the vertical intercept.  Since a is multiplying 
the bx term, a acts as a vertical stretch factor, not as a shift.  Notice also that the long run 
behavior for all of these functions is the same because the growth factor did not change 
and none of these a values introduced a vertical flip. 
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Example 2 

Match each equation with its graph. 

x

x

x

x

xk

xh

xg

xf

)7.0(4)(

)3.1(4)(

)8.1(2)(

)3.1(2)(

=

=

=

=

 

 
 
 
 
 
The graph of k(x) is the easiest to identify, since it is the only equation with a growth 
factor less than one, which will produce a decreasing graph.  The graph of h(x) can be 
identified as the only growing exponential function with a vertical intercept at (0,4).  
The graphs of f(x) and g(x) both have a vertical intercept at (0,2), but since g(x) has a 
larger growth factor, we can identify it as the graph increasing faster. 
 

 
 
 

Try it Now 
1. Graph the following functions on the same axis:  

x
xf )2()( =  ; x

xg )2(2)( = ; x
xh )2/1(2)( = . 

 
 
Transformations of Exponential Graphs 
 
While exponential functions can be transformed following the same rules as any function, 
there are a few interesting features of transformations that can be identified.  The first 
was seen at the beginning of the section – that a horizontal reflection is equivalent to a 
change in the growth factor.  Likewise, since a is itself a stretch factor, a vertical stretch 
of an exponential corresponds with a change in the initial value of the function. 
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Next consider the effect of a horizontal shift on an exponential function.  Shifting the 

function x
xf )2(3)( =  four units to the left would give 4)2(3)4( +

=+
x

xf .  Employing 

exponent rules, we could rewrite this: 
xxx

xf )2(48)2()2(3)2(3)4( 44
===+

+  

 
Interestingly, it turns out that a horizontal shift of an exponential function corresponds 
with a change in initial value of the function. 
 
Lastly, consider the effect of a vertical shift on an exponential function.  Shifting 

x
xf )2(3)( =  down 4 units would give the equation 4)2(3)( −=

x
xf . 

 

Graphing that, notice it is substantially different 
than the basic exponential graph.  Unlike a basic 
exponential, this graph does not have a 
horizontal asymptote at y = 0; due to the vertical 
shift, the horizontal asymptote has also shifted 
to y = -4.  We can see that as x →∞ , ( )f x → ∞  

and as x → −∞ , ( ) 4f x → − . 

 
We have determined that a vertical shift is the 
only transformation of an exponential function 
that changes the graph in a way that cannot be 

achieved by altering the parameters a and b in the basic exponential function x
abxf =)( . 

 
 

Transformations of Exponentials 

Any transformed exponential can be written in the form 

cabxf
x

+=)(  

 

where y = c is the horizontal asymptote. 

 
 
Note that, due to the shift, the vertical intercept is shifted to (0, a+c). 
 
 

Try it Now 
2. Write the equation and graph the exponential function described as follows: 

x
exf =)( is vertically stretched by a factor of 2, flipped across the y axis and shifted 

up 4 units. 
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Example 3 

Sketch a graph of 4
2

1
3)( +








−=

x

xf . 

 
Notice that in this exponential function, the negative in the stretch factor -3 will cause a 
vertical reflection, and the vertical shift up 4 will move the horizontal asymptote to       

y = 4.  Sketching this as a transformation of 

x

xg 







=

2

1
)( , 

The basic 

x

xg 







=

2

1
)(   Vertically reflected and stretched by 3 

  

 
Vertically shifted up four units 

 
 
Notice that while the domain of this function is unchanged, due to the reflection and 

shift, the range of this function is ( ), 4−∞ . 

As ∞→x , 4)( →xf  and as −∞→x , ( )f x → −∞ . 

 

 

Functions leading to graphs like the one above are common as models for learning and 
models of growth approaching a limit. 
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Example 4 

Find an equation for the function graphed. 
 

Looking at this graph, it appears to have a horizontal 
asymptote at y = 5, suggesting an equation of the form 

5)( +=
x

abxf .  To find values for a and b, we can 

identify two other points on the graph.  It appears the 
graph passes through (0,2) and (-1,3), so we can use 
those points.  Substituting in (0,2) allows us to solve 
for a. 

3

52

52 0

−=

+=

+=

a

a

ab

 

 
Substituting in (-1,3) allows us to solve for b 

5.1
2

3

32

3
2

533 1

==

−=−

−
=−

+−=
−

b

b

b

b

 

The final formula for our function is 5)5.1(3)( +−=
x

xf . 

 
 

Try it Now   
3. Given the graph of the transformed exponential function, find a formula and describe 

the long run behavior. 
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Important Topics of this Section 

Graphs of exponential functions 

 Intercept 

 Growth factor 

Exponential Growth 

Exponential Decay 

Horizontal intercepts 

Long run behavior  

Transformations 

 
 

Try it Now Answers 

1.  
 

2. 42)( +−=
x

exf  

   
 

3. Horizontal asymptote at y = -1, so 1)( −=
x

abxf .  Substitute (0, 2) to find a = 3. 

Substitute (1,5) to find 135 1
−= b , b = 2. 

( ) 3(2 ) 1x
f x = −    or 1)5(.3)( −=

− x
xf  

As ∞→x , ∞→)(xf  and as −∞→x ,  1)( −→xf
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Section 4.2 Exercises 

 
Match each function with one of the graphs below. 

1. ( ) ( )2 0.69
x

f x =   

2. ( ) ( )2 1.28
x

f x =   

3. ( ) ( )2 0.81
x

f x =  

4. ( ) ( )4 1.28
x

f x =    

5. ( ) ( )2 1.59
x

f x =     

6. ( ) ( )4 0.69
x

f x =    

 
If all the graphs to the right have equations with form 

( ) xf x ab= ,   

7. Which graph has the largest value for b?   

8. Which graph has the smallest value for b?   

9. Which graph has the largest value for a? 

10. Which graph has the smallest value for a? 

 
 

Sketch a graph of each of the following transformations of ( ) 2xf x =  

11. ( ) 2 xf x −
=     12. ( ) 2xg x = −    

13. ( ) 2 3xh x = +     14. ( ) 2 4xf x = −   

15. ( ) 22xf x −
=     16. ( ) 32xk x −

=   

 

Starting with the graph of ( ) 4xf x = , find a formula for the function that results from 

17. Shifting ( )f x  4 units upwards 

18. Shifting ( )f x  3 units downwards 

19. Shifting ( )f x  2 units left 

20. Shifting ( )f x  5 units right 

21. Reflecting ( )f x  about the x-axis 

22. Reflecting ( )f x  about the y-axis 

 

 

 



Chapter 4 276

Describe the long run behavior, as x →∞   and x → −∞  of each function 

23. ( ) ( )5 4 1xf x = − −     24. ( ) ( )2 3 2xf x = − +   

25. ( )
1

3 2
2

x

f x
 

= − 
 

    26. ( )
1

4 1
4

x

f x
 

= + 
 

 

27. ( ) ( )3 4 2
x

f x
−

= +     28. ( ) ( )2 3 1
x

f x
−

= − −   

 

Find a formula for each function graphed as a transformation of ( ) 2xf x = . 

29.    30.  
 

31.    32.  
 
Find an equation for the exponential function graphed. 

33.    34.   

35.    36.  
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Section 4.3 Logarithmic Functions 

 

A population of 50 flies is expected to double every week, leading to a function of the 

form x
xf )2(50)( = , where x represents the number of weeks that have passed.  When 

will this population reach 500?  Trying to solve this problem leads to: 

500 50(2)x
=   Dividing both sides by 50 to isolate the exponential 

10 2 x
=  

 

While we have set up exponential models and used them to make predictions, you may 
have noticed that solving exponential equations has not yet been mentioned.  The reason 
is simple: none of the algebraic tools discussed so far are sufficient to solve exponential 

equations.  Consider the equation 102 =
x  above.  We know that 823

=  and 1624
= , so 

it is clear that x must be some value between 3 and 4 since ( ) 2x
g x =  is increasing.  We 

could use technology to create a table of values or graph to better estimate the solution.  
 

From the graph, we could better estimate the solution to be 
around 3.3.  This result is still fairly unsatisfactory, and since 
the exponential function is one-to-one, it would be great to 
have an inverse function.  None of the functions we have 
already discussed would serve as an inverse function and so 
we must introduce a new function, named log as the inverse 
of an exponential function.  Since exponential functions have 
different bases, we will define corresponding logarithms of 
different bases as well. 
 
 

Logarithm 

The logarithm (base b) function, written ( )xblog , is the inverse of the exponential 

function (base b), x
b . 

 
 
Since the logarithm and exponential are inverses, it follows that: 
 

Properties of Logs: Inverse Properties 

( ) xb
x

b =log    

xb
xb =

log  

 
 

Recall from the definition of an inverse function that if caf =)( , then acf =
− )(1 .  

Applying this to the exponential and logarithmic functions, we can convert between a 
logarithmic equation and its equivalent exponential. 
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Logarithm Equivalent to an Exponential 

The statement cb
a

=  is equivalent to the statement acb =)(log . 

 
 

Alternatively, we could show this by starting with the exponential function a
c b= , then 

taking the log base b of both sides, giving log ( ) log a

b bc b= .  Using the inverse property 

of logs, we see that log ( )
b

c a= . 

 

Since log is a function, it is most correctly written as )(log cb , using parentheses to 

denote function evaluation, just as we would with f(c).  However, when the input is a 
single variable or number, it is common to see the parentheses dropped and the 

expression written as cblog . 

 
 
Example 1 

Write these exponential equations as logarithmic equations: 

a) 823
=   b) 2552

=   c) 
10000

1
10 4

=
−  

 

a)  823
=   is equivalent to 3)8(log2 =  

 

b)  2552
=   is equivalent to 2)25(log5 =  

c)  4 1
10

10000

−
=  is equivalent to 10

1
log 4

10000

 
= − 

 
 

 
 
Example 2 

Write these logarithmic equations as exponential equations: 

a) ( )
2

1
6log 6 =   b) ( ) 29log3 =  

 

a) ( )
2

1
6log 6 =   is equivalent to 66 2/1

=  

b) ( ) 29log3 =   is equivalent to 932
=  

 
 

Try it Now 

1.  Write the exponential equation 1642
=  as a logarithmic equation. 
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By establishing the relationship between exponential and logarithmic functions, we can 
now solve basic logarithmic and exponential equations by rewriting. 
 
 
Example 3 

Solve ( ) 2log4 =x  for x. 

 

By rewriting this expression as an exponential, x=
24 , so x = 16. 

 
 
Example 4 

Solve 102 =
x  for x. 

 

By rewriting this expression as a logarithm, we get )10(log2=x . 

 
 
While this does define a solution, and an exact solution at that, you may find it somewhat 
unsatisfying since it is difficult to compare this expression to the decimal estimate we 
made earlier.  Also, giving an exact expression for a solution is not always useful – often 
we really need a decimal approximation to the solution.  Luckily, this is a task calculators 
and computers are quite adept at.  Unluckily for us, most calculators and computers will 
only evaluate logarithms of two bases.  Happily, this ends up not being a problem, as 
we’ll see briefly. 
 
 

Common and Natural Logarithms 

The common log is the logarithm with base 10, and is typically written )log(x . 

The natural log is the logarithm with base e, and is typically written )ln(x . 

 
 
Example 5 

Evaluate )1000log(  using the definition of the 

common log. 
 
To evaluate )1000log( , we can let 

)1000log(=x , then rewrite into exponential 

form using the common log base of 10: 

100010 =
x . 

 
From this, we might recognize that 1000 is the 
cube of 10, so x = 3. 
 

We also can use the inverse property of logs to write ( ) 310log 3

10 = . 

Values of the common log 

number number as 
exponential 

log(number) 

1000 103 3 

100 102 2 

10 101 1 

1 100 0 

0.1 10-1 -1 

0.01 10-2 -2 

0.001 10-3 -3 
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Try it Now 
2. Evaluate )1000000log( . 

 
 
Example 6 

Evaluate ( )eln . 

 

We can rewrite ( )eln  as ( )2/1ln e .  Since ln is a log base e, we can use the inverse 

property for logs:  ( ) ( )
2

1
logln 2/12/1

== ee e
. 

 
 
Example 7 

Evaluate log(500) using your calculator or computer. 
 
Using a computer, we can evaluate 69897.2)500log( ≈  

 
 
To utilize the common or natural logarithm functions to evaluate expressions like 

)10(log2 , we need to establish some additional properties. 

 
 

Properties of Logs: Exponent Property 

( ) ( )ArA b

r

b loglog =  

 
 
To show why this is true, we offer a proof: 

Since the logarithmic and exponential functions are inverses, Ab
Ab =

log . 

Raising both sides to the r power, we get ( )rAr bbA
log

= . 

Utilizing the exponential rule that states ( )
q

p pqx x= , ( ) ArrAr bb bbA
loglog

==  

Taking the log of both sides, ( ) ( )Ar

b

r

b
bbA

logloglog =  

Utilizing the inverse property on the right side yields the result:  ( ) ArA b

r

b loglog =  

 
 
Example 8 

Rewrite ( )25log3  using the exponent property for logs. 

 
Since 25 = 52,  

( ) ( ) ( )5log25log25log 3

2

33 ==  
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Example 9 

Rewrite )ln(4 x using the exponent property for logs. 

 

Using the property in reverse, ( )4ln)ln(4 xx = . 

 
 

Try it Now 

3. Rewrite using the exponent property for logs: 







2

1
ln

x
.  

 
 
The exponent property allows us to find a method for changing the base of a logarithmic 
expression. 
 
 

Properties of Logs: Change of Base 

( )
)(log

)(log
log

b

A
A

c

c

b =  

 
 
Proof: 

Let ( ) xAb =log .   

Rewriting as an exponential gives Ab
x

= .   

Taking the log base c of both sides of this equation gives Ab c

x

c loglog = , 

Now utilizing the exponent property for logs on the left side,  Abx cc loglog =  

Dividing, we obtain 
b

A
x

c

c

log

log
=  .  Replacing our original expression for x, 

b

A
A

c

c

b
log

log
log =  

 
With this change of base formula, we can finally find a good decimal approximation to 
our question from the beginning of the section. 
 
 
Example 10 

Evaluate )10(log2  using the change of base formula. 

 
According to the change of base formula, we can rewrite the log base 2 as a logarithm 
of any other base.  Since our calculators can evaluate the natural log, we might choose 
to use the natural logarithm, which is the log base e: 
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2ln

10ln

2log

10log
10log 2 ==

e

e  

 
Using our calculators to evaluate this, 

3219.3
69315.0

30259.2

2ln

10ln
≈≈  

 
This finally allows us to answer our original question – the population of flies we 
discussed at the beginning of the section will take 3.32 weeks to grow to 500. 

 
 
Example 11 

Evaluate )100(log 5  using the change of base formula. 

 
We can rewrite this expression using any other base.  If our calculators are able to 
evaluate the common logarithm, we could rewrite using the common log, base 10. 

861.2
69897.0

2

5log

100log
)100(log

10

10
5 =≈=  

 
 

While we can solve the basic exponential equation 102 =
x  by rewriting in logarithmic 

form and then using the change of base formula to evaluate the logarithm, the proof of 
the change of base formula illuminates an alternative approach to solving exponential 
equations.  
 
 

Solving exponential equations: 

1. Isolate the exponential expressions when possible 

2. Take the logarithm of both sides 

3. Utilize the exponent property for logarithms to pull the variable out of the 
exponent 

4. Use algebra to solve for the variable. 

 
 
Example 12 

Solve 102 =
x  for x. 

 
Using this alternative approach, rather than rewrite this exponential into logarithmic 
form, we will take the logarithm of both sides of the equation.  Since we often wish to 
evaluate the result to a decimal answer, we will usually utilize either the common log or 
natural log.  For this example, we’ll use the natural log: 
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( ) )10ln(2ln =
x   Utilizing the exponent property for logs, 

( ) )10ln(2ln =x   Now dividing by ln(2), 

( )
3219.3

2ln

)10ln(
≈=x  

 
Notice that this result matches the result we found using the change of base formula. 

 
 
Example 13 

In the first section, we predicted the population (in billions) of India t years after 2008 

by using the function t
tf )0134.01(14.1)( += .  If the population continues following 

this trend, when will the population reach 2 billion? 
 
We need to solve for time t so that f(t) = 2. 
 

t)0134.1(14.12 =   Divide by 1.14 to isolate the exponential expression 

t0134.1
14.1

2
=   Take the logarithm of both sides of the equation 

( )t0134.1ln
14.1

2
ln =








 Apply the exponent property on the right side 

( )0134.1ln
14.1

2
ln t=








 Divide both sides by ln(1.0134) 

( )
23.42

0134.1ln

14.1

2
ln

≈










=t  years 

 
If this growth rate continues, the model predicts the population of India will reach 2 
billion about 42 years after 2008, or approximately in the year 2050. 

 
 

Try it Now 

4.  Solve 10)93.0(5 =
x . 

 
 
Example 14 

Solve 2)07.1(5 3
=

t  

 

To start, we want to isolate the exponential part of the expression, the t3)07.1( , so it is 

alone on one side of the equation.  Then we can use the log to solve the equation.  We 
can use any base log; this time we’ll use the common log. 
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2)07.1(5 3
=

t     Divide both sides by 5 to isolate the exponential 

5

2
)07.1( 3

=
t     Take the log of both sides.  

( ) 







=

5

2
log)07.1(log 3t   Use the exponent property for logs 

( ) 







=

5

2
log07.1log3t   Divide by ( )07.1log3  on both sides 

( )

( ) ( )07.1log3

5

2
log

07.1log3

07.1log3









=
t

  Simplify and evaluate 

( )
5143.4

07.1log3

5

2
log

−≈










=t  

 
Note that when entering that expression on your calculator, be sure to put parentheses 
around the whole denominator to ensure the proper order of operations: 
log(2/5)/(3*log(1.07)) 

 
 
In addition to solving exponential equations, logarithmic expressions are common in 
many physical situations. 
 
 
Example 15 

In chemistry, pH is a measure of the acidity or basicity of a liquid.  The pH is related to 
the concentration of hydrogen ions, [H+], measured in moles per liter, by the equation 

( )logpH H
+ = −   .   

If a liquid has concentration of 0.0001 moles per liber, determine the pH. 
Determine the hydrogen ion concentration of a liquid with pH of 7. 
 

To answer the first question, we evaluate the expression ( )0001.0log− .  While we could 

use our calculators for this, we do not really need them here, since we can use the 
inverse property of logs: 

( ) ( ) 4)4(10log0001.0log 4
=−−=−=−

−  

 

To answer the second question, we need to solve the equation ( )7 log H
+ = −   .  Begin 

by isolating the logarithm on one side of the equation by multiplying both sides by -1: 

( )7 log H
+ − =   .  Rewriting into exponential form yields the answer: 

710 0.0000001H + −  = =   moles per liter. 
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Logarithms also provide us a mechanism for finding continuous growth models for 
exponential growth given two data points. 
 
 
Example 15 

A population grows from 100 to 130 in 2 weeks.  Find the continuous growth rate. 
 

Measuring t in weeks, we are looking for an equation rt
aetP =)(  so that P(0) = 100 and 

P(2) = 130.  Using the first pair of values, 
0100 r

ae
⋅

= , so a = 100. 

 
Using the second pair of values,  

2130 100 r
e

⋅
=   Divide by 100 

2

100

130 r
e=   Take the natural log of both sides 

( )2ln)3.1ln( r
e=  Use the inverse property of logs 

1312.0
2

)3.1ln(

2)3.1ln(

≈=

=

r

r

 

 
This population is growing at a continuous rate of 13.12% per week. 

 
In general, we can relate the standard form of an exponential with the continuous growth 
form by noting (using k to represent the continuous growth rate to avoid the confusion of 
using r in two different ways in the same formula): 

kxx
aera =+ )1(   

kxx
er =+ )1(  

k
er =+1  

 
 

Converting Between Periodic to Continuous Growth Rate 

In the equation x
raxf )1()( += , r is the periodic growth rate, the percent growth 

each time period (weekly growth, annual growth, etc.). 

 

In the equation kx
aexf =)( , k is the continuous growth rate. 

 

You can convert between these using:  k
er =+1 . 

 
 
Remember that the continuous growth rate k represents the nominal growth rate before 
accounting for the effects of continuous compounding, while r represents the actual 
percent increase in one time unit (one week, one year, etc.). 
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Example 16 

A company’s sales can be modeled by the function t
etS

12.05000)( = , with t measured in 

years.  Find the annual growth rate. 
 

Noting that k
er =+1 , then 1275.0112.0

=−= er , so the annual growth rate is 12.75%.  

The sales function could also be written in the form t
tS )1275.01(5000)( += . 

 
 

Important Topics of this Section 

The Logarithmic function as the inverse of the exponential function 

Writing logarithmic & exponential expressions 

Properties of logs 

    Inverse properties 

    Exponential properties 

    Change of base  

Common log 

Natural log 

Solving exponential equations 

Converting between periodic and continuous growth rate. 

 
 

Try it Now Answers 

1. ( ) 4log24log216log 4

2

44 ===  

 

2.  ( ) ( ) 610log1000000log 6
==  

 

3. ( ) )ln(2ln
1

ln 2

2
xx

x
−==







 −  

 

4. 10)93.0(5 =
x  

2)93.0( =
x  

( ) ( )2ln93.0ln =
x  

( ) ( )2ln93.0ln =x  

5513.9
)93.0ln(

)2ln(
−≈  
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Section 4.3 Exercises 

 
Rewrite each equation in exponential form 

1. 4log ( )q m=  2. 3log ( )t k=   3. log ( )a b c=   4. log ( )
p

z u=    

( )5. log v t=   6. ( )log r s=   7. ( )ln w n=   8. ( )ln x y=  

  
Rewrite each equation in logarithmic form.   

9. 4x
y=   10. 5y

x=   11. d
c k=   12. z

n L=  

13. 10a
b=   14. 10 p

v=   15. k
e h=   16. y

e x=  

 
Solve for x. 

17. ( )3log 2x =  18. 4log ( ) 3x =  19. 2log ( ) 3x = −  20. 5log ( ) 1x = −  

21. ( )log 3x =   22. ( )log 5x =   23. ( )ln 2x =   24. ( )ln 2x = −      

 
Simplify each expression using logarithm properties. 

25. ( )5log 25   26. ( )2log 8   27. 3

1
log

27

 
 
 

  28. 6

1
log

36

 
 
 

 

29. ( )6log 6   30. ( )3
5log 5   31. ( )log 10,000  32. ( )log 100  

33. ( )log 0.001  34. ( )log 0.00001  35. ( )2ln e−   36. ( )3ln e   

 
Evaluate using your calculator. 

37. ( )log 0.04   38. ( )log 1045   39. ( )ln 15   40. ( )ln 0.02    

 
Solve each equation for the variable. 

41. 5 14x
=   42. 3 23x

=   43. 
1

7
15

x
=   44. 

1
3

4

x
=  

45. 5 17x
e =    46. 3 12x

e =   47. 4 53 38x−
=   48. 2 34 44x−

=  

49. ( )1000 1.03 5000
t

=    50. ( )200 1.06 550
t

=  

51. ( )
3

3 1.04 8
t

=      52. ( )
4

2 1.08 7
t

=  

53. 0.1250 10t
e

−
=      54. 0.0310 4t

e
−

=  

55. 
1

10 8 5
2

x

 
− = 

 
     56. 

1
100 100 70

4

x

 
− = 
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Convert the equation into continuous growth form, ( ) ktf t ae= . 

57. ( ) ( )300 0.91
t

f t =    58. ( ) ( )120 0.07
t

f t =   

59. ( ) ( )10 1.04
t

f t =     60. ( ) ( )1400 1.12
t

f t =  

 

Convert the equation into annual growth form, ( ) tf t ab= . 

61. ( ) 0.061 50 tf t e=     62. ( ) 0.12100 tf t e=  

63. ( ) 0.01250 tf t e−
=    64. ( ) 0.8580 tf t e−

=  

 
65. The population of Kenya was 39.8 million in 2009 and has been growing by about 

2.6% each year.  If this trend continues, when will the population exceed 45 million? 

 

66. The population of Algeria was 34.9 million in 2009 and has been growing by about 

1.5% each year.  If this trend continues, when will the population exceed 45 million? 

 

67. The population of Seattle grew from 563,374 in 2000 to 608,660 in 2010.  If the 

population continues to grow exponentially at the same rate, when will the population 

exceed 1 million people? 

 

68. The median household income (adjusted for inflation) in Seattle grew from $42,948 

in 1990 to $45,736 in 2000.  If it continues to grow exponentially at the same rate, 

when will median income exceed $50,000? 

 

69. A scientist begins with 100 mg of a radioactive substance.  After 4 hours, it has 

decayed to 80 mg.  How long after the process began will it take to decay to 15 mg? 

 

70. A scientist begins with 100 mg of a radioactive substance.  After 6 days, it has 

decayed to 60 mg.  How long after the process began will it take to decay to 10 mg? 

 

71. If $1000 is invested in an account earning 3% compounded monthly, how long will it 

take the account to grow in value to $1500? 

 

72. If $1000 is invested in an account earning 2% compounded quarterly, how long will it 

take the account to grow in value to $1300? 
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Section 4.4 Logarithmic Properties 

 

In the previous section, we derived two important properties of logarithms, which 
allowed us to solve some basic exponential and logarithmic equations.   
 
 

Properties of Logs 

Inverse Properties: 

( ) xb
x

b =log    

xb
xb =

log  

 

Exponential Property: 

( ) ( )ArA b

r

b loglog =  

 

Change of Base: 

( )
)(log

)(log
log

b

A
A

c

c

b =  

 
 
While these properties allow us to solve a large number of problems, they are not 
sufficient to solve all problems involving exponential and logarithmic equations.  
 
 

Properties of Logs 

Sum of Logs Property: 

( ) ( ) )(logloglog ACCA bbb =+  

 

Difference of Logs Property: 

( ) ( ) 







=−

C

A
CA bbb logloglog  

 
 
It’s just as important to know what properties logarithms do not satisfy as to memorize 
the valid properties listed above.  In particular, the logarithm is not a linear function, 
which means that it does not distribute:  log(A + B) ≠ log(A) + log(B).   
 
To help in this process we offer a proof to help solidify our new rules and show how they 
follow from properties you’ve already seen. 
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Let ( )Aa blog=  and ( )Cc blog= .   

By definition of the logarithm, Ab
a

=  and Cb
c

= . 

Using these expressions, ca
bbAC =  

Using exponent rules on the right, ca
bAC

+
=  

Taking the log of both sides, and utilizing the inverse property of logs,  

( ) ( ) cabAC
ca

bb +==
+loglog  

Replacing a and c with their definition establishes the result 

( ) CAAC bbb logloglog +=  

 
The proof for the difference property is very similar. 
 
With these properties, we can rewrite expressions involving multiple logs as a single log, 
or break an expression involving a single log into expressions involving multiple logs. 
 
 
Example 1 

Write ( ) ( ) ( )2log8log5log 333 −+  as a single logarithm. 

 
Using the sum of logs property on the first two terms, 

( ) ( ) ( ) ( )40log85log8log5log 3333 =⋅=+  

 
This reduces our original expression to ( ) ( )2log40log 33 −  

 
Then using the difference of logs property, 

( ) ( ) ( )20log
2

40
log2log40log 3333 =








=−  

 
 
Example 2 

Evaluate ( ) ( )4log5log2 +  without a calculator by first rewriting as a single logarithm. 

 
On the first term, we can use the exponent property of logs to write 

( ) ( ) ( )25log5log5log2 2
==  

 

With the expression reduced to a sum of two logs, ( ) ( )4log25log + , we can utilize the 

sum of logs property 

( ) ( ) )100log()254log(4log25log =⋅=+  

 
Since 100 = 102, we can evaluate this log without a calculator: 

( ) 210log)100log( 2
==  
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Try it Now 
1. Without a calculator evaluate by first rewriting as a single logarithm: 

( ) ( )4log8log 22 +  

 
 
Example 3 

Rewrite 








7
ln

4 yx
 as a sum or difference of logs 

 
First, noticing we have a quotient of two expressions, we can utilize the difference 
property of logs to write 

( ) )7ln(ln
7

ln 4
4

−=







yx

yx
 

 
Then seeing the product in the first term, we use the sum property 

( ) ( ) )7ln()ln(ln)7ln(ln 44
−+=− yxyx  

 
Finally, we could use the exponent property on the first term 

( ) )7ln()ln()ln(4)7ln()ln(ln 4
−+=−+ yxyx  

 
 
Interestingly, solving exponential equations was not the reason 
logarithms were originally developed.  Historically, up until the 
advent of calculators and computers, the power of logarithms was 
that these log properties reduced multiplication, division, roots, or 
powers to be evaluated using addition, subtraction, division and 
multiplication, respectively, which are much easier to compute 
without a calculator.  Large books were published listing the 
logarithms of numbers, such as in the table to the right.  To find 
the product of two numbers, the sum of log property was used.  
Suppose for example we didn’t know the value of 2 times 3.  
Using the sum property of logs: 
 

)3log()2log()32log( +=⋅  

 
Using the log table, 

7781513.04771213.03010300.0)3log()2log()32log( =+=+=⋅  

 
We can then use the table again in reverse, looking for 0.7781513 as an output of the 
logarithm.  From that we can determine: 

)6log(7781513.0)32log( ==⋅ . 

 
By using addition and the table of logs, we were able to determine 632 =⋅ .    

value log(value) 

1 0.0000000 

2 0.3010300 

3 0.4771213 

4 0.6020600 

5 0.6989700 

6 0.7781513 

7 0.8450980 

8 0.9030900 

9 0.9542425 

10 1.0000000 



Chapter 4 292

Likewise, to compute a cube root like 3 8  

( ) )2log(3010300.0)9030900.0(
3

1
)8log(

3

1
8log)8log( 3/13 ======   

So 283 = . 

 
Although these calculations are simple and insignificant, they illustrate the same idea that 
was used for hundreds of years as an efficient way to calculate the product, quotient, 
roots, and powers of large and complicated numbers, either using tables of logarithms or 
mechanical tools called slide rules. 
 
These properties still have other practical applications for interpreting changes in 
exponential and logarithmic relationships. 
 
 
Example 4 

Recall that in chemistry, ( )logpH H
+ = −   .  If the concentration of hydrogen ions in a 

liquid is doubled, what is the affect on pH? 
 
Suppose C is the original concentration of hydrogen ions, and P is the original pH of the 

liquid, so ( )CP log−= .   If the concentration is doubled, the new concentration is 2C.  

Then the pH of the new liquid is 

( )CpH 2log−=  

 
Using the sum property of logs, 

( ) ( ) )log()2log()log()2log(2log CCCpH −−=+−=−=  

 

Since ( )CP log−= , the new pH is 

301.0)2log( −=−= PPpH  

 
When the concentration of hydrogen ions is doubled, the pH decreases by 0.301. 

 
 
Log properties in solving equations 

 

The logarithm properties often arise when solving problems involving logarithms.  First, 
we’ll look at a simpler log equation. 
 
 
Example 5 

Solve 3)62log( =−x . 

 
To solve for x, we need to get it out from inside the log function.  There are two ways 
we can approach this. 
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Method 1:  Rewrite as an exponential.   
 
Recall that since the common log is base 10, BA =)log(  can be rewritten as the 

exponential A
B

=10 .  Likewise, 3)62log( =−x  can be rewritten in exponential form as 

62103
−= x   

 
Method 2:  Exponentiate both sides. 
 

If BA = , then BA 1010 = .  Using this idea, since 3)62log( =−x , then 3)62log( 1010 =
−x .  

Use the inverse property of logs to rewrite the left side and get 31062 =−x . 

 

Using either method, we now need to solve 31062 =−x .  Evaluate 310  to get 

100062 =−x  Add 6 to both sides 

10062 =x   Divide both sides by 2 
503=x  

 
Occasionally the solving process will result in extraneous solutions – answers that are 
outside the domain of the original equation.  In this case, our answer looks fine. 

 
 
Example 6 

Solve 2)log()2550log( =−+ xx . 

 
In order to rewrite in exponential form, we need a single logarithmic expression on the 
left side of the equation.  Using the difference property of logs, we can rewrite the left 
side: 

2
2550

log =






 +

x

x
 

 
Rewriting in exponential form reduces this to an algebraic equation: 

10010
2550 2

==
+

x

x
  Multiply both sides by x 

xx 1002550 =+    Combine like terms 

x5025 =     Divide by 50 

2

1

50

25
==x  

 
Checking this answer in the original equation, we can verify there are no domain issues, 
and this answer is correct. 

 
 

Try it Now 

2.  Solve )2log(1)4log( 2
++=− xx . 
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Example 7 

Solve )144ln()1ln()2ln( +=+++ xxx . 

 
)144ln()1ln()2ln( +=+++ xxx   Use the sum of logs property on the right 

( ) )144ln()1)(2(ln +=++ xxx   Expand 

( ) )144ln(23ln 2
+=++ xxx     

 
We have a log on both side of the equation this time.  Rewriting in exponential form 
would be tricky, so instead we can exponentiate both sides. 

( ) )134ln(23ln 2
+++

=
xxx

ee     Use the inverse property of logs 

144232
+=++ xxx    Move terms to one side 

0122
=−− xx     Factor 

0)3)(4( =−+ xx  

x = −4 or x = 3. 
 
Checking our answers, notice that evaluating the original equation at x = −4 would 
result in us evaluating )2ln(− , which is undefined.  That answer is outside the domain 

of the original equation, so it is an extraneous solution and we discard it.  There is one 
solution:  x = 3. 

 
 
More complex exponential equations can often be solved in more than one way.  In the 
following example, we will solve the same problem in two ways – one using logarithm 
properties, and the other using exponential properties. 
 
 
Example 8a 

In 2008, the population of Kenya was approximately 38.8 million, and was growing by 
2.64% each year, while the population of Sudan was approximately 41.3 million and 
growing by 2.24% each year2.  If these trends continue, when will the population of 
Kenya match that of Sudan? 
 
We start by writing an equation for each population in terms of t, the number of years 
after 2008. 

( ) 38.8(1 0.0264)

( ) 41.3(1 0.0224)

t

t

Kenya t

Sudan t

= +

= +
 

 
To find when the populations will be equal, we can set the equations equal 

38.8(1.0264) 41.3(1.0224)t t
=  

 
 

                                                 
2 World Bank, World Development Indicators, as reported on http://www.google.com/publicdata, retrieved 
August 24, 2010 
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For our first approach, we take the log of both sides of the equation. 

( ) ( )log 38.8(1.0264) log 41.3(1.0224)t t
=  

 
Utilizing the sum property of logs, we can rewrite each side, 

( ) ( )log(38.8) log 1.0264 log(41.3) log 1.0224t t
+ = +  

 
Then utilizing the exponent property, we can pull the variables out of the exponent 

( ) ( )log(38.8) log 1.0264 log(41.3) log 1.0224t t+ = +  

 
Moving all the terms involving t to one side of the equation and the rest of the terms to 
the other side, 

( ) ( )log 1.0264 log 1.0224 log(41.3) log(38.8)t t− = −  

 
Factoring out the t on the left, 

( ) ( )( )log 1.0264 log 1.0224 log(41.3) log(38.8)t − = −  

 
Dividing to solve for t 

( ) ( )

log(41.3) log(38.8)
15.991

log 1.0264 log 1.0224
t

−
= ≈

−
years until the populations will be equal. 

 
 
Example 8b 

Solve the problem above by rewriting before taking the log. 
 
Starting at the equation  

38.8(1.0264) 41.3(1.0224)t t
=  

 
Divide to move the exponential terms to one side of the equation and the constants to 
the other side 

1.0264 41.3

1.0224 38.8

t

t
=  

 
Using exponent rules to group on the left, 

1.0264 41.3

1.0224 38.8

t

 
= 

 
 

 
Taking the log of both sides 

1.0264 41.3
log log

1.0224 38.8

t    
=         
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Utilizing the exponent property on the left, 

1.0264 41.3
log log

1.0224 38.8
t

   
=   

   
 

 
Dividing gives 

41.3
log

38.8
15.991

1.0264
log

1.0224

t

 
 
 

= ≈
 
 
 

 years 

 
While the answer does not immediately appear identical to that produced using the 
previous method, note that by using the difference property of logs, the answer could be 
rewritten: 

41.3
log

log(41.3) log(38.8)38.8

1.0264 log(1.0264) log(1.0224)
log

1.0224

t

 
 

− 
= =

− 
 
 

 

 
 
While both methods work equally well, it often requires fewer steps to utilize algebra 
before taking logs, rather than relying solely on log properties. 
 
 

Try it Now  
3.  Tank A contains 10 liters of water, and 35% of the water evaporates each week.  Tank 

B contains 30 liters of water, and 50% of the water evaporates each week.  In how 
many weeks will the tanks contain the same amount of water?  

 
 

Important Topics of this Section 

Inverse  

Exponential 

Change of base 

Sum of logs property 

Difference of logs property 

Solving equations using log rules 
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Try it Now Answers 

1.  ( ) ( ) ( ) 52log32log48log 5

222 ===⋅  

 

2. )2log(1)4log( 2
++=− xx  Move both logs to one side 

( ) ( ) 12log4log 2
=+−− xx    Use the difference property of logs 

1
2

4
log

2

=








+

−

x

x
   Factor 

1
2

)2)(2(
log =









+

−+

x

xx
  Simplify 

( ) 12log =−x    Rewrite as an exponential 

2101
−= x     Add 2 to both sides 

12=x  

 

3.  Tank A:  ttA )35.01(10)( −= .  Tank B:  ttB )50.01(30)( −=  

Solving A(t) = B(t), 
tt )5.0(30)65.0(10 =   Using the method from Example 8b 

10

30

)5.0(

)65.0(
=

t

t

   Regroup 

3
5.0

65.0
=








t

   Simplify 

( ) 33.1 =
t

    Take the log of both sides 

( )( ) ( )3log3.1log =
t

  Use the exponent property of logs 

( ) ( )3log3.1log =t    Divide and evaluate 

( )

( )
1874.4

3.1log

3log
≈=t  weeks 
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Section 4.4 Exercises 

 
Simplify to a single logarithm, using logarithm properties. 

1. ( ) ( )3 3log 28 log 7−     2. ( ) ( )3 3log 32 log 4−   

3. 3

1
log

7

 
−  

 
     4. 4

1
log

5

 
−  

 
     

5. ( )3 3

1
log log 50

10

 
+ 

 
    6. ( )4 4log 3 log (7)+  

7. ( )7

1
log 8

3
     8.  ( )5

1
log 36

2
 

9. ( ) ( )4 5log 2 log 3x x+    10. ( ) ( )2 3ln 4 ln 3x x+    

11. ( ) ( )9 2ln 6 ln 3x x−     12. ( ) ( )4log 12 log 4x x−    

13. ( ) ( )2log 3log 1x x+ +     14. ( ) ( )23log 2 logx x+  

15. ( ) ( ) ( )
1

log log 3log
2

x y z− +    16. ( ) ( ) ( )
1

2 log log log
3

x y z+ −  

 
Use logarithm properties to expand each expression. 

17. 
15 13

19
log

x y

z

 
 
 

    18. 
2 3

5
log

a b

c

 
 
 

 

19. 
2

4 5
ln

a

b c

−

−

 
 
 

     20. 
2 3

5
ln

a b

c

−

−

 
 
 

 

21. ( )3 4log x y
−     22. ( )3 2log x y

−  

23. ln
1

y
y

y

 
  − 

     24. 
2

ln
1

x

x

 
 

− 
 

25. ( )2 3 2 53log x y x y     26. ( )3 4 3 97log x y x y  
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Solve each equation for the variable. 

27. 4 7 9 64 3x x− −
=     28. 2 5 3 72 7x x− −

=  

29. ( ) ( )17 1.14 19 1.16
x x

=    30. ( ) ( )20 1.07 8 1.13
x x

=  

31. 0.12 0.085 10t t
e e=     32. 0.09 0.143 t t

e e=  

33. ( )2log 7 6 3x + =      34. 
3log (2 4) 2x + =  

35. ( )2ln 3x 3 1+ =      36. ( )4ln 5 5 2x + =  

37. ( )3log 2x =     38. ( )5log 3x =  

39. ( ) ( )log log 3 3x x+ + =     40. ( ) ( )log 4 log 9x x+ + =  

41. ( ) ( )log 4 log 3 1x x+ − + =    42. ( ) ( )log 5 log 2 2x x+ − + =  

43. ( )2

6 6log log ( 1) 1x x− + =    44. 2

3 3log ( ) log ( 2) 5x x− + =  

45. ( ) ( ) ( )log 12 log log 12x x+ = +   46. ( ) ( ) ( )log 15 log log 15x x+ = +  

47. ( ) ( ) ( )ln ln 3 ln 7x x x+ − =    48. ( ) ( ) ( )ln ln 6 ln 6x x x+ − =  
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Section 4.5 Graphs of Logarithmic Functions 

 

Recall that the exponential function x
xf 2)( =  produces this table of values 

x -3 -2 -1 0 1 2 3 

f(x) 
8

1
 

4

1
 

2

1
 1 2 4 8 

 
Since the logarithmic function is an inverse of the exponential, 

2( ) log ( )g x x=  produces 

the table of values 

x 
8

1
 

4

1
 

2

1
 1 2 4 8 

g(x) -3 -2 -1 0 1 2 3 

 
In this second table, notice that 

1) As the input increases, the output increases. 
2) As input increases, the output increases more slowly. 
3) Since the exponential function only outputs positive values, the logarithm can 

only accept positive values as inputs, so the domain of the log function is ),0( ∞ . 

4) Since the exponential function can accept all real numbers as inputs, the logarithm 
can output any real number, so the range is all real numbers or ),( ∞−∞ . 

 
Sketching the graph, notice that as the input 
approaches zero from the right, the output of the 
function grows very large in the negative direction, 
indicating a vertical asymptote at 
x = 0. 
In symbolic notation we write  

as −∞→→
+ )(,0 xfx ,  and as ∞→∞→ )(, xfx  

 
 
 

Graphical Features of the Logarithm 

Graphically, in the function ( ) log ( )bg x x=  

The graph has a horizontal intercept at (1, 0) 

The graph has a vertical asymptote at x = 0 

The graph is increasing and concave down 

The domain of the function is x > 0, or ),0( ∞  

The range of the function is all real numbers, or ),( ∞−∞  
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When sketching a general logarithm with base b, it can be helpful to remember that the 
graph will pass through the points (1, 0) and (b, 1). 
To get a feeling for how the base affects the shape of the graph, examine the graphs 
below. 
 

 

 
Notice that the larger the base, the slower the graph grows.  For example, the common 
log graph, while it grows without bound, it does so very slowly.  For example, to reach an 
output of 8, the input must be 100,000,000. 
 
Another important observation made was the domain of the logarithm.  Like the 
reciprocal and square root functions, the logarithm has a restricted domain which must be 
considered when finding the domain of a composition involving a log. 
 
 
Example 1 

Find the domain of the function )25log()( xxf −=  

 
The logarithm is only defined with the input is positive, so this function will only be 
defined when 025 >− x .  Solving this inequality, 

2

5

52

<

−>−

x

x

 

 

The domain of this function is 
2

5
<x , or in interval notation, 








∞−

2

5
,  

 
 

Try it Now 
1. Find the domain of the function 2)5log()( +−= xxf ; before solving this as an 

inequality, consider how the function has been transformed. 
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Transformations of the Logarithmic Function 

 
Transformations can be applied to a logarithmic function using the basic transformation 
techniques, but as with exponential functions, several transformations result in interesting 
relationships. 
 

First recall the change of base property tells us that x
bb

x
x c

cc

c

b log
log

1

log

log
log ==  

From this, we can see that xblog  is a vertical stretch or compression of the graph of the 

xclog  graph.  This tells us that a vertical stretch or compression is equivalent to a change 

of base.  For this reason, we typically represent all graphs of logarithmic functions in 
terms of the common or natural log functions. 
 
Next, consider the effect of a horizontal compression on the graph of a logarithmic 
function.  Considering )log()( cxxf = , we can use the sum property to see 

)log()log()log()( xccxxf +==  

 
Since log(c) is a constant, the effect of a horizontal compression is the same as the effect 
of a vertical shift.   
 
 
Example 2 

Sketch )ln()( xxf =  and 2)ln()( += xxg . 

 
Graphing these, 

 

 

Note that this vertical shift could also be written as a horizontal compression, since 

)ln()ln()ln(2)ln()( 22
xeexxxg =+=+= . 

 
 
While a horizontal stretch or compression can be written as a vertical shift, a horizontal 
reflection is unique and separate from vertical shifting. 
 
Finally, we will consider the effect of a horizontal shift on the graph of a logarithm. 
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Example 3 

Sketch a graph of )2ln()( += xxf . 

 
This is a horizontal shift to the left by 2 units.  Notice that none of our logarithm rules 
allow us rewrite this in another form, so the effect of this transformation is unique.  
Shifting the graph, 

 

 
Notice that due to the horizontal shift, the vertical asymptote shifted to x = -2, and the 
domain shifted to ( 2, )− ∞ . 

 
 
Combining these transformations, 
 
 
Example 4 

Sketch a graph of )2log(5)( +−= xxf . 

 
Factoring the inside as ))2(log(5)( −−= xxf  reveals that this graph is that of the 

common logarithm, horizontally reflected, vertically stretched by a factor of 5, and 
shifted to the right by 2 units.   
 
The vertical asymptote will be shifted to x = 2, 
and the graph will have domain ( , 2)∞ .  A rough 

sketch can be created by using the vertical 
asymptote along with a couple points on the 
graph, such as 

5)10log(5)2)8(log(5)8(

0)1log(5)21log(5)1(

==+−−=−

==+−=

f

f
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Try it Now 
2. Sketch a graph of the function 1)2log(3)( +−−= xxf . 

 
 

Transformations of Logs 

Any transformed logarithmic function can be written in the form 

( ) log( )f x a x b k= − + ,  or ( )( )( ) logf x a x b k= − − +  if horizontally reflected, 

 

where x = b is the vertical asymptote. 

 
 
Example 5 

Find an equation for the logarithmic function 
graphed. 
 

This graph has a vertical asymptote at x = –2 and 
has been vertically reflected.  We do not know yet 
the vertical shift (equivalent to horizontal stretch) 
or the vertical stretch (equivalent to a change of 
base).  We know so far that the equation will have 
form 

kxaxf ++−= )2log()(  

 
It appears the graph passes through the points (–1, 1) and (2, –1). Substituting in (–1, 1), 

k

ka

ka

=

+−=

++−−=

1

)1log(1

)21log(1

 

 
Next, substituting in (2, –1),  

)4log(

2

)4log(2

1)22log(1

=

−=−

++−=−

a

a

a

 

 

This gives us the equation 1)2log(
)4log(

2
)( ++−= xxf .   

This could also be written as 
4( ) 2 log ( 2) 1f x x= − + + . 
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Try it Now 
3. Write an equation for the function graphed here.  
 
 

 
 

 
Flashback 
4. Write the domain and range of the function graphed in Example 5, and describe its 

long run behavior.  

 
 

Important Topics of this Section 

Graph of the logarithmic function (domain and range) 

Transformation of logarithmic functions 

Creating graphs from equations 

Creating equations from graphs 

 
 

Try it Now and Flashback Answers 
1. Domain:  {x| x > 5}   
 

2.  
 
3.  The graph is horizontally reflected and has a vertical asymptote at x = 3, giving form 

( )( ) kxaxf +−−= 3log)( .  Substituting in the point (2,0) gives ( )( ) ka +−−= 32log0 , 

simplifying to k = 0.  Substituting in (-2,-2), ( )( )32log2 −−−=− a , so a=
−

)5log(

2
. 

The equation is ( )( )3log
)5log(

2
)( −−

−
= xxf  or ( )( )3log2)( 5 −−−= xxf . 

 

4.  Domain:  {x| x>-2}, Range: all real numbers;  As ∞→−→
+ )(,2 xfx and as 

−∞→∞→ )(, xfx . 
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Section 4.5 Exercises 

 
For each function, find the domain and the vertical asymptote. 

1. ( ) ( )log 5f x x= −     2. ( ) ( )log 2f x x= +    

3. ( ) ( )ln 3f x x= −     4. ( ) ( )ln 5f x x= −  

5. ( ) ( )log 3 1f x x= +     6. ( ) ( )log 2 5f x x= +  

7. ( ) ( )3log 2f x x= − +    8. ( ) ( )2log 1f x x= − +  

  
Sketch a graph of each pair of functions. 

9. ( ) ( ) ( ) ( )log , lnf x x g x x= =   10. ( ) ( ) ( )2 4log ( ), logf x x g x x= =  

 
Sketch each transformation. 

11. ( ) ( )2logf x x=     12. ( ) ( )3lnf x x=   

13. ( ) ( )lnf x x= −     14. ( ) ( )logf x x= −   

15. ( ) 2log ( 2)f x x= +    16. ( ) ( )3log 4f x x= +  

 
Find a formula for the transformed logarithm graph shown. 

17.   18.  
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19.    20.  
Find a formula for the transformed logarithm graph shown. 
 

21.    22.  
 

23.    24. 
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Section 4.6 Exponential and Logarithmic Models 

 

While we have explored some basic applications of exponential and logarithmic 
functions, in this section we explore some important applications in more depth. 
 

Radioactive Decay 

 
In an earlier section, we discussed radioactive decay – the idea that radioactive isotopes 
change over time.  One of the common terms associated with radioactive decay is half-
life. 
 
 

Half Life 

The half-life of a radioactive isotope is the time it takes for half the substance to 
decay. 

 
 

Given the basic exponential growth/decay equation t
abth =)( , half-life can be found by 

solving for when half the original amount remains; by solving t
baa )(

2

1
= , or more 

simply t
b=

2

1
.  Notice how the initial amount is irrelevant when solving for half-life. 

 
 
Example 1 

Bismuth-210 is an isotope that decays by about 13% each day.  What is the half-life of 
Bismuth-210? 
 
We were not given a starting quantity, so we could either make up a value or use an 
unknown constant to represent the starting amount.  To show that starting quantity does 
not affect the result, let us denote the initial quantity by the constant a.   Then the decay 

of Bismuth-210 can be described by the equation d
adQ )87.0()( = . 

 
To find the half-life, we want to determine when the remaining quantity is half the 

original: 
1

2
a .  Solving, 

d
aa )87.0(

2

1
=   Divide by a, 

d87.0
2

1
=    Take the log of both sides 

( )d87.0log
2

1
log =








 Use the exponent property of logs 
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( )87.0log
2

1
log d=








 Divide to solve for d 

( )

1
log

2
4.977

log 0.87
d

 
 
 

= ≈  days 

 
This tells us that the half-life of Bismuth-210 is approximately 5 days. 

 
 
Example 2 

Cesium-137 has a half-life of about 30 years.  If you begin with 200mg of cesium-137, 
how much will remain after 30 years?  60 years?  90 years? 
 
Since the half-life is 30 years, after 30 years, half the original amount, 100mg, will 
remain. 
 
After 60 years, another 30 years have passed, so during that second 30 years, another 
half of the substance will decay, leaving 50mg.   
 
After 90 years, another 30 years have passed, so another half of the substance will 
decay, leaving 25mg.  

 
 
Example 3 

Cesium-137 has a half-life of about 30 years.  Find the annual decay rate. 
 
Since we are looking for an annual decay rate, we will use an equation of the form 

t
ratQ )1()( += .  We know that after 30 years, half the original amount will remain.  

Using this information 

30)1(
2

1
raa +=  Dividing by a 

30)1(
2

1
r+=   Taking the 30th root of both sides 

r+= 1
2

1
30   Subtracting one from both sides, 

02284.01
2

1
30 −≈−=r  

 
This tells us cesium-137 is decaying at an annual rate of 2.284% per year. 

 
 
 
 



Chapter 4 310

Try it Now  
1. Chlorine-36 is eliminated from the body with a biological half-life of 10 days3.  Find 

the daily decay rate. 

 
 
Example 4 

Carbon-14 is a radioactive isotope that is present in organic materials, and is commonly 
used for dating historical artifacts.   Carbon-14 has a half-life of 5730 years.  If a bone 
fragment is found that contains 20% of its original carbon-14, how old is the bone? 
 
To find how old the bone is, we first will need to find an equation for the decay of the 
carbon-14.  We could either use a continuous or annual decay formula, but opt to use 
the continuous decay formula since it is more common in scientific texts.  The half life 
tells us that after 5730 years, half the original substance remains.  Solving for the rate, 
 

5730

2

1 r
aea =   Dividing by a 

5730

2

1 r
e=   Taking the natural log of both sides 

( )5730ln
2

1
ln r

e=







 Use the inverse property of logs on the right side 

r5730
2

1
ln =








 Divide by 5730 

000121.0
5730

2

1
ln

−≈










=r  

 

Now we know the decay will follow the equation t
aetQ

000121.0)( −
= .   To find how old 

the bone fragment is that contains 20% of the original amount, we solve for t so that 
Q(t) = 0.20a. 
 

t
aea

000121.020.0 −
=  

t
e

000121.020.0 −
=  

( )t
e

000121.0ln)20.0ln( −
=  

t000121.0)20.0ln( −=  

13301
000121.0

)20.0ln(
≈

−
=t  years 

 
The bone fragment is about 13,300 years old. 

 
 

                                                 
3 http://www.ead.anl.gov/pub/doc/chlorine.pdf 
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Try it Now 
2. In Example 2, we learned that Cesium-137 has a half-life of about 30 years.  If you 

begin with 200mg of cesium-137, will it take more or less than 230 years until only 1 
milligram remains? 

 
 
Doubling Time 

 
For decaying quantities, we asked how long it takes for half the substance to decay.  For 
growing quantities we might ask how long it takes for the quantity to double. 
 
 

Doubling Time 

The doubling time of a growing quantity is the time it takes for the quantity to 
double. 

 
 

Given the basic exponential growth equation t
abth =)( , doubling time can be found by 

solving for when the original quantity has doubled; by solving x
baa )(2 = , or more 

simply x
b=2 .  Like with decay, the initial amount is irrelevant when solving for 

doubling time. 
 
 
Example 5 

Cancer cells sometimes increase exponentially.  If a cancerous growth contained 300 
cells last month and 360 cells this month, how long will it take for the number of cancer 
cells to double? 
 
Defining t to be time in months, with t = 0 corresponding to this month, we are given 
two pieces of data:  this month, (0, 360), and last month, (-1, 300). 
 

From this data, we can find an equation for the growth.  Using the form t
abtC =)( , we 

know immediately a = 360, giving t
btC 360)( = .  Substituting in (-1, 300), 

2.1
300

360

360
300

360300 1

==

=

=
−

b

b

b

 

 

This gives us the equation t
tC )2.1(360)( =  

 
To find the doubling time, we look for the time when we will have twice the original 
amount, so when C(t) = 2a. 
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t
aa )2.1(2 =  

t)2.1(2 =  

( ) ( )t2.1log2log =  

( ) ( )2.1log2log t=  

( )

( )
802.3

2.1log

2log
≈=t  months for the number of cancer cells to double. 

 
 
Example 6 

Use of a new social networking website has been growing exponentially, with the 
number of new members doubling every 5 months.  If the site currently has 120,000 
users and this trend continues, how many users will the site have in 1 year? 
 
We can use the doubling time to find a function that models the number of site users, 
and then use that equation to answer the question.  While we could use an arbitrary a as 
we have before for the initial amount, in this case, we know the initial amount was 
120,000. 
 

If we use a continuous growth equation, it would look like rt
etN 120)( = , measured in 

thousands of users after t months.  Based on the doubling time, there would be 240 
thousand users after 5 months.  This allows us to solve for the continuous growth rate: 

5120240 r
e=  

52 r
e=  

r52ln =  

1386.0
5

2ln
≈=r  

 

Now that we have an equation, t
etN

1386.0120)( = , we can predict the number of users 

after 12 months: 

140.633120)12( )12(1386.0
== eN  thousand users. 

 
So after 1 year, we would expect the site to have around 633,140 users. 

 
 

Try it Now 
3.  If tuition at a college is increasing by 6.6% each year, how many years will it take for 

tuition to double?  
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Newton’s Law of Cooling 

 
When a hot object is left in surrounding air that is at a lower temperature, the object’s 
temperature will decrease exponentially, leveling off towards the surrounding air 
temperature.  This "leveling off" will correspond to a horizontal asymptote in the graph 
of the temperature function.  Unless the room temperature is zero, this will correspond to 
a vertical shift of the generic exponential decay function. 
 
 

Newton’s Law of Cooling 

The temperature of an object, T, in surrounding air with temperature Ts will behave 
according to the formula 

s

kt
TaetT +=)(  

 

Where  

t is time 

a is a constant determined by the initial temperature of the object 

k is a constant, the continuous rate of cooling of the object 

 
 

While an equation of the form s

t
TabtT +=)(  could be used, the continuous growth form 

is more common. 
 
 
Example 7 

A cheesecake is taken out of the oven with an ideal internal temperature of 165 degrees 
Fahrenheit, and is placed into a 35 degree refrigerator.  After 10 minutes, the 
cheesecake has cooled to 150 degrees.  If you must wait until the cheesecake has cooled 
to 70 degrees before you eat it, how long will you have to wait? 
 
Since the surrounding air temperature in the refrigerator is 35 degrees, the cheesecake’s 
temperature will decay exponentially towards 35, following the equation  

35)( +=
kt

aetT  

 
We know the initial temperature was 165, so 165)0( =T .  Substituting in these values, 

130

35165

35165 0

=

+=

+=

a

a

ae
k
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We were given another pair of data, 150)10( =T , which we can use to solve for k 

35130150 10
+=

k
e  

0123.0
10

130

115
ln

10
130

115
ln

130

115

130115

10

10

−=










=

=








=

=

k

k

e

e

k

k

 

 

Together this gives us the equation for cooling: 35130)( 0123.0
+=

− t
etT . 

Now we can solve for the time it will take for the temperature to cool to 70 degrees. 

3513070 0123.0
+=

− t
e  

t
e

0123.013035 −
=  

t
e

0123.0

130

35 −
=  

t0123.0
130

35
ln −=








 

68.106
0123.0

130

35
ln

≈
−










=t  

 
It will take about 107 minutes, or one hour and 47 minutes, for the cheesecake to cool.  
Of course, if you like your cheesecake served chilled, you’d have to wait a bit longer. 

 
 

Try it Now 
4.  A pitcher of water at 40 degrees Fahrenheit is placed into a 70 degree room.  One hour 

later the temperature has risen to 45 degrees.  How long will it take for the temperature 
to rise to 60 degrees? 

 
 
Logarithmic Scales 

 
For quantities that vary greatly in magnitude, a standard scale of measurement is not 
always effective, and utilizing logarithms can make the values more manageable.  For 
example, if the average distances from the sun to the major bodies in our solar system are 
listed, you see they vary greatly. 
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Planet Distance (millions of km) 

Mercury 58 

Venus 108 

Earth 150 

Mars 228 

Jupiter 779 

Saturn 1430 

Uranus 2880 

Neptune 4500 

 
Placed on a linear scale – one with equally spaced values – these values get bunched up.   
 
 
 
 
 
 
However, computing the logarithm of each value and plotting these new values on a 
number line results in a more manageable graph, and makes the relative distances more 
apparent.4 
 

Planet Distance (millions of km) log(distance) 

Mercury 58 1.76 

Venus 108 2.03 

Earth 150 2.18 

Mars 228 2.36 

Jupiter 779 2.89 

Saturn 1430 3.16 

Uranus 2880 3.46 

Neptune 4500 3.65 

 

 
 

                                                 
4 It is interesting to note the large gap between Mars and Jupiter on the log number line.  
The asteroid belt is located there, which scientists believe is a planet that never formed 
because of the effects of the gravity of Jupiter. 
 

Mercury Venus 
Neptune 

1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 

Earth 
Mars 

3.75 

Jupiter 
Saturn 

Uranus 

4 

104=10000 103=1000 102=100 

log(distance) 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 
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distance 
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Sometimes, as shown above, the scale on a logarithmic number line will show the log 
values, but more commonly the original values are listed as powers of 10, as shown 
below. 

 
 
 
Example 8 

Estimate the value of point P on the log scale above 
 
The point P appears to be half way between -2 and -1 in log value, so if V is the value of 
this point, 

5.1)log( −≈V   Rewriting in exponential form, 

0316.010 5.1
=≈

−
V  

 
 
Example 9 

Place the number 6000 on a logarithmic scale. 
 
Since 8.3)6000log( ≈ , this point would belong on the log scale about here: 

 

 
 
 

Try it Now 
5.  Plot the data in the table below on a logarithmic scale5. 

 

 

                                                 
5 From http://www.epd.gov.hk/epd/noise_education/web/ENG_EPD_HTML/m1/intro_5.html, retrieved 
Oct 2, 2010 

102 103 104 105 106 101 100 10-1 10-2 107 

A B P C D 

102 103 104 105 106 101 100 10-1 10-2 107 

6000 

Source of Sound/Noise 
Approximate Sound Pressure 
in µPa (micro Pascals) 

Launching of the Space Shuttle 2,000,000,000 

Full Symphony Orchestra 2,000,000 

Diesel Freight Train at High Speed at 25 m 200,000 

Normal Conversation 20,000 

Soft Whispering at 2 m in Library 2,000 

Unoccupied Broadcast Studio  200 

Softest Sound a human can hear 20 
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Notice that on the log scale above Example 8, the visual distance on the scale between 
points A and B and between C and D is the same.  When looking at the values these 
points correspond to, notice B is ten times the value of A, and D is ten times the value of 
C.  A visual linear difference between points corresponds to a relative (ratio) change 
between the corresponding values. 
 
Logarithms are useful for showing these relative changes.  For example, comparing 
$1,000,000 to $10,000, the first is 100 times larger than the second. 

210100
000,10

000,000,1
==  

 
Likewise, comparing $1000 to $10, the first is 100 times larger than the second. 

210100
10

000,1
==  

 
When one quantity is roughly ten times larger than another, we say it is one order of 

magnitude larger.  In both cases described above, the first number was two orders of 
magnitude larger than the second.  
 
Notice that the order of magnitude can be found as the common logarithm of the ratio of 
the quantities.  On the log scale above, B is one order of magnitude larger than A, and D 
is one order of magnitude larger than C. 
 
 

Orders of Magnitude 

Given two values A and B, to determine how many orders of magnitude A is greater 
than B,  

Difference in orders of magnitude = 








B

A
log  

 
 
Example 10 

On the log scale above Example 8, how many orders of magnitude larger is C than B? 
 

The value B corresponds to 10010 2
=  

The value C corresponds to 000,10010 5
=  

 

The relative change is 3

2

5

10
10

10
1000

100

000,100
=== .  The log of this value is 3.   

C is three orders of magnitude greater than B, which can be seen on the log scale by the 
visual difference between the points on the scale. 
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Try it Now 
6.  Using the table from Try it Now #5, what is the difference of order of magnitude 

between the softest sound a human can hear and the launching of the space shuttle? 

 
 
Earthquakes 

 

An example of a logarithmic scale is the Moment Magnitude Scale (MMS) used for 
earthquakes.  This scale is commonly and mistakenly called the Richter Scale, which was 
a very similar scale succeeded by the MMS. 
 
 

Moment Magnitude Scale 

For an earthquake with seismic moment S, a measurement of earth movement, the 
MMS value, or magnitude of the earthquake, is 









=

0

log
3

2

S

S
M  

Where 16

0 10=S  is a baseline measure for the seismic moment.   

 
 
Example 11 

If one earthquake has a MMS magnitude of 6.0, and another has a magnitude of 8.0, 
how much more powerful (in terms of earth movement) is the second earthquake? 
 
Since the first earthquake has magnitude 6.0, we can find the amount of earth 
movement for that quake, which we’ll denote S1.  The value of S0 is not particularly 
relevant, so we will not replace it with its value. 









=

0

1log
3

2
0.6

S

S
 









=









0

1log
2

3
0.6

S

S
 









=

0

1log9
S

S
 

9

0

1 10=
S

S
 

0

9

1 10 SS =  

 
This tells us the first earthquake has about 109 times more earth movement than the 
baseline measure. 
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Doing the same with the second earthquake, S2, with a magnitude of 8.0, 









=

0

2log
3

2
0.8

S

S
 

0

12

2 10 SS =  

 
Comparing the earth movement of the second earthquake to the first,  

100010
10

10 3

0

9

0

12

1

2 ===
S

S

S

S
 

 
The second value’s earth movement is 1000 times as large as the first earthquake. 

 
 
Example 12 

One earthquake has magnitude of 3.0.  If a second earthquake has twice as much earth 
movement as the first earthquake, find the magnitude of the second quake. 
 
Since the first quake has magnitude 3.0, 









=

0

log
3

2
0.3

S

S
 

 
Solving for S, 

0

5.4

0

5.4

0

0

10

10

log5.4

log
2

3
0.3

SS

S

S

S

S

S

S

=

=









=









=









 

 
Since the second earthquake has twice as much earth movement, for the second quake, 

0

5.4102 SS ⋅=  

 
Finding the magnitude, 








 ⋅
=

0

0

5.4102
log

3

2

S

S
M  

( ) 201.3102log
3

2 5.4
≈⋅=M  

 
The second earthquake with twice as much earth movement will have a magnitude of 
about 3.2. 
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In fact, using log properties, we could show that whenever the earth movement doubles, 
the magnitude will increase by about 0.201: 
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This illustrates the most important feature of a log scale: that multiplying the quantity 
being considered will add to the scale value, and vice versa. 
 
 

Important Topics of this Section 

Radioactive decay 

Half life 

Doubling time 

Newton’s law of cooling 

Logarithmic Scales 

Orders of Magnitude 

Moment Magnitude scale 
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Try it Now Answers 

1. 067.01
2

1
10 −≈−=r  or 6.7% is the daily rate of decay. 

 
2. Less than 230 years, 229.3157 to be exact 
 

3. Solving aa
t 2)066.01( =+ , it will take ≈=

)066.1log(

)2log(
t 10.845 years, or approximately 

11 years, for tuition to double. 
 

4. 70)( +=
kt

aetT .  Substituting (0, 40), we find a = -30.  Substituting (1, 45), we solve 

703045 )1(
+−=

k
e  to get 1823.0

30

25
ln −=








=k . 

Solving 703060 1823.0
+−=

− t
e  gives 

026.6
1823.0

)3/1ln(
=

−
=t  hours 

 
5.  

 
 

6. 8

1

9

10
102

102
=

x

x
.  The sound pressure in µPa created by launching the space shuttle is 8 

orders of magnitude greater than the sound pressure in µPa created by the softest 
sound a human ear can hear. 

 

105 106 107 108 109 104 103 102 101 1010 

Softest 
Sound 

Broadcast 
room 

Soft 
Whisper 

 

Conversation 

Train 

 

Symphony Space 
Shuttle 
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Section 4.6 Exercises 

 
1. You go to the doctor and he injects you with 13 milligrams of radioactive dye. After 

12 minutes, 4.75 milligrams of dye remain in your system. To leave the doctor's 

office, you must pass through a radiation detector without sounding the alarm. If the 

detector will sound the alarm whenever more than 2 milligrams of the dye are in your 

system, how long will your visit to the doctor take, assuming you were given the dye 

as soon as you arrived and the amount of dye decays exponentially? 

 

2. You take 200 milligrams of a headache medicine, and after 4 hours, 120 milligrams 

remain in your system.  If the effects of the medicine wear off when less than 80 

milligrams remain, when will you need to take a second dose, assuming the amount 

of medicine in your system decays exponentially? 

 

3. The half-life of Radium-226 is 1590 years.  If a sample initially contains 200 mg, 

how many milligrams will remain after 1000 years? 

 

4. The half-life of Fermium-253 is 3 days.  If a sample initially contains 100 mg, how 

many milligrams will remain after 1 week? 

 

5. The half-life of Erbium-165 is 10.4 hours.  After 24 hours a sample still contains 2 

mg.  What was the initial mass of the sample, and how much will remain after another 

3 days? 

 

6. The half-life of Nobelium-259 is 58 minutes.  After 3 hours a sample still contains10 

mg.  What was the initial mass of the sample, and how much will remain after another 

8 hours? 

 

7. A scientist begins with 250 grams of a radioactive substance.  After 225 minutes, the 

sample has decayed to 32 grams.  Find the half-life of this substance.  

 

8. A scientist begins with 20 grams of a radioactive substance.  After 7 days, the sample 

has decayed to 17 grams.  Find the half-life of this substance.  

 

9. A wooden artifact from an archeological dig contains 60 percent of the carbon-14 that 

is present in living trees.  How long ago was the artifact made? (The half-life of 

carbon-14 is 5730 years.) 
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10. A wooden artifact from an archeological dig contains 15 percent of the carbon-14 that 

is present in living trees.  How long ago was the artifact made? (The half-life of 

carbon-14 is 5730 years.) 

 

11. A bacteria culture initially contains 1500 bacteria and doubles in size every half hour.  

Find the size of the population after:  a) 2 hours   b) 100 minutes 

 

12. A bacteria culture initially contains 2000 bacteria and doubles in size every half hour.  

Find the size of the population after:  a) 3 hours   b) 80 minutes 

 

13. The count of bacteria in a culture was 800 after 10 minutes and 1800 after 40 

minutes.   

a. What was the initial size of the culture?   

b. Find the doubling time.   

c. Find the population after 105 minutes. 

d. When will the population reach 11000? 

 

14. The count of bacteria in a culture was 600 after 20 minutes and 2000 after 35 

minutes.   

a. What was the initial size of the culture?   

b. Find the doubling time.   

c. Find the population after 170 minutes. 

d. When will the population reach 12000? 

 

15. Find the time required for an investment to double in value if invested in an account 

paying 3% compounded quarterly. 

 

16. Find the time required for an investment to double in value if invested in an account 

paying 4% compounded monthly 

 

17. The number of crystals that have formed after t hours is given by ( ) 0.01320 tn t e= .  

How long does it take the number of crystals to double?  

 

18. The number of building permits in Pasco t years after 1992 roughly followed the 

equation ( ) 0.143400 tn t e= .  What is the doubling time? 
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19. A turkey is pulled from the oven when the internal temperature is 165° Fahrenheit, 

and is allowed to cool in a 75° room.  If the temperature of the turkey is 145° after 

half an hour, 

a. What will the temperature be after 50 minutes? 

b. How long will it take the turkey to cool to 110°? 

 

20. A cup of coffee is poured at 190° Fahrenheit, and is allowed to cool in a 70° room.  If 

the temperature of the coffee is 170° after half an hour, 

a. What will the temperature be after 70 minutes? 

b. How long will it take the coffee to cool to 120°? 

 

21. The population of fish in a farm-stocked lake after t years could be modeled by the 

equation ( ) 0.6

1000

1 9 t
P t

e
−

=
+

.  

a. Sketch a graph of this equation. 

b. What is the initial population of fish? 

c. What will the population be after 2 years? 

d. How long will it take for the population to reach 900? 

 

22. The number of people in a town who have heard a rumor after t days can be modeled 

by the equation ( ) 0.7

500

1 49 t
N t

e
−

=
+

.  

a. Sketch a graph of this equation. 

b. How many people started the rumor? 

c. How many people have heard the rumor after 3 days? 

d. How long will it take until 300 people have heard the rumor? 

 

Find the value of the number shown on each logarithmic scale 

23.  24.  

25.  26.  

 
Plot each set of approximate values on a logarithmic scale. 
 

27. Intensity of sounds: Whisper: 10 210  /W m
− , Vacuum: 4 210 /W m

− , Jet: 2 210  /W m  

 

28. Mass: Amoeba: 510 g
− , Human: 510 g , Statue of Liberty: 810 g  
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29. The 1906 San Francisco earthquake had a magnitude of 7.9 on the MMS scale. Later 

there was an earthquake with magnitude 4.7 that caused only minor damage. How 

many times more intense was the San Francisco earthquake than the second one? 

 

30. The 1906 San Francisco earthquake had a magnitude of 7.9 on the MMS scale. Later 

there was an earthquake with magnitude 6.5 that caused less damage. How many 

times more intense was the San Francisco earthquake than the second one? 

 

31. One earthquake has magnitude 3.9 on the MMS scale. If a second earthquake has 750 

times as much energy as the first, find the magnitude of the second quake. 

 

32. One earthquake has magnitude 4.8 on the MMS scale. If a second earthquake has 

1200 times as much energy as the first, find the magnitude of the second quake. 

