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Preface

Elementary Differential Equations with Boundary Value Problems is written for students in science, en-
gineering, and mathematics who have completed calculus through partial differentiation. If your syllabus
includes Chapter 10 (Linear Systems of Differential Equations), your students should have some prepa-
ration in linear algebra.

In writing this book I have been guided by the these principles:

e An elementary text should be written so the student can read it with comprehension without too
much pain. I have tried to put myself in the student’s place, and have chosen to err on the side of
too much detail rather than not enough.

e An elementary text can’t be better than its exercises. This text includes 1695 numbered exercises,
many with several parts. They range in difficulty from routine to very challenging.

e An elementary text should be written in an informal but mathematically accurate way, illustrated
by appropriate graphics. I have tried to formulate mathematical concepts succinctly in language
that students can understand. I have minimized the number of explicitly stated theorems and def-
initions, preferring to deal with concepts in a more conversational way, copiously illustrated by
250 completely worked out examples. Where appropriate, concepts and results are depicted in 144
figures.

Although I believe that the computer is an immensely valuable tool for learning, doing, and writing
mathematics, the selection and treatment of topics in this text reflects my pedagogical orientation along
traditional lines. However, I have incorporated what I believe to be the best use of modern technology,
so you can select the level of technology that you want to include in your course. The text includes 336

exercises —identified by the symbols and — that call for graphics or computation and graphics.

There are also 73 laboratory exercises — identified by — that require extensive use of technology. In
addition, several sections include informal advice on the use of technology. If you prefer not to emphasize
technology, simply ignore these exercises and the advice.

There are two schools of thought on whether techniques and applications should be treated together or
separately. I have chosen to separate them; thus, Chapter 2 deals with techniques for solving first order
equations, and Chapter 4 deals with applications. Similarly, Chapter 5 deals with techniques for solving
second order equations, and Chapter 6 deals with applications. However, the exercise sets of the sections
dealing with techniques include some applied problems.

Traditionally oriented elementary differential equations texts are occasionally criticized as being col-
lections of unrelated methods for solving miscellaneous problems. To some extent this is true; after all,
no single method applies to all situations. Nevertheless, I believe that one idea can go a long way toward
unifying some of the techniques for solving diverse problems: variation of parameters. I use variation of
parameters at the earliest opportunity in Section 2.1, to solve the nonhomogeneous linear equation, given
a nontrivial solution of the complementary equation. You may find this annoying, since most of us learned
that one should use integrating factors for this task, while perhaps mentioning the variation of parameters
option in an exercise. However, there’s little difference between the two approaches, since an integrating
factor is nothing more than the reciprocal of a nontrivial solution of the complementary equation. The
advantage of using variation of parameters here is that it introduces the concept in its simplest form and

vii
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Preface

focuses the student’s attention on the idea of seeking a solution y of a differential equation by writing it
as y = uyp, where y; is a known solution of related equation and u is a function to be determined. I use
this idea in nonstandard ways, as follows:

In Section 2.4 to solve nonlinear first order equations, such as Bernoulli equations and nonlinear
homogeneous equations.

In Chapter 3 for numerical solution of semilinear first order equations.

In Section 5.2 to avoid the necessity of introducing complex exponentials in solving a second or-
der constant coefficient homogeneous equation with characteristic polynomials that have complex
ZEeros.

In Sections 5.4, 5.5, and 9.3 for the method of undetermined coefficients. (If the method of an-
nihilators is your preferred approach to this problem, compare the labor involved in solving, for
example, y” + y' + y = x*e* by the method of annihilators and the method used in Section 5.4.)

Introducing variation of parameters as early as possible (Section 2.1) prepares the student for the con-
cept when it appears again in more complex forms in Section 5.6, where reduction of order is used not
merely to find a second solution of the complementary equation, but also to find the general solution of the
nonhomogeneous equation, and in Sections 5.7, 9.4, and 10.7, that treat the usual variation of parameters
problem for second and higher order linear equations and for linear systems.

You may also find the following to be of interest:

Section 2.6 deals with integrating factors of the form © = p(x)q(y), in addition to those of the
form u = p(x)and pu = ¢(y) discussed in most texts.

Section 4.4 makes phase plane analysis of nonlinear second order autonomous equations accessi-
ble to students who have not taken linear algebra, since eigenvalues and eigenvectors do not enter
into the treatment. Phase plane analysis of constant coefficient linear systems is included in Sec-
tions 10.4-6.

Section 4.5 presents an extensive discussion of applications of differential equations to curves.

Section 6.4 studies motion under a central force, which may be useful to students interested in the
mathematics of satellite orbits.

Sections 7.5-7 present the method of Frobenius in more detail than in most texts. The approach
is to systematize the computations in a way that avoids the necessity of substituting the unknown
Frobenius series into each equation. This leads to efficiency in the computation of the coefficients
of the Frobenius solution. It also clarifies the case where the roots of the indicial equation differ by
an integer (Section 7.7).

The free Student Solutions Manual contains solutions of most of the even-numbered exercises.

The free Instructor’s Solutions Manual is available by email to wtrench@trinity.edu, subject to
verification of the requestor’s faculty status.

The following observations may be helpful as you choose your syllabus:

Section 2.3 is the only specific prerequisite for Chapter 3. To accomodate institutions that offer a
separate course in numerical analysis, Chapter 3 is not a prerequisite for any other section in the
text.
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Preface ix

e The sections in Chapter 4 are independent of each other, and are not prerequisites for any of the
later chapters. This is also true of the sections in Chapter 6, except that Section 6.1 is a prerequisite
for Section 6.2.

e Chapters 7, 8, and 9 can be covered in any order after the topics selected from Chapter 5. For
example, you can proceed directly from Chapter 5 to Chapter 9.

e The second order Euler equation is discussed in Section 7.4, where it sets the stage for the method
of Frobenius. As noted at the beginning of Section 7.4, if you want to include Euler equations in
your syllabus while omitting the method of Frobenius, you can skip the introductory paragraphs
in Section 7.4 and begin with Definition 7.4.2. You can then cover Section 7.4 immediately after
Section 5.2.

William F. Trench



CHAPTER 1
Introduction

IN THIS CHAPTER we begin our study of differential equations.
SECTION 1.1 presents examples of applications that lead to differential equations.
SECTION 1.2 introduces basic concepts and definitions concerning differential equations.

SECTION 1.3 presents a geometric method for dealing with differential equations that has been known
for a very long time, but has become particularly useful and important with the proliferation of readily
available differential equations software.



2 Chapter 1 Introduction
1.1 APPLICATIONS LEADING TO DIFFERENTIAL EQUATIONS

In order to apply mathematical methods to a physical or “real life” problem, we must formulate the prob-
lem in mathematical terms; that is, we must construct a mathematical model for the problem. Many
physical problems concern relationships between changing quantities. Since rates of change are repre-
sented mathematically by derivatives, mathematical models often involve equations relating an unknown
function and one or more of its derivatives. Such equations are differential equations. They are the subject
of this book.

Much of calculus is devoted to learning mathematical techniques that are applied in later courses in
mathematics and the sciences; you wouldn’t have time to learn much calculus if you insisted on seeing
a specific application of every topic covered in the course. Similarly, much of this book is devoted to
methods that can be applied in later courses. Only a relatively small part of the book is devoted to
the derivation of specific differential equations from mathematical models, or relating the differential
equations that we study to specific applications. In this section we mention a few such applications.

The mathematical model for an applied problem is almost always simpler than the actual situation
being studied, since simplifying assumptions are usually required to obtain a mathematical problem that
can be solved. For example, in modeling the motion of a falling object, we might neglect air resistance
and the gravitational pull of celestial bodies other than Earth, or in modeling population growth we might
assume that the population grows continuously rather than in discrete steps.

A good mathematical model has two important properties:

e [t’s sufficiently simple so that the mathematical problem can be solved.

e [t represents the actual situation sufficiently well so that the solution to the mathematical problem
predicts the outcome of the real problem to within a useful degree of accuracy. If results predicted
by the model don’t agree with physical observations, the underlying assumptions of the model must
be revised until satisfactory agreement is obtained.

We’ll now give examples of mathematical models involving differential equations. We’ll return to these
problems at the appropriate times, as we learn how to solve the various types of differential equations that
occur in the models.

All the examples in this section deal with functions of time, which we denote by 7. If y is a function
of ¢, y" denotes the derivative of y with respect to ¢; thus,

y=
dt’

Population Growth and Decay

Although the number of members of a population (people in a given country, bacteria in a laboratory cul-
ture, wildflowers in a forest, etc.) at any given time 7 is necessarily an integer, models that use differential
equations to describe the growth and decay of populations usually rest on the simplifying assumption that
the number of members of the population can be regarded as a differentiable function P = P(¢). In most
models it is assumed that the differential equation takes the form

P’ =a(P)P, (1.1.1)

where a is a continuous function of P that represents the rate of change of population per unit time per
individual. In the Malthusian model, it is assumed that a(P) is a constant, so (1.1.1) becomes

P’ =aP. (1.1.2)


http://en.wikipedia.org/wiki/Thomas_Robert_Malthus
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(When you see a name in blue italics, just click on it for information about the person.) This model
assumes that the numbers of births and deaths per unit time are both proportional to the population. The
constants of proportionality are the birth rate (births per unit time per individual) and the death rate
(deaths per unit time per individual); a is the birth rate minus the death rate. You learned in calculus that
if ¢ is any constant then

P =ce” (1.1.3)

satisfies (1.1.2), so (1.1.2) has infinitely many solutions. To select the solution of the specific problem
that we’re considering, we must know the population Py at an initial time, say ¢ = 0. Setting # = 0 in
(1.1.3) yields ¢ = P(0) = Py, so the applicable solution is

P(t) = Poe®.

This implies that
oo ifa >0,
0 ifa <0

that is, the population approaches infinity if the birth rate exceeds the death rate, or zero if the death rate
exceeds the birth rate.

To see the limitations of the Malthusian model, suppose we’re modeling the population of a country,
starting from a time ¢ = 0 when the birth rate exceeds the death rate (so a > 0), and the country’s
resources in terms of space, food supply, and other necessities of life can support the existing popula-
tion. Then the prediction P = Pye?’ may be reasonably accurate as long as it remains within limits
that the country’s resources can support. However, the model must inevitably lose validity when the pre-
diction exceeds these limits. (If nothing else, eventually there won’t be enough space for the predicted
population!)

This flaw in the Malthusian model suggests the need for a model that accounts for limitations of space
and resources that tend to oppose the rate of population growth as the population increases. Perhaps the
most famous model of this kind is the Verhulst model, where (1.1.2) is replaced by

P' =aP(l —aP), (1.1.4)

lim P(t) =
—>00

where « is a positive constant. As long as P is small compared to 1/w, the ratio P’/ P is approximately
equal to a. Therefore the growth is approximately exponential; however, as P increases, the ratio P’/ P
decreases as opposing factors become significant.

Equation (1.1.4) is the logistic equation. You will learn how to solve it in Section 1.2. (See Exer-
cise 2.2.28.) The solution is

Py
P = )
aPy + (1 —aPy)e %

where Py = P(0) > 0. Therefore lim;_,o, P(t) = 1/, independent of Py.

Figure 1.1.1 shows typical graphs of P versus ¢ for various values of Py.

Newton’s Law of Cooling

According to Newton’s law of cooling, the temperature of a body changes at a rate proportional to the
difference between the temperature of the body and the temperature of the surrounding medium. Thus, if
T is the temperature of the medium and 7" = T'(¢) is the temperature of the body at time ¢, then

T' = —k(T — Tp), (1.1.5)

where k is a positive constant and the minus sign indicates; that the temperature of the body increases with
time if it’s less than the temperature of the medium, or decreases if it’s greater. We’ll see in Section 4.2
that if 73, is constant then the solution of (1.1.5) is

T =Ty + (To — Tpp)e ™, (1.1.6)


http://www-history.mcs.st-and.ac.uk/Mathematicians/Verhulst.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Newton.html
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1/00

Figure 1.1.1 Solutions of the logistic equation

where T is the temperature of the body when ¢ = 0. Therefore lim; . 7 (t) = T,, independent of Tj.
(Common sense suggests this. Why?)

Figure 1.1.2 shows typical graphs of T versus ¢ for various values of Tj.

Assuming that the medium remains at constant temperature seems reasonable if we’re considering a
cup of coffee cooling in a room, but not if we’re cooling a huge cauldron of molten metal in the same
room. The difference between the two situations is that the heat lost by the coffee isn’t likely to raise the
temperature of the room appreciably, but the heat lost by the cooling metal is. In this second situation we
must use a model that accounts for the heat exchanged between the object and the medium. Let 7 = T'(¢)
and T, = T,,(¢) be the temperatures of the object and the medium respectively, and let Ty and 7,0 be
their initial values. Again, we assume that 7" and T, are related by (1.1.5). We also assume that the
change in heat of the object as its temperature changes from Ty to 7" is a(T — Tp) and the change in heat
of the medium as its temperature changes from 7}, to Ty, iS am (T — Timo), Where a and a,, are positive
constants depending upon the masses and thermal properties of the object and medium respectively. If
we assume that the total heat of the in the object and the medium remains constant (that is, energy is
conserved), then

a(T —To) + am (T — Tino) = 0.

Solving this for T, and substituting the result into (1.1.6) yields the differential equation
T’:-k(1+i)T+k(Tmo+iTo)
am am

for the temperature of the object. After learning to solve linear first order equations, you’ll be able to
show (Exercise 4.2.17) that

aTo +amTmo =~ am(To — TmO)e—k(1+a/am)t
a + am a+ Am ’
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Figure 1.1.2 Temperature according to Newton’s Law of Cooling

Glucose Absorption by the Body

Glucose is absorbed by the body at a rate proportional to the amount of glucose present in the bloodstream.
Let A denote the (positive) constant of proportionality. Suppose there are G units of glucose in the
bloodstream when ¢ = 0, and let G = G(¢) be the number of units in the bloodstream at time ¢ > 0.
Then, since the glucose being absorbed by the body is leaving the bloodstream, G satisfies the equation

G' =-AG. 1.1.7)
From calculus you know that if ¢ is any constant then
G =ce M (1.1.8)

satisfies (1.1.7), so (1.1.7) has infinitely many solutions. Setting ¢ = 0 in (1.1.8) and requiring that
G(0) = Gy yields ¢ = Gy, so
G(t) = Goe™.

Now let’s complicate matters by injecting glucose intravenously at a constant rate of r units of glucose
per unit of time. Then the rate of change of the amount of glucose in the bloodstream per unit time is

G ' =-AG +r, (1.1.9)

where the first term on the right is due to the absorption of the glucose by the body and the second term
is due to the injection. After you’ve studied Section 2.1, you’ll be able to show (Exercise 2.1.43) that the
solution of (1.1.9) that satisfies G(0) = Gy is

G = §+ (Go— %)e"“.
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Graphs of this function are similar to those in Figure 1.1.2. (Why?)
Spread of Epidemics

One model for the spread of epidemics assumes that the number of people infected changes at a rate
proportional to the product of the number of people already infected and the number of people who are
susceptible, but not yet infected. Therefore, if S denotes the total population of susceptible people and
I = I(t) denotes the number of infected people at time ¢, then S — I is the number of people who are
susceptible, but not yet infected. Thus,

I'=rI(S -1),
where r is a positive constant. Assuming that 7(0) = I, the solution of this equation is
STy

I =
Io + (S — Ip)e St

(Exercise 2.229). Graphs of this function are similar to those in Figure 1.1.1. (Why?) Since lim; o I(¢) =
S, this model predicts that all the susceptible people eventually become infected.

Newton’s Second Law of Motion

According to Newton’s second law of motion, the instantaneous acceleration a of an object with con-
stant mass m is related to the force F acting on the object by the equation I = ma. For simplicity, let’s
assume that m = 1 and the motion of the object is along a vertical line. Let y be the displacement of the
object from some reference point on Earth’s surface, measured positive upward. In many applications,
there are three kinds of forces that may act on the object:

(a) A force such as gravity that depends only on the position y, which we write as —p(y), where
p(y)>0ify >0.

(b) A force such as atmospheric resistance that depends on the position and velocity of the object, which
we write as —q(y, y')y’, where ¢ is a nonnegative function and we’ve put y’ “outside” to indicate
that the resistive force is always in the direction opposite to the velocity.

(¢) A force f = f(t), exerted from an external source (such as a towline from a helicopter) that
depends only on 7.
In this case, Newton’s second law implies that

V'==q(y.y)y' —pO) + f@).

which is usually rewritten as

Yi+a. 3N +p() = f().
Since the second (and no higher) order derivative of y occurs in this equation, we say that it is a second
order differential equation.

Interacting Species: Competition

Let P = P(t)and Q = Q(t) be the populations of two species at time ¢, and assume that each population
would grow exponentially if the other didn’t exist; that is, in the absence of competition we would have

P'=aP and Q' =50, (1.1.10)

where a and b are positive constants. One way to model the effect of competition is to assume that
the growth rate per individual of each population is reduced by an amount proportional to the other
population, so (1.1.10) is replaced by

P = aP-aQ

Q" = —BP+b0,


http://www-history.mcs.st-and.ac.uk/Mathematicians/Newton.html
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where « and B are positive constants. (Since negative population doesn’t make sense, this system works
only while P and Q are both positive.) Now suppose P(0) = Py > 0 and Q(0) = Qo > 0. It can
be shown (Exercise 10.4.42) that there’s a positive constant p such that if (Po, Qo) is above the line L
through the origin with slope p, then the species with population P becomes extinct in finite time, but if
(P, Qo) is below L, the species with population Q becomes extinct in finite time. Figure 1.1.3 illustrates
this. The curves shown there are given parametrically by P = P(t), Q0 = Q(¢), t > 0. The arrows
indicate direction along the curves with increasing .
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Figure 1.1.3 Populations of competing species

1.2 BASIC CONCEPTS

A differential equation is an equation that contains one or more derivatives of an unknown function.
The order of a differential equation is the order of the highest derivative that it contains. A differential
equation is an ordinary differential equation if it involves an unknown function of only one variable, or a
partial differential equation if it involves partial derivatives of a function of more than one variable. For
now we’ll consider only ordinary differential equations, and we’ll just call them differential equations.

Throughout this text, all variables and constants are real unless it’s stated otherwise. We’ll usually use
x for the independent variable unless the independent variable is time; then we’ll use 7.

The simplest differential equations are first order equations of the form

dy

o= f(x) or equivalently, y = f(x),

where f is a known function of x. We already know from calculus how to find functions that satisfy this
kind of equation. For example, if
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then .
X
y=/x3dx=7+c,

where ¢ is an arbitrary constant. If » > 1 we can find functions y that satisfy equations of the form

y® = f(x) (1.2.1)

by repeated integration. Again, this is a calculus problem.
Except for illustrative purposes in this section, there’s no need to consider differential equations like
(1.2.1).We’ll usually consider differential equations that can be written as

y® = f(x,y. ¥, y0TY), (1.2.2)
where at least one of the functions y, y’, ..., y®~1 actually appears on the right. Here are some
examples:

d

o x2 =0 (first order),

dx

d
& + ny2 = =2 (first order),
dx
d? d
d—x); + 2% +y = 2x (second order),
xy" +y? = sinx (third order),
y® £ xy +3y = x (n-th order).

Although none of these equations is written as in (1.2.2), all of them can be written in this form:

y/ — x2
y = —2-—2xy2,
y// — Zx _ Zy/ _ y’
yr oo Snx—y?
x b
y® = x—xy —3y.

Solutions of Differential Equations

A solution of a differential equation is a function that satisfies the differential equation on some open
interval; thus, y is a solution of (1.2.2) if y is n times differentiable and

YW ) = £y )y (x), ..y (x)

for all x in some open interval (a, b). In this case, we also say that y is a solution of (1.2.2) on (a, b).
Functions that satisfy a differential equation at isolated points are not interesting. For example, y = x?2
satisfies

xy +x? =3x

if and only if x = 0 or x = 1, but it’s not a solution of this differential equation because it does not
satisfy the equation on an open interval.

The graph of a solution of a differential equation is a solution curve. More generally, a curve C is said
to be an integral curve of a differential equation if every function y = y(x) whose graph is a segment
of C is a solution of the differential equation. Thus, any solution curve of a differential equation is an
integral curve, but an integral curve need not be a solution curve.
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Example 1.2.1 If @ is any positive constant, the circle
x2+y?2 =4 (1.2.3)

is an integral curve of
y =-=. 1.2.4)

To see this, note that the only functions whose graphs are segments of (1.2.3) are
y1=+~a?—x2 and y, =—+va?-—x2

We leave it to you to verify that these functions both satisfy (1.2.4) on the open interval (—a, a). However,
(1.2.3) is not a solution curve of (1.2.4), since it’s not the graph of a function.

Example 1.2.2 Verify that

N

X 1
y=—=+- (1.2.5)
3 X
is a solution of
xy +y=x? (1.2.6)
on (0, co) and on (—o0, 0).
Solution Substituting (1.2.5) and
o1
Y Ea T
into (1.2.6) yields
2x 1 x? 1
V@) Hy) =x=—-5 )+ (F+=-)=x"
3 X 3 X

for all x # 0. Therefore y is a solution of (1.2.6) on (—o0, 0) and (0, 00). However, y isn’t a solution of
the differential equation on any open interval that contains x = 0, since y is not defined at x = 0.

Figure 1.2.1 shows the of (1.2.5). The part of the graph of (1.2.5) on (0, co) is a solution curve of
(1.2.6), as is the part of the graph on (—oo, 0).

Example 1.2.3 Show that if ¢; and ¢, are constants then
y=(c1 +cax)e ™ +2x—4 (1.2.7)

18 a solution of
Y +2y +y=2x (1.2.8)

on (—00, 00).

Solution Differentiating (1.2.7) twice yields
y = —(c1 + cax)e™ +cre™ +2

and
X X

" = (c1 + cax)e ™™ —2cpe™",
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%2
Figure 1.2.1 y = 3 +

= | =

SO

X

y//+2y/+y

(c1 + cax)e™ —2cpe™
+2[—(c1 + c2x)e™ 4+ c2e”* + 2]
+(c1 +cax)e™ +2x—4

= (1=24+D(c1 +cax)e™™ + (=2 4+ 2)c2e™

+442x —4=2x
for all values of x. Therefore y is a solution of (1.2.8) on (—oo, 00).