 

33. A colony of yeast cells is estimated to contain 106 cells at time t = 0. After collecting 

experimental data in the lab, you decide that the total population of cells at time t 

hours is given by the function ( ) 6 0.49510510 tf t e= .   [UW] 

a. How many cells are present after one hour? 

b. How long does it take of the population to double?. 

c. Cherie, another member of your lab, looks at your notebook and says: “That 

formula is wrong, my calculations predict the formula for the number of yeast 

cells is given by the function. ( ) ( )
0.693147610 2.042727  

t
f t = .”  Should you be 

worried by Cherie’s remark? 

d. Anja, a third member of your lab working with the same yeast cells, took 

these two measurements: 67.246 10× cells after 4 hours; 616.504 10×  cells 

after 6 hours. Should you be worried by Anja’s results? If Anja’s 

measurements are correct, does your model over estimate or under estimate 

the number of yeast cells at time t? 

 

34. As light from the surface penetrates water, its intensity is diminished. In the clear 

waters of the Caribbean, the intensity is decreased by 15 percent for every 3 meters of 

depth. Thus, the intensity will have the form of a general exponential function.  [UW] 

a. If the intensity of light at the water’s surface is
0I , find a formula for ( )I d , the 

intensity of light at a depth of d meters. Your formula should depend on 
0I

and d. 

b. At what depth will the light intensity be decreased to 1% of its surface 

intensity? 
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35. Myoglobin and hemoglobin are oxygen-carrying molecules in the human body. 

Hemoglobin is found inside red blood cells, which flow from the lungs to the muscles 

through the bloodstream. Myoglobin is found in muscle cells. The function 

( )
1

p
Y M p

p
= =

+
 calculates the fraction of myoglobin saturated with oxygen at a 

given pressure p Torrs. For example, at a pressure of 1 Torr, M(1) = 0.5, which means 

half of the myoglobin (i.e. 50%) is oxygen saturated. (Note: More precisely, you need 

to use something called the “partial pressure”, but the distinction is not important for 

this problem.) Likewise, the function ( )
2.8

2.8 2.826

p
Y H p

p
= =

+
 calculates the fraction 

of hemoglobin saturated with oxygen at a given pressure p.   [UW] 

a. The graphs of ( )M p  and ( )H p  are 

given here on the domain  

0 ≤ p ≤ 100; which is which? 

b. If the pressure in the lungs is 100 

Torrs, what is the level of oxygen 

saturation of the hemoglobin in the 

lungs? 

 

c. The pressure in an active muscle is 20 Torrs. What is the level of oxygen 

saturation of myoglobin in an active muscle? What is the level of hemoglobin 

in an active muscle? 

d. Define the efficiency of oxygen transport at a given pressure p to be 

( )  ( )M p H p− . What is the oxygen transport efficiency at 20 Torrs? At 40 

Torrs? At 60 Torrs? Sketch the graph of ( )  ( )M p H p− ; are there conditions 

under which transport efficiency is maximized (explain)? 

 

36. The length of some fish are modeled by a von Bertalanffy growth function. For 

Pacific halibut, this function has the form ( ) ( )0.18200 1 0.957 tL t e−
= −  where ( )L t  is 

the length (in centimeters) of a fish t years old.  [UW] 

a. What is the length of a newborn halibut at birth? 

b. Use the formula to estimate the length of a 6–year–old halibut. 

c. At what age would you expect the halibut to be 120 cm long? 

d. What is the practical (physical) significance of the number 200 in the formula 

for ( )L t ? 
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37. A cancer cell lacks normal biological growth regulation and can divide continuously. 

Suppose a single mouse skin cell is cancerous and its mitotic cell cycle (the time for 

the cell to divide once) is 20 hours. The number of cells at time t grows according to 

an exponential model.  [UW] 

a. Find a formula ( )C t  for the number of cancerous skin cells after t hours. 

b. Assume a typical mouse skin cell is spherical of radius 50×10−4 cm. Find the 

combined volume of all cancerous skin cells after t hours. When will the 

volume of cancerous cells be 1 cm3? 

 

38. A ship embarked on a long voyage. At the start of the voyage, there were 500 ants in 

the cargo hold of the ship. One week into the voyage, there were 800 ants. Suppose 

the population of ants is an exponential function of time. [UW] 

a. How long did it take the population to double? 

b. How long did it take the population to triple? 

c. When were there be 10,000 ants on board? 

d. There also was an exponentially growing population of anteaters on board. At 

the start of the voyage there were 17 anteaters, and the population of anteaters 

doubled every 2.8 weeks. How long into the voyage were there 200 ants per 

anteater? 

 

39. The populations of termites and spiders in a certain house are growing exponentially. 

The house contains 100 termites the day you move in. After 4 days, the house 

contains 200 termites. Three days after moving in, there are two times as many 

termites as spiders. Eight days after moving in, there were four times as many 

termites as spiders.  How long (in days) does it take the population of spiders to 

triple?  [UW] 
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Section 4.7 Fitting Exponential Models to Data 

 
In the previous section, we saw number lines using logarithmic scales.  It is also common 
to see two dimensional graphs with one or both axes using a logarithmic scale. 
 
One common use of a logarithmic scale on the vertical axis is to graph quantities that are 
changing exponentially, since it helps reveal relative differences.  This is commonly used 
in stock charts, since values historically have grown exponentially over time.   Both stock 
charts below show the Dow Jones Industrial Average, from 1928 to 2010. 

 
 

 
 
 
Both charts have a linear horizontal scale, but the first graph has a linear vertical scale, 
while the second has a logarithmic vertical scale.  The first scale is the one we are more 
familiar with, and shows what appears to be a strong exponential trend, at least up until 
the year 2000.   
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Example 1 

There were stock market drops in 1929 and 2008.  Which was larger? 
 
In the first graph, the stock market drop around 2008 looks very large, and in terms of 
dollar values, it was indeed a large drop.  However, the second graph shows relative 
changes, and the drop in 2009 seems less major on this graph, and in fact the drop 
starting in 1929 was, percentage-wise, much more significant.   
 
Specifically, in 2008, the Dow value dropped from about 14,000 to 8,000, a drop of 
6,000.  This is obviously a large value drop, and amounts to about a 43% drop.  In 1929, 
the Dow value dropped from a high of around 380 to a low of 42 by July of 1932.  
While value-wise this drop of 338 is much smaller than the 2008 drop, it corresponds to 
a 89% drop, a much larger relative drop than in 2008.  The logarithmic scale shows 
these relative changes. 

 
 
The second graph above, in which one axis uses a linear scale and the other axis uses a 
logarithmic scale, is an example of a semi-log graph.   
 
 

Semi-log and Log-log Graphs 

A semi-log graph is a graph with one axis using a linear scale and one axis using a 
logarithmic scale. 

 

A log-log graph is a graph with both axes using logarithmic scales. 

 
 
Example 2 

Plot 5 points on the graph of x
xf )2(3)( =  on a semi-log graph with a logarithmic scale 

on the vertical axis. 
 
To do this, we need to find 5 points on the graph, then calculate the logarithm of the 
output value.  Arbitrarily choosing 5 input values, 
 

 
 

x f(x) log(f(x)) 

-3 
8

3
)2(3 3

=
−

 
-0.426 

-1 
2

3
)2(3 1

=
−

 
0.176 

0 3)2(3 0
=  0.477 

2 12)2(3 2
=  1.079 

5 96)2(3 5
=  1.982 
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Plotting these values on a semi-log graph, 
 
 
 
 
 
 
 

 
 
Notice that on this semi-log scale, values from the exponential function appear linear.  
We can show this behavior is expected by utilizing logarithmic properties.  For the 

function x
abxf =)( , finding log(f(x)) gives 

( ) ( )x
abxf log)(log =   Utilizing the sum property of logs, 

( ) ( ) ( )x
baxf loglog)(log +=  Now utilizing the exponent property, 

( ) ( ) ( )bxaxf loglog)(log +=  

 
 
This relationship is linear, with log(a) as the vertical intercept, and log(b) as the slope.  
This relationship can also be utilized in reverse. 
 
 
Example 3 

An exponential graph is plotted on semi-log axes.  Find a formula for the exponential 
function g(x) that generated this graph. 
 

 
 
The graph is linear, with vertical intercept at (0, 1).  Looking at the change between the 

points (0, 1) and (4, 4), we can determine the slope of the line is 
4

3
.  Since the output is 

log(g(x)), this leads to the equation ( ) xxg
4

3
1)(log += .   
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We can solve this formula for g(x) by rewriting in exponential form and simplifying: 

( ) xxg
4

3
1)(log +=   Rewriting as an exponential, 

x

xg 4

3
1

10)(
+

=   Breaking this apart using exponent rules, 

x

xg 4

3

1 1010)( ⋅=   Using exponent rules to group the second factor, 
x

xg 









⋅= 4

3

1 1010)(   Evaluating the powers of 10, 

( )x
xg 623.510)( =  

 
 

Try it Now 
1. An exponential graph is plotted on a semi-log graph below.  Find a formula for the 

exponential function g(x) that generated this graph. 
 

 

 
 
Fitting Exponential Functions to Data 
 
Some technology options provide dedicated functions for finding exponential functions 
that fit data, but many only provide functions for fitting linear functions to data.  The 
semi-log scale provides us with a method to fit an exponential function to data by 
building upon the techniques we have for fitting linear functions to data.   
 
 

To fit an exponential function to a set of data using linearization 

1. Find the log of the data output values 

2. Find the linear equation that fits the (input, log(output)) pairs.  This equation will 
be of the form log(f(x)) = b + mx. 

3. Solve this equation for the exponential function f(x) 
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Example 4 

The table below shows the cost in dollars per megabyte of storage space on computer 
hard drives from 1980 to 2004, and the data is shown on a standard graph to the right, 
with the input changed to years after 1980. 

 
 
This data appears to be decreasing exponentially.  To find a function that models this 
decay, we would start by finding the log of the costs.  

 
 
As hoped, the graph of the log of costs appears fairly linear, suggesting an exponential 
function will fit the original data will fit reasonably well.  Using technology, we can 
find a linear equation to fit the log(Cost) values.  Using t as years after 1980, linear 
regression gives the equation: 

ttC 231.0794.2))(log( −=  

 
Solving for C(t), 

t
tC

231.0794.210)( −
=  

t
tC

231.0794.2 1010)( −
⋅=  

( )t
tC

231.0794.2 1010)( −
⋅=  

( )t
tC 5877.0622)( ⋅=   

 
This equation suggests that the cost per megabyte for storage on computer hard drives is 
decreasing by about 41% each year.   
 
Using this function, we could predict the cost of storage in the future.  Predicting the 
cost in the year 2020 (t = 40): 
 

Year Cost per MB 

1980 192.31 

1984 87.86 

1988 15.98 

1992 4 

1996 0.173 

2000 0.006849 

2004 0.001149 

 

Year t Cost per MB log(Cost) 

1980 0 192.31 2.284002 

1984 4 87.86 1.943791 

1988 8 15.98 1.203577 

1992 12 4 0.60206 

1996 16 0.173 -0.76195 

2000 20 0.006849 -2.16437 

2004 24 0.001149 -2.93952 
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( ) 000000364.05877.0622)40(
40

≈=C dollars per megabyte, a really small number.  

That is equivalent to $0.36 per terabyte of hard drive storage. 
 
Comparing the values predicted by this model to the actual data, we see the model 
matches the original data in order of magnitude, but the specific values appear quite 
different.  This is, unfortunately, the best exponential model that can fit the data.  It is 
possible that a non-exponential model would fit the data better, or there could just be 
wide enough variability in the data that no relatively simple model would fit the data 
any better. 

 
 
 

Try it Now 
2. The table below shows the value V, in billions of dollars, of US imports from China t 

years after 2000.   

 
    This data appears to be growing exponentially.  Linearize this data and build a model 

to predict how many billions of dollars of imports were expected in 2011. 

 
 

Important Topics of this Section 

Semi-log graph 

Log-log graph 

Linearizing exponential functions 

Fitting an exponential equation to data 

 
 

Try it Now Answers 

1. ( )xxxg 5.025.02 101010)( =−
== .  x

xf )3162.0(100)( =  

2. t
tV )2078.1(545.90)( = .  Predicting in 2011, 45.722)11( =V billion dollars

Year 
Actual Cost 
per MB 

Cost predicted 
by model 

1980 192.31 622.3 

1984 87.86 74.3 

1988 15.98 8.9 

1992 4 1.1 

1996 0.173 0.13 

2000 0.006849 0.015 

2004 0.001149 0.0018 

 

year 2000 2001 2002 2003 2004 2005 

t 0 1 2 3 4 5 

V 100 102.3 125.2 152.4 196.7 243.5 
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Section 4.7 Exercises 

 
Graph each function on a semi-log scale, then find a formula for the linearized function in the 

form ( )( )log f x mx b= + . 

1. ( ) ( )4 1.3
x

f x =     2. ( ) ( )2 1.5
x

f x =    

3. ( ) ( )10 0.2
x

f x =     4. ( ) ( )30 0.7
x

f x =  

 
The graph below is on a semi-log scale, as indicated.  Find a formula for the exponential function 

( )y x . 

5.   6.  
 

 7.   8.  
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Use regression to find an exponential function that best fits the data given. 
 
9. x 1 2 3 4 5 6 

y 1125 1495 2310 3294 4650 6361 
 

10. x 1 2 3 4 5 6 

y 643 829 920 1073 1330 1631 
 

11. x 1 2 3 4 5 6 

y 555 383 307 210 158 122 
 

12. x 1 2 3 4 5 6 

y 699 701 695 668 683 712 
 

 
 
13. Total expenditures (in billions of dollars) in the US for nursing home care are shown below.  

Use regression to find an exponential function that models the data.  What does the model 

predict expenditures will be in 2015? 

Year 1990 1995 2000 2003 2005 2008 

Expenditure 53 74 95 110 121 138 

 
 
14. Light intensity as it passes through water decreases exponentially with depth.  The data 

below shows the light intensity (in lumens) at various depths.  Use regression to find an 

function that models the data.  What does the model predict the intensity will be at 25 feet? 

Depth (ft) 3 6 9 12 15 18 

Lumen  11.5 8.6 6.7 5.2 3.8 2.9 

 
 
15. The average price of electricity (in cents per kilowatt hour) from 1990 through 2008 is given 

below.  Determine if a linear or exponential model better fits the data, and use the better 

model to predict the price of electricity in 2014. 

Year 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 

Cost  7.83 8.21 8.38 8.36 8.26 8.24 8.44 8.95 10.40 11.26 

 
 
16. The average cost of a loaf of white bread from 1986 through 2008 is given below. Determine 

if a linear or exponential model better fits the data, and use the better model to predict the 

price of a loaf of bread in 2016. 

Year 1986 1988 1990 1995 1997 2000 2002 2004 2006 2008 

Cost  0.57 0.66 0.70 0.84 0.88 0.99 1.03 0.97 1.14 1.42 
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Chapter 5: Trigonometric 
Functions of Angles 
In the previous chapters, we have explored a variety of functions which could be 

combined to form a variety of shapes.  In this discussion, one common shape has been 

missing: the circle.  We already know certain things about the circle, like how to find area 

and circumference, and the relationship between radius and diameter, but now, in this 

chapter, we explore the circle and its unique features that lead us into the rich world of 

trigonometry. 
 

Section 5.1 Circles ...................................................................................................... 337 

Section 5.2 Angles ...................................................................................................... 347 

Section 5.3 Points on Circles using Sine and Cosine.................................................. 362 

Section 5.4 The Other Trigonometric Functions ........................................................ 375 

Section 5.5 Right Triangle Trigonometry ................................................................... 385 

 

Section 5.1 Circles 

 

To begin, we need to find distances.  Starting with the Pythagorean Theorem, which 

relates the sides of a right triangle, we can find the distance between two points. 

 

 

Pythagorean Theorem 

The Pythagorean Theorem states that the sum of the squares of the legs of a right 

triangle will equal the square of the hypotenuse of the triangle.   

 

In graphical form, given the triangle shown,
2 2 2

a b c+ = . 

  

 

We can use the Pythagorean Theorem to find the distance between two points on a graph. 

 

 

Example 1 

Find the distance between the points (-3, 2) and (2, 5). 

 

By plotting these points on the plane, we can then draw a 

right triangle with these points at each end of the 

hypotenuse.  We can calculate horizontal width of the 

triangle to be 5 and the vertical height to be 3.   

 

 

a 

b 

c 
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From these we can find the distance between the points using the Pythagorean 

Theorem: 

34

3435 222

=

=+=

dist

dist
 

 

 

Notice that the width of the triangle was calculated using the difference between the x 

(input) values of the two points, and the height of the triangle was found using the 

difference between the y (output) values of the two points.  Generalizing this process 

gives us the distance formula. 

 

 

Distance Formula 

The distance between two points ),( 11 yx  and ),( 22 yx  can be calculated as 

2

12

2

12 )()( yyxxdist −+−=  

 

 

Try it Now 

1. Find the distance between the points (1, 6) and (3, -5). 

 

 

Circles 

 

If we wanted to find an equation to represent a circle with 

a radius of r centered at a point (h, k), we notice that the 

distance between any point (x, y) on the circle and the 

center point is always the same: r.   Noting this, we can 

use our distance formula to write an equation for the 

radius: 
22 )()( kyhxr −+−=  

 

Squaring both sides of the equation gives us the standard equation for a circle. 

 

 

Equation of a Circle 

The equation of a circle centered at the point (h, k) with radius r can be written as 
222 )()( rkyhx =−+−  

 

 

Notice that a circle does not pass the vertical line test.  It is not possible to write y as a 

function of x or vice versa. 

 

r 

(h, k) 

(x, y) 
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Example 2 

Write an equation for a circle centered at the point (-3, 2) with radius 4. 

 

Using the equation from above, h = -3, k = 2, and the radius r = 4.  Using these in our 

formula, 
222 4)2())3(( =−+−− yx   simplified, this gives 

16)2()3( 22 =−++ yx  

 

 

Example 3 

Write an equation for the circle graphed here. 

 

This circle is centered at the origin, the point (0, 0).  By 

measuring horizontally or vertically from the center out to the 

circle, we can see the radius is 3.  Using this information in our 

formula gives: 
222 3)0()0( =−+− yx           simplified, this gives 

922 =+ yx  

 

 

Try it Now 

2. Write an equation for a circle centered at (4, -2) with radius 6. 

 

 

Notice that, relative to a circle centered at the origin, horizontal and vertical shifts of the 

circle are revealed in the values of h and k, which are the coordinates for the center of the 

circle. 

 

 

Points on a Circle 

 

As noted earlier, an equation for a circle cannot be written so that y is a function of x or 

vice versa.  To find coordinates on the circle given only the x or y value, we must solve 

algebraically for the unknown values. 

 

 

Example 4 

Find the points on a circle of radius 5 centered at the origin with an x value of 3. 

 

We begin by writing an equation for the circle centered at the origin with a radius of 5. 

2522 =+ yx  

 

Substituting in the desired x value of 3 gives an equation we can solve for y. 
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416

16925

253

2

22

±=±=

=−=

=+

y

y

y

 

 

There are two points on the circle with an x value of 3:  (3, 4) and (3, -4). 

 

 

Example 5 

Find the x intercepts of a circle with radius 6 centered at the point (2, 4). 

 

We can start by writing an equation for the circle. 

36)4()2( 22 =−+− yx  

 

To find the x intercepts, we need to find the points where y = 0.  Substituting in zero for 

y, we can solve for x. 

36)40()2( 22 =−+−x  

3616)2( 2 =+−x  

20)2( 2 =−x  

202 ±=−x  

522202 ±=±=x  

 

The x intercepts of the circle are ( )0,522 +  and ( )0,522 −  

 

 

Example 6 

In a town, Main Street runs east to west, and Meridian Road runs north to south.  A 

pizza store is located on Meridian 2 miles south of the intersection of Main and 

Meridian.  If the store advertises that it delivers within a 3-mile radius, how much of 

Main Street do they deliver to? 

 

This type of question is one in which introducing a coordinate system and drawing a 

picture can help us solve the problem.  We could either place the origin at the 

intersection of the two streets, or place the origin at the pizza store itself.  It is often 

easier to work with circles centered at the origin, so we’ll place the origin at the pizza 

store, though either approach would work fine. 

 

Placing the origin at the pizza store, the delivery area 

with radius 3 miles can be described as the region 

inside the circle described by 922 =+ yx .   

 

Main Street, located 2 miles north of the pizza store 

and running east to west, can be described by the 

equation y = 2.   
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To find the portion of Main Street the store will deliver to, we first find the boundary of 

their delivery region by looking for where the delivery circle intersects Main Street.  To 

find the intersection, we look for the points on the circle where y = 2.  Substituting y = 2 

into the circle equation lets us solve for the corresponding x values. 

 

236.25

549

92

2

22

±≈±=

=−=

=+

x

x

x

 

 

This means the pizza store will deliver 2.236 miles down Main Street east of Meridian 

and 2.236 miles down Main Street west of Meridian.  We can conclude that the pizza 

store delivers to a 4.472 mile long segment of Main St. 

 

 

In addition to finding where a vertical or horizontal line intersects the circle, we can also 

find where an arbitrary line intersects a circle. 

 

 

Example 7 

Find where the line xxf 4)( =  intersects the circle 16)2( 22 =+− yx . 

 

Normally, to find an intersection of two functions f(x) and g(x) we would solve for the x 

value that would make the functions equal by solving the equation f(x) = g(x).  In the 

case of a circle, it isn’t possible to represent the equation as a function, but we can 

utilize the same idea.   

 

The output value of the line determines the y value:  xxfy 4)( == .  We want the y 

value of the circle to equal the y value of the line, which is the output value of the 

function.  To do this, we can substitute the expression for y from the line into the circle 

equation. 

 

16)2( 22 =+− yx   replace y with the line formula: xy 4=  

16)4()2( 22 =+− xx  expand  

161644
22 =++− xxx  simplify 

164417
2 =+− xx   since this equation is quadratic, we arrange one side to be 0 

012417
2 =−− xx  

 

Since this quadratic doesn’t appear to be easily factorable, we can use the quadratic 

formula to solve for x: 

34

8324

)17(2

)12)(17(4)4()4( 2
±

=
−−−±−−

=x , or approximately x ≈ 0.966 or -0.731 

 

From these x values we can use either equation to find the corresponding y values.   



342  Chapter 5 

 

Since the line equation is easier to evaluate, we might choose to use it: 

923.2)731.0(4)731.0(

864.3)966.0(4)966.0(

−=−=−=

===

fy

fy
 

 

The line intersects the circle at the points (0.966, 3.864) and (-0.731, -2.923). 

 

 

Try it Now 

3. A small radio transmitter broadcasts in a 50 mile radius.  If you drive along a straight 

line from a city 60 miles north of the transmitter to a second city 70 miles east of the 

transmitter, during how much of the drive will you pick up a signal from the 

transmitter? 

 

 

Important Topics of This Section 

Distance formula 

Equation of a Circle 

Finding the x coordinate of a point on the circle given the y coordinate or vice versa 

Finding the intersection of a circle and a line 

 

 

Try it Now Answers 

1.  55  

2. 36)2()4( 22 =++− yx  

3. The circle can be represented by 222 50=+ yx .   

Finding a line from (0,60) to (70,0) gives xy
70

60
60 −= .   

Substituting the line equation into the circle gives 

2

2 260
60 50

70
x x

 
+ − = 
 

.   

Solving this equation, we find x = 14 or x = 45.29, corresponding to points (14, 48) 

and (45.29, 21.18).   

The distance between these points is 41.21 miles. 
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Section 5.1 Exercises 

 

1. Find the distance between the points (5,3) and (-1,-5). 

2. Find the distance between the points (3,3) and (-3,-2). 

3. Write an equation of the circle centered at (8 , -10) with radius 8.  

4. Write an equation of the circle centered at (-9, 9)  with radius 16.  

5. Write an equation of the circle centered at (7, -2) that passes through (-10, 0).  

6. Write an equation of the circle centered at (3, -7) that passes through (15, 13). 

7. Write an equation for a circle where the points (2, 6) and (8, 10)  lie along a diameter. 

8. Write an equation for a circle where the points (-3, 3) and (5, 7)  lie along a diameter. 

9. Sketch a graph of ( ) ( )
2 2

2  3  9x y− + + = . 

10. Sketch a graph of ( ) ( )
2 2

1  2 1 6x y+ + − = . 

11. Find the y intercept(s) of the circle with center (2, 3) with radius 3. 

12. Find the x intercept(s) of the circle with center (2, 3) with radius 4. 

13. At what point in the first quadrant does the line with equation   2   5y x= +  intersect a 

circle with radius 3 and center (0, 5)?  

14. At what point in the first quadrant does the line with equation     2y x= +  intersect the 

circle with radius 6 and center (0, 2)?  

15. At what point in the second quadrant does the line with equation   2   5y x= +  intersect a 

circle with radius 3 and center (-2, 0)?  

16. At what point in the first quadrant does the line with equation     2y x= +  intersect the 

circle with radius 6 and center (-1,0)?  

17. A small radio transmitter broadcasts in a 53 mile radius. If you drive along a straight 

line from a city 70 miles north of the transmitter to a second city 74 miles east of the 

transmitter, during how much of the drive will you pick up a signal from the 

transmitter?  

 

18. A small radio transmitter broadcasts in a 44 mile radius. If you drive along a straight 

line from a city 56 miles south of the transmitter to a second city 53 miles west of the 

transmitter, during how much of the drive will you pick up a signal from the 

transmitter?  
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19. A tunnel connecting two portions of a space 

station has a circular cross-section of radius 15 

feet. Two walkway decks are constructed in the 

tunnel. Deck A is along a horizontal diameter 

and another parallel Deck B is 2 feet below Deck 

A. Because the space station is in a weightless 

environment, you can walk vertically upright 

along Deck A, or vertically upside down along 

Deck B. You have been assigned to paint “safety 

stripes” on each deck level, so that a 6 foot 

person can safely walk upright along either deck. 

Determine the width of the “safe walk zone” on 

each deck.  [UW] 

 

 

 

20. A crawling tractor sprinkler is 

located as pictured here, 100 feet 

south of a sidewalk. Once the water 

is turned on, the sprinkler waters a 

circular disc of radius 20 feet and 

moves north along the hose at the 

rate of ½ inch/second. The hose is 

perpendicular to the 10 ft. wide 

sidewalk. Assume there is grass on 

both sides of the sidewalk.  [UW]  

 

a) Impose a coordinate system. 

Describe the initial coordinates 

of the sprinkler and find 

equations of the lines forming and find equations of the lines forming the north 

and south boundaries of the sidewalk. 

b) When will the water first strike the sidewalk? 

c) When will the water from the sprinkler fall completely north of the sidewalk? 

d) Find the total amount of time water from the sprinkler falls on the sidewalk. 

e) Sketch a picture of the situation after 33 minutes.  Draw an accurate picture of the 

watered portion of the sidewalk. 

f) Find the area of grass watered after one hour. 
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21. Erik’s disabled sailboat is floating anchored 3 miles East and 2 miles north of 

Kingsford.  A ferry leaves Kingsford heading toward Eaglerock at 12 mph. Eaglerock 

is 6 miles due east of Kingsford. After 20 minutes the ferry turns, heading due south. 

Bander is 8 miles south and 1 mile west of Eaglerock. Impose coordinates with 

Bander as the origin. [UW] 

 

 
 

 

a) Find equations for the lines along which the ferry is moving and draw in these 

lines. 

b) The sailboat has a radar scope that will detect any object within 3 miles of the 

sailboat. Looking down from above, as in the picture, the radar region looks like a 

circular disk.  The boundary is the “edge” or circle around this disk, the interior is 

everything inside of the circle, and the exterior is everything outside of the circle. 

Give the mathematical description (an equation or inequality) of the boundary, 

interior and exterior of the radar zone.  Sketch an accurate picture of the radar 

zone by determining where the line connecting Kingsford and Eaglerock would 

cross the radar zone. 

c) When does the ferry enter the radar zone? 

d) Where and when does the ferry exit the radar zone? 

e) How long does the ferry spend inside the radar zone? 

 

 

 

 

 

 

 

 

North 

Kingsford Eaglerock 

Bander 
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22. Nora spends part of her summer driving a combine during the wheat harvest. Assume 

she starts at the indicated position heading east at 10 ft/sec toward a circular wheat 

field of radius 200 ft. The combine cuts a swath 20 feet wide and begins when the 

corner of the machine labeled “a” is 60 feet north and 60 feet west of the western-

most edge of the field. [UW] 

 
a) When does Nora’s combine first start cutting the wheat? 

b) When does Nora’s combine first start cutting a swath 20 feet wide? 

c) Find the total amount of time wheat is being cut during this pass across the field. 

d) Estimate the area of the swath cut during this pass across the field. 

 

 

23. The vertical cross-section of a drainage ditch is 

pictured to the right.  Here, R indicates in each 

case the radius of a circle with R = 10 feet, 

where all of the indicated circle centers lie 

along a horizontal line 10 feet above and 

parallel to the ditch bottom. Assume that water 

is flowing into the ditch so that the level above 

the bottom is rising at a rate of 2 inches per 

minute. [UW] 

 

a) When will the ditch be completely full? 

b) Find a piecewise defined function that 

models the vertical cross-section of the ditch. 

c) What is the width of the filled portion of the ditch after 1 hour and 18 minutes? 

d) When will the filled portion of the ditch be 42 feet wide? 50 feet wide? 73 feet 

wide? 
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Section 5.2 Angles 

 

Because many applications involving circles also involve a rotation of the circle, it is 

natural to introduce a measure for the rotation, or angle, between two rays (line segments) 

emanating from the center of a circle.  The angle measurement you are most likely 

familiar with is degrees, so we’ll begin there. 

 

 

Measure of an Angle 

The measure of an angle is a measurement between two  

intersecting lines, line segments or rays, starting at the initial side  

and ending at the terminal side. It is a rotational measure, not a 

linear measure. 

 

 

Measuring Angles 

 

Degrees 

A degree is a measurement of angle.  One full rotation around the circle is equal to 

360 degrees, so one degree is 1/360 of a circle.   

 

An angle measured in degrees should always include the unit “degrees” after the 

number, or include the degree symbol °.  For example, 90 degrees = °90 . 

 

Standard Position 

When measuring angles on a circle, unless otherwise directed, we measure angles in 

standard position:  starting at the positive horizontal axis and with counter-clockwise 

rotation. 

 

 

Example 1 

Give the degree measure of the angle shown on the circle. 

 

The vertical and horizontal lines divide the circle into quarters.  

Since one full rotation is 360 degrees= °360 , each quarter rotation 

is 360/4 = °90  or 90 degrees.   

 

 

Example 2 

Show an angle of °30 on the circle. 

 

An angle of °30 is 1/3 of °90 , so by dividing a quarter rotation into 

thirds, we can sketch a line at °30 . 

initial side 

terminal side 

angle 
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Going Greek 

 

When representing angles using variables, it is traditional to use Greek letters.  Here is a 

list of commonly encountered Greek letters. 

 

θ  ϕ  or φ  α  β  γ  

theta phi alpha beta gamma 

 

 

Working with Angles in Degrees 

 

Notice that since there are 360 degrees in one rotation, an 

angle greater than 360 degrees would indicate more than 1 

full rotation.  Shown on a circle, the resulting direction in 

which this angle’s terminal side points would be the same as 

for another angle between 0 and 360 degrees.   These angles 

would be called coterminal. 

 

 

Coterminal Angles 

After completing their full rotation based on the given angle, two angles are 

coterminal if they terminate in the same position, so their terminal sides coincide 

(point in the same direction). 

 

 

Example 3 

Find an angle θ that is coterminal with °800 , where 0 360θ° ≤ < °  

 

Since adding or subtracting a full rotation, 360 degrees, would result in an angle with 

terminal side pointing in the same direction, we can find coterminal angles by adding or 

subtracting 360 degrees.   An angle of 800 degrees is coterminal with an angle of 800-

360 = 440 degrees.  It would also be coterminal with an angle of 440-360 = 80 degrees. 

 

The angle °= 80θ is coterminal with °800 . 

 

By finding the coterminal angle between 0 and 360 degrees, it can be easier to see 

which direction the terminal side of an angle points in. 

 

 

Try it Now 

1. Find an angle α  that is coterminal with °870 , where °<≤° 3600 α . 
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On a number line a positive number is measured to the right and a negative number is 

measured in the opposite direction (to the left).  Similarly a positive angle is measured 

counterclockwise and a negative angle is measured in the opposite direction (clockwise). 

 

 

Example 4 

Show the angle °− 45 on the circle and find a positive angleα  that is coterminal and 

°<≤° 3600 α . 

 

Since 45 degrees is half of 90 degrees, we can start at the 

positive horizontal axis and measure clockwise half of a 90 

degree angle.   

 

Since we can find coterminal angles by adding or subtracting a 

full rotation of 360 degrees, we can find a positive coterminal 

angle here by adding 360 degrees: 

°=°+°− 31536045  

 

 

Try it Now 

2. Find an angle β  coterminal with 300− °  where 0 360β° ≤ < ° . 

 

 

It can be helpful to have a 

familiarity with the frequently 

encountered angles in one 

rotation of a circle.  It is common 

to encounter multiples of 30, 45, 

60, and 90 degrees.  These values 

are shown to the right.  

Memorizing these angles and 

understanding their properties 

will be very useful as we study 

the properties associated with 

angles 

 

 

 

 

Angles in Radians 

 

While measuring angles in degrees may be familiar, doing so often complicates matters 

since the units of measure can get in the way of calculations.  For this reason, another 

measure of angles is commonly used.  This measure is based on the distance around a 

circle. 

-45° 

315° 

0° 

30° 

60° 
90° 

120° 

150° 

180° 

210° 

240° 
270° 

300° 

330° 

45° 135° 

225° 315° 
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Arclength 

Arclength is the length of an arc, s, along a circle of radius r 

subtended (drawn out) by an angleθ .   

 

It is the portion of the circumference between the initial and  

terminal sides of the angle. 

 

 

The length of the arc around an entire circle is called the circumference of a circle.  The 

circumference of a circle is rC π2= .  The ratio of the circumference to the radius, 

produces the constant π2 .  Regardless of the radius, this ratio is always the same, just as 

how the degree measure of an angle is independent of the radius.   

 

To elaborate on this idea, consider two circles, one with radius 2 and one with radius 3.  

Recall the circumference (perimeter) of a circle is rC π2= , where r is the radius of the 

circle.  The smaller circle then has circumference ππ 4)2(2 =  and the larger has 

circumference ππ 6)3(2 = . 

 

Drawing a 45 degree angle on the two circles, we might be 

interested in the length of the arc of the circle that the angle 

indicates.  In both cases, the 45 degree angle draws out an arc that 

is 1/8th of the full circumference, so for the smaller circle, the 

arclength = 
1 1

(4 )
8 2

π π= , and for the larger circle, the length of the 

arc or arclength = 
1 3

(6 )
8 4

π π= . 

 

Notice what happens if we find the ratio of the arclength divided by the radius of the 

circle: 

Smaller circle:  

1
12

2 4

π
π=  

Larger circle: 

3
14

3 4

π
π=  

 

The ratio is the same regardless of the radius of the circle – it only depends on the angle.  

This property allows us to define a measure of the angle based on arclength. 

 

 

 

 

 

θ 

r s 

45° 

2 3 
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Radians 

The radian measure of an angle is the ratio of the length of the circular arc subtended 

by the angle to the radius of the circle.   

 

In other words, if s is the length of an arc of a circle, and r is the radius of the circle, 

then 

radian measure
s

r
=  

If the circle has radius 1, then the radian measure corresponds to the length of the arc. 

 

 

Because radian measure is the ratio of two lengths, it is a unitless measure.  It is not 

necessary to write the label “radians” after a radian measure, and if you see an angle that 

is not labeled with “degrees” or the degree symbol, you should assume that it is a radian 

measure. 

 

Considering the most basic case, the unit circle (a circle with radius 1), we know that 1 

rotation equals 360 degrees, °360 .  We can also track one rotation around a circle by 

finding the circumference, rC π2= , and for the unit circle π2=C .  These two different 

ways to rotate around a circle give us a way to convert from degrees to radians.  

 

1 rotation = °360 = π2 radians 

½ rotation = °180  = π radians 

¼ rotation = °90 = 
2

π
radians 

 

 

Example 5 

Find the radian measure of one third of a full rotation. 

 

For any circle, the arclength along such a rotation would be one third of the 

circumference, 
3

2
)2(

3

1 r
rC

π
π == .  The radian measure would be the arclength divided 

by the radius: 

Radian measure = 
2 2

3 3

r

r

π π
= . 
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Converting Between Radians and Degrees 

1 degree = 
180

π
 radians    

or:  to convert from degrees to radians, multiply by 
radians

180

π

°
 

 

1 radian = 
180

π
 degrees 

or:  to convert from radians to degrees, multiply by 
180

radiansπ

°
 

 

 

Example 6 

Convert 
6

π
 radians to degrees. 

Since we are given a problem in radians and we want degrees, we multiply by 
π

°180
. 

Remember radians are a unitless measure, so we don’t need to write “radians.” 

6

π
 radians = 30

180

6
=

°
⋅

π

π
 degrees. 

 

 

Example 7 

Convert 15 degrees to radians. 

 

In this example, we start with degrees and want radians so we use the other conversion

°180

π
so that the degree units cancel and we are left with the unitless measure of radians. 

15 degrees = 
12180

15
ππ

=
°

⋅°  

 

 

Try it Now 

3. Convert 
10

7π
 radians to degrees. 
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Just as we listed all the common 

angles in degrees on a circle, we 

should also list the corresponding 

radian values for the common 

measures of a circle 

corresponding to degree 

multiples of 30, 45, 60, and 90 

degrees.  As with the degree 

measurements, it would be 

advisable to commit these to 

memory. 

 

We can work with the radian 

measures of an angle the same 

way we work with degrees. 

 

 

 

 

Example 8 

Find an angle β   that is coterminal with 
19

4

π
, where πβ 20 <≤ . 

 

When working in degrees, we found coterminal angles by adding or subtracting 360 

degrees, a full rotation.  Likewise, in radians, we can find coterminal angles by adding 

or subtracting full rotations of 2π  radians. 

 

19 19 8 11
2

4 4 4 4

π π π π
π− = − =         

The angle
11

4

π
 is coterminal, but not less than 2π , so we subtract another rotation. 

11 11 8 3
2

4 4 4 4

π π π π
π− = − =  

 

The angle 
3

4

π
 is coterminal with 

19

4

π
. 

 

 

Try it Now 

4.  Find an angle φ that is coterminal with 
17

6

π
−  where πφ 20 <≤ . 

 

 

0, 2π  

6

π
4

π3

π2

π
2

3

π

3

4

π

5

6

π

π  

7

6

π

5

4

π

4

3

π
3

2

π
5

3

π

7

4

π

11

6

π
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Arclength and Area of a Sector 

 

Recall that the radian measure of an angle was defined as the ratio of the arclength of a 

circular arc to the radius of the circle, 
s

r
θ = .  From this relationship, we can find 

arclength along a circle given an angle. 

 

 

Arclength on a Circle 

The length of an arc, s, along a circle of radius r subtended by angleθ  in radians is 

s rθ=  

 

 

Example 9 

Mercury orbits the sun at a distance of approximately 36 million miles.  In one Earth 

day, it completes 0.0114 rotation around the sun.  If the orbit was perfectly circular, 

what distance through space would Mercury travel in one Earth day? 

 

To begin, we will need to convert the decimal rotation value to a radian measure.   

 

 

Since one rotation = 2π  radians, 

0.0114 rotation = 2 (0.0114) 0.0716π =  radians. 

 

Combining this with the given radius of 36 million miles, we can find the arclength: 

(36)(0.0716) 2.578s = =  million miles travelled through space. 

 

 

Try it Now 

5.  Find the arclength along a circle of radius 10 subtended by an angle of 215 degrees. 

 

 

In addition to arclength, we can also use angles to find the area of a sector of a circle.  A 

sector is a portion of a circle contained between two lines from the center, like a slice of 

pizza or pie. 

 

Recall that the area of a circle with radius r can be found using the formula 
2

A rπ= .  If a 

sector is cut out by an angle of θ , measured in radians, then the fraction of full circle that 

angle has cut out is 
2

θ

π
, since 2π  is one full rotation.  Thus, the area of the sector would 

be this fraction of the whole area:  

Area of sector 
2

2 21

2 2 2

r
r r

θ θπ
π θ

π π

 
= = = 
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Area of a Sector 

The area of a sector of a circle with radius r subtended by an  

angle θ , measured in radians, is  

Area of sector
21

2
rθ=  

 

 

 

Example 10 

An automatic lawn sprinkler sprays a distance of 20 feet while rotating 30 degrees.  

What is the area of the sector of grass the sprinkler waters? 

 

First, we need to convert the angle measure into radians.  Since 30 degrees is one of our 

common angles, you ideally should already know the equivalent radian measure, but if 

not we can convert: 

30 degrees = 30
180 6

π π
⋅ =  radians.  

 

The area of the sector is then Area 21
(20) 104.72

2 6

π 
= = 

 
 ft2 

 

 

Try it Now 

6.  In central pivot irrigation, a large irrigation 

pipe on wheels rotates around a center point, 

as pictured here1. A farmer has a central pivot 

system with a radius of 400 meters.  If water 

restrictions only allow her to water 150 

thousand square meters a day, what angle 

should she set the system to cover? 

 

 

Linear and Angular Velocity 

 

When your car drives down a road, it makes sense to describe its speed in terms of miles 

per hour or meters per second.  These are measures of speed along a line, also called 

linear velocity.  When a point on a circle rotates, we would describe its angular velocity, 

or rotational speed, in radians per second, rotations per minute, or degrees per hour. 

 

 

 

                                                 
1 http://commons.wikimedia.org/wiki/File:Pivot_otech_002.JPG  CC-BY-SA 

r 

θ 

20 ft 30° 
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Angular and Linear Velocity 

As a point moves along a circle of radius r, its angular velocity, ω , can be found as 

the angular rotation θ  per unit time, t. 

t

θ
ω =  

 

The linear velocity, v, of the point can be found as the distance travelled, arclength s, 

per unit time, t. 

s
v

t
=  

 

 

Example 11 

A water wheel completes 1 rotation every 5 seconds.  Find the 

angular velocity in radians per second.2 

 

The wheel completes 1 rotation = 2π  radians in 5 seconds, so the 

angular velocity would be 
2

1.257
5

π
ω = ≈ radians per second. 

 

 

Combining the definitions above with the arclength equation, s rθ= , we can find a 

relationship between angular and linear velocities.  The angular velocity equation can be 

solved for θ , giving tθ ω= .  Substituting this into the arclength equation gives 

s r r tθ ω= = .  

 

Substituting this into the linear velocity equation gives 

s r t
v r

t t

ω
ω= = =  

 

 

Relationship Between Linear and Angular Velocity 

When the angular velocity is measured in radians per unit time, linear velocity and 

angular velocity are related by the equation 

v rω=  

 

 

 

 

 

 

                                                 
2 http://en.wikipedia.org/wiki/File:R%C3%B6mische_S%C3%A4gem%C3%BChle.svg CC-BY 



  Section 5.2 Angles     357 

 

Example 12 

A bicycle has wheels 28 inches in diameter.  A tachometer determines the wheels are 

rotating at 180 RPM (revolutions per minute).  Find the speed the bicycle is travelling 

down the road. 

 

Here we have an angular velocity and need to find the corresponding linear velocity, 

since the linear speed of the outside of the tires is the speed at which the bicycle travels 

down the road.  

 

We begin by converting from rotations per minute to radians per minute.  It can be 

helpful to utilize the units to make this conversion 

rotations 2 radians radians
180 360

minute rotation minute

π
π⋅ =  

 

Using the formula from above along with the radius of the wheels, we can find the 

linear velocity 

radians inches
(14 inches) 360 5040

minute minute
v π π

 
= = 

 
 

 

You may be wondering where the “radians” went in this last equation.  Remember that 

radians are a unitless measure, so it is not necessary to include them. 

 

Finally, we may wish to convert this linear velocity into a more familiar measurement, 

like miles per hour. 

inches 1 feet 1 mile 60 minutes
5040 14.99

minute 12 inches 5280 feet 1 hour
π ⋅ ⋅ ⋅ =  miles per hour (mph). 

 

 

Try it Now 

7.  A satellite is rotating around the earth at 27,934 kilometers per minute at an altitude of 

242 km above the earth.  If the radius of the earth is 6378 kilometers, find the angular 

velocity of the satellite. 
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Important Topics of This Section 

Degree measure of angle 

Radian measure of angle 

Conversion between degrees and radians 

Common angles in degrees and radians 

Coterminal angles 

Arclength 

Area of a sector 

Linear and angular velocity 

 

 

Try it Now Answers 

1. °=−−= 150360360870α  

 

2. °=+−= 60360300β  

 

3. °=
°

⋅ 126
180

10

7

π

π
 

 

4. 
6

7

6

12

6

12

6

17
22

6

17 ππππ
ππ

π
=++−=++−  

 

5. 215° = 
180

215π
  radians.  525.37

18

215

180

215
10 ≈=⋅=

ππ
s   

 

6. 000,150)400(
2

1 2 =θ .  875.1=θ , or °43.107  

 

7.  v = 27934.  r = 6378+242=6620.   2196.4
6620

27934
===

r

v
ω  radians per hour.
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Section 5.2 Exercises 

 

1. Indicate each angle on a circle:  30°, 300°, -135°, 70°, 
2

3

π
, 

7

4

π
 

 

2. Indicate each angle on a circle:  30°, 315°, -135°, 80°, 
7

6

π
, 

3

4

π
 

 

3. Convert the angle 180° to radians. 

 

4. Convert the angle 30° to radians. 

 

5. Convert the angle 
5

6

π
 from radians to degrees. 

 

6. Convert the angle 
11 

6

π
 from radians to degrees. 

 

7. Find the angle between 0° and 360° that is coterminal with a 685°  angle.  

 

8. Find the angle between 0° and  360° that is coterminal with a 451°  angle. 

 

9. Find the angle between 0° and 360° that is coterminal with a -1746°  angle. 

 

10. Find the angle between 0° and 360° that is coterminal with a -1400°  angle. 

 

11. Find the angle between 0 and 2π in radians that is coterminal with the angle 
26 

9

π
. 

 

12. Find the angle between 0 and 2π  in radians that is coterminal with the angle  
17 

3

π
. 

 

13. Find the angle between 0 and 2π in radians that is coterminal with the angle 
3 

2

π
− . 

 

14. Find the angle between 0 and 2π  in radians that is coterminal with the angle  
7 

6

π
− .  

 

15. On a circle of radius 7 miles, find the length of the arc that subtends a central angle of 

5 radians.  

 

16. On a circle of radius 6 feet, find the length of the arc that subtends a central angle of 1 

radian.  
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17. On a circle of radius 12 cm, find the length of the arc that subtends a central angle of 

120 degrees. 

 

18. On a circle of radius 9 miles, find the length of the arc that subtends a central angle of 

800 degrees.  

 

19. Find the distance along an arc on the surface of the Earth that subtends a central angle 

of 5 minutes (1 minute = 1/60 degree). The radius of the Earth is 3960 miles.  

 

20. Find the distance along an arc on the surface of the Earth that subtends a central angle 

of 7 minutes (1 minute = 1/60 degree). The radius of the Earth is 3960 miles. 

 

21. On a circle of radius 6 feet, what angle in degrees would subtend an arc of length 3 

feet? 

 

22. On a circle of radius 5 feet, what angle in degrees would subtend an arc of length 2 

feet? 

 

23. A sector of a circle has a central angle of 45°. Find the area of the sector if the radius 

of the circle is 6 cm. 

 

24. A sector of a circle has a central angle of 30°. Find the area of the sector if the radius 

of the circle is 20 cm. 

 

25. A truck with 32-in.-diameter wheels is traveling at 60 mi/h.  Find the angular speed of 

the wheels in rad/min.  How many revolutions per minute do the wheels make?  

 

26. A bicycle with 24-in.-diameter wheels is traveling at 15 mi/h.  Find the angular speed 

of the wheels in rad/min.  How many revolutions per minute do the wheels make? 

 

27. A wheel of radius 8 in. is rotating 15°/sec. What is the linear speed v, the angular 

speed in RPM, and the angular speed in rad/sec? 

 

28. A wheel of radius 14 in. is rotating 0.5 rad/sec. What is the linear speed v, the angular 

speed in RPM, and the angular speed in deg/sec? 

 

29. A CD has diameter of 120 millimeters.  When playing audio, the angular speed varies 

to keep the linear speed constant where the disc is being read.  When reading along 

the outer edge of the disc, the angular speed is about 200 RPM (revolutions per 

minute).  Find the linear speed. 

 

30. When being burned in a writable CD-R drive, the angular speed of a CD is often 

much faster than when playing audio, but the angular speed still varies to keep the 

linear speed constant where the disc is being written.  When writing along the outer 

edge of the disc, the angular speed of one drive is about 4800 RPM (revolutions per 

minute).  Find the linear speed. 
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31. You are standing on the equator of the Earth (radius 3960 miles). What is your linear 

and angular speed? 

 

32. The restaurant in the Space Needle in Seattle rotates at the rate of one revolution 

every 47 minutes. [UW] 

a) Through how many radians does it turn in 100 minutes? 

b) How long does it take the restaurant to rotate through 4 radians? 

c) How far does a person sitting by the window move in 100 minutes if the radius of 

the restaurant is 21 meters? 
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Section 5.3 Points on Circles Using Sine and Cosine 

 

While it is convenient to describe the location of a point on a circle using an angle or a 

distance along the circle, relating this information to the x and y coordinates and the circle 

equation we explored in Section 5.1 is an important application of trigonometry.  

 

A distress signal is sent from a sailboat during a storm, but the transmission is unclear 

and the rescue boat sitting at the marina cannot determine the sailboat’s location.  Using 

high powered radar, they determine the distress signal is coming from a distance of 20 

miles at an angle of 225 degrees from the marina.  How many miles east/west and 

north/south of the rescue boat is the stranded sailboat? 

 

In a general sense, to investigate this, we begin by 

drawing a circle centered at the origin with radius r, 

and marking the point on the circle indicated by some 

angle θ.  This point has coordinates (x, y).   

 

If we drop a line segment vertically down from this 

point to the x axis, we would form a right triangle 

inside of the circle.   

 

No matter which quadrant our angle θ puts us in we 

can draw a triangle by dropping a perpendicular line 

segment to the x axis, keeping in mind that the values 

of x and y may be positive or negative, depending on the quadrant. 

 

Additionally, if the angle θ puts us on an axis, we simply measure the radius as the x or y 

with the other value being 0, again ensuring we have appropriate signs on the coordinates 

based on the quadrant. 

  

Triangles obtained from different radii will all be similar triangles, meaning 

corresponding sides scale proportionally.  While the lengths of the sides may change, as 

we saw in the last section, the ratios of the side lengths will always remain constant for 

any given angle. 

 

1 2

1 2

y y

r r
=  

1 2

1 2

x x

r r
=  

 

 

      

To be able to refer to these ratios more easily, we will give them names.  Since the ratios 

depend on the angle, we will write them as functions of the angle θ . 

(x, y) 

r 

θ 

r1 

θ 

y1 

x1 

r2 

θ 

y2 

x2 
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Sine and Cosine 

For the point (x, y) on a circle of radius r at an angle of θ , we can  

define two important functions as the ratios of the sides of the 

corresponding triangle: 

The sine function:  
r

y
=)sin(θ  

The cosine function:  
r

x
=)cos(θ  

 

 

In this chapter, we will explore these functions using both circles and right triangles.  In 

the next chapter, we will take a closer look at the behavior and characteristics of the sine 

and cosine functions. 

 

 

Example 1 

The point (3, 4) is on the circle of radius 5 at some angle θ.  Find )cos(θ and )sin(θ . 

 

Knowing the radius of the circle and coordinates of the point, we can evaluate the 

cosine and sine functions as the ratio of the sides. 

5

3
)cos( ==

r

x
θ   

5

4
)sin( ==

r

y
θ  

 

 

There are a few cosine and sine values which we can determine fairly easily because the 

corresponding point on the circle falls on the x or y axis. 

 

 

Example 2 

Find )90cos( °  and )90sin( °  

 

On any circle, the terminal side of a 90 degree angle 

points straight up, so the coordinates of the 

corresponding point on the circle would be (0, r).  

Using our definitions of cosine and sine, 

0
0

)90cos( ===°
rr

x
 

1)90sin( ===°
r

r

r

y
 

 

 

 

 

(x, y) 

r 

θ 

y 

x 

r 

90° 

 

(0, r) 
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Try it Now 

1. Find cosine and sine of the angle π . 

 

 

Notice that the definitions above can also be stated as: 

 

 

Coordinates of the Point on a Circle at a Given Angle 

On a circle of radius r at an angle of θ , we can find the coordinates of the point  

(x, y)  at that angle using 

)cos(θrx =  

)sin(θry =  

 

On a unit circle, a circle with radius 1, )cos(θ=x  and )sin(θ=y . 

 

 

Utilizing the basic equation for a circle centered at the origin, 222 ryx =+ , combined 

with the relationships above, we can establish a new identity. 

 
222 ryx =+      substituting the relations above, 

222 ))sin(())cos(( rrr =+ θθ   simplifying, 
22222 ))(sin())(cos( rrr =+ θθ  dividing by 

2
r  

1))(sin())(cos( 22 =+ θθ   or using shorthand notation 

1)(sin)(cos 22 =+ θθ  

 

Here )(cos 2 θ  is a commonly used shorthand notation for 2))(cos(θ .  Be aware that many 

calculators and computers do not understand the shorthand notation. 

 

In Section 5.1 we related the Pythagorean Theorem 
222

cba =+  to the basic equation of 

a circle 222 ryx =+ , which we have now used to arrive at the Pythagorean Identity. 

 

 

Pythagorean Identity 

The Pythagorean Identity.  For any angle θ,  1)(sin)(cos 22 =+ θθ . 

 

 

One use of this identity is that it helps us to find a cosine value of an angle if we know 

the sine value of that angle or vice versa.  However, since the equation will yield two 

possible values, we will need to utilize additional knowledge of the angle to help us find 

the desired value. 
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Example 3 

If 
7

3
)sin( =θ  and θ  is in the second quadrant, find )cos(θ . 

 

Substituting the known value for sine into the Pythagorean identity, 

1
7

3
)(cos

2

2 =







+θ  

1
49

9
)(cos2 =+θ  

49

40
)(cos2 =θ  

40 40 2 10
cos( )

49 7 7
θ = ± = ± = ±  

 

Since the angle is in the second quadrant, we know the x value of the point would be 

negative, so the cosine value should also be negative.  Using this additional information, 

we can conclude that 
2 10

cos( )
7

θ = − . 

 

 

Values for Sine and Cosine 

 

At this point, you may have noticed that we haven’t found any cosine or sine values from 

angles not on an axis.  To do this, we will need to utilize our knowledge of triangles. 

 

First, consider a point on a circle at an angle of 45 degrees, or 
4

π
.  

At this angle, the x and y coordinates of the corresponding point 

on the circle will be equal because 45 degrees divides the first 

quadrant in half.  Since the x and y values will be the same, the 

sine and cosine values will also be equal.  Utilizing the 

Pythagorean Identity, 

1
4

sin
4

cos 22 =







+






 ππ
 since the sine and cosine are equal, we can 

     substitute sine with cosine 

1
4

cos
4

cos 22 =







+






 ππ
 add like terms 

1
4

cos2 2 =






π
   divide 

2

1

4
cos 2 =







π
   since the x value is positive, we’ll keep the positive root 

 

1 

45° 

y 

x 

(x, y) = (x, x) 
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2

1

4
cos =







π
   often this value is written with a rationalized denominator  

 

Remember, to rationalize the denominator we multiply by a term equivalent to 1 to get 

rid of the radical in the denominator. 

2

2

4

2

2

2

2

1

4
cos ===







π
  

 

Since the sine and cosine are equal, 
2

2

4
sin =







π
 as well.  The (x, y) coordinates for a 

point on a circle of radius 1 at an angle of 45 degrees are 










2

2
,

2

2
. 

 

 

Example 4 

Find the coordinates of the point on a circle of radius 6 at an angle of 
4

π
. 

 

Using our new knowledge that 
2

2

4
sin =







π
 and 

2

2

4
cos =







π
, along with our 

relationships that stated )cos(θrx =  and )sin(θry = , we can find the coordinates of 

the point desired: 

23
2

2
6

4
cos6 =










=








=

π
x  

23
2

2
6

4
sin6 =










=








=

π
y  

 

 

Try it Now 

2. Find the coordinates of the point on a circle of radius 3 at an angle of  °90 . 

 

 

Next, we will find the cosine and sine at an angle of 

30 degrees, or 
6

π
.  To do this, we will first draw a 

triangle inside a circle with one side at an angle of 30 

degrees, and another at an angle of -30 degrees.  If the 

resulting two right triangles are combined into one 

r 

30° 

(x, y) 
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large triangle, notice that all three angles of this larger triangle will be 60 degrees.   

Since all the angles are equal, the sides will all be equal as 

well.  The vertical line has length 2y, and since the sides are all 

equal we can conclude that 2y = r, or 
2

r
y = .  Using this, we 

can find the sine value: 

2

11

2

2

6
sin =⋅===









r

r

r

r

r

yπ
 

 

Using the Pythagorean Identity, we can find the cosine value: 

1
6

sin
6

cos 22 =







+






 ππ
 

1
2

1

6
cos

2

2 =







+






π
 

4

3

6
cos 2 =







π
   since the x value is positive, we’ll keep the positive root 

2

3

4

3

6
cos ==







π
 

 

The (x, y) coordinates for the point on a circle of radius 1 at an angle of 30 degrees are 












2

1
,

2

3
. 

 

By drawing a the triangle inside the unit circle with a 30 degree angle and reflecting it 

over the line y = x, we can find the cosine and sine for 60 degrees, or 
3

π
, without any 

additional work. 

 

 

 

 

 

 

 

 

 

By this symmetry, we can see the coordinates of the point on the unit circle at an angle of 

60 degrees will be 










2

3
,

2

1
, giving 

30° 

 

2

1  

2

3  

1 

y = x 

30° 

 

2

1  

1 

60° 

 

y = x 

2

3  

60° 

60° 

60° 

r 

r 

y 

y 
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2

1

3
cos =







π
 and 

2

3

3
sin =







π
 

We have now found the cosine and sine values for all the commonly encountered angles 

in the first quadrant of the unit circle.   

 

Angle 0  

6

π
, or 30° 

4

π
, or 45° 

3

π
, or 60° 

2

π
, or 90° 

Cosine 1 3

2
 

2

2
 

1

2
 

0 

Sine 0 1

2
 2

2
 

3

2
 

1 

 

For any given angle in the first quadrant, there will be an angle in another quadrant with 

the same sine value, and yet another angle in yet another quadrant with the same cosine 

value.  Since the sine value is the y coordinate on the unit circle, the other angle with the 

same sine will share the same y value, but have the opposite x value.  Likewise, the angle 

with the same cosine will share the same x value, but have the opposite y value. 

 

As shown here, angle α has the same sine value as angle θ; the cosine values would be 

opposites.  The angle β has the same cosine value as the angle θ; the sine values would be 

opposites. 

 

)sin()sin( αθ =  and  )cos()cos( αθ −=  )sin()sin( βθ −=  and  )cos()cos( βθ =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is important to notice the relationship between the angles.  If, from the angle, you 

measured the smallest angle to the horizontal axis, all would have the same measure in 

absolute value.  We say that all these angles have a reference angle of θ. 

 

 

 

 

(x, y) 

r 
θ 

α 

(x, y) 

r 
θ 

β 
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Reference Angle 

An angle’s reference angle is the size of the 

smallest angle to the horizontal axis. 

 

A reference angle is always an angle between 0  

and 90 degrees, or 0 and 
2

π
 radians. 

 

Angles share the same cosine and sine values as  

their reference angles, except for signs (positive or  

negative) which can be determined from the  

quadrant of the angle. 

 

 

Example 5 

Find the reference angle of 150 degrees.  Use it to find )150cos( ° and )150sin( ° . 

 

150 degrees is located in the second quadrant.  It is 30 degrees short of the horizontal 

axis at 180 degrees, so the reference angle is 30 degrees. 

 

This tells us that 150 degrees has the same sine and cosine values as 30 degrees, except 

for sign.  We know that 
2

1
)30sin( =°  and 

2

3
)30cos( =° .  Since 150 degrees is in the 

second quadrant, the x coordinate of the point on the circle would be negative, so the 

cosine value will be negative.  The y coordinate is positive, so the sine value will be 

positive. 

2

1
)150sin( =°  and 

2

3
)150cos( −=°  

The (x, y) coordinates for the point on a unit circle at an angle of °150  are 








 −

2

1
,

2

3
. 

 

 

Using symmetry and reference angles, we can fill in cosine and sine values at the rest of 

the special angles on the unit circle.  Take time to learn the (x, y) coordinates of all the 

major angles in the first quadrant! 

(x, y) 

θ 

θ 

θ 

θ 
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Example 6 

Find the coordinates of the point on a circle of radius 12 at an angle of 
6

7π
. 

 

Note that this angle is in the third quadrant, where both x and y are negative.  Keeping 

this in mind can help you check your signs of the sine and cosine function. 

 

36
2

3
12

6

7
cos12 −=









 −
=








=

π
x  

6
2

1
12

6

7
sin12 −=







 −
=








=

π
y  

 

The coordinates of the point are )6,36( −− . 

 

 

Try it Now 

3. Find the coordinates of the point on a circle of radius 5 at an angle of 
5

3

π
. 

3 1
30 , , ,

6 2 2

π
°

 
 
 

2 2
45 , , ,

4 2 2

π
°

 
 
 

 

1 3
60 , ,

3 2 2
,

π
°

 
 
 

( )90 , , 0 1
2

,
π

°2 1 3
120 , ,

3 2 2
,

π
°

 
− 
 

 

3 2 2
135 , ,

4 2 2
,

π
°

 
− 
 

5 3 1
150 , ,

6 2 2
,

π
°

 
− 
 

 

( )180 , , 1 0,π° −

5 2 2
225 , ,

4 2 2
,

π
°

 
− − 
 

4 1 3
240 , ,

3 2 2
,

π
°

 
− − 
 

( )
3

270 , , 0 1
2

,
π

° −

5 1 3
300 , ,

3 2 2
,

π
°

 
− 

 

7 2 2
315 , ,

4 2 2
,

π
°

 
− 

 
 

11 3 1
330 , ,

6 2 2
,

π
°

 
− 

 
 

( )

( )

0 , 0, 1, 0

360 , 2 , 1, 0π

°

°

7 3 1
210 , ,

6 2 2
,

π
°

 
− − 
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Example 7 

We now have the tools to return to the sailboat question posed at the beginning of this 

section.  

 

A distress signal is sent from a sailboat during a 

storm, but the transmission is unclear and the rescue 

boat sitting at the marina cannot determine the 

sailboat’s location.  Using high powered radar, they 

determine the distress signal is coming from a point 

20 miles away at an angle of 225 degrees from the 

marina.  How many miles east/west and north/south 

of the rescue boat is the stranded sailboat? 

 

We can now answer the question by finding the 

coordinates of the point on a circle with a radius of 20 

miles at an angle of 225 degrees. 

( ) 142.14
2

2
20225cos20 −≈









 −
=°=x miles 

( ) 142.14
2

2
20225sin20 −≈









 −
=°=y miles 

 

The sailboat is located 14.142 miles west and 14.142 miles south of the marina. 

 

 

The special values of sine and cosine in the first quadrant are very useful to know, since 

knowing them allows you to quickly evaluate the sine and cosine of very common angles 

without needing to look at a reference or use your calculator.  However, scenarios do 

come up where we need to know the sine and cosine of other angles. 

 

To find the cosine and sine of any other angle, we turn to a computer or calculator.  Be 

aware:  most calculators can be set into “degree” or “radian” mode, which tells the 

calculator the units for the input value.  When you evaluate “cos(30)” on your calculator, 

it will evaluate it as the cosine of 30 degrees if the calculator is in degree mode, or the 

cosine of 30 radians if the calculator is in radian mode.  Most computer software with 

cosine and sine functions only operates in radian mode. 

 

 

 

 

 

 

 

 

 

20 mi 

225° 

 E 

 

W

 

N 

 

S 
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Example 8 

Evaluate the cosine of 20 degrees using a calculator or computer. 

 

On a calculator that can be put in degree mode, you can evaluate this directly to be 

approximately 0.939693.   

 

On a computer or calculator without degree mode, you would first need to convert the 

angle to radians, or equivalently evaluate the expression 







⋅
180

20cos
π

. 

 

 

Important Topics of This Section 

The sine function 

The cosine function 

Pythagorean Identity 

Unit Circle values 

Reference angles 

Using technology to find points on a circle 

 

 

Try it Now Answers 

1. 1)cos( −=π   0)sin( =π  

 

2. 

313
2

sin3

003
2

cos3

=⋅=







=

=⋅=







=

π

π

y

x

 

 

3. 








 −
=
























2

35
,

2

5

3

5
sin5,

3

5
cos5

ππ
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Section 5.3 Exercises 

 

1. Find the quadrant in which the terminal point determined by t lies if 

a. sin( ) 0t <   and cos( ) 0t <   b. sin( ) 0t >   and cos( ) 0t <  

 

2. Find the quadrant in which the terminal point determined by t lies if  

a. sin( ) 0t <   and cos( ) 0t >   b. sin( ) 0t >   and cos( ) 0t >  

 

3. The point P is on the unit circle. If the y-coordinate of P is 
3

5
, and P is in quadrant II, 

find the x coordinate. 

 

4. The point P is on the unit circle. If the x-coordinate of P is 
1

5
, and P is in quadrant 

IV, find the y coordinate. 

  

5. If ( )
1

cos
7

θ =  and θ is in the 4th quadrant, find ( )sin θ . 

6. If ( )
2

cos
9

θ =  and θ is in the 1st quadrant, find ( )sin θ . 

7. If ( )
3

sin
8

θ =  and θ is in the 2nd quadrant, find ( )cos θ .  

8. If ( )
1

sin
4

θ = −  and θ is in the 3rd quadrant, find ( )cos θ .  

 

9. For each of the following angles, find the reference angle and which quadrant the 

angle lies in.  Then compute sine and cosine of the angle. 

a.  225°  b. 300°  c. 135°  d. 210° 

 

10. For each of the following angles, find the reference angle and which quadrant the 

angle lies in.  Then compute sine and cosine of the angle. 

a. 120°  b. 315°  c. 250°  d. 150° 

 

11. For each of the following angles, find the reference angle and which quadrant the 

angle lies in.  Then compute sine and cosine of the angle. 

a. 
5

4

π
  b. 

7

6

π
  c. 

5

3

π
  d. 

3

4

π
 

 

12. For each of the following angles, find the reference angle and which quadrant the 

angle lies in.  Then compute sine and cosine of the angle. 

a. 
4

3

π
  b. 

2

3

π
  c. 

5

6

π
  d. 

7

4

π
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13. Give exact values for ( )sin θ  and ( )cos θ  for each of these angles. 

a. 
3

4

π
−   b. 

23

6

π
  c. 

2

π
−   d. 5π  

 

14. Give exact values for ( )sin θ  and ( )cos θ  for each of these angles. 

a. 
2

3

π
−  b. 

17

4

π
  c. 

6

π
−   d. 10π  

 

15. Find an angle θ with 0 360θ< < °  or 0 2θ π< <  that has the same sine value as: 

a. 
3

π
  b.  80°  c. 140°  d. 

4

3

π
  e. 305°  

 

16. Find an angle θ with 0 360θ< < °  or 0 2θ π< <   that has the same sine value as: 

a. 
4

π
  b.  15°  c. 160°  d. 

7

6

π
  e. 340°  

 

17. Find an angle θ with 0 360θ< < °  or 0 2θ π< <  that has the same cosine value as: 

a. 
3

π
  b.  80°  c. 140°  d. 

4

3

π
  e. 305°  

 

18. Find an angle θ with 0 360θ< < °  or 0 2θ π< <  that has the same cosine value as: 

a. 
4

π
  b.  15°  c. 160°  d. 

7

6

π
  e. 340°  

 

19. Find the coordinates of the point on a circle with radius 15 corresponding to an angle 

of 220°. 

 

20. Find the coordinates of the point on a circle with radius 20 corresponding to an angle 

of 280°.  

 

21. Marla is running clockwise around a circular track. She runs at a constant speed of 3 

meters per second. She takes 46 seconds to complete one lap of the track. From her 

starting point, it takes her 12 seconds to reach the northernmost point of the track. Impose 

a coordinate system with the center of the track at the origin, and the northernmost point 

on the positive y-axis. [UW] 

a) Give Marla’s coordinates at her starting point. 

b) Give Marla’s coordinates when she has been running for 10 seconds. 

c) Give Marla’s coordinates when she has been running for 901.3 seconds. 
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Section 5.4 The Other Trigonometric Functions 

 

In the previous section, we defined the sine and cosine functions as ratios of the sides of a 

right triangle in a circle.  Since the triangle has 3 sides there are 6 possible combinations 

of ratios.  While the sine and cosine are the two prominent ratios that can be formed, 

there are four others, and together they define the 6 trigonometric functions. 

 

 

Tangent, Secant, Cosecant, and Cotangent Functions 

For the point (x, y) on a circle of radius r at an angle of θ , we can 

define four additional important functions as the ratios of the 

sides of the corresponding triangle: 

The tangent function:   
x

y
=)tan(θ  

The secant function:   
x

r
=)sec(θ   

The cosecant function:   
y

r
=)csc(θ  

The cotangent function:   
y

x
=)cot(θ  

 

 

Geometrically, notice that the definition of tangent corresponds with the slope of the line 

segment between the origin (0, 0) and the point (x, y).   This relationship can be very 

helpful in thinking about tangent values. 

 

You may also notice that the ratios defining the secant, cosecant, and cotangent are the 

reciprocals of the ratios defining the cosine, sine, and tangent functions, respectively.  

Additionally, notice that using our results from the last section, 

)cos(

)sin(

)cos(

)sin(
)tan(

θ

θ

θ

θ
θ ===

r

r

x

y
  

 

Applying this concept to the other trig functions we can state the reciprocal identities. 

 

 

Identities 

The other four trigonometric functions can be related back to the sine and cosine 

functions using these basic relationships: 

 

)cos(

)sin(
)tan(

θ

θ
θ =      

)cos(

1
)sec(

θ
θ =      

)sin(

1
)csc(

θ
θ =      

1 cos( )
cot( )

tan( ) sin( )

θ
θ

θ θ
= =  

(x, y) 

r 

θ 

y 

x 
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These relationships are called identities.  Identities are statements that are true for all 

values of the input on which they are defined.  Identities are usually something that can 

be derived from definitions and relationships we already know, similar to how the 

identities above were derived from the circle relationships of the six trig functions.  The 

Pythagorean Identity we learned earlier was derived from the Pythagorean Theorem and 

the definitions of sine and cosine.  We will discuss the role of identities more after an 

example. 

 

 

Example 1 

Evaluate )45tan( °  and 








6

5
sec

π
. 

 

Since we know the sine and cosine values for these angles, it makes sense to relate the 

tangent and secant values back to the sine and cosine values. 

 

1

2
2

2
2

)45cos(

)45sin(
)45tan( ==

°

°
=°  

 

Notice this result is consistent with our interpretation of the tangent value as the slope 

of the line passing through the origin at the given angle: a line at 45 degrees would 

indeed have a slope of 1. 

 

3

2

2
3

1

6

5
cos

1

6

5
sec

−
=

−
=









=









π

π
, which could also be written as 

3

32−
. 

 

 

Try it Now 

1. Evaluate 








6

7
csc

π
. 

 

 

Just as we often need to simplify algebraic expressions, it is often also necessary or 

helpful to simplify trigonometric expressions.  To do so, we utilize the definitions and 

identities we have established. 
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Example 2 

Simplify 
( )
( )θ

θ

tan

sec
. 

 

We can simplify this by rewriting both functions in terms of sine and cosine 

( )
( )

( )
( )

( )θ
θ

θ

θ

θ

cos
sin

cos
1

tan

sec
=   To divide the fractions we could invert and multiply 

( )
( )
( )θ

θ

θ sin

cos

cos

1
=    cancelling the cosines, 

( )
( )θ

θ
csc

sin

1
==    simplifying and using the identity 

 

 

By showing that 
( )
( )θ

θ

tan

sec
 can be simplified to ( )θcsc , we have, in fact, established a new 

identity:  that 
( )
( )

( )θ
θ

θ
csc

tan

sec
= .   

 

Occasionally a question may ask you to “prove the identity” or “establish the identity.”  

This is the same idea as when an algebra book asks a question like “show that  

12)1( 22 +−=− xxx .”  In this type of question, we must show the algebraic 

manipulations that demonstrate that the left and right side of the equation are in fact 

equal.  You can think of a “prove the identity” problem as a simplification problem where 

you know the answer: you know what the end goal of the simplification should be, and 

just need to show the steps to get there. 

 

To prove an identity, in most cases you will start with the expression on one side of the 

identity and manipulate it using algebra and trigonometric identities until you have 

simplified it to the expression on the other side of the equation.  Do not treat the identity 

like an equation to solve – it isn’t!  The proof is establishing if the two expressions are 

equal, so we must take care to work with one side at a time rather than applying 

an operation simultaneously to both sides of the equation. 

 

 

Example 3 

Prove the identity 
1 cot( )

sin( ) cos( )
csc( )

α
α α

α

+
= + . 

 

Since the left side seems a bit more complicated, we will start there and simplify the 

expression until we obtain the right side.  We can use the right side as a guide for what 

might be good steps to make.  In this case, the left side involves a fraction while the 

right side doesn’t, which suggests we should look to see if the fraction can be reduced.   
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Additionally, since the right side involves sine and cosine and the left does not, it 

suggests that rewriting the cotangent and cosecant using sine and cosine might be a 

good idea. 

 

1 cot( )

csc( )

α

α

+
    Rewriting the cotangent and cosecant 

cos( )
1

sin( )

1

sin( )

α

α

α

+

=     To divide the fractions, we invert and multiply 

 

cos( ) sin( )
1

sin( ) 1

α α

α

 
= + 
 

  Distributing, 

sin( ) cos( ) sin( )
1

1 sin( ) 1

α α α

α
= ⋅ + ⋅   Simplifying the fractions, 

sin( ) cos( )α α= +    Establishing the identity. 

 

Notice that in the second step, we could have combined the 1 and 
cos( )

sin( )

α

α
 before 

inverting and multiplying.  It is very common when proving or simplifying identities for 

there to be more than one way to obtain the same result. 

 

 

We can also utilize identities we have previously learned, like the Pythagorean Identity, 

while simplifying or proving identities. 

 

 

Example 4 

Establish the identity 
( )
( )

( )θ
θ

θ
sin1

sin1

cos2

−=
+

. 

 

Since the left side of the identity is more complicated, it makes sense to start there.  To 

simplify this, we will have to reduce the fraction, which would require the numerator to 

have a factor in common with the denominator.  Additionally, we notice that the right 

side only involves sine.  Both of these suggest that we need to convert the cosine into 

something involving sine. 

 

Recall the Pythagorean Identity told us 1)(sin)(cos 22 =+ θθ .  By moving one of the 

trig functions to the other side, we can establish: 

 

)(cos1)(sin 22 θθ −=   and   )(sin1)(cos 22 θθ −=  

 

Utilizing this, we now can establish the identity.  We start on one side and manipulate: 
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( )
( )θ

θ

sin1

cos2

+
   Utilizing the Pythagorean Identity 

=
( )

( )θ

θ

sin1

sin1 2

+

−
   Factoring the numerator 

( )( ) ( )( )
( )θ

θθ

sin1

sin1sin1

+

+−
=  Cancelling the like factors 

( )θsin1 −=    Establishing the identity 

 

 

We can also build new identities from previously established identities.  For example, if 

we divide both sides of the Pythagorean Identity by cosine squared (which is allowed 

since we’ve already shown the identity is true), 

)(cos

1

)(cos

)(sin)(cos
22

22

θθ

θθ
=

+
  Splitting the fraction on the left, 

)(cos

1

)(cos

)(sin

)(cos

)(cos
22

2

2

2

θθ

θ

θ

θ
=+  Simplifying and using the definitions of tan and sec 

)(sec)(tan1 22 θθ =+ . 

 

 

Try it Now 

2. Use a similar approach to establish that )(csc1)(cot 22 θθ =+ . 

 

 

Identities 

Alternate forms of the Pythagorean Identity 

)(sec)(tan1 22 θθ =+  

)(csc1)(cot 22 θθ =+  

 

 

Example 5 

If 
7

2
)tan( =θ  and θ  is in the 3rd quadrant, find )cos(θ . 

 

There are two approaches to this problem, both of which work equally well. 
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Approach 1 

Since 
x

y
=)tan(θ  and the angle is in the third quadrant, we can imagine a triangle in a 

circle of some radius so that the point on the circle is (-7, -2), so  
7

2

7

2
=

−

−
=

x

y
. 

 

Using the Pythagorean Theorem, we can find the radius of the circle:  
222 )2()7( r=−+− , so 53=r .  

 

Now we can find the cosine value: 

53

7
)cos(

−
==

r

x
θ  

 

Approach 2 

Using the )(sec)(tan1 22 θθ =+  form of the Pythagorean Identity with the known 

tangent value, 

)(sec)(tan1 22 θθ =+  

)(sec
7

2
1 2

2

θ=







+  

)(sec
49

53 2 θ=      

7

53

49

53
)sec( ±=±=θ  

 

Since the angle is in the third quadrant, the cosine value will be negative so the secant 

value will also be negative.  Keeping the negative result, and using definition of secant, 

7

53
)sec( −=θ  

7

53

)cos(

1
−=

θ
  Inverting both sides 

53

537

53

7
)cos( −=−=θ  

 

 

Try it Now 

3. If 
3

7
)sec( −=φ  and 

2

π
φ π< < , find tan( )φ  and sin( )φ . 
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Important Topics of This Section 

6 Trigonometric Functions: 

Sine 

Cosine 

Tangent 

Cosecant 

Secant 

Cotangent 

Trig identities 

 

 

Try it Now Answers 

1. 2

2
1

1

6

7
sin

1

6

7
csc −=

−
=









=









π

π
 

 

2. 

     

)(csc1)(cot

)(sin

1

)(sin

)(sin

)(sin

)(cos

1
sin

)(sin)(cos

22

22

2

2

2

2

22

θθ

θθ

θ

θ

θ

θ

θθ

=+

=+

=
+

 

 

3. 
3

7
)sec( −=φ .  By definition, 

3

7

)cos(

1
−=

φ
, so 

7

3
)cos( −=φ . 

Using Pythagorean Identity with the sec, 

2

2

3

7
)(tan1 








−=+ φ .  Solving gives 

3

40
)tan(

−
=φ .  We use the negative square root since an angle in the second quadrant 

would have a negative tangent. 

Using Pythagorean Identity with the cos,  1
7

3
)(sin

2

2 =







−+φ .  Solving, 

7

40
)sin( =φ .       
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Section 5.4 Exercises 

1. If  
 

4

π
θ =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cot  θ θ θ θ . 

2. If  
7  

4

π
θ =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cot  θ θ θ θ . 

3. If  
5  

6

π
θ =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cot  θ θ θ θ . 

4. If  
 

6

π
θ =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cotθ θ θ θ . 

5. If  
2  

3

π
θ =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cot  θ θ θ θ . 

6. If  
4  

3

π
θ =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cotθ θ θ θ . 

7. Evaluate: a. ( )sec 135°    b. ( )csc 210°    c. ( )tan 60°    d. ( )cot 225°  

8. Evaluate: a. ( )sec 30°      b. ( )csc 315°   c. ( )tan 135°   d. ( )cot 150°  

9. If ( )
3

sin
4

θ = , and θ  is in quadrant II, find ( ) ( ) ( ) ( ) ( )cos , sec ,csc , tan , cotθ θ θ θ θ . 

10. If ( )
2

sin
7

θ = , and θ  is in quadrant II, find ( ) ( ) ( ) ( ) ( )cos , sec ,csc , tan , cotθ θ θ θ θ . 

11. If ( )
1

cos
3

θ = − , and θ  is in quadrant III, find 

( ) ( ) ( ) ( ) ( )sin , sec ,csc , tan , cotθ θ θ θ θ . 

12. If ( )
1

cos
5

θ = , and θ  is in quadrant I, find ( ) ( ) ( ) ( ) ( )sin , sec ,csc , tan , cotθ θ θ θ θ . 

13. If ( )
12

tan
5

θ = , and 0
2

π
θ≤ < , find ( ) ( ) ( ) ( ) ( )sin , cos ,sec , csc , cotθ θ θ θ θ . 

14. If ( )tan 4θ = , and 0
2

π
θ≤ < , find ( ) ( ) ( ) ( ) ( )sin , cos ,sec , csc , cotθ θ θ θ θ . 
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15. Use a calculator to find sine, cosine, and tangent of the following values: 

a. 0.15  b. 4  c. 70°  d. 283°  

 

16. Use a calculator to find sine, cosine, and tangent of the following values: 

a. 0.5  b. 5.2  c. 10°  d. 195°  

 

Simplify each of the following to an expression involving a single trig function with no 

fractions. 

17. ( )csc( ) tant t  

18. ( )cos( )csct t  

19. 
( )
( )

sec

csc  

t

t
 

20. 
( )
( )

cot

csc

t

t
 

21. 
( ) ( )

( )
sec cos

sin

t t

t

−
 

22. 
( )

( ) ( )
tan

sec cos

t

t t−
 

23. 
( )
( )

1 cot

1 tan

t

t

+

+
 

24. 
( )
( )

1 sin

1 csc

t

t

+

+
 

25. 
( ) ( )

( )

2 2

2

sin cos

cos

t t

t

+
    

26. 
( )

( )

2

2

1 sin

sin

t

t

−
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Prove the identities. 

27. 
( )
( )

( )
2sin

1 cos
1 cos

θ
θ

θ
= −

+
 

28. 
( )

2

2

1
tan ( ) 1

cos
t

t
= −  

29. ( ) ( ) ( ) ( )sec cos sin tana a a a− =  

30. 
( )

( )

2

2

2

1 tan
csc ( ) 

tan

b
b

b

+
=  

31. 
( ) ( )
( ) ( )

( ) ( )
2 2csc sin

cos cot
csc sin

x x
x x

x x

−
=

+
 

32. 
( ) ( )
( ) ( )

( ) ( )
sin cos

sin cos
sec csc

θ θ
θ θ

θ θ

−
=

−
 

33. 
( )

( ) ( )
( )

2

2

csc 1
1 sin

csc csc

α
α

α α

−
= +

−
 

34. ( ) ( ) ( ) ( )( )1 cot cos sec cscx x x x+ = +  

35. 
( )

( )
( )

( )
1 cos sin

sin 1 cos

u u

u u

+
=

−
 

36. ( )
( )

( ) ( )
2

2

1 sin 1
2sec

cos 1 sin

t
t

t t

−
= +

−
 

37. 
( ) ( )
( ) ( )

( ) ( )
4 4sin cos

sin cos
sin cos

γ γ
γ γ

γ γ

−
= +

−
 

38. 
( )( ) ( )( )

( )
( )

1 cos 1 cos
sin

sin

A A
A

A

+ −
=  
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Section 5.5 Right Triangle Trigonometry 

 

In section 5.3 we were introduced to the sine and cosine function as ratios of the sides of 

a triangle drawn inside a circle, and spent the rest of that section discussing the role of 

those functions in finding points on the circle.  In this section, we return to the triangle, 

and explore the applications of the trigonometric functions to right triangles where circles 

may not be involved. 

 

Recall that we defined sine and cosine as 

r

y
=)sin(θ  

r

x
=)cos(θ  

 

Separating the triangle from the circle, we can make equivalent but more general 

definitions of the sine, cosine, and tangent on a right triangle.  On the right triangle, we 

will label the hypotenuse as well as the side opposite the angle and the side adjacent (next 

to) the angle. 

 

 

Right Triangle Relationships 

Given a right triangle with an angle of θ  

 

hypotenuse

opposite
)sin( =θ  

hypotenuse

adjacent
)cos( =θ  

adjacent

opposite
)tan( =θ  

 

 

A common mnemonic for remembering these relationships is SohCahToa, formed from 

the first letters of “Sine is opposite over hypotenuse, Cosine is adjacent over hypotenuse, 

Tangent is opposite over adjacent.” 

 

 

 

 

 

 

 

 

(x, y) 

r 

θ 

y 

x 

θ 

adjacent 

opposite 

hypotenuse 
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Example 1 

Given the triangle shown, find the value for )cos(α . 

 

The side adjacent to the angle is 15, and the 

hypotenuse of the triangle is 17, so 

17

15

hypotenuse

adjacent
)cos( ==α  

 

 

When working with general right triangles, the same rules apply regardless of the 

orientation of the triangle.  In fact, we can evaluate the sine and cosine of either of the 

two acute angles in the triangle. 

 
 

Example 2 

Using the triangle shown, evaluate )cos(α , )sin(α , )cos(β , and )sin(β . 

 

5

3

hypotenuse

 oadjacent t
)cos( ==

α
α  

5

4

hypotenuse

 opposite
)sin( ==

α
α  

5

4

hypotenuse

 oadjacent t
)cos( ==

β
β  

5

3

hypotenuse

 opposite
)sin( ==

β
β  

 

 

Try it Now 

1. A right triangle is drawn with angle α  opposite a side with length 33, angle β  

opposite a side with length 56, and hypotenuse 65.  Find the sine and cosine of α  and

β . 

 

 

α
β

Adjacent to α 

Opposite β 

 

Hypotenuse 

Adjacent to β 

Opposite α 

 

α

15 

8 
17 

α
β

3 

5 

4 
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You may have noticed that in the above example that )sin()cos( βα =  and 

)sin()cos( αβ = .  This makes sense since the side opposite α is also adjacent to β.  Since 

the three angles in a triangle need to add to π, or 180 degrees, then the other two angles 

must add to 
2

π
, or 90 degrees, so α

π
β −=

2
, and β

π
α −=

2
.  Since )sin()cos( βα = , 

then 







−= α

π
α

2
sin)cos( . 

 

 

Cofunction Identities 

The cofunction identities for sine and cosine are: 









−= θ

π
θ

2
sin)cos(    








−= θ

π
θ

2
cos)sin(  

 

 

In the previous examples, we evaluated the sine and cosine on triangles where we knew 

all three sides of the triangle.  Right triangle trigonometry becomes powerful when we 

start looking at triangles in which we know an angle but don’t know all the sides. 

 

 

Example 3 

Find the unknown sides of the triangle pictured here. 

 

Since 
hypotenuse

opposite
)sin( =θ ,  

b

7
)30sin( =° . 

 

From this, we can solve for the side b. 

7)30sin( =°b  

)30sin(

7

°
=b  

 

To obtain a value, we can evaluate the sine and simplify 

14

2
1

7
==b  

 

To find the value for side a, we could use the cosine, or simply apply the Pythagorean 

Theorem: 
222

7 ba =+  
222

147 =+a  

147=a  

 

30°

a 

7 

b 
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Notice that if we know at least one of the non-right angles of a right triangle and one side, 

we can find the rest of the sides and angles. 

 

 

Try it Now 

2. A right triangle has one angle of 
3

π
 and a hypotenuse of 20.  Find the unknown sides 

and angles of the triangle. 

 

 

Example 4 

To find the height of a tree, a person walks to a point 30 feet from the base of the tree, 

and measures the angle from the ground to the top of the tree to be 57 degrees.  Find the 

height of the tree. 

 

We can introduce a variable, h, to represent the height 

of the tree.  The two sides of the triangle that are most 

important to us are the side opposite the angle, the 

height of the tree we are looking for, and the adjacent 

side, the side we are told is 30 feet long. 

 

The trigonometric function which relates the side 

opposite of the angle and the side adjacent to the angle 

is the tangent. 

 

30adjacent

opposite
)57tan(

h
==°   Solving for h, 

)57tan(30 °=h    Using technology, we can approximate a value 

2.46)57tan(30 ≈°=h  feet 

 

The tree is approximately 46 feet tall. 

 

 

Example 5 

A person standing on the roof of a 100 foot tall building is looking towards a skyscraper 

a few blocks away, wondering how tall it is.  She measures the angle of declination 

from the roof of the building to the base of the skyscraper to be 20 degrees and the 

angle of inclination to the top of the skyscraper to be 42 degrees.   

 

 

 

 

 

57° 

30 feet 
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To approach this problem, it would be 

good to start with a picture.  Although 

we are interested in the height, h, of the 

skyscraper, it can be helpful to also label 

other unknown quantities in the picture – 

in this case the horizontal distance x 

between the buildings and a, the height 

of the skyscraper above the person. 

 

To start solving this problem, notice we 

have two right triangles.  In the top 

triangle, we know one angle is 42 

degrees, but we don’t know any of the sides of the triangle, so we don’t yet know 

enough to work with this triangle.   

 

In the lower right triangle, we know one angle is 20 degrees, and we know the vertical 

height measurement of 100 ft.  Since we know these two pieces of information, we can 

solve for the unknown distance x. 

x

100

adjacent

opposite
)20tan( ==°   Solving for x 

100)20tan( =°x  

)20tan(

100

°
=x  

 

Now that we have found the distance x, we know enough information to solve the top 

right triangle. 

)20tan(
100adjacent

opposite
)42tan(

°

===°
a

x

a
 

100

)20tan(
)42tan(

°
=°

a
 

)20tan()42tan(100 °=° a     

a=
°

°

)20tan(

)42tan(100
   

   

Approximating a value, 

4.247
)20tan(

)42tan(100
≈

°

°
=a  feet 

 

Adding the height of the first building, we determine that the skyscraper is about 347 

feet tall. 

 

100 ft 

h 

a 

x 
42° 

20° 
100 ft 
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Important Topics of This Section 

SOH  CAH  TOA 

Cofunction identities 

Applications with right triangles  

 

 

Try it Now Answers 

1. 
33

sin( )
65

α =     
56

cos( )
65

α =    
56

sin( )
65

β =    
65

33
)cos( =β  

 

2.  
20

Adj

hypoteuse

adjacent

3
cos ==







π
   so, 10

2

1
20

3
cos20adjacent =








=








=

π
 

   
20

Opp

hypoteuse

Opposite

3
sin ==







π
    so,  310

2

3
20

3
sin20opposite =










=








=

π
 

    Missing angle = 180-90-60 = 30 degrees  or  
6

π .
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Section 5.5 Exercises 

 

Note: pictures may not be drawn to scale. 

 

In each of the triangles below, find ( ) ( ) ( ) ( ) ( ) ( )sin ,cos , tan ,sec ,csc ,cotA A A A A A . 

 

 

1.    2.  

 

 

 

 

 

 

In each of the following triangles, solve for the unknown sides and angles. 

3.      4. 

 

 

 

   

 

  

 

5.  6. 

 

 

 

 

      

 

7.  8.  

  

 

 

 

 

9. A 33-ft ladder leans against a building so that the angle between the ground and the 

ladder is 80°.  How high does the ladder reach up the side of the building?  

  

10. A 23-ft ladder leans against a building so that the angle between the ground and the 

ladder is 80°.  How high does the ladder reach up the side of the building?  

  

  

60° 

a 10 

c 

A 

10° 
b 

a 
12 B 

65° 

b 
a 

10 

B 

A 

8 

10 

A 

10 

4 

30° 

7 

c B 

b 

35° 

7 
c 

B 

b 

62° 

a 10 

c 

A 
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11. The angle of elevation to the top of a building in New York is found to be 9 degrees 

from the ground at a distance of 1 mile from the base of the building. Using this 

information, find the height of the building. 

 

12. The angle of elevation to the top of a building in Seattle is found to be 2 degrees from 

the ground at a distance of 2 miles from the base of the building. Using this 

information, find the height of the building.  

 

13. A radio tower is located 400 feet from a building. From a window in the building, a 

person determines that the angle of elevation to the top of the tower is 36° and that 

the angle of depression to the bottom of the tower is 23°. How tall is the tower? 

 

14. A radio tower is located 325 feet from a building. From a window in the building, a 

person determines that the angle of elevation to the top of the tower is 43° and that 

the angle of depression to the bottom of the tower is 31°. How tall is the tower? 

 

15. A 200 foot tall monument is located in the distance. From a window in a building, a 

person determines that the angle of elevation to the top of the monument is 15° and 

that the angle of depression to the bottom of the tower is 2°. How far is the person 

from the monument? 

 

16. A 400 foot tall monument is located in the distance. From a window in a building, a 

person determines that the angle of elevation to the top of the monument is 18° and 

that the angle of depression to the bottom of the tower is 3°. How far is the person 

from the monument? 

 

17. There is an antenna on the top of a building.  From a location 300 feet from the base 

of the building, the angle of elevation to the top of the building is measured to be 40°.  

From the same location, the angle of elevation to the top of the antenna is measured 

to be 43°.  Find the height of the antenna. 

   

18. There is lightning rod on the top of a building.  From a location 500 feet from the 

base of the building, the angle of elevation to the top of the building is measured to be 

36°.  From the same location, the angle of elevation to the top of the lightning rod is 

measured to be 38°.  Find the height of the lightning rod. 

 

19. Find the length x.     20. Find the length x. 

                 

 

x 

85 

36° 50° 

x 

82 

63° 39° 
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21. Find the length x.     22. Find the length x.   

                       
 

 

23. A plane is flying 2000 feet above sea level 

toward a mountain. The pilot observes the top of 

the mountain to be 18o above the horizontal, then 

immediately flies the plane at an angle of 20o 

above horizontal. The airspeed of the plane is 

100 mph. After 5 minutes, the plane is directly 

above the top of the mountain. How high is the 

plane above the top of the mountain (when it passes over)? What is the height of the 

mountain?  [UW] 

 

 

24. Three airplanes depart SeaTac Airport. A United flight is heading in a direction 50° 

counterclockwise from east, an Alaska flight is heading 115° counterclockwise from 

east and a Delta flight is heading 20° clockwise from east. [UW] 

a. Find the location of the United flight when it is 20 miles north of SeaTac.  

b. Find the location of the Alaska flight when it is 50 miles west of SeaTac.  

c. Find the location of the Delta flight when it is 30 miles east of SeaTac.   

 

 
 

 

 

(a) The flight paths of 

three airplanes 

(b) Modeling the paths of 

each flight 

Alaska United 

Delta 

Alaska 

United 

Delta 

x 

119 

70° 26° 

x 

115 

56° 35° 
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25. The crew of a helicopter needs to 

land temporarily in a forest and spot 

a flat piece of ground (a clearing in 

the forest) as a potential landing site, 

but are uncertain whether it is wide 

enough. They make two 

measurements from A (see picture) 

finding α = 25° and β = 54°. They 

rise vertically 100 feet to B and 

measure γ = 47°. Determine the width of the clearing to the nearest foot.  [UW] 

 

 

26. A Forest Service helicopter needs to determine 

the width of a deep canyon. While hovering, 

they measure the angle γ = 48° at position B 

(see picture), then descend 400 feet to position 

A and make two measurements: α = 13° (the 

measure of ∠ EAD), β = 53° (the measure of 

∠ CAD).  Determine the width of the canyon 

to the nearest foot.  [UW] 
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Chapter 6:  

Periodic Functions 
In the previous chapter, the trigonometric functions were introduced as ratios of sides of a 

right triangle, and related to points on a circle.  We noticed how the x and y values of the 

points did not change with repeated revolutions around the circle by finding coterminal 

angles. In this chapter, we will take a closer look at the important characteristics and 

applications of these types of functions, and begin solving equations involving them. 
 

Section 6.1 Sinusoidal Graphs .................................................................................... 395 

Section 6.2 Graphs of the Other Trig Functions ......................................................... 412 

Section 6.3 Inverse Trig Functions ............................................................................. 422 

Section 6.4 Solving Trig Equations ............................................................................ 430 

Section 6.5 Modeling with Trigonometric Equations ................................................. 441 

 

Section 6.1 Sinusoidal Graphs 

 

The London Eye1 is a huge Ferris wheel 135 meters 

(394 feet) tall in London, England, which completes one 

rotation every 30 minutes.  When we look at the 

behavior of this Ferris wheel it is clear that it completes 

1 cycle, or 1 revolution, and then repeats this revolution 

over and over again.   

 

This is an example of a periodic function, because the 

Ferris wheel repeats its revolution or one cycle every 30 

minutes, and so we say it has a period of 30 minutes. 

 

In this section, we will work to sketch a graph of a 

rider’s height above the ground over time and express 

this height as a function of time.   

 

 

Periodic Functions 

A periodic function is a function for which a specific horizontal shift, P, results in the 

original function: )()( xfPxf =+  for all values of x.   When this occurs we call the 

smallest such horizontal shift with P > 0 the period of the function.  

 

 

                                                 
1 London Eye photo by authors, 2010, CC-BY 
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You might immediately guess that there is a connection here to finding points on a circle, 

since the height above ground would correspond to the y value of a point on the circle. 

We can determine the y value by using the sine function.  To get a better sense of this 

function’s behavior, we can create a table of values we know, and use them to sketch a 

graph of the sine and cosine functions.  

 

Listing some of the values for sine and cosine on a unit circle, 

θ 0 

6

π
 

4

π
 

3

π
 

2

π
 

3

2π
 

4

3π
 

6

5π
 

π  

cos 1 

2

3
 

2

2
 

2

1
 

0 

2

1
−  

2

2
−  

2

3
−  

-1 

sin 0 

2

1
 

2

2
 

2

3
 

1 

2

3
 

2

2
 

2

1
 

0 

 

Here you can see how for each angle, we use the y value of the point on the circle to 

determine the output value of the sine function. 

 
Plotting more points gives the full shape of the sine and cosine functions. 

 

 
 

6

π
 
4

π
 
3

π
 

2

π
 

θ 

f(θ) = sin(θ) 
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Notice how the sine values are positive between 0 and π, which correspond to the values 

of sine in quadrants 1 and 2 on the unit circle, and the sine values are negative between π 

and 2π, corresponding to quadrants 3 and 4. 

 

 
 

Like the sine function we can track the value of the cosine function through the 4 

quadrants of the unit circle as we place it on a graph. 

 

Both of these functions are defined for all real numbers, since we can evaluate the sine 

and cosine of any angle.  By thinking of sine and cosine as coordinates of points on a unit 

circle, it becomes clear that the range of both functions must be the interval ]1,1[− . 

 

 

Domain and Range of Sine and Cosine 

The domain of sine and cosine is all real numbers, ( , )−∞ ∞ . 

The range of sine and cosine is the interval [-1, 1]. 

 

 

Both these graphs are called sinusoidal graphs. 

 

In both graphs, the shape of the graph begins repeating after 2π.  Indeed, since any 

coterminal angles will have the same sine and cosine values, we could conclude that 

)sin()2sin( θπθ =+  and )cos()2cos( θπθ =+ . 

 

In other words, if you were to shift either graph horizontally by 2π, the resulting shape 

would be identical to the original function.  Sinusoidal functions are a specific type of 

periodic function. 

 

 

Period of Sine and Cosine 

The periods of the sine and cosine functions are both 2π. 
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Looking at these functions on a domain centered at the vertical axis helps reveal 

symmetries. 

 

sine     cosine 

          
 

The sine function is symmetric about the origin, the same symmetry the cubic function 

has, making it an odd function. The cosine function is clearly symmetric about the y axis, 

the same symmetry as the quadratic function, making it an even function. 

 

 

Negative Angle Identities 

The sine is an odd function, symmetric about the origin, so )sin()sin( θθ −=− . 

The cosine is an even function, symmetric about the y-axis, so )cos()cos( θθ =− . 

 

 

These identities can be used, among other purposes, for helping with simplification and 

proving identities. 

You may recall the cofunction identity from last chapter, 







−= θ

π
θ

2
cos)sin( .   

 

Graphically, this tells us that the sine and cosine graphs are horizontal transformations of 

each other.  We can prove this by using the cofunction identity and the negative angle 

identity for cosine. 

 









−=
















−−=








+−=








−=

2
cos

2
cos

2
cos

2
cos)sin(

π
θ

π
θ

π
θθ

π
θ    

 

Now we can clearly see that if we horizontally shift the cosine function to the right by π/2 

we get the sine function. 

 

Remember this shift is not representing the period of the function.  It only shows that the 

cosine and sine function are transformations of each other. 
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Example 1 

Simplify 
)tan(

)sin(

θ

θ−
. 

 

We start by using the negative angle identity for sine. 

)tan(

)sin(

θ

θ−
  Rewriting the tangent 

)cos(
)sin(

)sin(

θ
θ

θ−
 Inverting and multiplying 

)sin(

)cos(
)sin(

θ

θ
θ ⋅−  Simplifying we get 

)cos(θ−  

 

 

Transforming Sine and Cosine 

 

 

Example 2 

A point rotates around a circle of radius 3.  

Sketch a graph of the y coordinate of the 

point. 

 

Recall that for a point on a circle of radius 

r, the y coordinate of the point is 

)sin(θry = , so in this case, we get the 

equation )sin(3)( θθ =y .   

 

The constant 3 causes a vertical stretch of 

the y values of the function by a factor of 3.   

 

Notice that the period of the function does not change. 

 

 

Since the outputs of the graph will now oscillate between -3 and 3, we say that the 

amplitude of the sine wave is 3. 

 

 

Try it Now 

1. What is the amplitude of the function )cos(7)( θθ =f ?  Sketch a graph of this 

function. 
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Example 3 

A circle with radius 3 feet is mounted with its center 4 

feet off the ground.  The point closest to the ground is 

labeled P.  Sketch a graph of the height above ground of 

the point P as the circle is rotated, then find a function 

that gives the height in terms of the angle of rotation. 

 

Sketching the height, we note that it will start 1 foot 

above the ground, then increase up to 7 feet above the 

ground, and continue to oscillate 3 feet above and 

below the center value of 4 feet. 

 

Although we could use a transformation of either the 

sine or cosine function, we start by looking for 

characteristics that would make one function easier to 

use than the other.  

 

We decide to use a cosine function because it starts at 

the highest or lowest value, while a sine function starts 

at the middle value.  A standard cosine starts at the 

highest value, and this graph starts at the lowest value, 

so we need to incorporate a vertical reflection.   

 

Second, we see that the graph oscillates 3 above and below the center, while a basic 

cosine has an amplitude of one, so this graph has been vertically stretched by 3, as in 

the last example. 

 

Finally, to move the center of the circle up to a height of 4, the graph has been vertically 

shifted up by 4.  Putting these transformations together, 

 

4)cos(3)( +−= θθh  

 

 

Midline 

The center value of a sinusoidal function, the value that the function oscillates above 

and below, is called the midline of the function, corresponding to a vertical shift. 

 

The function kf += )cos()( θθ  has midline at y = k. 

 

 

Try it Now 

2. What is the midline of the function 4)cos(3)( −= θθf ?  Sketch a graph of the 

function. 

 

3 ft 

4 ft 

P 
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To answer the Ferris wheel problem at the beginning of the section, we need to be able to 

express our sine and cosine functions at inputs of time.  To do so, we will utilize 

composition.  Since the sine function takes an input of an angle, we will look for a 

function that takes time as an input and outputs an angle.  If we can find a suitable )(tθ

function, then we can compose this with our )cos()( θθ =f  function to obtain a sinusoidal 

function of time: ))(cos()( ttf θ= . 

 

 

Example 4 

A point completes 1 revolution every 2 minutes around a circle of radius 5.  Find the x 

coordinate of the point as a function of time, if it starts at (5, 0). 

 

Normally, we would express the x coordinate of a point on a unit circle using

)cos(θrx = , here we write the function )cos(5)( θθ =x . 

 

The rotation rate of 1 revolution every 2 minutes is an 

angular velocity.  We can use this rate to find a formula for 

the angle as a function of time.  The point begins at an 

angle of 0.  Since the point rotates 1 revolution = 2π 

radians every 2 minutes, it rotates π radians every minute.  

After t minutes, it will have rotated: 

tt πθ =)(  radians 

 

Composing this with the cosine function, we obtain a 

function of time. 

)cos(5))(cos(5)( tttx πθ ==  

 

 

Notice that this composition has the effect of a horizontal compression, changing the 

period of the function. 

 

To see how the period relates to the stretch or compression coefficient B in the equation 

( )Bttf sin)( = , note that the period will be the time it takes to complete one full 

revolution of a circle.  If a point takes P minutes to complete 1 revolution, then the 

angular velocity is 
minutes

radians2

P

π
.  Then t

P
t

π
θ

2
)( = .  Composing with a sine function, 









== t

P
ttf

π
θ

2
sin))(sin()(  

 

From this, we can determine the relationship between the coefficient B and the period:  

P
B

π2
= .   
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Notice that the stretch or compression coefficient B is a ratio of the “normal period of a 

sinusoidal function” to the “new period.”   If we know the stretch or compression 

coefficient B, we can solve for the “new period”: 
B

P
π2

= .   

 

Summarizing our transformations so far: 

 

 

Transformations of Sine and Cosine 

Given an equation in the form ( ) kBtAtf += sin)(  or ( ) kBtAtf += cos)(  

A is the vertical stretch, and is the amplitude of the function.  

B is the horizontal stretch/compression, and is related to the period, P, by 
B

P
π2

= . 

k is the vertical shift and determines the midline of the function. 

 

 
 

 

Example 5 

What is the period of the function 







= ttf

6
sin)(

π
? 

 

Using the relationship above, the stretch/compression factor is 
6

π
=B , so the period 

will be 12
6

2

6

22
=⋅===

π
π

π

ππ

B
P . 

 

 

While it is common to compose sine or cosine with functions involving time, the 

composition can be done so that the input represents any reasonable quantity. 

 

 

y = k 
A 

A 

P 

P 
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Example 6 

A bicycle wheel with radius 14 inches has the bottom-most point on the wheel marked 

in red.  The wheel then begins rolling down the street.  Write a formula for the height 

above ground of the red point after the bicycle has travelled x inches. 

 

The height of the point begins at the lowest value, 0, 

increases to the highest value of 28 inches, and 

continues to oscillate above and below a center height 

of 14 inches.  In terms of the angle of rotation, θ: 

14)cos(14)( +−= θθh  

 

In this case, x is representing a linear distance the 

wheel has travelled, corresponding to an arclength 

along the circle.  Since arclength and angle can be 

related by θrs = , in this case we can write θ14=x , 

which allows us to express the angle in terms of x:  

14
)(

x
x =θ  

 

Composing this with our cosine-based function from above, 

14
14

1
cos1414

14
cos14))(()( +








−=+








−== x

x
xhxh θ  

 

The period of this function would be ππ
ππ

28142

14

1

22
=⋅===

B
P , the circumference 

of the circle.  This makes sense – the wheel completes one full revolution after the 

bicycle has travelled a distance equivalent to the circumference of the wheel. 

 

 

Example 7 

Determine the midline, amplitude, and period of the function ( ) 12sin3)( += ttf . 

 

The amplitude is 3 

The period is π
ππ

===
2

22

B
P  

The midline is at 1y =  

 

 

Amplitude, midline, and period, when combined with vertical flips, allow us to write 

equations for a variety of sinusoidal situations. 

 

 

 

θ 

Starting 

Rotated by θ 

14in 

x 
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Try it Now 

3. If a sinusoidal function starts on the midline at point (0,3), has an amplitude of 2, and 

a period of 4, write a formula for the function 

 

 

Example 8 

Find a formula for the sinusoidal function 

graphed here. 

 

The graph oscillates from a low of -1 to a 

high of 3, putting the midline at y = 1, 

halfway between. 

 

The amplitude will be 2, the distance from 

the midline to the highest value (or lowest 

value) of the graph. 

 

The period of the graph is 8.  We can measure this from the first peak at x = -2 to the 

second at x = 6.  Since the period is 8, the stretch/compression factor we will use will be 

48

22 πππ
===

P
B  

 

At x = 0, the graph is at the midline value, which tells us the graph can most easily be 

represented as a sine function.  Since the graph then decreases, this must be a vertical 

reflection of the sine function.  Putting this all together, 

 1
4

sin2)( +







−= ttf

π
 

 

 

With these transformations, we are ready to answer the Ferris wheel problem from the 

beginning of the section. 

 

 

Example 9 

The London Eye is a huge Ferris wheel in London, England, which completes one 

rotation every 30 minutes.  The diameter of the wheel is 120 meters, but the passenger 

capsules sit outside the wheel.  Suppose the diameter at the capsules is 130 meters, and 

riders board from a platform 5 meters above the ground.  Express a rider’s height above 

ground as a function of time in minutes. 

 

It can often help to sketch a graph of the situation before trying to find the equation. 
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With a diameter of 130 meters, the wheel has a 

radius of 65 meters.  The height will oscillate with 

amplitude of 65 meters above and below the 

center. 

 

Passengers board 5 meters above ground level, so 

the center of the wheel must be located 65 + 5 = 

70 meters above ground level.  The midline of the 

oscillation will be at 70 meters. 

 

The wheel takes 30 minutes to complete 1 

revolution, so the height will oscillate with period 

of 30 minutes. 

 

Lastly, since the rider boards at the lowest point, 

the height will start at the smallest value and 

increase, following the shape of a flipped cosine curve. 

Putting these together: 

Amplitude: 65 

Midline: 70 

Period: 30, so 
1530

2 ππ
==B   

Shape: negative cosine 

 

An equation for the rider’s height would be 

( ) 65cos 70
15

h t t
π 

= − + 
 

 

 

 

Try it Now 

4. The Ferris wheel at the Puyallup Fair2 has a diameter of about 70 

feet and takes 3 minutes to complete a full rotation.  Passengers 

board from a platform 10 feet above the ground.  Write an 

equation for a rider’s height above ground over time.  

 

 

While these transformations are sufficient to represent many situations, occasionally we 

encounter a sinusoidal function that does not have a vertical intercept at the lowest point, 

highest point, or midline.  In these cases, we need to use horizontal shifts.  Since we are 

combining horizontal shifts with horizontal stretches, we need to be careful.  Recall that 

when the inside of the function is factored, it reveals the horizontal shift. 

 

 

                                                 
2 Photo by photogirl7.1, http://www.flickr.com/photos/kitkaphotogirl/432886205/sizes/z/, CC-BY 
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Horizontal Shifts of Sine and Cosine 

Given an equation in the form ( ) khtBAtf +−= )(sin)(  or ( ) khtBAtf +−= )(cos)(  

h is the horizontal shift of the function 

 

 

Example 10 

Sketch a graph of 







−=

44
sin3)(

ππ
ttf . 

 

To reveal the horizontal shift, we first need to factor inside the function:  









−= )1(

4
sin3)( ttf

π
 

 

This graph will have the shape of a sine function, starting at the midline and increasing, 

with an amplitude of 3.  The period of the graph will be 8
4

2

4

22
=⋅===

π
π

π

ππ

B
P .  

Finally, the graph will be shifted to the right by 1.   

 
 

 

In some physics and mathematics books, you will hear the horizontal shift referred to as 

phase shift.  In other physics and mathematics books, they would say the phase shift of 

the equation above is 
4

π
, the value in the unfactored form.  Because of this ambiguity, we 

will not use the term phase shift any further, and will only talk about the horizontal shift. 
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Example 11 

Find a formula for the function graphed here. 

 

With highest value at 1 and lowest value at -5, the 

midline will be halfway between at -2.   

 

The distance from the midline to the highest or 

lowest value gives an amplitude of 3. 

 

The period of the graph is 6, which can be 

measured from the peak at x = 1 to the next peak at 

x = 7, or from the distance between the lowest 

points.  This gives 
36

22 πππ
===

P
B . 

 

For the shape and shift, we have more than one option.  We could either write this as: 

 A cosine shifted 1 to the right 

 A negative cosine shifted 2 to the left 

 A sine shifted ½ to the left 

 A negative sine shifted 2.5 to the right 

 

While any of these would be fine, the cosine shifts are easier to work with than the sine 

shifts in this case, because they involve integer values.  Writing these: 

2)1(
3

cos3)( −







−= xxy

π
   or 

2)2(
3

cos3)( −







+−= xxy

π
 

 

Again, these functions are equivalent, so both yield the same graph. 

 

 

Try it Now 

5. Write a formula for the function graphed here. 
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Important Topics of This Section 

Periodic functions 

Sine and cosine function from the unit circle 

Domain and range of sine and cosine functions 

Sinusoidal functions 

Negative angle identity 

Simplifying expressions 

Transformations 

 Amplitude 

 Midline 

 Period 

 Horizontal shifts 

 

 

Try it Now Answers 

1. 7 

2. -4 

3. ( ) 2sin 3
2

f x x
π 

= + 
 

 

4. 
2

( ) 35cos 45
3

h t t
π 

= − + 
 

 

5. Two possibilities: ( ) 4cos ( 3.5) 4
5

f x x
π 

= − + 
 

 or ( ) 4sin ( 1) 4
5

f x x
π 

= − + 
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Section 6.1 Exercises 

 

1. Sketch a graph of ( ) ( )3sinf x x= − . 

2. Sketch a graph of ( ) ( )4sinf x x= . 

3. Sketch a graph of ( ) ( )2cosf x x= . 

4.  Sketch a graph of ( ) ( )4cosf x x= − . 

 

For the graphs below, determine the amplitude, midline, and period, then find a formula 

for the function. 

5.    6.   

7.    8.  

9.   10.   

  

 

 

 



410  Chapter 6 

 

For each of the following equations, find the amplitude, period, horizontal shift, and 

midline. 

 

11. 3sin(8( 4)) 5y x= + +  

 

12. 4sin ( 3) 7
2

y x
π 

= − + 
 

 

 

13. 2sin(3 21) 4y x= − +  

 

14. 5sin(5 20) 2y x= + −  

 

15. sin 3
6

y x
π

π
 

= + − 
 

 

 

16. 
7 7

8sin 6
6 2

y x
π π 

= + + 
 

 

 

Find a formula for each of the functions graphed below.   

17.  

       

18.  
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19.  

20.  

  

21. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature is 50 degrees at midnight and the high and low 

temperature during the day are 57 and 43 degrees, respectively. Assuming t is the 

number of hours since midnight, find a function for the temperature, D, in terms of t. 

 

22. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature is 68 degrees at midnight and the high and low 

temperature during the day are 80 and 56 degrees, respectively. Assuming t is the 

number of hours since midnight, find a function for the temperature, D, in terms of t. 

 

23. A Ferris wheel is 25 meters in diameter and boarded from a platform that is 1 meters 

above the ground. The six o'clock position on the Ferris wheel is level with the 

loading platform. The wheel completes 1 full revolution in 10 minutes. The function 

( )h t  gives your height in meters above the ground t minutes after the wheel begins to 

turn.   

a. Find the amplitude, midline, and period of ( )h t . 

b. Find a formula for the height function ( )h t . 

c. How high are you off the ground after 5 minutes? 

 

24. A Ferris wheel is 35 meters in diameter and boarded from a platform that is 3 meters 

above the ground. The six o'clock position on the Ferris wheel is level with the 

loading platform. The wheel completes 1 full revolution in 8 minutes. The function 

( )h t  gives your height in meters above the ground t minutes after the wheel begins to 

turn.   

a. Find the amplitude, midline, and period of ( )h t . 

b. Find a formula for the height function ( )h t . 

c. How high are you off the ground after 4 minutes? 



412  Chapter 6 

 

Section 6.2 Graphs of the Other Trig Functions 

 

In this section, we will explore the graphs of the other four trigonometric functions.  

We’ll begin with the tangent function.  Recall that in Chapter 5 we defined tangent as y/x 

or sine/cosine, so you can think of the tangent as the slope of a line through the origin 

making the given angle with the positive x axis.   

 

At an angle of 0, the line would be horizontal with a slope of zero.  As the angle increases 

towards π/2, the slope increases more and more.  At an angle of π/2, the line would be 

vertical and the slope would be undefined.  

Immediately past π/2, the line would have a steep 

negative slope, giving a large negative tangent value.  

There is a break in the function at π/2, where the 

tangent value jumps from large positive to large 

negative.   

 

We can use these ideas along with the definition of 

tangent to sketch a graph.  Since tangent is defined as 

sine/cosine, we can determine that tangent will be 

zero when sine is zero:  at -π, 0, π, and so on.  

Likewise, tangent will be undefined when cosine is 

zero:  at -π/2, π/2, and so on. 

 

The tangent is positive from 0 to π/2 and π to 3π/2, corresponding to quadrants 1 and 3 of 

the unit circle. 

 

Using technology, we can obtain a graph of tangent on a standard grid. 

 

Notice that the graph appears to repeat itself.  For any 

angle on the circle, there is a second angle with the 

same slope and tangent value halfway around the 

circle, so the graph repeats itself with a period of π; 

we can see one continuous cycle from - π/2 to π/2, 

before it jumps and repeats itself.  

  

The graph has vertical asymptotes and the tangent is 

undefined wherever a line at that angle would be 

vertical: at π/2, 3π/2, and so on.  While the domain of 

the function is limited in this way, the range of the 

function is all real numbers. 
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Features of the Graph of Tangent 

The graph of the tangent function )tan()( θθ =m  

The period of the tangent function is π 

The domain of the tangent function is π
π

θ k+≠
2

, where k is an integer 

The range of the tangent function is all real numbers, ( , )−∞ ∞  

 

 

With the tangent function, like the sine and cosine functions, horizontal 

stretches/compressions are distinct from vertical stretches/compressions.  The horizontal 

stretch can typically be determined from the period of the graph.  With tangent graphs, it 

is often necessary to determine a vertical stretch using a point on the graph. 

 

 

Example 1 

Find a formula for the function graphed here. 

 

The graph has the shape of a tangent 

function, however the period appears to be 8. 

We can see one full continuous cycle from -4 

to 4, suggesting a horizontal stretch.  To 

stretch π to 8, the input values would have to 

be multiplied by
π

8
.  Since the constant k in 

( )( ) tanf a kθ θ= is the reciprocal of the 

horizontal stretch 
π

8
, the equation must have 

form 









= θ

π
θ

8
tan)( af . 

 

We can also think of this the same way we did with sine and cosine.  The period of the 

tangent function is π  but it has been transformed and now it is 8; remember the ratio of 

the “normal period” to the “new period” is 
8

π
and so this becomes the value on the 

inside of the function that tells us how it was horizontally stretched. 

 

To find the vertical stretch a, we can use a point on the graph.  Using the point (2, 2) 









=








⋅=

4
tan2

8
tan2

ππ
aa .   Since 1

4
tan =







 π
,   a = 2. 

This function would have a formula 







= θ

π
θ

8
tan2)(f . 
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Try it Now 

1. Sketch a graph of 







= θ

π
θ

6
tan3)(f . 

 

 

For the graph of secant, we remember the reciprocal identity where 
)cos(

1
)sec(

θ
θ = .   

Notice that the function is undefined when the cosine is 0, leading to a vertical asymptote 

in the graph at π/2, 3π/2, etc.  Since the cosine is always no more than one in absolute 

value, the secant, being the reciprocal, will always be no less than one in absolute value.  

Using technology, we can generate the graph.  The graph of the cosine is shown dashed 

so you can see the relationship. 

 

 

)cos(

1
)sec()(

θ
θθ ==f  

 

 

 

 

 

 

 

 

 

The graph of cosecant is similar.  In fact, since 







−= θ

π
θ

2
cos)sin( , it follows that 









−= θ

π
θ

2
sec)csc( , suggesting the cosecant graph is a horizontal shift of the secant 

graph.  This graph will be undefined where sine is 0.  Recall from the unit circle that this 

occurs at 0, π, 2π, etc.  The graph of sine is shown dashed along with the graph of the 

cosecant. 

 

 

)sin(

1
)csc()(

θ
θθ ==f  

 

 

 

 

 

 

 



Section 6.2 Graphs of the Other Trig Functions     415 

 

Features of the Graph of Secant and Cosecant 

The secant and cosecant graphs have period 2π like the sine and cosine functions. 

Secant has domain π
π

θ k+≠
2

, where k is an integer 

Cosecant has domain πθ k≠ , where k is an integer 

Both secant and cosecant have range of ),1[]1,( ∞∪−−∞  

 

 

Example 2 

Sketch a graph of 1
2

csc2)( +







= θ

π
θf .  What is the domain and range of this 

function? 

 

The basic cosecant graph has vertical asymptotes at the integer multiples of π.  Because 

of the factor 
2

π
 inside the cosecant, the graph will be compressed by 

π

2
, so the vertical 

asymptotes will be compressed to kk 2
2

=⋅= π
π

θ .  In other words, the graph will have 

vertical asymptotes at the integer multiples of 2, and the domain will correspondingly 

be k2≠θ , where k is an integer. 

 

The basic sine graph has a range of [-1, 1].  The vertical stretch by 2 will stretch this to 

[-2, 2], and the vertical shift up 1 will shift the range of this function to [-1, 3]. 

 

The basic cosecant graph has a range of ),1[]1,( ∞∪−−∞ . The vertical stretch by 2 will 

stretch this to ),2[]2,( ∞∪−−∞ , and the vertical shift up 1 will shift the range of this 

function to ),3[]1,( ∞∪−−∞ . 

 

The resulting graph is shown to the right.  

 

Notice how the graph of the transformed 

cosecant relates to the graph of 

1
2

sin2)( +







= θ

π
θf  shown dashed. 
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Try it Now 

2. Given the graph of 1
2

cos2)( +







= θ

π
θf  shown, sketch the  

graph of  1
2

sec2)( +







= θ

π
θg  on the same axes. 

 

  

 

 

Finally, we’ll look at the graph of cotangent.  Based on its definition as the ratio of cosine 

to sine, it will be undefined when the sine is zero:  at at 0, π, 2π, etc.  The resulting graph 

is similar to that of the tangent.  In fact, it is a horizontal flip and shift of the tangent 

function, as we’ll see shortly in the next example. 

 

 
 

 

Features of the Graph of Cotangent 

The cotangent graph has period π 

Cotangent has domain πθ k≠ , where k is an integer 

Cotangent has range of all real numbers, ( , )−∞ ∞  

 

 

In Section 6.1 we determined that the sine function was an odd function and the cosine 

was an even function by observing the graph and establishing the negative angle 

identities for cosine and sine.  Similarly, you may notice from its graph that the tangent 

function appears to be odd.  We can verify this using the negative angle identities for sine 

and cosine: 

( )
( )
( )

( )
( )

( )θ
θ

θ

θ

θ
θ tan

cos

sin

cos

sin
tan −=

−
=

−

−
=−  

 

The secant, like the cosine it is based on, is an even function, while the cosecant, like the 

sine, is an odd function. 
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Negative Angle Identities Tangent, Cotangent, Secant and Cosecant 

( ) ( )θθ tantan −=−   ( ) ( )θθ cotcot −=−  

 

( ) ( )θθ secsec =−   ( ) ( )θθ csccsc −=−  

 

 

Example 3 

Prove that ( ) 







−−=

2
cottan

π
θθ  

 

( )θtan    Using the definition of tangent 

( )
( )θ

θ

cos

sin
=    Using the cofunction identities 









−









−

=

θ
π

θ
π

2
sin

2
cos

  Using the definition of cotangent 









−= θ

π

2
cot   Factoring a negative from the inside 

















−−=

2
cot

π
θ   Using the negative angle identity for cot 









−−=

2
cot

π
θ  

 

 

Important Topics of This Section 

The tangent and cotangent functions 

 Period 

 Domain 

 Range 

The secant and cosecant functions 

 Period 

 Domain 

 Range 

Transformations  

Negative Angle identities 
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Try it Now Answers 

 

1.  

 

 

2.  
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Section 6.2 Exercises 

 

Match each trigonometric function with one of the graphs. 

1. ( ) ( )tanf x x=   2. ( ) ( ) sec xxf =  

3. ( ) csc( )f x x=   4. ( ) ( )cotf x x=  

  I      II  

III    IV  

 

Find the period and horizontal shift of each of the following functions. 

5. ( ) ( )2 tan 4 32f x x= −  

6. ( ) ( )3tan 6 42g x x= +  

7. ( ) ( )2sec 1
4

h x x
π 

= + 
 

 

8. ( ) 3sec 2
2

k x x
π  

= +  
  

  

9. ( ) 6csc
3

m x x
π

π
 

= + 
 

 

10. ( )
5 20

4csc
3 3

n x x
π π 

= − 
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11. Sketch a graph of #7 above. 

12. Sketch a graph of #8 above. 

13. Sketch a graph of #9 above. 

14. Sketch a graph of #10 above. 

 

15. Sketch a graph of ( ) tan
2

j x x
π 

=  
 

. 

16. Sketch a graph of ( ) 2 tan
2

p t t
π 

= − 
 

. 

 

Find a formula for each function graphed below. 

  

17. 18.  

 

 

19. 20.  
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21. If tan 1.5x = − , find ( )tan x− . 

22. If tan 3x = , find ( )tan x− . 

23. If sec 2x = , find ( )sec x− . 

24. If sec 4x = − , find ( )sec x− . 

25. If csc 5x = − , find ( )csc x− . 

26. If csc 2x = , find ( )csc x− . 

 

Simplify each of the following expressions completely. 

27. ( ) ( ) ( )cot cos sinx x x− − + −  

28. ( ) ( ) ( )cos tan sinx x x− + − −
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Section 6.3 Inverse Trig Functions 

 

In previous sections, we have evaluated the trigonometric functions at various angles, but 

at times we need to know what angle would yield a specific sine, cosine, or tangent value.  

For this, we need inverse functions.  Recall that for a one-to-one function, if baf =)( , 

then an inverse function would satisfy abf =
− )(1

. 

 

You probably are already recognizing an issue – that the sine, cosine, and tangent 

functions are not one-to-one functions.  To define an inverse of these functions, we will 

need to restrict the domain of these functions to yield a new function that is one-to-one.  

We choose a domain for each function that includes the angle zero. 

 

Sine, limited to 





−

2
,

2

ππ
 Cosine, limited to [ ]π,0  Tangent, limited to ,

2 2

π π 
− 
 

 

     
 

On these restricted domains, we can define the inverse sine, inverse cosine, and inverse 

tangent functions. 

 

 

Inverse Sine, Cosine, and Tangent Functions 

For angles in the interval 





−

2
,

2

ππ
, if ( ) a=θsin , then ( ) θ=

− a1sin  

For angles in the interval [ ]π,0 , if ( ) a=θcos , then ( ) θ=
− a1cos  

For angles in the interval 







−

2
,

2

ππ
, if ( ) a=θtan , then ( ) θ=

− a1tan  

 

( )1sin x
−

 has domain [-1, 1] and range 





−

2
,

2

ππ
 

( )1cos x
−

 has domain [-1, 1] and range [ ]π,0  

( )1tan x
−

 has domain of all real numbers and range 







−

2
,

2

ππ
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The ( )1sin x
−

 is sometimes called the arcsine function, and notated ( )aarcsin .  

The ( )1cos x
−

 is sometimes called the arccosine function, and notated ( )aarccos .  

The ( )1tan x
−

 is sometimes called the arctangent function, and notated ( )aarctan .  

 

The graphs of the inverse functions are shown here: 

 

( )1sin x
−

   ( )1cos x
−

   ( )1tan x
−

 

                       
 

Notice that the output of each of these inverse functions is an angle.   

 

 

Example 1 

Evaluate 

a)  






−

2

1
sin 1

  b) 









−

−

2

2
sin 1

 c) 









−

−

2

3
cos 1

 d) ( )1tan 1−
 

 

a) Evaluating 






−

2

1
sin 1

 is the same as asking what angle would have a sine value of 
2

1
.  

In other words, what angle θ would satisfy ( )
2

1
sin =θ ?   

There are multiple angles that would satisfy this relationship, such as 
6

π
 and 

6

5π
 , but 

we know we need the angle in the range of ( )1sin x
−

, the interval 





−

2
,

2

ππ
, so the 

answer will be 
62

1
sin 1 π

=






−
.   

 

Remember that the inverse is a function so for each input, we will get exactly one 

output. 
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b) Evaluating 









−

−

2

2
sin 1

, we know that 
4

5π
 and 

4

7π
 both have a sine value of 

2

2
− , but neither is in the interval 





−

2
,

2

ππ
.  For that, we need the negative angle 

coterminal with 
4

7π
.  

42

2
sin 1 π

−=









−

−
. 

 

c) Evaluating 









−

−

2

3
cos 1

, we are looking for an angle in the interval [ ]π,0  with a 

cosine value of 
2

3
− .  The angle that satisfies this is 

6

5

2

3
cos 1 π

=









−

−
. 

 

d) Evaluating ( )1tan 1−
, we are looking for an angle in the interval 








−

2
,

2

ππ
 with a 

tangent value of 1.  The correct angle is ( )
4

1tan 1 π
=

− . 

 

 

Try It Now 

1. Evaluate  

a) ( )1sin 1
−

−
  b) ( )1tan 1

−
−

  c) ( )1cos 1
−

−
  d) 







−

2

1
cos 1

 

 

 

Example 2 

Evaluate ( )97.0sin 1−
 using your calculator. 

 

Since the output of the inverse function is an angle, your calculator will give you a 

degree value if in degree mode, and a radian value if in radian mode. 

 

In radian mode, 
1sin (0.97) 1.3252−

≈  In degree mode, ( )1sin 0.97 75.93−
≈ °  

 

 

Try it Now 

2. Evaluate ( )4.0cos 1
−

−
 using your calculator. 
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In Section 5.5, we worked with trigonometry on a right triangle to solve for the sides of a 

triangle given one side and an additional angle.  Using the inverse trig functions, we can 

solve for the angles of a right triangle given two sides. 

 

 

Example 3 

Solve the triangle for the angle θ. 

 

Since we know the hypotenuse and the side adjacent to 

the angle, it makes sense for us to use the cosine function. 

 

( )
12

9
cos =θ   Using the definition of the inverse, 









=

−

12

9
cos 1θ  Evaluating 

7227.0≈θ , or about 41.4096° 

 

 

There are times when we need to compose a trigonometric function with an inverse 

trigonometric function.  In these cases, we can find exact values for the resulting 

expressions 

 

 

Example 4 

Evaluate 














−

6

13
cossin 1 π

.  

 

a) Here, we can directly evaluate the inside of the composition.   

2

3

6

13
cos =







 π
 

 

Now, we can evaluate the inverse function as we did earlier. 

32

3
sin 1 π

=









−

 

 

 

Try it Now 

3. Evaluate 















−

−

4

11
sincos 1 π

. 

 

 

 

12 

9 

θ 
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Example 5 

Find an exact value for 














−

5

4
cossin 1

. 

 

Beginning with the inside, we can say there is some angle so 







=

−

5

4
cos 1θ , which 

means ( )
5

4
cos =θ , and we are looking for ( )θsin .  We can use the Pythagorean identity 

to do this.  

  

( ) ( ) 1cossin 22
=+ θθ   Using our known value for cosine 

( ) 1
5

4
sin

2

2
=








+θ    Solving for sine 

( )
25

16
1sin 2

−=θ  

( )
5

3

25

9
sin ±=±=θ  

 

Since we know that the inverse cosine always gives an angle on the interval [ ]π,0 , we 

know that the sine of that angle must be positive, so 
1 4 3

sin cos sin( )
5 5

θ−  
= =  

  
 

 

 

Example 6 

Find an exact value for 














−

4

7
tansin 1

. 

 

While we could use a similar technique as in the last example, we 

will demonstrate a different technique here.  From the inside, we 

know there is an angle so ( )
4

7
tan =θ .  We can envision this as the 

opposite and adjacent sides on a right triangle. 

 

Using the Pythagorean Theorem, we can find the hypotenuse of 

this triangle: 
222 74 hypotenuse=+  

65=hypotenuse  

 

Now, we can represent the sine of the angle as opposite side divided by hypotenuse. 

7 

4 

θ 
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( )
65

7
sin =θ  

 

This gives us our desired composition 

1 7 7
sin tan sin( )

4 65
θ−  

= =  
  

. 

 

 

Try it Now  

4. Evaluate 














−

9

7
sincos 1

. 

 

 

We can also find compositions involving algebraic expressions 

 

 

Example 7 

Find a simplified expression for 














−

3
sincos 1 x

, for 33 ≤≤− x . 

 

We know there is an angle θ so that ( )
3

sin
x

=θ .  Using the Pythagorean Theorem, 

( ) ( ) 1cossin 22
=+ θθ   Using our known expression for sine 

( ) 1cos
3

2

2

=+







θ

x
   Solving for cosine 

( )
9

1cos
2

2 x
−=θ  

( )
3

9

9

9
cos

22
xx −

±=
−

±=θ  

Since we know that the inverse sine must give an angle on the interval 





−

2
,

2

ππ
, we 

can deduce that the cosine of that angle must be positive.  This gives us 

 

3

9

3
sincos

2
1 xx −

=














−  
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Try it Now 

5. Find a simplified expression for ( )( )x4tansin 1−
, for 

4

1

4

1
≤≤− x . 

 

 

Important Topics of This Section 

Inverse trig functions:  arcsine, arccosine and arctangent 

Domain restrictions 

Evaluating inverses using unit circle values and the calculator 

Simplifying numerical expressions involving the inverse trig functions 

Simplifying algebraic expressions involving the inverse trig functions 

 

 

Try it Now Answers 

1. a) 
2

π
−    b) 

4

π
−     c) π    d) 

3

π
 

 

2. 1.9823 or 113.578°  

 

3. 
2

2

4

11
sin −=








−

π
.  

4

3

2

2
cos 1 π

=









−

−
  

 

4. Let 







=

−

9

7
sin 1θ  so 

9

7
)sin( =θ .  . 

Using Pythagorean Identity, 1cossin
22

=+ θθ , so 1cos
9

7 2

2

=+







θ .   

Solving, ( )
9

24
cos

9

7
sincos 1

==














− θ  . 

 

5. Let ( )x4tan 1−
=θ , so x4)tan( =θ .  We can represent this on a  

triangle as 
1

4
)tan(

x
=θ . 

The hypotenuse of the triangle would be ( ) 14
2

+x .   

( )( )
116

4
)sin(4tansin

2

1

+
==

−

x

x
x θ  

4x 

1 

θ 
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Section 6.3 Exercises 

 

Evaluate the following expressions, giving the answer in radians. 

1. 
1 2

sin
2

−
 
  
 

  2. 
1 3

sin
2

−
 
  
 

  3. 
1 1

sin
2

−  
− 
 

   4. 
1 2

sin
2

−
 

−  
 

  

5. 
1 1

cos
2

−  
 
 

   6. 
1 2

cos
2

−
 
  
 

  7. 
1 2

cos
2

−
 

−  
 

 8. 
1 3

cos
2

−
 

−  
 

 

9. ( )1tan 1−
   10. ( )1tan 3−   11. ( )1tan 3−

−  12. ( )1tan 1−
−  

 

 

Use your calculator to evaluate each expression, giving the answer in radians. 

13. ( )4.0cos 1
−

−
 14. ( )8.0cos 1−

  15. ( )8.0sin 1
−

−
 16. ( )6tan 1−

 

 

Find the angle θ in degrees. 

17.   18.  

 

 

Evaluate the following expressions. 

19. 














−

4
cossin 1 π

    20. 














−

6
sincos 1 π

 

21. 














−

3

4
cossin 1 π

    22. 














−

4

5
sincos 1 π

 

23. 














−

7

3
sincos 1

    24. 














−

9

4
cossin 1

 

25. ( )( )4tancos 1−
    26. 















−

3

1
sintan 1

 

 

Find a simplified expression for each of the following. 

27. 














−

5
cossin 1 x

, for 55 ≤≤− x   28. 














−

2
costan 1 x

, for 22 ≤≤− x   

29. ( )( )x3tansin 1−
    30. ( )( )x4tancos 1−

 

12 

19 

θ 

10 
7 

θ 
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Section 6.4 Solving Trig Equations 

 

In Section 6.1, we determined the height of a rider on the London Eye Ferris wheel could 

be determined by the equation ( ) 65cos 70
15

h t t
π 

= − + 
 

.   

If we wanted to know length of time during which the rider is more than 100 meters 

above ground, we would need to solve equations involving trig functions. 

 

 

Solving using known values 

 

In the last chapter, we learned sine and cosine values at commonly encountered angles.  

We can use these to solve sine and cosine equations involving these common angles. 

 

 

Example 1 

Solve ( )
2

1
sin =t  for all possible values of t. 

 

Notice this is asking us to identify all angles, t, that have a sine value of 
1

2
.  While 

evaluating a function always produces one result, solving for an input can yield multiple 

solutions.  Two solutions should immediately jump to mind from the last chapter: 
6

π
=t  

and 
6

5π
=t  because they are the common angles on the unit circle with a sin of 

1

2
. 

 

Looking at a graph confirms that there are more than these two solutions.  While eight 

are seen on this graph, there are an infinite number of solutions! 

 
Remember that any coterminal angle will also have the same sine value, so any angle 

coterminal with these our first two solutions is also a solution.  Coterminal angles can 

be found by adding full rotations of 2π, so we can write the full set of solutions: 

 

kt π
π

2
6

+=  where k is an integer, and kt π
π

2
6

5
+=  where k is an integer. 
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Example 2 

A circle of radius 25  intersects the line x = -5 at two points.  Find the angles θ  on the 

interval πθ 20 <≤ , where the circle and line intersect.  

 

The x coordinate of a point on a circle can be found as ( )θcosrx = , so the x coordinate 

of points on this circle would be ( )θcos25=x .  To find where the line x = -5 

intersects the circle, we can solve for where the x value on the circle would be -5. 

( )θcos255 =−   Isolating the cosine 

( )θcos
2

1
=

−
   Recall that 

2

2

2

1 −
=

−
, so we are solving 

 

( )
2

2
cos

−
=θ    

 

We can recognize this as one of our special cosine values 

from our unit circle, and it corresponds with angles 

4

3π
θ =  and 

4

5π
θ = . 

 

 

Try it Now 

1. Solve ( )tan 1t =  for all possible values of t. 

 

 

Example 3 

The depth of water at a dock rises and falls with the tide, following the equation 

7
12

sin4)( +







= ttf

π
, where t is measured in hours after midnight.  A boat requires a 

depth of 9 feet to tie up at the dock.   Between what times will the depth be 9 feet? 

 

To find when the depth is 9 feet, we need to solve f(t) = 9. 

97
12

sin4 =+







t

π
  Isolating the sine 

2
12

sin4 =







t

π
  Dividing by 4 

2

1

12
sin =








t

π
  We know ( )

2

1
sin =θ  when 

6

5

6

π
θ

π
θ == or
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While we know what angles have a sine value of 
1

2
, because of the horizontal 

stretch/compression it is less clear how to proceed.   

 

To deal with this, we can make a substitution, defining a new temporary variable u to be 

tu
12

π
= , so our equation 

2

1

12
sin =








t

π
becomes  

( )
2

1
sin =u   

 

From earlier, we saw the solutions to this equation were 

ku π
π

2
6

+=  where k is an integer, and  

ku π
π

2
6

5
+=  where k is an integer 

 

To undo our substitution, we replace the u in the solutions with tu
12

π
=  and solve for t.   

 

kt π
ππ

2
612

+=  where k is an integer, and  kt π
ππ

2
6

5

12
+=  where k is an integer. 

 

Dividing by π/12, we obtain solutions 

 

kt 242 +=  where k is an integer, and  

kt 2410 +=  where k is an integer.  

 

The depth will be 9 feet and the boat 

will be able to approach the dock 

between 2am and 10am.  

 

Notice how in both scenarios, the 24k 

shows how every 24 hours the cycle will be repeated. 

 

 

In the previous example, looking back at the original simplified equation 
2

1

12
sin =








t

π
, 

we can use the ratio of the “normal period” to the stretch factor to find the period:  

24
12

2

12

2
=








=








 π
π

π

π
.  Notice that the sine function has a period of 24, which is reflected 

in the solutions: there were two unique solutions on one full cycle of the sine function, 

and additional solutions were found by adding multiples of a full period. 
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Try it Now 

2. Solve 11)5sin(4 =−t  for all possible values of t. 

 

 

Solving using the inverse trig functions 

 

Not all equations involve the “special” values of the trig functions to we have learned.  

To find the solutions to these equations, we need to use the inverse trig functions.  

 

 

Example 4 

Use the inverse sine function to find one solution to ( ) 8.0sin =θ . 

 

Since this is not a known unit circle value, calculating the inverse, ( )8.0sin 1−
=θ .  This 

requires a calculator and we must approximate a value for this angle.  If your calculator 

is in degree mode, your calculator will give you an angle in degrees as the output.  If 

your calculator is in radian mode, your calculator will give you an angle in radians.  In 

radians, ( ) 927.08.0sin 1
≈=

−θ , or in degrees, ( )1sin 0.8 53.130θ −
= ≈ ° . 

 

 

If you are working with a composed trig function and you are not solving for an angle, 

you will want to ensure that you are working in radians.  In calculus, we will almost 

always want to work with radians since they are unit-less. 

 

Notice that the inverse trig functions do exactly what you would expect of any function – 

for each input they give exactly one output.  While this is necessary for these to be a 

function, it means that to find all the solutions to an equation like ( ) 8.0sin =θ , we need 

to do more than just evaluate the inverse function. 

 

To find additional solutions, it is good to remember four things: 

• The sine is the y-value of a point on the unit circle 

• The cosine is the x-value of a point on the unit circle 

• The tangent is the slope of a line at a given angle 

• Other angles with the same sin/cos/tan will have the same reference angle 

 

 

Example 5 

Find all solutions to ( ) 8.0sin =θ . 

 

We would expect two unique angles on one cycle to have this sine value.  In the 

previous example, we found one solution to be ( ) 927.08.0sin 1
≈=

−θ .  To find the 

other, we need to answer the question “what other angle has the same sine value as an 

angle of 0.927?”   
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We can think of this as finding all the angles where the y-

value on the unit circle is 0.8.  Drawing a picture of the circle 

helps how the symmetry.   

On a unit circle, we would recognize that the second angle 

would have the same reference angle and reside in the second 

quadrant.  This second angle would be located at 

)8.0(sin 1−
−= πθ , or approximately 214.2927.0 =−≈ πθ . 

 

To find more solutions we recall that angles coterminal with 

these two would have the same sine value, so we can add full 

cycles of 2π. 

 

kπθ 2)8.0(sin 1
+=

−
 and kππθ 2)8.0(sin 1

+−=
−

 where k is an integer, 

or approximately, kπθ 2927.0 +=  and kπθ 2214.2 +=  where k is an integer. 

 

 

Example 6 

Find all solutions to ( )
9

8
sin −=x  on the interval °<≤° 3600 x . 

 

We are looking for the angles with a y-value of -8/9 on the 

unit circle.  Immediately we can see the solutions will be in 

the third and fourth quadrants. 

 

First, we will turn our calculator to degree mode.  Using the 

inverse, we can find one solution °−≈







−=

− 734.62
9

8
sin 1

x .  

While this angle satisfies the equation, it does not lie in the 

domain we are looking for.  To find the angles in the desired 

domain, we start looking for additional solutions.   

 

First, an angle coterminal with °− 734.62 will have the same sine.  By adding a full 

rotation, we can find an angle in the desired domain with the same sine. 

°=°+°−= 266.297360734.62x  

 

There is a second angle in the desired domain that lies in the third quadrant.  Notice that 

°734.62  is the reference angle for all solutions, so this second solution would be 

°734.62  past °180  

°=°+°= 734.242180734.62x  

 

The two solutions on °<≤° 3600 x  are x = °266.297 and x = °734.242  

 

 

 

 

 

 
θ 

0.8 

0.929 

1

 

 

 

-8/9 

-67.7° 
1
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Example 7 

Find all solutions to ( ) 3tan =x  on π20 <≤ x . 

 

Using the inverse tangent function, we can find one solution ( ) 249.13tan 1
≈=

−x .  

Unlike the sine and cosine, the tangent function only attains any output value once per 

cycle, so there is no second solution in any one cycle. 

 

By adding π, a full period of tangent function, we can find 

a second angle with the same tangent value.  Notice this 

gives another angle where the line has the same slope. 

 

If additional solutions were desired, we could continue to 

add multiples of π, so all solutions would take on the form 

πkx += 249.1 , however we are only interested in 

π20 <≤ x . 

391.4249.1 =+= πx  

 

The two solutions on π20 <≤ x  are x = 1.249 and x = 4.391. 

 

 

Try it Now 

3. Find all solutions to ( )tan 0.7x =  on °<≤° 3600 x . 

 

 

Example 8 

Solve ( ) 24cos3 =+t  for all solutions on one cycle, 0 2t π≤ <  

 

( ) 24cos3 =+t  Isolating the cosine 

( ) 2cos3 −=t  

( )
3

2
cos −=t   Using the inverse, we can find one solution 

301.2
3

2
cos 1

≈







−=

−
t  

 

We’re looking for two angles where the x-coordinate on a 

unit circle is -2/3.  A second angle with the same cosine 

would be located in the third quadrant.  Notice that the 

location of this angle could be represented as 301.2−=t . 

To represent this as a positive angle we could find a 

coterminal angle by adding a full cycle. 

π2301.2 +−=t  = 3.982 

 

The equation has two solutions between 0 and 2π, at t = 2.301 and t = 3.982. 

1 

1.249 

4.391 

 

 

 

-2.301 

or 3.982 

2.301 

2

3
−

 1
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Example 9 

Solve ( ) 2.03cos =t  for all solutions on two cycles, 
3

4
0

π
<≤ t . 