Example 1.2.4 Find all solutions of

y(n) — er‘
Solution Integrating (1.2.9) yields
2x
-1 _ ¢
= — + ki,
y ) 1
where k; is a constant. If n > 2, integrating again yields
er
y2 = T + kix + k».
If n > 3, repeatedly integrating yields
2x n—1 n—2
e X X
= —+4k k <o+ kn,
y 2n+ l(n—l)!+ 2(n—2)!+ + Kn

(1.2.9)

(1.2.10)
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where k1, ko, ..., k, are constants. This shows that every solution of (1.2.9) has the form (1.2.10) for
some choice of the constants k1, k2, ..., k,. On the other hand, differentiating (1.2.10) n times shows
that if kq, k», ..., k, are arbitrary constants, then the function y in (1.2.10) satisfies (1.2.9).

Since the constants k1, k3, ..., k, in (1.2.10) are arbitrary, so are the constants

k1 ko

n—1DI" n—2) o ke

Therefore Example 1.2.4 actually shows that all solutions of (1.2.9) can be written as
er

2}1

+o1Feax 4t epx™

y:

where we renamed the arbitrary constants in (1.2.10) to obtain a simpler formula. As a general rule,
arbitrary constants appearing in solutions of differential equations should be simplified if possible. You’ll
see examples of this throughout the text.

Initial Value Problems

In Example 1.2.4 we saw that the differential equation y™ = ¢2* has an infinite family of solutions that
depend upon the n arbitrary constants ¢y, ¢3, ..., ¢;. In the absence of additional conditions, there’s no
reason to prefer one solution of a differential equation over another. However, we’ll often be interested
in finding a solution of a differential equation that satisfies one or more specific conditions. The next
example illustrates this.

Example 1.2.5 Find a solution of

such that y(1) = 2.

Solution At the beginning of this section we saw that the solutions of y’ = x3 are
x* N
= —+c.
Y=

To determine a value of ¢ such that y(1) = 2, we set x = 1 and y = 2 here to obtain

1
2:y(1)=z+c, so = -—.

Therefore the required solution is
_xt47
4
Figure 1.2.2 shows the graph of this solution. Note that imposing the condition y(1) = 2 is equivalent
to requiring the graph of y to pass through the point (1, 2).
We can rewrite the problem considered in Example 1.2.5 more briefly as

y =x3, y(l)=2.

We call this an initial value problem. The requirement y(1) = 2 is an initial condition. Initial value
problems can also be posed for higher order differential equations. For example,

y' =2y +3y=¢*, y0)=1, y'(0)=2 (1.2.11)
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is an initial value problem for a second order differential equation where y and y’ are required to have
specified values at x = 0. In general, an initial value problem for an n-th order differential equation
requires y and its first n — 1 derivatives to have specified values at some point xo. These requirements are
the initial conditions.

-2 -1 0 1 2

x2+7

Figure 1.2.2 y = 1

We’ll denote an initial value problem for a differential equation by writing the initial conditions after
the equation, as in (1.2.11). For example, we would write an initial value problem for (1.2.2) as

YO = Fy Y D), yxo) = koo ¥ (ko) = ko yOTD = ke (1.2.12)

Consistent with our earlier definition of a solution of the differential equation in (1.2.12), we say that y
is a solution of the initial value problem (1.2.12) if y is n times differentiable and

YW ) = £y ).y (x), ..y T (x)

for all x in some open interval (a, b) that contains xo, and y satisfies the initial conditions in (1.2.12).
The largest open interval that contains x¢ on which y is defined and satisfies the differential equation is
the interval of validity of y.

Example 1.2.6 In Example 1.2.5 we saw that

4
;
y=27 (12.13)

is a solution of the initial value problem

y=x yl=2.

Since the function in (1.2.13) is defined for all x, the interval of validity of this solution is (—oo, 00).



Section 1.2 Basic Concepts 13

Example 1.2.7 In Example 1.2.2 we verified that

x2 1
y=—++ — (1.2.14)
3 X
is a solution of
xy +y=x*

on (0, co) and on (—o0, 0). By evaluating (1.2.14) at x = =£1, you can see that (1.2.14) is a solution of
the initial value problems
4
xy' +y=x> y)= 3 (1.2.15)
and )
xy +y=x% y(=1)= -3 (1.2.16)
The interval of validity of (1.2.14) as a solution of (1.2.15) is (0, 00), since this is the largest interval that
contains xo = 1 on which (1.2.14) is defined. Similarly, the interval of validity of (1.2.14) as a solution of

(1.2.16) is (—o0, 0), since this is the largest interval that contains xo = —1 on which (1.2.14) is defined.

Free Fall Under Constant Gravity

The term initial value problem originated in problems of motion where the independent variable is ¢
(representing elapsed time), and the initial conditions are the position and velocity of an object at the
initial (starting) time of an experiment.

Example 1.2.8 An object falls under the influence of gravity near Earth’s surface, where it can be as-

sumed that the magnitude of the acceleration due to gravity is a constant g.

(a) Construct a mathematical model for the motion of the object in the form of an initial value problem
for a second order differential equation, assuming that the altitude and velocity of the object at time
t = 0 are known. Assume that gravity is the only force acting on the object.

(b) Solve the initial value problem derived in (a) to obtain the altitude as a function of time.

SOLUTION(a) Let y(¢) be the altitude of the object at time #. Since the acceleration of the object has
constant magnitude g and is in the downward (negative) direction, y satisfies the second order equation
y ==&

where the prime now indicates differentiation with respect to ¢. If yo and vy denote the altitude and
velocity when ¢ = 0, then y is a solution of the initial value problem

4

y'=—g. y(0)=yo. ¥ (0)=nwo. (1.2.17)

SOLUTION(b) Integrating (1.2.17) twice yields

/

y = —gl+C1,
/2
y = —gT+C1t+Cz.

Imposing the initial conditions y(0) = yg and y’(0) = vy in these two equations shows that ¢c; = vg and
c2 = yo. Therefore the solution of the initial value problem (1.2.17) is
(2

y=—g7+v0t+yo.
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1.2 Exercises

1. Find the order of the equation.

a2y _dy d°
(a)d—x)zj+2£d—x)3}+x=0 ) y" — 3y +2y = x7

©y —y"=0 @y"y —(y)? =2
2. Verify that the function is a solution of the differential equation on some interval, for any choice
of the arbitrary constants appearing in the function.

(@ y=ce?™; y =2y
2
X C
) y=7F+; xy 4y =x?

X

(0 y=%+ce‘2; Y +2xy=x
@ y=(+ce /2 (1—ce™/2)71 2y + x(32-1)=0
() y =tan (%3 + c); y = x2(1 4 y?)
®) y =(c1 +cax)e* +sinx +x2; y' =2y +y=-2cosx + x> —4x +2
(@ y=cie*+cx+ ;; A—=x)y" +xy —y=4(1—-x—x%)x73
(h) y =x"Y2(c;sinx 4 cacosx) + 4x + 8;
x2y" + xy' + (xz—%)y =4x3 +8x2+3x -2

3. Find all of the equation.

@ Yy =-x (b) y = —xsinx

© y =xlnx (d y” =xcosx

(e) Y’ =2xe* ® Y’ =2x+sinx +e*
(g) y/// = —cosx (h) y/// — _xz + e*

(i) y/// — 7e4x
4. Solve the initial value problem.

@ y =-xe*, y0)=1
(b) y' = xsinx?, y( %) =1
(¢) y =tanx, y(x/4)=3
@ y'=x* y@=-1. y@=-1
(e y'=xe**, y0) =7y @0 =1
® y' =-—xsinx, y0)=1, y'(0)=-3
@® Y =x%* yO0) =1, YO0 =-2, »'0)=3
(h) y"=2+4sin2x, y0) =1, y'(0)=-6, y"(0)=3
i y'=2x+1, y@=1, yQ@=-4, y'@2=17
5. Verify that the function is a solution of the initial value problem.

4
(a) = X COS X; /= cosx — ytanx, w/4) = ——
y y y y(m/4) i
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1+2lnx 1 x2—2x%y +2 3
b = -, /: —_—s, 1 = =
(b y =2 T3 7 pe y(1) 7

2
() y =tan (%) y =x(1+y*, »0)=0

2 — +1)
@ y=—— y=202D gy
x—=2 x
6. Verify that the function is a solution of the initial value problem.
3xy' —4
@ y=x2(+hx): )= ) =267 V() = Se
x2 x2—xy +y+1 1 5
b =—+x—-1;, y'= , HD== YyQ)==
() y 3 y 2 y(1) 3 y' (1) 3
21Dy —x(x2+ 1)y
= 2\-1/2. //:(x 0) = 1
(© y=0+x%)"""% y 2112 . YO =1,
y'(©0)=0
x2 2(x + y)(xy' —y)
 y=q—0 V'= 3 oA/ =1/2, y'(1/2)=3

7. Suppose an object is launched from a point 320 feet above the earth with an initial velocity of 128
ft/sec upward, and the only force acting on it thereafter is gravity. Take g = 32 ft/sec?.

(a) Find the highest altitude attained by the object.
(b) Determine how long it takes for the object to fall to the ground.

8. Let a be a nonzero real number.

(a) Verify that if ¢ is an arbitrary constant then

y=(x—c) (A)
is a solution of
' =aylv/e (B)
on (c, 00).
(b) Supposea < 0ora > 1. Can you think of a solution of (B) that isn’t of the form (A)?
9. Verify that
e*—1, x>0,
y =
l—e™, x<0,
is a solution of
Yy =1Il+1
on (—o0, 00). HINT: Use the definition of derivative at x = 0.
10. (a) Verify thatif ¢ is any real number then
y=c?4+cx+2c+1 (A)

satisfies
—(x+2)+ Vx2+4x +4y
V= : (B)

on some open interval. Identify the open interval.
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(b) Verify that

—x(x+4)

—

also satisfies (B) on some open interval, and identify the open interval. (Note that y; can’t
be obtained by selecting a value of ¢ in (A).)

1=

1.3 DIRECTION FIELDS FOR FIRST ORDER EQUATIONS

It’s impossible to find explicit formulas for solutions of some differential equations. Even if there are
such formulas, they may be so complicated that they’re useless. In this case we may resort to graphical
or numerical methods to get some idea of how the solutions of the given equation behave.

In Section 2.3 we’ll take up the question of existence of solutions of a first order equation

y' = fx. ). (1.3.1)

In this section we’ll simply assume that (1.3.1) has solutions and discuss a graphical method for ap-
proximating them. In Chapter 3 we discuss numerical methods for obtaining approximate solutions of
(1.3.1).

Recall that a solution of (1.3.1) is a function y = y(x) such that

y'(x) = f(x.y(x))

for all values of x in some interval, and an integral curve is either the graph of a solution or is made up
of segments that are graphs of solutions. Therefore, not being able to solve (1.3.1) is equivalent to not
knowing the equations of integral curves of (1.3.1). However, it’s easy to calculate the slopes of these
curves. To be specific, the slope of an integral curve of (1.3.1) through a given point (xo, yo) is given by
the number f(xo, yo). This is the basis of the method of direction fields.

If f is defined on a set R, we can construct a direction field for (1.3.1) in R by drawing a short line
segment through each point (x, y) in R with slope f(x,y). Of course, as a practical matter, we can’t
actually draw line segments through every point in R; rather, we must select a finite set of points in R.
For example, suppose f is defined on the closed rectangular region

R:{a<x<b,c<y<d}

Let
Aa=Xxg<Xx1<-+<xm=b

be equally spaced points in [a, b] and
c=yo<y1<--<y,=d
be equally spaced points in [c, d]. We say that the points

xi,yj), 0<i<m, 0=<j<n,
form a rectangular grid (Figure 1.3.1). Through each point in the grid we draw a short line segment with
slope f(x;,y;). The result is an approximation to a direction field for (1.3.1) in R. If the grid points are
sufficiently numerous and close together, we can draw approximate integral curves of (1.3.1) by drawing
curves through points in the grid tangent to the line segments associated with the points in the grid.
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Figure 1.3.1 A rectangular grid

Unfortunately, approximating a direction field and graphing integral curves in this way is too tedious
to be done effectively by hand. However, there is software for doing this. As you’ll see, the combina-
tion of direction fields and integral curves gives useful insights into the behavior of the solutions of the
differential equation even if we can’t obtain exact solutions.

We’ll study numerical methods for solving a single first order equation (1.3.1) in Chapter 3. These
methods can be used to plot solution curves of (1.3.1) in a rectangular region R if f is continuous on R.
Figures 1.3.2, 1.3.3, and 1.3.4 show direction fields and solution curves for the differential equations

B x2—y2
ol x2 4y

/

y y=1+xy? and y =-—=

which are all of the form (1.3.1) with f continuous for all (x, y).
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Figure 1.3.3 A direction field and integral curves for
y/= 1+_xy2
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X

The methods of Chapter 3 won’t work for the equation

y'=-x/y
if R contains part of the x-axis, since f(x,y) =
work for the equation
x2
V=
1—x2—y?2

(13.2)

= —x/y is undefined when y = 0. Similarly, they won’t

(1.3.3)

if R contains any part of the unit circle x> + y? = 1, because the right side of (1.3.3) is undefined if

x2 + y2 = 1. However, (1.3.2) and (1.3.3) can written as

p_ Al Y)
B(x,y)

(13.4)

where A and B are continuous on any rectangle R. Because of this, some differential equation software

is based on numerically solving pairs of equations of the form

dx d
= B(x.y), =

dt:

dt

where x and y are regarded as functions of a parameter ¢. If x

equations, then
y_dy _dy

Cdx  dt
so y = y(x) satisfies (1.3.4).

A(x,y)

(1.3.5)

x(t) and y = y(¢) satisfy these

dx AR, y)
dt — B(x.y)
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Eqns. (1.3.2) and (1.3.3) can be reformulated as in (1.3.4) with

dx _ dy _
a Y a7
and p p
X Y
G 122 ay _ 2
dt Y T

respectively. Even if f is continuous and otherwise “nice” throughout R, your software may require you
to reformulate the equation y’ = f(x, y) as

dx dy
>, = 17 -, = ) )
dt dt fxy)
which is of the form (1.3.5) with A(x, y) = f(x,y) and B(x,y) = L.
Figure 1.3.5 shows a direction field and some integral curves for (1.3.2). As we saw in Example 1.2.1

and will verify again in Section 2.2, the integral curves of (1.3.2) are circles centered at the origin.
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Figure 1.3.5 A direction field and integral curves for y’ = ——

Figure 1.3.6 shows a direction field and some integral curves for (1.3.3). The integral curves near the
top and bottom are solution curves. However, the integral curves near the middle are more complicated.
For example, Figure 1.3.7 shows the integral curve through the origin. The vertices of the dashed rectangle
are on the circle x> + y2 = 1 (a ~ .846, b ~ .533), where all integral curves of (1.3.3) have infinite
slope. There are three solution curves of (1.3.3) on the integral curve in the figure: the segment above the
level y = b is the graph of a solution on (—o0, a), the segment below the level y = —b is the graph of a
solution on (—a, 0o0), and the segment between these two levels is the graph of a solution on (—a, a).

USING TECHNOLOGY |
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As you study from this book, you’ll often be asked to use computer software and graphics. Exercises

with this intent are marked as (computer or calculator required), (computer and/or graphics

required), or (laboratory work requiring software and/or graphics). Often you may not completely
understand how the software does what it does. This is similar to the situation most people are in when
they drive automobiles or watch television, and it doesn’t decrease the value of using modern technology

as an aid to learning. Just be careful that you use the technology as a supplement to thought rather than a
substitute for it.

SN y
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= —aa

NN ) |
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\ L

Figure 1.3.6 A direction field and integral curves for

xZ

/ ==
A P y? Figure 1.3.7

1.3 Exercises

In Exercises 1-11 a direction field is drawn for the given equation. Sketch some integral curves.

Y
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10 A direction field for y’ = x3y? + xy3
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In Exercises 12-22 construct a direction field and plot some integral curves in the indicated rectangular
region.
12. [CG]y =y(y—1: {-1<x<2 -2<y=<2}
13. [C/G|y =2-3xy; {~1<x<4, —4<y<4}
14. y’=xy(y—l); {(2=<x=<2, -4=<y=<4
15. |C/G|y =3x+y; {-2<x=<2,0<y<4}
16. |[C/G|y =y—x% {-2<x<2, -2<y<2}
17. [C/G]y =1-x2—)% {-2<x<2 -2<y<2}
18. |[C/G|y =x(»>—1); {-3<x<3 -3<y<2}

X
19. [CG|ly=———; {2<x<2,-2<y<2}
y»?2 -1 - T
2
20. y’=il; {(2<x=<2 -l<y<4
y—
2
—1
21. y’=L: {(-l<x<l1,-2<y<2}
y
2 2
2. y’=—%; (2<x<2 -2<y<2

23. By suitably renaming the constants and dependent variables in the equations
T' = —k(T —Tp,) (A)
and
G =-AG +r B)

discussed in Section 1.2 in connection with Newton’s law of cooling and absorption of glucose in
the body, we can write both as
yl = —ay + bv (C)

where a is a positive constant and b is an arbitrary constant. Thus, (A) is of the form (C) with
y=T,a =k,and b = kT, and (B) is of the form (C) withy = G,a = A, and b = r. We’ll
encounter equations of the form (C) in many other applications in Chapter 2.

Choose a positive ¢ and an arbitrary . Construct a direction field and plot some integral curves
for (C) in a rectangular region of the form

{0<t<T c<y=d}

of the ty-plane. Vary T, ¢, and d until you discover a common property of all the solutions of (C).
Repeat this experiment with various choices of a and b until you can state this property precisely
in terms of a and b.

24, By suitably renaming the constants and dependent variables in the equations
P’ =aP(l —aP) (A)

and
I'=rI(S-1) B)



28 Chapter 1 Introduction

discussed in Section 1.1 in connection with Verhulst’s population model and the spread of an
epidemic, we can write both in the form

y = ay —by?, (©)

where a and b are positive constants. Thus, (A) is of the form (C) with y = P, a = a, and
b = aw, and (B) is of the form (C) with y = I, a = rS, and b = r. In Chapter 2 we’ll encounter
equations of the form (C) in other applications..

(a) Choose positive numbers a and b. Construct a direction field and plot some integral curves
for (C) in a rectangular region of the form

{0<t<T, 0<y<d}

of the ty-plane. Vary T and d until you discover a common property of all solutions of (C)
with y(0) > 0. Repeat this experiment with various choices of a and b until you can state
this property precisely in terms of a and b.

(b) Choose positive numbers a and b. Construct a direction field and plot some integral curves
for (C) in a rectangular region of the form

{0<t<T c=<y=0}

of the zy-plane. Vary a, b, T and ¢ until you discover a common property of all solutions of
(C) with y(0) < 0.
You can verify your results later by doing Exercise 2.2.27.



CHAPTER 2
First Order Equations

IN THIS CHAPTER we study first order equations for which there are general methods of solution.

SECTION 2.1 deals with linear equations, the simplest kind of first order equations. In this section we
introduce the method of variation of parameters. The idea underlying this method will be a unifying
theme for our approach to solving many different kinds of differential equations throughout the book.

SECTION 2.2 deals with separable equations, the simplest nonlinear equations. In this section we intro-
duce the idea of implicit and constant solutions of differential equations, and we point out some differ-
ences between the properties of linear and nonlinear equations.

SECTION 2.3 discusses existence and uniqueness of solutions of nonlinear equations. Although it may
seem logical to place this section before Section 2.2, we presented Section 2.2 first so we could have
illustrative examples in Section 2.3.

SECTION 2.4 deals with nonlinear equations that are not separable, but can be transformed into separable
equations by a procedure similar to variation of parameters.

SECTION 2.5 covers exact differential equations, which are given this name because the method for
solving them uses the idea of an exact differential from calculus.

SECTION 2.6 deals with equations that are not exact, but can made exact by multiplying them by a
function known called integrating factor.
29
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2.1 LINEAR FIRST ORDER EQUATIONS

A first order differential equation is said to be /inear if it can be written as

Y4+ pXx)y = fx). 2.1.1)

A first order differential equation that can’t be written like this is nonlinear. We say that (2.1.1) is
homogeneous if f = 0; otherwise it’s nonhomogeneous. Since y = 0 is obviously a solution of the
homgeneous equation

y' + px)y =0,

we call it the trivial solution. Any other solution is nontrivial.

Example 2.1.1 The first order equations

x2y' +3y = x2%
xy' —8x%y = sinx,
xy'+(nx)y = 0,
Y= x?y-2,

are not in the form (2.1.1), but they are linear, since they can be rewritten as

3
/ _
sin x
y —8xy = :
X
,  Inx
y+—y =0
X
y —x%y = -2.

Example 2.1.2 Here are some nonlinear first order equations:

xy +3y2 = 2x (because y is squared),
yy) = 3 (because of the product yy’),
y +xe¥ = 12 (because of e”).

General Solution of a Linear First Order Equation

To motivate a definition that we’ll need, consider the simple linear first order equation

L1
Y= 2.1.2)
X

From calculus we know that y satisfies this equation if and only if
y=——+c, 2.1.3)
x

where c¢ is an arbitrary constant. We call ¢ a parameter and say that (2.1.3) defines a one—parameter
Jfamily of functions. For each real number c, the function defined by (2.1.3) is a solution of (2.1.2) on
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(—00, 0) and (0, co0); moreover, every solution of (2.1.2) on either of these intervals is of the form (2.1.3)
for some choice of ¢. We say that (2.1.3) is the general solution of (2.1.2).
We'll see that a similar situation occurs in connection with any first order linear equation

V' +p)y = f(x): (2.1.4)

that is, if p and f are continuous on some open interval (@, b) then there’s a unique formula y = y(x, ¢)
analogous to (2.1.3) that involves x and a parameter ¢ and has the these properties:

e For each fixed value of ¢, the resulting function of x is a solution of (2.1.4) on (a, b).

e If y is a solution of (2.1.4) on (a, b), then y can be obtained from the formula by choosing ¢
appropriately.

We’ll call y = y(x, c¢) the general solution of (2.1.4).
When this has been established, it will follow that an equation of the form

Po(x)y" + Pi(x)y = F(x) (2.1.5)

has a general solution on any open interval (a, b) on which Py, P, and F are all continuous and Py has
no zeros, since in this case we can rewrite (2.1.5) in the form (2.1.4) with p = Py/Py and f = F/ Py,
which are both continuous on (a, b).

To avoid awkward wording in examples and exercises, we won’t specify the interval (a, b) when we
ask for the general solution of a specific linear first order equation. Let’s agree that this always means
that we want the general solution on every open interval on which p and f are continuous if the equation
is of the form (2.1.4), or on which Py, P1, and F are continuous and Py has no zeros, if the equation is
of the form (2.1.5). We leave it to you to identify these intervals in specific examples and exercises.