 

As before, with a horizontal compression it can be helpful to make a substitution, tu 3=   

Making this substitution simplifies the equation to a form we have already solved.  

( ) 2.0cos =u  

( ) 369.12.0cos 1
≈=

−u  

 

A second solution on one cycle would be located in the fourth quadrant with the same 

reference angle. 

914.4369.12 =−= πu  

 

In this case, we need all solutions on two cycles, so we need to find the solutions on the 

second cycle.  We can do this by adding a full rotation to the previous two solutions. 

197.112914.4

653.72369.1

=+=

=+=

π

π

u

u
 

 

Undoing the substitution, we obtain our four solutions: 

3t = 1.369, so t = 0.456 

3t = 4.914 so t = 1.638 

3t = 7.653, so t = 2.551 

3t = 11.197, so t = 3.732 

 

 

Example 10 

Solve ( ) 2sin3 −=tπ  for all solutions. 

 

( ) 2sin3 −=tπ    Isolating the sine 

( )
3

2
sin −=tπ    We make the substitution tu π=  

( )
3

2
sin −=u     Using the inverse, we find one solution 

730.0
3

2
sin 1

−≈







−=

−
u   

 

This angle is in the fourth quadrant.  A second angle with the same sine would be in the 

third quadrant with 0.730 as a reference angle: 

871.3730.0 =+= πu  

 

We can write all solutions to the equation ( )
3

2
sin −=u  as 

ku π2730.0 +−=  or ku π2871.3 += , where k is an integer. 



Section 6.4 Solving Trig Equations   437 

 

Undoing our substitution, we can replace u in our solutions with tu π=  and solve for t 

 

kt ππ 2730.0 +−=  or  kt ππ 2871.3 +=   Divide by π 

kt 2232.0 +−=  or kt 2232.1 +=  

 

 

Try it Now 

4. Solve 03
2

sin5 =+







t

π
 for all solutions on one cycle, 40 <≤ t . 

 

 

Solving Trig Equations 

1) Isolate the trig function on one side of the equation 

2) Make a substitution for the inside of the sine, cosine, or tangent (or other trig 

function) 

3) Use inverse trig functions to find one solution 

4) Use symmetries to find a second solution on one cycle (when a second exists) 

5) Find additional solutions if needed by adding full periods 

6) Undo the substitution  

 

 

We now can return to the question we began the section with. 

 

 

Example 11 

The height of a rider on the London Eye Ferris wheel can be determined by the equation 

( ) 65cos 70
15

h t t
π 

= − + 
 

.  How long is the rider more than 100 meters above ground?   

 

To find how long the rider is above 100 meters, we first find the times at which the rider 

is at a height of 100 meters by solving h(t) = 100. 

100 65cos 70
15

t
π 

= − + 
 

  Isolating the cosine 

30 65cos
15

t
π 

= −  
 

 

30
cos

65 15
t

π 
=  

−  
   We make the substitution tu

15

π
=  

30
cos( )

65
u=

−
   Using the inverse, we find one solution 
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1 30
cos 2.051

65
u

−  
= ≈ 

− 
  

  

This angle is in the second quadrant.  A second angle 

with the same cosine would be symmetric in the third 

quadrant.  This angle could be represented as u = -2.051, 

but we need a coterminal positive angle, so we add 2π: 

2 2.051 4.230u π= − ≈  

 

Now we can undo the substitution to solve for t 

2.051
15

t
π

=  so t = 9.793 minutes after the start of the ride 

4.230
15

t
π

=  so t = 20.197 minutes after the start of the ride 

 

A rider will be at 100 meters after 9.793 minutes, and again after 20.197 minutes.  From 

the behavior of the height graph, we know the rider will be above 100 meters between 

these times.  A rider will be above 100 meters for 20.197 - 9.793 = 10.404 minutes of 

the ride. 

 

 

Important Topics of This Section 

Solving trig equations using known values 

Using substitution to solve equations 

Finding answers in one cycle or period vs. finding all possible solutions 

Method for solving trig equations 

 

 

Try it Now Answers 

1. From our special angles, we know one answer is 
4

π
=t .  Tangent equations only have 

one unique solution per cycle or period, so additional solutions can be found by 

adding multiples of a full period, π.   kt π
π

+=
4

. 

 

2. 11)5sin(4 =−t  

2

1
)5sin( =t .  Let tu 5=  so this becomes 

2

1
)sin( =u , which has solutions 

kku π
π

π
π

2
6

5
,2

6
++= . Solving kkut π

π
π

π
2

6

5
,2

6
5 ++==  gives the solutions 

kt
5

2

30

ππ
+=         kt

5

2

6

ππ
+=      

1 

u = 2.051 

u = -2.051 

or 4.230 
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3. The first solution is °≈=
− 992.34)7.0(tan 1x . 

For a standard tangent, the second solution can be found by adding a full period, 

180°, giving °=°+°= 992.21499.34180x . 

 

4. 
5

3

2
sin −=








t

π
.  Let tu

2

π
= , so this becomes ( )

5

3
sin −=u . 

Using the inverse, 6435.0
5

3
sin 1

−≈







−=

−u .  Since we want positive solutions, we 

can find the coterminal solution by adding a full cycle: 6397.526435.0 =+−= πu . 

 

Another angle with the same sin would be in the third quadrant with the reference 

angle 0.6435.   7851.36435.0 =+= πu . 

 

Solving for t, 6397.5
2

== tu
π

, so 5903.3
2

6397.5 =







=

π
t  

and 7851.3
2

== tu
π

, so 4097.2
2

7851.3 =







=

π
t . 

t = 2.4097 or t = 3.5903. 
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Section 6.4 Exercises 

 

Give all answers in radians unless otherwise indicated. 

 

Find all solutions on the interval 0 2θ π≤ < . 

1. ( )2sin 2θ = −   2. ( )2sin 3θ =   3. ( )2cos 1θ =   4. ( )2cos 2θ = −  

5. ( )sin 1θ =    6. ( )sin 0θ =    7. ( )cos 0θ =    8. ( )cos 1θ = −  

 

 

Find all solutions. 

9. ( )2cos 2θ =  10. ( )2cos 1θ = −  11. ( )2sin 1θ = −  12. ( )2sin 3θ = −  

 

 

Find all solutions. 

13. ( )2sin 3 1θ =   14. ( )2sin 2 3θ =   15. ( )2sin 3 2θ = −   

16. ( )2sin 3 1θ = −   17. ( )2cos 2 1θ =   18. ( )2cos 2 3θ =   

19. ( )2cos 3 2θ = −   20. ( )2cos 2 1θ = −   21. cos 1
4

π
θ

 
= − 

 
  

22. sin 1
3

π
θ

 
= − 

 
  23. ( )2sin 1πθ = .   24. 2cos 3

5

π
θ

 
= 

 
  

 

 

Find all solutions on the interval 0 2x π≤ < . 

25. ( )sin 0.27x =  26. ( )sin  0.48x =  27. ( )sin  0.58x = −  28. ( )sin 0.34x = −  

29. ( )cos 0.55x = −  30. ( )sin  0.28x =  31. ( )cos  0.71x =  32. ( )cos 0.07x = −  

 

 

Find the first two positive solutions. 

33. ( )7sin 6 2x =   34. ( )7sin 5  6x =  35. ( )5cos 3 3x = −  36. ( )3cos 4 2x =  

37. 3sin 2
4

x
π 

= 
 

  38. 7sin 6
5

x
π 

= 
 

 39. 5cos 1
3

x
π 

= 
 

 40. 3cos 2
2

x
π 

= − 
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Section 6.5 Modeling with Trigonometric Functions  

 

Solving right triangles for angles 

 

In Section 5.5, we used trigonometry on a right triangle to solve for the sides of a triangle 

given one side and an additional angle.  Using the inverse trig functions, we can solve for 

the angles of a right triangle given two sides. 

 

 

Example 1 

An airplane needs to fly to an airfield located 300 miles east and 200 miles north of its 

current location.  At what heading should the airplane fly?   In other words, if we ignore 

air resistance or wind speed, how many degrees north of east should the airplane fly? 

 

We might begin by drawing a picture and labeling all of 

the known information.  Drawing a triangle, we see we 

are looking for the angle α.  In this triangle, the side 

opposite the angle α is 200 miles and the side adjacent 

is 300 miles.  Since we know the values for the  

opposite and adjacent sides, it makes sense to use the 

tangent function. 

300

200
)tan( =α   Using the inverse, 

588.0
300

200
tan 1

≈







=

−α , or equivalently about 33.7 degrees. 

 

The airplane needs to fly at a heading of 33.7 degrees north of east. 

 

 

Example 2 

OSHA safety regulations require that the base of a ladder be placed 1 foot from the wall 

for every 4 feet of ladder length3.  Find the angle such a ladder forms with the ground. 

 

For any length of ladder, the base needs to be one quarter of the distance 

the foot of the ladder is away from the wall.  Equivalently, if the base is    

a feet from the wall, the ladder can be 4a feet long.  Since a is the side 

adjacent to the angle and 4a is the hypotenuse, we use the cosine function. 

4

1

4
)cos( ==

a

a
θ   Using the inverse 

52.75
4

1
cos 1

≈







=

−θ  degrees 

The ladder forms a 75.52 degree angle with the ground. 

                                                 
3 http://www.osha.gov/SLTC/etools/construction/falls/4ladders.html 

200 

300 

α 

a 

4a 

θ 



442  Chapter 6 

 

Try it Now 

1. A cable that anchors the center of the London Eye Ferris wheel to the ground must be 

replaced.  The center of the Ferris wheel is 70 meters above the ground and the 

second anchor on the ground is 23 meters from the base of the wheel. What is the 

angle from the ground up to the center of the Ferris wheel and how long is the cable? 

 

 

Example 3 

In a video game design, a map shows the location of other characters relative to the 

player, who is situated at the origin, and the direction they are facing.  A character 

currently shows on the map at coordinates (-3, 5).  If the player rotates 

counterclockwise by 20 degrees, then the objects in the map will correspondingly rotate 

20 degrees clockwise.  Find the new coordinates of the character. 

 

To rotate the position of the character, we can imagine it as 

a point on a circle, and we will change the angle of the 

point by 20 degrees.  To do so, we first need to find the 

radius of this circle and the original angle. 

 

Drawing a right triangle inside the circle, we can find the 

radius using the Pythagorean Theorem: 

( )
2 2 23 5

9 25 34

r

r

− + =

= + =

 

 

To find the angle, we need to decide first if we are going to find the acute angle of the 

triangle, the reference angle, or if we are going to find the angle measured in standard 

position.  While either approach will work, in this case we will do the latter.  Since for 

any point on a circle we know )cos(θrx = , using our given information we get 

)cos(343 θ=−   

)cos(
34

3
θ=

−
 

°≈






 −
=

− 964.120
34

3
cos 1θ  

While there are two angles that have this cosine value, the angle of 120.964 degrees is 

in the second quadrant as desired, so it is the angle we were looking for. 

 

Rotating the point clockwise by 20 degrees, the angle of the point will decrease to 

100.964 degrees.  We can then evaluate the coordinates of the rotated point 

 

 
 

The coordinates of the character on the rotated map will be (-1.109, 5.725). 

109.1)964.100cos(34 −≈°=x

725.5)964.100sin(34 ≈°=y
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Modeling with sinusoidal functions 

 

Many modeling situations involve functions that are periodic.  Previously we learned that 

sinusoidal functions are a special type of periodic function.  Problems that involve 

quantities that oscillate can often be modeled by a sine or cosine function and once we 

create a suitable model for the problem we can use that model to answer various 

questions. 

 

 

Example 4 

The hours of daylight in Seattle oscillate from a low of 8.5 hours in January to a high of 

16 hours in July4.  When should you plant a garden if you want to do it during a month 

where there are 14 hours of daylight? 

 

To model this, we first note that the hours of daylight oscillate with a period of 12 

months.  
2

12 6
B

π π
= =  corresponds to the horizontal stretch, found by using the ratio of 

the original period to the new period. 

 

With a low of 8.5 and a high of 16, the midline will be halfway between these values, at 

25.12
2

5.816
=

+
.   

The amplitude will be half the difference 

between the highest and lowest values: 

75.3
2

5.816
=

−
, or equivalently the 

distance from the midline to the high or 

low value, 16-12.25=3.75.   

 

Letting January be t = 0, the graph starts 

at the lowest value, so it can be modeled 

as a flipped cosine graph.  Putting this 

together, we get a model: 

25.12
6

cos75.3)( +







−= tth

π
 

 

h(t) is our model for hours of day light t months after January.   

 

To find when there will be 14 hours of daylight, we solve h(t) = 14. 

 

25.12
6

cos75.314 +







−= t

π
  Isolating the cosine 

                                                 
4 http://www.mountaineers.org/seattle/climbing/Reference/DaylightHrs.html 
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−= t

6
cos75.375.1

π
  Subtracting 12.25 and dividing by -3.75 









=− t

6
cos

75.3

75.1 π
   Using the inverse 

0563.2
75.3

75.1
cos

6

1
≈








−=

−t
π

  multiplying by the reciprocal 

927.3
6

0563.2 =⋅=
π

t   t=3.927 months past January 

 

There will be 14 hours of daylight 3.927 months into the year, or near the end of April. 

 

While there would be a second time in the year when there are 14 hours of daylight, 

since we are planting a garden, we would want to know the first solution, in spring, so 

we do not need to find the second solution in this case. 

 

 

Try it Now 

2. The author’s monthly  

gas usage (in therms) is  

shown here.  Find a  

function to model the  

data.   

 

 

 

 

Example 6 

An object is connected to the wall with a spring that has a 

natural length of 20 cm.  The object is pulled back 8 cm past 

the natural length and released.  The object oscillates 3 times 

per second.  Find an equation for the horizontal position of the 

object ignoring the effects of friction.  How much time during each cycle is the object 

more than 27 cm from the wall? 

 

If we use the distance from the wall, x, as the desired output, then the object will 

oscillate equally on either side of the spring’s natural length of 20, putting the midline 

of the function at 20 cm.   

 

If we release the object 8 cm past the natural length, the amplitude of the oscillation will 

be 8 cm.   

 

We are beginning at the largest value and so this function can most easily be modeled 

using a cosine function. 
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Since the object oscillates 3 times per second, it has a frequency of 3 and the period of 

one oscillation is 1/3 of second. Using this we find the horizontal compression using the 

ratios of the periods: π
π

6
3/1

2
= . 

 

Using all this, we can build our model: 

( ) 206cos8)( += ttx π  

 

To find when the object is 27 cm from the wall, we can solve x(t) = 27 

( ) 206cos827 += tπ    Isolating the cosine 

( )tπ6cos87 =  

( )tπ6cos
8

7
=    Using the inverse 

505.0
8

7
cos6 1

≈







=

−tπ   

0268.0
6

505.0
==

π
t  

 

Based on the shape of the graph, we can conclude 

that the object will spend the first 0.0268 seconds 

more than 27 cm from the wall.  Based on the 

symmetry of the function, the object will spend 

another 0.0268 seconds more than 27 cm from the 

wall at the end of the cycle.  Altogether, the object 

spends 0.0536 seconds each cycle at a distance 

greater than 27 cm from the wall. 

 

 

 

In some problems, we can use trigonometric functions to model behaviors more 

complicated than the basic sinusoidal function. 

 

 

Example 7 

A rigid rod with length 10 cm is attached 

to a circle of radius 4cm at point A as 

shown here.  The point B is able to freely 

move along the horizontal axis, driving a 

piston5.  If the wheel rotates 

counterclockwise at 5 revolutions per 

second, find the location of point B as a 

function of time.  When will the point B 

be 12 cm from the center of the circle? 

                                                 
5 For an animation of this situation, see http://www.mathdemos.org/mathdemos/sinusoidapp/engine1.gif  

A 

B 
10 cm 4cm 

θ 
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To find the position of point B, we can begin by finding the coordinates of point A.  

Since it is a point on a circle with radius 4, we can express its coordinates as 

))sin(4),cos(4( θθ , where θ is the angle shown.   

 

The angular velocity is 5 revolutions per second, or equivalently 10π radians per 

second.  After t seconds, the wheel will rotate by 10 tθ π=  radians.  Substituting this, 

we can find the coordinates of A in terms of t.   

))10sin(4),10cos(4( tt ππ  

 

Notice that this is the same value we would have obtained by observing that the period 

of the rotation is 1/5 of a second and calculating the stretch/compression factor:  

π
π

10

5
1

2

""

""
=

new

original
. 

 

Now that we have the coordinates of the point A, 

we can relate this to the point B.  By drawing a 

vertical line segment from A to the horizontal 

axis, we can form a right triangle.  The height of 

the triangle is the y coordinate of the point A: 

4sin(10 )tπ .   

 

Using the Pythagorean Theorem, we can find the base length of the triangle: 

( )
2 2 24sin(10 ) 10t bπ + =  

2 2100 16sin (10 )b tπ= −  

2100 16sin (10 )b tπ= −  

 

Looking at the x coordinate of the point A, we can see that the triangle we drew is 

shifted to the right of the y axis by 4cos(10 )tπ .  Combining this offset with the length 

of the base of the triangle gives the x coordinate of the point B: 
2( ) 4 cos(10 ) 100 16sin (10 )x t t tπ π= + −  

 

To solve for when the point B will be 12 cm from the center of the circle, we need to 

solve x(t) = 12.   
212 4 cos(10 ) 100 16sin (10 )t tπ π= + −    Isolate the square root 

212 4 cos(10 ) 100 16sin (10 )t tπ π− = −    Square both sides 

( )
2 212 4 cos(10 ) 100 16sin (10 )t tπ π− = −    Expand the left side 

2 2144 96cos(10 ) 16cos (10 ) 100 16sin (10 )t t tπ π π− + = −  Move all terms to the left 
2 244 96cos(10 ) 16cos (10 ) 16sin (10 ) 0t t tπ π π− + + =  Factor out 16 

( )2 244 96cos(10 ) 16 cos (10 ) sin (10 ) 0t t tπ π π− + + =  

 

A 

B 

10 cm 

b 
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At this point, we can utilize the Pythagorean Identity, which tells us that 
2 2cos (10 ) sin (10 ) 1t tπ π+ = .   

 

Using this identity, our equation simplifies to 

 

44 96cos(10 ) 16 0tπ− + =   Combine the constants and move to the right side 

96cos(10 ) 60tπ− = −   Divide 

60
cos(10 )

96
tπ =    Make a substitution 

96

60
)cos( =u  

896.0
96

60
cos 1

≈







=

−u   By symmetry we can find a second solution 

388.5896.02 =−= πu   Undoing the substitution 

 

10 0.896tπ = , so t = 0.0285 

10 5.388tπ = , so t = 0.1715 

 

The point B will be 12 cm from the center of the circle 0.0285 seconds after the process 

begins, 0.1715 seconds after the process begins, and every 1/5 of a second after each of 

those values. 

 

 

Important Topics of This Section 

Modeling with trig equations 

Modeling with sinusoidal functions 

Solving right triangles for angles in degrees and radians 

 

 

Try it Now Answers 

1. Angle of elevation for the cable is 71.81 degrees and the cable is 73.68 m long 

2. Approximately ( ) 66cos ( 1) 87
6

G t t
π 

= − + 
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Section 6.5 Exercises 

 

In each of the following triangles, solve for the unknown side and angles. 

 

1.   2.  

 

 

 

 

3.  4.  

  

   

 

   

  

Find a possible formula for the trigonometric function whose values are in the following 

tables. 

5. 
x 0 1 2 3 4 5 6 

y -2 4 10 4 -2 4 10 

 

6.  

x 0 1 2 3 4 5 6 

y 1 -3 -7 -3 1 -3 -7 

 

 

7. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the high temperature for the day is 63 degrees and the low 

temperature of 37 degrees occurs at 5 AM. Assuming t is the number of hours since 

midnight, find an equation for the temperature, D, in terms of t. 

8. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the high temperature for the day is 92 degrees and the low 

temperature of 78 degrees occurs at 4 AM. Assuming t is the number of hours since 

midnight, find an equation for the temperature, D, in terms of t. 

9. A population of rabbits oscillates 25 above and below an average of 129 during the 

year, hitting the lowest value in January (t = 0).  

a. Find an equation for the population, P, in terms of the months since January, t. 

b. What if the lowest value of the rabbit population occurred in April instead? 

 

 

 

A 
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8 

B 
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3 
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10. A population of elk oscillates 150 above and below an average of 720 during the year, 

hitting the lowest value in January (t = 0).  

a. Find an equation for the population, P, in terms of the months since January, t. 

b. What if the lowest value of the rabbit population occurred in March instead? 

 

11. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the high temperature of 105 degrees occurs at 5 PM and the 

average temperature for the day is 85 degrees. Find the temperature, to the nearest 

degree, at 9 AM. 

 

12. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the high temperature of 84 degrees occurs at 6 PM and the 

average temperature for the day is 70 degrees. Find the temperature, to the nearest 

degree, at 7 AM. 

 

13. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature varies between 47 and 63 degrees during the day 

and the average daily temperature first occurs at 10 AM. How many hours after 

midnight does the temperature first reach 51 degrees? 

 

14. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature varies between 64 and 86 degrees during the day 

and the average daily temperature first occurs at 12 AM. How many hours after 

midnight does the temperature first reach 70 degrees? 

 

15. A Ferris wheel is 20 meters in diameter and boarded from a platform that is 2 meters 

above the ground. The six o'clock position on the Ferris wheel is level with the 

loading platform. The wheel completes 1 full revolution in 6 minutes. How many 

minutes of the ride are spent higher than 13 meters above the ground? 

  

16. A Ferris wheel is 45 meters in diameter and boarded from a platform that is 1 meter 

above the ground. The six o'clock position on the Ferris wheel is level with the 

loading platform. The wheel completes 1 full revolution in 10 minutes. How many 

minutes of the ride are spent higher than 27 meters above the ground? 

17. The sea ice area around the North Pole fluctuates between about 6 million square 

kilometers in September to 14 million square kilometers in March.  Assuming 

sinusoidal fluctuation, during how many months are there less than 9 million square 

kilometers of sea ice? 

18. The sea ice area around the South Pole fluctuates between about 18 million square 

kilometers in September to 3 million square kilometers in March.  Assuming 

sinusoidal fluctuation, during how many months are there more than 15 million 

square kilometers of sea ice? 
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19. A respiratory ailment called “Cheyne-Stokes Respiration” causes the volume per 

breath to increase and decrease in a sinusoidal manner, as a function of time. For one 

particular patient with this condition, a machine begins recording a plot of volume per 

breath versus time (in seconds). Let ( )b t  be a function of time t that tells us the 

volume (in liters) of a breath that starts at time t. During the test, the smallest volume 

per breath is 0.6 liters and this first occurs for a breath that starts 5 seconds into the 

test. The largest volume per breath is 1.8 liters and this first occurs for a breath 

beginning 55 seconds into the test. [UW] 

a. Find a formula for the function ( )b t  whose graph will model the test data for this 

patient. 

b. If the patient begins a breath every 5 seconds, what are the breath volumes during 

the first minute of the test? 

 

20. Suppose the high tide in Seattle occurs at 1:00 a.m. and 1:00 p.m, at which time the 

water is 10 feet above the height of low tide. Low tides occur 6 hours after high tides. 

Suppose there are two high tides and two low tides every day and the height of the 

tide varies sinusoidally. [UW] 

a. Find a formula for the function   ( )y h t=  that computes the height of the tide above 

low tide at time t. (In other words, y = 0 corresponds to low tide.) 

b. What is the tide height at 11:00 a.m.? 

 

21. A communications satellite orbits the earth t 

miles above the surface. Assume the radius 

of the earth is 3,960 miles. The satellite can 

only “see” a portion of the earth’s surface, 

bounded by what is called a horizon circle. 

This leads to a two-dimensional cross-

sectional picture we can use to study the size 

of the horizon slice: [UW] 

 

a. Find a formula for α in terms of t. 

b. If t = 30,000 miles, what is α? What 

percentage of the circumference of the 

earth is covered by the satellite? What 

would be the minimum number of such 

satellites required to cover the circumference? 

c. If t = 1,000 miles, what is α? What percentage of the circumference of the earth is 

covered by the satellite? What would be the minimum number of such satellites 

required to cover the circumference? 

d. Suppose you wish to place a satellite into orbit so that 20% of the circumference 

is covered by the satellite. What is the required distance t? 
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22. Tiffany is a model rocket enthusiast. She has been working on a pressurized rocket 

filled with nitrous oxide. According to her design, if the atmospheric pressure exerted 

on the rocket is less than 10 pounds/sq.in., the nitrous oxide chamber inside the rocket 

will explode. Tiff worked from a formula 
/1014.7 hp e−

=  pounds/sq.in. for the 

atmospheric pressure h miles above sea level. Assume that the rocket is launched at 

an angle of α above level ground at sea level with an initial speed of 1400 feet/sec. 

Also, assume the height (in feet) of the rocket at time t seconds is given by the 

equation ( ) ( )216 1400siny t t tα= − + .      [UW] 

a. At what altitude will the rocket explode? 

b. If the angle of launch is α = 12°, determine the minimum atmospheric pressure 

exerted on the rocket during its flight. Will the rocket explode in midair? 

c. If the angle of launch is α = 82°, determine the minimum atmospheric pressure 

exerted on the rocket during its flight. Will the rocket explode in midair? 

d. Find the largest launch angle α so that the rocket will not explode. 
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Chapter 7: Trigonometric 
Equations and Identities 
 
In the last two chapters we have used basic definitions and relationships to simplify 
trigonometric expressions and solve trigonometric equations.  In this chapter we will look 
at more complex relationships.  By conducting a deeper study of trigonometric identities 
we can learn to simplify complicated expressions, allowing us to solve more interesting 
applications. 
 

Section 7.1 Solving Trigonometric Equations with Identities .................................... 453 
Section 7.2 Addition and Subtraction Identities ......................................................... 461 
Section 7.3 Double Angle Identities ........................................................................... 477 
Section 7.4 Modeling Changing Amplitude and Midline ........................................... 488 

 

Section 7.1 Solving Trigonometric Equations with Identities 

In the last chapter, we solved basic trigonometric equations.  In this section, we explore 
the techniques needed to solve more complicated trig equations.  Building from what we 
already know makes this a much easier task.  
 

Consider the function 2( ) 2f x x x= + .  If you were asked to solve 0)( =xf , it requires 

simple algebra: 

02 2 =+ xx   Factor 

0)12( =+xx   Giving solutions 

x = 0  or  x = 
2

1
−   

 
Similarly, for ( ) sin( )g t t= , if we asked you to solve 0)( =tg , you can solve this using 

unit circle values: 
0)sin( =t  for ππ 2,,0=t and so on. 

 
Using these same concepts, we consider the composition of these two functions: 

)sin()(sin2))(sin())(sin(2))(( 22
tttttgf +=+=  

 
This creates an equation that is a polynomial trig function.  With these types of functions, 
we use algebraic techniques like factoring and the quadratic formula, along with 
trigonometric identities and techniques, to solve equations. 
 
As a reminder, here are some of the essential trigonometric identities that we have 
learned so far: 
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Identities 

Pythagorean Identities 

1)(sin)(cos 22 =+ tt   )(csc)(cot1 22
tt =+   )(sec)(tan1 22

tt =+  

 

Negative Angle Identities 

)sin()sin( tt −=−   )cos()cos( tt =−   )tan()tan( tt −=−  

)csc()csc( tt −=−   )sec()sec( tt =−   )cot()cot( tt −=−  

 

Reciprocal Identities 

)cos(

1
)sec(

t
t =  

)sin(

1
)csc(

t
t =  

)cos(

)sin(
)tan(

t

t
t =  

)tan(

1
)cot(

t
t =  

 
 
Example 1 

Solve 0)sin()(sin2 2 =+ tt  for all solutions with π20 <≤ t . 

 
This equation kind of looks like a quadratic equation, but with sin(t) in place of an 
algebraic variable (we often call such an equation “quadratic in sine”).  As with all 
quadratic equations, we can use factoring techniques or the quadratic formula.  This 
expression factors nicely, so we proceed by factoring out the common factor of sin(t): 

( ) 01)sin(2)sin( =+tt  

 
Using the zero product theorem, we know that the product on the left will equal zero if 
either factor is zero, allowing us to break this equation into two cases: 

0)sin( =t  or 01)sin(2 =+t  

 
We can solve each of these equations independently, using our knowledge of special 
angles. 

0)sin( =t   01)sin(2 =+t   

 t = 0 or t = π  
2

1
)sin( −=t   

   
6

7π
=t  or 

6

11π
=t  

 
Together, this gives us four solutions to 

the equation on π20 <≤ t :   

6

11
,

6

7
,,0

ππ
π=t   

 
We could check these answers are 
reasonable by graphing the function and comparing the zeros. 
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Example 2 

Solve 02)sec(5)(sec3 2 =−− tt  for all solutions with π20 <≤ t . 

 
Since the left side of this equation is quadratic in secant, we can try to factor it, and 
hope it factors nicely. 
 
If it is easier to for you to consider factoring without the trig function present, consider 

using a substitution )sec(tu = , resulting in 0253 2 =−− uu , and then try to factor: 

)2)(13(253 2 −+=−− uuuu  

 
Undoing the substitution, 

0)2))(sec(1)sec(3( =−+ tt  

 
Since we have a product equal to zero, we break it into the two cases and solve each 
separately. 
 

01)sec(3 =+t    Isolate the secant 

3

1
)sec( −=t     Rewrite as a cosine 

3

1

)cos(

1
−=

t
    Invert both sides 

3)cos( −=t  

 
Since the cosine has a range of [-1, 1], the cosine will never take on an output of -3.  
There are no solutions to this case.   
 
Continuing with the second case, 
 

02)sec( =−t    Isolate the secant 

2)sec( =t     Rewrite as a cosine 

2
)cos(

1
=

t
    Invert both sides 

2

1
)cos( =t     This gives two solutions 

3

π
=t  or 

3

5π
=t  

 
These are the only two solutions on the interval.   
By utilizing technology to graph 

2( ) 3sec ( ) 5sec( ) 2f t t t= − − , a look at a graph 

confirms there are only two zeros for this function on 
the interval [0, 2π), which assures us that we didn’t 
miss anything.  
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Try it Now 

1. Solve 01)sin(3)(sin2 2 =++ tt  for all solutions with π20 <≤ t . 

 
 
When solving some trigonometric equations, it becomes necessary to first rewrite the 
equation using trigonometric identities.  One of the most common is the Pythagorean 

Identity, 1)(cos)(sin 22 =+ θθ  which allows you to rewrite )(sin 2 θ  in terms of )(cos2 θ  

or vice versa, 
 
 

Identities 

Alternate Forms of the Pythagorean Identity 

2 2

2 2

sin ( ) 1 cos ( )

cos ( ) 1 sin ( )

θ θ

θ θ

= −

= −  
 
 
These identities become very useful whenever an equation involves a combination of sine 
and cosine functions. 
 
 
Example 3 

Solve 1)cos()(sin2 2 =− tt  for all solutions with π20 <≤ t . 

 
Since this equation has a mix of sine and cosine functions, it becomes more complicated 
to solve.  It is usually easier to work with an equation involving only one trig function.  
This is where we can use the Pythagorean Identity. 
  

1)cos()(sin2 2 =− tt    Using )(cos1)(sin 22 θθ −=  

( ) 1)cos()(cos12 2 =−− tt   Distributing the 2 

1)cos()(cos22 2 =−− tt    

 
Since this is now quadratic in cosine, we rearrange the equation so one side is zero and 
factor. 

01)cos()(cos2 2 =+−− tt   Multiply by -1 to simplify the factoring 

01)cos()(cos2 2 =−+ tt   Factor 

( )( ) 01)cos(1)cos(2 =+− tt    

 
This product will be zero if either factor is zero, so we can break this into two separate 
cases and solve each independently. 
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01)cos(2 =−t  or 01)cos( =+t  

2

1
)cos( =t   or 1)cos( −=t  

3

π
=t  or 

3

5π
=t  or π=t  

 
 

Try it Now 

2. Solve )cos(3)(sin2 2
tt =  for all solutions with π20 <≤ t . 

 
 
In addition to the Pythagorean Identity, it is often necessary to rewrite the tangent, secant, 
cosecant, and cotangent as part of solving an equation. 
 
 
Example 4 

Solve )sin(3)tan( xx =  for all solutions with π20 <≤ x . 

 
With a combination of tangent and sine, we might try rewriting tangent 

)sin(3)tan( xx =  

)sin(3
)cos(

)sin(
x

x

x
=    Multiplying both sides by cosine 

)cos()sin(3)sin( xxx =  

 
At this point, you may be tempted to divide both sides of the equation by sin(x).  Resist 

the urge.  When we divide both sides of an equation by a quantity, we are assuming the 
quantity is never zero.  In this case, when sin(x) = 0 the equation is satisfied, so we’d 
lose those solutions if we divided by the sine.   
 
To avoid this problem, we can rearrange the equation so that one side is zero1.  

0)cos()sin(3)sin( =− xxx   Factoring out sin(x) from both parts 

( ) 0)cos(31)sin( =− xx    

 
From here, we can see we get solutions when 0)sin( =x  or 0)cos(31 =− x .   

 
Using our knowledge of the special angles of the unit circle,  

0)sin( =x  when x = 0 or x = π.   

 
 

                                                 
1 You technically can divide by sin(x), as long as you separately consider the case where sin(x) = 0.  Since 
it is easy to forget this step, the factoring approach used in the example is recommended. 
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For the second equation, we will need the inverse cosine. 
0)cos(31 =− x  

3

1
)cos( =x     Using our calculator or technology 

231.1
3

1
cos 1 ≈








= −x   Using symmetry to find a second solution 

052.5231.12 =−= πx   
 

We have four solutions on π20 <≤ x : 
x = 0, 1.231, π, 5.052 

 
 

Try it Now 
3. Solve )cos(2)sec( θθ =  to find the first four positive solutions. 

 
 
Example 5 

Solve  ( ) ( ) ( )2

4
3cos 2cot tan

sec ( )
θ θ θ

θ
+ =  for all solutions with 0 2θ π≤ < . 

 

( ) ( ) ( )2

4
3cos 2cot tan

sec ( )
θ θ θ

θ
+ =  Using the reciprocal identities 

 

)tan(
)tan(

1
2)cos(3)(cos4 2 θ

θ
θθ =+  Simplifying 

( ) ( )24cos 3cos 2θ θ+ =      Subtracting 2 from each side 

( ) ( )24cos 3cos 2 0θ θ+ − =    

 
This does not appear to factor nicely so we use the quadratic formula, remembering that 
we are solving for cos(θ). 
 

8

413

)4(2

)2)(4(433
)cos(

2
±−

=
−−±−

=θ  

 
Using the negative square root first, 

175.1
8

413
)cos( −=

−−
=θ  

 
This has no solutions, since the cosine can’t be less than -1. 
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Using the positive square root, 

425.0
8

413
)cos( =

+−
=θ  

( ) 131.1425.0cos 1 == −θ   By symmetry, a second solution can be found 

152.5131.12 =−= πθ  
 
 

Important Topics of This Section 

Review of Trig Identities 

Solving Trig Equations 

 By Factoring 

 Using the Quadratic Formula 

 Utilizing Trig Identities to simplify 

 
 

Try it Now Answers 
1. Factor as ( )( ) 01)sin(1)sin(2 =++ tt   

01)sin(2 =+t  at 
7 11

,
6 6

t
π π

=  

01)sin( =+t  at 
3

2
t

π
=  

7 3 11
, ,

6 2 6
t

π π π
=   

 

2. ( ) )cos(3)(cos12 2
tt =−  

02)cos(3)(cos2 2 =−+ tt  

( )( ) 02)cos(1)cos(2 =+− tt  

02)cos( =+t  has no solutions 

01)cos(2 =−t  at 
5

,
3 3

t
π π

=   

 

3. )cos(2
)cos(

1
θ

θ
=  

)(cos
2

1 2 θ=  

2

2

2

1
)cos( ±=±=θ  

3 5 7
, , ,

4 4 4 4

π π π π
θ =  
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Section 7.1 Exercises 

 

Find all solutions on the interval 0 2θ π≤ < . 

1. ( )2sin 1θ = −  2. ( )2sin  3θ =  3. ( )2cos 1θ =  4. ( )2cos  2θ = −  

 
Find all solutions. 

5. 2sin 1 
4

x
π 

= 
 

 6. 2sin  2
3

x
π 

= 
 

 7. ( )2cos 2  3t = −  8. ( )2cos 3 1t = −  

9. 3cos  2
5

x
π 

= 
 

 10. 8cos 6
2

x
π 

= 
 

 11. ( )7sin 3 2t = −  12. ( )4sin 4 1t =  

 
Find all solutions on the interval [0, 2 )π . 

13. ( ) ( ) ( )10sin cos 6cosx x x=   14. ( ) ( ) ( )3sin 15cos sint t t− =  

15. ( )csc 2 9 0x − =     16. ( )sec 2 3θ =  

17. ( ) ( ) ( )sec sin 2sin  0x x x− =   18. ( ) ( ) ( )tan sin sin 0x x x− =  

19. 2 1
sin

4
x =      20. 2 1

cos
2

θ =  

21. 2sec 7x =      22. 2csc 3t =  

23. 22sin 3sin 1 0w w+ + =     24. ( )28sin 6sin 1 0x x+ + =  

25. ( )22cos cos 1t t+ =     26. ( ) ( )28cos 3 2cosθ θ= −  

27. ( )24cos ( ) 4 15cosx x− =     28. ( ) 29sin 2 4sin ( )w w− =  

29. ( ) ( )212sin cos 6 0t t+ − =    30. ( ) ( )26cos 7sin 8 0x x+ − =  

31. 2cos 6sinφ φ= −     32. 2sin cost t=  

33. ( ) ( )3tan 3tanx x=    34. ( ) ( )3cos cost t= −  

35. ( ) ( )5tan tanx x=     36. ( ) ( )5tan 9 tan 0x x− =  

37. ( ) ( ) ( ) ( )4sin cos 2sin 2cos 1 0x x x x+ − − =  

38. ( ) ( ) ( ) ( )2sin cos sin 2cos 1 0x x x x− + − =  

39. ( ) ( )tan 3sin  0x x− =    40. ( ) ( )3cos cotx x=  

41. ( ) ( )22tan 3sect t=    42. ( ) ( )21 2 tan tanw w− =  
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Section 7.2 Addition and Subtraction Identities 

In this section, we begin expanding our repertoire of trigonometric identities.   
 
 

Identities 

The sum and difference identities 

)sin()sin()cos()cos()cos( βαβαβα +=−  

)sin()sin()cos()cos()cos( βαβαβα −=+  

)sin()cos()cos()sin()sin( βαβαβα +=+  

)sin()cos()cos()sin()sin( βαβαβα −=−  

 
 
We will prove the difference of angles identity for cosine.  The rest of the identities can 
be derived from this one. 
 
Proof of the difference of angles identity for cosine 
Consider two points on a unit circle: 
P at an angle of α from the positive x axis 

with coordinates ( ))sin(),cos( αα , and Q at 

an angle of β with coordinates 

( ))sin(),cos( ββ . 

 
Notice the measure of angle POQ is α – β.  
Label two more points: 
C at an angle of α – β, with coordinates 

( ))sin(),cos( βαβα −− , 

D at the point (1, 0). 
 
Notice that the distance from C to D is the 
same as the distance from P to Q because 
triangle COD is a rotation of triangle POQ. 
 
Using the distance formula to find the distance from P to Q yields 

( ) ( )22
)sin()sin()cos()cos( βαβα −+−      

 
Expanding this 

)(sin)sin()sin(2)(sin)(cos)cos()cos(2)(cos 2222 ββααββαα +−++−  

 

β 

α - β α 

P 

Q 

C 

D 

O 
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Applying the Pythagorean Identity and simplifying 

)sin()sin(2)cos()cos(22 βαβα −−  

 
Similarly, using the distance formula to find the distance from C to D  

( ) ( )22
0)sin(1)cos( −−+−− βαβα  

 
Expanding this 

)(sin1)cos(2)(cos 22 βαβαβα −++−−−  

 
Applying the Pythagorean Identity and simplifying 

2)cos(2 +−− βα  

 
Since the two distances are the same we set these two formulas equal to each other and 
simplify 

2)cos(2)sin()sin(2)cos()cos(22 +−−=−− βαβαβα  

2)cos(2)sin()sin(2)cos()cos(22 +−−=−− βαβαβα  

)cos()sin()sin()cos()cos( βαβαβα −=+    

 
This establishes the identity. 
 
 

Try it Now 

1. By writing )cos( βα +  as ( )( )βα −−cos , show the sum of angles identity for cosine 

follows from the difference of angles identity proven above. 

 
 
The sum and difference of angles identities are often used to rewrite expressions in other 
forms, or to rewrite an angle in terms of simpler angles. 
 
 
Example 1 

Find the exact value of )75cos( ° . 

 

Since °+°=° 453075 , we can evaluate )75cos( °  as 

)4530cos()75cos( °+°=°    Apply the cosine sum of angles identity 

)45sin()30sin()45cos()30cos( °°−°°=  Evaluate 

2

2

2

1

2

2

2

3
⋅−⋅=     Simply 

4

26 −
=  
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Try it Now 

2. Find the exact value of 








12
sin

π
. 

 
 
Example 2 

Rewrite 







−

4
sin

π
x  in terms of sin(x) and cos(x). 

 









−

4
sin

π
x     Use the difference of angles identity for sine 

= ( ) ( ) 







−








4
sincos

4
cossin

ππ
xx  Evaluate the cosine and sine and rearrange 

( ) ( )xx cos
2

2
sin

2

2
−=  

 
 
Additionally, these identities can be used to simplify expressions or prove new identities 
 
 
Example 3 

Prove 
)tan()tan(

)tan()tan(

)sin(

)sin(

ba

ba

ba

ba

−

+
=

−

+
. 

 
As with any identity, we need to first decide which side to begin with.  Since the left 
side involves sum and difference of angles, we might start there 
 

)sin(

)sin(

ba

ba

−

+
    Apply the sum and difference of angle identities 

)sin()cos()cos()sin(

)sin()cos()cos()sin(

baba

baba

−

+
=   

 
Since it is not immediately obvious how to proceed, we might start on the other side, 
and see if the path is more apparent. 
 

)tan()tan(

)tan()tan(

ba

ba

−

+
   Rewriting the tangents using the tangent identity 
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)cos(

)sin(

)cos(

)sin(

)cos(

)sin(

)cos(

)sin(

b

b

a

a

b

b

a

a

−

+

=    Multiplying the top and bottom by cos(a)cos(b) 

 

)cos()cos(
)cos(

)sin(

)cos(

)sin(

)cos()cos(
)cos(

)sin(

)cos(

)sin(

ba
b

b

a

a

ba
b

b

a

a









−









+

=  Distributing and simplifying 

 

)cos()sin()cos()sin(

)cos()sin()cos()sin(

abba

abba

−

+
=   From above, we recognize this 

 

)sin(

)sin(

ba

ba

−

+
=      Establishing the identity 

 
 

These identities can also be used to solve equations. 
 
 
Example 4 

Solve 
2

3
)2cos()cos()2sin()sin( =+ xxxx . 

 
By recognizing the left side of the equation as the result of the difference of angles 
identity for cosine, we can simplify the equation 

2

3
)2cos()cos()2sin()sin( =+ xxxx  Apply the difference of angles identity 

2

3
)2cos( =− xx  

2

3
)cos( =−x     Use the negative angle identity 

2

3
)cos( =x  

 
Since this is a special cosine value we recognize from the unit circle, we can quickly 
write the answers: 

kx

kx

π
π

π
π

2
6

11

2
6

+=

+=

, where k is an integer 
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Combining Waves of Equal Period 
 
A sinusoidal function of the form )sin()( CBxAxf +=  can be rewritten using the sum of 

angles identity. 
 
 
Example 5 

Rewrite 







+=

3
3sin4)(

π
xxf  as a sum of sine and cosine. 

 









+

3
3sin4

π
x     Using the sum of angles identity 

( ) ( ) 















+







=

3
sin3cos

3
cos3sin4

ππ
xx  Evaluate the sine and cosine 

( ) ( ) 









⋅+⋅=

2

3
3cos

2

1
3sin4 xx   Distribute and simplify 

( ) ( )xx 3cos323sin2 +=  

 
 
Notice that the result is a stretch of the sine added to a different stretch of the cosine, but 
both have the same horizontal compression, which results in the same period. 
 
We might ask now whether this process can be reversed – can a combination of a sine 
and cosine of the same period be written as a single sinusoidal function?  To explore this, 
we will look in general at the procedure used in the example above. 
 

)sin()( CBxAxf +=     Use the sum of angles identity 

( ))sin()cos()cos()sin( CBxCBxA +=   Distribute the A 

)sin()cos()cos()sin( CBxACBxA +=  Rearrange the terms a bit 

)cos()sin()sin()cos( BxCABxCA +=  

 
Based on this result, if we have an expression of the form )cos()sin( BxnBxm + , we 

could rewrite it as a single sinusoidal function if we can find values A and C so that  
)cos()sin( BxnBxm + )cos()sin()sin()cos( BxCABxCA += , which will require that: 

)sin(

)cos(

CAn

CAm

=

=
  which can be rewritten as   

)sin(

)cos(

C
A

n

C
A

m

=

=

  

 
To find A,  
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( ) ( )2222 )sin()cos( CACAnm +=+  

)(sin)(cos 2222
CACA +=  

( ))(sin)(cos 222
CCA +=   Apply the Pythagorean Identity and simplify 

2
A=  

 
 

Rewriting a Sum of Sine and Cosine as a Single Sine 

To rewrite )cos()sin( BxnBxm +  as )sin( CBxA +  

222
nmA += , 

A

m
C =)cos( , and 

A

n
C =)sin(  

 

You can use either of the last two equations to solve for possible values of C.  Since 
there will usually be two possible solutions, we will need to look at both to determine 
which quadrant C is in and determine which solution for C satisfies both equations. 

 
 
Example 6 

Rewrite )2cos(4)2sin(34 xx −  as a single sinusoidal function. 

 

Using the formulas above, ( ) ( ) 6416316434
22

2 =+⋅=−+=A , so A = 8.   

 
Solving for C, 

2

3

8

34
)cos( ==C , so 

6

π
=C  or 

6

11π
=C .   

However, notice 
2

1

8

4
)sin( −=

−
=C . Sine is negative in the third and fourth quadrant, 

so the angle that works for both is 
6

11π
=C . 

 
Combining these results gives us the expression 









+

6

11
2sin8

π
x  

 
 

Try it Now 

3. Rewrite )5cos(23)5sin(23 xx +−  as a single sinusoidal function. 

 
 
Rewriting a combination of sine and cosine of equal periods as a single sinusoidal 
function provides an approach for solving some equations. 
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Example 7 

Solve 1)2cos(4)2sin(3 =+ xx  to find two positive solutions. 

 
Since the sine and cosine have the same period, we can rewrite them as a single 
sinusoidal function.   

( ) ( ) 2543
222 =+=A , so A = 5 

 

5

3
)cos( =C , so 927.0

5

3
cos 1 ≈








= −C  or 356.5927.02 =−= πC  

Since 
5

4
)sin( =C , a positive value, we need the angle in the first quadrant, C = 0.927. 

 
Using this, our equation becomes 

( ) 1927.02sin5 =+x    Divide by 5 

( )
5

1
927.02sin =+x    Make the substitution u = 2x + 0.927 

( )
5

1
sin =u     The inverse gives a first solution 

201.0
5

1
sin 1 ≈








= −u   By symmetry, the second solution is 

940.2201.0 =−= πu   A third solution would be 

485.6201.02 =+= πu     

 
Undoing the substitution, we can find two positive solutions for x. 

201.0927.02 =+x  or  940.2927.02 =+x    or 485.6927.02 =+x  

726.02 −=x    013.22 =x    558.52 =x  

363.0−=x    007.1=x    779.2=x  

 
Since the first of these is negative, we eliminate it and keep the two positive solutions, 

007.1=x  and 779.2=x . 
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The Product-to-Sum and Sum-to-Product Identities 

 

 

Identities 

The Product-to-Sum Identities 

( )

( )

( ))cos()cos(
2

1
)cos()cos(

)cos()cos(
2

1
)sin()sin(

)sin()sin(
2

1
)cos()sin(

βαβαβα

βαβαβα

βαβαβα

−++=

+−−=

−++=

 

 
 
We will prove the first of these, using the sum and difference of angles identities from the 
beginning of the section.  The proofs of the other two identities are similar and are left as 
an exercise. 
 
Proof of the product-to-sum identity for sin(α)cos(β)  
 
Recall the sum and difference of angles identities from earlier  

)sin()cos()cos()sin()sin( βαβαβα +=+  

)sin()cos()cos()sin()sin( βαβαβα −=−  

 
Adding these two equations, we obtain 

)cos()sin(2)sin()sin( βαβαβα =−++  

 
Dividing by 2, we establish the identity 

( ))sin()sin(
2

1
)cos()sin( βαβαβα −++=  

 
 
Example 8 

Write )4sin()2sin( tt  as a sum or difference. 

 
Using the product-to-sum identity for a product of sines 

( ))42cos()42cos(
2

1
)4sin()2sin( tttttt +−−=  

( ))6cos()2cos(
2

1
tt −−=    If desired, apply the negative angle identity 

( ))6cos()2cos(
2

1
tt −=    Distribute 

)6cos(
2

1
)2cos(

2

1
tt −=  
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Try it Now 

4. Evaluate 
















12
cos

12

11
cos

ππ
. 

 
 

Identities 

The Sum-to-Product Identities 

( ) ( ) 






 −







 +
=+

2
cos

2
sin2sinsin

vuvu
vu  

( ) ( ) 






 +







 −
=−

2
cos

2
sin2sinsin

vuvu
vu  

( ) ( ) 






 −







 +
=+

2
cos

2
cos2coscos

vuvu
vu  

( ) ( ) 






 −







 +
−=−

2
sin

2
sin2coscos

vuvu
vu  

 
 
We will again prove one of these and leave the rest as an exercise.   
 
Proof of the sum-to-product identity for sine functions 
We define two new variables: 

βα

βα

−=

+=

v

u
 

 

Adding these equations yields α2=+ vu , giving 
2

vu +
=α  

Subtracting the equations yields β2=− vu , or 
2

vu −
=β  

 
Substituting these expressions into the product-to-sum identity 

( ))sin()sin(
2

1
)cos()sin( βαβαβα −++=  gives 

( ) ( )( )vu
vuvu

sinsin
2

1

2
cos

2
sin +=







 −







 +
  Multiply by 2 on both sides 

( ) ( )vu
vuvu

sinsin
2

cos
2

sin2 +=






 −







 +
  Establishing the identity 
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Try it Now 

5. Notice that, using the negative angle identity, ( ) ( ) )sin()sin(sinsin vuvu −+=− .  Use 

this along with the sum of sines identity to prove the sum-to-product identity for 

( ) ( )vu sinsin − . 

 
 
Example 9 

Evaluate )75cos()15cos( °−° . 

 
Using the sum-to-product identity for the difference of cosines, 
 

)75cos()15cos( °−°  








 °−°







 °+°
−=

2

7515
sin

2

7515
sin2    Simplify 

 

( ) ( )°−°−= 30sin45sin2     Evaluate 

2

2

2

1

2

2
2 =

−
⋅⋅−=  

 
 
Example 10 

Prove the identity )tan(
)2sin()4sin(

)2cos()4cos(
t

tt

tt
−=

+

−
. 

 
Since the left side seems more complicated, we can start there and simplify. 
 

)2sin()4sin(

)2cos()4cos(

tt

tt

+

−
   Use the sum-to-product identities 








 −







 +








 −







 +
−

=

2

24
cos

2

24
sin2

2

24
sin

2

24
sin2

tttt

tttt

 Simplify 

( ) ( )
( ) ( )tt

tt

cos3sin2

sin3sin2−
=     Simplify further 

( )
( )t

t

cos

sin−
=     Rewrite as a tangent 

)tan(t−=     Establishing the identity 
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Example 11 

Solve ( ) ( )sin sin 3 cos( )t t tπ π π+ =  for all solutions with 20 <≤ t . 

 
In an equation like th is, it is not immediately obvious how to proceed.  One option 
would be to combine the two sine functions on the left side of the equation.  Another 
would be to move the cosine to the left side of the equation, and combine it with one of 
the sines.  For no particularly good reason, we’ll begin by combining the sines on the 
left side of the equation and see how things work out. 
 

( ) ( )sin sin 3 cos( )t t tπ π π+ =   Apply the sum to product identity on the left 

3 3
2sin cos cos( )

2 2

t t t t
t

π π π π
π

+ −   
=   

   
 Simplify 

( ) ( )2sin 2 cos cos( )t t tπ π π− =   Apply the negative angle identity 

( ) ( )2sin 2 cos cos( )t t tπ π π=   Rearrange the equation to be 0 on one side 

( ) ( )2sin 2 cos cos( ) 0t t tπ π π− =   Factor out the cosine 

( ) ( )( )cos 2sin 2 1 0t tπ π − =     

 
Using the Zero Product Theorem we know that at least one of the two factors must be 

zero.  The first factor, ( )cos tπ , has period 2
2

==
π

π
P , so the solution interval of 

20 <≤ t  represents one full cycle of this function. 

 

( )cos 0tπ =      Substitute u tπ=  

( ) 0cos =u      On one cycle, this has solutions 

2

π
=u  or 

2

3π
=u     Undo the substitution 

 

2
t

π
π = , so 

2

1
=t  

3

2
t

π
π = , so 

2

3
=t  

 

The second factor, ( )2sin 2 1tπ − , has period of 1
2

2
==

π

π
P , so the solution interval 

20 <≤ t  contains two complete cycles of this function. 

 

( )2sin 2 1 0tπ − =     Isolate the sine 

( )
1

sin 2
2

tπ =     Substitute 2u tπ=  
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2

1
)sin( =u      On one cycle, this has solutions 

6

π
=u  or 

6

5π
=u     On the second cycle, the solutions are 

6

13

6
2

ππ
π =+=u  or 

6

17

6

5
2

ππ
π =+=u  Undo the substitution 

 

2
6

t
π

π = , so 
12

1
=t  

5
2

6
t

π
π = , so 

12

5
=t  

13
2

6
t

π
π = , so 

12

13
=t  

17
2

6
t

π
π = , so 

12

17
=t  

 
Altogether, we found six solutions on 

20 <≤ t , which we can confirm by 

looking at the graph. 

12

17
,

2

3
,

12

13
,

2

1
,

12

5
,

12

1
=t  

 
 
 

Important Topics of This Section 

The sum and difference identities 

Combining waves of equal periods 

Product-to-sum identities 

Sum-to-product identities 

Completing proofs 

 
 

Try it Now Answers 

1. 

)sin()sin()cos()cos(

))sin()(sin()cos()cos(

)sin()sin()cos()cos(

))(cos()cos(

βαβα

βαβα

βαβα

βαβα

−

−+

−+−

−−=+
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2. 















−















=








−=









4
sin

3
cos

4
cos

3
sin

43
sin

12
sin

πππππππ
 

2

2

2

1

2

2

2

3
−=

4

26 −
 

 

3. ( ) ( ) 362323
22

2 =+−=A .  A = 6 

2

2

6

23
)cos(

−
=

−
=C , 

2

2

6

23
)sin( ==C .  

4

3π
=C  









+

4

3
5sin6

π
x  

 

4. 















−+








+=

















1212

11
cos

1212

11
cos

2

1

12
cos

12

11
cos

ππππππ
 

( ) 









−−=
















+=

2

3
1

2

1

6

5
coscos

2

1 π
π  

=
4

32 −−
 

 
5. )sin()sin( vu −     Use negative angle identity for sine 

          Use sum-to-product identity for sine 

        Eliminate the parenthesis 

         Establishing the identity 

 

)sin()sin( vu −+

( ) ( )







 −−







 −+

2
cos

2
sin2

vuvu








 +







 −

2
cos

2
sin2

vuvu
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Section 7.2 Exercises 

 
Find an exact value for each of the following. 

1. ( )sin 75°   2.  ( )sin 195°   3. cos(165 )°    4. cos(345 )°    

5. 
7

cos
12

π 
 
 

  6. cos
12

π 
 
 

  7. 
5

sin
12

π 
 
 

  8. 
11

sin
12

π 
 
 

 

 

Rewrite in terms of ( )sin x  and ( )cos x . 

9. 
11

sin
6

x
π 

+ 
 

 10. 
3

sin
4

x
π 

− 
 

 11. 
5

cos
6

x
π 

− 
 

  12. 
2

cos
3

x
π 

+ 
 

 

 
Simplify each expression. 

13. csc  
2

t
π 

− 
 

 14. sec
2

w
π 

− 
 

 15. cot
2

x
π 

− 
 

 16. tan
2

x
π 

− 
 

 

 
Rewrite the product as a sum. 

17. ( ) ( )16sin 16 sin 11x x    18. ( ) ( )20cos 36 cos 6t t  

19. ( ) ( )2sin 5 cos 3x x     20. ( ) ( )10cos 5 sin 10x x  

 
Rewrite the sum as a product. 

21. ( ) ( )cos 6 cos 4t t+     22. ( ) ( )cos 6 cos 4u u+  

23. ( ) ( )sin 3 sin 7x x+     24. ( ) ( )sin sin 3h h+  

 

25. Given ( )
2

sin
3

a =  and ( )
1

cos
4

b = − , with a and b both in the interval ,
2

π
π

 


 
: 

 a. Find ( )sin a b+    b. Find ( )cos a b−  

 

26. Given ( )
4

sin
5

a =  and ( )
1

cos
3

b = , with a and b both in the interval 0,
2

π 


 
: 

 a. Find ( )sin a b−    b. Find ( )cos a b+  

 
Solve each equation for all solutions. 

27. ( ) ( ) ( ) ( )sin 3 cos 6 cos 3 sin 6  0.9x x x x− = −  

28. ( ) ( ) ( ) ( )sin 6 cos 11 cos 6 sin 11  0.1x x x x− =−  

29. ( ) ( ) ( ) ( )cos 2 cos sin 2 sin 1x x x x+ =  

30. ( ) ( ) ( ) ( )
3

cos 5 cos 3 sin 5 sin 3
2

x x x x− =  
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Solve each equation for all solutions. 

31. ( ) ( )cos 5 cos 2x x= −  

32. ( ) ( )sin 5 sin 3x x=  

33. ( ) ( ) ( )cos 6 cos 2 sin 4θ θ θ− =  

34. ( ) ( ) ( )cos 8 cos 2 sin 5θ θ θ− =  

 
Rewrite as a single function of the form sin( ) A Bx C+ . 

35. ( ) ( )4sin 6cosx x−    36. ( ) ( )sin 5cosx x− −  

37. ( ) ( )5sin 3 2cos 3x x+    38. ( ) ( )3sin 5 4cos 5x x− +  

 
Solve for the first two positive solutions. 

39. ( ) ( )5sin 3cos 1x x− + =    40. ( ) ( )3sin cos 2x x+ =  

41. ( ) ( )3sin 2 5cos 2 3x x− =    42. ( ) ( )3sin 4 2cos 4 1x x− − =  

 
Simplify. 

43. 
( ) ( )
( ) ( )

sin 7 sin 5

cos 7 cos 5

t t

t t

+

+
    44. 

( ) ( )
( ) ( )

sin 9 sin 3

cos 9 cos 3

t t

t t

−

+
 

 
Prove the identity. 

44. 
( )

( )
tan 1

tan
4 1 tan

x
x

x

π + 
+ = 

− 
 

45. 
( )
( )

1 tan
tan

4 1 tan

t
t

t

π − 
− = 

+ 
 

46. ( ) ( ) ( ) ( )cos cos 2cos cosa b a b a b+ + − =  

47. 
( )
( )

( ) ( )
( ) ( )

cos 1 tan tan

cos 1 tan tan

a b a b

a b a b

+ −
=

− +
 

48. 
( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

tan sin cos sin cos

tan sin cos sin cos

a b a a b b

a b a a b b

+ +
=

− −
 

49. ( ) ( ) ( )2sin sin cos 2 cos(2 )a b a b b a+ − = −  

50. 
( ) ( )
( ) ( )

( )
sin sin 1

tan
cos cos 2

x y
x y

x y

+  
= + 

+  
 

 



476  Chapter 7 
 

Prove the identity. 

51. 
( )

( ) ( )
( ) ( )

cos
1 tan tan

cos cos

a b
a b

a b

+
= −  

52. ( ) ( ) 2 2cos cos cos sinx y x y x y+ − = −  

 

 

53.  Use the sum and difference identities to establish the product-to-sum identity

( ))cos()cos(
2

1
)sin()sin( βαβαβα +−−=   

 

54.  Use the sum and difference identities to establish the product-to-sum identity 

( ))cos()cos(
2

1
)cos()cos( βαβαβα −++=  

 

55.  Use the product-to-sum identities to establish the sum-to-product identity 

( ) ( ) 






 −







 +
=+

2
cos

2
cos2coscos

vuvu
vu  

 
56.  Use the product-to-sum identities to establish the sum-to-product identity 

( ) ( ) 






 −







 +
−=−

2
sin

2
sin2coscos

vuvu
vu  
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Section 7.3 Double Angle Identities 

 
Two special cases of the sum of angles identities arise often enough that we choose to 
state these identities separately. 
 
 

Identities 

The double angle identities 

)cos()sin(2)2sin( ααα =  

1)(cos2

)(sin21

)(sin)(cos)2cos(

2

2

22

−=

−=

−=

α

α

ααα

 

 
 
These identities follow from the sum of angles identities. 
 
Proof of the sine double angle identity  

)2sin( α  

)sin( αα +=     Apply the sum of angles identity 

)sin()cos()cos()sin( αααα +=  Simplify 

)cos()sin(2 αα=    Establishing the identity 

 
 

Try it Now 

1. Show )(sin)(cos)2cos( 22 ααα −=  by using the sum of angles identity for cosine. 

 
 
For the cosine double angle identity, there are three forms of the identity stated because 

the basic form, )(sin)(cos)2cos( 22 ααα −= , can be rewritten using the Pythagorean 

Identity.   Rearranging the Pythagorean Identity results in the equality

)(sin1)(cos 22 αα −= , and by substituting this into the basic double angle identity, we 

obtain the second form of the double angle identity. 
 

)(sin)(cos)2cos( 22 ααα −=   Substituting using the Pythagorean identity 

)(sin)(sin1)2cos( 22 ααα −−=  Simplifying  

)(sin21)2cos( 2 αα −=  
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Example 1 

If 
5

3
)sin( =θ  and θ is in the second quadrant, find exact values for )2sin( θ  and 

)2cos( θ . 

 
To evaluate )2cos( θ , since we know the value for sin( )θ  we can use the version of the 

double angle that only involves sine. 

25

7

25

18
1

5

3
21)(sin21)2cos(

2

2 =−=







−=−= θθ  

 
Since the double angle for sine involves both sine and cosine, we’ll need to first find 

)cos(θ , which we can do using the Pythagorean Identity. 

1)(cos)(sin 22 =+ θθ  

1)(cos
5

3 2

2

=+







θ  

25

9
1)(cos2 −=θ  

5

4

25

16
)cos( ±=±=θ    

 
Since θ is in the second quadrant, we know that cos(θ) < 0, so 

5

4
)cos( −=θ  

 
Now we can evaluate the sine double angle 

25

24

5

4

5

3
2)cos()sin(2)2sin( −=








−








== θθθ  

 
 
Example 2 

Simplify the expressions 

a) ( ) 112cos2 2 −°   b) ( ) ( )xx 3cos3sin8  

 
a) Notice that the expression is in the same form as one version of the double angle 

identity for cosine:  1)(cos2)2cos( 2 −= θθ .  Using this, 

( ) ( ) ( )°=°⋅=−° 24cos122cos112cos2 2  

 
b) This expression looks similar to the result of the double angle identity for sine. 

( ) ( )xx 3cos3sin8   Factoring a 4 out of the original expression 

( ) ( )xx 3cos3sin24 ⋅   Applying the double angle identity 

)6sin(4 x  
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We can use the double angle identities to simplify expressions and prove identities. 
 
 
Example 2 

Simplify 
)sin()cos(

)2cos(

tt

t

−
. 

 
With three choices for how to rewrite the double angle, we need to consider which will 
be the most useful.  To simplify this expression, it would be great if the denominator 
would cancel with something in the numerator, which would require a factor of 

)sin()cos( tt −  in the numerator, which is most likely to occur if we rewrite the 

numerator with a mix of sine and cosine. 
 

)sin()cos(

)2cos(

tt

t

−
    Apply the double angle identity 

=
)sin()cos(

)(sin)(cos 22

tt

tt

−

−
    Factor the numerator 

( )( )
)sin()cos(

)sin()cos()sin()cos(

tt

tttt

−

+−
=   Cancelling the common factor 

)sin()cos( tt +=     Resulting in the most simplified form 

 
 
Example 3 

Prove 
)(sec2

)(sec
)2sec(

2

2

α

α
α

−
= . 

 
Since the right side seems a bit more complicated than the left side, we begin there. 

)(sec2

)(sec
2

2

α

α

−
    Rewrite the secants in terms of cosine 

)(cos

1
2

)(cos

1

2

2

α

α

−

=     

 
At this point, we could rewrite the bottom with common denominators, subtract the 
terms, invert and multiply, then simplify.  Alternatively, we can multiple both the top 

and bottom by )(cos2 α , the common denominator: 

)(cos
)(cos

1
2

)(cos
)(cos

1

2

2

2

2

α
α

α
α

⋅







−

⋅

=   Distribute on the bottom 
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⋅−

=

)(cos

)(cos
)(cos2

)(cos

)(cos

2

2
2

2

2

α

α
α

α

α

  Simplify 

1)(cos2

1
2 −

=
α

   Rewrite the denominator as a double angle 

)2cos(

1

α
=     Rewrite as a secant 

)2sec( α=     Establishing the identity 

 
 

Try it Now 

2. Use an identity to find the exact value of ( ) ( )°−° 75sin75cos 22 . 

 
 
As with other identities, we can also use the double angle identities for solving equations. 
 
 
Example 4 

Solve )cos()2cos( tt =  for all solutions with π20 <≤ t . 

 
In general when solving trig equations, it makes things more complicated when we have 
a mix of sines and cosines and when we have a mix of functions with different periods.  
In this case, we can use a double angle identity to rewrite the cos(2t).  When choosing 
which form of the double angle identity to use, we notice that we have a cosine on the 
right side of the equation.  We try to limit our equation to one trig function, which we 
can do by choosing the version of the double angle formula for cosine that only 
involves cosine. 

)cos()2cos( tt =    Apply the double angle identity 

)cos(1)(cos2 2
tt =−   This is quadratic in cosine, so make one side 0 

01)cos()(cos2 2 =−− tt   Factor 

( )( ) 01)cos(1)cos(2 =−+ tt   Break this apart to solve each part separately 

 
01)cos(2 =+t  or 01)cos( =−t  

2

1
)cos( −=t   or 1)cos( =t  

3

2π
=t  or 

3

4π
=t  or 0=t  

 
Looking at a graph of cos(2t) and cos(t) shown 
together, we can verify that these three solutions on [0, 2π) seem reasonable. 
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Example 5 

A cannonball is fired with velocity of 100 meters per second.  If it is launched at an 
angle of θ, the vertical component of the velocity will be )sin(100 θ  and the horizontal 

component will be )cos(100 θ .  Ignoring wind resistance, the height of the cannonball 

will follow the equation ttth )sin(1009.4)( 2 θ+−=  and horizontal position will follow 

the equation ttx )cos(100)( θ= .   If you want to hit a target 900 meters away, at what 

angle should you aim the cannon? 
 
To hit the target 900 meters away, we want 900)( =tx at the time when the cannonball 

hits the ground, when 0)( =th .  To solve this problem, we will first solve for the time, 

t, when the cannonball hits the ground.  Our answer will depend upon the angleθ .  

  
0)( =th  

0)sin(1009.4 2 =+− tt θ    Factor 

( ) 0)sin(1009.4 =+− θtt    Break this apart to find two solutions 

 

0=t     or 0)sin(1009.4 =+− θt  Solve for t 

)sin(1009.4 θ−=− t  

9.4

)sin(100 θ
=t  

 
This shows that the height is 0 twice, once at t = 0 when the cannonball is fired, and 
again when the cannonball hits the ground after flying through the air.  This second 

value of t gives the time when the ball hits the ground in terms of the angle θ .  We want 

the horizontal distance x(t) to be 900 when the ball hits the ground, in other words when 

9.4

)sin(100 θ
=t .  

 
Since the target is 900 m away we start with  
 

900)( =tx     Use the formula for x(t) 

900)cos(100 =tθ    Substitute the desired time, t from above 

900
9.4

)sin(100
)cos(100 =

θ
θ   Simplify 

900)sin()cos(
9.4

1002

=θθ   Isolate the cosine and sine product 

2100

)9.4(900
)sin()cos( =θθ  
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The left side of this equation almost looks like the result of the double angle identity for 
sine: ( ) ( )θθθ cossin2)2sin( = .   

Multiplying both sides of our equation by 2, 
 

2100

)9.4)(900(2
)sin()cos(2 =θθ   Using the double angle identity on the left 

2100

)9.4)(900(2
)2sin( =θ    Use the inverse sine 

080.1
100

)9.4)(900(2
sin2

2

1 ≈







= −θ  Divide by 2 

540.0
2

080.1
==θ , or about 30.94 degrees  

 
 
Power Reduction and Half Angle Identities 
 
Another use of the cosine double angle identities is to use them in reverse to rewrite a 
squared sine or cosine in terms of the double angle.  Starting with one form of the cosine 
double angle identity: 

1)(cos2)2cos( 2 −= αα   Isolate the cosine squared term 

)(cos21)2cos( 2 αα =+   Add 1 

2

1)2cos(
)(cos2 +

=
α

α     Divide by 2 

2

1)2cos(
)(cos2 +

=
α

α   This is called a power reduction identity 

 
 

Try it Now 
3.  Use another form of the cosine double angle identity to prove the identity 

2

)2cos(1
)(sin 2 α

α
−

= . 

 
 
The cosine double angle identities can also be used in reverse for evaluating angles that 

are half of a common angle.  Building from our formula 
2

1)2cos(
)(cos2 +

=
α

α , if we let 

αθ 2= , then 
2

θ
α =  this identity becomes 

2

1)cos(

2
cos 2 +

=






 θθ
.  Taking the square 

root, we obtain 

2

1)cos(

2
cos

+
±=







 θθ
, where the sign is determined by the quadrant.   
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This is called a half-angle identity. 
 

Try it Now 
4.  Use your results from the last Try it Now to prove the identity 

2

)cos(1

2
sin

θθ −
±=









. 

 
 

Identities 

Half-Angle Identities 

2

1)cos(

2
cos

+
±=







 θθ
  

2

)cos(1

2
sin

θθ −
±=








 

 

Power Reduction Identities 

2

1)2cos(
)(cos2 +

=
α

α   
2

)2cos(1
)(sin 2 α

α
−

=  

 
 
Since these identities are easy to derive from the double-angle identities, the power 
reduction and half-angle identities are not ones you should need to memorize separately. 
 
 
Example 6 

Rewrite )(cos4
x  without any powers. 

 

( )224 )(cos)(cos xx =     Using the power reduction formula 

2

2

1)2cos(







 +
=

x
    Square the numerator and denominator 

( )
2

cos(2 ) 1

4

x +
=     Expand the numerator 

4

1)2cos(2)2(cos 2 ++
=

xx
   Split apart the fraction 

4

1

4

)2cos(2

4

)2(cos2

++=
xx

   Apply the formula above to )2(cos2
x  

         2 cos(2 2 ) 1
cos (2 )

2

x
x

⋅ +
=  
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4

1

4

)2cos(2

4

2

1)4cos(

++








 +

=
x

x

  Simplify 

4

1
)2cos(

2

1

8

1

8

)4cos(
+++= x

x
  Combine the constants 

8

3
)2cos(

2

1

8

)4cos(
++= x

x
 

 
 
Example 7 

Find an exact value for ( )°15cos .   

 
Since 15 degrees is half of 30 degrees, we can use our result from above: 

2

1)30cos(

2

30
cos)15cos(

+°
±=







 °
=°    

 
We can evaluate the cosine.  Since 15 degrees is in the first quadrant, we need the 
positive result. 

2

1
2

3

2

1)30cos(
+

=
+°

  

2

1

4

3
+=  

 
 

Important Topics of This Section 

Double angle identity 

Power reduction identity 

Half angle identity 

Using identities 

 Simplify equations 

 Prove identities 

 Solve equations 
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Try it Now Answers 

1. 

( )

)(sin)(cos

)sin()sin()cos()cos(

)cos(2cos

22 αα

αααα

ααα

−

−

+=

 

 

2. ( ) ( ) )752cos(75sin75cos 22 °⋅=°−°  = 
2

3
)150cos(

−
=°  

 
 

3. 

( )2 2

2 2

2 2

2
2

1 cos(2 )

2

1 cos ( ) sin ( )

2

1 cos ( ) sin ( )

2

sin ( ) sin ( )

2

2sin ( )
sin ( )

2

α

α α

α α

α α

α
α

−

− −

− +

+

=

 

 
 

4. 

2

)cos(1

2
sin

2

2
2cos1

2
sin

2

2

)2cos(1
)sin(

2

)2cos(1
)(sin 2

θθ

θ

θ

θ
α

α
α

α
α

−
±=

























−

±=








=

−
±=

−
=
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Section 7.3 Exercises 

 

1. If ( )
1

sin
8

x =  and x is in quadrant I, then find exact values for (without solving for x): 

a. ( )sin 2x  b. ( )cos 2x  c. ( )tan 2x   

 

2. If ( )
2

cos
3

x =  and x is in quadrant I, then find exact values for (without solving for x): 

a. ( )sin 2x  b. ( )cos 2x  c. ( )tan 2x   

 
Simplify each expression. 

3. ( )2 2cos 28 sin (28 )° − °     4. ( )22cos 37 1° −  

5. 21 2sin (17 )− °     6. ( )2 2cos 37 sin (37 )° − °  

7. ( )2 2cos 9 sin (9 )x x−     8. ( )2 2cos 6 sin (6 )x x−  

9. ( )4sin 8 cos(8 )x x     10. ( )6sin 5 cos(5 )x x  

 
Solve for all solutions on the interval [0, 2 )π . 

11. ( ) ( )6sin 2 9sin 0t t+ =     12. ( ) ( )2sin 2 3cos 0t t+ =  

13. ( ) ( )29cos 2 9cos 4θ θ= −    14. ( ) ( )28cos 2 8cos 1α α= −  

15. ( ) ( )sin 2 cost t=     16. ( ) ( )cos 2 sint t=  

17. ( ) ( )cos 6 cos 3 0x x− =    18. ( ) ( )sin 4 sin 2 0x x− =  

 
Use a double angle, half angle, or power reduction formula to rewrite without exponents. 

19. 2cos (5 )x       20. 2cos (6 )x    

21. 4sin (8 )x      22. ( )4sin 3x  

23. 2 4cos sinx x     24. 4 2cos sinx x  

 

25. If ( )csc 7x =  and 90 180x° < < ° , then find exact values for (without solving for x): 

a. sin
2

x 
 
 

  b. cos
2

x 
 
 

  c. tan
2

x 
 
 

 

 

26. If ( )sec 4x =  and 270 360x° < < ° , then find exact values for (without solving for x): 

a. sin
2

x 
 
 

  b. cos
2

x 
 
 

  c. tan
2

x 
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Prove the identity. 

27. ( ) ( )
2

sin cos 1 sin 2t t t− = −  

28. ( ) ( )
2

2 4sin 1 cos 2 sinx x x− = +  

29. ( )
( )

( )2

2 tan
sin 2

1 tan

x
x

x
=

+
 

30. ( )
( ) ( )

( )2

2sin cos
tan 2

2cos 1

x x
x

x
=

−
 

31. ( ) ( ) ( )cot tan 2cot 2x x x− =  

32. 
( )

( )
( )

sin 2
tan

1 cos 2

θ
θ

θ
=

+
 

33. ( )
( )
( )

2

2

1 tan
cos 2

1 tan

α
α

α

−
=

+
 

34. 
( )

( ) ( )
( )

( )
1 cos 2 2 cos

sin 2 cos 2sin 1

t t

t t t

+
=

− −
 

35. ( ) ( ) ( )2 3sin 3 3sin cos sin ( )x x x x= −  

36. ( ) ( )3 2cos 3 cos ( ) 3sin ( )cosx x x x= −  
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Section 7.4 Modeling Changing Amplitude and Midline 

 
While sinusoidal functions can model a variety of behaviors, it is often necessary to 
combine sinusoidal functions with linear and exponential curves to model real 
applications and behaviors.  We begin this section by looking at changes to the midline of 
a sinusoidal function.  Recall that the midline describes the middle, or average value, of 
the sinusoidal function. 
 
 
Changing Midlines 

 
 
Example 1 

A population of elk currently averages 2000 elk, and that average has been growing by 
4% each year.  Due to seasonal fluctuation, the population oscillates from 50 below 
average in the winter up to 50 above average in the summer.  Find a function that 
models the number of elk after t years, starting in the winter. 
 
There are two components to the behavior of the elk population:  the changing average, 
and the oscillation.  The average is an exponential growth, starting at 2000 and growing 
by 4% each year.  Writing a formula for this: 

(1 ) 2000(1 0.04)t t
average initial r= + = +  

 

For the oscillation, since the population oscillates 50 above and below average, the 
amplitude will be 50.  Since it takes one year for the population to cycle, the period is 1.  

We find the value of the horizontal stretch coefficient
original period 2

2
new period 1

B
π

π= = = . 

 
The function starts in winter, so the shape of the function will be a negative cosine, 
since it starts at the lowest value.   
 
Putting it all together, the equation would be: 

( ) 50cos(2 )P t t midlineπ= − +  

 
Since the midline represents the average population, we substitute in the exponential 
function into the population equation to find our final equation: 

( ) 50cos(2 ) 2000(1 0.04)t
P t tπ= − + +  

 
 
This is an example of changing midline – in this case an exponentially changing midline. 
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Changing Midline 

A function of the form )()sin()( tgBtAtf +=  will oscillate above and below the 

average given by the function g(t). 

 
 
Changing midlines can be exponential, linear, or any other type of function.   Here are 
some examples: 
 
  Linear midline  Exponential midline  Quadratic midline 

  
( )( ) sin ( )f t A Bt mt b= + +    ( )( ) sin ( )tf t A Bt ab= +  ( ) 2( ) sin ( )f t A Bt at= +  

 
 
Example 2 

Find a function with linear midline of the form bmttAtf ++







=

2
sin)(

π
 that will pass 

through the points given below.   
 

 
 
Since we are given the value of the horizontal compression coefficient we can calculate 

the period of this function: 
original period 2

new period 4

2
B

π

π
= = = . 

 
Since the sine function is at the midline at the beginning of a cycle and halfway through 
a cycle, we would expect this function to be at the midline at t = 0 and t = 2, since 2 is 
half the full period of 4.  Based on this, we expect the points (0, 5) and (2, 9) to be 
points on the midline. We can clearly see that this is not a constant function and so we 

use the two points to calculate a linear function: bmtmidline += .  From these two 

points we can calculate a slope: 

2
2

4

02

59
==

−

−
=m  

 

Combining this with the initial value of 5, we have the midline: 52 += tmidline . 

t 0 1 2 3 

f(t) 5 10 9 8 
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The full function will have form 52
2

sin)( ++







= ttAtf

π
.  To find the amplitude, we 

can plug in a point we haven’t already used, such as (1, 10). 

5)1(2)1(
2

sin10 ++







=

π
A    Evaluate the sine and combine like terms 

710 += A  

3=A  

 
A function of the form given fitting the data would be  

52
2

sin3)( ++







= tttf

π
 

 
Alternative Approach 
Notice we could have taken an alternate approach by plugging points (0, 5) and (2, 9) 
into the original equation.  Substituting (0, 5), 

bmA ++







= )0()0(

2
sin5

π
   Evaluate the sine and simplify 

b=5  

 
Substituting (2, 9) 

5)2()2(
2

sin9 ++







= mA

π
   Evaluate the sine and simplify 

529 += m  

m24 =  

2=m , as we found above.  Now we can proceed to find A the same way we did before. 

 
 
Example 3 

The number of tourists visiting a ski and hiking resort 
averages 4000 people annually and oscillates 
seasonally, 1000 above and below the average.  Due to 
a marketing campaign, the average number of tourists 
has been increasing by 200 each year.  Write an 
equation for the number of tourists after t years, 
beginning at the peak season. 
 
Again there are two components to this problem:  the 
oscillation and the average.  For the oscillation, the 
number of tourists oscillates 1000 above and below average, giving an amplitude of 
1000.  Since the oscillation is seasonal, it has a period of 1 year.  Since we are given a 
starting point of “peak season”, we will model this scenario with a cosine function.   
So far, this gives an equation in the form ( ) 1000cos(2 )N t t midlineπ= + . 
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The average is currently 4000, and is increasing by 200 each year.  This is a constant 
rate of change, so this is linear growth, taverage 2004000 += .  This function will act 

as the midline. 
 
Combining these two pieces gives a function for the number of tourists: 

( ) 1000cos(2 ) 4000 200N t t tπ= + +  

 
 

Try it Now 

1. Given the function 2( ) ( 1) 8cos( )g x x x= − + , describe the midline and amplitude 

using words. 

 

 

Changing Amplitude 

 
There are also situations in which the amplitude of a sinusoidal function does not stay 
constant.  Back in Chapter 6, we modeled the motion of a spring using a sinusoidal 
function, but had to ignore friction in doing so.  If there were friction in the system, we 
would expect the amplitude of the oscillation to decrease over time.  In the equation 

kBtAtf += )sin()( , A gives the amplitude of the oscillation, we can allow the amplitude 

to change by replacing this constant A with a function A(t). 
 
 

Changing Amplitude 

A function of the form kBttAtf += )sin()()(  will oscillate above and below the 

midline with an amplitude given by A(t). 

 
 
Here are some examples: 
  Linear amplitude  Exponential amplitude Quadratic amplitude 

  
( )( ) ( )sinf t mt b Bt k= + +    ( )( ) ( ) sintf t ab Bt k= +  ( )2( ) ( ) sinf t at Bt k= +  

 
 
 
 
 



492  Chapter 7 
 

When thinking about a spring with amplitude decreasing 
over time, it is tempting to use the simplest tool for the job 
– a linear function.  But if we attempt to model the 
amplitude with a decreasing linear function, such as 

ttA −= 10)( , we quickly see the problem when we graph 

the equation )4sin()10()( tttf −= . 

 
While the amplitude decreases at first as intended, the amplitude hits zero at t = 10, then 
continues past the intercept, increasing in absolute value, which is not the expected 
behavior.  This behavior and function may model the situation on a restricted domain and 
we might try to chalk the rest of it up to model breakdown, 
but in fact springs just don’t behave like this.   
 
A better model, as you will learn later in physics and 
calculus, would show the amplitude decreasing by a fixed 
percentage each second, leading to an exponential decay 
model for the amplitude.  
 
 

Damped Harmonic Motion 

Damped harmonic motion, exhibited by springs subject to friction, follows a model 
of the form 

kBtabtf
t += )sin()(   or   kBtaetf

rt += )sin()( . 

 
 
Example 4 

A spring with natural length of feet inches is pulled back 6 feet and released.  It 
oscillates once every 2 seconds.  Its amplitude decreases by 20% each second.  Find a 
function that models the position of the spring t seconds after being released. 
 
Since the spring will oscillate on either side of the natural length, the midline will be at 
20 feet.  The oscillation has a period of 2 seconds, and so the horizontal compression 

coefficient is B π= . Additionally, it begins at the furthest distance from the wall, 

indicating a cosine model. 
 
Meanwhile, the amplitude begins at 6 feet, 
and decreases by 20% each second, giving 

an amplitude function of t
tA )20.01(6)( −= .   

 
Combining this with the sinusoidal 
information gives a function for the position 
of the spring: 

20)cos()80.0(6)( += ttf
t π  
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Example 5 

A spring with natural length of 30 cm is pulled out 10 cm and released.  It oscillates 4 
times per second.  After 2 seconds, the amplitude has decreased to 5 cm.  Find a 
function that models the position of the spring. 
 

The oscillation has a period of 
1

4
 second, so 

2
8

1
4

B
π

π= = .  Since the spring will 

oscillate on either side of the natural length, the midline will be at 30 cm.  It begins at 
the furthest distance from the wall, suggesting a cosine model.  Together, this gives  

( ) ( ) cos(8 ) 30f t A t tπ= + . 

 
For the amplitude function, we notice that the amplitude starts at 10 cm, and decreases 
to 5 cm after 2 seconds.  This gives two points (0, 10) and (2, 5) that must be satisfied 
by an exponential function:  10)0( =A  and 5)2( =A .  Since the function is exponential, 

we can use the form t
abtA =)( .  Substituting the first point, 010 ab= , so a = 10.  

Substituting in the second point, 
2105 b=   Divide by 10 

2

2

1
b=   Take the square root 

707.0
2

1
≈=b  

 

This gives an amplitude function of t
tA )707.0(10)( = .  Combining this with the 

oscillation, 

( ) 10(0.707) cos(8 ) 30t
f t tπ= +  

 
 

Try it Now 
2. A certain stock started at a high value of $7 per share, oscillating monthly above and 

below the average value, with the oscillation decreasing by 2% per year. However, the 
average value started at $4 per share and has grown linearly by 50 cents per year.  

 a. Find a formula for the midline and the amplitude. 
 b. Find a function S(t) that models the value of the stock after t years.   

 
 
Example 6 

In AM (Amplitude Modulated) radio, a carrier wave with a high frequency is used to 
transmit music or other signals by applying the to-be-transmitted signal as the amplitude 
of the carrier signal.  A musical note with frequency 110 Hz (Hertz = cycles per second) 
is to be carried on a wave with frequency of 2 KHz (KiloHertz = thousands of cycles 
per second).  If the musical wave has an amplitude of 3, write a function describing the 
broadcast wave. 
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The carrier wave, with a frequency of 2000 cycles per second, would have period 
2000

1
 

of a second, giving an equation of the form sin(4000 )tπ .  Our choice of a sine function 

here was arbitrary – it would have worked just was well to use a cosine. 
 
The musical tone, with a frequency of 110 cycles per second, would have a period of 

110

1
 of a second.  With an amplitude of 3, this would correspond to a function of the 

form 3sin(220 )tπ .  Again our choice of using a sine function is arbitrary. 

 
The musical wave is acting as the amplitude of the carrier wave, so we will multiply the 
musical tone’s function by the carrier wave function, resulting in the function 

( ) 3sin(220 )sin(4000 )f t t tπ π=  

 

 
 
 

Important Topics of This Section 

Changing midline 

Changing amplitude 

 Linear Changes 

 Exponential Changes 

 Damped Harmonic Motion 

 
 

Try it Now Answers 

1. The midline follows the path of the quadratic 2 1x − and the amplitude is a constant 

value of 8. 
 

2. 
( ) 4 0.5

( ) 7(0.98)t

m t t

A t

= +

=
 

      S(t)= ( ) ttt 5.0424cos)98.0(7 ++π  
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Section 7.4 Exercises 

 
Find a possible formula for the trigonometric function whose values are given in the 
following tables. 

1. x 0 3 6 9 12 15 18 

y -4 -1 2 -1 -4 -1 2 
 

2.  x 0 2 4 6 8 10 12 

y 5 1 -3 1 5 1 -3 
 

 
3. The displacement ( )h t , in centimeters, of a mass suspended by a spring is modeled 

by the function ( ) 8sin(6 )h t tπ= , where t is measured in seconds.  Find the 

amplitude, period, and frequency of this displacement. 
 

4. The displacement ( )h t , in centimeters, of a mass suspended by a spring is modeled 

by the function ( ) 11sin(12 )h t tπ= , where t is measured in seconds.  Find the 

amplitude, period, and frequency of this displacement. 
 

5. A population of rabbits oscillates 19 above and below average during the year, 
reaching the lowest value in January. The average population starts at 650 rabbits and 
increases by 160 each year. Find a function that models the population, P, in terms of 
the months since January, t. 
 

6. A population of deer oscillates 15 above and below average during the year, reaching 
the lowest value in January. The average population starts at 800 deer and increases 
by 110 each year. Find a function that models the population, P, in terms of the 
months since January, t. 
 

7. A population of muskrats oscillates 33 above and below average during the year, 
reaching the lowest value in January. The average population starts at 900 muskrats 
and increases by 7% each month. Find a function that models the population, P, in 
terms of the months since January, t. 
 

8. A population of fish oscillates 40 above and below average during the year, reaching 
the lowest value in January. The average population starts at 800 fish and increases 
by 4% each month. Find a function that models the population, P, in terms of the 
months since January, t. 
  

9. A spring is attached to the ceiling and pulled 10 cm down from equilibrium and 
released. The amplitude decreases by 15% each second. The spring oscillates 18 
times each second. Find a function that models the distance, D, the end of the spring 
is below equilibrium in terms of seconds, t, since the spring was released. 
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10. A spring is attached to the ceiling and pulled 7 cm down from equilibrium and 
released. The amplitude decreases by 11% each second. The spring oscillates 20 
times each second. Find a function that models the distance, D, the end of the spring 
is below equilibrium in terms of seconds, t, since the spring was released. 
 

11. A spring is attached to the ceiling and pulled 17 cm down from equilibrium and 
released. After 3 seconds the amplitude has decreased to 13 cm. The spring oscillates 
14 times each second.  Find a function that models the distance, D the end of the 
spring is below equilibrium in terms of seconds, t, since the spring was released. 
 

12. A spring is attached to the ceiling and pulled 19 cm down from equilibrium and 
released. After 4 seconds the amplitude has decreased to 14 cm. The spring oscillates 
13 times each second.  Find a function that models the distance, D the end of the 
spring is below equilibrium in terms of seconds, t, since the spring was released. 
 
  

Match each equation form with one of the graphs.  

13. a. ( )sin 5x
ab x+   b. ( )sin 5x mx b+ +    

14. a. ( )sin 5x
ab x   b. ( )sin(5 )mx b x+  

I   II  III   IV  

  

Find a function of the form sin
2

xy ab c x
π 

= +  
 

 that fits the data given. 

15. x 0 1 2 3 

y 6 29 96 379 
 

16.  x 0 1 2 3 

y 6 34 150 746 
 

 

Find a function of the form sin
2

y a x m bx
π 

= + + 
 

 that fits the data given. 

17. x 0 1 2 3 

y 7 6 11 16 
 

18.  x 0 1 2 3 

y -2 6 4 2 
 

 

Find a function of the form cxaby x +







=

2
cos

π
 that fits the data given. 

19. x 0 1 2 3 

y 11 3 1 3 
 

20.  x 0 1 2 3 

y 4 1 -11 1 
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Chapter 8: Further 
Applications of 
Trigonometry 
In this chapter, we will explore additional applications of trigonometry.  We will begin 

with an extension of the right triangle trigonometry we explored in Chapter 5 to situations 

involving non-right triangles.  We will explore the polar coordinate system and 

parametric equations as new ways of describing curves in the plane.  In the process, we 

will introduce vectors and an alternative way of writing complex numbers, two important 

mathematical tools we use when analyzing and modeling the world around us. 
 

Section 8.1 Non-Right Triangles: Laws of Sines and Cosines ................................... 497 

Section 8.2 Polar Coordinates ..................................................................................... 514 

Section 8.3 Polar Form of Complex Numbers ............................................................ 527 

Section 8.4 Vectors ..................................................................................................... 540 

Section 8.5 Dot Product .............................................................................................. 554 

Section 8.6 Parametric Equations ............................................................................... 563 

 

Section 8.1 Non-Right Triangles: Laws of Sines and Cosines 

 

Although right triangles allow us to solve many applications, it is more common to find 

scenarios where the triangle we are interested in does not have a right angle. 

 

Two radar stations located 20 miles apart 

both detect a UFO located between them.  

The angle of elevation measured by the 

first station is 35 degrees.  The angle of 

elevation measured by the second station 

is 15 degrees.  What is the altitude of the 

UFO? 

 

We see that the triangle formed by the UFO and the two stations is not a right triangle.  

Of course, in any triangle we could draw an altitude, a perpendicular line from one 

vertex to the opposite side, forming two right triangles, but it would be nice to have 

methods for working directly with non-right triangles.  In this section, we will expand 

upon the right triangle trigonometry we learned in Chapter 5, and adapt it to non-right 

triangles. 

 

 

 

15° 35° 

20 miles 
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Law of Sines 

 

Given an arbitrary non-right triangle, we can drop an altitude, which we temporarily label 

h, to create two right triangles.   

 

Using the right triangle relationships,  

b

h
=)sin(α  and 

a

h
=)sin(β .   

 

Solving both equations for h, we get hb =)sin(α  and 

ha =)sin(β .  Since the h is the same in both equations, 

we establish )sin()sin( βα ab = .  Dividing both sides by 

ab, we conclude that 

ba

)sin()sin( βα
=  

 

Had we drawn the altitude to be perpendicular to side b or a, we could similarly establish  

ca

)sin()sin( γα
=  and 

cb

)sin()sin( γβ
=  

 

Collectively, these relationships are called the Law of Sines. 

 

 

Law of Sines 

Given a triangle with angles and sides opposite labeled as shown, the ratio of sine of 

angle to length of the opposite side will always be equal, or, symbolically, 

cba

)sin()sin()sin( γβα
==  

 

For clarity, we call side a the corresponding side of angle α. 

Similarly, we call angle α, the corresponding angle of side a.   

Likewise for side b and angle β, and for side c and angle γ. 

 

 

When we use the law of sines, we use any pair of ratios as an equation.  In the most 

straightforward case, we know two angles and one of the corresponding sides. 

 

 

 

 

 

 

 

α β 

a b 

c 

γ 

α β 

a b 
h 

γ 

c 
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Example 1 

In the triangle shown here, solve for the 

unknown sides and angle. 

 

Solving for the unknown angle is relatively 

easy, since the three angles must add to 180 

degrees.   

 

From this, we can determine that  

γ = 180° – 50° – 30° = 100°. 

 

To find an unknown side, we need to know the corresponding angle, and we also need 

another known ratio. 

 

Since we know the angle 50° and its corresponding side, we can use this for one of the 

two ratios.  To look for side b, we would use its corresponding angle, 30°. 

 

b

)30sin(

10

)50sin( °
=

°
   Multiply both sides by b 

)30sin(
10

)50sin(
°=

°
b   Divide, or multiply by the reciprocal, to solve for b 

527.6
)50sin(

10
)30sin( ≈

°
°=b  

 

Similarly, to solve for side c, we set up the equation 

 
c

)100sin(

10

)50sin( °
=

°
  

856.12
)50sin(

10
)100sin( ≈

°
°=c  

 

 

Example 2 

Find the elevation of the UFO from the beginning of the section. 

 

To find the elevation of the UFO, we first 

find the distance from one station to the 

UFO, such as the side a in the picture, 

then use right triangle relationships to 

find the height of the UFO, h. 

 

Since the angles in the triangle add to 180 degrees, the unknown angle of the triangle 

must be 180° – 15° – 35° = 130°.  This angle is opposite the side of length 20, allowing 

us to set up a Law of Sines relationship: 

 

50° 

10 b 

30° 

c 

γ 

15° 35° 

20 miles 

h 

a 
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a

)35sin(

20

)130sin( °
=

°
  Multiply by a 

)35sin(
20

)130sin(
°=

°
a   Divide, or multiply by the reciprocal, to solve for a 

975.14
)130sin(

)35sin(20
≈

°

°
=a   Simplify 

 

The distance from one station to the UFO is about 15 miles.  Now that we know a, we 

can use right triangle relationships to solve for h. 

975.14
)15sin(

h

a

h

hypotenuse

opposite
===°   Solve for h 

 

876.3)15sin(975.14 ≈°=h  

 

The UFO is at an altitude of 3.876 miles. 

 

 

In addition to solving triangles in which two angles are known, the law of sines can be 

used to solve for an angle when two sides and one corresponding angle are known. 

 

 

Example 3 

In the triangle shown here, solve for the unknown sides and 

angles. 

 

In choosing which pair of ratios from the Law of Sines to 

use, we always want to pick a pair where we know three of 

the four pieces of information in the equation.  In this case, 

we know the angle 85° and its corresponding side, so we 

will use that ratio.  Since our only other known information 

is the side with length 9, we will use that side and solve for its corresponding angle. 

 

9

)sin(

12

)85sin( β
=

°
   Isolate the unknown 

)sin(
12

)85sin(9
β=

°
   Use the inverse sine to find a first solution 

 

Remember when we use the inverse function that there are two possible answers. 

°≈






 °
= −

3438.48
12

)85sin(9
sin

1β  By symmetry we find the second possible solution 

°=°−°= 6562.1313438.48180β  

 

9 

12 

a 

85° 

β 

α 
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In this second case, if β ≈ 132°, then α would be α = 180° – 85° – 132° = –37°, which 

doesn’t make sense, so the only possibility for this triangle is β = 48.3438°. 

With a second angle, we can now easily find the third angle, since the angles must add 

to 180°, so α = 180° – 85° – 48.3438° = 46.6562°.  

 

Now that we know α, we can proceed as in earlier examples to find the unknown side a. 

a

)6562.46sin(

12

)85sin( °
=

°
  

7603.8
)85sin(

)6562.46sin(12
≈

°

°
=a  

 

 

Notice that in the problem above, when we use Law of Sines to solve for an unknown 

angle, there can be two possible solutions.  This is called the ambiguous case, and can 

arise when we know two sides and a non-included angle. In the ambiguous case we may 

find that a particular set of given information can lead to 2, 1 or no solution at all.  

However, when an accurate picture of the triangle or suitable context is available, we can 

determine which angle is desired.  

 

 

Try it Now 

1. Given 121 and ,120,80 ==°= baα , find the corresponding and missing side and 

angles.  If there is more than one possible solution, show both. 

 

 

Example 4 

Find all possible triangles if one side has length 4 opposite an angle of 50° and a second 

side has length 10. 

 

Using the given information, we can look for the angle opposite the side of length 10.   

10

)sin(

4

)50sin( α
=

°
 

915.1
4

)50sin(10
)sin( ≈

°
=α  

 

Since the range of the sine function is [-1, 1], it is impossible for the sine value to be 

1.915.  There are no triangles that can be drawn with the provided dimensions. 
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Example 5 

Find all possible triangles if one side has length 6 opposite an angle of 50° and a second 

side has length 4. 

 

Using the given information, we can look for the angle opposite the side of length 4.   

4

)sin(

6

)50sin( α
=

°
 

511.0
6

)50sin(4
)sin( ≈

°
=α   Use the inverse to find one solution 

( ) °≈= − 710.30511.0sin 1α   By symmetry there is a second possible solution 

°=°−°= 290.149710.30180α  

 

If we use the angle °710.30 , the third angle would be °=°−°−° 290.99710.3050180 .  

We can then use Law of Sines again to find the third side. 

c

)290.99sin(

6

)50sin( °
=

°
  Solve for c 

c  = 7.730 

 

If we used the angle α = 149.290°, the third angle would be 180° – 50° – 149.290° =  

–19.29°, which is impossible, so the previous triangle is the only possible one. 

 

 

Try it Now 

2. Given 10 and ,100,80 ==°= baα find the missing side and angles.  If there is more 

than one possible solution, show both. 

 

 

Law of Cosines 

 

Suppose a boat leaves port, travels 10 miles, turns 20 degrees, and travels 

another 8 miles.  How far from port is the boat?   

 

Unfortunately, while the Law of Sines lets us address many non-right 

triangle cases, it does not allow us to address triangles where the one 

known angle is included between two known sides, which means it is not 

a corresponding angle for a known side.  For this, we need another tool. 

 

Given an arbitrary non-right triangle, we 

can drop an altitude, which we temporarily 

label h, to create two right triangles.  We 

will divide the base b into two pieces, one 

of which we will temporarily label x.   

 

α γ 

a c 
h 

β 

x b - x 
b 

20° 

10 mi 

8 mi 
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From this picture, we can establish the right triangle relationship 

c

x
=)cos(α , or equivalently, ( )αcoscx =  

 

Using the Pythagorean Theorem, we can establish 

( ) 222
ahxb =+−    and   

222
chx =+  

 

Both of these equations can be solved for 
2

h  

( )222 xbah −−=  and  
222

xch −=  

 

Since the left side of each equation is 
2

h , the right sides must be equal 

( )2222 xbaxc −−=−    Multiply out the right 

( )22222 2 xbxbaxc +−−=−   Simplify 
22222 2 xbxbaxc −+−=−  

bxbac 2222 +−=     Isolate 
2

a  

bxbca 2222 −+=     Substitute in xc =)cos(α  from above 

)cos(2222 αbcbca −+=  

 

This result is called the Law of Cosines.  Depending upon which side we dropped the 

altitude down from, we could have established this relationship using any of the angles.  

The important thing to note is that the right side of the equation involves an angle and the 

sides adjacent to that angle – the left side of the equation involves the side opposite that 

angle. 

 

 

Law of Cosines 

Given a triangle with angles and opposite sides labeled as shown, 

)cos(2222 αbcbca −+=  

)cos(2222 βaccab −+=  

)cos(2222 γabbac −+=  

 

 

Notice that if one of the angles of the triangle is 90 degrees, cos(90°) = 0, so the formula 

)90cos(2222 °−+= abbac   Simplifies to 
222

bac +=     

 

You should recognize this as the Pythagorean Theorem.  Indeed, the Law of Cosines is 

sometimes called the Generalized Pythagorean Theorem, since it extends the 

Pythagorean Theorem to non-right triangles. 

 

α β 

a b 

c 

γ 
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Example 6 

Returning to our question from earlier, suppose a boat leaves port, 

travels 10 miles, turns 20 degrees, and travels another 8 miles.  How far 

from port is the boat? 

 

The boat turned 20 degrees, so the obtuse angle of the non-right triangle 

shown in the picture is the supplemental angle, 180° - 20° = 160°. 

 

With this, we can utilize the Law of Cosines to find the missing side of 

the obtuse triangle – the distance from the boat to port. 

 

)160cos()10)(8(2108 222 °−+=x   Evaluate the cosine and simplify 

3508.3142 =x     Square root both sides 

730.173508.314 ==x  

 

The boat is 17.73 miles from port. 

 

 

Example 7 

Find the unknown side and angles of this 

triangle. 

 

Notice that we don’t have both pieces of 

any side/angle pair, so the Law of Sines 

would not work with this triangle.   

 

Since we have the angle included between the two known sides, we can turn to Law of 

Cosines.   

 

Since the left side of any of the Law of Cosines equations involves the side opposite the 

known angle, the left side in this situation will involve the side x.  The other two sides 

can be used in either order. 

 

)30cos()12)(10(21210 222 °−+=x   Evaluate the cosine 

2

3
)12)(10(21210 222 −+=x   Simplify 

31202442 −=x     Take the square root 

013.63120244 ≈−=x  

 

Now that we know an angle and its corresponding side, we can use the Law of Sines to 

fill in the remaining angles of the triangle.  Solving for angle θ, 

 

θ 

10 x 

30° 

12 

φ

φ 

20° 

10 mi 

8 mi 
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10

)sin(

013.6

)30sin( θ
=

°
 

013.6

)30sin(10
)sin(

°
=θ     Use the inverse sine 

°≈






 °
= − 256.56

013.6

)30sin(10
sin 1θ  

 

The other possibility for θ would be θ = 180° – 56.256° = 123.744°.  In the original 

picture, θ is an acute angle, so 123.744° doesn’t make sense if we assume the picture is 

drawn to scale. 

 

Proceeding with θ = 56.256°, we can then find the third angle of the triangle: 

°=°−°−°= 744.93256.5630180ϕ . 

 

 

In addition to solving for the missing side opposite one known angle, the Law of Cosines 

allows us to find the angles of a triangle when we know all three sides. 

 

 

Example 8 

Solve for the angle α in the triangle shown. 

 

Using the Law of Cosines, 

)cos()25)(18(2251820 222 α−+=   Simplify 

)cos(900949400 α−=  

)cos(900549 α−=−  

)cos(
900

549
α=

−

−
 

°≈








−

−
= − 410.52

900

549
cos 1α  

 

 

Try it Now 

3. Given 20 and ,10,25 ==°= cbα find the missing side and angles.   

 

 

Notice that since the inverse cosine can return any angle between 0 and 180 degrees, 

there will not be any ambiguous cases when using Law of Cosines to find an angle. 

 

 

 

18 

25 

20 
α 
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Example 9 

On many cell phones with GPS, an approximate location can be given before the GPS 

signal is received.  This is done by a process called triangulation, which works by using 

the distance from two known points.  Suppose there are two cell phone towers within 

range of you, located 6000 feet apart along a straight highway that runs east to west, and 

you know you are north of the highway.  Based on the signal delay, it can be 

determined you are 5050 feet from the first tower, and 2420 feet from the second.  

Determine your position north and east of the first tower, and determine how far you are 

from the highway. 

 

For simplicity, we start by drawing a picture and 

labeling our given information.  Using the Law 

of Cosines, we can solve for the angle θ.  

 

)cos()6000)(5050(2505060002420 222 θ−+=  

)cos(60600000615015005856400 θ−=  

)cos(60600000554646100 θ−=−  

9183.0
60600000

554646100
)cos( =

−

−
=θ  

°== − 328.23)9183.0(cos 1θ  

 

Using this angle, we could then use right 

triangles to find the position of the cell phone 

relative to the western tower. 

 

5050
)328.23cos(

x
=°  

2.4637)328.23cos(5050 ≈°=x  feet 

5050
)328.23sin(

y
=°  

8.1999)328.23sin(5050 ≈°=y  feet 

 

You are 5050 ft from the tower and °328.23  north of east (or, equivalently, 66.672° east 

of north).  Specifically, you are about 4637 feet east and 2000 feet north of the first 

tower. 

 

Note that if you didn’t know whether you were north or south of the towers, our 

calculations would have given two possible locations, one north of the highway and one 

south. To resolve this ambiguity in real world situations, locating a position using 

triangulation requires a signal from a third tower.  

 

 

 

2420 ft 5050 ft 

6000 ft 

θ 

5050 ft 

23.3° 
y 

x 
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Example 10 

To measure the height of a hill, a woman measures the angle of elevation to the top of 

the hill to be 24 degrees.  She then moves back 200 feet and measures the angle of 

elevation to be 22 degrees.  Find the height of the hill. 

 

As with many problems of this nature, it will be helpful to draw a picture. 

 
Notice there are three triangles formed here – the right triangle including the height h 

and the 22 degree angle, the right triangle including the height h and the 24 degree 

angle, and the (non-right) obtuse triangle including the 200 ft side.  Since this is the 

triangle we have the most information for, we will begin with it.  It may seem odd to 

work with this triangle since it does not include the desired side h, but we don’t have 

enough information to work with either of the right triangles yet. 

 

We can find the obtuse angle of the triangle, since it and the angle of 24 degrees 

complete a straight line – a 180 degree angle.  The obtuse angle must be 180° - 24° = 

156°.  From this, we can determine that the third angle is 2°.  We know one side is 200 

feet, and its corresponding angle is 2°, so by introducing a temporary variable x for one 

of the other sides (as shown below), we can use Law of Sines to solve for this length x. 

 

)2sin(

200

)22sin( °
=

°

x
   Setting up the Law of Sines 

)2sin(

200
)22sin(

°
°=x    isolating the x value 

77.2146=x ft 

 

Now that we know x, we can use right triangle properties to solve for h. 

77.2146hypotenuse

opposite
)24sin(

h

x

h
===°  

 

17.873)24sin(77.2146 =°=h ft.   The hill is 873 feet high. 

 

24° 
22° 

200 ft 

h 

156° 

2° 

x 

24° 22° 
200 ft 

h 
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Important Topics of This Section 

Law of Sines 

 Solving for sides 

 Solving for angles 

 Ambiguous case, 0, 1 or 2 solutions 

Law of Cosines 

 Solving for sides 

 Solving for angles 

Generalized Pythagorean Theorem 

 

 

Try it Now Answers 

1. 
( ) ( )

121

sin

120

80sin β
=

°
 

1st possible solution

2.35

8.16

2.83

=

°=

°=

c

γ

β

 2nd solution 

9.6

2.3

8.96

=

°=

°=

c

γ

β

 

     If we were given a picture of the triangle it may be possible to eliminate one of these 

 

2. 
( ) ( )

10

sin

120

80sin β
=

°
.  °= 65.5β  or °= 35.174β ; only the first is reasonable. 

°=°−°−°= 35.948065.5180γ  

( ) ( )
c

°
=

° 35.94sin

120

80sin
 

25.101,35.94,65.5 =°=°= cγβ  

 

3. )25cos()20)(10(22010 222 °−+=a .  a = 11.725 

( ) ( )
10

sin

725.11

25sin β
=

°
.  °= 1.21β  or °= 9.158β ;  

          only the first is reasonable since 25° + 158.9° would exceed 180°. 

°=°−°−°= 9.133251.21180γ  

725.11,9.133,1.21 =°=°= aγβ  
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Section 8.1 Exercises 

 

Solve for the unknown sides and angles of the triangles shown. 

1.    2.  

3.    4.  

5.    6.  

7.    8.  

Assume α  is opposite side a, β  is opposite side b, and γ  is opposite side c.  Solve each 

triangle for the unknown sides and angles if possible.  If there is more than one possible 

solution, give both. 

9. 20, 69, 43 =°=°= bγα     10. 19, 73, 35 =°=°= bγα  

11. 14, 26, 119 ==°= baα     12. 32, 10, 113 ==°= cbγ  

13. 45,105, 50 ==°= baβ     14. 38,49, 67 ==°= baβ  

15. 8.242,2.184, 1.43 ==°= baα    16. 2.242,2.186, 6.36 ==°= baα  

30 

50 30° 

18 

40° 

25 

70° 

90 

100 
65° 

5 6 

75° 

45° 

15 

120° 

6 

25° 

40° 110° 

18 

70° 50° 

10 
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Solve for the unknown sides and angles of the triangles shown. 

17.    18.  

19.    20.  

 

Assume α  is opposite side a, β  is opposite side b, and γ  is opposite side c.  Solve each 

triangle for the unknown sides and angles if possible.  If there is more than one possible 

solution, give both. 

21. 13.3, 49.2, 2.41 ==°= baγ    22. 7.15, 6.10, 7.58 ==°= caβ  

23. 7, 6, 120 ==°= cbα     24. 23,18, 115 ==°= baγ  

25. Find the area of a triangle with sides of length 18, 21, and 32. 

 

26. Find the area of a triangle with sides of length 20, 26, and 37. 

 

27. To find the distance across a small lake, a surveyor has 

taken the measurements shown. Find the distance across 

the lake. 

 

 

28. To find the distance between two cities, a satellite 

calculates the distances and angle shown (not to 

scale). Find the distance between the cities. 

 

 

5 

8 

10 13 

11 

20 

30° 16 
10 

60° 

20 28 

800 ft 900 ft 
70° 

350 km 
370 km 

2.1° 
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29. To determine how far a boat is from shore, two radar 

stations 500 feet apart determine the angles out to the 

boat, as shown.  Find the distance of the boat from the 

station A, and the distance of the boat from shore. 

 

 

 

30. The path of a satellite orbiting the earth causes it to 

pass directly over two tracking stations A and B, 

which are 69 mi apart. When the satellite is on one 

side of the two stations, the angles of elevation at A 

and B are measured to be 86.2° and 83.9°, 

respectively.  How far is the satellite from station A 

and how high is the satellite above the ground? 

 

 

31. A communications tower is located at the top of 

a steep hill, as shown. The angle of inclination of 

the hill is 67°. A guy-wire is to be attached to the 

top of the tower and to the ground, 165 m 

downhill from the base of the tower. The angle 

formed by the guy-wire and the hill is 16°. Find 

the length of the cable required for the guy wire. 

 

 

32. The roof of a house is at a 20° angle.  An 8 foot 

solar panel is to be mounted on the roof, and 

should be angled 38° relative to the horizontal 

for optimal results.  How long does the vertical 

support holding up the back of the panel need to 

be? 

 

 

33. A 127 foot tower is located on a hill that is 

inclined 38° to the horizontal.  A guy-wire is to 

be attached to the top of the tower and anchored 

at a point 64 feet downhill from the base of the 

tower.  Find the length of wire needed. 

70° 
A 

60° 

B 

86.2° 83.9° 

A B 

67° 

16° 

165m 

38° 

64 ft 

127 ft 

20° 

38° 

8 ft 
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34. A 113 foot tower is located on a hill that is 

inclined 34° to the horizontal.  A guy-wire is to 

be attached to the top of the tower and anchored 

at a point 98 feet uphill from the base of the 

tower.  Find the length of wire needed. 

 

 

35. A pilot is flying over a straight highway. He 

determines the angles of depression to two 

mileposts, 6.6 km apart, to be 37° and 44°, as 

shown in the figure.  Find the distance of the plane 

from point A, and the elevation of the plane. 

 

 

36. A pilot is flying over a straight highway. He 

determines the angles of depression to two 

mileposts, 4.3 km apart, to be 32° and 56°, as 

shown in the figure.  Find the distance of the plane 

from point A, and the elevation of the plane. 

 

37. To estimate the height of a building, two students find the angle of elevation from a 

point (at ground level) down the street from the building to the top of the building is 

39°. From a point that is 300 feet closer to the building, the angle of elevation (at 

ground level) to the top of the building is 50°. If we assume that the street is level, use 

this information to estimate the height of the building. 

 

38. To estimate the height of a building, two students find the angle of elevation from a 

point (at ground level) down the street from the building to the top of the building is 

35°. From a point that is 300 feet closer to the building, the angle of elevation (at 

ground level) to the top of the building is 53°. If we assume that the street is level, use 

this information to estimate the height of the building. 

 

39. A pilot flies in a straight path for 1 hour 30 min. She then makes a course correction, 

heading 10 degrees to the right of her original course, and flies 2 hours in the new 

direction. If she maintains a constant speed of 680 miles per hour, how far is she from 

her starting position? 

 

34° 

98 ft 

113 ft 

A B 

37° 44° 

A B 

32° 
56° 
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40. Two planes leave the same airport at the same time.  One flies at 20 degrees east of 

north at 500 miles per hour.  The second flies at 30 east of south at 600 miles per 

hour.  How far apart are the planes after 2 hours? 

 

41. The four sequential sides of a quadrilateral have lengths 4.5 cm, 7.9 cm, 9.4 cm, and 

12.9 cm.  The angle between the two smallest sides is 117°.  What is the area of this 

quadrilateral? 

 

42. The four sequential sides of a quadrilateral have lengths 5.7 cm, 7.2 cm, 9.4 cm, and 

12.8 cm.  The angle between the two smallest sides is 106°.  What is the area of this 

quadrilateral? 

 

 

43. Three circles with radii 6, 7, and 8, all touch as shown.  Find the 

shaded area bounded by the three circles. 

 

 

44. A rectangle is inscribed in a circle of radius 10 cm as shown.  

Find the shaded area, inside the circle but outside the rectangle. 

 

 

 

55° 
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Section 8.2 Polar Coordinates 

 

The coordinate system we are most familiar with is called the Cartesian coordinate 

system, a rectangular plane divided into four quadrants by horizontal and vertical axes. 

 

In earlier chapters, we often found the Cartesian coordinates of a 

point on a circle at a given angle from the positive horizontal axis.  

Sometimes that angle, along with the point’s distance from the 

origin, provides a more useful way of describing the point’s 

location than conventional Cartesian coordinates. 

 

 

Polar Coordinates 

Polar coordinates of a point consist of an ordered pair, ),( θr , where r is the distance 

from the point to the origin, and θ is the angle measured in standard position. 

 

 

Notice that if we were to “grid” the plane for polar coordinates, it 

would look like the graph to the right, with circles at incremental 

radii, and rays drawn at incremental angles.   

 

 

Example 1 

Plot the polar point 








6

5
,3

π
. 

 

This point will be a distance of 3 from the origin, at an angle of 

6

5π
.  Plotting this, 

 

 

Example 2 

Plot the polar point 







−

4
,2
π

. 

 

Typically we use positive r values, but occasionally we run into 

cases where r is negative.  On a regular number line, we measure 

positive values to the right and negative values to the left.  We 

will plot this point similarly.  To start, we rotate to an angle of 
4

π
.  

Moving this direction, into the first quadrant, would be positive r 

values.  For negative r values, we move the opposite direction, 

into the third quadrant.  Plotting this: 
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Note the resulting point is the same as the polar point 
5

2,
4

π 
 
 

.  In fact, any Cartesian 

point can be represented by an infinite number of different polar coordinates by adding or 

subtracting full rotations to these points.  For example, same point could also be 

represented as 
13

2,
4

π 
 
 

. 

 

 

Try it Now 

1. Plot the following points given in polar coordinates and label them. 

a. 3,
6

A
π 

=  
 

   b. 2,
3

B
π 

= − 
 

 c. 
3

4,
4

C
π 

=  
 

 

 

 

Converting Points 

 

To convert between polar coordinates and Cartesian coordinates, we recall the 

relationships we developed back in Chapter 5. 

 

 

Converting Between Polar and Cartesian Coordinates 

To convert between polar ),( θr and Cartesian (x, y) coordinates, 

we use the relationships 

r

x
=)cos(θ   )cos(θrx =  

r

y
=)sin(θ   )sin(θry =  

x

y
=)tan(θ   222

ryx =+  

 

 

From these relationship and our knowledge of the unit circle, if r = 1 and 
3

π
θ = , the 

polar coordinates would be ( , ) 1,
3

r
π

θ
 

=  
 

, and the corresponding Cartesian coordinates

1 3
( , ) ,

2 2
x y

 
=   
 

. 

 

Remembering your unit circle values will come in very handy as you convert between 

Cartesian and polar coordinates. 

(x, y) 

r 

θ 

y 

x 
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Example 3 

Find the Cartesian coordinates of a point with polar coordinates 







=

3

2
,5),(

π
θr . 

 

To find the x and y coordinates of the point, 

2

5

2

1
5

3

2
cos5)cos( −=








−=








==

π
θrx  

2

35

2

3
5

3

2
sin5)sin( =










=








==

π
θry  

The Cartesian coordinates are 









−

2

35
,

2

5
. 

 

 

Example 4 

Find the polar coordinates of the point with Cartesian coordinates )4,3( −− . 

 

We begin by finding the distance r using the Pythagorean relationship 222
ryx =+  

222 )4()3( r=−+−  
29 16 r+ =  

252 =r  

5=r  

 

Now that we know the radius, we can find the angle using any of the three trig 

relationships.  Keep in mind that any of the relationships will produce two solutions on 

the circle, and we need to consider the quadrant to determine which solution to accept.  

Using the cosine, for example: 

5

3
)cos(

−
==

r

x
θ  

214.2
5

3
cos 1 ≈







 −
= −θ   By symmetry, there is a second possibility at 

069.4214.22 =−= πθ  

 

Since the point (-3, -4) is located in the 3rd quadrant, we can determine that the second 

angle is the one we need.  The polar coordinates of this point are )069.4,5(),( =θr . 

 

 

Try it Now 

2. Convert the following. 

a. Convert polar coordinates ( )πθ ,2),( =r  to ),( yx . 

b. Convert Cartesian coordinates )4,0(),( −=yx  to ),( θr . 
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Polar Equations 

 

Just as a Cartesian equation like 2
xy =  describes a relationship between x and y values 

on a Cartesian grid, a polar equation can be written describing a relationship between r 

and θ values on the polar grid.   

 

 

Example 5 

Sketch a graph of the polar equation θ=r . 

 

The equation θ=r  describes all the points for which the radius r is equal to the angle.  

To visualize this relationship, we can create a table of values. 

 
 

We can plot these points on the plane, and then sketch a 

curve that fits the points.  The resulting graph is a spiral. 

 

Notice that the resulting graph cannot be the result of a 

function of the form y = f(x), as it does not pass the 

vertical line test, even though it resulted from a function 

giving r in terms of θ. 

 

 

Although it is nice to see polar equations on polar grids, it 

is more common for polar graphs to be graphed on the 

Cartesian coordinate system, and so, the remainder of the 

polar equations will be graphed accordingly.   

 

The spiral graph above on a Cartesian grid is shown here. 

 

 

 

Example 6 

Sketch a graph of the polar equation 3=r . 

 

Recall that when a variable does not show up in the 

equation, it is saying that it does not matter what value that 

variable has; the output for the equation will remain the 

same.  For example, the Cartesian equation y = 3 describes 

all the points where y = 3, no matter what the x values are, 

producing a horizontal line. 

 

Likewise, this polar equation is describing all the points at a 

distance of 3 from the origin, no matter what the angle is, producing the graph of a 

circle. 

θ 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π 

r 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π 
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The normal settings on graphing calculators and software graph on the Cartesian 

coordinate system with y being a function of x, where the graphing utility asks for f(x), or 

simply y =. 

 

To graph polar equations, you may need to change the mode of your calculator to Polar.  

You will know you have been successful in changing the mode if you now have r as a 

function of θ, where the graphing utility asks for r(θ), or simply r =. 

 

 

Example 7 

Sketch a graph of the polar equation )cos(4 θ=r , and find an 

interval on which it completes one cycle. 

 

While we could again create a table, plot the corresponding 

points, and connect the dots, we can also turn to technology to 

directly graph it.  Using technology, we produce the graph 

shown here, a circle passing through the origin.  

 

Since this graph appears to close a loop and repeat itself, we might ask what interval of 

θ values yields the entire graph.  At θ = 0, 4)0cos(4 ==r , yielding the point (4, 0).  We 

want the next θ value when the graph returns to the point (4, 0).  Solving for when x = 4 

is equivalent to solving 4)cos( =θr . 

 

4)cos( =θr       Substituting the equation for r gives 

4)cos()cos(4 =θθ    Dividing by 4 and simplifying 

1)(cos2 =θ     This has solutions when 

1)cos( =θ  or 1)cos( −=θ   Solving these gives solutions 

0=θ or πθ =  

 

This shows us at 0 radians we are at the point (0, 4), and again atπ  radians we are at the 

point (0, 4) having finished one complete revolution. 

 

The interval πθ <≤0 yields one complete iteration of the circle. 

 

 

Try it Now 

3. Sketch a graph of the polar equation 3sin( )r θ= , and find an interval on which it 

completes one cycle. 

 

 

The last few examples have all been circles.  Next, we will consider two other “named” 

polar equations, limaçons and roses.   
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Example 8 

Sketch a graph of the polar equation 2)sin(4 += θr .  What interval of θ values 

corresponds to the inner loop?  

 

This type of graph is called a limaçon.   

Using technology, we can draw the graph.  The inner loop 

begins and ends at the origin, where r = 0.  We can solve for 

the θ values for which r = 0. 

 

2)sin(40 += θ  

)sin(42 θ=−  

2

1
)sin( −=θ  

6

7π
θ =  or 

6

11π
θ =  

 

This tells us that r = 0, so the graph passes through the 

origin, twice on the interval [0, 2π). 

The inner loop arises from the interval 
6

11

6

7 π
θ

π
≤≤ .  

This corresponds to where the function 2)sin(4 += θr  

takes on negative values, as we could see if we graphed 

the function in the rθ  plane. 

 

 

Example 9 

Sketch a graph of the polar equation )3cos( θ=r .  What interval 

of θ values describes one small loop of the graph? 

 

This type of graph is called a 3 leaf rose. 

 

We can use technology to produce a graph.  The interval [0, π) 

yields one cycle of this function.  As with the last problem, we 

can note that there is an interval on which one loop of this graph 

begins and ends at the origin, where r = 0.  Solving for θ, 

 

)3cos(0 θ=     Substitute u = 3θ 

)cos(0 u=  

2

π
=u  or 

2

3π
=u  or 

2

5π
=u    

 

Undo the substitution, 
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2
3

π
θ =  or  

2

3
3

π
θ =  or 

2

5
3

π
θ =  

6

π
θ =  or 

2

π
θ =   or 

6

5π
θ =  

 

There are 3 solutions on πθ <≤0  which correspond to the 3 times the graph returns to 

the origin, but the first two solutions we solved for above are enough to conclude that 

one loop corresponds to the interval 
26

π
θ

π
<≤ .    

 

If we wanted to get an idea of how the computer drew this graph, consider when θ = 0. 

cos(3 ) cos(0) 1r θ= = = , so the graph starts at (1,0).  As we found above, at 
6

π
θ =  and 

2

π
θ = , the graph is at the origin.  Looking at the equation, 

notice that any angle in between 
6

π
 and 

2

π
, for example at 

3

π
θ = , produces a negative r: ( )cos 3 cos 1

3
r

π
π

 
= ⋅ = = − 

 
.   

 

Notice that with a negative r value and an angle with terminal 

side in the first quadrant, the corresponding Cartesian point 

would be in the third quadrant.  Since )3cos( θ=r  is negative 

on 
26

π
θ

π
<≤ , this interval corresponds to the loop of the graph in the third quadrant. 

 

 

Try it Now 

4. Sketch a graph of the polar equation sin(2 )r θ= .  Would you call this function a 

limaçon or a rose? 

 

 

Converting Equations 

 

While many polar equations cannot be expressed nicely in Cartesian form (and vice 

versa), it can be beneficial to convert between the two forms, when possible.  To do this 

we use the same relationships we used to convert points between coordinate systems. 

 

 

 

 

 

 

θ  r x y 

0 1 1 0 

6

π
 0 0 0 

3

π
 -1 

1

2
−  

3

2
−  

2

π
 0 0 0 
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Example 10 

Rewrite the Cartesian equation yyx 622 =+  as a polar equation. 

 

We wish to eliminate x and y from the equation and introduce r and θ.  Ideally, we 

would like to write the equation with r isolated, if possible, which represents r as a 

function of θ. 

yyx 622 =+    Remembering 
222 ryx =+  we substitute  

yr 62 =     )sin(θry =  and so we substitute again 

)sin(62 θrr =    Subtract )sin(6 θr  from both sides 

0)sin(62 =− θrr    Factor 

( ) 0)sin(6 =− θrr    Use the zero factor theorem 

)sin(6 θ=r   or  r = 0  Since r = 0 is only a point, we reject that solution. 

 

The solution )sin(6 θ=r  is fairly similar to the one we graphed in Example 7.  In fact, 

this equation describes a circle with bottom at the origin and top at the point (0, 6). 

 

 

Example 11 

Rewrite the Cartesian equation 23 += xy  as a polar equation. 

 

23 += xy     Use )sin(θry =  and )cos(θrx =  

2)cos(3)sin( += θθ rr   Move all terms with r to one side 

2)cos(3)sin( =− θθ rr   Factor out r 

( ) 2)cos(3)sin( =− θθr   Divide 

)cos(3)sin(

2

θθ −
=r  

 

In this case, the polar equation is more unwieldy than the Cartesian equation, but there 

are still times when this equation might be useful. 

 

 

Example 12 

Rewrite the polar equation 
)cos(21

3

θ−
=r  as a Cartesian equation. 

 

We want to eliminate θ and r and introduce x and y.  It is usually easiest to start by 

clearing the fraction and looking to substitute values that will eliminate θ. 
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)cos(21

3

θ−
=r    Clear the fraction 

( ) 3)cos(21 =− θr    Use 
r

x
=)cos(θ  to eliminate θ  

321 =







−

r

x
r    Distribute and simplify 

32 =− xr     Isolate the r 

xr 23 +=     Square both sides 

( )22 23 xr +=    Use 
222 ryx =+  

( )222 23 xyx +=+  

 

When our entire equation has been changed from r and θ to x and y we can stop unless 

asked to solve for y or simplify. 

 

In this example, if desired, the right side of the equation could be expanded and the 

equation simplified further.  However, the equation cannot be written as a function in 

Cartesian form. 

 

 

Try it Now 

5. a. Rewrite the Cartesian equation in polar form: 23y x= ± −  

    b. Rewrite the polar equation in Cartesian form: 2sin( )r θ=  

 

 

Example 13 

Rewrite the polar equation )2sin( θ=r  in Cartesian form. 

 

)2sin( θ=r     Use the double angle identity for sine 

)cos()sin(2 θθ=r    Use 
r

x
=)cos(θ  and 

r

y
=)sin(θ  

r

y

r

x
r ⋅⋅= 2     Simplify 

2

2

r

xy
r =     Multiply by r2 

xyr 23 =     Since 222
ryx =+ , 

22
yxr +=  

( ) xyyx 2
3

22 =+  

 

This equation could also be written as  

( ) xyyx 2
2/322 =+   or  ( ) 3/222 2xyyx =+  
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Important Topics of This Section 

Cartesian coordinate system 

Polar coordinate system 

Plotting points in polar coordinates 

Converting coordinates between systems 

Polar equations: Spirals, circles, limaçons and roses 

Converting equations between systems 

 

 

Try it Now Answers 

1.  

 

2. a. ( )( , ) 2,r θ π= converts to  ( )( , ) 2cos( ),2sin( ) ( 2,0)x y π π= = −  

    b. ( )( , ) 0, 4x y = −  converts to 
3

( , ) 4, 4,
2 2

r or
π π

θ
   

= −   
   

 

 

3.  3sin( ) 0θ =  at 0=θ  and πθ = . 

It completes one cycle on the interval πθ <≤0 . 

 

 

 

 

 

 

 

4.  This is a 4-leaf rose. 

 

 

 

5. a. 23y x= ± −  can be rewritten as 2 2 3x y+ = , and becomes 3r =  

    b. 2sin( )r θ= .  2
y

r
r

= .  2 2r y= .  2 2 2x y y+ =  

A 

B 

C 
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Section 8.2 Exercises 

 

Convert the given polar coordinates to Cartesian coordinates. 

1. 
7

7,
6

π 
 
 

  2. 
3

6,
4

π 
 
 

  3. 
7

4,
4

π 
 
 

  4. 
4

9,
3

π 
 
 

  

5. 







−

4
, 6

π
  6. 12,

3

π 
− 

 
  7. 3,

2

π 
 
 

  8. ( )5,π   

9. 3,
6

π 
− 
 

  10. 
2

2,
3

π 
− 
 

  11. (3,2)   12. (7,1)  

 

Convert the given Cartesian coordinates to polar coordinates. 

13. (4,2)   14. (8, 8)   15. ( 4, 6)−   16. ( 5,1 )−   

17. (3, 5)−   18. (6, 5)−   19. ( )10, 13− −   20. ( 4, 7)− −  

 

Convert the given Cartesian equation to a polar equation. 

21. 3x =   22. 4y =   23. 24y x=   24. 42y x=  

25. 2 2 4x y y+ =  26. 2 2 3x y x+ =  27. 2 2
x y x− =  28. 2 2 3x y y− =  

 

Convert the given polar equation to a Cartesian equation. 

29. ( )3sinr θ=     30. ( )4cosr θ=   

31. 
( ) ( )

4

sin 7 cos
r

θ θ
=

+
   32. 

( ) ( )
6

cos 3sin
r

θ θ
=

+
 

33. ( )2secr θ=     34. ( )3cscr θ=    

35. ( )cos 2r r θ= +     36. ( ) ( )2 4sec cscr θ θ=  
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Match each equation with one of the graphs shown. 

37. ( )2 2cosr θ= +   38. ( )2 2sinr θ= +    39. ( )4 3cosr θ= +   

40. ( )3 4cosr θ= +   41. 5r =    42. ( )2sinr θ=  

A   B   C   

D   E    F  

 

Match each equation with one of the graphs shown.   

43. ( )logr θ=   44. ( )cosr θ θ=    45. cos
2

r
θ 

=  
 

  

46. ( ) ( )2sin cosr θ θ=  47. ( )1 2sin 3r θ= +   48. ( )1 sin 2r θ= +  

A   B   C  

D    E    F  
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Sketch a graph of the polar equation. 

49. ( )3cosr θ=   50. ( )4sinr θ=   51. ( )3sin 2r θ=   

52. ( )4sin 4r θ=   53. ( )5sin 3r θ=   54. ( )4sin 5r θ=    

55. ( )3cos 2r θ=   56. ( )4cos 4r θ=   57. ( )2 2cosr θ= +   

58. ( )3 3sinr θ= +   59. ( )1 3sinr θ= +   60. ( )2 4cosr θ= +  

61. 2r θ=    62. 
1

r
θ

=     

63. ( )3 secr θ= + , a conchoid  64. 
θ

1
=r , a lituus1 

65. ( ) ( )2sin tanr θ θ= , a cissoid   66. ( )22 1 sinr θ= − , a hippopede   

                                                 
1 This curve was the inspiration for the artwork featured on the cover of this book. 
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Section 8.3 Polar Form of Complex Numbers 

  

From previous classes, you may have encountered “imaginary numbers” – the square 

roots of negative numbers – and, more generally, complex numbers which are the sum of 

a real number and an imaginary number.  While these are useful for expressing the 

solutions to quadratic equations, they have much richer applications in electrical 

engineering, signal analysis, and other fields.  Most of these more advanced applications 

rely on properties that arise from looking at complex numbers from the perspective of 

polar coordinates. 

 

We will begin with a review of the definition of complex numbers. 

 

 

Imaginary Number i 

The most basic complex number is i, defined to be 1−=i , commonly called an 

imaginary number.  Any real multiple of i is also an imaginary number. 

 

 

Example 1 

Simplify 9− . 

 

We can separate 9−  as 19 − .  We can take the square root of 9, and write the 

square root of -1 as i.   

9− = i319 =−  

 

 

A complex number is the sum of a real number and an imaginary number. 

 

 

Complex Number 

A complex number is a number biaz += , where a and b are real numbers 

a  is the real part of the complex number 

b  is the imaginary part of the complex number 

1−=i  

 

 

Plotting a complex number 

We can plot real numbers on a number line.  For example, if we wanted to show the 

number 3, we plot a point: 
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To plot a complex number like i43 − , we need more than 

just a number line since there are two components to the 

number.  To plot this number, we need two number lines, 

crossed to form a complex plane.   

 

 

 

Complex Plane 

In the complex plane, the horizontal axis is the real axis and the vertical axis is the 

imaginary axis. 

 

 

Example 2 

Plot the number i43 −  on the complex plane. 

 

The real part of this number is 3, and the imaginary part is -

4.  To plot this, we draw a point 3 units to the right of the 

origin in the horizontal direction and 4 units down in the 

vertical direction. 

 

Because this is analogous to the Cartesian coordinate system 

for plotting points, we can think about plotting our complex 

number biaz +=  as if we were plotting the point (a, b) in 

Cartesian coordinates.  Sometimes people write complex 

numbers as z x yi= +  to highlight this relation. 

 

 

Arithmetic on Complex Numbers 

 

Before we dive into the more complicated uses of complex numbers, let’s make sure we 

remember the basic arithmetic involved.  To add or subtract complex numbers, we simply 

add the like terms, combining the real parts and combining the imaginary parts. 

 

 

Example 3 

Add i43 −  and i52 + . 

 

Adding )52()43( ii ++− , we add the real parts and the imaginary parts 

ii 5423 +−+  

i+5  

 

 

Try it Now 

1. Subtract i52 +  from i43 − . 

real 

imaginary 
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We can also multiply and divide complex numbers. 

 

 

Example 4 

Multiply:  )52(4 i+ . 

 

To multiply the complex number by a real number, we simply distribute as we would 

when multiplying polynomials. 

 

)52(4 i+    Distribute 

= i5424 ⋅+⋅    Simplify 

i208 +=  

 

 

Example 5 

Multiply:  )41)(32( ii +− . 

 

To multiply two complex numbers, we expand the product as we would with 

polynomials (the process commonly called FOIL – “first outer inner last”).   

)41)(32( ii +−   Expand 

=
212382 iii −−+   Since 1−=i , 12 −=i  

= )1(12382 −−−+ ii   Simplify 

= i514 +  

 

 

Example 6 

Divide 
(2 5 )

(4 )

i

i

+

−
. 

 

To divide two complex numbers, we have to devise a way to write this as a complex 

number with a real part and an imaginary part.   

 

We start this process by eliminating the complex number in the denominator.  To do 

this, we multiply the numerator and denominator by a special complex number so that 

the result in the denominator is a real number.  The number we need to multiply by is 

called the complex conjugate, in which the sign of the imaginary part is changed.  

Here, 4+i  is the complex conjugate of 4–i.  Of course, obeying our algebraic rules, we 

must multiply by 4+i  on both the top and bottom. 

(2 5 ) (4 )

(4 ) (4 )

i i

i i

+ +
⋅

− +
   

 

In the numerator, 
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(2 5 )(4 )i i+ +    Expand 

28 20 2 5i i i= + + +    Since 1−=i , 12 −=i  

8 20 2 5( 1)i i= + + + −   Simplify 

3 22i= +  

 

Multiplying the denominator  

(4 )(4 )i i− +     Expand 

2(16 4 4 )i i i− + −    Since 1−=i , 12 −=i  

(16 ( 1))− −   

=17 
 

Combining this we get 
3 22 3 22

17 17 17

i i+
= +   

 

 

Try it Now 

2.  Multiply i43 −  and 2 3i+ . 

 

 

With the interpretation of complex numbers as points in a plane, which can be related to 

the Cartesian coordinate system, you might be starting to guess our next step – to refer to 

this point not by its horizontal and vertical components, but using its polar location, given 

by the distance from the origin and an angle. 

 

 

Polar Form of Complex Numbers 

 

Remember, because the complex plane is analogous to the Cartesian plane that we can 

think of a complex number z x yi= +  as analogous to the Cartesian point (x, y) and recall 

how we converted from (x, y) to polar (r, θ) coordinates in the last section. 

 

Bringing in all of our old rules we remember the following:  

 

r

x
=)cos(θ   )cos(θrx =  

r

y
=)sin(θ   )sin(θry =  

x

y
=)tan(θ   222

ryx =+  

 

 

With this in mind, we can write cos( ) sin( )z x yi r irθ θ= + = + . 

x + yi 

r 

θ 

y 

x 

real 

imaginary 
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Example 7 

Express the complex number i4  using polar coordinates.  

 

On the complex plane, the number 4i is a distance of 4 from 

the origin at an angle of 
2

π
, so 








+







=

2
sin4

2
cos44

ππ
ii   

 

Note that the real part of this complex number is 0.  

 

 

In the 18th century, Leonhard Euler demonstrated a relationship between exponential and 

trigonometric functions that allows the use of complex numbers to greatly simplify some 

trigonometric calculations.  While the proof is beyond the scope of this class, you will 

likely see it in a later calculus class.  

 

 

Polar Form of a Complex Number and Euler’s Formula 

The polar form of a complex number is )sin()cos( θθ irrz += .  

An alternate form, which will be the primary one used, is 
θi

rez =  

 

Euler’s Formula states )sin()cos( θθθ
irrre

i +=  

 

Similar to plotting a point in the polar coordinate system we need r and θ  to find the 

polar form of a complex number. 

 

 

Example 8 

Find the polar form of the complex number -8. 

 

Treating this is a complex number, we can write it as -8+0i. 

 

Plotted in the complex plane, the number -8 is on the negative 

horizontal axis, a distance of 8 from the origin at an angle of π 

from the positive horizontal axis.   

 

The polar form of the number -8 is 
πi

e8 . 

 

Plugging r = 8 and θ = π back into Euler’s formula, we have:  

808)sin(8)cos(88 −=+−=+= iie
i πππ  as desired. 
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Example 9 

Find the polar form of i44 +− . 

 

On the complex plane, this complex number would correspond to the point (-4, 4) on a 

Cartesian plane.  We can find the distance r and angle θ as we did in the last section. 

 
222

yxr +=  
222 4)4( +−=r  

2432 ==r  

 

To find θ, we can use 
r

x
=)cos(θ   

2

2

24

4
)cos( −=

−
=θ  

This is one of known cosine values, and since the point is 

in the second quadrant, we can conclude that 
4

3π
θ = . 

The polar form of this complex number is 
i

e 4

3

24

π

. 

 

 

Example 10 

Find the polar form of i53 −− . 

 

On the complex plane, this complex number would correspond to the point (-3, -5) on a 

Cartesian plane.  First, we find r. 
222

yxr +=  
222 )5()3( −+−=r  

34=r   

 

To find θ, we might use 
x

y
=)tan(θ  

3

5
)tan(

−

−
=θ  

0304.1
3

5
tan

1 =







= −θ  

 

This angle is in the wrong quadrant, so we need to find a second solution.  For tangent, 

we can find that by adding π. 

1720.40304.1 =+= πθ  

 

The polar form of this complex number is i
e

1720.434 . 
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Try it Now 

3.  Write 3 i+  in polar form. 

 

 

Example 11 

Write 
i

e 63

π

 in complex a bi+  form. 

 









+







=

6
sin3

6
cos33 6

ππ
π

ie
i

   Evaluate the trig functions 

2

1
3

2

3
3 ⋅+⋅= i      Simplify 

2

3

2

33
i+=  

 

 

The polar form of a complex number provides a powerful way to compute powers and 

roots of complex numbers by using exponent rules you learned in algebra.  To compute a 

power of a complex number, we: 

1) Convert to polar form 

2) Raise to the power, using exponent rules to simplify 

3) Convert back to a + bi form, if needed 

 

 

Example 12 

Evaluate ( )6
44 i+− . 

 

While we could multiply this number by itself five times, that would be very tedious.  

To compute this more efficiently, we can utilize the polar form of the complex number.  

In an earlier example, we found that 
i

ei 4

3

2444

π

=+− .  Using this, 

 

( )6
44 i+−    Write the complex number in polar form 

6

4

3

24 









=

i

e

π

  Utilize the exponent rule mmm
baab =)(  

( )
6

4

3
6

24 









=

i

e

π

  On the second factor, use the rule mnnm
aa =)(  

( ) 6
4

3
6

24
⋅

=
i

e

π

  Simplify 

i

e 2

9

32768

π

=    
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At this point, we have found the power as a complex number in polar form.  If we want 

the answer in standard a + bi form, we can utilize Euler’s formula. 

 









+







=

2

9
sin32768

2

9
cos3276832768 2

9
ππ

π

ie
i

 

 

Since 
2

9π
 is coterminal with 

2

π
, we can use our special angle knowledge to evaluate 

the sine and cosine. 









+








2

9
sin32768

2

9
cos32768

ππ
i ii 32768)1(32768)0(32768 =+=  

 

We have found that ( ) ii 3276844
6

=+− . 

 

 

The result of the process can be summarized by DeMoivre’s Theorem.  This is a 

shorthand to using exponent rules. 

 

 

DeMoivre’s Theorem 

If ( ) ( )( )cos sinz r iθ θ= + , then for any integer n, ( ) ( )( )cos sinn n
z r n i nθ θ= +  

 

 

We omit the proof, but note we can easily verify it holds in one case using Example 12: 

( ) iiii 32768
2

9
sin

2

9
cos32768

4

3
6sin

4

3
6cos24)44(

6
6 =
















+







=
















⋅+








⋅=+−

ππππ

 

 

Example 13 

Evaluate i9 . 

 

To evaluate the square root of a complex number, we can first note that the square root 

is the same as having an exponent of 
2

1
:  

2/1)9(9 ii = . 

 

To evaluate the power, we first write the complex number in polar form.  Since 9i has 

no real part, we know that this value would be plotted along the vertical axis, a distance 

of 9 from the origin at an angle of 
2

π
.  This gives the polar form:  

i

ei 299

π

= . 
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2/1)9(9 ii =    Use the polar form 

=

2/1

29 








 i

e

π

   Use exponent rules to simplify 

2/1

22/19 









=

i

e

π

 

2

1

22/1
9

⋅

=
i

e

π

   Simplify 

i

e 43

π

=    Rewrite using Euler’s formula if desired 









+







=

4
sin3

4
cos3

ππ
i  Evaluate the sine and cosine 

2

2
3

2

2
3 i+=  

 

Using the polar form, we were able to find a square root of a complex number. 

ii
2

23

2

23
9 +=  

 

Alternatively, using DeMoivre’s Theorem we could write  
2/1

29 








 i

e

π

= 
1/2 1 1

9 cos sin 3 cos sin
2 2 2 2 4 4

i i
π π π π          

⋅ + ⋅ = +          
          

 and simplify 

 

 

Try it Now 

4.  Evaluate ( )
6

3 i+  using polar form. 

 

 

You may remember that equations like 42 =x have two solutions, 2 and -2 in this case, 

though the square root 4  only gives one of those solutions.  Likewise, the square root 

we found in Example 11 is only one of two complex numbers whose square is 9i.  

Similarly, the equation 
3 8z =  would have three solutions where only one is given by the 

cube root.  In this case, however, only one of those solutions, z = 2, is a real value.  To 

find the others, we can use the fact that complex numbers have multiple representations 

in polar form. 
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Example 14 

Find all complex solutions to 
3 8z = . 

 

Since we are trying to solve 
3 8z = , we can solve for z as 

1/38z = .  Certainly one of 

these solutions is the basic cube root, giving z = 2.  To find others, we can turn to the 

polar representation of 8.   