For completeness, we point out that if Py, Py, and F are all continuous on an open interval (a, b), but
Py does have a zero in (a, b), then (2.1.5) may fail to have a general solution on (a, b) in the sense just
defined. Since this isn’t a major point that needs to be developed in depth, we won’t discuss it further;
however, see Exercise 44 for an example.

Homogeneous Linear First Order Equations

We begin with the problem of finding the general solution of a homogeneous linear first order equation.
The next example recalls a familiar result from calculus.

Example 2.1.3 Let a be a constant.
(a) Find the general solution of
y —ay = 0. (2.1.6)

(b) Solve the initial value problem

y'—ay =0, y(xo) = yo.

SOLUTION(a) You already know from calculus that if ¢ is any constant, then y = ce“” satisfies (2.1.6).
However, let’s pretend you’ve forgotten this, and use this problem to illustrate a general method for
solving a homogeneous linear first order equation.

We know that (2.1.6) has the trivial solution y = 0. Now suppose y is a nontrivial solution of (2.1.6).
Then, since a differentiable function must be continuous, there must be some open interval / on which y
has no zeros. We rewrite (2.1.6) as
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y
A
3.0
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0 a=15
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1.0
a=-1
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Figure 2.1.1 Solutions of y' —ay =0, y(0) = 1

for x in /. Integrating this shows that

Inly| =ax+k, so |y|=eke®,

where k is an arbitrary constant. Since e%* can never equal zero, y has no zeros, so y is either always
positive or always negative. Therefore we can rewrite y as

y = ce?” (2.1.7)
where
ek ify >0,
Cc = k-
—e* ify <O.

This shows that every nontrivial solution of (2.1.6) is of the form y = ce®* for some nonzero constant c.
Since setting ¢ = 0 yields the trivial solution, all solutions of (2.1.6) are of the form (2.1.7). Conversely,
(2.1.7) is a solution of (2.1.6) for every choice of ¢, since differentiating (2.1.7) yields y’ = ace®* = ay.
SoLuTioN(b) Imposing the initial condition y(xo) = yo yields yo = ce?*0, so ¢ = yge **0 and

—axoeax a(x—xo)

Y = Yoe = JYoe
Figure 2.1.1 show the graphs of this function with xo = 0, yo = 1, and various values of a.
Example 2.1.4 (a) Find the general solution of

xy'+y=0. (2.1.8)

(b) Solve the initial value problem
xy'+y=0, y()=3. (2.1.9)
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SOLUTION(a) We rewrite (2.1.8) as
1
y +=-y=0, (2.1.10)
X

where x is restricted to either (—oo, 0) or (0, o). If y is a nontrivial solution of (2.1.10), there must be
some open interval I on which y has no zeros. We can rewrite (2.1.10) as

/

y 1
y  x
for x in /. Integrating shows that
ek
In|ly|==In|x|+k, so |y|=—.
|x|
Since a function that satisfies the last equation can’t change sign on either (—oo, 0) or (0, c0), we can
rewrite this result more simply as

y=5 2.1.11)
X
where
ek ify >0,
Cc = k-
—e* ify <O.

We’ve now shown that every solution of (2.1.10) is given by (2.1.11) for some choice of c¢. (Even though
we assumed that y was nontrivial to derive (2.1.11), we can get the trivial solution by setting ¢ = 0 in
(2.1.11).) Conversely, any function of the form (2.1.11) is a solution of (2.1.10), since differentiating
(2.1.11) yields

/

¢
y = _;v
and substituting this and (2.1.11) into (2.1.10) yields

/

1
Y4—y = —md o
X

Figure 2.1.2 shows the graphs of some solutions corresponding to various values of ¢
SoLuTIioN(b) Imposing the initial condition y(1) = 3 in (2.1.11) yields ¢ = 3. Therefore the solution
of (2.1.9) is
3
y==
x

The interval of validity of this solution is (0, co).
The results in Examples 2.1.3(a) and 2.1.4(b) are special cases of the next theorem.

Theorem 2.1.1 If p is continuous on (a, b), then the general solution of the homogeneous equation
y 4+ p(x)y =0 (2.1.12)

on (a,b)is
y =ce P™,
where

P(x) :/p(x)dx (2.1.13)
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Y
A

c<0 c>0

= X
c>0 c<0
Figure 2.1.2 Solutions of xy’ + y = 0 on (0, c0) and (—o0, 0)
is any antiderivative of p on (a, b); that is,
P'(x) = p(x), a<x<bh. (2.1.14)

Proof If y = ce P™, differentiating y and using (2.1.14) shows that
Y = =P/ (x)ce™"® = —p(x)ce M = —p(x)y,

s0 y' + p(x)y = 0; thatis, y is a solution of (2.1.12), for any choice of c.

Now we’ll show that any solution of (2.1.12) can be written as y = ce~F® for some constant c. The
trivial solution can be written this way, with ¢ = 0. Now suppose y is a nontrivial solution. Then there’s
an open subinterval / of (a, b) on which y has no zeros. We can rewrite (2.1.12) as

y_’ =—p(x) (2.1.15)
y

for x in /. Integrating (2.1.15) and recalling (2.1.13) yields
In|y| = —P(x) + £k,

where k is a constant. This implies that

[yl = eke P,

Since P is defined for all x in (@, ) and an exponential can never equal zero, we can take I = (a, b), so
y has zeros on (a, b) (a, b), so we can rewrite the last equation as y = ce” ™), where

ek if y > 0on (a,b),

CT ek if y <Oon (a,b).
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REMARK: Rewriting a first order differential equation so that one side depends only on y and y’ and the
other depends only on x is called separation of variables. We did this in Examples 2.1.3 and 2.1.4, and
in rewriting (2.1.12) as (2.1.15).We’llapply this method to nonlinear equations in Section 2.2.

Linear Nonhomogeneous First Order Equations

We’ll now solve the nonhomogeneous equation

Y+ p)y = f(x). (2.1.16)

When considering this equation we call

y'+px)y=0

the complementary equation.

We'll find solutions of (2.1.16) in the form y = uy;, where y; is a nontrivial solution of the com-
plementary equation and u is to be determined. This method of using a solution of the complementary
equation to obtain solutions of a nonhomogeneous equation is a special case of a method called variation
of parameters, which you’ll encounter several times in this book. (Obviously, u can’t be constant, since
if it were, the left side of (2.1.16) would be zero. Recognizing this, the early users of this method viewed
u as a “parameter” that varies; hence, the name “variation of parameters.”)

If

y =uyi, then y =u'y; +uyj.

Substituting these expressions for y and y’ into (2.1.16) yields
w'yr +u(yy + p()yr) = f(x),

which reduces to
W'y = f(x), 2.1.17)

since y; is a solution of the complementary equation; that is,
Y1+ p)y1 = 0.

In the proof of Theorem 2.2.1 we saw that y; has no zeros on an interval where p is continuous. Therefore
we can divide (2.1.17) through by y; to obtain

u' = f(x)/y1(x).

We can integrate this (introducing a constant of integration), and multiply the result by y; to get the gen-
eral solution of (2.1.16). Before turning to the formal proof of this claim, let’s consider some examples.

Example 2.1.5 Find the general solution of

y 42y = x3e ¥, (2.1.18)
By applying (a) of Example 2.1.3 with a = —2, we see that y; = e~2¥ is a solution of the com-
plementary equation y’ 4+ 2y = 0. Therefore we seek solutions of (2.1.18) in the form y = ue 2%, so
that
Y =ue ™ —2ue™® and Y +2y =u'e > —2ue P 4+ 2ue P =u'e™ . (2.1.19)
Therefore y is a solution of (2.1.18) if and only if
/,—2x 3 ,—2x l 3

u'e =xe or, equivalently, u = x~.
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Figure 2.1.3 A direction field and integral curves for y’ + 2y = x2e™2*
Therefore .
u=—++c,
and .
_ _ x
y =ue 2x:e 2x Z 4o
4
is the general solution of (2.1.18).
Figure 2.1.3 shows a direction field and some integral curves for (2.1.18).
Example 2.1.6
(a) Find the general solution
y' + (cotx)y = x csc x. (2.1.20)
(b) Solve the initial value problem
¥y + (cotx)y = xcscx, y(n/2)=1. (2.1.21)

SoLUTION(a) Here p(x) = cotx and f(x) = x csc x are both continuous except at the points x = r,
where r is an integer. Therefore we seek solutions of (2.1.20) on the intervals (r7, (r + 1)7). We need
a nontrival solution y; of the complementary equation; thus, y; must satisfy y| + (cot x)y; = 0, which

we rewrite as
i COS X
= = —cotx = —— .
Y1 sin x

(2.1.22)

Integrating this yields
In|yi1| = —In|sinx|,
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where we take the constant of integration to be zero since we need only one function that satisfies (2.1.22).
Clearly y; = 1/ sinx is a suitable choice. Therefore we seek solutions of (2.1.20) in the form

u
"~ sinx’
so that
, u U COS X
Vo= (2.1.23)
sin x Sin”™ x
and
, u’ UCOSX  uUcotx
Y+ (cotx)y = ———— .
sSin x sSin” x s x
/
u UCOSX  UCOSX
- L Moot ueo (2.1.24)
sinx  sin“x sin” x
i
u
sinx’

Therefore y is a solution of (2.1.20) if and only if

u'/sinx = xcscx = x/sinx or, equivalently, u’ = x.
Integrating this yields
2 2
x u x c
Uu=—+4+c¢, and y=— = - + —. (2.1.25)
2 sinx  2sinx  sinx

is the general solution of (2.1.20) on every interval (r7, (r + 1)) (r =integer).

SoLuTIioN(b) Imposing the initial condition y(;r/2) = 1 in (2.1.25) yields

2 2
b4 b4
l=—+¢ or ¢c=1——.

8 8

Thus,
2 2
x 1—7=/8
S ( . /8)
2sinx sin x
is a solution of (2.1.21). The interval of validity of this solution is (0, 7); Figure 2.1.4 shows its graph.

y:

\/
x

Figure 2.1.4 Solution of y" + (cotx)y = xcscx, y(n/2) = 1
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REMARK: It wasn’t necessary to do the computations (2.1.23) and (2.1.24) in Example 2.1.6, since we
showed in the discussion preceding Example 2.1.5 that if y = uy; where y| + p(x)y1 = 0, then
y'+ p(x)y = u'y;. We did these computations so you would see this happen in this specific example. We
recommend that you include these “unnecesary” computations in doing exercises, until you’re confident
that you really understand the method. After that, omit them.

We summarize the method of variation of parameters for solving

Y+ px)y = f(x) (2.1.26)
as follows:
(a) Find a function y; such that
y/
=L =—p().
Y1
For convenience, take the constant of integration to be zero.
(b) Write
Yy =uy (2.1.27)

to remind yourself of what you’re doing.
(¢c) Write u’y; = f and solve for u’; thus, u’ = f/y;.
(d) Integrate u’ to obtain u, with an arbitrary constant of integration.

(e) Substitute u into (2.1.27) to obtain y.

To solve an equation written as
Po(x)y" + Pi(x)y = F(x),

we recommend that you divide through by Po(x) to obtain an equation of the form (2.1.26) and then
follow this procedure.

Solutions in Integral Form

Sometimes the integrals that arise in solving a linear first order equation can’t be evaluated in terms of
elementary functions. In this case the solution must be left in terms of an integral.

Example 2.1.7
(a) Find the general solution of
y —2xy = 1.
(b) Solve the initial value problem
y —2xy =1, y(0) = yo. (2.1.28)

SOLUTION(a) To apply variation of parameters, we need a nontrivial solution y; of the complementary
equation; thus, y’1 — 2xy; = 0, which we rewrite as

/

&=2x.

1
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Integrating this and taking the constant of integration to be zero yields
2 2
Injy;] =x% so |yi|=e".

We choose y; = ¢* and seek solutions of (2.1.28) inthe form y = uexz, where

Therefore
u=c+ /e_xzdx,

but we can’t simplify the integral on the right because there’s no elementary function with derivative
equal to e~ Therefore the best available form for the general solution of (2.1.28) is

y = ue® = e* (c + /e‘xzdx) . (2.1.29)
SOLUTION(b) Since the initial condition in (2.1.28) is imposed at xo = 0, it is convenient to rewrite

(2.1.29) as
X 0
y = e (C +/ e_’zdt) , since / e~ dt = 0.
0 0

Setting x = 0 and y = yo here shows that ¢ = y¢. Therefore the solution of the initial value problem is

y=e¥ (yo +/ e"zdt) . (2.1.30)
0

For a given value of yq and each fixed x, the integral on the right can be evaluated by numerical methods.
An alternate procedure is to apply the numerical integration procedures discussed in Chapter 3 directly to
the initial value problem (2.1.28). Figure 2.1.5 shows graphs of of (2.1.30) for several values of yj.

Figure 2.1.5 Solutions of ' —2xy =1, y(0) = yo
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An Existence and Uniqueness Theorem

The method of variation of parameters leads to this theorem.

Theorem 2.1.2 Suppose p and f are continuous on an open interval (a, b), and let y1 be any nontrivial
solution of the complementary equation

y' 4+ p(x)y =0

on (a,b). Then:
(a) The general solution of the nonhomogeneous equation

Y+ p@)y = 1) (2.1.31)
on (a,b)is
y =y1(x) (c + / f(x)/yl(x)dx) . (2.1.32)
(b) If xo is an arbitrary pointin (a, b) and yy is an arbitrary real number, then the initial value problem

V' +px)y = f(x), yxo)=yo

has the unique solution

y=y1(X)( Yo xf(t)dr)

yi(xo)  Jxo y1(0)
on (a,b).
Proof (a) To show that (2.1.32) is the general solution of (2.1.31) on (a, b), we must prove that:
(i) If ¢ is any constant, the function y in (2.1.32) is a solution of (2.1.31) on (a, b).

(ii) If y is a solution of (2.1.31) on (a, b) then y is of the form (2.1.32) for some constant c.
To prove (i), we first observe that any function of the form (2.1.32) is defined on (a, ), since p and f
are continuous on (a, b). Differentiating (2.1.32) yields

e (c + [ 1w dx) ).

Since y]; = —p(x)y1, this and (2.1.32) imply that

Y= —pmi () (c + [ r@me dx) + )
= —pX@)yx)+ f(x),

which implies that y is a solution of (2.1.31).
To prove (ii), suppose y is a solution of (2.1.31) on (a, b). From the proof of Theorem 2.1.1, we know
that y; has no zeros on (a, b), so the functionu = y/y; is defined on (a, b). Moreover, since

y'=—-py+f and y|=-py.

;oY =y
"
n=py+H—=Ceyy _ f
Y% 1
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Integrating u’ = f/y; yields
u = (c +/f(x)/y1(x)dx),

which implies (2.1.32), since y = uy;.
(b) We’ve proved (a), where [ f(x)/y1(x) dx in (2.1.32) is an arbitrary antiderivative of f/y;. Now
it’s convenient to choose the antiderivative that equals zero when x = x¢, and write the general solution

of (2.1.31) as
y = y1(x) (c + S0 dt).

X0 yl(t)
Since o )
t
y(x0) = y1(xo) (C +/ — dl) = cy1(xo),
X0 yl(t)
we see that y(xg) = yo if and only if ¢ = yo/y1(x0).
2.1 Exercises
In Exercises 1-5 find the general solution.
1. y' + ay = 0 (a=constant) 2. Yy +3x2y =0
3. xy'+(nx)y=0 4. xy'+3y=0

5. x2y'+y=0

In Exercises 6—11 solve the initial value problem.

S

1+x
y’+(T)y=0, y(1) =1

1
7. xy’+(l+m)y=0, ye) =1

8. xy +(1+xcotx)y=0, y (%) =2

2x
9. y’—(1+x2)y=o, y(O) =2

k
10. »' 4+ -y =0, y() =3 (k=constant)
x
11. y'+ (tankx)y =0, y(0) =2 (k = constant)

In Exercises 12 —15 find the general solution. Also, plot a direction field and some integral curves on the
rectangular region {—2 < x <2, =2 <y <2}

12. [CG]y +3y=1 13. y’+(%_1)y:_%

—X

14. y +2xy = xe 15. y + 1j—xx2y = 1e

+ x2
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In Exercises 16 =24 find the general solution.

4 _ 1 n sin x
YT T )

1 7
16. y/_'_;y:;_'_:; 17. y' +

2
/ —_—
18. xy' +(14+2:%)y =x3e 1 0 H2y=-"5+1

sin x

20. )y + (tanx)y =cosx 21, (1+x)y +2y =
1+x

22 (x=2)(x—=1)y' —(@dx =3)y = (x —2)3

23. y' + (2sinxcosx)y = e~ S0’ 24, x?y 4 3xy =e*

In Exercises 25-29 solve the initial value problem and sketch the graph of the solution.

25. Y +Ty =€, y(0) =0
2
26. (1 =+ xz)y’ + 4Xy = 1+—x2’

2
/ = —_— — =
27. [C/G]xy T = iy D=0
2. [CG] Y + (otx)y = cosx, v (5) =1

12
29. y’+;y=;+l, y(=1) =0

y(©0) =1

In Exercises 30-37 solve the initial value problem.

sin x
. — 1)y = =1
30. (x—1)y +3y a1 + G- y(0)
3. xy' +2y =8x2, y(l)=3
32. xy—2y=—x2, y()=1
33. y+2xy=x, y0)=3
1+ (x —1)sec?x
4. (x—=1)y +3y= ((x 1y . y(0)=-1
1 +2x2

36. (x2—1)y —2xy=x(x2—-1), y0)=4
37. (x2-=5)y —2xy =-2x(x%2-5), y2)=7

In Exercises 38—42 solve the initial value problem and leave the answer in a form involving a definite
integral. (You can solve these problems numerically by methods discussed in Chapter 3.)

38. y +2xy=x2 y(0) =3

1 sin x
9. YV+-y=—-, y)=2
X X
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e *tanx
40. y’+y=f, y(1) =0
2x e*
41. ! = , 0)=1
y+1+x2y (1 + x2)? y(©)

2. xy+@x+Dy=e", yl)=2

43. Experiments indicate that glucose is absorbed by the body at a rate proportional to the amount of
glucose present in the bloodstream. Let A denote the (positive) constant of proportionality. Now
suppose glucose is injected into a patient’s bloodstream at a constant rate of r units per unit of
time. Let G = G(¢) be the number of units in the patient’s bloodstream at time ¢ > 0. Then

G =-)G +r,

where the first term on the right is due to the absorption of the glucose by the patient’s body and
the second term is due to the injection. Determine G for ¢ > 0, given that G(0) = Gy. Also, find

4. (a) Plot a direction field and some integral curves for
xy =2y =-1 (A)

on the rectangular region {—1 < x < 1,—.5 < y < 1.5}. What do all the integral curves
have in common?

(b) Show that the general solution of (A) on (—oo, 0) and (0, c0) is

1 2
y—§+cx.

(c) Show that y is a solution of (A) on (—oo, co) if and only if
1 2
—4+c1x°, x>0,

N
§+C2x2, x <0,

where ¢ and ¢, are arbitrary constants.

(d) Conclude from (c) that all solutions of (A) on (—o0, c0) are solutions of the initial value
problem

1
xy =2y =—1, y(0) = 3
(e) Use (b) to show that if x¢ # 0 and yy is arbitrary, then the initial value problem
xy' =2y =~1, y(x) = yo

has infinitely many solutions on (—oo, 00). Explain why this does’nt contradict Theorem 2.1.1(b).
45. Suppose f is continuous on an open interval (a, ) and « is a constant.

(a) Derive a formula for the solution of the initial value problem

V' +ay = f(x), y(xo) = yo. (A)

where X is in (a, b) and yy is an arbitrary real number.
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46.

47.

48.

49.

(b) Suppose (a,b) = (a,00),« > 0and lim f(x) = L. Show that if y is the solution of (A),
X—>00
then lim y(x) = L/o.
X—>00
Assume that all functions in this exercise are defined on a common interval (a, b).
(a) Prove: If y; and y, are solutions of
Y+ px)y = fi(x)
and
Y+ p@)y = f2(x)
respectively, and ¢ and ¢, are constants, then y = ¢;y1 + ¢2y» is a solution of

Y+ p)y =c1filx) + 2 fo(x).

(This is theprinciple of superposition.)
(b) Use (a) to show that if y; and y, are solutions of the nonhomogeneous equation

Y+ px)y = f(x), (A)

then y; — y, is a solution of the homogeneous equation
Y+ p(x)y = 0. (B)
(c) Use (a) to show that if y; is a solution of (A) and y, is a solution of (B), then y; + y, is a

solution of (A).

Some nonlinear equations can be transformed into linear equations by changing the dependent
variable. Show that if

gy +pg) = f(x)
where y is a function of x and g is a function of y, then the new dependent variable z = g(y)
satisfies the linear equation

7+ p(x)z = f(x).

Solve by the method discussed in Exercise 47.

2 1
(@) (sec? y)y' —3tany = —1 (b) e’ (zyy’ + —) =2
x x
xy' 5 y' 1 3
¢c) — +2Iny = 4x d - =——
@5 T D7 xiry @
We’ve shown that if p and f are continuous on (a, b) then every solution of
Y+ p)y = fx) (A)
on (a,b) can be written as y = uy;, where y; is a nontrivial solution of the complementary

equation fOr (A) and u/ = f/yl NOW Suppose f’ f/’ RS f(m) and p’ pl, vy P(m_l) are
continuous on (a, b), where m is a positive integer, and define

fo = [
fi = fiat+pfic, 15j=m.
Show that
uU+D — ﬁ’ 0<j<m.

1
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2.2 SEPARABLE EQUATIONS

A first order differential equation is separable if it can be written as

h(y)y" = g(x), 2.2.1)

where the left side is a product of y’ and a function of y and the right side is a function of x. Rewriting
a separable differential equation in this form is called separation of variables. In Section 2.1 we used
separation of variables to solve homogeneous linear equations. In this section we’ll apply this method to
nonlinear equations.
To see how to solve (2.2.1), let’s first assume that y is a solution. Let G(x) and H(y) be antiderivatives
of g(x) and & (y); that is,
H'(y) =h(y) and G'(x) = g(x). (2.2.2)

Then, from the chain rule,
d
EH(y(X)) = H'(y(x))y' (x) = h()y' (x).

Therefore (2.2.1) is equivalent to

d d
I @) =G ).

Integrating both sides of this equation and combining the constants of integration yields
H(y(x)) = G(x) +c. (2.2.3)

Although we derived this equation on the assumption that y is a solution of (2.2.1), we can now view it
differently: Any differentiable function y that satisfies (2.2.3) for some constant ¢ is a solution of (2.2.1).
To see this, we differentiate both sides of (2.2.3), using the chain rule on the left, to obtain

H'(y(x))y' (x) = G'(x),
which is equivalent to
h(y(x))y' (x) = g(x)

because of (2.2.2).
In conclusion, to solve (2.2.1) it suffices to find functions G = G(x) and H = H(y) that satisfy
(2.2.2). Then any differentiable function y = y(x) that satisfies (2.2.3) is a solution of (2.2.1).