 

Since 8 is a real number, is would sit in the complex plane on the horizontal axis at an 

angle of 0, giving the polar form 
i

e
08 .  Taking the 1/3 power of this gives the real 

solution: 

( ) ( ) 2)0sin(2)0cos(2288 03/103/13/10 =+=== ieee
ii  

 

However, since the angle 2π is coterminal with the angle of 0, we could also represent 

the number 8 as 
i

e
π28 .  Taking the 1/3 power of this gives a first complex solution: 

( ) ( ) iiieee
i

ii
31

2

3
2

2

1
2

3

2
sin2

3

2
cos2288 3

2
3/123/13/12 +−=










+







−=








+







===

ππ
π

ππ

 

For the third root, we use the angle of 4π, which is also coterminal with an angle of 0. 

8e4πi( )
1/3

= 81/3 e4πi( )
1/3

= 2e
4π

3
i

= 2cos
4π

3









+ i2sin

4π

3









= 2 −

1

2









+ i2 −

3

2









= −1− 3i

Altogether, we found all three complex solutions to 
3 8z = , 

2, 1 3 , 1 3z i i= − + − −  

 

Graphed, these three numbers would be equally spaced on a 

circle about the origin at a radius of 2.  

 

 

 

 

 

 

Important Topics of This Section 

Complex numbers 

Imaginary numbers 

Plotting points in the complex coordinate system 

Basic operations with complex numbers  

Euler’s Formula 

DeMoivre’s Theorem 

Finding complex solutions to equations 
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Try it Now Answers 

1. (3 4 ) (2 5 ) 1 9i i i− − + = −   

2. (3 4 )(2 3 ) 18i i i− + = +   

3. 3 i+  would correspond with the point ( )3,1  in the first quadrant. 

2
23 1 4 2r = + = =  

( )
1

sin
2

θ = , so 
6

π
θ =  

3 i+  in polar form is 62
i

e
π

 

4. ( )
6

3 i+ = ( )
6

662 2 64cos( ) 64sin( ) 64
i

ie e i
π

π π π= = + = −  
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Section 8.3 Exercises 

Simplify each expression to a single complex number. 

1. 9−    2. 16−    3. 6 24− −    

4. 3 75− −    5. 
2 12

2

+ −
   6. 

4 20

2

+ −
 

 

Simplify each expression to a single complex number. 

7. ( )3 2 (5 3 )i i+ + −     8. ( ) ( )2 4 1 6i i− − + +  

9. ( )5 3 (6 )i i− + − −     10. ( )2 3 (3 2 )i i− − +  

11. ( )2 3 (4 )i i+     12. ( )5 2 (3 )i i−  

13. ( )6 2 (5)i−     14. ( )( )2 4 8i− +  

15. ( )2 3 (4 )i i+ −     16. ( )1 2 ( 2 3 )i i− + − +  

17. ( )4 2 (4 2 )i i− +     18. ( )( )3 4 3 4i i+ −  

19. 
3 4

2

i+
     20. 

6 2

3

i−
 

21. 
5 3

2

i

i

− +
     22. 

6 4i

i

+
 

23. 
2 3

4 3

i

i

−

+
     24. 

3 4

2

i

i

+

−
 

25. 
6

i    26. 
11
i    27. 

17
i    28. 

24
i  

 

Rewrite each complex number from polar form into a bi+  form. 

29. 
23 i

e   30. 
44 i

e   31. 66
i

e

π

  32. 38
i

e

π

   

33. 
5

43
i

e

π

  34. 
7

45
i

e

π

 

 

Rewrite each complex number into polar 
i

re
θ

 form. 

35. 6    36. 8−    37. 4i−   38. 6i    

39. 2 2i+   40. 4 4i+   41. 3 3i− +   42. 4 4i− −   

43. 5 3i+   44. 4 7i+   45. 3 i− +   46. 2 3i− +  

47. 1 4i− −   48. 3 6i− −   49. 5 i−   50. 1 3i−   
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Compute each of the following, leaving the result in polar 
i

re
θ

 form. 

51. 6 43 2  
i i

e e

π π  
  

  
  52. 

2 5

3 32 4
i i

e e

π π  
  
  

   53. 

3

4

6

6

3

i

i

e

e

π

π
   

54. 

4

3

2

24

6

i

i

e

e

π

π
   55. 

10

42
i

e
π 

 
 

   56. 

4

63
i

e

π 
 
 

    

57. 

2

316  
i

e

π

   58.

3

29
i

e

π

 

 

Compute each of the following, simplifying the result into a bi+  form. 

59. ( )
8

2 2i+    60. ( )
6

4 4i+    61. 3 3i− +    

62. 4 4i− −    63. 3 5 3i+    64. 4 4 7i+  

 

Solve each of the following equations for all complex solutions. 

65. 
5 2z =   66. 

7 3z =   67. 
6 1z =   68. 

8 1z =  



540  Chapter 8 

 

Section 8.4 Vectors 

 

A woman leaves home, walks 3 miles north, then 2 miles southeast.  How far is she from 

home, and in which direction would she need to walk to return home?  How far has she 

walked by the time she gets home? 

 

This question may seem familiar – indeed we did a similar problem with a boat in the 

first section of this chapter.  In that section, we solved the problem using triangles.  In 

this section, we will investigate another way to approach the problem using vectors, a 

geometric entity that indicates both a distance and a direction.  We will begin our 

investigation using a purely geometric view of vectors. 

 

A Geometric View of Vectors 

 

 

Vector 

A vector is an object that has both a length and a direction. 

 

Geometrically, a vector can be represented by an arrow that has a fixed length and 

indicates a direction.  If, starting at the point A, a vector, which means “carrier” in 

Latin, moves toward point B, we write AB  to represent the vector. 

 

A vector may also be indicated using a single letter in boldface type, like u, or by 

capping the letter representing the vector with an arrow, like u
�

. 

 

 

Example 1 

Draw a vector that represents the movement from the point P(-1, 2) to the point Q(3,3) 

 

By drawing an arrow from the first point to the second, 

we can construct a vector PQ .  

 

 

 

 

 

 

Try it Now 

1. Draw a vector, , that travels from the origin to the point (3, 5). 

 

 

v
�
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Using this geometric representation of vectors, we can visualize the addition and scaling 

of vectors.   

 

To add vectors, we envision a sum of two movements.  To find vu
��

+ , we first draw the 

vector u
�

, then from the end of u
�

 we drawn the vector v
�

.  This corresponds to the notion 

that first we move along the first vector, and then from that end position we move along 

the second vector.  The sum vu
��

+  is the new vector that travels directly from the 

beginning of u
�

 to the end of v
�

in a straight path. 

 

 

Adding Vectors Geometrically 

To add vectors geometrically, draw v
�

 starting from the end of  

.  The sum vu
��

+  is the vector from the beginning of  to the  

end of v
�

. 

 

 

 

 

Example 2 

Given the two vectors shown below, draw  

 

 

 

 

 

 

We draw v
�

 starting from the end of , then draw in the sum 

vu
��

+  from the beginning of  to the end of v
�

. 

 

 

 

Notice that path of the walking woman from the beginning of the section could be 

visualized as the sum of two vectors.  The resulting sum vector would indicate her end 

position relative to home. 

 

Although vectors can exist anywhere in the plane, if we put the starting point at the origin 

it is easy to understand its size and direction relative to other vectors. 

 

To scale vectors by a constant, such as u
�

3 , we can imagine adding uuu
���

++ .  The result 

will be a vector three times as long in the same direction as the original vector.  If we 

were to scale a vector by a negative number, such as u
�

− , we can envision this as the 

opposite of u
�

; the vector so that )( uu
��

−+  returns us to the starting point.  This vector 

u
�

−  would point in the opposite direction as u
�

 but have the same length. 

 

u
�

u
�

vu
��

+

u
�

u
�

u
�

 

v
�

 

vu
��

+  

u
�

 
v
�

 

u
�

 

v
�

 

vu
��

+  
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Another way to think about scaling a vector is to maintain its direction and multiply its 

length by a constant, so that u
�

3 would point in the same direction but will be 3 times as 

long. 

 

 

Scaling a Vector Geometrically 

To geometrically scale a vector by a constant, scale the length of the vector by the 

constant. 

 

Scaling a vector by a negative constant will reverse the direction of the vector. 

 

 

Example 3 

Given the vector shown, draw u
�

3 , u
�

− , and u
�

2− . 

 

 

The vector u
�

3  will be three times as long.  The vector u
�

−  will have the same length 

but point in the opposite direction.  The vector  will point in the opposite direction 

and be twice as long. 

 

 

 

 

 

 

 

 

By combining scaling and addition, we can find the difference between vectors 

geometrically as well, since )( vuvu
����

−+=− . 

 

 

Example 4 

Given the vectors shown, draw  

 

 

 

 

 

 

From the end of u
�

 we draw , then draw in the result.  

 

 

 

 

 

u
�

2−

vu
��

−

v
�

−

u
�

 

u
�

3  
u
�

−  

u
�

2−  

u
�

 

v
�

−  

vu
��

−  

u
�

 
v
�
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Notice that the sum and difference of two vectors are the two 

diagonals of a parallelogram with the vectors u
�

 and  as edges. 

 

 

 

 

Try it Now 

2. Using vector v
�

from Try it Now #1, draw . 

 

 

Component Form of Vectors 

 

While the geometric interpretation of vectors gives us an intuitive understanding of 

vectors, it does not provide us a convenient way to do calculations.  

For that, we need a handy way to represent vectors.  Since a vector 

involves a length and direction, it would be logical to want to represent 

a vector using a length and an angle θ, usually measured from standard 

position.   

 

 

Magnitude and Direction of a Vector 

A vector u
�

 can be described by its magnitude, or length, u
�

, and an angle θ. 

A vector with length 1 is called unit vector. 

 

 

While this is very reasonable, and a common way to describe vectors, it is often more 

convenient for calculations to represent a vector by horizontal and vertical components. 

 

 

Component Form of a Vector 

The component form of a vector represents the vector using two components.  

yxu ,=
�

 indicates the vector represents a displacement of x units horizontally and y 

units vertically.   

 

Notice how we can see the magnitude of the vector as the length of the hypotenuse of 

a right triangle, or in polar form as the radius, r. 

 

 

 

v
�

v
�

2−

u
�

 θ 

x

y 

u
�

 

v
�

 
vu
��

−  

u
�

 
v
�

 

vu
��

+  

u
�

 
θ 
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Alternate Notation for Vector Components 

Sometimes you may see vectors written as the combination of unit vectors  and j
�

, 

where  i
�

 points the right and j
�

 points up.  In other words, 0,1=i
�

 and . 

 

In this notation, the vector 4,3 −=u
�

 would be written as jiu
��

�

43 −=  since both 

indicate a displacement of 3 units to the right, and 4 units down. 

 

 

While it can be convenient to think of the vector yxu ,=
�

 as an arrow from the origin to 

the point (x, y), be sure to remember that most vectors can be situated anywhere in the 

plane, and simply indicate a displacement (change in position) rather than a position. 

It is common to need to convert from a magnitude and angle to the component form of 

the vector and vice versa.  Happily, this process is identical to converting from polar 

coordinates to Cartesian coordinates, or from the polar form of complex numbers to the 

a+bi form. 

 

 

Example 5 

Find the component form of a vector with length 7 at an angle of 135 degrees. 

 

Using the conversion formulas )cos(θrx =  and )sin(θry = , we can find the 

components 

2

27
)135cos(7 −=°=x  

2

27
)135sin(7 =°=y  

 

This vector can be written in component form as 
2

27
,

2

27
− . 

 

 

Example 6 

Find the magnitude and angle θ  representing the vector 2,3 −=u
�

. 

 

First we can find the magnitude by remembering the relationship between x, y and r: 

13)2(3 222 =−+=r  

13=r  

 

Second we can find the angle.  Using the tangent, 

i
�

1,0=j
�
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3

2
)tan(

−
=θ  

°−≈







−= − 69.33

3

2
tan 1θ , or written as a coterminal positive angle, 326.31°.  This 

angle is in the 4th quadrant as desired. 

 

 

Try it Now 

3. Using vector v
�

from Try it Now #1, the vector that travels from the origin to the point 

(3, 5), find the components, magnitude and angle θ  that represent this vector. 

 

 

In addition to representing distance movements, vectors are commonly used in physics 

and engineering to represent any quantity that has both direction and magnitude, 

including velocities and forces.  

 

 

Example 7 

An object is launched with initial velocity 200 meters per second at an angle of 30 

degrees.  Find the initial horizontal and vertical velocities.  

 

By viewing the initial velocity as a vector, we can resolve the vector into horizontal and 

vertical components.     

205.173
2

3
200)30cos(200 ≈⋅=°=x  m/sec 

100
2

1
200)30sin(200 =⋅=°=y  m/sec 

 

This tells us that, absent wind resistance, the object will travel horizontally at about 173 

meters each second.  Gravity will cause the vertical velocity to change over time – we’ll 

leave a discussion of that to physics or calculus classes. 

 

 

Adding and Scaling Vectors in Component Form 

 

To add vectors in component form, we can simply add the corresponding components.  

To scale a vector by a constant, we scale each component by that constant. 

 

 

 

 

 

 

 

200 m/s 

30° 

173 m/s 

100 m/s 
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Combining Vectors in Component Form 

To add, subtract, or scale vectors in component form 

If 1 2,u u u=
ρ

, 1 2,v v v=
ρ

, and c is any constant, then 

2211 , vuvuvu ++=+
��

 

2211 , vuvuvu −−=−
��

 

21 ,cucuuc =
�

 

 

 

Example 8 

Given 2,3 −=u
�

 and 4,1−=v
�

, find a new vector vuw
���

23 −=  

 

Using the vectors given, 

vuw
���

23 −=  

    4,122,33 −−−=   Scale each vector 

    8,26,9 −−−=    Subtract corresponding components 

    14,11 −=  

 

 

By representing vectors in component form, we can find the resulting displacement 

vector after a multitude of movements without needing to draw a lot of complicated non-

right triangles.  For a simple example, we revisit the problem from the opening of the 

section.  The general procedure we will follow is: 

1) Convert vectors to component form 

2) Add the components of the vectors  

3) Convert back to length and direction if needed to suit the context of the question 

 

 

Example 9 

A woman leaves home, walks 3 miles north, then 2 miles southeast.  How far is she 

from home, and what direction would she need to walk to return home?  How far has 

she walked by the time she gets home? 

 

Let’s begin by understanding the question in a little more depth.  

When we use vectors to describe a traveling direction, we often 

position things so north points in the upward direction, east 

points to the right, and so on, as pictured here. 

 

Consequently, travelling NW, SW, NE or SE, means we are 

travelling through the quadrant bordered by the given directions 

at a 45 degree angle. 

With this in mind, we begin by converting each vector to components.   

N 
NE 

E 

SE 
S 

SW 

W 

NW 
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A walk 3 miles north would, in components, be 3,0 .   

 

A walk of 2 miles southeast would be at an angle of 45° South of East.  Measuring from 

standard position the angle would be 315°.   

 

Converting to components, we choose to use the standard position angle so that we do 

not have to worry about whether the signs are negative or positive; they will work out 

automatically. 

414.1,414.1
2

2
2,

2

2
2)315sin(2),315cos(2 −≈

−
⋅⋅=°°  

 

Adding these vectors gives the sum of the movements in component form 

586.1,414.1414.1,414.13,0 =−+  

 

To find how far she is from home and the direction she would need to walk to return 

home, we could find the magnitude and angle of this vector. 

Length = 125.2586.1414.1 22 =+  

 

To find the angle, we can use the tangent 

414.1

586.1
)tan( =θ  

°=







= − 273.48

414.1

586.1
tan 1θ  north of east 

 

Of course, this is the angle from her starting point to her ending point.  To return home, 

she would need to head the opposite direction, which we could either describe as 

180°+48.273° = 228.273° measured in standard position, or as 48.273° south of west (or 

41.727° west of south).   

 

She has walked a total distance of 3 + 2 + 2.125 = 7.125 miles.  

 

Keep in mind that total distance travelled is not the same as the length of the resulting 

displacement vector or the “return” vector. 

 

 

Try it Now 

4. In a scavenger hunt, directions are given to find a buried treasure.  From a starting 

point at a flag pole you must walk 30 feet east, turn 30 degrees to the north and travel 

50 feet, and then turn due south and travel 75 feet.  Sketch a picture of these vectors, 

find their components, and calculate how far and in what direction you must travel to 

go directly to the treasure from the flag pole without following the map. 

3 

2 
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While using vectors is not much faster than using law of cosines with only two 

movements, when combining three or more movements, forces, or other vector 

quantities, using vectors quickly becomes much more efficient than trying to use 

triangles. 

 

 

Example 10 

Three forces are acting on an object as shown below, each measured in Newtons (N).  

What force must be exerted to keep the object in equilibrium (where the sum of the 

forces is zero)? 

   
 

We start by resolving each vector into components. 

 

The first vector with magnitude 6 Newtons at an angle of 30 degrees will have 

components 

3,33
2

1
6,

2

3
6)30sin(6),30cos(6 =⋅⋅=°°  

 

The second vector is only in the horizontal direction, so can be written as 0,7− . 

 

The third vector with magnitude 4 Newtons at an angle of 300 degrees will have 

components 

32,2
2

3
4,

2

1
4)300sin(4),300cos(4 −=

−
⋅⋅=°°  

 

To keep the object in equilibrium, we need to find a force vector yx,  so the sum of 

the four vectors is the zero vector, 0,0 .   

3 3, 3 7, 0 2, 2 3 , 0, 0x y+ − + − + =  Add component-wise 

3 3 7 2, 3 0 2 3 , 0, 0x y− + + − + =   Simplify 

3 3 5, 3 2 3 , 0, 0x y− − + =    Solve 

, 0, 0 3 3 5, 3 2 3x y = − − −  

, 3 3 5, 3 2 3 0.196, 0.464x y = − + − + ≈ −  

 

30° 

6 N 

7 N 

4 N 

300° 
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This vector gives in components the force that would need to be applied to keep the 

object in equilibrium.  If desired, we could find the magnitude of this force and 

direction it would need to be applied in. 

Magnitude = 504.0464.0)196.0( 22 =+− N 

 

Angle: 

196.0

464.0
)tan(

−
=θ  

°−=








−
= − 089.67

196.0

464.0
tan 1θ .   

 

This is in the wrong quadrant, so we adjust by finding the next angle with the same 

tangent value by adding a full period of tangent: 

°=°+°−= 911.112180089.67θ  

 

To keep the object in equilibrium, a force of 0.504 Newtons would need to be applied at 

an angle of 112.911°. 

 

 

Important Topics of This Section 

Vectors, magnitude (length) & direction 

Addition of vectors 

Scaling of vectors 

Components of vectors 

Vectors as velocity 

Vectors as forces 

Adding & Scaling vectors in component form 

Total distance travelled vs. total displacement 

 

 

Try it Now Answers 

1     2.  
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2. °=







=== − 04.59

3

5
tan34magnitude5,3 1θv

�

 

 

3.  

 

 

 

 

 

 

 

 

50,301.7375)30sin(50),30cos(5030

75,0)30sin(50),30cos(500,30 321

−=−°°+=

−=°°==

fv

vvv
�

���

 

Magnitude = 88.73 feet at an angle of 34.3° south of east.

75 ft 

50 ft 
30 ft 
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Section 8.4 Exercises 

 

Write the vector shown in component form. 

1.   2.  

 

Given the vectors shown, sketch vu
��

+ , vu
��

− , and u
�

2 . 

3.   4.  

 

Write each vector below as a combination of the vectors u
�

 and v
�

 from question #3. 

5.   6.  

 

From the given magnitude and direction in standard position, write the vector in 

component form. 

7. Magnitude: 6, Direction: 45°  8. Magnitude: 10, Direction: 120°   

9. Magnitude: 8, Direction: 220°  10. Magnitude: 7, Direction: 305° 

 

Find the magnitude and direction of the vector. 

11. 4,0   12. 0,3−   13. 5,6   14. 7,3    

15. 1,2−   16. 13,10−   17. 5,2 −   18. 4,8 −    

19. 6,4 −−   20. 9,1−   

 

Using the vectors given, compute vu
��

+ , vu
��

− , and vu
��

32 − . 

21. 5,1, 3,2 =−= vu
��

   22. 1,2, 4,3 −=−= vu
��
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23. A woman leaves home and walks 3 miles west, then 2 miles southwest.  How far 

from home is she, and in what direction must she walk to head directly home? 

 

24. A boat leaves the marina and sails 6 miles north, then 2 miles northeast.  How far 

from the marina is the boat, and in what direction must it sail to head directly back to 

the marina? 

 

25. A person starts walking from home and walks 4 miles east, 2 miles southeast, 5 miles 

south, 4 miles southwest, and 2 miles east.  How far have they walked?  If they 

walked straight home, how far would they have to walk? 

 

26. A person starts walking from home and walks 4 miles east, 7 miles southeast, 6 miles 

south, 5 miles southwest, and 3 miles east.  How far have they walked?  If they 

walked straight home, how far would they have to walk? 

 

27. Three forces act on an object: 7,4,1,0, 5,8 321 −==−−= FFF
���

.  Find the net 

force acting on the object. 

 

28. Three forces act on an object: 7,0,3,8, 5,2 321 −=== FFF
���

.  Find the net force 

acting on the object. 

 

29. A person starts walking from home and walks 3 miles at 20° north of west, then 5 

miles at 10° west of south, then 4 miles at 15° north of east.  If they walked straight 

home, how far would they have to walk, and in what direction? 

 

30. A person starts walking from home and walks 6 miles at 40° north of east, then 2 

miles at 15° east of south, then 5 miles at 30° south of west.  If they walked straight 

home, how far would they have to walk, and in what direction? 

 

31. An airplane is heading north at an airspeed of 600 km/hr, but there is a wind blowing 

from the southwest at 80 km/hr.  How many degrees off course will the plane end up 

flying, and what is the plane’s speed relative to the ground? 

 

32. An airplane is heading north at an airspeed of 500 km/hr, but there is a wind blowing 

from the northwest at 50 km/hr.  How many degrees off course will the plane end up 

flying, and what is the plane’s speed relative to the ground? 

 

33. An airplane needs to head due north, but there is a wind blowing from the southwest 

at 60 km/hr.  The plane flies with an airspeed of 550 km/hr.  To end up flying due 

north, the pilot will need to fly the plane how many degrees west of north? 
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34. An airplane needs to head due north, but there is a wind blowing from the northwest 

at 80 km/hr.  The plane flies with an airspeed of 500 km/hr.  To end up flying due 

north, the pilot will need to fly the plane how many degrees west of north? 

 

35. As part of a video game, the point (5, 7) is rotated counterclockwise about the origin 

through an angle of 35 degrees.  Find the new coordinates of this point. 

 

36. As part of a video game, the point (7, 3) is rotated counterclockwise about the origin 

through an angle of 40 degrees.  Find the new coordinates of this point. 

 

37. Two children are throwing a ball back and forth straight across the back seat of a car. 

The ball is being thrown 10 mph relative to the car, and the car is travelling 25 mph 

down the road.  If one child doesn't catch the ball and it flies out the window, in what 

direction does the ball fly (ignoring wind resistance)? 

 

38. Two children are throwing a ball back and forth straight across the back seat of a car. 

The ball is being thrown 8 mph relative to the car, and the car is travelling 45 mph 

down the road.  If one child doesn't catch the ball and it flies out the window, in what 

direction does the ball fly (ignoring wind resistance)? 
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Section 8.5 Dot Product 

 

Now that we can add, subtract, and scale vectors, you might be wondering whether we 

can multiply vectors.  It turns out there are two different ways to multiply vectors, one 

which results in a number, and one which results in a vector.  In this section, we'll focus 

on the first, called the dot product or scalar product, since it produces a single numeric 

value (a scalar).  We'll begin with some motivation. 

 

In physics, we often want to know how much of a force is acting in the direction of 

motion.  To determine this, we need to know the angle between direction of force and the 

direction of motion.  Likewise, in computer graphics, the lighting system determines how 

bright a triangle on the object should be based on the angle between object and the 

direction of the light.  In both applications, we're interested in the angle between the 

vectors, so let's start there. 

 

Suppose we have two vectors, 21 , aaa =
�

 and 21 ,bbb =
�

.   Using our polar coordinate 

conversions, we could write )sin(),cos( αα aaa
���

=  and )sin(),cos( ββ bbb
���

= .  

Now, if we knew the angles α and β, we wouldn't have much work to do - 

the angle between the vectors would be βαθ −= .  While we certainly 

could use some inverse tangents to find the two angles, it would be great 

if we could find a way to determine the angle between the vector just 

from the vector components. 

 

To help us manipulate βαθ −= , we might try introducing a trigonometric function: 

( ) ( )βαθ −= coscos     

 

Now we can apply the difference of angles identity 

( ) ( ) ( ) ( ) ( )βαβαθ sinsincoscoscos +=  

 

Now )cos(1 αaa
�

= , so 
a

a
�

1)cos( =α , and likewise for the other three components.  

Making those substitutions, 

( )
ba

baba

b

b

a

a

b

b

a

a
�

�

����

22112211cos
+

=+=θ    

( ) 2211cos bababa +=θ
�

�

 

 

Notice the expression on the right is a very simple calculation based on the components 

of the vectors.  It comes up so frequently we define it to be the dot product of the two 

vectors, notated by a dot.  This gives us two definitions of the dot product. 

 

β 

θ 

α 
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Definitions of the Dot Product 

2211 bababa +=⋅
�

�

  Component definition 

( )θcosbaba
�

�

�

�

=⋅   Geometric definition 

 

 

The first definition, 
2211 bababa +=⋅

�

�

, gives us a simple way to calculate the dot product 

from components.  The second definition, ( )θcosbaba
�

�

�

�

=⋅ , gives us a geometric 

interpretation of the dot product, and gives us a way to find the angle between two 

vectors, as we desired. 

 

 

Example 1 

Find the dot product 1,52,3 ⋅− . 

 

Using the first definition, we can calculate the dot product by multiplying the x 

components and adding that to the product of the y components. 

 

13215)1)(2()5)(3(1,52,3 =−=−+=⋅−  

 

 

Example 2 

Find the dot product of the two vectors shown. 

 

We can immediately see that the magnitudes of the 

two vectors are 7 and 6.  We can quickly calculate 

that the angle between the vectors is 150°.  Using the geometric definition of the dot 

product, 

( ) 321
2

3
42)150cos()7)(6(cos =⋅=°==⋅ θbaba

�

�

�

�

. 

 

 

Try it Now  

1.  Calculate the dot product  6,23,7 −−⋅−  

 

 

Now we can return to our goal of finding the angle between vectors. 

 

 

 

 

30° 

6  

7  
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Example 3 

An object is being pulled up a ramp in the direction 1,5  by a 

rope pulling in the direction 2,4 .  What is the angle between 

the rope and the ramp? 

 

Using the component form, we can easily calculate the dot product. 

22220)2)(1()4)(5(2,41,5 =+=+=⋅=⋅ ba
�

�

 

 

We can also calculate the magnitude of each vector. 

2615 22 =+=a
�

,   2024 22 =+=b
�

 

 

Substituting these values into the geometric definition, we can solve for the angle 

between the vectors. 

( )θcosbaba
�

�

�

�

=⋅  

( )θcos202622 =  

°≈







= − 255.15

2026

22
cos 1θ . 

 

 

Example 4 

Calculate the angle between the vectors 4,6  and 3,2− . 

 

Calculating the dot product, 01212)3)(4()2)(6(3,24,6 =+−=+−=−⋅  

 

We don't even need to calculate the magnitudes in this case since the dot product is 0. 

( )θcosbaba
�

�

�

�

=⋅  

( )θcos0 ba
�

�

=  

( ) °==













= −− 900cos

0
cos 11

ba
�

�

θ  

 

 

With the dot product equaling zero, as in the last example, the angle between the vectors 

will always be 90°, indicating that the vectors are orthogonal, a more general way of 

saying perpendicular.  This gives us a quick way to check if vectors are orthogonal.  

Also, if the dot product is positive, then the inside of the inverse cosine will be positive, 

giving an angle less than 90°.  A negative dot product will then lead to an angle larger 

than 90° 
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Sign of the Dot Product 

If the dot product is: 

Zero  The vectors are orthogonal (perpendicular). 

Positive The angle between the vectors is less than 90° 

Negative The angle between the vectors is greater than 90° 

 

 

Try it Now  

2.  Are the vectors  3,7−  and 6,2 −−  orthogonal?  If not, find the angle between them. 

 

 

Projections 

 

In addition to finding the angle between vectors, sometimes we 

want to know how much one vector points in the direction of 

another.  For example, when pulling an object up a ramp, we 

might want to know how much of the force is exerted in the direction of motion.  To 

determine this we can use the idea of a projection. 

 
 

In the picture above, u
�

 is a projection of a
�

 onto b
�

.  In other words, it is the portion of 

a
�

 that points in the same direction as b
�

.   

 

To find the length of u
�

, we could notice that it is one side of a right triangle.  If we 

define θ to be the angle between a
�

 and u
�

, then 
a

u
�

�

=)cos(θ ,  so  ua
��

=)cos(θ .   

 

While we could find the angle between the vectors to determine this magnitude, we could 

skip some steps by using the dot product directly.  Since )cos(θbaba
�

�

�

�

=⋅ , 

b

ba
a �

�

�

� ⋅
=)cos(θ .  Using this, we can rewrite )cos(θau

��

=  as 
b

ba
u �

�

�

� ⋅
= .  This gives us 

the length of the projection, sometimes denoted as 
b

ba
uacomp

b
�

�

�

��

�

⋅
== . 

 

a
�

a
�

b
�

 b
�

 

u
�

v
�
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To find the vector u
�

 itself, we could first scale b
�

 to a unit vector with length 1: 
b

b
�

�

.  

Multiplying this by the length of the projection will give a vector in the direction of b
�

 

but with the correct length. 

b

b

ba

b

b

b

ba

b

b
uaproj

b

�

�

�

�

�

�

�

�

�

�

�

��

�
















⋅

=













⋅

==
2

 

 

Projection Vector 

The projection of vector a
�

 onto b
�

 is b

b

ba
aproj

b

�

�

�

�

�

�
















⋅

=
2

 

The magnitude of the projection is 
b

ba
acomp

b
�

�

�

�

�

⋅
=  

 

 

Example 5 

Find the projection of the vector 2,3 −  onto the vector 6,8 . 

 

We will need to know the dot product of the vectors and the 

magnitude of the vector we are projecting onto. 

121224)6)(2()8)(3(6,82,3 =−=−+=⋅−  

101003664686,8 22 ==+=+=  

 

The magnitude of the projection will be 
5

6

10

12

6,8

6,82,3
==

⋅−
. 

 

To find the projection vector itself, we would multiply that magnitude by 6,8  scaled 

to a unit vector. 

25

18
,

25

24

50

36
,

50

48
6,8

50

6

10

6,8

5

6

6,8

6,8

5

6
==== . 

 

Based on the sketch above, this answer seems reasonable. 
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Try it Now 

3. Find the component of the vector  4,3−  that is orthogonal to the vector 4,8−  

 

 

Work 

 

In physics, when a constant force causes an object to move, the mechanical work done 

by that force is the product of the force and the distance the object is moved.  However, 

we only consider the portion of force that is acting in the direction of motion. 

 

This is simply the magnitude of the projection of the force 

vector onto the distance vector, 
d

dF
�

��

⋅
.  The work done is the 

product of that component of force times the distance moved, 

the magnitude of the distance vector. 

dFd
d

dF
Work

���

�

��

⋅=













⋅

=  

 

It turns out that work is simply the dot product of the force vector and the distance vector. 

 

 

Work 

When a force F
�

 causes an object to move some distance d
�

, the work done is 

dFWork
��

⋅=  

 

 

Example 6 

A cart is pulled 20 feet by applying a force of 30 

pounds on a rope held at a 30 degree angle.  How 

much work is done? 

 

Since work is simply the dot product, we can take 

advantage of the geometric definition of the dot product in this case. 

615.519)30cos()20)(30()cos( ≈°=⋅=⋅= θdFdFWork
����

ft-lbs. 

 

 

Try it Now 

4.  Find the work down moving an object from the point (1, 5) to (9, 14) by the force 

vector 2,3=F
�

  

30° 

30 pounds  

20 feet 

F
�

d
�

 

u
�
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Important Topics of This Section 

Calculate Dot Product 

   Using component definition 

   Using geometric definition 

Find the angle between two vectors 

Sign of the dot product 

Projections 

Work 

 

 

Try it Now Answers 

1.  41814)6)(3()2)(7(6,23,7 −=−=−+−−=−−⋅−  

 

2.  In the previous Try it Now, we found the dot product was -4, so the vectors are not 

orthogonal.  The magnitudes of the vectors are ( ) 5837 22
=+−  and 

( ) 4062 22
=+− .  The angle between the vectors will be 

°≈






 −
= − 764.94

4058

4
cos 1θ  

 

3. We want to find the component of 4,3−  that is orthogonal to the 

vector 4,8− .  In the picture to the right, that component is vector 

v
�

.  Notice that avu
���

=+ , so if we can find the projection vector, 

we can find v
�

. 

( )
2,44,8

80

40
4,8

4)8(

4,84,3
2

22
2

−=−=−














+−

−⋅−
=
















⋅

== b

b

ba
aproju

b

�

�

�

�

��

� . 

 

Now we can solve avu
���

=+  for v
�

.   

2,12,44,3 =−−−=−= uav
���

 

 

4. The distance vector is 9,8514,19 =−− .   

The work is the dot product:  4218249,82,3 =+=⋅=⋅= dFWork
��

a
�

 
b
�

u
�

 

v
�
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Section 8.5 Exercises 

 

Two vectors are described by their magnitude and direction in standard position.  Find 

the dot product of the vectors. 

 

1. Magnitude: 6, Direction: 45°;  Magnitude: 10, Direction: 120°   

2. Magnitude: 8, Direction: 220°;  Magnitude: 7, Direction: 305° 

 

Find the dot product of each pair of vectors.   

3. 4,0 ; 0,3−    4. 5,6 ; 7,3    

5. 1,2− ; 13,10−    6. 5,2 − ; 4,8 −  

 

Find the angle between the vectors 

7. 4,0 ; 0,3−    8. 5,6 ; 7,3  

9. 4,2 ; 3,1 −    10. 1,4− ; 2,8 −  

11. 2,4 ; 4,8    12. 3,5 ; 10,6−   

 

13.  Find a value for k so that  7,2  and 4,k  will be orthogonal. 

14.  Find a value for k so that  5,3−  and k,2  will be orthogonal. 

 

15.  Find the magnitude of the projection of 4,8 −  onto 3,1 − . 

16.  Find the magnitude of the projection of 7,2  onto 5,4 . 

17.  Find the projection of 10,6−  onto 3,1 − . 

18.  Find the projection of 4,0  onto 7,3 . 

 

19.  A scientist needs to determine the angle of reflection when a laser hits a mirror.  The 

picture shows the vector representing the laser beam, and a vector that is orthogonal 

to the mirror.  Find the acute angle between these, the angle of reflection. 

 

20. A triangle has coordinates at A: (1,4), B: (2,7), and C: (4,2).  Find the angle at point B. 

 

21.  A boat is trapped behind a log lying parallel to the 

dock.  It only requires 10 pounds of force to pull 

the boat directly towards you, but because of the 

log, you'll have to pull at a 45° angle.  How much 

force will you have to pull with?  (We're going to 

assume that the log is very slimy and doesn't 

contribute any additional resistance.) 
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22.  A large boulder needs to be dragged to a new position.  

If pulled directly horizontally, the boulder would 

require 400 pounds of pulling force to move.  We 

need to pull the boulder using a rope tied to the back 

of a large truck, forming a 15° angle from the ground.  How much force will the 

truck need to pull with? 

 

23.  Find the work done against gravity by pushing a 20 pound cart 10 feet up a ramp that 

is 10° above horizontal.  Assume there is no friction, so the only force is 20 pounds 

downwards due to gravity.   

 

24.  Find the work done against gravity by pushing a 30 pound cart 15 feet up a ramp that 

is 8° above horizontal.  Assume there is no friction, so the only force is 30 pounds 

downwards due to gravity.   

 

25.  An object is pulled to the top of a 40 foot ramp that forms a 10° 

angle with the ground.  It is pulled by rope exerting a force of 

120 pounds at a 35° angle relative to the ground.  Find the 

work done. 

 

26.  An object is pulled to the top of a 30 foot ramp that forms a 20° angle with the 

ground.  It is pulled by rope exerting a force of 80 pounds at a 30° angle relative to 

the ground.  Find the work done. 

 

 

 

15° 

10° 

35° 
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Section 8.6 Parametric Equations 

 

Many shapes, even ones as simple as circles, cannot be represented as an equation where 

y is a function of x.  Consider, for example, the path a moon follows as it orbits around a 

planet, which simultaneously rotates around a sun.  In some cases, polar equations 

provide a way to represent such a path.  In others, we need a more versatile approach that 

allows us to represent both the x and y coordinates in terms of a third variable, or 

parameter. 

 

 

Parametric Equations 

A system of parametric equations is a pair of functions x(t) and y(t) in which the x 

and y coordinates are the output, represented in terms of a third input parameter, t.  

 

 

Example 1 

Moving at a constant speed, an object moves at a steady rate along a straight path from 

coordinates (-5, 3) to the coordinates (3, -1) in 4 seconds, where the coordinates are 

measured in meters.  Find parametric equations for the position of the object. 

 

The x coordinate of the object starts at -5 meters, and goes to +3 meters, this means the 

x direction has changed by 8 meters in 4 seconds, giving us a rate of 2 meters per 

second.  We can now write the x coordinate as a linear function with respect to time, t, 

ttx 25)( +−= .  Similarly, the y value starts at 3 and goes to -1, giving a change in y 

value of 4 meters, meaning the y values have decreased by 

4 meters in 4 seconds, for a rate of -1 meter per second, 

giving equation tty −= 3)( .  Together, these are the 

parametric equations for the position of the object: 

tty

ttx

−=

+−=

3)(

25)(
 

 

Using these equations, we can build a table of t, x, and y values.  Because of the context, 

we limited ourselves to non-negative t values for this example, but in general you can 

use any values. 

 

From this table, we could create three possible graphs: a graph of x vs. t, which would 

show the horizontal position over time, a graph of y vs. t, which would show the vertical 

position over time, or a graph of y vs. x, showing the position of the object in the plane.   

 

 

 

 

 

 

t x y 

0 -5 3 

1 -3 2 

2 -1 1 

3 1 0 

4 3 -1 
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Position of x as a function of time  Position of y as a function of time 

                                 
 

Position of y relative to x 

 
 

Notice that the parameter t does not explicitly show up in this third graph.  Sometimes, 

when the parameter t does represent a quantity like time, we might indicate the direction 

of movement on the graph using an arrow, as shown above. 

 

 

There is often no single parametric representation for a curve. In 

Example 1 we assumed the object was moving at a steady rate 

along a straight line. If we kept the assumption about the path 

(straight line) but did not assume the speed was constant, we might 

get a system like: 

2

2

3)(

25)(

tty

ttx

−=

+−=
 

 

This starts at (-5, 3) when t = 0 and ends up at (3, -1) 

when t = 2.  If we graph the x(t) and y(t) function 

separately, we can see that those are no longer linear, 

but if we graph x vs. y we will see that we still get a 

straight-line path. 

t 
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Example 2 

Sketch a graph of  

tty

ttx

+=

+=

2)(

1)( 2

 

 

We can begin by creating a table of values.  From this table, we 

can plot the (x, y) points in the plane, sketch in a rough graph of 

the curve, and indicate the direction of motion with respect to 

time by using arrows. 

 
 

 

Notice that here the parametric equations describe a shape for which y is not a function of 

x.  This is an example of why using parametric equations can be useful – since they can 

represent such a graph as a set of functions.  This particular graph also appears to be a 

parabola where x is a function of y, which we will soon verify. 

 

 

Example 3 

Sketch a graph of  

( ) 3cos( )

( ) 3sin( )

x t t

y t t

=

=
 

 

These equations should look familiar.  Back when we first 

learned about sine and cosine we found that the coordinates 

of a point on a circle of radius r at an angle of θ will be 

cos( ), sin( )x r y rθ θ= = .  The equations above are in the 

same form, with 3r = , and t used in place of θ. 

 

This suggests that for each value of t, these parametric 

equations give a point on a circle of radius 3 at the angle 

corresponding to t.  At 0t = , the graph would be at 

3cos(0), 3sin(0)x y= = , the point (3,0).  Indeed, these 

equations describe the equation of a circle, drawn 

counterclockwise. 

 

t x y 

-3 10 -1 

-2 5 0 

-1 2 1 

0 1 2 

1 2 3 

2 5 4 

 

(rcos(θ), rsin(θ)) 

r 

θ 

y 

x 
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Interestingly, these similar parametric equations also describe the circle of radius 3: 

( ) 3sin( )

( ) 3cos( )

x t t

y t t

=

=
 

 

The difference with these equations it the graph would start at 3sin(0), 3cos(0)x y= = , 

the point (0,3).  As t increases from 0, the x value will increase, indicating these 

equations would draw the graph in a clockwise direction. 

 

 

While creating a t-x-y table, plotting points and connecting the dots with a smooth curve 

usually works to give us a rough idea of what the graph of a system of parametric 

equations looks like, it's generally easier to use technology to create these tables and 

(simultaneously) much nicer-looking graphs. 

 

 

Example 4 

Sketch a graph of 
)sin(3)(

)cos(2)(

tty

ttx

=

=
. 

 

Notice first that this equation looks very similar to the ones 

from the previous example, except the coefficients are not 

equal.  You might guess that the pairing of cos and sin will 

still produce rotation, but now x will vary from -2 to 2 while 

y will vary from -3 to 3, creating an ellipse. 

 

Using technology we can generate a graph of this equation, 

verifying it is indeed an ellipse. 

 

Similar to graphing polar equations, you must change the MODE on your calculator (or 

select parametric equations on your graphing technology) before graphing a system of 

parametric equations.  You will know you have successfully entered parametric mode 

when the equation input has changed to ask for a x(t)= and y(t)= pair of equations.   

 

 

Try it Now 

1. Sketch a graph of  
)2sin(3)(

)3cos(4)(

tty

ttx

=

=
.  This is an example of a Lissajous figure. 
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Example 5 

The populations of rabbits and wolves on an island over time are given by the graphs 

below.  Use these graphs to sketch a graph in the r-w plane showing the relationship 

between the number of rabbits and number of wolves. 

 

 
For each input t, we can determine the 

number of rabbits, r, and the number of wolves, w, from the respective graphs, and then 

plot the corresponding point in the r-w plane.   

 

 
This graph helps reveal the cyclical interaction between the two populations. 

 

 

Converting from Parametric to Cartesian 

 

In some cases, it is possible to eliminate the parameter t, allowing you to write a pair of 

parametric equations as a Cartesian equation. 

 

It is easiest to do this if one of the x(t) or y(t) functions can easily be solved for t, 

allowing you to then substitute the remaining expression into the second part. 

 

 

Example 6 

Write 
tty

ttx

+=

+=

2)(

1)( 2

 as a Cartesian equation, if possible. 

 

Here, the equation for y is linear, so is relatively easy to solve for t.  Since the resulting 

Cartesian equation will likely not be a function, and for convenience, we drop the 

function notation. 
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ty += 2   Solve for t 

ty =− 2   Substitute this for t in the x equation 

1)2( 2 +−= yx  

 

Notice that this is the equation of a parabola with x as a function of y, with vertex at 

(1,2), opening to the right.  Comparing this with the graph from Example 2, we see 

(unsurprisingly) that it yields the same graph in the x-y plane as did the original 

parametric equations. 

 

 

Try it Now 

2. Write   
6

3

)(

)(

tty

ttx

=

=
as a Cartesian equation, if possible. 

 

 

Example 7 

Write 
)log()(

2)(

tty

ttx

=

+=
 as a Cartesian equation, if possible. 

 

We could solve either the first or second equation for t.  Solving the first, 

2+= tx  

tx =− 2   Square both sides 

( ) tx =−
2

2   Substitute into the y equation 

( )( )2
2log −= xy  

 

Since the parametric equation is only defined for 0>t , this Cartesian equation is 

equivalent to the parametric equation on the corresponding domain.  The parametric 

equations show that when t > 0, x > 2 and y > 0, so the domain of the Cartesian equation 

should be limited to x > 2. 

 

 

To ensure that the Cartesian equation is as equivalent as possible to the original 

parametric equation, we try to avoid using domain-restricted inverse functions, such as 

the inverse trig functions, when possible.  For equations involving trig functions, we 

often try to find an identity to utilize to avoid the inverse functions. 
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Example 8 

Write 
)sin(3)(

)cos(2)(

tty

ttx

=

=
 as a Cartesian equation, if possible. 

 

To rewrite this, we can utilize the Pythagorean identity 1)(sin)(cos 22 =+ tt . 

)cos(2 tx =  so )cos(
2

t
x

=  

)sin(3 ty =  so )sin(
3

t
y

=  

 

Starting with the Pythagorean Identity, 

1)(sin)(cos 22 =+ tt   Substitute in the expressions from the parametric form 

1
32

22

=







+







 yx
  Simplify 

1
94

22

=+
yx

 

 

This is a Cartesian equation for the ellipse we graphed earlier. 

 

 

Parameterizing Curves 

 

While converting from parametric form to Cartesian can be useful, it is often more useful 

to parameterize a Cartesian equation – converting it into parametric form. 

 

If the Cartesian equation gives one variable as a function of the other, then 

parameterization is trivial – the independent variable in the function can simply be 

defined as t. 

 

 

Example 9 

Parameterize the equation yyx 23 −= . 

 

In this equation, x is expressed as a function of y.  By defining ty =  we can then 

substitute that into the Cartesian equation, yielding ttx 23 −= .  Together, this produces 

the parametric form: 

tty

tttx

=

−=

)(

2)( 3
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Try it Now 

3. Write 322 =+ yx  in parametric form, if possible. 

 

 

In addition to parameterizing Cartesian equations, we also can parameterize behaviors 

and movements. 

 

 

Example 10 

A robot follows the path shown.  Create a table of values for the 

x(t) and y(t) functions, assuming the robot takes one second to 

make each movement. 

 

Since we know the direction of motion, we can introduce 

consecutive values for t along the path of the robot.  Using these 

values with the x and y coordinates of the robot, we can create the 

tables.  For example, we designate the starting point, at (1, 1), as 

the position at t = 0, the next point at (3, 1) as the position at t = 1, 

and so on. 

 

 

 

 

Notice how this also ties back to vectors.  The journey of the robot as it moves through 

the Cartesian plane could also be displayed as vectors and total distance traveled and 

displacement could be calculated. 

 

 

Example 11 

A light is placed on the edge of a bicycle tire as shown and the bicycle starts rolling 

down the street.  Find a parametric equation for the position of the light after the wheel 

has rotated through an angle of θ. 

 

 
 

Relative to the center of the wheel, the position of the light can be found as the 

coordinates of a point on a circle, but since the x coordinate begins at 0 and moves in 

the negative direction, while the y coordinate starts at the lowest value, the coordinates 

of the point will be given by: 

θ 

Starting Rotated by θ 

r 

t 0 1 2 3 4 5 6 

x 1 3 3 2 4 1 1 

t 0 1 2 3 4 5 6 

y 1 1 2 2 4 5 4 
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)cos(

)sin(

θ

θ

ry

rx

−=

−=
 

 

The center of the wheel, meanwhile, is moving horizontally.  It remains at a constant 

height of r, but the horizontal position will move a distance equivalent to the arclength 

of the circle drawn out by the angle, θrs = .  The position of the center of the circle is 

then 

ry

rx

=

= θ
 

 

Combining the position of the center of the wheel with the position of the light on the 

wheel relative to the center, we get the following parametric equationw, with θ as the 

parameter: 

( )
( ))cos(1)cos(

)sin()sin(

θθ

θθθθ

−=−=

−=−=

rrry

rrrx
 

 

The result graph is called a cycloid. 

 
 

 

Example 12 

A moon travels around a planet 

as shown, orbiting once every 10 

days.  The planet travels around 

a sun as shown, orbiting once 

every 100 days.  Find a 

parametric equation for the 

position of the moon, relative to 

the center of the sun, after t days. 

 

For this example, we’ll assume 

the orbits are circular, though in 

real life they’re actually 

elliptical.   

 

 

 

 

6 

30 
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The coordinates of a point on a circle can always be written in the form 

)sin(

)cos(

θ

θ

ry

rx

=

=
 

 

Since the orbit of the moon around the planet has a period of 10 days, the equation for 

the position of the moon relative to the planet will be 









=








=









=








=

ttty

tttx

5
sin6

10

2
sin6)(

5
cos6

10

2
cos6)(

ππ

ππ

 

 

With a period of 100 days, the equation for the position of the planet relative to the sun 

will be 









=








=









=








=

ttty

tttx

50
sin30

100

2
sin30)(

50
cos30

100

2
cos30)(

ππ

ππ

 

 

Combining these together, we can find the 

position of the moon relative to the sun as the 

sum of the components. 









+







=









+







=

ttty

tttx

50
sin30

5
sin6)(

50
cos30

5
cos6)(

ππ

ππ

 

 

The resulting graph is shown here. 

 

 

Try it Now 

4. A wheel of radius 4 is rolled around the outside of a circle of radius 7.  Find a 

parametric equation for the position of a point on the boundary of the smaller wheel.  

This shape is called an epicycloid. 

 

 

 

 

 

 

 

 



  Section 8.6 Parametric Equations    573 

 

Important Topics of This Section 

Parametric equations 

Graphing x(t) , y(t) and the corresponding x-y graph 

Sketching graphs and building a table of values 

Converting parametric to Cartesian 

Converting Cartesian to parametric (parameterizing curves) 

 

 

Try it Now Answers 

1.  

 

2. ( )23
ty = , so 2

xy =  

 

3. 
)sin(3)(

)cos(3)(

tty

ttx

=

=
 

 

4. The center of the small wheel rotates in circle with radius 7+4=11. 

Since the circumference of the small circle is π8  and the circumference of the large 

circle is π22 , in the time it takes to roll around the large circle, the small circle will 

have rotated 
4

11

8

22
=

π

π
 rotations.  We use this as the stretch factor.  The position of a 

point on the small circle will be the combination of the position of the center of the 

small wheel around the center of the large wheel, and the position of the point around 

the small wheel: 

( )

( )

11
( ) 11cos 4cos

4

11
( ) 11sin 4sin

4

x t t t

y t t t

 
= −  

 

 
= −  
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Section 8.6 Exercises 

 

Match each set of equations with one of the graphs below. 

1. 
( )
( ) 2 1

x t t

y t t

 =


= −
  2. 

( )
( ) 2

1x t t

y t t

 = −


=
  3. 

( ) ( )
( ) ( )

4sin

2cos

x t t

y t t

 =


=
  

4. 
( )
( )

2sin( )

4 cos( )

x t t

y t t

 =


=
  5. 

( )
( )

2

3 2

x t t

y t t

 = +


= −
  6. 

( )
( )

2 2

3

x t t

y t t

 = − −


= +
  

A  B  C  

D  E  F  

 

From each pair of graphs in the t-x and t-y planes shown, sketch a graph in the x-y plane. 

7.  8.  
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From each graph in the x-y plane shown, sketch a graph of the parameter functions in the 

t-x and t-y planes. 

 

9.   10.  

 

 

Sketch the parametric equations for 2 2t− ≤ ≤ . 

11. 
( )
( ) 2

1 2x t t

y t t

 = +


=
    12. 

( )
( ) 3

2 2x t t

y t t

 = −


=
  

 

 

Eliminate the parameter t to rewrite the parametric equation as a Cartesian equation 

13. 
( )
( )

5

8 2

x t t

y t t

 = −


= −
    14. 

( )
( )

6 3

10

x t t

y t t

 = −


= −
  

15. 
( )

( )

2 1

3

x t t

y t t

 = +


=
    16. 

( )
( ) 2

3 1

2

x t t

y t t

 = −


=
  

17. 
( )
( )

2

1 5

t
x t e

y t t

 =


= −
    18. 

( ) ( )
( )

4 log

3 2

x t t

y t t

 =


= +
  

19. 
( )
( )

3

2

x t t t

y t t

 = −


=
    20. 

( )
( )

4

2

x t t t

y t t

 = −


= +
  

21. 
( )
( )

2

6

t

t

x t e

y t e

 =


=
    22. 

( )
( )

5

10

x t t

y t t

 =


=
  

23. 
( ) ( )
( ) ( )

4cos

5sin  

x t t

y t t

 =


=
    24. 

( ) ( )
( ) ( )

3sin

6cos

x t t

y t t

 =


=
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Parameterize (write a parametric equation for) each Cartesian equation  

25. ( ) 23 3y x x= +     26. ( ) ( )2sin 1y x x= +   

27. ( ) ( )3logx y y y= +     28. ( ) 2x y y y= +  

29. 
2 2

1
4 9

x y
+ =     30. 

2 2

1
16 36

x y
+ =   

 

Parameterize the graphs shown. 

31.   32.  

 

33.   34.  

 

35. Parameterize the line from ( 1,5)−  to (2,3)  so that the line is at ( 1,5)−  at t = 0, and at 

(2, 3)  at t = 1. 

 

36. Parameterize the line from (4,1)  to (6, 2)−  so that the line is at (4,1)  at t = 0, and at 

(6, 2)−  at t = 1. 
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The graphs below are created by parameteric equations of the form 
( ) ( )
( ) ( )

cos

sin

x t a bt

y t c dt

 =


=
.  

Find the values of a, b, c, and d to achieve each graph. 

 

37.   38.  

 

39.   40.  

 

41. An object is thrown in the air with vertical velocity 20 ft/s and horizontal velocity 15 

ft/s.  The object’s height can be described by the equation ( ) 216 20y t t t= − + , while 

the object moves horizontally with constant velocity 15 ft/s.  Write parametric 

equations for the object’s position, then eliminate time to write height as a function of 

horizontal position. 

 

42. A skateboarder riding on a level surface at a constant speed of 9 ft/s throws a ball in 

the air, the height of which can be described by the equation ( ) 216 10 5y t t t= − + + .  

Write parametric equations for the ball’s position, then eliminate time to write height 

as a function of horizontal position. 
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43. A carnival ride has a large rotating arm with 

diameter 40 feet centered 35 feet off the ground.  

At each end of the large arm are two smaller 

rotating arms with diameter 16 feet each.  The 

larger arm rotates once every 5 seconds, while the 

smaller arms rotate once every 2 seconds.  If you 

board the ride when the point P is closest to the 

ground, find parametric equations for your 

position over time.  

 

44. A hypocycloid is a shape generated by tracking a fixed 

point on a small circle as it rolls around the inside of a 

larger circle.  If the smaller circle has radius 1 and the 

large circle has radius 6, find parametric equations for 

the position of the point P as the smaller wheel rolls in 

the direction indicated. 
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In this chapter, we will explore a set of shapes defined by a common characteristic: they 

can all be formed by slicing a cone with a plane.  These families of curves have a broad 

range of applications in physics and astronomy, from describing the shape of your car 

headlight reflectors to describing the orbits of planets and comets.  

 

Section 9.1 Ellipses 

The National Statuary Hall1 in Washington, D.C. is an 

oval-shaped room called a whispering chamber because 

the shape makes it possible for sound to reflect from the 

walls in a special way.  Two people standing in specific 

places are able to hear each other whispering even 

though they are far apart.  To determine where they 

should stand, we will need to better understand ellipses. 

 

An ellipse is a type of conic section, a shape resulting from intersecting a plane with a 

cone and looking at the curve where they intersect.  They were discovered by the Greek 

mathematician Menaechmus over two millennia ago.  

 

The figure below2 shows two types of conic sections.  When a plane is perpendicular to 

the axis of the cone, the shape of the intersection is a circle.  A slightly titled plane 

creates an oval-shaped conic section called an ellipse.  

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1 Photo by Gary Palmer, Flickr, CC-BY, https://www.flickr.com/photos/gregpalmer/2157517950 
2 Pbroks13 (https://commons.wikimedia.org/wiki/File:Conic_sections_with_plane.svg), “Conic sections 

with plane”, cropped to show only ellipse and circle by L Michaels, CC BY 3.0 
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An ellipse can be drawn by placing two thumbtacks in a piece of 

cardboard then cutting a piece of string longer than the distance 

between the thumbtacks.  Tack each end of the string to the 

cardboard, and trace a curve with a pencil held taught against 

the string.  An ellipse is the set of all points where the sum of 

the distances from two fixed points is constant.  The length of 

the string is the constant, and the two thumbtacks are the fixed 

points, called foci. 

 

 

Ellipse Definition and Vocabulary 

An ellipse is the set of all points ( )yxQ ,  for which the sum of the distance to two 

fixed points ( )111 , yxF  and ( )222 , yxF , called the foci (plural of focus), is a constant k:  

( ) ( ) kFQdFQd =+ 21 ,, . 

 

The major axis is the line passing through the foci.   

Vertices are the points on the ellipse which intersect the major axis. 

The major axis length is the length of the line segment between the vertices.   

The center is the midpoint between the vertices (or the midpoint between the foci).   

The minor axis is the line perpendicular to the minor axis passing through the center.   

Minor axis endpoints are the points on the ellipse which intersect the minor axis.   

The minor axis endpoints are also sometimes called co-vertices. 

The minor axis length is the length of the line 

segment between minor axis endpoints.   

 

 

Note that which axis is major and which is minor 

will depend on the orientation of the ellipse.  In 

the ellipse shown at right, the foci lie on the y 

axis, so that is the major axis, and the x axis is 

the minor axis.  Because of this, the vertices are 

the endpoints of the ellipse on the y axis, and the 

minor axis endpoints (co-vertices) are the 

endpoints on the x axis. 

x 

y 

d(Q,F1) 
d(Q,F2) 

Q 

F1 F2 

y 

x 

Vertices 
Minor axis 

endpoints Foci 

Major axis 

Minor axis 
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Ellipses Centered at the Origin 

 

From the definition above we can find an equation for an ellipse.  We will find it for a 

ellipse centered at the origin ( )0,0C  with foci at ( )0,1 cF  and ( )0,2 cF −  where c > 0. 

 

Suppose ( )yxQ ,  is some point on the ellipse.  The distance from F1 to Q is 

( ) ( ) ( ) ( )   0, 2222

1 ycxycxFQd +−=−+−=  

 

Likewise, the distance from F2 to Q is 

( ) ( )( ) ( ) ( )   0, 2222

2 ycxycxFQd ++=−+−−=  

 

From the definition of the ellipse, the sum of these distances should be constant: 

( ) ( ) kFQdFQd =+ 21 ,,  so that 

( ) ( ) kycxycx =++++−   2222
 

 

If we label one of the vertices ( )0,a , it should satisfy the equation above since it is a point 

on the ellipse.  This allows us to write k in terms of a. 

 ( ) ( ) kcaca =++++−  0 0 2222
 

kcaca =++−      Since a > c, these will be positive 

kcaca =++− )()(  

ka =2  

 

Substituting that into our equation, we will now try to rewrite the equation in a friendlier 

form. 

( ) ( ) aycxycx 2  2222
=++++−     Move one radical 

( ) ( )  2 2222
ycxaycx ++−=+−     Square both sides 

( ) ( )
2

22
2

22
 2 




 ++−=





 +− ycxaycx    Expand 

( ) ( ) ( ) 2222222
 44 ycxycxaaycx +++++−=+−   Expand more 

( ) 222222222 2 442 ycxcxycxaaycxcx ++++++−=++−   

 

Combining like terms and isolating the radical leaves 

( ) xcaycxa 44 4 222
+=++      Divide by 4 

( ) xcaycxa +=++
222

      Square both sides again 

( )( ) 2224222
2 cxxcaaycxa ++=++     Expand 

( ) 22242222 22 cxxcaaycxcxa ++=+++    Distribute 
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22242222222 22 cxxcaayacaxcaxa ++=+++   Combine like terms 
224222222

caayacxxa −=+−     Factor common terms 

( ) ( )22222222
caayaxca −=+−  

 

Let 
222

cab −= .  Since a > c, we know b > 0.  Substituting 
2

b for 
22

ca −  leaves 
222222

bayaxb =+       Divide both sides by 
22

ba  

1
2

2

2

2

=+
b

y

a

x
 

 

This is the standard equation for an ellipse.  We typically swap a and b when the major 

axis of the ellipse is vertical. 

 

 

Equation of an Ellipse Centered at the Origin in Standard Form 

The standard form of an equation of an ellipse centered at the origin ( )0,0C  depends 

on whether the major axis is horizontal or vertical.  The table below gives the standard 

equation, vertices, minor axis endpoints, foci, and graph for each. 

 

 

 

 

Major Axis Horizontal Vertical 

Standard 

Equation 
1

2

2

2

2

=+
b

y

a

x
 1

2

2

2

2

=+
a

y

b

x
 

 

Vertices 

 

(−a, 0) and (a, 0) (0, −a) and (0, a) 

Minor Axis 

Endpoints 
(0, −b) and (0, b) (−b, 0) and (b, 0) 

Foci 
(−c, 0) and (c, 0) 

 

where 
222

cab −=  

(0, −c) and (0, c) 
 

where 
222

cab −=  

 

Graph 

 

 

 

x 

y 

(a,0) (-a,0) 

(0,b) 

(0,-b) 

(c,0) (-c,0) 

x 

y 

(b,0) 
(-b,0) 

(0,a) 

(0,-a) 

(0,c) 

(0,-c) 
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Example 1 

Put the equation of the ellipse 99 22
=+ yx  in standard form.  Find the vertices, minor 

axis endpoints, length of the major axis, and length of the minor axis.  Sketch the graph, 

then check using a graphing utility. 

 

The standard equation has a 1 on the right side, so this equation can be put in standard 

form by dividing by 9: 

 1
91

22

=+
yx

 

 

Since the y-denominator is greater than the x-denominator, the ellipse has a vertical 

major axis.  Comparing to the general standard form equation 1 
2

2

2

2

=+
a

y

b

x
, we see the 

value of 39 ==a  and the value of 11 ==b .    

 

The vertices lie on the y-axis at (0,±a) = (0, ±3).   

The minor axis endpoints lie on the x-axis at (±b, 0) = (±1, 0).   

The length of the major axis is ( ) ( ) 6322 ==a .   

The length of the minor axis is ( ) ( ) 2122 ==b .   

 

To sketch the graph we plot the vertices and the minor axis endpoints.  Then we sketch 

the ellipse, rounding at the vertices and the minor axis endpoints. 

   
 

To check on a graphing utility, we must solve the equation for y.  Isolating 2
y  gives us 

( )22 19 xy −=  

 

Taking the square root of both sides we get 
213 xy −±=  

 

Under Y= on your graphing utility enter the two halves of the ellipse as 213 xy −=  

and  213 xy −−= .  Set the window to a comparable scale to the sketch with xmin = -

5, xmax = 5, ymin= -5, and ymax = 5.   
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Here’s an example output on a TI-84 calculator: 

 

 

 

 

 

 

 

 

Sometimes we are given the equation.  Sometimes we need to find the equation from a 

graph or other information. 

 

 

Example 2 

Find the standard form of the equation for an ellipse centered at (0,0) with horizontal 

major axis length 28 and minor axis length 16.  

 

Since the center is at (0,0) and the major axis is horizontal, the ellipse equation has the 

standard form  1
2

2

2

2

=+
b

y

a

x
.   The major axis has length 282 =a  or a = 14.  The minor 

axis has length 162 =b  or b = 8.  Substituting gives  1
816 2

2

2

2

=+
yx

 or 1
.64256

22

=+
yx

. 

 

 

Try it Now 

1. Find the standard form of the equation for an ellipse with horizontal major axis length 

20 and minor axis length 6. 

 

 

Example 3 

Find the standard form of the equation for the ellipse graphed here.  

 

The center is at (0,0) and the major axis is vertical, so the standard 

form of the equation will be 1
2

2

2

2

=+
a

y

b

x
. 

 

From the graph we can see the vertices are (0,4) and (0,-4), giving 

a = 4. 

The minor-axis endpoints are (2,0) and (-2,0), giving b = 2. 

 

The equation will be 1
42 2

2

2

2

=+
yx

 or 1
164

22

=+
yx

. 
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Ellipses Not Centered at the Origin 

 

Not all ellipses are centered at the origin.  The graph of such an ellipse is a shift of the 

graph centered at the origin, so the standard equation for one centered at (h, k) is slightly 

different.  We can shift the graph right h units and up k units  by replacing x with x – h 

and y with y – k, similar to what we did when we learned transformations.  

 

 

Equation of an Ellipse Centered at (h, k) in Standard Form 

The standard form of an equation of an ellipse centered at the point C ( )kh,  depends 

on whether the major axis is horizontal or vertical.  The table below gives the standard 

equation, vertices, minor axis endpoints, foci, and graph for each. 

 

 

 

 

 

 

 

 

 

Major Axis Horizontal Vertical 

Standard 

Equation 

( ) ( )
1

2

2

2

2

=
−

+
−

b

ky

a

hx
 

( ) ( )
1

2

2

2

2

=
−

+
−

a

ky

b

hx
 

 

Vertices 

 

( h ± a, k ) (h, k ± a) 

Minor Axis 

Endpoints 
( h, k ± b ) ( h ± b, k ) 

Foci 
( h ± c, k ) 

 

where  b2 = a2 – c2 

(h, k ± c) 
 

where  b2 = a2 – c2 

 

Graph 

 

 

 

x

y 

(h+a,k) (h-a,k) 

(h,k+b) 

(h,k-b) 

(h-c,k) 

(h,k) 

(h+c,k) 

x 

y 

(h+b,k) (h-b,k) 

(h,k+a) 

(h, k-a) 

(h,k+c) 

(h, k-c) 

(h,k) 
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Example 4 

Put the equation of the ellipse 332442 22
−=−++ yyxx  in standard form.  Find the 

vertices, minor axis endpoints, length of the major axis, and length of the minor axis.  

Sketch the graph. 

 

To rewrite this in standard form, we will need to complete the square, twice. 

 

Looking at the x terms, xx 22
+ , we like to have something of the form 2)( nx + .  Notice 

that if we were to expand this, we’d get 
22 2 nnxx ++ , so in order for the coefficient on 

x to match, we’ll need 12)1( 22
++=+ xxx .  However, we don’t have a +1 on the left 

side of the equation to allow this factoring.  To accommodate this, we will add 1 to both 

sides of the equation, which then allows us to factor the left side as a perfect square: 

13324412 22
+−=−+++ yyxx  

32244)1( 22
−=−++ yyx  

 

Repeating the same approach with the y terms, first we’ll factor out the 4. 

)6(4244 22
yyyy −=−  

 

Now we want to be able to write ( )yy 64 2
−  as ( )222 24)(4 nnyyny ++=+ .   

For the coefficient of y to match, n will have to -3, giving 

( ) 36244964)3(4 222
+−=+−=− yyyyy .   

 

To allow this factoring, we can add 36 to both sides of the equation. 

363236244)1( 22
+−=+−++ yyx  

( ) 4964)1( 22
=+−++ yyx  

( ) 434)1(
22

=−++ yx  

 

Dividing by 4 gives the standard form of the equation for the ellipse 

( ) ( )
1

1

3

4

1
22

=
−

+
+ yx

 

 

Since the x-denominator is greater than the y-denominator, the ellipse has a horizontal 

major axis.  From the general standard equation 
( ) ( )

1 
2

2

2

2

=
−

+
−

b

kh

a

hx
 we see the value 

of 24 ==a  and the value of 11 ==b .   

 

The center is at (h, k) = (-1, 3).    

The vertices are at (h±a, k)  or (-3, 3) and (1,3).   

The minor axis endpoints are at (h, k±b)  or (-1, 2) and (-1,4).   
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The length of the major axis is ( ) ( ) 4222 ==a .   

The length of the minor axis is ( ) ( ) 2122 ==b .   

 

To sketch the graph we plot the vertices and the minor axis endpoints.  Then we sketch 

the ellipse, rounding at the vertices and the minor axis endpoints. 

   
 

 

Example 5 

Find the standard form of the equation for an ellipse centered at (-2,1), a vertex at (-2,4) 

and passing through the point (0,1). 

 

The center at (-2,1) and vertex at (-2,4) means the major axis is vertical since the x-

values are the same.  The ellipse equation has the standard form  
( ) ( )

1
2

2

2

2

=
−

+
−

a

ky

b

hx
.    

 

The value of a = 4-1=3. Substituting a = 3, h = -2, and k = 1 gives  

( ) ( )
1

3

12
2

2

2

2

=
−

+
+ y

b

x
.  Substituting for x and y using the point (0,1) gives 

( ) ( )
1

3

1120
2

2

2

2

=
−

+
+

b
.   

Solving for b gives b=2.   

The equation of the ellipse in standard form is 
( ) ( )

1
3

1

2

2
2

2

2

2

=
−

+
+ yx

 or 

( ) ( )
1

9

1

4

2
22

=
−

+
+ yx

. 

 

 

Try it Now 

2. Find the center, vertices, minor axis endpoints, length of the major axis, and length of 

the minor axis for the ellipse  ( )
( )

1
4

2
4

2
2

=
+

+−
y

x . 
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Bridges with Semielliptical Arches 

 

Arches have been used to build bridges for centuries, like 

in the Skerton Bridge in England which uses five 

semielliptical arches for support3.  Semielliptical arches 

can have engineering benefits such as allowing for longer 

spans between supports.  

 

 

Example 6 

A bridge over a river is supported by a single semielliptical arch.  The river is 50 feet 

wide.  At the center, the arch rises 20 feet above the river.  The roadway is 4 feet above 

the center of the arch.  What is the vertical distance between the roadway and the arch 

15 feet from the center? 

 

Put the center of the ellipse at (0,0) and make the span of the river the major axis. 

 

 
 

Since the major axis is horizontal, the equation has the form  1
2

2

2

2

=+
b

y

a

x
.   

The value of 25)50(
2

1
==a  and the value of b = 20, giving 1

1525 2

2

2

2

=+
yx

.   

Substituting x = 15 gives  1
2025

15
2

2

2

2

=+
y

.  Solving for y, 16
625

225
120 =−=y .   

 

The roadway is 20 + 4 = 24 feet above the river. The vertical distance between the 

roadway and the arch 15 feet from the center is 24 − 16 = 8 feet.  

 

 

 

 

 

 

                                                 
3 Maxine Armstrong 

(https://commons.wikimedia.org/wiki/File:Skerton_Bridge,_Lancaster,_England.JPG), “Skerton Bridge, 

Lancaster, England”, CC BY-SA 

x 

y 

50ft 

20ft 

4ft 
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Ellipse Foci 

 

The location of the foci can play a key role in ellipse application problems.  Standing on a 

focus in a whispering gallery allows you to hear someone whispering at the other focus.  

To find the foci, we need to find the length from the center to the foci, c, using the 

equation 
222

cab −= .  It looks similar to, but is not the same as, the Pythagorean 

Theorem.   

 

 

Example 7 

The National Statuary Hall whispering chamber is an elliptical room 46 feet wide and 

96 feet long.  To hear each other whispering, two people need to stand at the foci of the 

ellipse.  Where should they stand? 

 

We could represent the hall with a horizontal ellipse centered at the origin.  The major 

axis length would be 96 feet, so 48)96(
2

1
==a , and the minor axis length would be 46 

feet, so 23)46(
2

1
==b .  To find the foci, we can use the equation 

222
cab −= . 

222 4823 c−=  
222 2348 −=c  

421775 ±≈=c  ft. 

 

To hear each other whisper, two people would need to stand 2(42) = 84 feet apart along 

the major axis, each about 48 – 42 = 6 feet from the wall. 

 

 

Example 8 

Find the foci of the ellipse 
( ) ( )

1
29

3

4

2
22

=
+

+
− yx

.   

 

The ellipse is vertical with an equation of the form  
( ) ( )

1
2

2

2

2

=
−

+
−

a

ky

b

hx
.   

The center is at (h, k) = (2, −3).   The foci are at (h, k ± c).  

 

To find length c we use 
222

cab −= .   

Substituting gives 
2294 c−=  or 525 ==c .   

 

The ellipse has foci (2, −3 ± 5), or (2, −8) and (2, 2).  
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Example 9 

Find the standard form of the equation for an ellipse with foci (-1,4) and (3,4) and major 

axis length 10. 

 

Since the foci differ in the x -coordinates, the ellipse is horizontal with an equation of 

the form  
( ) ( )

1
2

2

2

2

=
−

+
−

b

kh

a

hx
.   

The center is at the midpoint of the foci 
( )

( )4, 1
2

44
,

2

31

2
,

2

2121 =






 ++−
=







 ++ yyxx
.   

The value of a is half the major axis length: 5)10(
2

1
==a .   

The value of c is half the distance between the foci:  2)4(
2

1
))1(3(

2

1
==−−=c .  

To find length b we use 
222

cab −= .  Substituting a and c gives 
222 25 −=b  = 21.    

 

The equation of the ellipse in standard form is 
( ) ( )

1
21

4

5

1
2

2

2

=
−

+
− yx

 or  

( ) ( )
1

21

4

25

1
22

=
−

+
− yx

. 

 

 

Try it Now 

3. Find the standard form of the equation for an ellipse with focus (2,4), vertex (2,6), 

and center (2,1). 

 

 

Planetary Orbits 

 

It was long thought that planetary orbits around the 

sun were circular.  Around 1600, Johannes Kepler 

discovered they were actually elliptical4.  His first law 

of planetary motion says that planets travel around the 

sun in an elliptical orbit with the sun as one of the foci.  

The length of the major axis can be found by measuring the planet’s aphelion, its greatest 

distance from the sun, and perihelion, its shortest distance from the sun, and summing 

them together. 

 

 

 

 

                                                 
4 Technically, they’re approximately elliptical.  The orbits of the planets are not exactly elliptical because 

of interactions with each other and other celestial bodies.   
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Example 10 

Mercury’s aphelion is 35.98 million miles and its perihelion is 28.58 million miles.   

Write an equation for Mercury’s orbit. 

   

Let the center of the ellipse be (0,0) and its major axis be horizontal so the equation will 

have form  1
2

2

2

2

=+
b

y

a

x
.   

 

The length of the major axis is 56.6458.2898.352 =+=a  giving 28.32=a  and  

9984.10412
=a .   

 

Since the perihelion is the distance from the focus to one vertex, we can find the 

distance between the foci by subtracting twice the perihelion from the major axis 

length: ( ) 4.758.28256.642 =−=c  giving 7.3=c .   

Substitution of a and c into 
222

cab −=   yields  3084.10287.328.32 222
=−=b .   

 

The equation is 1
3084.10289984.1041

22

=+
yx

. 

 

 

Important Topics of This Section 

Ellipse Definition 

Ellipse Equations in Standard Form 

Ellipse Foci 

Applications of Ellipses 

 

 

Try it Now Answers 

1.  2a = 20, so a =10.  2b = 6, so b = 3.  1
9100

22

=+
yx

      

 

2.  Center (4, -2).  Vertical ellipse with a = 2, b = 1.   

Vertices at (4, -2±2) =  (4,0) and (4,-4),  

minor axis endpoints at (4±1, -2) = (3,-2) and (5,-2),  

major axis length 4, minor axis length 2       

 

3.  Vertex, center, and focus have the same x-value, so it’s a vertical ellipse. 

Using the vertex and center, a = 6 – 1 = 5 

Using the center and focus, c = 4 – 1 = 3 
222 35 −=b .  b = 4. 

( ) ( )
1

25

1

16

2
22

=
−

+
− yx
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Section 9.1 Exercises 

 

In problems 1–4, match each graph with one of the equations A–D. 

A.  1
94

22

=+
yx

 B.  1
49

22

=+
yx

 C.  1
9

2
2

=+ y
x

 D.  1
9

2
2

=+
y

x  

 

1.   2.    3.   4.  

    
 

In problems 5–14, find the vertices, the minor axis endpoints, length of the major axis, 

and length of the minor axis.  Sketch the graph.  Check using a graphing utility. 

5.  1
254

22

=+
yx

 6.  1
416

22

=+
yx

 7.  1
4

2
2

=+ y
x

  8.  1
25

2
2

=+
y

x  

 

9.  2525 22
=+ yx   10.  1616 22

=+ yx   11. 144916 22
=+ yx  

 

12.  4002516 22
=+ yx  13. 189 22

=+ yx   14.  124 22
=+ yx  

 

In problems 15–16, write an equation for the graph. 

15.      16. 

    
In problems 17–20, find the standard form of the equation for an ellipse satisfying the 

given conditions. 

17.  Center (0,0), horizontal major axis length 64, minor axis length 14 

 

18.  Center (0,0), vertical major axis length 36, minor axis length 18 

 

19.  Center (0,0), vertex (0,3), 2=b  

 

20.  Center (0,0), vertex (4,0), 3=b  
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In problems 21–28, match each graph to equations A-H. 

A.  
( )

1
9

)1(

4

2 22

=
−

+
− yx

   E.  
( )

1
9

)1(

4

2 22

=
+

+
+ yx

    

B.  
( )

1
16

)1(

4

2 22

=
−

+
− yx

     F.  
( )

1
16

)1(

4

2 22

=
+

+
+ yx

 

C.  
( )

1
4

)1(

16

2 22

=
−

+
− yx

   G.  
( )

1
4

)1(

16

2 22

=
+

+
+ yx

 

D.  
( )

1
4

)1(

9

2 22

=
−

+
− yx

   H.   
( )

1
4

)1(

9

2 22

=
+

+
+ yx

 

 

21.   22.    23.   24.  

    
   

25.      26.   27.    28.   

    
      

In problems 29–38, find the vertices, the minor axis endpoints, length of the major axis, 

and length of the minor axis.  Sketch the graph.  Check using a graphing utility. 

29.  1
4

)2(

25

)1( 22

=
+

+
− yx

   30.  1
36

)3(

16

)5( 22

=
−

+
+ yx

  

 

31.  1
25

)3(
)2(

2
2

=
−

++
y

x    32.  1)6(
25

)1( 2
2

=−+
−

y
x

  

 

33.  16484 22
=+++ yxx    34. 3616164 22

=+++ yyx   

  

35.  11642 22
−=+++ yyxx    36.  48164 22

=−++ yyxx   

 

37.  10484369 22
=++− yyxx   38.  436984 22

−=+++ yyxx  
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In problems 39–40, write an equation for the graph. 

39.      40. 

    
 

In problems 41–42, find the standard form of the equation for an ellipse satisfying the 

given conditions. 

41.  Center (-4,3), vertex(-4,8), point on the graph (0,3) 

 

42.  Center (1,-2), vertex(-5,-2), point on the graph (1,0) 

 

43.  Window  A window in the shape of a semiellipse is 12 feet wide and 4 feet high.  

What is the height of the window above the base 5 feet from the center ? 

 

44.  Window A window in the shape of a semiellipse is 16 feet wide and 7 feet high.  

What is the height of the window above the base 4 feet from the center? 

 

45.  Bridge A bridge over a river is supported by a semielliptical arch.  The river is 150 

feet wide.  At the center, the arch rises 60 feet above the river.  The roadway is 5 feet 

above the center of the arch.  What is the vertical distance between the roadway and 

the arch 45 feet from the center? 

 

46.  Bridge A bridge over a river is supported by a semielliptical arch.  The river is 1250 

feet wide.  At the center, the arch rises 175 feet above the river.  The roadway is 3 

feet above the center of the arch.  What is the vertical distance between the roadway 

and the arch 600 feet from the center? 

 

47.  Racetrack An elliptical racetrack is 100 feet long and 90 feet wide.  What is the 

width of the racetrack 20 feet from a vertex on the major axis? 

 

48.  Racetrack An elliptical racetrack is 250 feet long and 150 feet wide.  What is the 

width of the racetrack 25 feet from a vertex on the major axis? 
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In problems 49-52, find the foci. 

49.  1
319

22

=+
yx

     50.  1
382

22

=+
yx

     

 

51.  1
26

)1(
)6(

2
2

=+
−

++
y

x     52.  1)5(
10

)3( 2
2

=++
−

y
x

   

 

In problems 53-72, find the standard form of the equation for an ellipse satisfying the 

given conditions. 

 

53.  Major axis vertices (±3,0), c=2   54.  Major axis vertices (0,±7), c=4 

 

55.  Foci (0,±5) and major axis length 12  

 

56.  Foci (±3,0) and major axis length 8 

 

57.  Foci (±5,0), vertices (±7,0)   58.  Foci (0,±2), vertices (0,±3) 

 

59.  Foci (0,±4) and x-intercepts (±2,0)   

 

60.  Foci (±3,0) and y-intercepts (0,±1) 

 

61.  Center (0,0), major axis length 8, foci on x-axis, passes through point ( )6,2  

 

62.  Center (0,0), major axis length 12, foci on y-axis, passes through point ( )4,10  

 

63.  Center (-2,1), vertex (-2,5), focus (-2,3) 

 

64.  Center (-1,-3), vertex (-7,-3), focus (-4,-3) 

 

65.  Foci (8,2) and (-2,2), major axis length 12 

 

66.  Foci (-1,5) and (-1,-3), major axis length 14 

 

67.  Vertices (3,4) and (3,-6), c= 2 

 

68.  Vertices (2,2) and (-4,2), c= 2 

 

69.  Center (1,3), focus (0,3), passes through point (1,5) 

 

70.  Center (-1,-2), focus (1,-2), passes through point (2,-2) 

 

71.  Focus (-15,-1), vertices (-19,-1) and (15,-1) 

 

72.  Focus (-3,2), vertices (-3,4) and (-3,-8) 
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73.  Whispering Gallery If an elliptical whispering gallery is 80 feet long and 25 feet 

wide, how far from the center of room should someone stand on the major axis of 

the ellipse to experience the whispering effect?  Round to two decimal places. 

 

74.  Billiards Some billiards tables are elliptical and have the foci marked on the table.  If 

such a one is 8 feet long and 6 feet wide, how far are the foci from the center of the 

ellipse?  Round to two decimal places. 

 

75.  Planetary Orbits The orbits of planets around the sun are approximately elliptical 

with the sun as a focus.  The aphelion is a planet’s greatest distance from the sun and 

the perihelion is its shortest.  The length of the major axis is the sum of the aphelion 

and the perihelion.  Earth’s aphelion is 94.51 million miles and its perihelion is 

91.40 million miles.  Write an equation for Earth’s orbit.  

 

76.  Satellite Orbits The orbit of a satellite around Earth is elliptical with Earth’s center 

as a focus.  The satellite’s maximum height above the Earth is 170 miles and its 

minimum height above the Earth is 90 miles.  Write an equation for the satellite’s 

orbit.  Assume Earth is spherical and has a radius of 3960 miles.   

 

77.  Eccentricity e of an ellipse is the ratio 
a

c
 where c is the distance of a focus from the 

center and a is the distance of a vertex from the center.  Write an equation for an 

ellipse with eccentricity 0.8 and foci at (-4,0) and (4,0). 

 

78.  Confocal ellipses have the same foci.  Show that, for k > 0, all ellipses of the form 

1
6

22

=+
+ k

y

k

x
 are confocal. 

 

79.  The latus rectum of an ellipse is a line segment with endpoints on the ellipse that 

passes through a focus and is perpendicular to the major axis.  Show that
a

b
22

is the 

length of the latus rectum of 1
2

2

2

2

=+
b

y

a

x
 where a > b. 
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Section 9.2 Hyperbolas 

 

In the last section, we learned that planets have 

approximately elliptical orbits around the sun.  When an 

object like a comet is moving quickly, it is able to escape 

the gravitational pull of the sun and follows a path with the 

shape of a hyperbola.  Hyperbolas are curves that can help 

us find the location of a ship, describe the shape of cooling towers, or calibrate 

seismological equipment.   

 

The hyperbola is another type of conic section created by intersecting a plane with a 

double cone, as shown below5.   

            
 

 

The word “hyperbola” derives from a Greek word meaning “excess.”  The English word 

“hyperbole” means exaggeration.  We can think of a hyperbola as an excessive or 

exaggerated ellipse, one turned inside out. 

 

We defined an ellipse as the set of all points where the sum of the distances from that 

point to two fixed points is a constant.  A hyperbola is the set of all points where the 

absolute value of the difference of the distances from the point to two fixed points is a 

constant. 

 

 

 

 

 

 

 

                                                 
5 Pbroks13 (https://commons.wikimedia.org/wiki/File:Conic_sections_with_plane.svg), “Conic sections 

with plane”, cropped to show only a hyperbola by L Michaels, CC BY 3.0 
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Hyperbola Definition 

A hyperbola is the set of all points ( )yxQ ,  for which the absolute value of the 

difference of the distances to two fixed points ( )111 , yxF  and ( )222 , yxF  called the foci 

(plural for focus) is a constant k: ( ) ( ) kFQdFQd =− 21 ,, . 

               

The transverse axis is the line passing through the foci.  

Vertices are the points on the hyperbola which intersect the transverse axis.   

The transverse axis length is the length of the line segment between the vertices.   

The center is the midpoint between the vertices (or the midpoint between the foci).   

The other axis of symmetry through the center is the conjugate axis. 

The two disjoint pieces of the curve are called branches.  

A hyperbola has two asymptotes. 

 

 

Which axis is the transverse axis will depend on the orientation of the hyperbola.  As a 

helpful tool for graphing hyperbolas, it is common to draw a central rectangle as a 

guide.  This is a rectangle drawn around the center with sides parallel to the coordinate 

axes that pass through each vertex and co-vertex.  The asymptotes will follow the 

diagonals of this rectangle. 

 

 

x

y 

d(Q,F1) 
d(Q,F2) 

Q 

F1 F2 x 

y 

d(Q,F2) 

d(Q,F1) 

Q 

F2 

F1 

x 

y 

Vertex 
Focus 

Asymptote 

Center 

Co-vertex 

Transverse axis 

Conjugate axis 
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Hyperbolas Centered at the Origin 

 

From the definition above we can find an equation of a hyperbola.  We will find it for a 

hyperbola centered at the origin ( )0,0C  opening horizontally with foci at ( )0,1 cF  and 

( )0,2 cF −  where c > 0.   

 

Suppose ( )yxQ ,  is a point on the hyperbola.  The distances from Q to F1 and Q to F2 are: 

( ) ( ) ( ) ( )   0, 2222

1 ycxycxFQd +−=−+−=  

( ) ( )( ) ( ) ( )   0, 2222

2 ycxycxFQd ++=−+−−= . 

 

From the definition, the absolute value of the difference should be constant: 

( ) ( ) ( ) ( ) kycxycxFQdFQd =++−+−=−   ,, 2222

21  

 

Substituting in one of the vertices ( )0,a , we can determine k in terms of a: 

( ) ( ) kcaca =++−+−  0 0 2222
 

kcaca =+−−       Since c > a, acca −=−  

kcaac =+−− )()(  

aak 22 =−=  

 

Using ak 2=  and removing the absolute values, 

( ) ( ) aycxycx 2  2222
±=++−+−    Move one radical  

( ) ( )  2 2222
ycxaycx +++±=+−    Square both sides 

( ) ( ) ( ) 2222222
 44 ycxycxaaycx +++++±=+−  Expand 

( ) 222222222 2 442 ycxcxycxaaycxcx ++++++±=++−  

 

Combining like terms leaves 

( )  444 222 ycxaaxc ++±=−     Divide by 4 

( )  222 ycxaaxc ++±=−      Isolate the radical 

( ) xcaycxa −−=++±
222

      Square both sides again 

( )( ) 2224222
2 cxxcaaycxa ++=++     Expand and distribute 

22242222222 22 cxxcaayacaxcaxa ++=+++   Combine like terms 

222242222
xacxacaya −=−+     Factor common terms 

( ) ( ) 22222222
xacacaya −=−+  
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Let 
222

acb −= .  Since c > a, b > 0.  Substituting 
2

b  for 
22

ac −  leaves 
222222

xbbaya =+       Divide both sides by 
22

ba  

2

2

2

2

1
a

x

b

y
=+        Rewrite 

1
2

2

2

2

=−
b

y

a

x
 

 

 

We can see from the graphs of the hyperbolas that the branches appear to approach 

asymptotes as x gets large in the negative or positive direction.  The equations of the 

horizontal hyperbola asymptotes can be derived from its standard equation. 

 

1
2

2

2

2

=−
b

y

a

x
       Solve for y 









−= 1

2

2
22

a

x
by       Rewrite 1 as 

2

2

2

2

x

a

a

x
 









−=

2

2

2

2

2

2
22

x

a

a

x

a

x
by       Factor out 

2

2

a

x
 









−=

2

2

2

2
22 1

x

a

a

x
by       Take the square root 

2

2

1
x

a
x

a

b
y −±=   

 

As x → ±∞ the quantity 
2

2

x

a
 → 0 and 

2

2

1
x

a
−  → 1, so the asymptotes are x

a

b
y ±= . 

 

Similarly, for vertical hyperbolas the asymptotes are x
b

a
y ±= . 

 

 

The standard form of an equation of a hyperbola centered at the origin C ( )0,0  depends on 

whether it opens horizontally or vertically.  The following table gives the standard 

equation, vertices, foci, asymptotes, construction rectangle vertices, and graph for each. 
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Equation of a Hyperbola Centered at the Origin in Standard Form 

 

 

 

Example 1 

Put the equation of the hyperbola 44 22
=− xy  in standard form.  Find the vertices, 

length of the transverse axis, and the equations of the asymptotes.  Sketch the graph.  

Check using a graphing utility.   

 

The equation can be put in standard form  1
14

22

=−
xy

 by dividing by 4.   

Comparing to the general standard equation 1 
2

2

2

2

=−
b

x

a

y
 we see that 24 ==a  and 

11 ==b .    

 

Since the x term is subtracted, the hyperbola opens vertically and the vertices lie on the 

y-axis at (0,±a) = (0, ±2).   

 

Opens Horizontally Vertically 

Standard 

Equation 
1

2

2

2

2

=−
b

y

a

x
 1

2

2

2

2

=−
b

x

a

y
 

Vertices (-a, 0) and (a, 0) (0, -a) and (0, a) 

Foci 
(-c, 0) and (c, 0) 

 

where 
222

acb −=  

(0, -c) and (0, c) 
 

Where 
222

acb −=  

Asymptotes x
a

b
y ±=  x

b

a
y ±=  

Construction 

Rectangle 

Vertices 

(a, b), (-a, b), ( a,-b), (-a, -b) (b, a), (-b, a), (b, -a), (-b, -a) 

Graph 

 

  

x 

y 

(0,b) 

(-c,0) 

(0,-b) 

(c,0) (a,0) (-a,0) 

x 

y 

(0,a) 

(0,c) 

(-b,0) 

(0,-a) 

(0,-c) 

(b,0) 
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The length of the transverse axis is ( ) ( ) 4222 ==a .   

Equations of the asymptotes are x
b

a
y ±=  or x2±= .   

 

To sketch the graph we plot the vertices of the construction rectangle at (±b,±a) or  

(-1,-2), (-1,2), (1,-2), and (1,2).  The asymptotes are drawn through the diagonals of the 

rectangle and the vertices plotted.  Then we sketch in the hyperbola, rounded at the 

vertices and approaching the asymptotes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To check on a graphing utility, we must solve the equation for y.  Isolating y2 gives us

( )22 1 4 xy += . 

 

Taking the square root of both sides we find 212 xy +±= . 

 

Under Y= enter the two halves of the hyperbola and the two asymptotes as 
212 xy += , 212 xy +−= , xy 2= ,  and xy 2−= .  Set the window to a comparable 

scale to the sketch with xmin = -4, xmax = 4, ymin= -3, and ymax = 3. 

 

 

 

 

 

 

 

 

 

Sometimes we are given the equation.  Sometimes we need to find the equation from a 

graph or other information. 
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Example 2 

Find the standard form of the equation for a hyperbola with vertices at (-6,0) and (6,0) 

and asymptote xy
3

4
= .  

 

Since the vertices lie on the x-axis with a midpoint at the origin, the hyperbola is 

horizontal with an equation of the form  1
2

2

2

2

=−
b

y

a

x
. The value of a is the distance 

from the center to a vertex.  The distance from (6,0) to (0,0) is 6, so a = 6.   

 

The asymptotes follow the form x
a

b
y ±= .  From xy

4

3
=  we see 

a

b
=

4

3
 and 

substituting a = 6 give us 
64

3 b
= .  Solving yields b = 8.     

 

The equation of the hyperbola in standard form is 1
86 2

2

2

2

=−
yx

 or  1
6436

22

=−
yx

.  

 

 

Try it Now 

1.  Find the standard form of the equation for a hyperbola with vertices at (0,-8) and (0,8) 

and asymptote xy 2=  

 

 

Example 3 

Find the standard form of the equation for a hyperbola with vertices at (0, 9) and (0,-9) 

and passing through the point (8,15).  

 

Since the vertices lie on the y-axis with a midpoint at the origin, the hyperbola is 

vertical with an equation of the form  1
2

2

2

2

=−
b

x

a

y
.  The value of a is the distance from 

the center to a vertex.  The distance from (0,9) to (0,0) is 9, so a = 9.  

 

Substituting a = 9 and the point (8,15) gives 1
8

9

15
2

2

2

2

=−
b

.  Solving for b yeilds

( )
6

915

89
22

22

=
−

=b . 

 

The standard equation for the hyperbola is  1
69 2

2

2

2

=−
xy

 or  1
3681

22

=−
xy

.  

 

 



604     Chapter 9 

 

Hyperbolas Not Centered at the Origin 

 

Not all hyperbolas are centered at the origin.  The standard equation for one centered at 

(h, k) is slightly different. 

 

 

Equation of a Hyperbola Centered at (h, k) in Standard Form 

The standard form of an equation of a hyperbola centered at C ( )kh,  depends on 

whether it opens horizontally or vertically.  The table below gives the standard 

equation, vertices, foci, asymptotes, construction rectangle vertices, and graph for 

each. 

 

 

 

 

 

 

 

 

Opens Horizontally Vertically 

Standard 

Equation 

( ) ( )
1

2

2

2

2

=
−

−
−

b

ky

a

hx
 

( ) ( )
1

2

2

2

2

=
−

−
−

b

hx

a

ky
 

Vertices ( h ± a, k ) (h, k ± a) 

 

Foci 

( h ± c, k ) 
 

where  b2 = c2 – a2 

(h, k ± c) 
 

where  b2 = c2 – a2 

Asymptotes ( )hx
a

b
ky −±=−  ( )hx

b

a
ky −±=−  

Construction 

Rectangle 

Vertices 

( h ± a, k ± b  ) ( h ± b, k ± a  ) 

Graph 

 

  

x

y 

(h,k+b) 

(h-c,k) 

(h+a,k) (h-a,k) 

(h,k) 

(h,k-b) 

(h+c,k) 

x

y 

(h-b,k) 

(h,k-a) 

(h+b,k) 
(h,k) 

(h,k-c) 

(h,k+c) 

(h,k+a) 
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Example 4 

Write an equation for the hyperbola in the graph 

shown. 

 

The center is at (2,3), where the asymptotes cross.  

It opens vertically, so the equation will look like 

( ) ( )
1

23
2

2

2

2

=
−

−
−

b

x

a

y
. 

 

The vertices are at (2,2) and (2,4).  The distance 

from the center to a vertex is 134 =−=a . 

 

If we were to draw in the construction rectangle, it would extend from x = -1 to x = 5.  

The distance from the center to the right side of the rectangle gives 325 =−=b . 

 

The standard equation of this hyperbola is 
( ) ( )

1
3

2

1

3
2

2

2

2

=
−

−
− xy

, or 

( )
( )

1
9

2
3

2
2

=
−

−−
x

y . 

 

 

Example 5 

Put the equation of the hyperbola 43164189 22
=+−+ yyxx  in standard form.  Find the 

center, vertices, length of the transverse axis, and the equations of the asymptotes.  

Sketch the graph, then check on a graphing utility. 

 

To rewrite the equation, we complete the square for both variables to get  

( ) ( ) 16943444129 22
−+=+−−++ yyxx   

( ) ( ) 362419
22

=−−+ yx  

Dividing by 36 gives the standard form of the equation, 
( ) ( )

1
9

2

4

1
22

=
−

−
+ yx

 

 

Comparing to the general standard equation 
( ) ( )

1 
2

2

2

2

=
−

−
−

b

kh

a

hx
 we see that 

24 ==a  and 39 ==b .   

 

Since the y term is subtracted, the hyperbola opens horizontally. 

The center is at (h, k) = (-1, 2).    

The vertices are at (h±a, k) or (-3, 2) and (1,2).   

The length of the transverse axis is ( ) ( ) 4222 ==a .   

Equations of the asymptotes are ( )hx
a

b
ky −±=−  or ( )1

2

3
2 +±=− xy .   
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To sketch the graph we plot the corners of the construction rectangle at (h±a, k±b) or  

(1, 5), (1, -1), (-3,5), and (-3,-1).   The asymptotes are drawn through the diagonals of 

the rectangle and the vertices plotted.  Then we sketch in the hyperbola rounded at the 

vertices and approaching the asymptotes. 

 

 

 

 

 

 

 

 

 

 

 

 

To check on a graphing utility, we must solve the equation for y.   

( )










−

+
±= 1

4

1
92

2
x

y . 

 

Under Y= enter the two halves of the hyperbola and the two asymptotes as 

( )










−

+
+= 1

4

1
92

2
x

y ,  
( )











−

+
−= 1

4

1
92

2
x

y , ( ) 21
2

3
++= xy ,  and 

( ) 21
2

3
++−= xy .  Set the window to a comparable scale to the sketch, then graph.  

Note that the gaps you see on the calculator are not really there; they’re a limitation of 

the technology. 

 

 

 

 

 

 

 

 

Example 6 

Find the standard form of the equation for a hyperbola with vertices at )5,2( −−  and 

)7,2(− , and asymptote 4
2

3
+= xy . 
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Since the vertices differ in the y -coordinates, the hyperbola opens vertically with an 

equation of the form  
( ) ( )

1
2

2

2

2

=
−

−
−

b

hx

a

ky
 and asymptote equations of the form 

( )hx
b

a
ky −±=− .   

 

The center will be halfway between the vertices, at )1,2(
2

75
,2 −=







 +−
− . 

The value of a is the distance from the center to a vertex.  The distance from )1,2(−  to 

)5,2( −−  is 6, so a = 6.   

 

While our asymptote is not given in the form ( )hx
b

a
ky −±=− , notice this equation 

would have slope 
b

a
.  We can compare that to the slope of the given asymptote equation 

to find b.  Setting 
b

a
=

2

3
  and substituting a = 6 gives us b = 4.   

 

The equation of the hyperbola in standard form is 
( ) ( )

1
4

2

6

1
2

2

2

2

=
+

−
− xy

 or  

( ) ( )
1

16

2

36

1
22

=
+

−
− xy

.  

 

 

Try it Now 

2.  Find the center, vertices, length of the transverse axis, and equations of the asymptotes 

for the hyperbola  
( ) ( )

1
36

2

9

5
22

=
−

−
+ yx

.  

 

 

Hyperbola Foci 

 

The location of the foci can play a key role in hyperbola application problems.   To find 

them, we need to find the length from the center to the foci, c, using the equation 
222

acb −= .  It looks similar to, but is not the same as, the Pythagorean Theorem.   

 

Compare this with the equation to find length c for ellipses, which is 
222

cab −= .  If you 

remember that for the foci to be inside the ellipse they have to come before the vertices 

)( ac < , it’s clear why we would calculate 
2

a  minus 
2

c .  To be inside a hyperbola, the 

foci have to go beyond the vertices )( ac > , so we can see for hyperbolas we need 
2

c  

minus 
2

a , the opposite. 
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Example 7 

Find the foci of the hyperbola 
( ) ( )

1
5

3

4

1
22

=
−

−
+ xy

.   

 

The hyperbola is vertical with an equation of the form  
( ) ( )

1
2

2

2

2

=
−

−
−

b

hx

a

ky
.   

The center is at (h, k) = (3, -1).   The foci are at (h, k ± c).  

 

To find length c we use 
222

acb −= .  Substituting gives 45 2
−= c  or 39 ==c .   

 

The hyperbola has foci (3, -4) and (3, 2).  

 

 

Example 8 

Find the standard form of the equation for a hyperbola with foci (5, -8) and (-3, -8) and 

vertices (4, -8) and (-2, -8). 

 

Since the vertices differ in the x -coordinates, the hyperbola opens horizontally with an 

equation of the form  
( ) ( )

1
2

2

2

2

=
−

−
−

b

ky

a

hx
.   

 

The center is at the midpoint of the vertices 

( ) ( )
( )8, 1

2

88
,

2

24

2
,

2

2121 −=






 −+−−+
=







 ++ yyxx
.   

 

The value of a is the horizontal length from the center to a vertex, or 314 =−=a .   

The value of c is the horizontal length from the center to a focus, or 415 =−= .   

To find length b we use 
222

acb −= .  Substituting gives 79162
=−=b .    

The equation of the hyperbola in standard form is 
( ) ( )( )

1
7

8

3

1
2

2

2

=
−−

−
− yx

 or  

( ) ( )
1

7

8

9

1
22

=
+

−
− yx

. 

 

 

Try it Now 

3.  Find the standard form of the equation for a hyperbola with focus (1,9), vertex (1,8), 

center (1,4). 
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LORAN 

 

Before GPS, the Long Range Navigation (LORAN) 

system was used to determine a ship’s location.  Two 

radio stations A and B simultaneously sent out a signal to 

a ship.  The difference in time it took to receive the 

signal was computed as a distance locating the ship on 

the hyperbola with the A and B radio stations as the foci.  

A second pair of radio stations C and D sent 

simultaneous signals to the ship and computed its 

location on the hyperbola with C and D as the foci.  The 

point P where the two hyperbolas intersected gave the 

location of the ship. 

 

 

Example 9 

Stations A and B are 150 kilometers apart and send a simultaneous radio signal to the 

ship.  The signal from B arrives 0.0003 seconds before the signal from A.  If the signal 

travels 300,000 kilometers per second, find the equation of the hyperbola on which the 

ship is positioned. 

 

Stations A and B are at the foci, so the distance from the center to one focus is half the 

distance between them, giving 75)150(
2

1
==c  km.  

 

By letting the center of the hyperbola be at (0,0) and placing the foci at (±75,0), the 

equation  1
2

2

2

2

=−
b

y

a

x
 for a hyperbola centered at the origin can be used.   

 

The difference of the distances of the ship from the two stations is 

km90)s0003.0(
s

km
000,300 =⋅=k .  From our derivation of the hyperbola equation we 

determined k = 2a, so 45)90(
2

1
==a .   

 

Substituting a and c into 
222

acb −=  yields  36004575 222
=−=b .   

 

The equation of the hyperbola in standard form is   1
360045

2

2

2

=−
yx

 or 1
36002025

22

=−
yx

.  

 

 

To determine the position of a ship using LORAN, we would need an equation for the 

second hyperbola and would solve for the intersection.  We will explore how to do that in 

the next section.  

 

A B 

C D 

P 
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Important Topics of This Section 

Hyperbola Definition 

Hyperbola Equations in Standard Form 

Hyperbola Foci 

Applications of Hyperbolas 

Intersections of Hyperbolas and Other Curves 

 

 

Try it Now Answers 

1.  The vertices are on the y axis so this is a vertical hyperbola.   

The center is at the origin. 

a = 8 

Using the asymptote slope, 2
8

=
b

, so b = 4. 

1
1664

22

=−
xy

     

 

2.  Center (-5, 2).  This is a horizontal hyperbola.  a = 3.  b = 6. 

transverse axis length 6,  

Vertices will be at (-5±3,2) =  (-2,2) and (-8,2),  

Asymptote slope will be 2
3

6
= .  Asymptotes: ( )522 +±=− xy    

 

3. Focus, vertex, and center have the same x value so this is a vertical hyperbola. 

Using the vertex and center, a = 9 – 4 = 5 

Using the focus and center, c = 8 – 4 = 4 
222 45 −=b .  b = 3. 

 
( ) ( )

1
9

1

16

4
22

=
−

−
− xy
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Section 9.2 Exercises 

 

In problems 1–4, match each graph to equations A–D. 

A.  1
94

22

=−
yx

 B.  1
49

22

=−
yx

 C.   1
9

2
2

=−
x

y  D.  1
9

2
2

=− x
y

 

 

1.   2.    3.   4.  

     
 

 

In problems 5–14, find the vertices, length of the transverse axis, and equations of the 

asymptotes.  Sketch the graph.  Check using a graphing utility. 

5.  1
254

22

=−
yx

 6.  1
916

22

=−
xy

 7.  1
4

2
2

=−
x

y   8.  1
25

2
2

=−
y

x  

 

9.  99 22
=− yx   10.  44 22

=− xy   11.  144169 22
=− xy  

 

12.  4002516 22
=− yx  13.  189 22

=− yx   14.  124 22
=− xy  

 

In problems 15–16, write an equation for the graph. 

15.      16. 
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In problems 17–22, find the standard form of the equation for a hyperbola satisfying the 

given conditions. 

17.  Vertices at (0,4) and (0, -4); asymptote xy
2

1
=  

 

18.  Vertices at (-6,0) and (6,0); asymptote xy 3=  

 

19.  Vertices at (-3,0) and (3,0); passes through (5,8) 

 

20.  Vertices at (0, 4) and (0, -4); passes through (6, 5) 

 

21.  Asymptote y = x; passes through (5, 3) 

 

22.  Asymptote y = x; passes through (12, 13) 

 

In problems 23–30, match each graph to equations A–H. 

 

A.  
( ) ( )

1
4

2

9

1
22

=
−

−
− yx

  E.  
( ) ( )

1
9

1

4

2
22

=
−

−
− xy

 

B.  
( ) ( )

1
4

2

9

1
22

=
+

−
+ yx

  F.   
( ) ( )

1
9

1

4

2
22

=
+

−
+ xy

 

C.  
( ) ( )

1
16

2

9

1
22

=
+

−
+ yx

  G.  
( ) ( )

1
16

1

4

2
22

=
+

−
+ xy

 

D.  
( ) ( )

1
16

2

9

1
22

=
−

−
− yx

  H.  
( ) ( )

1
16

1

4

2
22

=
−

−
− xy

 

 

23.   24.    25.   26. 

      
 

27.   28.    29.   30.  
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In problems 31–40, find the center, vertices, length of the transverse axis, and equations 

of the asymptotes.  Sketch the graph.  Check using a graphing utility. 

31.  
( ) ( )

1
4

2

25

1
22

=
+

−
− yx

   32.  
( ) ( )

1
36

5

16

3
22

=
+

−
− xy

  

 

33.  
( )

( ) 12
9

1 2
2

=+−
−

x
y

   34.  
( )

( ) 16
25

1 2
2

=−−
−

y
x

   

 

35.  1284 22
=−− yxx    36.  209164 22

=−+ xyy    

 

37.  12164 22
=−−− xxyy    38.  296164 22

=+−− yyxx    

 

39.  484369 22
=+−+ yyxx    40.  369616369 22

−=−−+ xxyy  

 

In problems 41–42, write an equation for the graph. 

41.      42. 

   
 

In problems 43–44, find the standard form of the equation for a hyperbola satisfying the 

given conditions. 

43.  Vertices (-1,-2) and (-1,6); asymptote ( )122 +=− xy  

44.  Vertices (-3,-3) and (5,-3); asymptote ( )1
2

1
3 −=+ xy  

In problems 45–48, find the center, vertices, length of the transverse axis, and equations 

of the asymptotes.  Sketch the graph.  Check using a graphing utility. 

45.  194 2
−±= xy     46.  19

4

1 2
+±= xy  

 

47.  10189
2

1
1 2

++±= xxy    48.  818921 2
+−±−= xx  
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In problems 49–54, find the foci. 

49.   1
196

22

=−
xy

    50.   1
35

2
2

=−
y

x    

 

51.   
( )

( ) 16
15

1 2
2

=−−
−

y
x

   52.   
( ) ( )

1
2

5

47

3
22

=
+

−
− xy

 

 

53.   258
3

4
1 2

++±= xxy    54.  214
5

12
3 2

−−±−= xxy  

 

In problems 55–66, find the standard form of the equation for a hyperbola satisfying the 

given conditions. 

 

55.  Foci (5,0) and (-5,0), vertices (4,0) and (4,0) 

 

56.  Foci (0,26) and (0, -26),  vertices (0,10) and (0,-10) 

 

57.  Focus (0, 13),  vertex (0,12), center (0,0) 

 

58.  Focus (15, 0),  vertex (12, 0), center (0,0) 

 

59.  Focus (17, 0) and (-17,0),  asymptotes  xy
15

8
=  and xy

15

8
−=  

 

60.  Focus (0, 25) and (0, 25),  asymptotes  xy
7

24
=  and xy

7

24
−=  

 

61.  Focus (10, 0) and (-10, 0), transverse axis length 16 

 

62.  Focus (0, 34) and (0, -34), transverse axis length 32 

 

63.  Foci (1, 7) and (1, -3),  vertices (1, 6) and (1,-2) 

 

64.  Foci (4, -2) and (-6, -2), vertices (2, -2) and (-4, -2) 

 

65.  Focus (12, 3),  vertex (4, 3), center (-1, 3) 

 

66.  Focus (-3, 15),  vertex (-3, 13), center (-3, -2) 

 

 

 

 

 

 

 



Section 9.2 Hyperbolas 

 

615

67.  LORAN  Stations A and B are 100 kilometers apart and send a simultaneous radio 

signal to a ship.  The signal from A arrives 0.0002 seconds before the signal from B.  

If the signal travels 300,000 kilometers per second, find an equation of the hyperbola 

on which the ship is positioned if the foci are located at A and B. 

 

68.  Thunder and Lightning  Anita and Samir are standing 3050 feet apart when they 

see a bolt of light strike the ground.  Anita hears the thunder 0.5 seconds before 

Samir does.  Sound travels at 1100 feet per second.  Find an equation of the 

hyperbola on which the lighting strike is positioned if Anita and Samir are located at 

the foci. 

 

 

69.  Cooling Tower  The cooling tower for a power plant 

has sides in the shape of a hyperbola.  The tower 

stands 179.6 meters tall. The diameter at the top is 72 

meters. At their closest, the sides of the tower are 60 

meters apart.  Find an equation that models the sides 

of the cooling tower.   

 

 

70.  Calibration  A seismologist positions two recording devices 340 feet apart at points 

A and B.  To check the calibration, an explosive is detonated between the devices 90 

feet from point A.  The time the explosions register on the devices is noted and the 

difference calculated.  A second explosion will be detonated east of point A.  How 

far east should the second explosion be positioned so that the measured time 

difference is the same as for the first explosion? 

 

71.  Target Practice  A gun at point A and a target at point B are 200 feet apart.  A 

person at point C hears the gun fire and hit the target at exactly the same time.  Find 

an equation of the hyperbola on which the person is standing if the foci are located at 

A and B.  A fired bullet has a velocity of 2000 feet per second.  The speed of sound 

is 1100 feet per second. 

 

 

72.  Comet Trajectories  A comet passes through the 

solar system following a hyperbolic trajectory with 

the sun as a focus.  The closest it gets to the sun is 

3×108 miles.  The figure shows the trajectory of the 

comet, whose path of entry is at a right angle to its 

path of departure.  Find an equation for the comet’s 

trajectory.  Round to two decimal places. 

 

 

 

 

 

3×108 
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73.  The conjugate of the hyperbola 1
2

2

2

2

=−
b

y

a

x
 is  1

2

2

2

2

−=−
b

y

a

x
.  Show that 

0255 22
=+− xy  is the conjugate of 0255 22

=+− yx . 

 

74.  The eccentricity e of a hyperbola is the ratio 
a

c
, where c is the distance of a focus 

from the center and a is the distance of a vertex from the center.  Find the 

eccentricity of 1
169

22

=−
yx

. 

 

75.  An equilateral hyperbola is one for which a = b.  Find the eccentricity of an 

equilateral hyperbola. 

 

76.  The latus rectum of a hyperbola is a line segment with endpoints on the hyperbola 

that passes through a focus and is perpendicular to the transverse axis.  Show that

a

b
22

is the length of the latus rectum of 1
2

2

2

2

=−
b

y

a

x
. 

 

77.  Confocal hyperbolas have the same foci.  Show that, for 0 < k < 6, all hyperbolas of 

the form 1
6

22

=
−

−
k

y

k

x
 are confocal. 
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Section 9.3 Parabolas and Non-Linear Systems  

 

To listen for signals from space, a radio telescope uses a dish in the 

shape of a parabola to focus and collect the signals in the receiver.  

 

While we studied parabolas earlier when we explored quadratics, at the 

time we didn’t discuss them as a conic section.  A parabola is the 

shape resulting from when a plane parallel to the side of the cone 

intersects the cone6. 

 
 

 

Parabola Definition and Vocabulary 

A parabola with vertex at the origin can be defined by placing a fixed point at 

( )pF ,0   called the focus, and drawing a line at py −= , called the directrix.  The 

parabola is the set of all points ( )yxQ ,  that are an equal distance between the fixed 

point and the directrix. 

         

For general parabolas, 

The axis of symmetry is the line passing through the foci, perpendicular to the 

directrix.   

The vertex is the point where the parabola crosses the axis of symmetry. 

The distance from the vertex to the focus, p, is the focal length. 

                                                 
6 Pbroks13 (https://commons.wikimedia.org/wiki/File:Conic_sections_with_plane.svg), “Conic sections 

with plane”, cropped to show only parabola, CC BY 3.0 

x

y 

(0,p) 

y=-p 

Q 

x 

y 

Focus 

Directrix Vertex 

Axis of 

symmetry 
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Equations for Parabolas with Vertex at the Origin 

 

From the definition above we can find an equation of a parabola.  We will find it for a 

parabola with vertex at the origin, ( )0,0C , opening upward with focus at ( )pF ,0  and 

directrix at py −= . 

 

Suppose ( )yxQ ,  is some point on the parabola.  The distance from Q to the focus is 

( ) ( ) ( ) ( )   0,
2222

pyxpyxFQd −+=−+−=  

 

The distance from the point Q to the directrix is the difference of the y-values: 

 pypyd +=−−= )(  

 

From the definition of the parabola, these distances should be equal: 

( ) pypyx +=−+  
22

    Square both sides  

( ) ( )222
pypyx +=−+     Expand 

22222 22 ppyyppyyx ++=+−+    Combine like terms 

pyx 42
=  

 

This is the standard conic form of a parabola that opens up or down (vertical axis of 

symmetry), centered at the origin.  Note that if we divided by 4p, we would get a more 

familiar equation for the parabola, 
p

x
y

4

2

= .  We can recognize this as a transformation of 

the parabola 2
xy = , vertically compressed or stretched by 

p4

1
. 

 

Using a similar process, we could find an equation of a parabola with vertex at the origin 

opening left or right. The focus will be at (p,0) and the graph will have a horizontal axis 

of symmetry and a vertical directrix.  The standard conic form of its equation will be 

pxy 42
= , which we could also write as 

p

y
x

4

2

= . 

 

 

Example 1 

Write the standard conic equation for a parabola with vertex at the origin and focus at 

(0, -2). 

 

With focus at (0, -2), the axis of symmetry is vertical, so the standard conic equation is 

pyx 42
= .  Since the focus is (0, -2), p = -2. 

 

The standard conic equation for the parabola is yx )2(42
−= , or 

yx 82
−=  
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For parabolas with vertex not at the origin, we can shift these equations, leading to the 

equations summarized next. 

 

 

Equation of a Parabola with Vertex at (h, k) in Standard Conic Form 

The standard conic form of an equation of a parabola with vertex at the point ( )kh,  

depends on whether the axis of symmetry is horizontal or vertical.  The table below 

gives the standard equation, vertex, axis of symmetry, directrix, focus, and graph for 

each. 

 

 

 

 

Since you already studied quadratics in some depth earlier, we will primarily explore the 

new concepts associated with parabolas, particularly the focus. 

 

 

 

 

 Horizontal Vertical 

Standard 

Equation 
( ) ( )hxpky −=− 4

2
 ( ) ( )kyphx −=− 4

2
 

Vertex (h, k) (h, k) 

Axis of 

symmetry 
y = k x = h 

Directrix x = h - p y = k - p 

Focus (h + p, k) 
(h, k + p) 

 

 

Graph 

 

An example with p < 0 

 

An example with p > 0 

 

 

x 

y 

(h+p,k) 

x=h-p 

(h,k) y=k 

x 

y 

(h,k+p) 

y=k-p 
(h,k) 

x=h 



620     Chapter 9 

 

Example 2 

Put the equation of the parabola 2)1(8 2
+−= xy  in standard conic form.  Find the 

vertex, focus, and axis of symmetry.   

 

From your earlier work with quadratics, you may already be able to identify the vertex 

as (1,2), but we’ll go ahead and put the parabola in the standard conic form.  To do so, 

we need to isolate the squared factor. 

2)1(8 2
+−= xy     Subtract 2 from both sides 

2)1(82 −=− xy     Divide by 8 

( ) 2)1(
8

2
−=

−
x

y
 

 

This matches the general form for a vertical parabola, ( ) ( )kyphx −=− 4
2

, where 

8

1
4 =p .  Solving this tells us 

32

1
=p .  The standard conic form of the equation is 

( ) ( )2
32

1
41

2
−








=− yx . 

 

The vertex is at (1,2).  The axis of symmetry is at x = 1. 

The directrix is at 
32

63

32

1
2 =−=y . 

The focus is at 







=








+

32

65
,1

32

1
2,1 . 

 

 

Example 3 

A parabola has its vertex at (1,5) and focus at (3,5).  Find an equation for the parabola. 

 

Since the vertex and focus lie on the line y = 5, that is our axis of symmetry. 

 

The vertex (1,5) tells us h = 1 and k = 5. 

 

Looking at the distance from the vertex to the focus, p = 3 – 1 = 2. 

 

Substituting these values into the standard conic form of an 

equation for a horizontal parabola gives the equation 

( ) ( )1)2(45
2

−=− xy  

( ) ( )185
2

−=− xy  

 

Note this could also be rewritten by solving for x, resulting in 

( ) 15
8

1 2
+−= yx  
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Try it Now 

1. A parabola has its vertex at (-2,3) and focus at (-2,2).  Find an equation for this 

parabola. 

 

 

Applications of Parabolas 

 

In an earlier section, we learned that ellipses have a special property 

that a ray eminating from one focus will be reflected back to the 

other focus, the property that enables the whispering chamber to 

work.  Parabolas also have a special property, that any ray 

eminating from the focus will be reflected parallel to the axis of 

symmetry.  Reflectors in flashlights take advantage of this property 

to focus the light from the bulb into a collimated beam.  The same 

property can be used in reverse, taking parallel rays of sunlight or 

radio signals and directing them all to the focus. 

 

 

Example 4 

A solar cooker is a parabolic dish that reflects the sun’s rays to a central point allowing 

you to cook food.  If a solar cooker has a parabolic dish 16 inches in diameter and 4 

inches tall, where should the food be placed? 

 

We need to determine the location of the focus, since 

that’s where the food should be placed.  Positioning the 

base of the dish at the origin, the shape from the side 

looks like: 

 

The standard conic form of an equation for the parabola would be pyx 42
= .  The 

parabola passes through (4, 8), so substituting that into the equation, we can solve for p: 

)4)((482
p=  

4
16

82

==p  

 

The focus is 4 inches above the vertex.  This makes for a very convenient design, since 

then a grate could be placed on top of the dish to hold the food. 

 

 

Try it Now 

2. A radio telescope is 100 meters in diameter and 20 meters deep.  Where should the 

receiver be placed? 

 

 

 

x

y 

4 

8 
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Non-Linear Systems of Equations 

 

In many applications, it is necessary to solve for the intersection of two curves.  Many of 

the techniques you may have used before to solve systems of linear equations will work 

for non-linear equations as well, particularly substitution.  You have already solved some 

examples of non-linear systems when you found the intersection of a parabola and line 

while studying quadratics, and when you found the intersection of a circle and line while 

studying circles. 

 

 

Example 4 

Find the points where the ellipse 1
254

22

=+
yx

 intersects the circle 922
=+ yx . 

 

To start, we might multiply the ellipse equation by 100 on both sides to clear the 

fractions, giving 100425 22
=+ yx . 

 

A common approach for finding intersections is substitution.  With these equations, 

rather than solving for x or y, it might be easier to solve for 
2

x  or 2
y .  Solving the 

circle equation for 
2

x  gives 22 9 yx −= .  We can then substitute that expression for 
2

x  

into the ellipse equation. 

 

100425 22
=+ yx     Substitute 22 9 yx −=  

( ) 1004925 22
=+− yy    Distribute 

100425225 22
=+− yy    Combine like terms 

12521 2
−=− y     Divide by -21 

21

1252
=y      Use the square root to solve 

21

55

21

125
±=±=y  

 

We can substitute each of these y values back in to 
22 9 yx −=  to find x 

21

64

21

125

21

189

21

125
9

21

125
9

2

2
=−=−=










−=x  

21

8

21

64
±=±=x  

There are four points of intersection: 









±±

21

55
,

21

8
. 
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It’s worth noting there is a second technique we could have used in the previous example, 

called elimination.  If we multiplied the circle equation by -4 to get 3644 22
−=−− yx , 

we can then add it to the ellipse equation, eliminating the variable y. 

100425 22
=+ yx  

3644 22
−=−− yx     Add the left sides, and add the right sides 

6421 2
=x      Solve for x 

21

8

21

64
±=±=x  

 

 

Example 5 

Find the points where the hyperbola 1
94

22

=−
xy

 intersects the parabola 
22xy = . 

 

We can solve this system of equations by substituting 
22xy =  into the hyperbola 

equation.  

1
94

)2( 222

=−
xx

     Simplify 

1
94

4 24

=−
xx

     Simplify, and multiply by 9 

99 24
=− xx       Move the 9 to the left 

099 24
=−− xx  

 

While this looks challenging to solve, we can think of it as a “quadratic in disguise,” 

since 
224 )(xx = .  Letting 

2
xu = , the equation becomes  

099 22
=−−uu      Solve using the quadratic formula 

18

3251

)9(2

)9)(9(4)1()1( 2
±

=
−−−±−−

=u   Solve for x 

18

32512 ±
=x      But 03251 <− , so 

18

3251+
±=x      This leads to two real solutions 

x ≈ 1.028, -1.028 

 

Substituting these into 22xy = , we can find the corresponding y values.   

The curves intersect at the points (1.028, 2.114) and (-1.028, 2.114). 
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Try it Now 

3. Find the points where the line xy 4=  intersect the ellipse 1
164

22

=−
xy

 

 

 

Solving for the intersection of two hyperbolas allows us to utilize 

the LORAN navigation approach described in the last section. 

 

In our example, stations A and B are 150 kilometers apart and 

send a simultaneous radio signal to the ship.  The signal from B 

arrives 0.0003 seconds before the signal from A.  We found the 

equation of the hyperbola in standard form would be 

1
36002025

22

=−
yx

 

 

 

Example 10 

Continuing the situation from the last section, suppose stations C and D are located 200 

km due south of stations A and B and 100 km apart.  The signal from D arrives 0.0001 

seconds before the signal from C, leading to the equation 1
2275

)200(

225

22

=
+

−
yx

.  Find 

the position of the ship. 

 

To solve for the position of the boat, we need to find where the hyperbolas intersect. 

This means solving the system of equations.  To do this, we could start by solving both 

equations for 
2

x .  With the first equation from the previous example, 

1
36002025

22

=−
yx

   Move the y term to the right 

3600
1

2025

22
yx

+=    Multiply both sides by 2025 

3600

2025
2025

2
2 y

x +=   Simplify 

16

9
2025

2
2 y

x +=  

 

With the second equation, we repeat the same process 

1
2275

)200(

225

22

=
+

−
yx

  Move the y term to the right and multiply by 225 

2275

)200(225
225

2
2 +

+=
y

x   Simplify 

A B 

C D 

P 
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91

)200(9
225

2
2 +

+=
y

x  

Now set these two expressions for 
2

x  equal to each other and solve. 

 

91

)200(9
225

16

9
2025

22
+

+=+
yy

   Subtract 225 from both sides 

91

)200(9

16

9
1800

22
+

=+
yy

    Divide by 9 

91

)200(

16
200

22
+

=+
yy

    Multiply both sides by 14569116 =⋅  

22 )200(1691291200 +=+ yy     Expand and distribute 

64000064001691291200 22
++=+ yyy   Combine like terms on one side 

0348800640075 2
=−− yy     Solve using the quadratic formula 

≈
−−−±−−

=
)75(2

)348800)(75(4)6400()6400( 2

y  123.11 km or -37.78 km 

 

We can find the associated x values by substituting these y-values into either hyperbola 

equation.  When y ≈ 123.11,  

16

)11.123(9
2025

2
2

+≈x  

71.102±≈x  

 

When y ≈ -37.78km,  

16

)78.37(9
2025

2
2 −

+≈x  

18.53±≈x  

 

This provides 4 possible locations for the ship. Two can be immediately discarded, as 

they’re on land.  Navigators would use other navigational techniques to decide between 

the two remaining locations.  
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Important Topics of This Section 

Parabola Definition 

Parabola Equations in Standard Form 

Applications of Parabolas 

Solving Non-Linear Systems of Equations 

 

 

Try it Now Answers 

1. Axis of symmetry is vertical, and the focus is below the vertex. 

 p = 2 – 3 = -1.   

( ) ( )3)1(4)2(
2

−−=−− yx , or  ( ) ( )342
2

−−=+ yx . 

 

2. The standard conic form of the equation is pyx 42
= .   

Using (50,20), we can find that )20(4502
p= , so  p = 31.25 meters.   

The receiver should be placed 31.25 meters above the vertex. 

 

3. Substituting xy 4=  gives 
( )

1
164

4 22

=−
xx

. Simplify 

1
164

16 22

=−
xx

.  Multiply by 16 to get  

1664 22
=− xx  

504.0
63

16
±=±=x  

Substituting those into xy 4=  gives the corresponding y values. 

The curves intersect at (0.504, 2.016) and (-0.504, -2.016).   
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Section 9.3 Exercises 

 

In problems 1–4, match each graph with one of the equations A–D. 

A.  xy 42
=   B.  yx 42

=   C.  yx 82
=   D. 042

=+ xy  

 

1.   2.    3.   4.  

    
 

In problems 5–14, find the vertex, axis of symmetry, directrix, and focus of the parabola. 

5.  xy 162
=    6.  yx 122

=   7.  22xy =   8.  
8

2
y

x −=  

 

9.  04 2
=+ yx   10.  08 2

=+ xy   11. )1(8)2( 2
+=− yx  

 

12.  )2(4)3( 2
−=+ xy  13. 4)1(

4

1 2
++= xy   14.  1)1(

12

1 2
++−= yx  

 

In problems 15–16, write an equation for the graph. 

15.      16. 

    
 

In problems 17-20, find the standard form of the equation for a parabola satisfying the 

given conditions. 

17.  Vertex at (2,3), opening to the right, focal length 3  

 

18.  Vertex at (-1,2), opening down, focal length 1 

 

19.  Vertex at (0,3), focus at (0,4) 

 

20.  Vertex at (1,3), focus at (0,3) 
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21.  The mirror in an automobile headlight has a parabolic cross-section with the light 

bulb at the focus. On a schematic, the equation of the parabola is given as  22 4yx = .  

At what coordinates should you place the light bulb? 

 

22.  If we want to construct the mirror from the previous exercise so that the focus is 

located at (0,0.25), what should the equation of the parabola be? 

 

23.  A satellite dish is shaped like a paraboloid of revolution. This means that it can be 

formed by rotating a parabola around its axis of symmetry. The receiver is to be 

located at the focus.  If the dish is 12 feet across at its opening and 4 feet deep at its 

center, where should the receiver be placed? 

 

24.  Consider the satellite dish from the previous exercise.  If the dish is 8 feet across at 

the opening and 2 feet deep, where should we place the receiver? 

 

25.  A searchlight is shaped like a paraboloid of revolution.  A light source is located 1 

foot from the base along the axis of symmetry.  If the opening of the searchlight is 2 

feet across, find the depth. 

 

26.  If the searchlight from the previous exercise has the light source located 6 inches 

from the base along the axis of symmetry and the opening is 4 feet wide, find the 

depth. 

 

In problems 27–34, solve each system of equations for the intersections of the two 

curves. 

 

27. 
1

2

22
=−

=

xy

xy
    28. 

12

1

22
=+

+=

yx

xy
 

 

29. 
14

11

22

22

=−

=+

yx

yx
    30. 

1

42

22

22

=−

=+

xy

yx
 

 

31. 
166 22

2

=−

=

xy

xy
    32. 

1
94

22

2

=+

=

yx

yx

 

 

33. 
14

1

22

22

=−

=−

xy

yx
    34. 

)1(8

)2(4

2

2

+=

−=

yx

yx
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35.  A LORAN system has transmitter stations A, B, C, and D at (-125,0), (125,0),        

(0, 250), and (0,-250), respectively.  A ship in quadrant two computes the difference 

of its distances from A and B as 100 miles and the difference of its distances from C 

and D as 180 miles.  Find the x- and y-coordinates of the ship’s location.  Round to 

two decimal places. 

 

36.  A LORAN system has transmitter stations A, B, C, and D at (-100,0), (100,0),          

(-100, -300), and (100,-300), respectively.  A ship in quadrant one computes the 

difference of its distances from A and B as 80 miles and the difference of its 

distances from C and D as 120 miles.  Find the x- and y-coordinates of the ship’s 

location.  Round to two decimal places. 
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Section 9.4 Conics in Polar Coordinates 

 

In the preceding sections, we defined each conic in a different way, but each involved the 

distance between a point on the curve and the focus.  In the previous section, the parabola 

was defined using the focus and a line called the directrix.  It turns out that all conic 

sections (circles, ellipses, hyperbolas, and parabolas) can be defined using a single 

relationship. 

 

 

Conic Sections General Definition 

A conic section can be defined by placing a fixed point at the origin, ( )0,0F , called 

the focus, and drawing a line L called the directrix at px ±=  or py ±= .  The conic 

section is the set of all points ( )yxQ ,  for which the ratio of the distance from Q to F 

to the distance from Q to the directrix is some positive constant e, called the 

eccentricity.  In other words, 
( )

e
LQd

FQd
=

),(

,
. 

                 
Warning: the eccentricity, e, is not the Euler constant e ≈ 2.71828 we studied with exponentials 

 

 

The Polar Form of a Conic 

 

To create a general equation for a conic section using the definition above, we will use 

polar coordinates.  Represent ( )yxQ ,  in polar coordinates so ( ) ( ))sin(),cos(, θθ rryx = .  

For now, we’ll focus on the case of a horizontal directrix at py −= , as in the picture 

above on the left. 

 

The distance from the focus to the point Q in polar is just r.   

The distance from the point Q to the directrix py −=  is )sin()()sin( θθ rppr +=−−    

 

The ratio of these should be the constant eccentricity e, so 

( )
e

LQd

FQd
=

),(

,
    Substituting in the expressions for the distances, 

e
rp

r
=

+ )sin(θ
 

x

y 

F 

L: y = −p 

Q 

x 

y 

F 

L: x=p 

Q 
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To have a standard polar equation, we need to solve for r.  Start by clearing the fraction.

( ))sin(θrper +=      Distribute 

)sin(θerepr +=      Move terms with r to the left 

eperr =− )sin(θ      Factor the r 

( ) eper =− )sin(1 θ      Divide 

)sin(1 θe

ep
r

−
=  

 

 

We could repeat the same approach for a directrix at py =  and for vertical directrices to 

obtain the polar equations below. 

 

 

Polar Equation for a Conic Section 

A conic section with a focus at the origin, eccentricity e, and directrix at px ±=  or 

py ±=  will have polar equation: 

)sin(1 θe

ep
r

±
=   when the directrix is py ±=  

 

)cos(1 θe

ep
r

±
=   when the directrix is px ±=  

 

 

Example 1 

Write the polar equation for a conic section with eccentricity 3 and directrix at 2=x . 

 

We are given e = 3 and p = 2.  Since the directrix is vertical and at a positive x value, we 

use the equation involving cos with the positive sign. 

 

)cos(31

6

)cos(31

)2)(3(

θθ +
=

+
=r  

 

Graphing that using technology reveals it’s an equation for a 

hyperbola.  

 

 

 

Try it Now 

1. Write a polar equation for a conic with eccentricity 1 and directrix at 3−=y . 
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Relating the Polar Equation to the Shape 

 

It was probably not obvious to you that the polar equation in the last example would give 

the graph of a hyperbola.  To explore the relationship between the polar equation and the 

shape, we will try to convert the polar equation into a Cartesian one.  For simplicity, we 

will consider the case where the directrix is 1=x .  

 

)cos(1 θe

e
r

+
=     Multiply by the denominator 

( ) eer =+ )cos(1 θ     Rewrite 
r

x
=)cos(θ  

e
r

x
er =








+1      Distribute 

eexr =+      Isolate r 

exer −=      Square both sides 

( )22
exer −=      Rewrite 222

yxr +=  and expand 
222222 2 xexeeyx +−=+    Move variable terms to the left 

222222 2 eyxexex =+−+    Combine like terms 
22222 2)1( eyxeex =++−  

 

We could continue, by completing the square with the x terms, to eventually rewrite this 

in the standard form as 1
1

1

)1( 2

2

2
2

2

2

2

22

=






 −
+









−
−







 −
y

e

e

e

e
x

e

e
, but happily there’s no 

need for us to do that. 

 

In the equation 22222 2)1( eyxeex =++− , we can see that: 

When e < 1, the coefficients of both 
2

x  and 2
y  are positive, resulting in ellipse. 

When e > 1, the coefficient of 
2

x  is negative while the coefficient of 2
y  is positive, 

resulting in a hyperbola. 

When e = 1, the 
2

x  will drop out of the equation, resulting in a parabola. 

 

 

Relation Between the Polar Equation of a Conic and its Shape 

For a conic section with a focus at the origin, eccentricity e, and directrix at px ±=  

or py ±= , 

 

when 0 < e < 1, the graph is an ellipse 

when e = 1, the graph is a parabola 

when e > 1, the graph is a hyperbola 
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Taking a more intuitive approach, notice that if e < 1, the denominator  

)cos(1 θe+  will always be positive and so r will always be positive.  

This means that the radial distance r is defined and finite for every 

value of θ, including 
2

π
, with no breaks.  The only conic with this 

characteristic is an ellipse.  

 

 

If e = 1, the denominator will be positive for all values of θ, except 

π−  where the denominator is 0 and r is undefined.  This fits with a 

parabola, which has a point at every angle except at the angle pointing 

along the axis of symmetry away from the vertex.  

 

 

 

If e > 1, then the denominator will be zero at two angles other 

than 
2

π
± , and r will be negative for a set of θ values.  This 

division of positive and negative radius values would result in 

two distinct branches of the graph, fitting with a hyperbola. 

 

 

 

Example 2 

For each of the following conics with focus at the origin, identify the shape, the 

directrix, and the eccentricity. 

a.  
)sin(21

8

θ−
=r   b.  

)cos(23

6

θ−
=r   c.  

)sin(55

8

θ+
=r  

 

a.  This equation is already in standard form 
)sin(1 θe

ep
r

±
=  for a conic with horizontal 

directrix at py −= .   

The eccentricity is the coefficient of )sin(θ , so e = 2.   

Since e = 2 > 1, the shape will be a hyperbola. 

 

Looking at the numerator, ep = 8, and substituting e = 2 gives p = 4.  The directrix is 

4−=y . 

 

 

 

 

 

 

r < 0 

 

r > 0 
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b.  This equation is not in standard form, since the constant in the denominator is not 1.  

To put it into standard form, we can multiply the numerator and denominator by 1/3. 

 

( ) )cos(
3

2
1

2

3

1
)cos(23

3

1
6

3

1
3

1

)cos(23

6

θθ
θ

−

=









−










=⋅
−

=r  

 

This is the standard form for a conic with vertical directrix px −= .  The eccentricity is 

the coefficient on )cos(θ , so 
3

2
=e .   

Since 0 < e < 1, the shape is an ellipse. 

 

Looking at the numerator, ep = 2, so 2
3

2
=p , giving p = 3. The directrix is 3−=x . 

 

c.  This equation is also not in standard form.  Multiplying the numerator and 

denominator by 1/5 will put it in standard form. 

( ) )sin(1

5

8

5

1
)sin(55

5

1
8

5

1
5

1

)sin(55

8

θ
θ

θ +
=









+










=⋅
+

=r  

 

This is the standard form for a conic with horizontal directrix at py = . 

The eccentricity is the coefficient on )sin(θ , so e = 1.  The shape will be a parabola. 

 

Looking at the numerator, 
5

8
=ep .  Since e = 1, 

5

8
=p .  The directrix is 

5

8
=y .   

 

Notice that since the directrix is above the focus at the origin, the parabola will open 

downward. 

 

 

Try it Now 

2. Identify the shape, the directrix, and the eccentricity of  
)cos(24

9

θ+
=r  

 

 

Graphing Conics from the Polar Form 

 

Identifying additional features of a conic in polar form can be challenging, which makes 

graphing without technology likewise challenging.  We can utilize our understanding of 

the conic shapes from earlier sections to aid us. 
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Example 3 

Sketch a graph of 
)sin(5.01

3

θ−
=r  and write its Cartesian equation. 

 

This is in standard form, and we can identify that 5.0=e , so the shape is an ellipse. 

From the numerator, 3=ep , so 35.0 =p , giving p = 6.  The directrix is 6−=y . 

 

To sketch a graph, we can start by evaluating the function at a few convenient θ values, 

and finding the corresponding Cartesian coordinates. 

 

0=θ   3
1

3

)0sin(5.01

3
==

−
=r    )0,3(),( =yx  

2

π
θ =  6

5.01

3

2
sin5.01

3
=

−
=









−

=
π

r   )6,0(),( =yx  

πθ =  3
1

3

)sin(5.01

3
==

−
=

π
r    )0,3(),( −=yx  

2

3π
θ =  2

5.01

3

2

3
sin5.01

3
=

+
=









−

=
π

r   )2,0(),( −=yx  

 

Plotting these points and remembering the origin is one of the 

foci gives an idea of the shape, which we could sketch in.  To 

get a better understanding of the shape, we could use these 

features to find more.   

 

The vertices are at (0, -2) and (0, 6), so the center must be 

halfway between, at 






 +−

2

62
,0  = (0, 2).  Since the vertices are 

a distance a from the center, a = 6 – 2 = 4. 

 

One focus is at (0, 0), a distance of 2 from the center, so c = 2, and the other focus must 

be 2 above the center, at (0, 4).  

 

We can now solve for b:  
222

cab −= , so 1024 222
=−=b , hence 10±=b .  The 

minor axis endpoints would be at ( )2,10−  and ( )2,10 . 

 

We can now use the center, a, and b to write the Cartesian equation for this curve: 

1
16

)2(

10

22

=
−

+
yx
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Try it Now 

3. Sketch a graph of   
)cos(21

6

θ+
=r  and identify the important features. 

 

 

Important Topics of This Section 

Polar equations for Conic Sections 

Eccentricity and Directrix 

Determining the shape of a polar conic section 

 

 

Try it Now Answers 

1. 
)sin(1

)3)(1(

θ−
=r .   

)sin(1

3

θ−
=r  

 

2. We can convert to standard form by multiplying the top and bottom by 
4

1
.   

)cos(
2

1
1

4

9

θ+

=r .  Eccentricity = 
2

1
, so the shape is an ellipse.  

The numerator is 
4

9

2

1
== pep .  The directrix is 

2

9
=x . 

 

3. The eccentricity is e = 2, so the graph of the equation is a hyperbola.  The directrix is 

3=x .  Since the directrix is a vertical line and the focus is at the origin, the hyperbola 

is horizontal. 

0=θ  2
21

6

)0cos(21

6
=

+
=

+
=r   )0,2(),( =yx  

2

π
θ =  6

1

6

2
cos21

6
==









+

=
π

r   )6,0(),( =yx  

πθ =  6
21

6

)cos(21

6
−=

−
=

+
=

π
r   )0,6(),( =yx  

2

3π
θ =  6

1

6

2

3
cos21

6
==









+

=
π

r   )6,0(),( −=yx  
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Plotting those points, we can connect the three on the left 

with a smooth curve to form one branch of the hyperbola, 

and the other branch will be a mirror image passing through 

the last point. 

 

The vertices are at (2,0) and (6,0). 

 

The center of the hyperbola would be at the midpoint of the 

vertices, at (4,0).   

The vertices are a distance a = 2 from the center.   

The focus at the origin is a distance c = 4 from the center.   

Solving for b, 1224 222
=−=b .  3212 ±=±=b .   

 

The asymptotes would be ( )43 −±= xy . 

 

The Cartesian equation of the hyperbola would be: 

( )
1

124

4 22

=−
− yx
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Section 9.4 Exercises 

 

In problems 1–8, find the eccentricity and directrix, then identify the shape of the conic. 

 

1.  
)cos(31

12

θ+
=r     2.  

)sin(1

4

θ−
=r  

 

3.  
)sin(34

2

θ−
=r     4.  

)cos(2

7

θ−
=r  

 

5.  
)cos(55

1

θ−
=r     6.  

)cos(83

6

θ+
=r  

 

7.  
)cos(27

4

θ+
=r     8.  

)sin(34

16

θ+
=r  

 

 

In problems 9–14, find a polar equation for a conic having a focus at the origin with the 

given characteristics. 

 

9.  Directrix x = −4, eccentricity e = 5. 10.  Directrix y = −2, eccentricity e = 3. 

 

11.  Directrix y = 3, eccentricity e = 
3

1
. 12.  Directrix x = 5, eccentricity e = 

4

3
. 

 

13.  Directrix y = −2, eccentricity e = 1. 14.  Directrix x = −3, eccentricity e = 1. 

 

 

In problems 15–20, sketch a graph of the conic.  Use the graph to help you find important 

features and write a Cartesian equation for the conic. 

 

15.  
)cos(21

9

θ−
=r     16.  

)sin(31

4

θ+
=r  

 

17.  
)sin(3

12

θ+
=r     18.  

)cos(23

15

θ−
=r  

 

19.  
)cos(1

6

θ+
=r     20.  

)sin(1

4

θ−
=r  
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21. At the beginning of the chapter, we defined an ellipse as the set of all points Q for 

which the sum of the distance from each focus to Q is constant.  Mathematically, 

( ) ( ) kFQdFQd =+ 21 ,, .  It is not obvious that this definition and the one provided in 

this section involving the directrix are related.  In this exercise, we will start with the 

definition from this section and attempt to derive the earlier formula from it. 

 

a. Draw an ellipse with foci at ( )0,c  and ( )0,c− , vertices at ( )0,a  and ( )0,a− , and 

directrixes at px =  and px −= .  Label the foci 1F  and 2F .  Label the directrixes 

1L  and 2L .  Label some point ( )yx,  on the ellipse Q. 

 

b. Find formulas for ( )1, LQd  and ( )2, LQD  in terms of x and p.  

c. From the definition of a conic in this section, 
( )
( )

e
LQd

FQd
=

1

1

,

,
.  Likewise, 

( )
( )

e
LQd

FQd
=

2

2

,

,
 

as well.  Use these ratios, with your answers from part (b) above, to find formulas 

for ( )1, FQd  and ( )2, FQD  in terms of e, x, and p. 

 

d. Show that the sum, ( ) ( )21 ,, FQdFQd + , is constant.  This establishes that the 

definitions are connected. 

 

e. Let Q be a vertex. Find the distances ( )1, FQd  and ( )2, FQD  in terms of a and c. 

Then combine this with your result from part (d) to find a formula for p in terms 

of a and e. 

 

f. Let Q be a vertex. Find the distances ( )2, LQD  and ( )2, FQD  in terms of a, p, and c. 

Use the relationship  
( )
( )

e
LQd

FQd
=

2

2

,

,
, along with your result from part (e), to find a 

formula for e in terms of a and c. 

 

 

22. When we first looked at hyperbolas, we defined them as the set of all points Q for 

which the absolute value of the difference of the distances to two fixed points is 

constant.  Mathematically, ( ) ( ) kFQdFQd =− 21 ,, .  Use a similar approach to the one 

in the last exercise to obtain this formula from the definition given in this section.  

Find a formula for e in terms of a and c. 
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Solutions to Selected Exercises 

Chapter 1 

Section 1.1 

1. a. ( )40 13f =    

    b. 2 Tons of garbage per week is produced by a city with a population of 5,000. 
3. a. In 1995 there are 30 ducks in the lake  
    b. In 2000 there are 40 ducks in the late 
5. a ,b, d, e   7. a, b   9. a, b, d 

11. b    13. b, c, e, f  15. ( ) ( )1 1,   3 1f f= =  

17. ( ) ( )2 4,    3 2g g= − =     19. ( ) ( )3 53,   2 1f f= =  

  ( )2f −   ( )1f −   ( )0f   ( )1f   ( )2f  

21. 8 6 4 2 0 

23.  49 18 3 4 21 

25.  4 -1 0 1 -4 

27. 4 4.414 4.732 5 5.236 

29. -4 -6 -6 -4 0 

31.  5 DNE -3 -1 -1/3 

33.  1/4 1/2 1 2 4 

 

35. a. -6  b.-16    37. a. 5  b. 
5

3
−  

39. a. iii  b. viii c. I d. ii e. vi f. iv g. v  h. vii 

41. a. iv b. ii c. v d. I e. vi f. iii 

43. 36)9()3( 22 =++− yx  

45. (a) (b)  (c) 

                

47a.  t  b. a  c. r  d. L: (c, t)  and K: (a, p) 
 
 
 
 
 

h
ei

g
h

t 

age 

h
ei

g
h

t 
 o

f 
h

ea
d
 

time 

p
o

st
a

g
e 

weight 
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Section 1.2 

1. D: [-5, 3)     R: [0,2]  3. D: 2 8t< ≤   R: ( )6 8g t≤ <  

5. D: [0,4]  R: [-3, 0]  7. ),2[ ∞   9. ]3,(−∞             

11. ( )∞−∞ ∪ ,6 ) 6,(     13. 