Example 2.2.1 Solve the equation

Y =x(1+ 7).
Solution Separating variables yields
/
LA x.
1+ y?
Integrating yields
2
1 x
tan "y =—+c¢
Therefore
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Example 2.2.2
(a) Solve the equation
y =-% (2.2.4)
y
(b) Solve the initial value problem
y=-2 yh=1 (2.2.5)
y
(¢) Solve the initial value problem
y = —%, y(1) = —2. (2.2.6)

SOLUTION(a) Separating variables in (2.2.4) yields

yy' = —x.

Integrating yields
2 %2
5 ="7 +c, or, equivalently, x?+ y% =2c.

The last equation shows that ¢ must be positive if y is to be a solution of (2.2.4) on an open interval.
Therefore we let 2¢ = a? (with a > 0) and rewrite the last equation as

x2 +y? =d. (2.2.7)

This equation has two differentiable solutions for y in terms of x:

y= ~a%*—-x2, —a<x<a, (2.2.8)
and
y=—+va?—-x2, —a<x<a. (2.2.9)

The solution curves defined by (2.2.8) are semicircles above the x-axis and those defined by (2.2.9) are
semicircles below the x-axis (Figure 2.2.1).

SOLUTION(b) The solution of (2.2.5) is positive when x = 1; hence, itis of the form (2.2.8). Substituting
x = l and y = 1 into (2.2.7) to satisfy the initial condition yields a? = 2; hence, the solution of (2.2.5)

1S
y=~2-x2, —V2<x<+2

SOLUTION(c) The solution of (2.2.6) is negative when x = 1 and is therefore of the form (2.2.9).
Substituting x = 1 and y = —2 into (2.2.7) to satisfy the initial condition yields a> = 5. Hence, the

solution of (2.2.6) is
y = —+5—x2, —5<x <+/5.
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Figure 2.2.1 @)y = vV2—x2, —v/2<x<+/2; b))y =—-v/5-x2, -/5<x < /5

Implicit Solutions of Separable Equations

In Examples 2.2.1 and 2.2.2 we were able to solve the equation H(y) = G(x) + ¢ to obtain explicit
formulas for solutions of the given separable differential equations. As we’ll see in the next example,
this isn’t always possible. In this situation we must broaden our definition of a solution of a separable
equation. The next theorem provides the basis for this modification. We omit the proof, which requires a
result from advanced calculus called as the implicit function theorem.

Theorem 2.2.1 Suppose g = g(x) is continous on (a, b) and h = h(y) are continuous on (c,d). Let G
be an antiderivative of g on (a, b) and let H be an antiderivative of h on (c,d). Let xo be an arbitrary
pointin (a,b), let yo be a pointin (c, d) such that h(yo) # 0, and define

¢ = H(yo) — G(xo). (2.2.10)

Then there’s a function y = y(x) defined on some open interval (ay,by), where a < ay < xo < by < b,
such that y(x¢) = yo and
H(y)=Gkx)+c¢ (2.2.11)

forai < x < by. Therefore y is a solution of the initial value problem
h(y)y" = g(x), y(xo) = Xo. (2.2.12)

It’s convenient to say that (2.2.11) with ¢ arbitrary is an implicit solution of h(y)y’ = g(x). Curves
defined by (2.2.11) are integral curves of £(y)y’ = g(x). If ¢ satisfies (2.2.10), we’ll say that (2.2.11) is
an implicit solution of the initial value problem (2.2.12). However, keep these points in mind:

e For some choices of ¢ there may not be any differentiable functions y that satisfy (2.2.11).
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e The function y in (2.2.11) (not (2.2.11) itself) is a solution of 2(y)y’ = g(x).

Example 2.2.3
(a) Find implicit solutions of
y' = 52;%11 (2.2.13)
(b) Find an implicit solution of
y = 52;111, y2) = 1. (2.2.14)

SOLUTION(a) Separating variables yields

Gy*+ 1)y =2x + 1.
Integrating yields the implicit solution

yV4+y=x+x+ec. (2.2.15)
of (2.2.13).

SOLUTION(b) Imposing the initial condition y(2) = 1in (2.2.15) yields 1 +1=4+2+c,s0c = —4.
Therefore
V+y=x*+x—14
is an implicit solution of the initial value problem (2.2.14). Although more than one differentiable func-
tion y = y(x) satisfies 2.2.13) near x = 1, it can be shown that there’s only one such function that
satisfies the initial condition y(1) = 2.
Figure 2.2.2 shows a direction field and some integral curves for (2.2.13).

Constant Solutions of Separable Equations

An equation of the form
y'=2gx)p(y)

is separable, since it can be rewritten as

1 /
——y = gX).
()
However, the division by p(y) is not legitimate if p(y) = 0 for some values of y. The next two examples
show how to deal with this problem.

Example 2.2.4 Find all solutions of
v =2xy% (2.2.16)

Solution Here we must divide by p(y) = y? to separate variables. This isn’t legitimate if y is a solution
of (2.2.16) that equals zero for some value of x. One such solution can be found by inspection: y = 0.
Now suppose y is a solution of (2.2.16) that isn’t identically zero. Since y is continuous there must be an
interval on which y is never zero. Since division by y? is legitimate for x in this interval, we can separate
variables in (2.2.16) to obtain )

% = 2x.
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Figure 2.2.2 A direction field and integral curves for y’ =
54 +1
Integrating this yields
1
— =x?+c,
y
which is equivalent to
1
=—— (2.2.17)
d x2+c

We’ve now shown that if y is a solution of (2.2.16) that is not identically zero, then y must be of the
form (2.2.17). By substituting (2.2.17) into (2.2.16), you can verify that (2.2.17) is a solution of (2.2.16).
Thus, solutions of (2.2.16) are y = 0 and the functions of the form (2.2.17). Note that the solution y = 0
isn’t of the form (2.2.17) for any value of c.

Figure 2.2.3 shows a direction field and some integral curves for (2.2.16)

Example 2.2.5 Find all solutions of
1
y = 5x(l — ). (2.2.18)

Solution Here we must divide by p(y) = 1 — y? to separate variables. This isn’t legitimate if y is a
solution of (2.2.18) that equals 1 for some value of x. Two such solutions can be found by inspection:
y = land y = —1. Now suppose y is a solution of (2.2.18) such that 1 — y? isn’t identically zero. Since
1 — y? is continuous there must be an interval on which 1 — y? is never zero. Since division by 1 — y? is

legitimate for x in this interval, we can separate variables in (2.2.18) to obtain
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Figure 2.2.3 A direction field and integral curves for y’ = 2xy?

A partial fraction expansion on the left yields

[ 1 1 :|,
- - y:_x’
y—1 y+1

and integrating yields

hence,
Yol _ kg2
y+1
Since y(x) # =£1 for x on the interval under discussion, the quantity (y — 1)/(y + 1) can’t change sign
in this interval. Therefore we can rewrite the last equation as

Yo _ e

y+1
where ¢ = +e¥, depending upon the sign of (y — 1)/(y + 1) on the interval. Solving for y yields

1+ ce /2
_ _ 22.1
1 —cex*/2 2219

We’ve now shown that if y is a solution of (2.2.18) that is not identically equal to £1, then y must be
as in (2.2.19). By substituting (2.2.19) into (2.2.18) you can verify that (2.2.19) is a solution of (2.2.18).
Thus, the solutions of (2.2.18) are y = 1, y = —1 and the functions of the form (2.2.19). Note that the
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constant solution y = 1 can be obtained from this formula by taking ¢ = 0; however, the other constant
solution, y = —1, can’t be obtained in this way.
Figure 2.2.4 shows a direction field and some integrals for (2.2.18).

MR R
MR R R R
y(rveree

T T T e .

N -

x(1—y?%)

Figure 2.2.4 A direction field and integral curves for y’ = 7

Differences Between Linear and Nonlinear Equations

Theorem 2.1.2 states that if p and f are continuous on (a, b) then every solution of

Y4+ px)y = fx)

on (a, b) can be obtained by choosing a value for the constant ¢ in the general solution, and if x¢ is any
point in (a, b) and yy is arbitrary, then the initial value problem

V' +px)y = f(x), y(xo)=yo

has a solution on (a, b).

The not true for nonlinear equations. First, we saw in Examples 2.2.4 and 2.2.5 that a nonlinear
equation may have solutions that can’t be obtained by choosing a specific value of a constant appearing
in a one-parameter family of solutions. Second, it is in general impossible to determine the interval
of validity of a solution to an initial value problem for a nonlinear equation by simply examining the
equation, since the interval of validity may depend on the initial condition. For instance, in Example 2.2.2
we saw that the solution of

dy X
——=——, y(x0) =)o
dx y

is valid on (—a, a), where a = (/x2 + y2.
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Example 2.2.6 Solve the initial value problem

y' =2xy%, y(0) = yo

and determine the interval of validity of the solution.

Solution First suppose yo # 0. From Example 2.2.4, we know that y must be of the form

1
=— . 2.2.20
Y x2+c ( )
Imposing the initial condition shows that ¢ = —1/y. Substituting this into (2.2.20) and rearranging
terms yields the solution
y = Yo
1 — yox2’

This is also the solution if yo = 0. If yo < 0, the denominator isn’t zero for any value of x, so the the
solution is valid on (—oo, 00). If yo > 0, the solution is valid only on (—1/., /70, 1/ /Y0)-

2.2 Exercises

In Exercises 1-6 find all solutions.

, 3x2+2x+1
yzi

1. 3 2. (sinx)(siny) + (cosy)y’ =0
y_
3. xy'+)2+y=0 4. y'Inly|+x2y =0
2 1
5. (3% +3ycosy 4 Dy + ZEDY g
1+ x2

6. x’yy' =(y>-1?

In Exercises 710 find all solutions. Also, plot a direction field and some integral curves on the indicated
rectangular region.

7. Y =x*1+y){-1<x<1,-1<y=<1}

8. [C/G]y(1+x®)+xy=0;{2<x<2, -1<y<l}

9. Y=@-D@-D-2:{-2<x<2 -3<y<3}
10. [C/G](y -1y =2x+3 {-2<x<2, -2<y <5}
In Exercises 11 and 12 solve the initial value problem.

x24+3x+2
— y() =4
y—2

12. Y +x(%+y)=0, y2) =1

11. y =

In Exercises 13-16 solve the initial value problem and graph the solution.

13. (3y? +4y)y' +2x +cosx =0, y(0) =1



14.

15.
16.
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Dy —D(y—2
y/+(y+ )(j+1)(y ) _o. y(1) =0

[CIG]y +2x(y +1) =0, y(0) =2
Y =2xy(1+y?). y(0) =1

In Exercises 17-23 solve the initial value problem and find the interval of validity of the solution.

17.
18.

19.

21.
22,
23.

24.

25.

26.

27.

28.

29.

30.

Y242 +4x(pP+2y +1) =0, y(1)=-1
y' =-2x(y>*-3y+2)., y0)=3
_ 2> ) =0 20, y' =2 2 0 =1
o e Zy’ y = . y =2y Yo, y -
x+yy' =0, y3) =-4
Y +x2y+ Dy —22=0, y4) =2
(x+D(x=2y +y=0 y(1)=-3
1 2 tan A 4 tan B
Solve y' = El::_—iizi explicitly. HINT: Use the identity tan(A + B) = %'

Solve y'v/1 — x2 + /1 — y2 = 0 explicitly. HINT: Use the identity sin(A — B) = sin A cos B —
cos A sin B.

/

y

Solve y' = o8y

—, y(m) = % explicitly. HINT: Use the identity cos(x + 7/2) = —sinx and
sin y
the periodicity of the cosine.

Solve the initial value problem

Y =ay-by*,  y(0) = yo.
Discuss the behavior of the solution if (a) yo > 0; (b) yo < 0.
The population P = P(¢) of a species satisfies the logistic equation

P’ ' =aP(l —aP)
and P(0) = Py > 0. Find P for ¢t > 0, and find lim; o, P (?).

An epidemic spreads through a population at a rate proportional to the product of the number of
people already infected and the number of people susceptible, but not yet infected. Therefore, if
S denotes the total population of susceptible people and / = I(¢) denotes the number of infected
people at time 7, then

I'=rI(S-1),
where r is a positive constant. Assuming that 7/(0) = Iy, find I(¢) for ¢ > 0, and show that
limye0 I(2) = S.

The result of Exercise 29 is discouraging: if any susceptible member of the group is initially
infected, then in the long run all susceptible members are infected! On a more hopeful note,
suppose the disease spreads according to the model of Exercise 29, but there’s a medication that
cures the infected population at a rate proportional to the number of infected individuals. Now the
equation for the number of infected individuals becomes

I'=rI(S—1)—ql (A)

where ¢ is a positive constant.
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(a) Choose r and S positive. By plotting direction fields and solutions of (A) on suitable rectan-

gular grids
R={0<t<T, 0<1I<d}

inthe (¢, I)-plane, verify that if / is any solution of (A) such that 7(0) > 0, then lim; oo I(¢) =
S —q/rifqg <rS andlimyo I(t) =0ifg > rS.

(b) To verify the experimental results of (a), use separation of variables to solve (A) with initial
condition 7(0) = Iy > 0, and find lim;_, o, I(¢). HINT: There are three cases to consider:
() g <rS; ) g >rS; (ii)g =rS.

31. Consider the differential equation

i 2
y =ay—by" —q, (A)
where a, b are positive constants, and ¢ is an arbitrary constant. Suppose y denotes a solution of
this equation that satisfies the initial condition y(0) = yp.

(a) Choose a and b positive and ¢ < a?/4b. By plotting direction fields and solutions of (A) on
suitable rectangular grids

R={0=<1=T c<y=d} (B)
in the (¢, y)-plane, discover that there are numbers y; and y, with y; < y, such that if
Yo > y1 thenlim; o y(¢) = y2, and if yo < y; then y(t) = —oo for some finite value of 7.

(What happens if yo = y17)

(b) Choose a and b positive and ¢ = a?/4b. By plotting direction fields and solutions of (A)
on suitable rectangular grids of the form (B), discover that there’s a number y; such that if
Yo > yi1 then lim;—o0 y(¢) = y1, while if yo < y; then y(#) = —oo for some finite value
of 7.

(¢) Choose positive a, b and ¢ > a?/4b. By plotting direction fields and solutions of (A) on
suitable rectangular grids of the form (B), discover that no matter what yg is, y(f) = —oo
for some finite value of 7.

(d) Verify your results experiments analytically. Start by separating variables in (A) to obtain

/

Y —
ay —by?—q
To decide what to do next you’ll have to use the quadratic formula. This should lead you to
see why there are three cases. Take it from there!
Because of its role in the transition between these three cases, go = a?/4b is called a
bifurcation value of q. In general, if g is a parameter in any differential equation, gy is said
to be a bifurcation value of ¢ if the nature of the solutions of the equation with ¢ < gg is
qualitatively different from the nature of the solutions with ¢ > go.

32. By plotting direction fields and solutions of

1.

y'=qy -y,
convince yourself that go = 0 is a bifurcation value of g for this equation. Explain what makes
you draw this conclusion.

33. Suppose a disease spreads according to the model of Exercise 29, but there’s a medication that
cures the infected population at a constant rate of ¢ individuals per unit time, where g > 0. Then
the equation for the number of infected individuals becomes

I'=rI(S—1)—q.

Assuming that 7(0) = Ip > 0, use the results of Exercise 31 to describe what happens as ¢t — oo.
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34. Assuming that p s 0, state conditions under which the linear equation

Y4+ px)y = fx)

is separable. If the equation satisfies these conditions, solve it by separation of variables and by
the method developed in Section 2.1.

Solve the equations in Exercises 35-38 using variation of parameters followed by separation of variables.

35 T4y = M 36 xy/ -2y = °
Y Y =TT yer ’ y + x2
(x + 1)e** xe?*
3. Y -y=—rts 38, y—2y=—"
e T e P

39. Use variation of parameters to show that the solutions of the following equations are of the form
y = uy1, where u satisfies a separable equation v’ = g(x)p(u). Find y; and g for each equation.

@ xy' +y = h(0)p(x) () xy' =y = h)p (%)
© )y +y="h(x)pe*y) (d) xy" +ry = h(x)p(x"y)
@ + 20— h)p w))

v(x)

2.3 EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NONLINEAR EQUATIONS

Although there are methods for solving some nonlinear equations, it’s impossible to find useful formulas
for the solutions of most. Whether we’re looking for exact solutions or numerical approximations, it’s
useful to know conditions that imply the existence and uniqueness of solutions of initial value problems
for nonlinear eauations. In this section we state such a condition and illustrate it with examples.

Figure 2.3.1 An open rectangle
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Some terminology: an open rectangle R is a set of points (x, y) such that
a<x<b and c<y<d

(Figure 2.3.1). We’ll denote this setby R : {a < x < b,c < y < d}. “Open” means that the boundary
rectangle (indicated by the dashed lines in Figure 2.3.1) isn’t included in R .

The next theorem gives sufficient conditions for existence and uniqueness of solutions of initial value
problems for first order nonlinear differential equations. We omit the proof, which is beyond the scope of
this book.

Theorem 2.3.1
(@) If f is continuous on an open rectangle
R:{a<x<bc<y<d}
that contains (xo, Yo) then the initial value problem

y' = f(x,y), y(xo)=yo (2.3.1)

has at least one solution on some open subinterval of (a, b) that contains x.

(b) Ifboth f and f, are continuous on R then (2.3.1) has a unique solution on some open subinterval
of (a, b) that contains xy.

It’s important to understand exactly what Theorem 2.3.1 says.

e (a) is an existence theorem. It guarantees that a solution exists on some open interval that contains
X0, but provides no information on how to find the solution, or to determine the open interval on
which it exists. Moreover, (a) provides no information on the number of solutions that (2.3.1) may
have. It leaves open the possibility that (2.3.1) may have two or more solutions that differ for values
of x arbitrarily close to xo. We will see in Example 2.3.6 that this can happen.

o (b) is a uniqueness theorem. It guarantees that (2.3.1) has a unique solution on some open interval
(a,b) that contains x¢. However, if (a, b) # (—o0, 00), (2.3.1) may have more than one solution
on a larger interval that contains (a, ). For example, it may happen that » < oo and all solutions
have the same values on (a, b), but two solutions y; and y, are defined on some interval («, by)
with by > b, and have different values for b < x < by; thus, the graphs of the y; and y, “branch
off” in different directions at x = b. (See Example 2.3.7 and Figure 2.3.3). In this case, continuity
implies that y1(b) = y2(b) (call their common value V), and y; and y, are both solutions of the
initial value problem

y=fey), yb) =y (2.3.2)
that differ on every open interval that contains b. Therefore f or f, must have a discontinuity
at some point in each open rectangle that contains (b, y), since if this were not so, (2.3.2) would
have a unique solution on some open interval that contains b. We leave it to you to give a similar
analysis of the case where a > —oo.

Example 2.3.1 Consider the initial value problem

, x2 _ y2
V= Ty Y0 = (2.3.3)
Since i , .
fx,y) = A and fy(x,y) = 2y(1 +2x7)

1+ x2+y2 (1 X2 4 y2)2
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are continuous for all (x, y), Theorem 2.3.1 implies that if (x¢, yo) is arbitrary, then (2.3.3) has a unique
solution on some open interval that contains xg.

Example 2.3.2 Consider the initial value problem

2 2
/ X==)y
= —- 7, X = . 234
1 y2 y(x0) = Yo (2.34)
Here
2 yz 4x2y

x —_—

X,y) = ——— and X, y) =———F———
are continuous everywhere except at (0, 0). If (xo, yo) # (0, 0), there’s an open rectangle R that contains
(x0, yo) that does not contain (0, 0). Since f and f, are continuous on R, Theorem 2.3.1 implies that if
(x0, ¥0) # (0,0) then (2.3.4) has a unique solution on some open interval that contains xo.

Example 2.3.3 Consider the initial value problem

X +
y' = Y y(xo) = vo. (2.3.5)
x—y

Here
2x

(x —y)?
are continuous everywhere except on the line y = x. If yo # xo, there’s an open rectangle R that contains

(x0, yo) that does not intersect the line y = x. Since f and f, are continuous on R, Theorem 2.3.1
implies that if yo # xo, (2.3.5) has a unique solution on some open interval that contains xo.

S =T ad fe) =

Example 2.3.4 In Example 2.2.4 we saw that the solutions of
y = 2xy? (2.3.6)
are
1
x2+c’
where ¢ is an arbitrary constant. In particular, this implies that no solution of (2.3.6) other than y = 0
can equal zero for any value of x. Show that Theorem 2.3.1(b) implies this.

y=0 and y=-—

Solution We’ll obtain a contradiction by assuming that (2.3.6) has a solution y; that equals zero for some
value of x, but isn’t identically zero. If y; has this property, there’s a point x¢ such that y; (x¢) = 0, but
y1(x) # 0 for some value of x in every open interval that contains xo. This means that the initial value
problem

y =2xy%, y(x0) =0 (2.3.7)

has two solutions y = 0 and y = y; that differ for some value of x on every open interval that contains
Xo. This contradicts Theorem 2.3.1(b), since in (2.3.6) the functions

f(x,y)=2xy*> and fy(x,y) = 4xy.

are both continuous for all (x, y), which implies that (2.3.7) has a unique solution on some open interval
that contains xy.



58 Chapter 2 First Order Equations

Example 2.3.5 Consider the initial value problem

10
V=?wm,ﬂm=m. (2.3.8)

(a) For what points (x¢, y¢) does Theorem 2.3.1(a) imply that (2.3.8) has a solution?

(b) For what points (xg, yo) does Theorem 2.3.1(b) imply that (2.3.8) has a unique solution on some
open interval that contains x¢?

SOLUTION(a) Since
10
fx,y) = ?xyz/s

is continuous for all (x, y), Theorem 2.3.1 implies that (2.3.8) has a solution for every (xo, yo).

SOLUTION(b) Here
4
fy(x,y) = 3xy 35

is continuous for all (x, y) with y # 0. Therefore, if yo 7# O there’s an open rectangle on which both
f and f; are continuous, and Theorem 2.3.1 implies that (2.3.8) has a unique solution on some open
interval that contains xg.

If y = Othen f, (x, ) is undefined, and therefore discontinuous; hence, Theorem 2.3.1 does not apply
to (2.3.8) if yo = 0.

Example 2.3.6 Example 2.3.5 leaves open the possibility that the initial value problem
10
Y= y0) =0 (2.3.9)

has more than one solution on every open interval that contains xo = 0. Show that this is true.

Solution By inspection, y = 0 is a solution of the differential equation

10
r— 2/5‘
y 3 y
Since y = 0 satisfies the initial condition y(0) = 0, it’s a solution of (2.3.9).
Now suppose y is a solution of (2.3.10) that isn’t identically zero. Separating variables in (2.3.10)
yields

(2.3.10)

10
—2/5./ — X
y y 3

on any open interval where y has no zeros. Integrating this and rewriting the arbitrary constant as 5¢/3
yields
S 35 _ 0 2
- =—-(x"+4+c¢).
37 5 )
Therefore
y = (x24¢)°3. (2.3.11)

Since we divided by y to separate variables in (2.3.10), our derivation of (2.3.11) is legitimate only on
open intervals where y has no zeros. However, (2.3.11) actually defines y for all x, and differentiating
(2.3.11) shows that

2/5

10 10
y = ?x(x2 +¢)?3 = Xy —o0 <x <o
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Y
<

Figure 2.3.2 Two solutions (y = 0 and y = x'/2) of (2.3.9) that differ on every interval containing
Xo = 0

Therefore (2.3.11) satisfies (2.3.10) on (—o0, 00) even if ¢ < 0, so that y(y/|c|) = y(—\/m) =0.In
particular, taking ¢ = 0 in (2.3.11) yields

_ 10/3

y=x
as a second solution of (2.3.9). Both solutions are defined on (—oo, 00), and they differ on every open
interval that contains xo = O (see Figure 2.3.2.) In fact, there are four distinct solutions of (2.3.9) defined
on (—o0, 00) that differ from each other on every open interval that contains xo = 0. Can you identify
the other two?

Example 2.3.7 From Example 2.3.5, the initial value problem

10
y = ?xyz/s’ y(0) = —1 (2.3.12)

has a unique solution on some open interval that contains xo = 0. Find a solution and determine the
largest open interval (a, b) on which it’s unique.

Solution Let y be any solution of (2.3.12). Because of the initial condition y(0) = —1 and the continuity
of y, there’s an open interval I that contains xo = 0 on which y has no zeros, and is consequently of the
form (2.3.11). Setting x = 0and y = —1in (2.3.11) yields ¢ = —1, so

y=@2-1)°3 (2.3.13)

for x in /. Therefore every solution of (2.3.12) differs from zero and is given by (2.3.13) on (—1, 1);
that is, (2.3.13) is the unique solution of (2.3.12) on (—1, 1). This is the largest open interval on which
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(2.3.12) has a unique solution. To see this, note that (2.3.13) is a solution of (2.3.12) on (—o0, c0). From
Exercise 2.2.15, there are infinitely many other solutions of (2.3.12) that differ from (2.3.13) on every
open interval larger than (—1, 1). One such solution is

(2—1)33, —1<x<1,
0, |x| > 1.
(Figure 2.3.3).

Figure 2.3.3 Two solutions of (2.3.12) on (—o0, 00)
that coincide on (—1, 1), but on no larger open
interval Figure 2.3.4 The unique solution of (2.3.14)

Example 2.3.8 From Example 2.3.5, the initial value problem

10
y' = ?xyz/s, y(0) = 1 (2.3.14)

has a unique solution on some open interval that contains xo = 0. Find the solution and determine the
largest open interval on which it’s unique.

Solution Let y be any solution of (2.3.14). Because of the initial condition y(0) = 1 and the continuity
of y, there’s an open interval I that contains xo = 0 on which y has no zeros, and is consequently of the
form (2.3.11). Settingx = 0and y = 1 in (2.3.11) yields ¢ = 1, so

y=x2+1)°83 (2.3.15)

for x in /. Therefore every solution of (2.3.14) differs from zero and is given by (2.3.15) on (—o0, 00);
that is, (2.3.15) is the unique solution of (2.3.14) on (—o0, 00). Figure 2.3.4 shows the graph of this
solution.

2.3 Exercises

In Exercises 1-13 find all (xg, yo) for which Theorem 2.3.1 implies that the initial value problem y’ =
f(x,y), y(xo) = yo has (a) a solution (b) a unique solution on some open interval that contains x.



11.

13.
14.

15.
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S X4y 2 g C Y
sin x x2 +y?
y' = tanxy , x24y?
4, y=——
Inxy
y = (2 + yHy!/3 6. y =2xy
2x 4+ 3y
! = 2 2 8. ! =
¥y =In(l 4+ x°+ y°) x4y
y/ — (xz + y2)1/2 10. y/ — x(yz _ 1)2/3
Y= (% +y?)? 12. ) =(x+y"?
V= tan y
x—1

Apply Theorem 2.3.1 to the initial value problem

Y+ p()y =q(x). y(xo) = yo
for a linear equation, and compare the conclusions that can be drawn from it to those that follow
from Theorem 2.1.2.
(a) Verify that the function

@x2—-1)°3, —1<x<1,

y:
0, lx[ > 1,

is a solution of the initial value problem

10
V=30 o) =1

on (—o00, 00). HINT: You’ll need the definition
X—>X X —X
to verify that y satisfies the differential equation atx = %1.
(b) Verify thatife; =0or1fori = 1,2 and a, b > 1, then the function

e1(x2 —a?)%3, —oo<x < —a,
0, —a<x<-1,
y = @*2-1)73, —1<x<l,
0, 1 <x<b,
e2(x2—b%)53, b <x < o0,

is a solution of the initial value problem of (a) on (—oo, 00).
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16.

17.

18.

19.

20.

21.

Use the ideas developed in Exercise 15 to find infinitely many solutions of the initial value problem
Y=y ) =1

on (—00, 00).

Consider the initial value problem
r 1/3 _
y'=3x(y -1, y(xo) = yo. (A)

(a) For what points (x¢, yo) does Theorem 2.3.1 imply that (A) has a solution?

(b) For what points (xo, yo) does Theorem 2.3.1 imply that (A) has a unique solution on some
open interval that contains x¢?

Find nine solutions of the initial value problem
Y =3x(y-D"3 y0) =1
that are all defined on (—o0, 00) and differ from each other for values of x in every open interval

that contains xo = 0.

From Theorem 2.3.1, the initial value problem
Y =3 =D y0) =9
has a unique solution on an open interval that contains xo = 0. Find the solution and determine

the largest open interval on which it’s unique.

(a) From Theorem 2.3.1, the initial value problem
Y =3x(y =D y@) =-7 (A)

has a unique solution on some open interval that contains xo = 3. Determine the largest such
open interval, and find the solution on this interval.

(b) Find infinitely many solutions of (A), all defined on (—o0, 00).

Prove:

(a) If
f(x,y0) =0, a<x<b, (A)

and x¢ isin (a, b), then y = yy is a solution of
v = f(x,y), y(xo0) = o
on (a,b).

(b) If f and f, are continuous on an open rectangle that contains (xo, yo) and (A) holds, no
solution of y* = f(x, y) other than y = y, can equal yo at any pointin (a, b).

2.4 TRANSFORMATION OF NONLINEAR EQUATIONS INTO SEPARABLE EQUATIONS

In Section 2.1 we found that the solutions of a linear nonhomogeneous equation

Y4+ px)y = fx)
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are of the form y = uy;, where y; is a nontrivial solution of the complementary equation
Y +p(x)y =0 (2.4.1)

and u is a solution of
/
w'yr(x) = f(x).
Note that this last equation is separable, since it can be rewritten as

’_ S(x)
u = .
y1(x)

In this section we’ll consider nonlinear differential equations that are not separable to begin with, but can
be solved in a similar fashion by writing their solutions in the form y = uy;, where y; is a suitably
chosen known function and u satisfies a separable equation. We’llsay in this case that we transformed
the given equation into a separable equation.

Bernoulli Equations

A Bernoulli equation is an equation of the form

Y+ p(x)y = f(x)y", (2.42)
where r can be any real number other than 0 or 1. (Note that (2.4.2) is linear if and only if r = 0
or r = 1.) We can transform (2.4.2) into a separable equation by variation of parameters: if y; is a

nontrivial solution of (2.4.1), substituting y = uy; into (2.4.2) yields

w'yr+u(yy + p()y) = f()uy)",

which is equivalent to the separable equation

/

Wy (x) = FO) Qi) W or == f@) ()
since y| + p(x)y1 = 0.
Example 2.4.1 Solve the Bernoulli equation
Y=y =xy2 (2.4.3)

Solution Since y; = e* is a solution of y’ —y = 0, we look for solutions of (2.4.3) in the form y = ue*,

where

u'e™ = xu?e?*  or, equivalently, u’ = xuZe”.

Separating variables yields

and integrating yields
1
—— =(x—De* +c.
u
Hence,
1

y=-———
(x—1e*+c


http://www-history.mcs.st-and.ac.uk/Mathematicians/Bernoulli_Jacob.html
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Figure 2.4.1 A direction field and integral curves for y’ — y = xy?

and
1

x—1+4ce™™’
Figure 2.4.1 shows direction field and some integral curves of (2.4.3).

y=-

Other Nonlinear Equations That Can be Transformed Into Separable Equations

We’ve seen that the nonlinear Bernoulli equation can be transformed into a separable equation by the
substitution y = uy; if y; is suitably chosen. Now let’s discover a sufficient condition for a nonlinear
first order differential equation

Y= f(x.y) 2.4.4)

to be transformable into a separable equation in the same way. Substituting y = uy; into (2.4.4) yields

' y1(x) +uyy(x) = f(x, uyi(x)),
which is equivalent to
w'yr(x) = f(x,uyr(x)) —uyj(x). (2.4.5)
If
J G uyi(x)) = gy (x)

for some function ¢, then (2.4.5) becomes

u'y1(x) = (q(u) —u)yi(x), (2.4.6)

which is separable. After checking for constant solutions ¥ = ug such that g(u¢) = ug, we can separate

variables to obtain ,

u_n®)
qu) —u  yi(x)
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Homogeneous Nonlinear Equations

In the text we’ll consider only the most widely studied class of equations for which the method of the
preceding paragraph works. Other types of equations appear in Exercises 44-51.

The differential equation (2.4.4) is said to be homogeneous if x and y occur in f in such a way that
f(x,y) depends only on the ratio y/x; that is, (2.4.4) can be written as

y' =q(y/x). (2.4.7)

where ¢ = ¢(u) is a function of a single variable. For example,

,_ytxe y

y ==+ ¥
x

and

are of the form (2.4.7), with
qu)=u+e™ and qu)=u’>+u-—1,

respectively. The general method discussed above can be applied to (2.4.7) with y; = x (and therefore
¥7 = 1). Thus, substituting y = ux in (2.4.7) yields

w'x +u=q(u),
and separation of variables (after checking for constant solutions ¥ = u such that g(ug) = uy) yields

u’ 1

qu) —u  x’
Before turning to examples, we point out something that you may’ve have already noticed: the defini-

tion of homogeneous equation given here isn’t the same as the definition given in Section 2.1, where we
said that a linear equation of the form
Y+ px)y =0

is homogeneous. We make no apology for this inconsistency, since we didn’t create it historically, homo-
geneous has been used in these two inconsistent ways. The one having to do with linear equations is the
most important. This is the only section of the book where the meaning defined here will apply.

Since y/x is in general undefined if x = 0, we’ll consider solutions of nonhomogeneous equations
only on open intervals that do not contain the point x = 0.

Example 2.4.2 Solve
,y+xex
y =

(2.4.8)
x
Solution Substituting y = ux into (2.4.8) yields
, Ux + xe Ux/x —u
UX+U=——"—"—=u-+e .
x
Simplifying and separating variables yields
u,,’
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Integrating yields e* = In |x| 4 c. Therefore ¥ = In(In |x| 4+ ¢) and y = ux = x In(In |x| + ¢).

Figure 2.4.2 shows a direction field and integral curves for (2.4.8).
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RO R R RR RO AR RN R RN RN Y
NRORR R AR A RR RN RN RRRR R RN Y
RO RRR R AR DR AR AR R RR AR R AR

3.5

y 4+ xe V/*

Figure 2.4.2 A direction field and some integral curves for y’

X

Example 2.4.3

(a) Solve

(2.4.9)

x?y = y? 4+ xy —x2.

(b) Solve the initial value problem

(2.4.10)

y() =2.

’

=y? +xy—x?

xzy/

t contain x = 0. We can

b}

SOLUTION(a) We first find solutions of (2.4.9) on open intervals that don

rewrite (2.4.9) as

+xy —x?

y2

/

= ux yields

for x in any such interval. Substituting y

u2+u—1,

(ux)? + x(ux) — x?

u'x +u

SO

(2.4.11)

wx =u?-1.
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By inspection this equation has the constant solutionsu = 1 and u = —1. Therefore y = x and y = —x
are solutions of (2.4.9). If u is a solution of (2.4.11) that doesn’t assume the values 1 on some interval,
separating variables yields

u' 1
uz -1  x’
or, after a partial fraction expansion,
1 1 1 , 1
— — u = —
2lu—-1 u+l x
Multiplying by 2 and integrating yields
-1
In| % 1‘ = 2In|x| + k,
or .
u —_—
= oky2,
u+1
which holds if
u—l 2 (2.4.12)
=cx 4.
u-+1
where c is an arbitrary constant. Solving for u yields
1+ cx?
U=—-7—.
1 —cx?
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Figure 2.4.3 A direction field and integral curves for Figure 2.4.4 Solutions of x2y’ = y2 + xy — x2,

x?y' =y +xy—x? y(1) =2
Therefore )
x(14+cx
y=ux = X ) (2.4.13)
1 —cx?
is a solution of (2.4.10) for any choice of the constant ¢. Setting ¢ = 0 in (2.4.13) yields the solution
y = x. However, the solution y = —x can’t be obtained from (2.4.13). Thus, the solutions of (2.4.9) on

intervals that don’t contain x = 0 are y = —x and functions of the form (2.4.13).
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The situation is more complicated if x = 0 is the open interval. First, note that y = —x satisfies (2.4.9)
on (—o0, 00). If ¢1 and ¢, are arbitrary constants, the function

1 2
x+ax?) <o
y= x(ll_-i—cclx)jz) (2.4.14)
T 0<x<b,
1 —cpx2
is a solution of (2.4.9) on (a, b), where
! if 0 ! if 0
———  if¢; >0, —  ifey >0,
a= Ja ! and b=1{ /& 2
—00 ifc; <0, 00 ifco <0.

We leave it to you to verify this. To do so, note that if y is any function of the form (2.4.13) then y(0) = 0
and y'(0) = 1.
Figure 2.4.3 shows a direction field and some integral curves for (2.4.9).

SoLuTION(b) We could obtain ¢ by imposing the initial condition y(1) = 2 in (2.4.13), and then solving
for c. However, it’s easier to use (2.4.12). Since u = y/x, the initial condition y(1) = 2 implies that
u(1) = 2. Substituting this into (2.4.12) yields ¢ = 1/3. Hence, the solution of (2.4.10) is

_ x(14x2/3)
 1-—x2/3

The interval of validity of this solution is (—+/3, +/3). However, the largest interval on which (2.4.10)
has a unique solution is (0, v/3). To see this, note from (2.4.14) that any function of the form

1 2
x(1+ cx?) 4 <x <0,
y=1 . (11‘+ C;j ) (2.4.15)
Ty 954 O =< 33
1—x2/3 <x<V3

is a solution of (2.4.10) on (a, ~/3), where a = —1/+/cif¢ > 0ora = —o0 if ¢ < 0. (Why doesn’t this
contradict Theorem 2.3.17)

Figure 2.4.4 shows several solutions of the initial value problem (2.4.10). Note that these solutions
coincide on (0, v/3).

In the last two examples we were able to solve the given equations explicitly. However, this isn’t always
possible, as you’ll see in the exercises.

2.4 Exercises

In Exercises 1-4 solve the given Bernoulli equation.

/ xz
Ly +y=y? 2 Ty may =i
3. x%y +2y =2el/*yl/2 4. (1+x%)y +2xy =

1+ x2)y

In Exercises 5 and 6 find all solutions. Also, plot a direction field and some integral curves on the
indicated rectangular region.
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5. [CG]y —xy=x3%% {B3<x<32<y=2
1
6 [OG]y -5y =0% (2sxs2-25ys2)
X

In Exercises T—11 solve the initial value problem.

Y =2y =xy3 y(0) =22
Y —xy=xy32, y(1) =4

9. xy +y=x** y)=1/2
10. y' —2y =2yY2 y0)=1

48x
11. y —4y = EER y(©0) =1

In Exercises 12 and 13 solve the initial value problem and graph the solution.

12. X2y +2xy =y, y()=1/2

13. Y —y=xyV2 y0)=4
14. You may have noticed that the logistic equation

P’ =aP(l —aP)
from Verhulst’s model for population growth can be written in Bernoulli form as
P' —aP = —aaP?.

This isn’t particularly interesting, since the logistic equation is separable, and therefore solvable
by the method studied in Section 2.2. So let’s consider a more complicated model, where a is
a positive constant and « is a positive continuous function of ¢ on [0, c0). The equation for this
model is

P'—aP = —aa(t)P?,
a non-separable Bernoulli equation.

(a) Assuming that P(0) = Py > 0, find P fort > 0. HINT: Express your result in terms of the
integral fot a(r)e?"dr.

(b) Verify that your result reduces to the known results for the Malthusian model where o = 0,
and the Verhulst model where « is a nonzero constant.

(¢) Assuming that
t

lim e_”’/ a(r)e**dt =L
0

1—>00

exists (finite or infinite), find lim; .o P(?).

In Exercises 15—18 solve the equation explicitly.

2
4 Y+ 2xy
5. y=2"7 16. ) =—73—=
X
17. xy’y' =y* +x* 18. vy =2 fsec?

X X
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In Exercises 19-21 solve the equation explicitly. Also, plot a direction field and some integral curves on

the indicated rectangular region.

19. [C/G|x2y =xy+x?+y% {-8<x<8-8<y<8}
20. [C/G|xyy' =x2+2y% {-4<x=<4,-4<y<4

292 4 x2e~ /0>
21, [C/G]y == +;e ; {8<x<8-8<y=<8
xy

In Exercises 22-27 solve the initial value problem.

2.y = xyx%yz y(=1) =2
8.y = xi;zy L =3

2. xyy' +x2+y2=0, y(1)=2
5. ) = W y(1) = —1

26. x%y' =2x2+y%2+4xy, y()=1
27. xyy =3x2+4y%, y(1) =43

In Exercises 28-34 solve the given homogeneous equation implicitly.

28,y =21 29. (v'x—y)nly| =In|x|) = x
x—y
3 24 2 3 2
30. y,:y +2xy“ +x“y +x 31. y,:x+ y
x(y +x)? 2x +y
32. yl = y 33 A ‘xyz + 2y3
y—=2x C T a2y 42
14 y,_x3+x2y+3y3

x3 4 3xy?

35.

(a) Find a solution of the initial value problem
x2y =y 4+ xy—4x%, y(-1)=0

on the interval (—oo, 0). Verify that this solution is actually valid on (—oo, 00).
(b) Use Theorem 2.3.1 to show that (A) has a unique solution on (—o0, 0).
(c) Plot a direction field for the differential equation in (A) on a square

{-r<x<r—r=<y=r}

where r is any positive number. Graph the solution you obtained in (a) on this field.

(d) Graph other solutions of (A) that are defined on (—o0, 00).

(A)



36.

37.

38.

39.

(e)

(a)

(b)

(c)

(d)

(a)

(b)
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Graph other solutions of (A) that are defined only on intervals of the form (—oo, @), where is
a finite positive number.

Solve the equation

xyy' =x*—xy +y? (A)
implicitly.
Plot a direction field for (A) on a square

{0<x<r0<y<r}

where 7 is any positive number.

Let K be a positive integer. (You may have to try several choices for K.) Graph solutions of
the initial value problems

kr
xyy' =xt—xy+y* y(r/2)= <

fork = 1,2, ..., K. Based on your observations, find conditions on the positive numbers
Xo and yo such that the initial value problem

xyy' =x*—xy +y%  y(xo0) = yo. (B)

has a unique solution (i) on (0, co) or (ii) only on an interval (a, c0), where a > 0?
What can you say about the graph of the solution of (B) as x — o00? (Again, assume that
X0 > 0and yg > 0.)

Solve the equation
2y2 — xy + 2x?
V= (A)
xy +2x
implicitly.

Plot a direction field for (A) on a square
{-r<x<r,—r<y=<r}

where r is any positive number. By graphing solutions of (A), determine necessary and
sufficient conditions on (xg, y¢) such that (A) has a solution on (i) (—oo, 0) or (ii) (0, c0)
such that y(x¢) = yo.

Follow the instructions of Exercise 37 for the equation

,xy+xr4y?
S

Pick any nonlinear homogeneous equation y’ = ¢(y/x) you like, and plot direction fields on
the square {—r < x <r, —r < y < r}, where r > 0. What happens to the direction field as you
vary r? Why?
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40. Prove: If ad — bc # 0, the equation

, _ax+by+a
ex+dy+ B

can be transformed into the homogeneous nonlinear equation

d_Y aX + bY

dX cX+dY

by the substitutionx = X — Xo, y = Y — Yy, where Xy and Yy are suitably chosen constants.

In Exercises 41-43 use a method suggested by Exercise 40 to solve the given equation implicitly.

—6 -3 2 1
4., =X tr=S g, y=Xtrt
2x—y—1 x+2y—4
43 ,  —x+3y—14
T x+y-=2

In Exercises 44-51 find a function y, such that the substitution y = uy; transforms the given equation
into a separable equation of the form (2.4.6). Then solve the given equation explicitly.

4. 3xy?y =y3+x 45. xyy' =3x%+4 6y?
46. x*y =2(y* +x%y —x%) 47. y' = y2e™ + 4y +2e*
8.y = y2 + ytanx + tan® x 49. x(Inx)?y’ = —4(Inx)®> + ylnx + y?
. = —
sin® x

50. 2x(y4+2VX)y' =+ VX 5L (y+e*)y = 2x(32 + ye* + e2¥)
52. Solve the initial value problem

;2 3x?y?46xy +2

+Zy = , 2) =2.
YTy x2(2xy + 3) Y@
53. Solve the initial value problem
3 3x*y? +10x%y + 6
"+ 2y = , =1
Yy x3(2x%y +5) v

54. Prove: If y is a solution of a homogeneous nonlinear equation y’ = ¢(y/x), sois y1 = y(ax)/a,
where a is any nonzero constant.