∞−−−∞ ∪ ,

2

1
 ) 

2

1
,(    

15. [ ) ( )4, 4   4,− ∞∪     17. ( ) ( )∞−−−∞ ∪∪ ,2 2,11 ) 11,(  

 

 ( )1f −  ( )0f  ( )2f  ( )4f  

19.  -4 6 20 34 

21. -1 -2 7 5 

23.  -5 3 3 16 

 

25. ( )








≤<−

≤<−−

−≤≤−

=   

 42 4

212

1 62

xif

xif

xif

xf   27. ( ) 2

3          0

         0

if x
f x

x if x

≤
= 

>
 

29. ( )







≥

<
=

0         

0          
1

xifx

xif
xxf   

31.  33.   

35.  

 

Section 1.3 

1. a) 6 million dollars per year   b) 2 million dollars per year    

3. 
3

1

14

54
−=

−

−
    5. 6 
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7. 27     9. 
27

352
 

11. 4b+4    13. 3 

15. 
16913

1

+
−

h
   17. 2399 hh ++  

19. hx 24 +  

21.  Increasing: ( )2,5.1− .  Decreasing: ( ) ( )∞∪−∞− ,25.1,  

23. Increasing: ( ) ( )4,31, ∪∞− .  Decreasing: ( ) ( )∞∪ ,43,1  

25.  Increasing, concave up  27.  Decreasing, concave down 

29. Decreasing, concave up  31. Increasing, concave down 

33. Concave up ( )1,∞− .  Concave down ( )∞,1 .  Inflection point at (1, 2) 

35. Concave down ( ) ( )∞∪∞− ,33,  

37. Local minimum at (3, -22).   

Inflection points at (0,5) and (2, -11). 

Increasing on ( )∞,3 .  Decreasing ( )3,∞−  

Concave up ( ) ( )∞∪∞− ,20, .  Concave down ( )2,0  

 

39.  Local minimum at (-2, -2) 

Decreasing ( )2,3 −−  

Increasing ( )∞− ,2  

Concave up ( )∞− ,3  

 

 

41. Local minimums at (-3.152, -47.626)  

    and (2.041, -32.041) 

Local maximum at (-0.389, 5.979) 

Inflection points at (-2, -24) and (1, -15) 

Increasing ( ) ( )∞∪−− ,041.2389.0,152.3  

Decreasing ( ) ( )041.2,389.0152.3, −∪−∞−  

Concave up ( ) ( )∞∪−∞− ,12,  

Concave down ( )1,2−  
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Section 1.4 

1. 36))0(( =gf .  57))0(( −=fg  

3. 4))0(( =gf .  4))0(( =fg  

5. 4 7. 9 9. 4 11. 7 13. 0 15. 4 17. 3 19. 2  

21. ( )( )
7

x
f g x =    ( )( ) 7 36g f x x= −  

23. ( )( ) 3+= xxgf    ( )( ) 2 3g f x x= +  

25. ( )( ) 5 1f g x x= +    ( )( ) 5 1g f x x= +  

27. ( )( )( ) ( )
4

6 6f g h x x= − +  

29. b     31a. ( )( )
( )

3
3 10 20

4

t
r V t

π

+
=  b. 4.609in 

33. ( )∞,0   35. ( )∞∪







∪







∞− ,11,

3

1

3

1
,    37. [ ) ( )∞∪ ,55,2  

39. ( ) ( ) 22, g x x f x x= + =   41. ( ) ( )
3

, 5f x g x x
x

= = −  

43. ( ) ( )3 , 2f x x g x x= + = − , or ( ) ( ) 2, 3 −=+= xxgxxf  

45a.  ( )( ) ( ) ( ) ( )2
f f x a ax b b a x ab b= + + = + +       

     b. ( )
16

8
6 

+
−= xxg  or ( )

61

8
6 

−
−−= xxg  

47a. ( )( )

2

2

70
60

10
60

s

C f s
s

 
 
 =
 

+  
 

  b. ( )( )
( )

( )

2

2

70 60

10 60

h
C g h

h
=

+
  

     c. ( )( )
2

2

5280 70

3600 10

m
v C m

m

 
=  

+ 
 

 



645 

Section 1.5 

1. Horizontal shift right 49 units  3. Horizontal shift left 3 units 

5. Vertical shift up 5 units   7. Vertical shift down 2 units 

9. Horizontal shift right 2 units, Vertical shift up 3 units 

11. ( ) 12  12 ++=++ xxf   13. ( ) 4
3

1
 43 −

−
=−−

x
xf  

15. ( ) ( ) ( ) ( )1 ,      1g x f x h x f x= − = +  

17.   19.  

21.       23.  

 

25. 3 2y x= − −    27. 3 1y x= + −   29. y x= −   

   

31.  

33a. ( ) 6 xf x −− − = −   b. ( ) 22 3 6 3xf x +− + − = − −  

35. ( )
2

1 2y x= − + +    37. 1y x= − +  

39a. Even b. Neither c. Odd 
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41. Reflect f(x) about the x-axis  

43. Vertically stretch y values by 4 

45. Horizontally compress x values by 1/5  

47. Horizontally stretch x values by 3 

49. Reflect f(x) about the y-axis and vertically stretch y values by 3 

51. ( )4 4f x x− = −  

53. ( )
( )

2

1 1
2 3 3

3 3 2
f x

x
+ − = −

+
 

55. ( )( ) ( )( ) 152152
2

+−=+− xxf  

57. Horizontal shift left 1 unit, vertical stretch y values by 4, vertical shift down 5 units    

  becomes   

59. Horizontal shift right 4 units, vertical stretch y values by 2, reflect over x axis, 
vertically shift up 3 units. 

 becomes       

61. Vertically compress y values by ½  
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 becomes  

63. Horizontally stretch x values by 3, vertical shift down 3 units 

   becomes    

65. Reflected over the y axis, horizontally shift right 4 units  ( ) ( )4a x x= − −  

  becomes  

67. This function is increasing on ),1( ∞−  and decreasing on )1,( −−∞  

69. This function is decreasing on )4,(−∞  

71. This function is concave down on ),3( ∞− and concave up on )3,( −−∞  

73. This function is concave up everywhere 

75. ( )xf −    77. ( )xf3    79. ( )xf −2  

81. 







xf

2

1
2    83. ( ) 22 −xf    85. ( ) 31 ++− xf  

87. ( )
2

2 2 3y x= − + +   89. ( )
3

1
1 2

2
y x

 
= − + 
 

 91. ( ) 122 ++= xy  
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93. 
( )

2

1
3

2
y

x

−
= +

−
  95. 2 1 3y x= − + +   97. ( ) 12

2

1
3 +−−= xy  

99. ( )







−>+−

−≤++
=

2      32
2

1
   2       1)3( 2

xifx

xifx
xf   

101. ( )








>+−

≤≤−++−

−<

=   

1 12

124)1(2

21

3

2

xifx

xifx

xif

xf  

103a. : 3.5 6Domain x≤ ≤   d. : 9 7Range y− ≤ ≤  

 

Section 1.6 

1. 6  3. -4  5. ½    

7a. 3  b. 2  c. 2  d. 3 

9a. 0  b. 7  c. 1  d. 3 

11.    

 x  1 4 7 12 16 

xf (1− ) 3 6 9 13 14 

 

13. ( )1 3f x x− = −   15. ( )1 2f x x− = − +   17. ( )1 7

11

x
f x

− −
=  

19. Restricted domain ( )17, 7x f x x
−≥ − = −  

21. Restricted domain ( )10,  5x f x x
−≥ = +  

 23a. ( )( ) ( )
3

3 5 5f g x x x= + − =  b. ( )( ) xxxfg =+−= 3 3 55  

     c. This means that they are inverse functions (of each other) 
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Chapter 2 

Section 2.1 

1. ( ) 1700 45000P t t= +   3. ( ) 10 2D t t= +   5. ( ) nnM 240 −=    

7. Increasing    9. Decreasing   11. Decreasing 

13. Increasing    15. Decreasing  17. 3   

19. 
1

3
−     21. 

4

5
    23. 

2

3
 

25. - 0.05  mph   (or 0.05 miles per hour toward her home)  

27. Population is decreasing by 400 people per year 

29. Monthly charge in dollars has an initial base charge of $24, and increases by $0.10 

for each minute talked 

31. Terry started at an elevation of 3,000 ft and is descending by 70ft per second. 

33. 1
5

3
−= xy    35. 3 2y x= −    37. 

1 11

3 3
y x= − +  

39. 1.5 3 y x= − −    41. 
2

1
3

y x= +    43. 2 3y x= − +  

45. ( ) 0.004 34P n n= − +  

47.  The 1st ,3rd & 4th tables are linear: respectively   

 53)(. 1 +−= xxg        3. 55)( −= xxf          4. 23)( −= xxk  

49a. 
5 160

9 9
C F= −    b. 

9
32

5
F C= +   c. F°− 4.9  

 

Section 2.2 

1. E     3. D    5. B 

7.   9.   

11.   13.   
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15.   17.    

19.    21.  

23. a. ( ) ( )
3

2 4
4

g x x= + −  b. ¾   c. -5/2 

25. 3y =     

27. 3x = −  

 Vertical Intercept Horizontal Intercept 

29.  (0,2) (2,0) 

31.  (0,-5) (5/3, 0) 

33.  (0,4) (-10,0) 

 

35.  Line 1:   10m = −   Line 2:  10m = −     Parallel 

37.  Line 1:  2 m = −   Line 2:  1m =   Neither 

39.  Line 1:  
2

 
3

m = −   Line 2:  
3

2
m =   Perpendicular 

41. 25 −−= xy   43. 
1

1
2

y t= +     45. (-1,1) 

47. (1.2, 10)   49. Plan B saves money if the miles are 
1

111
9

>  

51. ( )








≤<−

≤≤−−

−<≤−+

=

52                    2

21            1

13          32

xif

xifx

xifx

xf  

 

Section 2.3 

1a. 696 people  b. 4 years   c. 174 people per year 

  d. 305 people  e.  ( ) 305 174P t t= +   f. 2219 people. 
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3a. ( ) 0.15 10C x x= +  

  b. The flat monthly fee is $10 and there is an additional $0.15 fee for each additional 

minute used  

  c. $113.05  

5a. ( ) 190 4170P t t= +  b. 6640 moose 

7a. ( ) 16 2.1R t t= −   b. 5.5 billion cubic feet c. During the year 2017 

9. More than 133 minutes   11. More than  $42,857.14  worth of jewelry 

13. 20.012 square units   15. 6 square units 

17. 
2

2

b
A

m
= −  

19a. Hawaii   b. $80,640   c. During the year 1933 

21. 26.225 miles 

 

Section 2.4 

1.  

3. 1.971 3.519,   0.967y x r= − =  5. 0.901 26.04,   0.968y x r= − + = −  

7. 17.483 17 situps≈    9. D   11. A 

13. Yes, trend appears linear because  r =0.994 and will exceed 35% near the end of the 

year 2019. 

 

Section 2.5 

1. 12
2

1
 ++= xy    3.  3 3 3y x= − − +  

5.  7.  9.  

0

10

20

30

40

50

60

0 10 20 30 40 50 60
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11. 
9 13

     
5 5

x or x= − =   13. 
1 15

     
2 2

x or x= =  

15. 
5 1

     
3 3

x or x= − = −  

 Horizontal Intercepts Vertical Intercept 

17. (-6, 0 )  and (4, 0) (0, -8) 

19. none (0, -7) 

 

21.  11 1x− < <   or )1,11(−  

23.  5 ,  1x x≥ ≤ −   or ),5[]1,( ∞∪−−∞  

25. 
13 5

3 3
x− < < −  or )

3

5
,

3

13
( −−  

 

Chapter 3 

Section 3.1 

1. As ∞→∞→ )(,   xfx  As ∞→−∞→ )(,   xfx  

3. As ∞→∞→ )(,   xfx   As ( ) −∞→−∞→ xfx ,    

5. As ( ) −∞→∞→ xfx ,    As ( ) −∞→−∞→ xfx ,    

7. As ( ) −∞→∞→ xfx ,    As ∞→−∞→ )(,  xfx  

9. 7th Degree, Leading coefficient 4 
11. 2nd Degree, Leading coefficient -1 
13. 4th Degree, Leading coefficient -2 
15. 3rd Degree, Leading coefficient 6 

17. As ( ) −∞→∞→ xfx ,    As ( ) −∞→−∞→ xfx ,    

19. As ∞→∞→ )(,   xfx  As ∞→−∞→ )(,   xfx  

21. intercepts: 5, turning points: 4   23. 3   
25. 5   27. 3  29. 5 
31. Horizontal Intercepts (1,0), (-2, 0), (3, 0)        Vertical Intercept (0, 12) 
33. Horizontal Intercepts (1/3, 0) (-1/2, 0)            Vertical Intercept (0, 2) 

Section 3.2 

1. ( ) ( ) 32
2

−−= xxf   3. ( ) ( ) 722
2

+−−= xxf  5. ( ) ( )
21

3 1
2

f x x= − −  

 

 Vertex Vertical Intercept Horizontal Intercepts 

7.   ( )2.5, 0.5− −   (0,12)  (-2, 0)         (-3, 0) 

9.   ( )2.5, 8.5−    (0,4) (0.438, 0)     (4.562,0) 

11.  ( )0.75,1.25    (0,-1) (0.191, 0)     (1.309, 0) 
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13. ( ) ( )
2

6 4f x x= − −  15. ( ) ( ) 1822
2

−+= xxf  17. b = 32 and c = -39 

19. ( ) ( )( )13
3

2
−+−= xxxf      21. ( ) ( )( )

3
2 5

5
f x x x= − −  

23. ( ) ( )
21

4
4

f x x= − −      25. ( ) ( )
21

3 2
9

f x x= − + +  

27a. 234m  b. 2909.561 ft  c. 47.735 seconds 
29a. 3 ft  b. 111 ft  c. 72.497 ft 
31. 24.91 in by 24.91 in 

33. 125 ft  by 
1

83  
3

ft  

35. 24.6344 cm 
37. $10.70 
 

Section 3.3 

C(t) C, 
intercepts 

t, intercepts 

1.  (0,48) (4,0), (-1,0), (6,0) 

3. (0,0) (0,0), (2,0), (-1,0) 

5.  (0,0) (0,0), (1,0), (3,0) 

 
7. (-1.646, 0) (3.646, 0) (5,0) 

9.    As ( ) ( ) −∞→−∞→∞→∞→ thttht ,           ,    

11.  As ( ) ( ) −∞→−∞→−∞→∞→ tpttpt ,           ,    

13.  15.  

17.  
19. (3, )∞      21. ( ) ( )3,12, ∪−∞−  
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23. [3.5,6]      25. ( ] [ ),1 4,−∞ ∞∪  

27. [ )∞∪−− ,3]2,2[     29. ( ) ( ), 4 4, 2 (2, )−∞ − − ∞∪ ∪  

31. ( )( )( )
2

2 1 3
3

y x x x= − + − −   33. ( ) ( )33)1(
3

1 22 +−−= xxxy  

35. ( ) ( )
2 3

15 1 3y x x= − − −    37. ( )( )( )
1

2 1 3
2

y x x x= + − −  

39. )2()1( 2 −+−= xxy    41. ( )( )( )( )
1

3 2 2 4
24

y x x x x= − + + − −         

43. ( )( )( )2
324

24

1
−++= xxxy   45. ( ) ( )22

32
12

1
−+= xxy    

47. ( )( )( )
31

3 2 1
6

y x x x= + + −   49. ( ) ( ) ( ) ( )
21

3 1 2 4
16

y x x x x= − + + − −  

51. Base 2.58,  Height 3.336 
 

Section 3.4 

1. 4415)3)(4(=134 2 ++−−+ xxxx  

3. ( )( ) 71)(1218354=1235 22234 ++−−+−+− xxxxxxx  

5. 
8

283

8

81

4

27

2

9
3)(2=59 23 +








++−+ xxxx  

7. ( ) ( ) 21)(31=123 2 ++−+− xxxx  

9. ( ) ( ) 52)2(1=243 2 +−−+−− xxxx  

11. ( ) ( )( ) 0422=8 23 ++−++ xxxx  

13. ( ) 015)(18
3

5
=251518 2 ++








−−− xxxx  

15. ( ) ( ) 022
2

1
=122 223 ++








++++ xxxxx  

17. ( )
4

1

2

5
2

2

1
=132 23 −








−+








−+− xxxxx  

19. ( ) ( )( ) 033333=96 2324 +−−+−+− xxxxxx  

21. 3)2)(1)((=6116 23 −−−−+− xxxxxx  

23. 223 1)(
3

2
3=243 +








−−−+ xxxxx  

25. )3)(32)((=632 23 −++−−+ xxxxxx  

27. 2

2

234 3)(
2

1
4=94261284 −








−+−+− xxxxxx  
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Section 3.5 

1.  All of the real zeros lie in the interval 7,7][−   

- Possible rational zeros are 1± , 2± , 3±   

 

3.  All of the real zeros lie in the interval 13,13][−   

- Possible rational zeros are 1± , 2± , 3± , 4± , 6± , 12±   

 

5.  All of the real zeros lie in the interval 8,8][−   

- Possible rational zeros are 1± , 7±   

 

7.  All of the real zeros lie in the interval 3,3][−   

- Possible rational zeros are 
17

1
± , 

17

2
± , 

17

5
± , 

17

10
± , 1± , 2± , 5± , 10±   

9.  All of the real zeros lie in the interval 







−

3

14
,

3

14
  

- Possible rational zeros are 
3

1
± , 

3

2
± , 

3

5
± , 

3

10
± , 1± , 2± , 5± , 10±   

11.  2= −x , 1=x , 3=x  (each has mult. 1)  

13.  2= −x  (mult. 2), 1=x  (mult. 1), 3=x  (mult. 1)  

15.  7=x  (mult. 1)  

17.  
17

5
=x , 2= ±x  (each has mult. 1)  

19.  2= −x , 
6

693
=

±
x  (each has mult. 1)  

21.  0=x , 
18

615
=

±
x  (each has mult. 1)  

23.  3= ±x  (each has mult. 1)  

25.  5= ±x  (each has mult. 1)  

27.  33 2=2= −−x , 3 5=x  (each has mult. 1)  

29.  2=x , 2= ±x  (each has mult. 1)  

31.  4= −x  (mult. 3), 6=x  (mult. 2) 

Section 3.6 

1. 3i       3. 12−  

5. 1 3i+      7. 8 i−  

9. 11 4i− +      11. 12 8i− +  

13. 30 10i−      15. 11 10i+  
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17. 20       19. 
3

2
2

i+  

21. 
3 5

2 2
i+      23. 

1 18

25 25
i− −  

25. ))3(2))(3(2(=134=)( 2
ixixxxxf −−+−+− .    Zeros: ix 32= ±  

27. 



























−−−




























+−−++ ixixxxxf

3

29

3

1

3

29

3

1
3=1023=)( 2 .  Zeros:  ix

3

29

3

1
= ±−  

29. 



























−−−




























+−−+++++++ ixixxxxxxxxxf

2

3

2

1

2

3

2

1
5)(=1)5)((=566=)( 223  

Zeros: ixx
2

3

2

1
=5,= ±−−  

31. ( ) )2)(23)((=43)(=1243=)( 223
ixixxxxxxxxf −+++++++ .   Zeros: ix 23,= ±−  

33. 



























−−−




























+−−+−++

2

29

2

5

2

29

2

5
2)(=297=)( 23 xxxxxxxf  

Zeros: 
2

29

2

5
=2,= ±−− xx  

35. ( ) )3)(3(
2

1
4=124

2

1
=3121344=)(

2

2

2

234
ixixxxxxxxxxf −+








−+








−+−+−  

Zeros: ixx 3=,
2

1
= ±  

37. ( ) )3)(31)(2)((=91)2)((=1897=)( 2234
ixixxxxxxxxxxxf −+−++−+−+++  

Zeros: ix 31,2,= ±−  

39. 

( )



























−−−




























+−−+−−−−+−−−−− ixixxxxxxxxxxf

3

14

3

1

3

14

3

1
1)3(=5231)(=5121283=)( 222234  

Zeros: ixx
3

14

3

1
=1,= ±−−  

41. ( )( ) ( )( )55)2)(2(=54=209=)( 2224
ixixixixxxxxxf +−+−++++  

Zeros: 5,2= iix ±±  

 

 

 

Section 3.7 

1. D   3. A 

  Vertical 
Asymptotes 

Horizontal 
Asymptote 

Vertical  y-
Intercept 

Horizontal x-
intercept 
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5.  4x = −   2y =   (0,-3/4)  (3/2, 0) 

7.  2x =   0y =   (0,1) DNE 

9.  

3

1
1 ,4−=x   

1y =   (0, 5/16) (-1/3, 0),  (5,0) 

11.  1x = − , hole at 
1x =  

1y =   (0,3) (-3, 0) 

13.  4x =   none     
y=2x (oblique) 

(0, ¼) (-1, 0), (1/2, 0) 

15.  4  ,0=x   0y =   DNE (-2, 0), (2/3, 0) 

17. 4  ,2−=x   1y =   (0, -15/16) (1, 0), (-3, 0), (5, 0) 

  

5.  7.   

9.  11.   

13.   15.  
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17.  
 

19. 
( ) ( )

( )( )

50 2 1
 

5 5

x x
y

x x

− +
=

+ −
   21. 

( )( )
( )( )

7 4 6

4 5

x x
y

x x

− +
=

+ +
   

23. 
( )
( )

2
1 2

2 1

x
y

x

−
=

+
    25. 

( )
( )( )

4 3

3 4

x
y

x x

−
=

+ −
    

27. 
( )

( )( )
2

27 2

3 3

x
y

x x

−
=

+ −
                       29. 

( )( )
( )

1 3 2

3 1

x x
y

x

+ −
=

−
 

31. 
( )

( )( )2

2

23

16

−+

−−
=

xx

x
y     33. 

( )( )
( )( )

2 3

3 4

x x
y

x x

−
= −

+ −
   

35. 
( )

( )( )

3

2

2 1

1 2

x
y

x x

−
=

+ −
   37. 

( )( )
( )( )14

24

+−

−−
=

xx

xx
y  

39. 23 −= xy      41. 1
2

1
+= xy  

43. 12 +−= xy  

45. a. 
n

nC
+

=
20

4
)(   b. %33.13)10( ≈C   c. 80 mL  d. as 0, →∞→ Cn  

 

Section 3.8 

1. Domain ( )4,∞      Inverse ( )1 4f x x
− = +  

3. Domain ( ), 0−∞      Inverse ( )1 12f x x
− = − −  

5. Domain ( ),−∞ ∞     Inverse  ( )1 3
1

3

x
f x− −

=  

7. ( )
( )

2

1
9

1
4

x
f x

− −
= +   9. ( )

3

1 9

2

x
f x− − 

=  
 

  11. ( )1 2 8x
f x

x

− −
=

13. ( )1 3 7

1

x
f x

x

− −
=

−
   15. ( )

x

x
xf

43

451

+

−
=−   17. 65.574 mph 

19. 34.073 mph   21. 14.142 feet 
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Chapter 4 

Section 4.1 

1. Linear   3. Exponential    5. Neither 

7. ( ) ( )11,000 1.085
t

P t =   9. 47622 Fox 

11. $17561.70   13. ( )6 5
x

y =     15. ( )2000 0.1
x

y =  

17. ( )3 2
x

y =     19. 

3

5 51 1

6 6

x

y

−
   

=    
   

 = ( )2.93 0.699
x
 21. ( )

1
2

8

x
y =  

23.34.32 mg    25. 1.39%; $155,368.09    27. $4,813.55  

29. Annual $7353.84≈             Quarterly $7,469.63≈   Monthly $7,496.71≈  

     Continuously $7,510.44≈  

31. 3.03%    33. 7.4 years  

35a. ( ) ( ) ( )1.113 1.046
t

w t =  b. $1.11 c. Below what the model predicts $5.70≈  

Section 4.2 

1. B  3.  A   5. E   7. D   9. C 

11.  13.  15.  
 

17. 4 4xy = +    19. 24xy +=     21. 4xy = −  

23. As ( )    x f x→ ∞ → −∞ .  As ( )   1 x f x→ −∞ → −  

25. As ( )     2x f x→ ∞ → −  As ( )    x f x→ −∞ → ∞  

27. As ( )    2x f x→ ∞ →  As ( ) ∞→−∞→ xfx      

29. 1)2(412 2 +−=+−= + xx
y   31. 3)2(2 +−= − x

y     

33. ( ) 732 +−=
x

y    35. 4
2

1
2 −








=

x

y  

 

Section 4.3 

1. 4m
q=     3. c

a b=     5.10t
v=  

7. n
e w=    9. 4log ( )y x=    11. dkc =)(log  

13. log( )b a=    15. ( )ln h k=     17. 9 

19. 1/8    21. 1000   23. 2
e  

25. 2    27. -3    29. ½ 
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31. 4    33. -3    35. -2 

37. -1.398   39. 2.708   41. 
( )
( )

 6397.1
5log

14log
≈    

43. 
( )

1
log

15
1.392

log 7

 
 
  ≈ −  45. 

( )ln 17
0.567

5
≈   47. 

( )
( )

078.2
4

5
3log

38log

≈

+

 

49. 
( )

( )

log 5
54.449

log 1.03
≈  51. 

( )
335.8

04.1log3

3

8
log

≈










 53. 

1
ln

5
13.412

0.12

 
 
  ≈

−
  

55. 

5
log

8
0.678

1
log

2

 
 
  ≈
 
 
 

   57. ( ) 0.0943300 t
f t e

−=   59. ( ) 0.0392210 t
f t e=  

61. ( ) ( )150 1.0618
t

f t =  63. ( ) ( )50 0.98807
t

f t =  65. During the year 2013  

67. During the year 2074  69. 34 hours≈    71. 13.532 years 

 

Section 4.4 

1. ( )3log 4  3. ( )7log3  5. ( )5log3  7. ( )2log 7  9. ( )96log x  

11. ( )7ln 2x    13. ( )( )32log 1x x +   15. 














y

xz
3

log  

17.  ( ) ( ) ( )15log 13log 19 logx y z+ −   19. ( ) ( ) ( )2 ln 4 ln 5lna b c− + −  

21. ( )
3

log 2log( )
2

x y−    23. ( ) ( ) ( )( )
1

ln ln ln 1
2

y y y+ − −  

25. ( ) ( )yx log
3

14
log

3

8
+  

27. 0.717x ≈ −   29. 395.6−≈x   31. 17.329t ≈  

33. 
2

7
x =    35. 0.123x ≈    37. 4.642x ≈  

39. 30.158x ≈   41. 2.889x ≈ − .   43. 6.873x ≈ or 873.0−≈x  

45. 
12

1.091
11

x = ≈   47. 10x =  

 

Section 4.5 

1. Domain: : 5x >  V. A. @ 5x =  

3. Domain: 3x <  V.A. @ 3x =  

5. Domain: 
1

3
x > −  V.A. @ 

1

3
x = −  
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7. Domain: 0<x  V.A. @ 0x =  

9.   11.    

13.   15.  

17.
( )

( )( )1log
2log

1
−−= xy   19. 

( )
( )

3
log 4

log 3
y x= − +   

21. 
( )

( )
3

log 2
log 4

y x= +   23. 
( )

( )( )
2

log 5
log 5

y x= − − −  

 

Section 4.6 

1. ( ) ( )13 0.9195
t

f t = .     2 mg will remain after 22.3098 minutes 

3. ( ) ( )200 0.999564
t

f t = .    ( )1000 129.3311f =  mg 

5. r = -0.06448.   Initial mass: 9.9018 mg.  After 3 days: 0.01648 mg 

7. ( ) ( )250 0.9909
t

f t = .   Half-life = 75.8653 minutes 

9. ( ) ( )0.999879
t

f t a= .   60% (0.60a) would remain after 4222.813 years 

11. ( ) ( )1500 1.02337
t

P t =  (t in minutes).  After 2 hours = 24000.   

        After 100 minutes = 15119 

13. a) 610.5143 (about 611)   b) 25.6427 minutes    c) 10431.21    d) 106.9642 minutes 

15. 23.1914 years 

17. 53.319 hours 

19. ( ) ( )90 0.99166 75
t

T t = + .   a) 134.212 deg   b) 112.743 minutes 
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21. a)   b) 100  c) 269.487  d) 7.324 years 

23. ( )log 0.5x = − .  x = 0.3162  25. ( )log 1.5x = .   x = 31.623 

27.  

29.  63095.7 times more intense 31.  MMS magnitude 5.817 

33. a) about 1640671   b) 1.4 hours  c) No, because ( ) 495105.0693147.0
 042727.2 e≈   

d) Anja’s data predicts a continuous growth rate of 0.4116, which is much smaller 

than the rate 0.495105 you calculated.  Our model would overestimate the number of 

cells. 

35. a) The curve that increases rapidly at first is M(p) 

b) H(100) = 0.9775 

c) Myoglobin: M(20) = 0.9524.  Hemoglobin: H(20) = 0.3242 

d) At 20 torrs: 0.6282.  At 40 torrs: 0.2060.  At 60 torrs: 0.0714 

 Efficiency seems to be maximized at about 8 torr 

37. a) ( ) 1.03526t
C t = , or ( ) 0.03466t

C t e=  

b) Volume of one cell: ( )
3

4 74
50 10 5.236 10

3
π − −× ≈ ×  cm3, so will need about 

61.9099 10×  cells for a volume of 1cm3. ( ) 61.9099 10C t = ×  after 417.3 hours 

39. 31.699 days 

10-6 10-5 10-4 10-3 10-2 10-7 10-8 10-9 10-10 10-1 

Whisper 
Vacuum 

 

Jet 

100 101 102 
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Section 4.7 

1. ( ) ( ) ( )4log3.1log)(log += xxf     3. ( ) ( ) 12.0log)(log += xxf  

     .  

5. x
xx

eeey )6487.1(368.02

1

1
1

2

1

≈== −
−

 

7. xxx
y )1.0(01.0101010 122 === −−−−  

9. ( )776.682 1.426
x

y =   11. x
y )738.0(92.731=  

13. Expenditures are approximately $205  

15. ( )7.599 1.016   0.83064
x

y r= = ,   0.1493 7.4893,  0.81713y x r= + = .  Using the 

better function, we predict electricity will be 11.157 cents per kwh 
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Chapter 5 

Section 5.1 

1. 10      3. ( ) ( )
2 2 28  10  8x y− + + =  

5. ( ) ( )
2 2

7  2  293x y− + + =    7. ( ) ( )
2 2

5  8 1 3x y− + − =  

9.  

11. (0, 3 5)+  and (0, 3 5)−   13. (1.3416407865, 7.683281573) 

15.  (-1.07335, 2.8533)   17. 29.87 miles 

Section 5.2 

1.  
3. π   5. 150°   7. 325° 

9. 54°   11. 
8

9

π
  13. 

2

π
 

15. 35 miles  17. 8π cm  19. 5.7596 miles 

21. 28.6479°  23. 14.1372 cm2 

25. 3960 rad/min    630.254 RPM 

27. 2.094 in/sec,  π/12 rad/sec,  2.5 RPM 

29. 75,398.22 mm/min = 1.257 m/sec 

31. Angular speed: π/12 rad/hr.  Linear speed: 1036.73 miles/hr 

 

 

30° 

70° 

-135° 
300° 

2�

3
 

7�

4
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Section 5.3 

1. a. III   b. II    3. 
4

5
−  

5. 
4 3

7
−     7. 

55

8
−  

9.  a. reference: 45°.  Quadrant III.  ( )
2

sin 225
2

° = − .  ( )
2

cos 225
2

° = −  

b. reference: 60°.  Quadrant IV.  ( )
3

sin 300
2

° = − .  ( )
1

cos 300
2

° =  

c. reference: 45°.  Quadrant II.  ( )
2

sin 135
2

° = .  ( )
2

cos 135
2

° = −  

d. reference: 30°.  Quadrant III.  ( )
1

sin 210
2

° = − .  ( )
3

cos 210
2

° = −  

 

11.  a. reference: 
4

π
.  Quadrant III.  

5 2
sin

4 2

π 
= − 

 
.  

5 2
cos

4 2

π 
= − 

 
 

b. reference: 
6

π
.  Quadrant III.  

7 1
sin

6 2

π 
= − 

 
.  

7 3
cos

6 2

π 
= − 

 
 

c. reference: 
3

π
.  Quadrant IV.  

5 3
sin

3 2

π 
= − 

 
.  

5 1
cos

3 2

π 
= 

 
 

d. reference: 
4

π
.  Quadrant II.  

3 2
sin

4 2

π 
= 

 
.  

3 2
cos

4 2

π 
= − 

 
 

13.  a. 
3 2

sin
4 2

π 
− = − 
 

     
3 2

cos
4 2

π 
− = − 
 

 

b. 
23 1

sin
6 2

π 
= − 

 
     

23 3
cos

6 2

π 
= 

 
 

c. sin 1
2

π 
− = − 
 

     cos 0
2

π 
− = 
 

 

d. ( )sin 5 0π =      ( )cos 5 1π = −  

 

15. a. 
2

3

π
 b. 100°  c. 40°  d. 

5

3

π
  e. 235° 

17. a. 
5

3

π
 b. 280°  c. 220°  d. 

2

3

π
  e. 55° 

19. (-11.491, -9.642) 
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Section 5.4 

1. ( )sec 2θ = , ( )csc 2θ = , ( )tan 1θ = , ( )cot 1θ =  

3. ( )
2 3

sec
3

θ = − , ( )csc 2θ = , ( )
3

tan
3

θ = − , ( )cot 3θ = −  

5. ( )sec 2θ = − , ( )
2 3

csc
3

θ = , ( )tan 3θ = − , ( )
3

cot
3

θ = −  

7.  a. ( )sec 135 2° = −   b. ( )csc 210 2° = −    c. ( )tan 60 3° = .    d. ( )cot 225 1° =  

9. ( )
7

cos
4

θ = − ,  ( )
4 7

sec
7

θ = − , ( )
4

csc
3

θ = , ( )
3 7

tan
7

θ = − , ( )
7

cot
3

θ = −  

11. ( )
2 2

sin
3

θ = − ,  ( )
4

23
csc −=θ , ( ) 3sec −=θ , ( )tan 2 2θ = , ( )

2
cot

4
θ =  

13. ( )
12

sin
13

θ = , ( )
5

cos
13

θ = ,  ( )
13

sec
5

θ = , ( )
13

csc
12

θ =  , ( )
5

cot
12

θ =  

15. a. sin(0.15) = 0.1494    cos(0.15) = 0.9888    tan(0.15) = 0.1511  
b. sin(4) = -0.7568    cos(4) = -0.6536    tan(4) = 1.1578 
c. sin(70°) = 0.9397    cos(70°) = 0.3420    tan(70°) = 2.7475 
d. sin(283°) = -0.9744 cos(283°) = 0.2250 tan(283°) = -4.3315 

17. sec( )t  19. tan( )t  21. tan( )t  23. cot( )t  25. ( )
2

sec( )t  

 

 

Section 5.5 

1. 
( ) ( ) ( )

4

5
tan,

41

414
cos,

41

415
sin === AAA

 

( ) ( ) ( )
5

4
cot,

4

41
csc,

5

41
sec === AAA  

3. 14,  7 3,  60c b B= = = °    5. 5.3171,  11.3257,  28a c A= = = °  

7. 9.0631,  4.2262,  25a b B= = = °   9. 32.4987 ft 

11. 836.2698 ft    13. 460.4069 ft 

15. 660.35 feet    17. 28.025 ft 

19. 143.0427     21. 86.6685 
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Chapter 6 

Section 6.1 

1.    2.  

 

3.    4.  

5. Amp: 3.  Period= 2.  Midline: y= -4.  ( ) ( )3sin 4f t tπ= −  

6. Amp: 2.  Period= 4.  Midline: y= -3.  ( ) 2sin 3
2

f t t
π 

= − 
 

 

7. Amp: 2.  Period= 4π.  Midline: y= 1.  ( )
1

2cos 1
2

f t t
 

= + 
 

 

8. Amp: 3.  Period= π.  Midline: y= -1.  ( ) ( )3cos 2 1f t t= −  

9. Amp: 2.  Period= 5.  Midline: y= 3.  ( )
2

2cos 3
5

f t t
π 

= − + 
 

 

10. Amp: 1.  Period= 3.  Midline: y= -1.  ( )
2

sin 1
3

f t t
π 

= − − 
 

 

11. Amp: 3, Period = 
4

π
, Shift: 4 left, Midline: y = 5 

12. Amp: 4, Period = 4, Shift: 3 right, Midline: y = 7 

13. Amp: 2, Period = 
2

3

π
, Shift: 7 right, Midline: y = 4 
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14. Amp: 5, Period = 
2

5

π
, Shift: 4 left, Midline: y = -2 

15. Amp: 1, Period = 12, Shift: 6 left, Midline: y = -3 

16. Amp: 8, Period = 
12

7
, Shift: 3 left, Midline: y = 6 

17. ( ) ( )4sin 1
5

f x x
π 

= + 
 

 

18. ( ) ( )3sin 1
3

f x x
π 

= + 
 

 

19. ( ) ( )cos 2
5

f x x
π 

= + 
 

 

20. ( ) ( )2cos 1
3

f x x
π 

= − − 
 

 

21. ( ) 50 7 sin
12

D t t
π 

= −  
 

 

22. ( ) 68 12sin
12

D t t
π 

= −  
 

 

23. a. Amp: 12.5.  Midline:  y = 13.5.  Period: 10 

b. ( ) 12.5cos 13.5
5

h t t
π 

= − + 
 

 

c. ( )5 26h =  meters 

24. a. Amp: 17.5.  Midline:  y = 20.5.  Period: 8 

b. ( ) 5.20
4

cos5.17 +







−= tth

π
 

c. ( )4 38h =  meters 

 

Section 6.2 

1. II 

3. I 

5. Period: 
4

π
.  Horizontal shift: 8 right 

7. Period: 8.  Horizontal shift: 1 left 

9. Period: 6.  Horizontal shift: 3 left 
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11.      13.  

 

15.  

17. ( ) 2sec 1 
2

f x x
π 

= − 
 

    19. ( ) 2csc 1
4

f x x
π 

= + 
 

 

21. ( )tan 1.5x− =      23. ( )sec 2x− =  

25. ( )csc 5x− =      27.  ( )csc x−  

 

Section 6.3 

1. 
4

π
   3. 

6

π
−    5. 

3

π
   

7. 
3

4

π
   9. 

4

π
   11. 

3

π
−  

13. 1.9823  15. -0.9273  17. 44.427°   

19. 
4

π
   21. 

6

π
−   23. 

7

102
  25. 

17

1
 

27. 
5

25 2x−
  29. 

19

3

2 +x

x
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Section 6.4 

1. 
5 7

,
4 4

π π
  3. 

5
,

3 3

π π
   5. 

2

π
   7. 

3
,

2 2

π π
 

9. 
7

2 , 2
4 4

k k
π π

π π+ + , where k is an integer 

11. 
7 11

2 , 2
6 6

k k
π π

π π+ + , where k is an integer 

13. 
2 5 2

,
18 3 18 3

k k
π π π π

+ + , where k is an integer 

15. 
5 2 7 2

,
12 3 12 3

k k
π π π π

+ + , where k is an integer 

17. 
5

,
6 6

k k
π π

π π+ + , where k is an integer 

19. 
2 5 2

,
4 3 12 3

k k
π π π π

+ + , where k is an integer 

21. 4 8k+ , where k is an integer 

23. 
1 5

2 , 2
6 6

k k+ + , where k is an integer 

 

25. 0.2734, 2.8682  27. 3.7603, 5.6645  29. 2.1532, 4.1300   

31. 0.7813, 5.5019  33. 0.04829, 0.47531  35. 0.7381, 1.3563 

37. 0.9291, 3.0709  39. 1.3077, 4.6923 

 

Section 6.5 

1.  89c = , A = 57.9946°, B = 32.0054° 

3. 1 76b = , A = 27.8181°, B = 62.1819° 

5. ( ) ( )6sin 1 4
2

y x x
π 

= − + 
 

 

7. ( ) ( )
π

50 13cos t 5
12

D t
 

= − − 
 

 

9. a. ( ) 129 25cos
6

P t t
π 

= −  
 

   b. ( ) 129 25cos ( 3)
6

P t t
π 

= − − 
 

 

11. 75 degrees 

13. 8 

15. 2.80869431742 

17.  5.035 months 
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Chapter 7 

Section 7.1 

1. 
7 11

,
6 6

π π
     3. 

5
,

3 3

π π
 

5. 
2

 8
3

k+ , and 
10

8
3

k+ , where k is an integer 

7. 
5

12
k

π
π+  and 

7

12
k

π
π+ , where k is an integer 

9. 0.1339 10k+  and k106614.8 + , where k is an integer 

11. 
2

1.1438
3

k
π

+  and 
2

1.9978
3

k
π

+ , where k is an integer 

13. 
3

, , 0.644, 2.498
2 2

π π
   15. 0.056, 1.515, 3.197, 4.647 

17. 
5

0, , ,  
3 3

π π
π     19. 

5 7 11
, , ,

6 6 6 6

π π π π
 

21. 1.183, 1.958, 4.325, 5.100  23.  
3 7 11

, ,
2 6 6

π π π
 

25. 
5

, ,
3 3

π π
π      27.  1.823, 4.460 

29. 2.301, 3.983, 0.723, 5.560  31. 3.305, 6.120 

33. 
2 4 5

0, , , , ,
3 3 3 3

π π π π
π    35. 

3 5 7
0, , , , ,

4 4 4 4

π π π π
π  

37.  
3

4
,

6

5
, 

3

2
,

6

ππππ
    39. 0, ,1 .231, 5.052π  

41. 
5

,
3 3

π π
 

Section 7.2 

1. 
2 6

4

+
    3. 

2 6

4

− −
 

5. 
2 6

4

−
    7. 

2 6

4

+
 

9. ( ) ( )
3 1

sin cos
2 2

x x−   11. ( ) ( )
3 1

– cos sin
2 2

x x+  
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13. ( )sec t     15. ( )tan x  

17. ( ) ( )( )8 cos 5 cos 27x x−   19. ( ) ( )sin 8 sin 2x x+  

21. ( ) ( )2 cos 5 cost t    23. ( ) ( )2sin 5 cos 2x x  

25. a. 
2 1 5 15 2 5 3

3 4 3 4 12

   − −  
− + − =            

   

      b. 
5 1 2 15 5 2 15

3 4 3 4 12

    +   
− − + =               

 

27. 
2

0.373
3

k
π

+  and 
2

0.674
3

k
π

+ , where k is an integer 

29. kπ2 , where k is an integer 

31. 
4

7 7
k

π π
+ , 

3 4

7 7
k

π π
+ , 

4

3 3
k

π π
+ , and 

4

3
k

π
π + , where k is an integer 

33. 
7

12
k

π
π+ , 

11

12
k

π
π+ , and 

4
k

π
, where k is an integer 

35. 2 13sin( 5.3004)x +      or   2 13sin( 0.9828)x −  

37. 29sin(3 0.3805x + ) 

39. 0.3681, 3.8544   41. 0.7854, 1.8158 

43. ( )tan 6t  

 

Section 7.3 

1. a. 
3 7

32
   b. 

31

32
   c. 

3 7

31
  3. ( )cos 56°  

5. cos(34 )°     7. ( )cos 18x  

9. ( )2sin 16x     11. 0, , 2.4189, 3.8643π  

13. 0.7297, 2.4119, 3.8713, 5.5535 
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15. 
5 3

, , ,
6 2 6 2

π π π π
 

17. a. 
3

4
,

3

2
, 0,

9

16
,

9

14
,

9

10
,

9

8
,

9

4
,

9

2 ππππππππ
 

19. 
( )1 cos 10

2

x+
 

21. ( ) ( )xx 32cos
8

1
16cos

2

1

8

3
+−  

23. ( ) ( ) ( ) ( )
1 1 1 1

cos 2 cos 4 cos 2 cos 4
16 16 16 16

x x x x− + −  

25. a. 
1 2 3

2 7
+    b. 

1 2 3

2 7
−    c. 

1

7 4 3−
 

 

 

Section 7.4 

1. ( )3sin 3 1
6

y x
π 

= − − 
 

 

3. Amplitude: 8,  Period:  
1

3
 second,  Frequency: 3 Hz (cycles per second) 

5. ( )
40

19cos 650
6 3

P t t t
π 

= − + + 
 

  7. ( ) ( )33cos 900 1.07
6

t
P t t

π 
= − + 

 
 

9. ( ) ( )10 0.85 cos(36 )
t

D t tπ=   11. ( ) ( ) ( )17 0.9145 cos 28
t

D t tπ=  

13. a. IV    b. III    15.  ( )6 4 5sin
2

x
y x

π 
= +  

 
 

17. 3sin 2 7
2

y x
π 

= − + + 
 

   19. 3
2

cos
2

1
8 +
















= xy

x
π
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Chapter 8 

Section 8.1 

1.   3.    

5.   7.   
  

9. β = 68°, a = 14.711, c = 20.138  11. β  = 28.096°, γ  = 32.904°, c = 16.149 

13. Not possible.   

15. β  = 64.243°, γ  = 72.657°, c = 257.328  OR  β =115.757°, γ = 21.143°, c = 97.238 

17.   19.    

21. °=°== 255.86, 545.52,066.2 βαc    

23. °=°== 543.32, 457.27,269.11 γβa  

25. 177.562     27. 978.515 ft 

29. Distance to A: 565.258 ft.  Distance to shore: 531.169 ft 

31. 529.014 m     33. 173.877 feet 

35. 4.642 km, 2.794 km   37. 757.963 ft 

39. 2371.129 miles    41. 65.375 cm2 

43. 7.72 

70° 50° 

10 

60° 
12.26

11.305 

120

6 

25° 

35° 

4.421 

9.059 

65° 

5 6 

49.048° 

65.952° 

6.046 

1

40° 

25 

116.668° 

23.222° 

11.042 

60° 
20 28 

24.980 

43.898° 76.102° 
13 

11 

20 

112.620° 

30.510° 

36.870° 
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Section 8.2 

1. 









−−

2

7
,

2

37
    3. ( )2 2, 2 2−  

5. ( )3 2, 3 2−     7. (0,3)   

9. 
3 3 3

,
2 2

 
− −  
 

    11. ( 1.248, 2.728)−  

13. ( )2 5, 0.464     15. ( )2 13, 2.159  

17. ( )34,5.253     19. ( )269, 4.057  

21. ( )θsec3=r     23. 
( )

( )2

sin

4cos
r

θ

θ
=  

25. ( )4sinr θ=     27. 
( )

( ) ( )( )2 2

cos

cos sin
r

θ

θ θ
=

−
 

29. 2 2 3x y y+ =     31. 7 4y x+ =  

33. 2x =      35. 2 2 2x y x+ = +  

37. A  39. C  41. E  43. C  45. D  47. F 

49.  51.  53.   

55.  57.  59.  
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61.  63.  65.  

 

 

Section 8.3 

1. 3i       3. 12−  

5. 1 3i+      7. 8 i−  

9. 11 4i− +      11. 12 8i− +  

13. 30 10i−      15. 11 10i+  

17. 20       19. 
3

2
2

i+  

21. 
3 5

2 2
i+      23. 

1 18

25 25
i− −  

25. 1−       27. i  

29. ( ) ( )3cos 2 3sin 2 1.248 2.728i i+ = − +  

31. 3 3 3i+      33. 
3 2 3 2

– –
2 2

i  

35. 06 i
e      37. 

3

24
i

e

π

 

39. 42 2
i

e

π

     41. 
3

43 2
i

e

π

 

43. 0.54034 i
e      45. 2.82010 i

e  

47. 4.46717 i
e      49. 6.086 26 i

e  

51. 
5

126
i

e

π

     53. 
7

122
i

e

π

 

55. 
5

21024
i

e

π

     57. 34
i

e

π

 

59. 4096      61. 0.788 1.903i+  

63. 1.771 0.322i+     

65. iiii 092.1355.0, 675.0929.0, 675.0929.0, 092.1355.0, 149.125 −−−+−+≈  

67. 
1 3 1 3 1 3 1 3

1, , , 1, , 
2 2 2 2 2 2 2 2

i i i i+ − + − − − −  
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Section 8.4 

1. 4, 2−  

3.  The vectors do not need to start at the same point 

5. 3v u−
� �

      7. 3 2,3 2    

9. 6.128, 5.142− −      11. Magnitude: 4, Direction: 90° 

13. Magnitude: 7.810, Direction: 39.806°   

15. Magnitude: 2.236, Direction: 153.435°  

17. Magnitude: 5.385, Direction: 291.801°   

19. Magnitude: 7.211, Direction: 236.310° 

21. 21,132,  8,1,  2,3 −=−−=−=+ vuvuvu
������

 

23. 4.635 miles, 17.764 deg N of E    

25. 17 miles.  10.318 miles 

27. 4, 11netF = − −
����

 

29. Distance: 2.868.  Direction: 86.474° North of West, or 3.526° West of North 

31. 4.924 degrees.  659 km/hr     

33. 4.424 degrees 

35. (0.081, 8.602) 

37. 21.801 degrees, relative to the car’s forward direction 
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Section 8.5 

1.  529.15)75cos(106 =°⋅⋅  3. 0)0)(4()3)(0( =+−   5. 33)13)(1()10)(2( =+−−  

7. °=






− 90
34

0
cos 1   9. °=















−++

−+− 135
)3(142

)3)(4()1)(2(
cos

2222

1  

11. °=














++

+− 0
4284

)4)(2()8)(4(
cos

2222

1    13. 0)4)(7())(2( =+k ,  k = -14 

15. 325.6
)3(1

)3)(4()1)(8(

22
=

−+

−−+
   17. 8.10,6.33,1

)3(1

)3)(10()1)(6(
2

22

−=−
















−+

−+−
 

19. The vectors are 3,2  and 2,5 −− .  The acute angle between the vectors is 34.509° 

21. 14.142 pounds  23. 20,0)10sin(10),10cos(10 −⋅°° , so 34.7296 ft-lbs 

25. 277.4350)25cos(12040 =°⋅⋅ ft-lbs 

Section 8.6 

1. C  3. E  5. F   

 

7.   

 

9. x(t)  y(t)  
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11.  

13. 2 2y x= − +     15. 
1

3
2

x
y

−
=  

17. 
1

52
y

x e

−

=  or 1 5ln
2

x
y

 
= −  

 
  19. 

3

2 2

y y
x

 
= − 
 

 

21. 3
y x=      23. 

2 2

1
4 5

x y   
+ =   

   
 

25. 
( )
( ) 23 3

x t t

y t t

 =


= +
    27. 

( ) ( )
( )

3logx t t t

y t t

 = +


=
.  

29. 
( ) ( )
( ) ( )

2cos

3sin

x t t

y t t

 =


=
    31. 

( )
( )

3

2

x t t

y t t

 =


= +
 

33. 
( )
( ) 2

1x t t

y t t

 = −


= −
    35. 

( )
( )




−=

+−=

tty

ttx

25

31
 

37. 
( ) ( )
( ) ( )

4cos 3

6sin

x t t

y t t

 =


=
    39. 

( ) ( )
( ) ( )

4cos 2

3sin 3

x t t

y t t

 =


=
 

41. ( )
2

16 20
15 15

x x
y x

   
= − +   

   
  43. 

( ) ( )

( ) ( )

2
20sin 8sin

5

2
35 20cos 8cos

5

x t t t

y t t t

π
π

π
π

  
= + 

  


  = − −   
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Chapter 9 

Section 9.1 

1.   D  3. B 

5.  Vertices (0,±5), minor axis endpoints (±2,0), major length = 10, minor length = 4 

  
7.  Vertices (±2,0), minor axis endpoints (0,±1), major length = 4, minor length = 2 

 
9.  Vertices (±5,0), minor axis endpoints (0,±1), major length = 10, minor length = 2 

 
11.  Vertices (0,±4), minor axis endpoints (±3,0),  major length = 8, minor length = 6 

 

13.  Vertices ( )0, 3 2± , minor axis endpoints ( )2,0± , major length = 6 2 , minor 

length = 2 2  
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15.  
2 2

1
16 4

x y
+ =  17.   

2 2

1
1024 49

x y
+ =  19.   

2 2

1
4 9

x y
+ =  

21.  B  23.  C  25.  F  27.  G 

29.  Center (1,-2), vertices (6,-2) and (-4,-2), minor axis endpoints (1,0) and (1,-4),  major 

length= 10, minor length = 4  

 
31.  Center (-2,3), vertices (-2,8) and (-2,-2), minor axis endpoints (-1,3) and (-3,3),  

major length = 10, minor length = 2 

 
33.  Center (-1,0), vertices (-1,4) and (-1,-4), minor axis endpoints (-1,0) and (3,0),  major 

length = 8, minor length = 4 

 
35.  Center (-1,-2), vertices (3,-2) and (-5,-2), minor axis endpoints (-1,0) and (-1,-4),  

major length = 8, minor length = 4 
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37.  Center (2,-1), vertices (2,5) and (2,-7), minor axis endpoints (6,-1) and (-2,-1), major 

length = 12, minor length = 8 

 

39.  ( )
( )

2

2 1
3 1

16

y
x

+
− + =   41.  

( ) ( )
2 2

4 3
1

16 25

x y+ −
+ =    

43.  2.211083 feet 45.  17 feet 47.  64 feet 49.  (±4,0) 51.  (-6,6) and (-6,-4) 

53.  
2 2

1
9 5

x y
+ =    55.  

2 2

1
11 36

x y
+ =     57.  

2 2

1
49 24

x y
+ =    59.  

2 2

1
4 20

x y
+ =    

61.  
2 2

1
16 8

x y
+ =  63.  

( ) ( )
2 2

2 1
1

12 16

x y+ −
+ =    65.  

( ) ( )
2 2

3 2
1

36 11

x y− −
+ =    

67.  
( ) ( )

2 2
3 1

1
21 25

x y− +
+ =    69.  

( ) ( )
2 2

1 3
1

4 5

x y− −
+ =    71.  

( ) ( )
2 2

2 1
1

289 120

x y+ +
+ =    

73.  31.22 feet  75.  
2 2

1
8640.632025 8638.214

x y
+ =  77.  

2 2

1
25 9

x y
+ =  

79.  The center is at (0,0).  Since a > b, the ellipse is horizontal.  Let (c,0) be the focus on 

the positive x-axis.  Let (c, h) be the endpoint in Quadrant 1 of the latus rectum passing 

through (c,0).   
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The distance between the focus and latus rectum endpoint can be found by substituting 

(c,0) and (c,h) into the distance formula ( ) ( )
2 2

1 2 1 2h x x y y= − + −  which yields 

( ) ( )
2 2

0h c c h h= − + − = .  So h is half the latus rectum distance.  Substituting (c,h) into 

the ellipse equation  to find h gives 
2 2

2 2
1

c h

a b
+ = .  Solve for h yields 

2 2 2 2 2 2 4
2 2 2 2 2

2 2 2 2 2 2
1  

c a c a c b b
h b b b b

a a a a a a

       −
= − = − = = =       

       
.   so 

4 2

2

b b
h

a a
= = .  The 

distance of the latus rectum is 
22

2
b

h
a

= . 

 

Section 9.2 

1.   B  3. D   

5.  Vertices (±2,0), transverse length = 4, asymptotes y = ±5/2x, 
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7.  Vertices (0, ±1), transverse length = 2, asymptotes y = ±1/2x,  

 
9.  Vertices (±3,0), transverse length = 6, asymptotes y =±1/3x, 

 
11.  Vertices (0, ±4), transverse length = 8, asymptotes y =±4/3x 

  

13.  Vertices (± 2 ,0), transverse length = 2 2 , asymptotes y =±3x, 

  

15.  
2 2

1
4 9

y x
− =  17.  

2 2

1
16 64

y x
− =  19.  

2 2

1
9 36

x y
− =   21.  

2 2

1
16 16

x y
− =   

23.  C  25.  H  27.  B  29.  A 
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31.  Center (1,-2), vertices (6,-2) and (-4,-2), transverse length = 10, asymptotes y 

=±2/5(x-1)-2 

 
33.  Center (-2,1), vertices (-2,4) and (-2,-2), transverse length = 6, asymptotes y 

=±3(x+2)+1 

 
35.  Center (1,0), vertices (3,0) and (-1,0), transverse length = 4, asymptotes y =±2(x-1) 

 
37.  Center (-1,2), vertices (-1,4) and (-1,0), transverse length = 4, asymptotes y 

=±1/2(x+1)+2 

  
39.  Center (-2,1), vertices (0,1) and (-4,1), transverse length = 4, asymptotes y 

=±3/2(x+2)+1 
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41.  
( ) ( )

2 2
1 4

1
9 4

y x+ −
− =   43.  

( ) ( )
2 2

2 1
1

16 4

y x− +
− =  

45.  Center (0,0), vertices (±1/3,0), transverse length = 2/3, asymptotes y = ±12x 

 
47.  Center (-1,1), vertices (-1,3/2) and (-1,1/2), transverse length = 1, asymptotes y = ± 

3/2 (x + 1) +1 

 
49.  Foci (0,±5) 51.  Foci (5,6) and (-3,6) 53.  Foci (-4,6) and (-4,-4) 

 

55.  
2 2

1
16 9

x y
− =  57.  

2 2

1
144 25

y x
− =  59.  

2 2

1
225 64

x y
− =  61.  

2 2

1
64 36

x y
− =  

 

63.  
( ) ( )

2 2
2 1

1
16 9

y x− −
− =  65.  

( ) ( )
2 2

1 3
1

25 144

x y+ −
− =  67.  

2 2

1
900 1600

x y
− =  

69. 
2 2

1
900 14400.3636

x y
− =    
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71.  
2 2

1
3025 6975

x y
− =    

73.  2 25 25 0y x− + =  can be put in the form 
2 2

1
5 25

y x
− = − . 2 2  5 25 0x y− + =  can be put 

in the form   
2 2

1
5 25

y x
− =  showing they are conjugate. 

75.  2    77.  No matter the value of k, the foci are at ( )6,0±  

Section 9.3 

1. C 3. A 

 

5. Vertex: (0,0).  Axis of symmetry: y = 0.  Directrix: x = -4.  Focus: (4,0) 

 

7. Vertex: (0,0).  Axis of symmetry: x = 0.  Directrix: y = -1/2.  Focus: (0,1/2) 

 

9. Vertex: (0,0).  Axis of symmetry: y = 0.  Directrix: x = 1/16.  Focus: (1/16,0) 

 

11. Vertex: (2,-1).  Axis of symmetry: x = 2.  Directrix: y = -3.  Focus: (2,1) 

 

13. Vertex: (-1,4).  Axis of symmetry: x = -1.  Directrix: y = 3.  Focus: (-1,5) 

 

15. )3()1( 2 −−=− xy  17.  )2(12)3( 2 −=− xy  19.  )3(42 −= yx  

 

21.  At the focus, (0,1) 23. 2.25 feet above the vertex. 25. 0.25 ft 

 

27. 






 −−









3

2
,

3

1
,

3

2
,

3

1
  29. ( ) ( ) ( ) ( )2,3,2,3,2,3,2,3 −−−−  

 

31. ( ) ( )8,22,8,22 −    

 

33. 









−−










−










−











3

2
,

3

5
,

3

2
,

3

5
,

3

2
,

3

5
,

3

2
,

3

5
 

 

35. (-64.50476622, 93.37848007) ≈ (-64.50, 93.38)   
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Section 9.4 

1. e = 3.  Directrix: x = 4.  Hyperbola. 3. e = 3/4.  Directrix: y = -2/3.  Ellipse. 

 

5. e = 1. Directrix: x = -1/5.  Parabola. 7. e = 2/7.  Directrix: x = 2.  Ellipse. 

 

9. 
)cos(51

20

θ−
=r   11. 

)sin(
3

1
1

1

θ+

=r , or 
)sin(3

3

θ+
=r  

 

13. 
)sin(1

2

θ−
=r  

 

15. Hyperbola. Vertices at (-9,0) and (-3,0) 

Center at (-6,0).  a =  3. c = 6, so b = 27  

1
279

)6( 22

=−
+ yx

 

 

17. Ellipse. Vertices at (0,3) and (0,-6) 

Center at (0,-1.5).  a = 4.5, c = 1.5, 18=b  

1
25.20

)5.1(

18

22

=
+

+
yx

 

 

 

19. Parabola. Vertex at (3,0). p = 3. 

)3(122 −−= xy  

 

 

 

21. a) 

  

x 

y 

d(Q,F1) 
d(Q,F2) 

Q=(x,y) 

F1 F2 

L1 L2 

(c,0) (a,0) 

x = p 
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b) ( ) pxpxLQd +=−−= )(, 1 , ( ) xpLQd −=2,  

 

c) ( ) ( ) )(,, 11 pxeLQedFQd +== . ( ) ( ) )(,, 22 xpeLQedFQd −==  

 

d) ( ) ( ) epxpepxeFQdFQd 2)()(,, 21 =−++=+ , a constant. 

 

e) At Q = (a, 0), ( ) cacaFQd +=−−= )(, 1 , and ( ) caFQd −=2, , so 

( ) ( ) acacaFQdFQd 2)()(,, 21 =−++=+  

Combining with the result above, aep 22 = , so 
e

a
p = . 

f) ( ) caFQd −=2, , and ( ) apLQd −=2,    

( )
( )

e
LQd

FQd
=

2

2

,

,
, so e

ap

ca
=

−

−
.  

)( apeca −=− .  Using the result from (e), 









−=− a

e

a
eca  

eaaca −=−  

a

c
e =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



690 

 

 

 



691 

 

 

Index 

 

Absolute Value Functions, 149 

Graphing, 150 

Solving, 151 

Solving Inequalities, 152 

Ambiguous Case, 501 

Amplitude, 399, 402 

Angle, 347 

Coterminal Angles, 348 

Degree, 347 

Radian, 351 

Reference Angles, 369 

Standard Position, 347 

Angular Velocity, 356 

Annual Percentage Rate (APR), 257 

Annual Percentage Yield (APY), 259 

Arclength, 350 

Arcsine, Arccosine and Arctangent, 423 

Area of a Sector, 355 

asymptotes of hyperbola, 598 

Average Rate of Change, 37 

axis of symmetry, 617 

Cauchy's Bound, 203 

central rectangle, 598 

Change of Base, 281, 289 

Circles, 338, 518 

Area of a Sector, 355 

Equation of a Circle, 338 

Points on a Circle, 339, 364 

Polar Coordinates, 518 

Coefficients, 162 

Cofunction Identities, 387 

Common Log, 279 

completing the square, 170 

Completing the square, 170 

Complex Conjugate, 212, 530 

Complex Factorization Theorem, 214 

Complex Number, 210, 528 

Complex Plane, 529 

Component Form, 544 

Composition of Functions, 51 

Formulas, 54 

Tables and Graphs, 52 

Compound Interest, 257 

Concavity, 43 

conic section, 579 

Continuous Growth, 260 

Correlation Coefficient, 144, 145 

Cosecant, 375 

Cosecant Function 

Domain, 415 

Range, 415 

Cosine, 363, 385, 398 

Cotangent, 375 

Cotangent Function 

Domain, 416 

Period, 416 

Range, 416 

Coterminal Angles, 348 

co-vertices, 580 

Damped Harmonic Motion, 492 

Decreasing, 40 

Degree, 162, 347 

Difference of Logs Property, 289 

directrix, 617, 630 

Domain, 22 

Dot Product, 555 

Double Angle Identities, 477 

Double Zero, 183 

Doubling Time, 311 

eccentricity, 630 

ellipse, 580, 617, 630, 631, 632 

Even Functions, 73 

Exponential Functions, 249 

Finding Equations, 253 

Fitting Exponential Functions to Data, 

331 

Graphs of Exponential Functions, 267 

Solving Exponential Equations, 282 

Transformations of Exponential 

Graphs, 270 

Exponential Growth or Decay Function, 

251 

Exponential Property, 289 

Extrapolation, 142 

Extrema, 41, 187 

Factor Theorem, 196 

factored completely, 215 

focal length, 617 



692   Index 

 

 

foci, 598 

Function, 1 

Absolute Value Functions, 149 

Composition of Functions, 51 

Domain and Range, 22 

Exponential Functions, 249 

Formulas as Functions, 8 

Function Notation, 3 

Graphs as Functions, 6 

Horizontal Line Test, 7 

Inverse of a Function, 93 

Linear Functions, 101, 103 

Logarithmic Functions, 277 

One-to-One Function, 2 

Parametric Functions, 564 

Periodic Functions, 395 

Piecewise Function, 29 

Polar Functions, 517 

Power Functions, 159 

Quadratic Functions, 167 

Radical Functions, 239, 240 

Rational Functions, 218, 221 

Sinusoidal Functions, 397 

Solving & Evaluating, 5 

Tables as Functions, 4 

Tangent Function, 413 

Vertical Line Test, 7 

Fundamental Theorem of Algebra, 213 

Half-Angle Identities, 483 

Half-Life, 308 

Horizontal Asymptote, 219, 224 

Horizontal Intercept, 118 

Horizontal Line Test, 7 

Horizontal Lines, 119 

hyperbola, 598 

Imaginary Number, 210, 528 

Complex Conjugate, 212, 530 

Complex Number, 210, 528 

Complex Plane, 529 

Polar Form of Complex Numbers, 531 

Increasing, 40 

Inflection Point, 43 

Intercepts, 173, 181, 182, 186, 225 

Graphical Behavior, 182 

Writing Equations, 186 

Interpolation, 142 

Interval Notation, 24 

Union, 24 

Inverse of a Function, 93 

Properties of Inverses, 96 

Inverse Properties, 289 

Inversely Proportional, 218 

Inversely Proportional to the Square, 218 

Inverses, 239 

irreducible quadratic, 215 

Law of Cosines 

Generalized Pythagorean Theorem, 

503 

Law of Sines 

Ambiguous Case, 501 

Leading Coefficient, 162 

Leading Term, 162 

Least-Square Regression, 143 

Limaçons, 519 

Linear Functions, 101, 103 

Fitting Linear Models to Data, 141 

Graphing, 114 

Horizontal Intercept, 118 

Horizontal Lines, 119 

Least-Square Regression, 143 

Modeling, 129 

Parallel Lines, 120 

Perpendicular Lines, 120 

Veritcal Lines, 119 

Vertical Intercept, 115 

Linear Velocity, 356 

Lissajous Figure, 567 

Local Maximum, 41 

Local Minimum, 41 

Logarithmic Functions, 277 

Change of Base, 281, 289 

Common Log, 279 

Difference of Logs Property, 289 

Exponential Property, 280, 289 

Graphs of Logarithmic Functions, 300 

Inverse Properties, 277, 289 

Logarithmic Scales, 314 

Log-Log Graph, 329 

Moment Magnitude Scale, 318 

Natural Log, 279 

Orders of Magnitude, 317 

Semi-Log Graph, 329 
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Sum of Logs Property, 289 

The Logarithm, 277 

Transformations of the Logarithmic 

Function, 302 

Log-Log Graph, 329 

Long Division, 194 

Long Run Behavior, 161, 163, 219 

major axis, 580 

Mathematical Modeling, 101 

Midline, 400, 402 

minor axis, 580 

Model Breakdown, 143 

Moment Magnitude Scale, 318 

multiplicity, 183 

Natural Log, 279 

Negative Angle Identities, 454 

Newton's Law of Cooling, 313 

Nominal Rate, 257 

oblique asymptote, 230 

Odd Functions, 73 

One-to-One Function, 2, 7 

Orders of Magnitude, 317 

orthogonal, 557 

Parallel Lines, 120 

Parametric Functions, 564 

Converting from Parametric to 

Cartesian, 568 

Lissajous Figure, 567 

Parameterizing Curves, 570 

Period, 395, 402 

Periodic Functions, 395 

Period, 395 

Sinusoidal, 397 

Perpendicular Lines, 120 

Phase Shift, 406 

Piecewise Function, 29 

Polar Coordinates 

Converting Points, 515 

Polar Form of a Conic, 630 

Polar Functions, 517 

Converting To and From Cartesian 

Coordinates, 520 

Limaçons, 519 

Polar Form of Complex Numbers, 531 

Roses, 519 

Polynomial, 162 

Coefficients, 162 

Degree, 162 

Horizontal Intercept, 183, 186 

Leading Coefficient, 162 

Leading Term, 162 

Long Division, 194 

Solving Inequalities, 184 

Term, 162 

Power Functions, 159 

Characterisitcs, 160 

Power Reduction Identities, 483 

Product to Sum Identities, 468 

Projection Vector, 559 

Pythagorean Identity, 364, 379 

Alternative Forms, 379, 454, 456 

Pythagorean Theorem, 337 

Quadratic Formula, 175 

Quadratic Functions, 167 

Quadratic Formula, 175 

Standard Form, 169, 170 

Transformation Form, 169 

Vertex Form, 169 

Radian, 351 

Radical Functions, 239, 240 

Range, 22 

Rate of Change, 36 

Average, 37 

Using Function Notation, 38 

Rational Functions, 218, 221 

Intercepts, 225 

Long Run Behavior, 223 

Rational Roots Theorem, 204 

Reciprocal Identities, 454 

Reference Angles, 369 

Remainder Theorem, 196 

roots, 164 

Roses, 519 

Scalar Product, 555 

Secant, 375 

Secant Function 

Domain, 415 

Range, 415 

Semi-Log Graph, 329 

Set-Builder Notation, 24 

Short Run Behavior, 164, 167, 173, 181, 

219 
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Sign of the Dot Product, 558 

Sine, 363, 385, 398 

Single Zero, 183 

Sinusoidal Functions, 397 

Amplitude, 399, 402 

Damped Harmonic Motion, 492 

Midline, 400, 402 

Modeling, 443 

Period, 395, 402 

Phase Shift, 406 
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slant asymptote, 230 

Slope, 103, 104, 115 

Decreasing, 103 

Increasing, 103 

Standard Form, 169, 170 

Standard Position, 347 

Sum and Difference Identities, 461 

Sum of Logs Property, 289 

Sum to Product Identities, 469 

synthetic division, 198 

Tangent, 375, 385 

Tangent Function, 413 

Domain, 413 

Period, 413 

Range, 413 

Term, 162 

The Logarithm, 277 

Toolkit Functions, 11 

Domains and Ranges of Toolkit 

Functions, 27 

Transformation Form, 169 

Transformations of Functions, 64 

Combining Horizontal 

Transformations, 79 

Combining Vertical Transformations, 

79 

Horizontal Reflections, 71 

Horizontal Shifts, 67 

Horizontal Stretch or Compression, 77 

Vertical Reflections, 71 

Vertical Shifts, 65 

Vertical Stretch or Compression, 75 

transverse axis, 598 

Trigonometric Identities, 376 
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Identity, 379, 454, 456 

Cofunction Identities, 387 

Double Angle Identities, 477 

Half-Angle Identities, 483 

Negative Angle Identities, 454 

Power Reduction Identities, 483 

Product to Sum Identities, 468 

Pythagorean Identity, 364 

Reciprocal Identities, 454 

Sum and Difference Identities, 461 

Sum to Product Identities, 469 

Trigonometry 

Cosecant, 375 

Cosine, 363, 385, 398 

Cotangent, 375 

Right Triangles, 385, 597 

Secant, 375 

Sine, 363, 385, 398 

SohCahToa, 385 

Solving Trig Equations, 437 

Tangent, 375, 385 

The Pythagorean Theorem, 337 

Unit Circle, 369 

Triple Zero, 183 

Unit Circle, 369 

Vector, 541, 544 

Adding Vectors Geometrically, 542 

Adding, Subtracting, or Scaling 

Vectors in Component Form, 547 

Geometrically Scaling a Vector, 543 

Vertex, 167, 169 

Vertex Form, 169 

Vertical Asymptote, 219, 222 

Vertical Intercept, 115 

Vertical Line Test, 7 

Vertical Lines, 119 

Vertices, 580, 598, 617 

Work, 560 

zeros, 164 

 