55. A generalized Riccati equation is of the form

¥ = P(x) + 0(x)y + R(x)y>. (A)

(If R = —1, (A) is a Riccati equation.) Let y; be a known solution and y an arbitrary solution of
(A).Let z = y — y1. Show that 7 is a solution of a Bernoulli equation withn = 2.


http://http://www-history.mcs.st-and.ac.uk/Indexes/Riccati.html
http://http://www-history.mcs.st-and.ac.uk/Indexes/Riccati.html
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In Exercises 56-59, given that yi is a solution of the given equation, use the method suggested by Exercise
55 to find other solutions.

56. Yy =1+x—(1+2x)y+xy% y=1
57. Yy =e* +(1—-2e%y +y% y=¢e*

5. xy=2—x+Q2x—-2)y —xy% y1=1
59. xy' =x3+10-2x3)y +xy% y=x

2.5 EXACT EQUATIONS

In this section it’s convenient to write first order differential equations in the form
M(x,y)dx + N(x,y)dy = 0. (2.5.1)
This equation can be interpreted as
dy

M(x.y) + N(x,y) —= =0, (252)

where x is the independent variable and y is the dependent variable, or as
dx

M(x, y) ot N(x,y) =0, (25.3)
where y is the independent variable and x is the dependent variable. Since the solutions of (2.5.2) and
(2.5.3) will often have to be left in implicit, form we’ll say that F(x, y) = c is an implicit solution of
(2.5.1) if every differentiable function y = y(x) that satisfies F(x,y) = c is a solution of (2.5.2) and

every differentiable function x = x(y) that satisfies F(x, y) = c is a solution of (2.5.3).
Here are some examples:

Equation (2.5.1) Equation (2.5.2) Equation (2.5.3)
2.2 3 2.2 3, 4y 2 o dx 3
3x°y*dx +2x°ydy =0 3x“y" +2x°y — =0 3x“y —+2xy =0
dx dy
2 .2 2 2 dy 2 24X
(x*4+y*)dx +2xydy =0 (x +y)+2xyE=O (x +y)5+2xy=0
) . dy . dx
3ysinxdx —2xycosxdy =0 3ysmx—2xycosx5=0 3ysmx5—2xycosx=0

Note that a separable equation can be written as (2.5.1) as
M(x)dx + N(y)dy = 0.

We’ll develop a method for solving (2.5.1) under appropriate assumptions on M and N. This method
is an extension of the method of separation of variables (Exercise 41). Before stating it we consider an
example.
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Example 2.5.1 Show that
x*y3 4 x2S 4 2xy =c¢ (2.54)

is an implicit solution of

(4x3y% +2xy° +2y)dx + 3x*y? + 5x%y* + 2x)dy = 0. (2.5.5)

Solution Regarding y as a function of x and differentiating (2.5.4) implicitly with respect to x yields
3.3 5 4.2 2.4 dy
4x°y” +2xy° +2y) + B3x "y~ + 5x%y +2x)a =0.
Similarly, regarding x as a function of y and differentiating (2.5.4) implicitly with respect to y yields
3.3 5 dx 4 2 2 4
(4x°y> + 2xy +2y)5 + (Bx"y +5x7y" +2x)=0.

Therefore (2.5.4) is an implicit solution of (2.5.5) in either of its two possible interpretations. |

You may think this example is pointless, since concocting a differential equation that has a given
implicit solution isn’t particularly interesting. However, it illustrates the next important theorem, which
we’ll prove by using implicit differentiation, as in Example 2.5.1.

Theorem 2.5.1 If F = F(x,y) has continuous partial derivatives Fy and F,, then

F(x,y)=c (c=constant), (2.5.6)
is an implicit solution of the differential equation

Fy(x,y)dx + Fy(x,y)dy = 0. (2.5.7)

Proof Regarding y as a function of x and differentiating (2.5.6) implicitly with respect to x yields

d
Fx(x,y>+Fy(x,y>ﬁ =0

On the other hand, regarding x as a function of y and differentiating (2.5.6) implicitly with respect to y
yields

dx
Fe(x,y) ay + Fy(x,y) =0.

Thus, (2.5.6) is an implicit solution of (2.5.7) in either of its two possible interpretations. |
We'll say that the equation
M(x,y)dx + N(x,y)dy =0 (2.5.8)

is exact on an an open rectangle R if there’s a function F = F(x, y) such Fy and F, are continuous, and
Fx(x,y) = M(x,y) and  Fy(x,y) = N(x,y) (2.5.9)
for all (x, y) in R. This usage of “exact” is related to its usage in calculus, where the expression
Fy(x, y)dx 4 Fy(x, y) dy

(obtained by substituting (2.5.9) into the left side of (2.5.8)) is the exact differential of F.
Example 2.5.1 shows that it’s easy to solve (2.5.8) if it’s exact and we know a function F that satisfies
(2.5.9). The important questions are:
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QUESTION 1. Given an equation (2.5.8), how can we determine whether it’s exact?

QUESTION 2. If (2.5.8) is exact, how do we find a function F' satisfying (2.5.9)?

To discover the answer to Question 1, assume that there’s a function F that satisfies (2.5.9) on some
open rectangle R, and in addition that F has continuous mixed partial derivatives Fy, and Fyx. Then a
theorem from calculus implies that

Fyy = Fyx. (2.5.10)

If Fx = M and F, = N, differentiating the first of these equations with respect to y and the second with
respect to x yields
Fyy =M, and F,y = Ny. (2.5.11)

From (2.5.10) and (2.5.11), we conclude that a necessary condition for exactness is that M, = N,. This
motivates the next theorem, which we state without proof.

Theorem 2.5.2 [The Exactness Condition] Suppose M and N are continuous and have continuous par-
tial derivatives My, and Ny on an open rectangle R. Then

M(x,y)dx + N(x,y)dy =0

is exact on R if and only if
My (x,y) = Nx(x,y) (2.5.12)

forall (x,y)inR..

To help you remember the exactness condition, observe that the coefficients of dx and dy are differ-
entiated in (2.5.12) with respect to the “opposite” variables; that is, the coefficient of dx is differentiated
with respect to y, while the coefficient of dy is differentiated with respect to x.

Example 2.5.2 Show that the equation
3x%ydx +4x3dy =0

is not exact on any open rectangle.

Solution Here
M(x,y) = 3x2y and N(x,y)= 4x3

o)
My(x,y) = 3x2 and  Ni(x,y) = 12x%

Therefore M, = N, on the line x = 0, but not on any open rectangle, so there’s no function F such that
Fr(x,y) = M(x,y) and Fy(x,y) = N(x,y) for all (x, y) on any open rectangle. [ ]

The next example illustrates two possible methods for finding a function F' that satisfies the condition
Fx=Mand F), = Nif M dx + N dy = 0is exact.

Example 2.5.3 Solve
(4x3y3 +3x2)dx + 3x*y? + 6y?) dy = 0. (2.5.13)
Solution (Method 1) Here

M(x,y) = 4x3y3 + 3x2, N(x,y) = 3)c4y2 + 6y2,
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and
My (x, y) = Nx(x,y) = 12x%y?
for all (x, y). Therefore Theorem 2.5.2 implies that there’s a function F such that

Fo(x,y) = M(x,y) = 4x3y3 4+ 3x2 (2.5.14)

and
Fy(x,y) = N(x,y) = 3x*y? + 6)> (2.5.15)

for all (x, y). To find F, we integrate (2.5.14) with respect to x to obtain
F(x,y) =x*y? + x° + ¢(»), (2.5.16)

where ¢(y) is the “constant” of integration. (Here ¢ is “constant” in that it’s independent of x, the
variable of integration.) If ¢ is any differentiable function of y then F satisfies (2.5.14). To determine ¢
so that F' also satisfies (2.5.15), assume that ¢ is differentiable and differentiate F with respect to y. This
yields

Fy(x,y) = 3x%y2 + ¢'(9).
Comparing this with (2.5.15) shows that

¢'(y) = 6y,

We integrate this with respect to y and take the constant of integration to be zero because we’re interested
only in finding some F that satisfies (2.5.14) and (2.5.15). This yields

¢(y) =2y°.
Substituting this into (2.5.16) yields
F(x,y) =x*y’ + x> +2y° 2.5.17)

Now Theorem 2.5.1 implies that
x*y e xd+2yd=c

is an implicit solution of (2.5.13). Solving this for y yields the explicit solution
B c— x3 1/3
R ’
Solution (Method 2) Instead of first integrating (2.5.14) with respect to x, we could begin by integrating
(2.5.15) with respect to y to obtain

F(x,y) =x*y> +2y° + ¥ (x), (2.5.18)

where ¥ is an arbitrary function of x. To determine v, we assume that v is differentiable and differentiate
F with respect to x, which yields

Fx(x,y) = 4x°y° + 9/ (x).
Comparing this with (2.5.14) shows that

V' (x) = 3x2.
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Figure 2.5.1 A direction field and integral curves for (4x3y3 4+ 3x2) dx + (3x*y? +6y%)dy =0

Integrating this and again taking the constant of integration to be zero yields
3
Y(x) = x°.

Substituting this into (2.5.18) yields (2.5.17).

Figure 2.5.1 shows a direction field and some integral curves of (2.5.13),

Here’s a summary of the procedure used in Method 1 of this example. You should summarize procedure
used in Method 2.

Procedure For Solving An Exact Equation

Step 1. Check that the equation
M(x,y)dx + N(x,y)dy =0 (2.5.19)

satisfies the exactness condition M, = Ny. If not, don’t go further with this procedure.

Step 2. Integrate

dF (x,y)
% — M(x.y)
X
with respect to x to obtain
F(x,y) = Gx,y) +6(), (2.5.20)

where G is an antiderivative of M with respect to x, and ¢ is an unknown function of y.
Step 3. Differentiate (2.5.20) with respect to y to obtain

dF(x,y) _ 9G(x,y)
dy

+¢'(y).
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Step 4. Equate the right side of this equation to N and solve for ¢’; thus,

G (x, , , G (x,
WD) gy =Ny, 5o ¢/0) = Nexoy - 2000
y y

Step 5. Integrate ¢’ with respect to y, taking the constant of integration to be zero, and substitute the
result in (2.5.20) to obtain F(x, y).

Step 6. Set F(x,y) = c to obtain an implicit solution of (2.5.19). If possible, solve for y explicitly as
a function of x.

It’s a common mistake to omit Step 6. However, it’s important to include this step, since F isn’t itself
a solution of (2.5.19).

Many equations can be conveniently solved by either of the two methods used in Example 2.5.3. How-
ever, sometimes the integration required in one approach is more difficult than in the other. In such cases
we choose the approach that requires the easier integration.

Example 2.5.4 Solve the equation

(ye™ tanx 4 e* sec® x) dx + xe*” tanx dy = 0. (2.5.21)

Solution We leave it to you to check that M, = N, on any open rectangle where tan x and sec x are
defined. Here we must find a function F such that

Fi(x,y) = ye* tanx + e sec? x (2.5.22)

and
Fy(x,y) = xe™ tanx. (2.5.23)

It’s difficult to integrate (2.5.22) with respect to x, but easy to integrate (2.5.23) with respect to y. This
yields
F(x,y) = e tanx + ¥ (x). (2.5.24)

Differentiating this with respect to x yields
Fe(x,y) = ye*” tanx + ™ sec? x + ¥’ (x).

Comparing this with (2.5.22) shows that ¥'(x) = 0. Hence, ¥ is a constant, which we can take to be
zero in (2.5.24), and
etanx = ¢

is an implicit solution of (2.5.21). |
Attempting to apply our procedure to an equation that isn’t exact will lead to failure in Step 4, since
the function

won’t be independent of x if M, # Ny (Exercise 31), and therefore can’t be the derivative of a function
of y alone. Here’s an example that illustrates this.

Example 2.5.5 Verify that the equation
3x2y?dx 4+ 6x3ydy =0 (2.5.25)

is not exact, and show that the procedure for solving exact equations fails when applied to (2.5.25).
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Solution Here
My(x,y) =6x%y and Ny(x,y) = 18x2y,
s0 (2.5.25) isn’t exact. Nevertheless, let’s try to find a function F such that
Fi(x,y) = 3x2y? (2.5.26)

and
Fy(x,y) = 6x3y. (2.5.27)

Integrating (2.5.26) with respect to x yields
F(x,y) = x*y* + ¢ (),
and differentiating this with respect to y yields
Fy(x,y) =25y +¢'(y).
For this equation to be consistent with (2.5.27),
6x’y =2x%y +¢'(y),

or
¢'(y) = 4x3y.

This is a contradiction, since ¢’ must be independent of x. Therefore the procedure fails.

2.5 Exercises

In Exercises 1-17 determine which equations are exact and solve them.

1. 6x2y2dx +4x3ydy =0

2. (3ycosx + 4xe® 4+ 2x%2e¥)dx + 3sinx +3)dy =0

3. 14x2y3dx +21x2y%dy =0

4. (2x —2y?)dx + (12y* —4xy)dy =0

5. (x+y)?dx+(x+y)2dy=0 6. (4x+7y)dx+ (Bx+4y)dy =0
7. (=2y%sinx + 3y3 —2x)dx + (4ycosx + 9xy?)dy =0

8 (2x+y)dx+ 2y +2x)dy=0

9. (3x2+2xy +4y?)dx + (x> + 8xy + 18y)dy =0

10.  (2x2 +8xy + y?)dx + 2x%2 + xy3/3)dy = 0

1 1
11. (—+2x) dx+(—+2y) dy =0
X y
12.  (ysinxy + xy?cosxy)dx + (xsinxy + xy% cosxy)dy =0
xdx ydy
13. (x2 + y2)3/2 + (2 + y2)3/2 0
14.  (e*(x%y? +2xy?) + 6x) dx + (2x%ye* +2)dy =0

15. (xzex2+y (2x2+3) + 4x) dx + (x3eX°TY —12y2)dy =0
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16.
17.

(e (x*y 4+ 4x3) + 3y) dx + (x°e* +3x)dy =0
(3x2cosxy — x3ysinxy + 4x)dx + (8y —x*sinxy)dy =0

In Exercises 18-22 solve the initial value problem.

18.
19.
20.
21.
22,

23.

24.

25.

26.

27.

(4x3y? —6x2y —2x —3)dx + 2x*y —2x%)dy =0, y(1)=3

(—4y cosx + 4sinx cos x + sec? x)dx + (4y —dsinx)dy =0, y(w/4) =0
(2 —DeXdx +3y%(e* + 1)dy =0, y(0) =0

(sinx — ysinx —2cosx)dx +cosxdy =0, y(@0)=1
Cx—D@y—-—Ddx+(x+2)(x—-3)dy =0, y(l)=-1

Solve the exact equation

(7x +4y)dx + (4x + 3y)dy = 0.
Plot a direction field and some integral curves for this equation on the rectangle

{-l<x<Il,—-1<y<I1}L

Solve the exact equation
e*(x*y? +4x3y? + 1) dx + 2x*ye* +2y)dy = 0.
Plot a direction field and some integral curves for this equation on the rectangle

{(2<x=<2,-l<y<l}.

Plot a direction field and some integral curves for the exact equation
3yt +x)dx + (x*yP +y)dy =0

on the rectangle {—1 < x < 1,—1 < y < 1}. (See Exercise 37(a)).

Plot a direction field and some integral curves for the exact equation
(Bx2 +2y)dx + 2y +2x)dy =0

on the rectangle {—2 < x <2,—2 < y < 2}. (See Exercise 37(b)).

(a) Solve the exact equation
3y* +2x)dx + (x*y3 +3y)dy =0 (A)

implicitly.
(b) For what choices of (x¢, yo) does Theorem 2.3.1 imply that the initial value problem

(Py* +2x)dx + (x*y* +3y)dy =0, y(x0) = yo. (B)

has a unique solution on an open interval (a, b) that contains x¢?



28.

29.

30.

31.

32.

33.

34.

(c)

(a)

(b)

(c)
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Plot a direction field and some integral curves for (A) on a rectangular region centered at the
origin. What is the interval of validity of the solution of (B)?

Solve the exact equation

(x24+y?)dx +2xydy =0 (A)
implicitly.
For what choices of (xo, yo) does Theorem 2.3.1 imply that the initial value problem

(% +y?)dx +2xydy =0, y(x0) = yo. (B)

has a unique solution y = y(x) on some open interval (a, b) that contains x¢?

Plot a direction field and some integral curves for (A). From the plot determine, the interval
(a, b) of (b), the monotonicity properties (if any) of the solution of (B), and limy—, 4+ y(x)
and limy_,5_ y(x). HINT: Your answers will depend upon which quadrant contains (xo, yo).

Find all functions M such that the equation is exact.

(a)
(b)
(c)

M(x,y)dx + (x> = y*)dy = 0
M(x,y)dx 4+ 2xysinxcosydy =0
M(x,y)dx + (e* —e?sinx)dy =0

Find all functions N such that the equation is exact.

(a)
(b)

(x3y2 + 2xy +3y%)dx + N(x,y)dy =0
(Inxy +2ysinx)dx + N(x,y)dy =0

(¢) (xsinx + ysiny)dx + N(x,y)dy =0

Suppose M, N, and their partial derivatives are continuous on an open rectangle R, and G is an
antiderivative of M with respect to x; that is,

G

— =M.
ox
Show that if M,, # N in R then the function
G
dy

is not independent of x.

Prove: If the equations M; dx + N1dy = 0 and My dx + Npdy = 0 are exact on an open
rectangle R, so is the equation

(M1 + My)dx + (N1 + Na)dy = 0.

Find conditions on the constants A, B, C, and D such that the equation

(Ax + By)dx + (Cx + Dy)dy =0

18 exact.

Find conditions on the constants A, B, C, D, E, and F such that the equation

(Ax? 4+ Bxy + Cy?)dx + (Dx* + Exy + Fy*)dy =0

18 exact.
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35.

36.

37.

38.

39.

40.

41.

42.

43.

Suppose M and N are continuous and have continuous partial derivatives My, and N, that satisfy
the exactness condition M, = N, on an open rectangle R. Show thatif (x, y) isin R and

X y
F(x,y) = / M(s, yo)ds + N(x,t)dt,
X0

Yo

then Fy = M and F, = N.

Under the assumptions of Exercise 35, show that

F(x,y) = /y N(xo,s)ds + /x M(t,y)dt.
b x0

0

Use the method suggested by Exercise 35, with (xo, yo) = (0, 0), to solve the these exact equa-
tions:

(@) (3y*+x)dx+ (x*y3 +y)dy =0

(b) (x2+y?)dx +2xydy =0

(¢ (Bx%2+2y)dx + 2y +2x)dy =0

Solve the initial value problem

Solve the initial value problem

3 2x4(4x3 = 3y)
y ==y =

= YY) =1
x 3x% +3x3 42y Y

Solve the initial value problem

2
_2 [ 3x+2ye*
y +2xy=—e" (W)a y(0) =-1

Rewrite the separable equation
h(y)y" = g(x) (A)

as an exact equation
M(x,y)dx + N(x,y)dy = 0. (B)

Show that applying the method of this section to (B) yields the same solutions that would be
obtained by applying the method of separation of variables to (A)

Suppose all second partial derivatives of M = M(x,y) and N = N(x, y) are continuous and
Mdx + Ndy = 0and —N dx + M dy = 0 are exact on an open rectangle R. Show that
Myx + My, = Nxx + Ny, =0on R.

Suppose all second partial derivatives of F* = F(x, y) are continuous and Fyxx + Fy, = 0 onan
open rectangle R. (A function with these properties is said to be harmonic; see also Exercise 42.)
Show that —F), dx + Fx dy = 0 is exact on R, and therefore there’s a function G such that
Gy = —F, and G, = Fy in R. (A function G with this property is said to be a harmonic
conjugate of F.)
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44. Verify that the following functions are harmonic, and find all their harmonic conjugates. (See
Exercise 43.)

(a) x2 — y? (b) e cos y (c) x3 —3xy?
(d) cos x cosh y (e) sinx cosh y

2.6 INTEGRATING FACTORS

In Section 2.5 we saw that if M, N, M, and Ny are continuous and M, = N, on an open rectangle R
then
M(x,y)dx + N(x,y)dy =0 (2.6.1)

is exact on R. Sometimes an equation that isn’t exact can be made exact by multiplying it by an appro-
priate function. For example,
(Bx +2y%)dx +2xydy =0 (2.6.2)

is not exact, since M), (x, y) = 4y # Nx(x,y) = 2y in(2.6.2). However, multiplying (2.6.2) by x yields
(3x% 4+ 2xy?)dx +2x%y dy = 0, (2.6.3)

which is exact, since My (x, y) = Nx(x,y) = 4xy in (2.6.3). Solving (2.6.3) by the procedure given in
Section 2.5 yields the implicit solution
x3 4 x? y2 =c.

A function u = u(x, y) is an integrating factor for (2.6.1) if
pu(x, y)M(x, y)dx + p(x, y)N(x,y)dy =0 (2.6.4)

is exact. If we know an integrating factor pu for (2.6.1), we can solve the exact equation (2.6.4) by the
method of Section 2.5. It would be nice if we could say that (2.6.1) and (2.6.4) always have the same
solutions, but this isn’t so. For example, a solution y = y(x) of (2.6.4) such that p(x, y(x)) = 0 on
some interval a < x < b could fail to be a solution of (2.6.1) (Exercise 1), while (2.6.1) may have a
solution y = y(x) such that u(x, y(x)) isn’t even defined (Exercise 2). Similar comments apply if y is
the independent variable and x is the dependent variable in (2.6.1) and (2.6.4). However, if w(x, y) is
defined and nonzero for all (x, y), (2.6.1) and (2.6.4) are equivalent; that is, they have the same solutions.

Finding Integrating Factors

By applying Theorem 2.5.2 (with M and N replaced by uM and uN'), we see that (2.6.4) is exact on an
open rectangle R if uM, uN, (uM),, and (N ), are continuous and

0 0
E(MM) = a(uN) or, equivalently, u,M + uM, = uxN + uNx

on R. It’s better to rewrite the last equation as
WM, — Nx) = uxN — u, M, (2.6.5)

which reduces to the known result for exact equations; that is, if My, = Ny then (2.6.5) holds with u = 1,
so (2.6.1) is exact.

You may think (2.6.5) is of little value, since it involves partial derivatives of the unknown integrating
factor u, and we haven’t studied methods for solving such equations. However, we’ll now show that
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(2.6.5) is useful if we restrict our search to integrating factors that are products of a function of x and a
function of y; that is, u(x, y) = P(x)Q(y). We’re not saying that every equation M dx + N dy = 0
has an integrating factor of this form; rather, we’re saying that some equations have such integrating
factors.We’llnow develop a way to determine whether a given equation has such an integrating factor,
and a method for finding the integrating factor in this case.

If n(x,y) = P(x)Q(y), then pux(x,y) = P'(x)Q(y) and uy(x,y) = P(x)Q'(y), so (2.6.5) be-
comes

P(x)Q(y)(My — Nx) = P'(x)Q(y)N — P(x)Q'(»)M, (2.6.6)
or, after dividing through by P(x)Q(y),

My — N, = i((;))zv - QQ((yy))M (2.6.7)
Now let Pi(x) 0
x y
= d — s
T T
so (2.6.7) becomes
My — Nx = p(x)N —q(y)M. (2.6.8)

We obtained (2.6.8) by assuming that M dx + N dy = 0 has an integrating factor u(x,y) =
P(x)Q(y). However, we can now view (2.6.7) differently: If there are functions p = p(x) andq = ¢q(»)
that satisfy (2.6.8) and we define

P(x) = e/ PMdx and Q(y) = el 1N D (2.6.9)

then reversing the steps that led from (2.6.6) to (2.6.8) shows that p(x, y) = P(x)Q(y) is an integrating
factor for M dx + N dy = 0. In using this result, we take the constants of integration in (2.6.9) to be
zero and choose the signs conveniently so the integrating factor has the simplest form.

There’s no simple general method for ascertaining whether functions p = p(x) and ¢ = ¢g(y) satisfy-
ing (2.6.8) exist. However, the next theorem gives simple sufficient conditions for the given equation to
have an integrating factor that depends on only one of the independent variables x and y, and for finding
an integrating factor in this case.

Theorem 2.6.1 Let M, N, M,,, and N be continuous on an open rectangle R. Then:
(@) If(My — Ny)/N isindependent of y on R and we define

M, — Ny
i) =—
then
p(x) = Lol PO dx (2.6.10)
is an integrating factor for
M(x,y)dx + N(x,y)dy =0 (2.6.11)
on R.
(b) If(Nx — M,)/M is independent of x on R and we define
Ny —M,
) =~
then
w(y) = +el 1N (2.6.12)

is an integrating factor for (2.6.11) on R.
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Proof (a) If (M, — N,)/N isindependent of y, then (2.6.8) holds with p = (M, — Nx)/N and g = 0.
Therefore
P(x) = e/ P4 and  Q(y) = £/ 10D = 10 = 11,

$0 (2.6.10) is an integrating factor for (2.6.11) on R.
(b) If (Nxy —M,)/ M is independent of x then eqrefeq:2.6.8 holds with p = Oandq = (Nx—M,)/ M,
and a similar argument shows that (2.6.12) is an integrating factor for (2.6.11) on R. |
The next two examples show how to apply Theorem 2.6.1.

Example 2.6.1 Find an integrating factor for the equation
(2xy3 —2x3y3 —4xy? + 2x) dx + 3x%y% + 4y)dy =0 (2.6.13)

and solve the equation.

Solution In (2.6.13)
M =2xy® —2x3y% —dxy? 4+ 2x, N = 3x%y? + 4y,
and
M,y — Ny = (6xy? — 6x3y? — 8xy) — 6xy? = —6x3y? — 8xy,
so (2.6.13) isn’t exact. However,
My — Ny _ _6x%y? +8xy _
N 3x2y2 + 4y

is independent of y, so Theorem 2.6.1(a) applies with p(x) = —2x. Since

/p(x)dx = —/Zxdx = —x2,

%isan integrating factor. Multiplying (2.6.13) by u yields the exact equation

X

pux) =e”
e (2xy3 —2x3y® —4xy? +2x)dx + e (3x%y? + 4y)dy = 0. (2.6.14)
To solve this equation, we must find a function F such that

Fi(x,y) = e (2xy3 —2x3y3 —4xy? + 2x) (2.6.15)
and 5
Fy(x,y) = e (3x%y? + 4y). (2.6.16)
Integrating (2.6.16) with respect to y yields

F(x.y) = e ™ (x2% + 2)) + ¥ (x). (2.6.17)

Differentiating this with respect to x yields

Fr(x,y) = e 2xy® = 2x%y% — 4xy?) + ¥/ ().

Comparing this with (2.6.15) shows that ¥/(x) = er_xz; therefore, we can let ¥(x) = —e in

(2.6.17) and conclude that
2
e (V(xPy+2)-1)=c
is an implicit solution of (2.6.14). It is also an implicit solution of (2.6.13).
Figure 2.6.1 shows a direction field and some integal curves for (2.6.13)
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Figure 2.6.1 A direction field and integral curves for
(2xy3 —2x3y3 —dxy? 4+ 2x)dx + 3x2y%2 +4y)dy =0

Example 2.6.2

Find an integrating factor for

2xy2dx 4+ 3x*y* + x*y* + 1)dy =0

and solve the equation.

Solution In (2.6.18),

M =2xy3,

and

N = 3x2y2 +)€2y3 + 1,

M,y — Ny = 6xy% — (6xy? + 2xy%) = —2xy3,

so (2.6.18) isn’t exact. Moreover,

M, — N,

3

N 3x2y24x2y2 41

N

(2.6.18)

is not independent of y, so Theorem 2.6.1(a) does not apply. However, Theorem 2.6.1(b) does apply,

since

Ny —M, 2xy’
=

1

2xy3

is independent of x, so we can take g(y) = 1. Since

/q(y)dy =/dy=y,
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w(y) = e” is an integrating factor. Multiplying (2.6.18) by u yields the exact equation

2xy3e? dx + (3x%y? 4+ x2y* + 1)e? dy = 0. (2.6.19)
To solve this equation, we must find a function F' such that
Fe(x,y) = 2xy3e” (2.6.20)
and
Fy(x,y) = 3x%y? 4+ x%y3 + e, (2.6.21)
Integrating (2.6.20) with respect to x yields
(2.6.22)

F(x,y) =x*y%e” + ¢(»).

Differentiating this with respect to y yields
Fy = (3x%y? +x%y%)e” + ¢'(»),
and comparing this with (2.6.21) shows that ¢'(y) = e?. Therefore we set ¢(y) = e? in (2.6.22) and

conclude that
x2y3+De? =c¢

is an implicit solution of (2.6.19). Itis also an implicit solution of (2.6.18). Figure 2.6.2 shows a direction
|

field and some integral curves for (2.6.18).
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Figure 2.6.2 A direction field and integral curves for 2xy3e” dx + (3x2y% 4+ x2y3 + 1)e? dy =0

Theorem 2.6.1 does not apply in the next example, but the more general argument that led to Theo-

rem 2.6.1 provides an integrating factor.
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Example 2.6.3 Find an integrating factor for
(Bxy + 6y%)dx + 2x> + 9xy)dy =0 (2.6.23)

and solve the equation.

Solution In (2.6.23)
M =3xy + 6y, N = 2x? 4 9xy,

and
My, — Ny = (3x +12y) — (4x + 9y) = —x + 3y.

Therefore
My — Ny _ —x + 3y and Ny — M, _ x —3y
M 3xy 4+ 6y2 N  2x249xy’
so Theorem 2.6.1 does not apply. Following the more general argument that led to Theorem 2.6.1, we
look for functions p = p(x) and ¢ = g(y) such that

My — Nx = p(x)N —q(y)M;

that is,
—x 43y = p(x)(2x* + 9xy) —q(»)(3xy + 6y?).

Since the left side contains only first degree terms in x and y, we rewrite this equation as
xp(x)(2x +9y) = yq(y)(Bx + 6y) = —x + 3y.

This will be an identity if
xp(x)=A and yq(y) = B, (2.6.24)

where A and B are constants such that
—x + 3y = AQ2x + 9y) — B(3x + 6y),

or, equivalently,
—x 4+ 3y=2A—-3B)x + (94 —6B)y.

Equating the coefficients of x and y on both sides shows that the last equation holds for all (x, y) if

2A—-3B = -1
94—-6B = 3,

which has the solution A = 1, B = 1. Therefore (2.6.24) implies that

1 1
p(x)=— and gq(y)=—.
x y

Since

/p(x) dx =1nlx] and /q(y) dy = Inlyl.

we can let P(x) = x and Q(y) = y; hence, ;u(x, y) = xy is an integrating factor. Multiplying (2.6.23)
by u yields the exact equation

(Bx2y? + 6xy)dx + 2x3y + 9x%y?) dy = 0.
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Figure 2.6.3 A direction field and integral curves for (3xy + 6y2)dx + (2x2 + 9xy)dy = 0

We leave it to you to use the method of Section 2.5 to show that this equation has the implicit solution
x3y? +3x%y3 =c. (2.6.25)

This is also an implicit solution of (2.6.23). Since x = 0 and y = 0 satisfy (2.6.25), you should check to
see that x = 0 and y = 0 are also solutions of (2.6.23). (Why is it necesary to check this?)

Figure 2.6.3 shows a direction field and integral curves for (2.6.23).

See Exercise 28 for a general discussion of equations like (2.6.23).

Example 2.6.4 The separable equation

—ydx+ (x+x%dy =0 (2.6.26)
can be converted to the exact equation
d d
o _ 4 Yo (2.6.27)
X+ x y

by multiplying through by the integrating factor
1

nix,y) = m-

However, to solve (2.6.27) by the method of Section 2.5 we would have to evaluate the nasty integral

/ dx
X+ x6°

Instead, we solve (2.6.26) explicitly for y by finding an integrating factor of the form 1 (x, y) = x%y°.
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Figure 2.6.4 A direction field and integral curves for —y dx + (x + x®)dy =0

Solution In (2.6.26)
M=—-y, N=x+x°

and
My — Ny = —1—(1 4+ 6x°) = -2 —6x°.

We look for functions p = p(x) and ¢ = g(y) such that
My — Ny = p(x)N —q(y)M;

that is,
—2—6x° = p(x)(x + x%) + q(y)y. (2.6.28)

The right side will contain the term —6x° if p(x) = —6/x. Then (2.6.28) becomes
—2—6x° = —6—6x" +q(»)y,

so q(y) = 4/y. Since
6 1
/p(x)dxz—/—dx=—6ln|x| =1In—,
X X
and

4
/q(y)dy =/;dy=4ln|y| =Iny*,
6.,,4

we can take P(x) = x~© and Q(y) = y*, which yields the integrating factor u(x,y) = x¢y%.
Multiplying (2.6.26) by u yields the exact equation

5 4
—y—dx+(y—5+y4) dy = 0.
x



Section 2.6 Exact Equations 91

We leave it to you to use the method of the Section 2.5 to show that this equation has the implicit solution
5
(X) +y° =k.
X
Solving for y yields
y = kl/Sx(l + XS)_I/S,

which we rewrite as
y=cx(l+ xs)_l/5
by renaming the arbitrary constant. This is also a solution of (2.6.26).
Figure 2.6.4 shows a direction field and some integral curves for (2.6.26).

2.6 Exercises

1. (a) Verify that u(x, y) = y is an integrating factor for

1
ydx+(2x+—) dy =0 (A)
y
on any open rectangle that does not intersect the x axis or, equivalently, that
y2dx + (2xy + 1)dy =0 (B)

is exact on any such rectangle.
(b) Verify that y = 0 is a solution of (B), but not of (A).
(¢) Show that
yixy +1)=c ©
is an implicit solution of (B), and explain why every differentiable function y = y(x) other
than y = 0 that satisfies (C) is also a solution of (A).

2. (a) Verify that u(x, y) = 1/(x — y)? is an integrating factor for

—y2dx +x%dy =0 (A)
on any open rectangle that does not intersect the line y = x or, equivalently, that
2 2
y x
- dx + dy =0 B)
(x —y)? (x =y
is exact on any such rectangle.
(b) Use Theorem 2.2.1 to show that
Xy
=c ©)
(x=»)

is an implicit solution of (B), and explain why it’s also an implicit solution of (A)
(c) Verify that y = x is a solution of (A), even though it can’t be obtained from (C).

In Exercises 3—16 find an integrating factor; that is a function of only one variable, and solve the given
equation.

3. ydx—xdy=0 4. 3x%ydx+2x3dy=0

5. 2y3dx+3y%dy =0 6. (5xy+2y+5dx+2xdy=0
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9.

10.

11.
12.
13.
14.
15.
16.

Chapter 2 Integrating Factors

xy+x+2y+Ddx+x+1)dy=0
(27xy? + 8y3) dx + (18x%y + 12xy?)dy =0
(6xy? +2y)dx + (12x%y + 6x +3)dy =0
yZdx + (xy2+3xy+ l) dy =0

y
(12x3y 4+ 24x2y2)dx + (9x* + 32x3y + 4y)dy =0
(x2y +4xy +2y)dx + (x2 +x)dy =0
—ydx + (x*=x)dy =0
cosxcosydx + (sinxcosy —sinxsiny + y)dy =0
xy + y?)dx + 2xy + x2 —2x2y% —2xy*)dy =0
ysinydx 4+ x(siny — ycosy)dy =0

In Exercises 17-23 find an integrating factor of the form pu(x,y) = P(x)Q(y) and solve the given

equ

17.
18.
19.
20.
21.
22,
23.

ation.
y(1 +5In|x|)dx + 4x1n|x|dy =0
(ay + yxy)dx + (Bx +8xy)dy =0
(3x2y3 —y2 + y)dx + (—xy +2x)dy =0
2ydx +3(x2+ x2y3)dy =0
(acosxy —ysinxy)dx + (bcosxy —xsinxy)dy =0
x*y*dx +x3y3dy =0
y(xcosx +2sinx)dx + x(y + 1)sinxdy =0

In Exercises 24-27 find an integrating factor and solve the equation. Plot a direction field and some
integral curves for the equation in the indicated rectangular region.

24
25
26

27.
28.

29.

. (x4y3+y)dx+(x5y2—x)dy=0; —l<x=<l-1=<y=<1;

. [CIG] Gxy +2)® + y)dx + (X +2xy +x +2y)dy =0; {-2<x<2,-2<y<2}
. (12xy + 6y3)dx + (9x2 + 10xy?)dy =0; {-2<x<2,-2<y <2}

[C/G] 3x2y? +2y)dx +2xdy =0; {—4<x<4,—4<y<4

Suppose a, b, ¢, and d are constants such that ad — bc # 0, and let m and n be arbitrary real
numbers. Show that

(ax™y 4+ by" Yy dx + (cx™t! + dxy™)dy =0

has an integrating factor u(x, y) = x*y#.

Suppose M, N, My, and N, are continuous for all (x,y), and u = p(x,y) is an integrating
factor for
M(x,y)dx + N(x,y)dy = 0. (A)

Assume that p, and p, are continuous for all (x, y), and suppose y = y(x) is a differentiable
function such that p(x, y(x)) = 0 and px(x, y(x)) # O for all x in some interval /. Show that y
is a solution of (A) on /.
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According to Theorem 2.1.2, the general solution of the linear nonhomogeneous equation

Y+ p)y = fx) (A)

is
y=n (et [ romwa). ®)
where y; is any nontrivial solution of the complementary equation y’ + p(x)y = 0. In this

exercise we obtain this conclusion in a different way. You may find it instructive to apply the
method suggested here to solve some of the exercises in Section 2.1.

(a) Rewrite (A) as
[p(x)y — f(x)]dx + dy = 0. ©
and show that u = tel P dx jg apn integrating factor for (C).

(b) Multiply (A) through by u = tel P dx gpg verify that the resulting equation can be
rewritten as

(m(x)y) = p(x) f(x).

Then integrate both sides of this equation and solve for y to show that the general solution

of (A)is
1
= — (c + [ Feomen dx) .

Why is this form of the general solution equivalent to (B)?






CHAPTER 3
Numerical Methods

In this chapter we study numerical methods for solving a first order differential equation
Y= fx.p).

SECTION 3.1 deals with Euler’s method, which is really too crude to be of much use in practical appli-
cations. However, its simplicity allows for an introduction to the ideas required to understand the better
methods discussed in the other two sections.

SECTION 3.2 discusses improvements on Euler’s method.

SECTION 3.3 deals with the Runge-Kutta method, perhaps the most widely used method for numerical
solution of differential equations.
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3.1 EULER’S METHOD

If an initial value problem
Y= fx.y), y(xo) =yo (3.1.1)

can’t be solved analytically, it’s necessary to resort to numerical methods to obtain useful approximations
to a solution of (3.1.1). We’ll consider such methods in this chapter.

We’re interested in computing approximate values of the solution of (3.1.1) at equally spaced points
X0, X1, --.» Xn = b in an interval [x¢, b]. Thus,

xi=xo+ih, i=0,1,...,n,

where
h= b— X0 .
n
We’ll denote the approximate values of the solution at these points by yg, V1, ..., YVu; thus, y; is an
approximation to y (x;). We’ll call
ei = y(xi) — yi

the error at the i th step. Because of the initial condition y(xo¢) = yo, we’ll always have eg = 0. However,
in general ¢; # 0ifi > 0.
We encounter two sources of error in applying a numerical method to solve an initial value problem:

e The formulas defining the method are based on some sort of approximation. Errors due to the
inaccuracy of the approximation are called truncation errors.

e Computers do arithmetic with a fixed number of digits, and therefore make errors in evaluating
the formulas defining the numerical methods. Errors due to the computer’s inability to do exact
arithmetic are called roundoff errors.

Since a careful analysis of roundoff error is beyond the scope of this book, we’ll consider only trunca-
tion errors.

Euler’s Method

The simplest numerical method for solving (3.1.1) is Euler’s method. This method is so crude that it is
seldom used in practice; however, its simplicity makes it useful for illustrative purposes.

Euler’s method is based on the assumption that the tangent line to the integral curve of (3.1.1) at
(xi, y(x;)) approximates the integral curve over the interval [x;, x;41]. Since the slope of the integral
curve of (3.1.1) at (x;, y(x;)) is y'(x;) = f(xi, y(x;)), the equation of the tangent line to the integral
curve at (x;, y(x;)) is

y = yxi) + fx, y(x))(x —x;). (3.1.2)

Setting x = x;4+1 = x; + hin (3.1.2) yields
Yi+1 = y(xi) + hf(xi, y(xi)) (3.1.3)
as an approximation to y(x;+1). Since y(xo) = yo is known, we can use (3.1.3) with i = 0 to compute
y1 = Yo + hf(xo, yo)-
However, setting i = 1 in (3.1.3) yields

y2 = y(x1) + hf(x1, y(x1)),
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which isn’t useful, since we don’t know y(x1). Therefore we replace y(x;) by its approximate value y;
and redefine

y2 = y1+hf(xi, y1).
Having computed y,, we can compute
y3 = y2 + hf(x2, y2).

In general, Euler’s method starts with the known value y(xo) = yo and computes y1, V2, ..., V¥, succes-
sively by with the formula

yi+1 =yi +hf(xi.yi), 0<i<n-1 (3.1.4)
The next example illustrates the computational procedure indicated in Euler’s method.

Example 3.1.1 Use Euler’s method with 2z = 0.1 to find approximate values for the solution of the initial
value problem

y +2y =x3"2, y0) =1 (3.1.5)
atx =0.1,0.2,0.3.

Solution We rewrite (3.1.5) as
y =2y +x3  y0) =1,
which is of the form (3.1.1), with
f(x.y) =2y +x%" x9=0, and yo = 1.
Euler’s method yields

y1 = Yo+ hf(xo,yo0)
1+ (D) f0,1) =1+ (1)(-2) = .8,

y2 = y1+hf(x1,y1)
84 (1 f(1,.8) =.8+ (1) (=2(.8) + (.1)%e™2) = .640081873,

y3 = Y2+ hf(x2,y2)
640081873 + (1) (—2(.640081873) + (:2)%¢ %) = .512601754. m

We’ve written the details of these computations to ensure that you understand the procedure. However,
in the rest of the examples as well as the exercises in this chapter, we’ll assume that you can use a
programmable calculator or a computer to carry out the necessary computations.

Examples Illustrating The Error in Euler’s Method

Example 3.1.2 Use Euler’s method with step sizes # = 0.1, & = 0.05, and 2 = 0.025 to find approxi-
mate values of the solution of the initial value problem

Y42y =xe, y(0) =1

atx =0,0.1,0.2,0.3, ..., 1.0. Compare these approximate values with the values of the exact solution
e—2x
y=—+d), (3.1.6)

which can be obtained by the method of Section 2.1. (Verify.)
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Solution Table 3.1.1 shows the values of the exact solution (3.1.6) at the specified points, and the ap-
proximate values of the solution at these points obtained by Euler’s method with step sizes 7 = 0.1,
h = 0.05, and & = 0.025. In examining this table, keep in mind that the approximate values in the col-
umn corresponding to i = .05 are actually the results of 20 steps with Euler’s method. We haven’t listed
the estimates of the solution obtained for x = 0.05, 0.15, ..., since there’s nothing to compare them with
in the column corresponding to 7 = 0.1. Similarly, the approximate values in the column corresponding
to i = 0.025 are actually the results of 40 steps with Euler’s method.

Table 3.1.1. Numerical solution of y’ 4+ 2y = x3e¢™2*, y(0) = 1, by Euler’s method.

X

h=0.1

h =0.05

h =0.025

Exact

0.0
0.1
0.2
03
04
0.5
0.6
0.7
0.8
0.9
1.0

1.000000000
0.800000000
0.640081873
0.512601754
0.411563195
0.332126261
0.270299502
0.222745397
0.186654593
0.159660776
0.139778910

1.000000000
0.810005655
0.656266437
0.532290981
0.432887056
0.353785015
0.291404256
0.242707257
0.205105754
0.176396883
0.154715925

1.000000000
0.814518349
0.663635953
0.541339495
0.442774766
0.363915597
0.301359885
0.252202935
0.213956311
0.184492463
0.162003293

1.000000000
0.818751221
0.670588174
0.549922980
0.452204669
0.373627557
0.310952904
0.261398947
0.222570721
0.192412038
0.169169104

You can see from Table 3.1.1 that decreasing the step size improves the accuracy of Euler’s method.
For example,
.0293 with h = 0.1,
.0144 with h = 0.05,
.0071 with 2 = 0.025.

Based on this scanty evidence, you might guess that the error in approximating the exact solution at a fixed
value of x by Euler’s method is roughly halved when the step size is halved. You can find more evidence
to support this conjecture by examining Table 3.1.2, which lists the approximate values of Y.« — Yaprox at
x =0.1,0.2,..., 1.0.

ycxacl(l) - yappmx(l) ~

Table 3.1.2. Errors in approximate solutions of y’ + 2y = x3e~2¥, y(0) = 1, obtained by
Euler’s method.

x | h=0.1|h=005]|h=0.025
0.1 0.0187 0.0087 0.0042
02| 0.0305 0.0143 0.0069
03| 0.0373 0.0176 0.0085
04 | 0.0406 0.0193 0.0094
0.5 | 0.0415 0.0198 0.0097
0.6 | 0.0406 0.0195 0.0095
0.7 | 0.0386 0.0186 0.0091
0.8 | 0.0359 0.0174 0.0086
09 | 0.0327 0.0160 0.0079
1.0 | 0.0293 0.0144 0.0071

Example 3.1.3 Tables 3.1.3 and 3.1.4 show analogous results for the nonlinear initial value problem

¥ =-2y% +xy +x2, y(0) = 1, (3.1.7)
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except in this case we can’t solve (3.1.7) exactly. The results in the “Exact” column were obtained by
using a more accurate numerical method known as the Runge-Kutta method with a small step size. They
are exact to eight decimal places. [ ]

Since we think it’s important in evaluating the accuracy of the numerical methods that we’ll be studying
in this chapter, we often include a column listing values of the exact solution of the initial value problem,
even if the directions in the example or exercise don’t specifically call for it. If quotation marks are
included in the heading, the values were obtained by applying the Runge-Kutta method in a way that’s
explained in Section 3.3. If quotation marks are not included, the values were obtained from a known
formula for the solution. In either case, the values are exact to eight places to the right of the decimal
point.

Table 3.1.3. Numerical solution of y' = —2y2 + xy + x2, y(0) = 1, by Euler’s method.

X

h=0.1

h =0.05

h =0.025

“Exact”

0.0
0.1
0.2
03
04
0.5
0.6
0.7
0.8
0.9
1.0

1.000000000
0.800000000
0.681000000
0.605867800
0.559628676
0.535376972
0.529820120
0.541467455
0.569732776
0.614392311
0.675192037

1.000000000
0.821375000
0.707795377
0.633776590
0.587454526
0.562906169
0.557143535
0.568716935
0.596951988
0.641457729
0.701764495

1.000000000
0.829977007
0.719226253
0.646115227
0.600045701
0.575556391
0.569824171
0.581435423
0.609684903
0.654110862
0.714151626

1.000000000
0.837584494
0.729641890
0.657580377
0.611901791
0.587575491
0.581942225
0.593629526
0.621907458
0.666250842
0.726015790

Table 3.1.4. Errors in approximate solutions of y = —2y2 + xy + x2, y(0) = I, obtained
by Euler’s method.

x | h=0.1|h=005]|h=0.025
0.1 0.0376 0.0162 0.0076
02 | 0.0486 0.0218 0.0104
03| 0.0517 0.0238 0.0115
04 | 0.0523 0.0244 0.0119
05| 0.0522 0.0247 0.0121
0.6 | 0.0521 0.0248 0.0121
0.7 | 0.0522 0.0249 0.0122
0.8 | 0.0522 0.0250 0.0122
09 | 0.0519 0.0248 0.0121
1.0 | 0.0508 0.0243 0.0119

Truncation Error in Euler’s Method

Consistent with the results indicated in Tables 3.1.1-3.1.4, we’ll now show that under reasonable as-
sumptions on f there’s a constant K such that the error in approximating the solution of the initial value
problem

y' = f(x,y), y(xo0) = yo,

at a given point b > x¢ by Euler’s method with step size h = (b — x¢)/n satisfies the inequality

ly(®) — ynl = Kh,
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where K is a constant independent of n.
There are two sources of error (not counting roundoff) in Euler’s method:

1. The error committed in approximating the integral curve by the tangent line (3.1.2) over the interval
[xi, Xi41].

2. The error committed in replacing y(x;) by y; in (3.1.2) and using (3.1.4) rather than (3.1.2) to
compute y; 1.

Euler’s method assumes that y; 1 defined in (3.1.2) is an approximation to y(x;+1). We call the error
in this approximation the local truncation error at the ith step, and denote it by 7;; thus,

Ti = y(xit1) — y(xi) —hf(xi, y(xi)). (3.1.8)

We’ll now use Taylor’s theorem to estimate T;, assuming for simplicity that f, fy, and f, are continuous
and bounded for all (x, y). Then y” exists and is bounded on [xo, b]. To see this, we differentiate

y'(x) = f(x,y(x))

to obtain

V') = fe(x,y(x) + fy(x, y(x)y (x)
= frlx,y(x)) + fy(x, y(x)) f(x, y(x)).

Since we assumed that f, f; and f, are bounded, there’s a constant M such that

| fx (e, () + fr(x, y(X) f(x, y(x)| <M, xo<x <b,

which implies that
[Y'(x)| <M, xo<x<b. (3.1.9)

Since x;+1 = x; + h, Taylor’s theorem implies that
hz
y(xig1) = y(xi) +hy'(xi) + 7)’"(9@),
where X; is some number between x; and x; 4. Since y'(x;) = f(x;, y(x;)) this can be written as
hz
y(xig1) = y(xi) + hf(xi, y(xi)) + Ty//(xi)’
or, equivalently,

hz
Y(xit1) —y(xi) —hf(xi, y(x;) = 7)’”(971')‘

Comparing this with (3.1.8) shows that

h? -
T = 5" ).
Recalling (3.1.9), we can establish the bound
Mh?

|T;| <

5 1<i=<n. (3.1.10)
Although it may be difficult to determine the constant M, what is important is that there’s an M such that
(3.1.10) holds. We say that the local truncation error of Euler’s method is of order h?, which we write as

o(h?).
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Note that the magnitude of the local truncation error in Euler’s method is determined by the second
derivative y” of the solution of the initial value problem. Therefore the local truncation error will be
larger where |y”| is large, or smaller where |y”| is small.

Since the local truncation error for Euler’s method is O(h?), it’s reasonable to expect that halving
reduces the local truncation error by a factor of 4. This is true, but halving the step size also requires twice
as many steps to approximate the solution at a given point. To analyze the overall effect of truncation
error in Euler’s method, it’s useful to derive an equation relating the errors

eiv1 =y(Xit1) —yiv1 and e = y(x;) — yi.

To this end, recall that

Y(Xit1) = y(xi) + hf(xi, y(xi) + T; (3.1.11)
and
Yit1 = Yi +hf(xi, yi). (3.1.12)
Subtracting (3.1.12) from (3.1.11) yields
eit1 =e +h[f(xi,y(x:)— fxi,y)] + Ti. (3.1.13)

The last term on the right is the local truncation error at the ith step. The other terms reflect the way
errors made at previous steps affect e; 1. Since |T;| < M h?/2, we see from (3.1.13) that

2

Mh
leivi1| < leil + Rl f(xi, y(xi)) — f(xi, yi)l + 7 (3.1.14)

Since we assumed that f) is continuous and bounded, the mean value theorem implies that

S, y(xi) — fxinyi) = frlxi, y)D () —vi) = fy(xi, yiei,

where y* is between y; and y(x;). Therefore

|f(xis y(xi)) — f(xi, yi)| < Rlei]

for some constant R. From this and (3.1.14),

Mh? .
lei+1] < (1 + Rh)lei| + 5 0<i=<n-1L (3.1.15)

For convenience, let C = 1 + RA. Since eg = y(xo) — yo = 0, applying (3.1.15) repeatedly yields

Mh?
ler] <
2

Mh? Mh?
le2] < Clei| + <(1+0) 7

Mh? Mh?
les] < Clea| + <(1+C+C? >

M h? Mh?

lenl < Clen—1|+ S(L+C+~-+C*H—?< (3.1.16)

Recalling the formula for the sum of a geometric series, we see that

1-C"  (1+Rhy" -1

1 n—1 _
+C+---+C —C R
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(since C = 1 4+ Rh). From this and (3.1.16),
(1+Rh)"—1Mh

Y(®) = yal = len] = ———— == (3.1.17)
Since Taylor’s theorem implies that
1+ Rh < e®?
(verify),
(14 Rh)" < "Rl = oRO=x0)  (since nh = b — xo).
This and (3.1.17) imply that
|y(b) = yn| = Kh, (3.1.18)
with
oR(—x0) _ |
K=M——"—+—
2R

Because of (3.1.18) we say that the global truncation error of Euler’s method is of order h, which we
write as O (h).

Semilinear Equations and Variation of Parameters

An equation that can be written in the form

y' 4+ px)y = h(x,y) (3.1.19)

with p # 0 is said to be semilinear. (Of course, (3.1.19) is linear if / is independent of y.) One way to
apply Euler’s method to an initial value problem

v 4+ p(x)y =h(x.y), y(xo) = yo (3.1.20)

for (3.1.19) is to think of it as

Y= f(x,y), y(xo) = yo,
where

fx.y)=—-pX)y + h(x,y).

However, we can also start by applying variation of parameters to (3.1.20), as in Sections 2.1 and 2.4;
thus, we write the solution of (3.1.20) as y = uy;, where y; is a nontrivial solution of the complementary
equation y’ 4+ p(x)y = 0. Then y = uy; is a solution of (3.1.20) if and only if u is a solution of the
initial value problem

u' = h(x,uy1(x))/y1(x), u(xo) = y(x0)/y1(xo). (3.1.21)
We can apply Euler’s method to obtain approximate values ug, 41, ..., U, of this initial value problem,
and then take
yi =u;iy1(x;)

as approximate values of the solution of (3.1.20). We’ll call this procedure the Euler semilinear method.
The next two examples show that the Euler and Euler semilinear methods may yield drastically different
results.

Example 3.1.4 In Example 2.1.7 we had to leave the solution of the initial value problem

y —2xy=1, y(0)=3 (3.1.22)

y=e* (3 +/ e_'zdt) (3.1.23)
0

in the form
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because it was impossible to evaluate this integral exactly in terms of elementary functions. Use step
sizesh = 0.2, h = 0.1, and & = 0.05 to find approximate values of the solution of (3.1.22) at x = 0,
0.2,0.4,0.6, ..., 2.0 by (a) Euler’s method; (b) the Euler semilinear method.

SOLUTION(a) Rewriting (3.1.22) as

Yy =1+2xy, y0)=3 (3.1.24)
and applying Euler’s method with f(x, y) = 1 4 2xy yields the results shown in Table 3.1.5. Because of
the large differences between the estimates obtained for the three values of £, it would be clear that these

results are useless even if the “exact” values were not included in the table.

Table 3.1.5. Numerical solution of y' —2xy = 1, y(0) = 3, with Euler’s method.

x h=02 h=0.1 h =0.05 “Exact”

0.0 | 3.000000000 3.000000000 3.000000000 3.000000000
0.2 | 3.200000000 3.262000000 3.294348537 3.327851973
04 | 3.656000000 3.802028800 3.881421103 3.966059348
0.6 | 4.440960000 4.726810214 4.888870783 5.067039535
0.8 | 5.706790400 6.249191282 6.570796235 6.936700945
1.0 | 7.732963328 8.771893026 9.419105620 | 10.184923955
1.2 | 11.026148659 | 13.064051391 14.405772067 | 16.067111677
1.4 | 16518700016 | 20.637273893 | 23.522935872 | 27.289392347
1.6 | 25.969172024 | 34.570423758 | 41.033441257 | 50.000377775
1.8 | 42.789442120 | 61.382165543 | 76.491018246 | 98.982969504
2.0 | 73.797840446 | 115.440048291 | 152.363866569 | 211.954462214

It’s easy to see why Euler’s method yields such poor results. Recall that the constant M in (3.1.10) —
which plays an important role in determining the local truncation error in Euler’s method — must be an
upper bound for the values of the second derivative y” of the solution of the initial value problem (3.1.22)
on (0, 2). The problem is that y”" assumes very large values on this interval. To see this, we differentiate
(3.1.24) to obtain

y'(x) = 2y(x) + 2xy'(x) = 2y(x) + 2x(1 4+ 2xy(x)) = 2(1 + 2x2)y(x) + 2x,
where the second equality follows again from (3.1.24). Since (3.1.23) implies that y(x) > 3¢ if x > 0,
y"(x) > 6(1 + 2)62)6)“2 +2x, x>0.
For example, letting x = 2 shows that y”(2) > 2952.

SOLUTION(b) Since y; = ¢*” is a solution of the complementary equation y’ —2xy = 0, we can apply
the Euler semilinear method to (3.1.22), with

2 2
y=ue* and u' =",

u(0) = 3.
The results listed in Table 3.1.6 are clearly better than those obtained by Euler’s method.

Table 3.1.6. Numerical solution of y' —2xy = 1, y(0) = 3, by the Euler semilinear method.
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X h=02 h=0.1 h =0.05 “Exact”

0.0 3.000000000 3.000000000 3.000000000 3.000000000
0.2 3.330594477 3.329558853 3.328788889 3.327851973
04 3.980734157 3.974067628 3.970230415 3.966059348
0.6 5.106360231 5.087705244 5.077622723 5.067039535
0.8 7.021003417 6.980190891 6.958779586 6.936700945
1.0 10.350076600 | 10.269170824 | 10.227464299 | 10.184923955
1.2 16381180092 | 16.226146390 | 16.147129067 | 16.067111677
1.4 | 27.890003380 | 27.592026085 | 27.441292235 | 27.289392347
1.6 | 51.183323262 | 50.594503863 | 50.298106659 | 50.000377775
1.8 | 101.424397595 | 100.206659076 | 99.595562766 | 98.982969504
2.0 | 217.301032800 | 214.631041938 | 213.293582978 | 211.954462214

We can’t give a general procedure for determining in advance whether Euler’s method or the semilinear
Euler method will produce better results for a given semilinear initial value problem (3.1.19). As a rule of
thumb, the Euler semilinear method will yield better results than Euler’s method if |u”| is small on [xg, b],
while Euler’s method yields better results if |u”| is large on [xg, ]. In many cases the results obtained by
the two methods don’t differ appreciably. However, we propose the an intuitive way to decide which is
the better method: Try both methods with multiple step sizes, as we did in Example 3.1.4, and accept the
results obtained by the method for which the approximations change less as the step size decreases.

Example 3.1.5 Applying Euler’s method with step sizes & = 0.1, 7 = 0.05, and & = 0.025 to the initial
value problem

y =2y y(1) =7 (3.1.25)

X
14y
on [1, 2] yields the results in Table 3.1.7. Applying the Euler semilinear method with
;L xe—Zx
14 u2etr’

yzuer

and u u(l) =7¢2

yields the results in Table 3.1.8. Since the latter are clearly less dependent on step size than the former,
we conclude that the Euler semilinear method is better than Euler’s method for (3.1.25). This conclusion
is supported by comparing the approximate results obtained by the two methods with the “exact” values

of the solution.

Table 3.1.7. Numerical solution of y' — 2y = x/(1 + y?), y(1) = 7, by Euler’s method.

X h=0.1 h = 0.05 h = 0.025 “Exact”

1.0 | 7.000000000 | 7.000000000 | 7.000000000 | 7.000000000
1.1 8.402000000 | 8.471970569 | 8.510493955 | 8.551744786
1.2 | 10.083936450 | 10.252570169 | 10.346014101 | 10.446546230
1.3 | 12.101892354 | 12.406719381 | 12.576720827 | 12.760480158
1.4 | 14523152445 | 15.012952416 | 15.287872104 | 15.586440425
1.5 | 17.428443554 | 18.166277405 | 18.583079406 | 19.037865752
1.6 | 20.914624471 | 21.981638487 | 22.588266217 | 23.253292359
1.7 | 25.097914310 | 26.598105180 | 27.456479695 | 28.401914416
1.8 | 30.117766627 | 32.183941340 | 33.373738944 | 34.690375086
1.9 | 36.141518172 | 38.942738252 | 40.566143158 | 42.371060528
2.0 | 43.369967155 | 47.120835251 | 49.308511126 | 51.752229656
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Table 3.1.8. Numerical solution of y' —2y = x/(1+ y?), y(1) = 7, by the Euler semilinear
method.

“Exact”
7.000000000
8.551744786

10.446546230
12.760480158
15.586440425
19.037865752
23.253292359
28.401914416
34.690375086
42.371060528
51.752229656

h = 0.025

7.000000000

8.551867007
10.446787646
12.760843543
15.586934680
19.038506211
23.254101253
28.402921581
34.691618979
42.372589624
51.754104262

h = 0.05
7.000000000
8.551993978

10.447038547
12.761221313
15.587448600
19.039172241
23.254942517
28.403969107
34.692912768
42.374180090
51.756054133

X h=0.1

1.0 | 7.000000000
1.1 8.552262113
1.2 | 10447568674
1.3 | 12.762019799
1.4 | 15.588535141
1.5 | 19.040580614
1.6 | 23.256721636
1.7 | 28.406184597
1.8 | 34.695649222
1.9 | 42.377544138
2.0 | 51.760178446

Example 3.1.6 Applying Euler’s method with step sizes 2 = 0.1, 7 = 0.05, and & = 0.025 to the initial
value problem
(3.1.26)

Y3y =147 y@) =2

on [2, 3] yields the results in Table 3.1.9. Applying the Euler semilinear method with

y = ue™ and u = exs(l +ule 2, u2) = 2¢8

yields the results in Table 3.1.10. Noting the close agreement among the three columns of Table 3.1.9
(at least for larger values of x) and the lack of any such agreement among the columns of Table 3.1.10,
we conclude that Euler’s method is better than the Euler semilinear method for (3.1.26). Comparing the
results with the exact values supports this conclusion.

Table 3.1.9. Numerical solution of y’ 4+ 3x2y = 1+ y2,  y(2) = 2, by Euler’s method.

X

h=0.1

h =0.05

h =0.025

“Exact”

2.0
2.1
22
23
24
2.5
2.6
2.7
2.8
2.9
3.0

2.000000000
0.100000000
0.068700000
0.069419569
0.059732621
0.056871451
0.050560917
0.048279018
0.042925892
0.042148458
0.035985548

2.000000000
0.493231250
0.122879586
0.070670890
0.061338956
0.056002363
0.051465256
0.047484716
0.043967002
0.040839683
0.038044692

2.000000000
0.609611171
0.180113445
0.083934459
0.063337561
0.056249670
0.051517501
0.047514202
0.043989239
0.040857109
0.038058536

2.000000000
0.701162906
0.236986800
0.103815729
0.068390786
0.057281091
0.051711676
0.047564141
0.044014438
0.040875333
0.038072838

Table 3.1.10. Numerical solution of y'+3x2y = 142,

method.

¥(2) = 2, by the Euler semilinear
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X

h=0.1

h =0.05

h =0.025

“Exact”

X

h=0.1

h =0.05

h =0.025

h =.0125

2.0
2.1
22
23
24
2.5
2.6
2.7
2.8
2.9
3.0

2.000000000
0.708426286
0.214501852
0.069861436
0.032487396
0.021895559
0.017332058
0.014271492
0.011819555
0.009776792
0.008065020

2.000000000
0.702568171
0.222599468
0.083620494
0.047079261
0.036030018
0.030750181
0.026931911
0.023720670
0.020925522
0.018472302

2.000000000
0.701214274
0.228942240
0.092852806
0.056825805
0.045683801
0.040189920
0.036134674
0.032679767
0.029636506
0.026931099

2.000000000
0.701162906
0.236986800
0.103815729
0.068390786
0.057281091
0.051711676
0.047564141
0.044014438
0.040875333
0.038072838

In the next two sections we’ll study other numerical methods for solving initial value problems, called
the improved Euler method, the midpoint method, Heun’s method and the Runge-Kutta method. If the
initial value problem is semilinear as in (3.1.19), we also have the option of using variation of parameters
and then applying the given numerical method to the initial value problem (3.1.21) for u. By analogy
with the terminology used here, we’ll call the resulting procedure the improved Euler semilinear method,
the midpoint semilinear method, Heun’s semilinear method or the Runge-Kutta semilinear method, as the
case may be.

3.1 Exercises

You may want to save the results of these exercises, sincewe’ll revisit in the next two sections. In Exer-
cises 1-5 use Euler’s method to find approximate values of the solution of the given initial value problem
at the points x; = xo + ih, where xg is the point wher the initial condition is imposed and i = 1, 2, 3.
The purpose of these exercises is to familiarize you with the computational procedure of Euler’s method.

1L [C]y =2224+3)2-2, y@)=1; h=005

. y’=y+\/x2+y2, y0)=1; h=0.1

clC]y 43y =22 =3xy 4% y(0)=2; h=005
1+

Y’=ﬁ, y(2) = 3;

. y 4+ x2y =sinxy, y(l)=mn; h=02

w N

=

h=0.1

wn

6. Use Euler’s method with step sizes 7 = 0.1, 1 = 0.05, and 7 = 0.025 to find approximate
values of the solution of the initial value problem
y 43y =7e*, y(0) =2
atx = 0,0.1,0.2,0.3, ..., 1.0. Compare these approximate values with the values of the exact

solution y = e** + ¢73*, which can be obtained by the method of Section 2.1. Present your
results in a table like Table 3.1.1.

7. Use Euler’s method with step sizes 7 = 0.1, 1 = 0.05, and 7 = 0.025 to find approximate
values of the solution of the initial value problem

2 3
YV+-y=5+1 y=1
X X


http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Heun.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Runge.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Kutta.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Heun.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Runge.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Kutta.html

10.

11.
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atx = 1.0, 1.1, 1.2, 1.3, ..., 2.0. Compare these approximate values with the values of the exact
solution

1
y = 3x—2(91nx +x342),
which can be obtained by the method of Section 2.1. Present your results in a table like Table 3.1.1.

Use Euler’s method with step sizes 7 = 0.05, 7 = 0.025, and & = 0.0125 to find approximate
values of the solution of the initial value problem

YAy =
y ="

P .oy =2
at x = 1.0, 1.05, 1.10, 1.15, ..., 1.5. Compare these approximate values with the values of the
exact solution
_ x(1+x2/3)
1—x2/3

obtained in Example 2.4.3. Present your results in a table like Table 3.1.1.
In Example 2.2.3 it was shown that

V4+y=x>4+x-4
is an implicit solution of the initial value problem

2x + 1
== 2) = 1. A
Y =5t y(2) (A)

Use Euler’s method with step sizes 7 = 0.1, & = 0.05, and & = 0.025 to find approximate values
of the solution of (A) at x = 2.0, 2.1, 2.2,2.3, ..., 3.0. Present your results in tabular form. To
check the error in these approximate values, construct another table of values of the residual

R(x,y) =)y’ +y—x*—x+4
for each value of (x, y) appearing in the first table.
You can see from Example 2.5.1 that
x*y? 4+ x2y° +2xy =4
is an implicit solution of the initial value problem

4x3y3 +2xy° + 2y
V= XIS vy =1 (A)
3x*y?% 4+ 5x%y* + 2x

Use Euler’s method with step sizes 7 = 0.1, & = 0.05, and & = 0.025 to find approximate values
of the solution of (A) at x = 1.0, 1.1, 1.2, 1.3, ..., 2.0. Present your results in tabular form. To
check the error in these approximate values, construct another table of values of the residual

R(x,y) = x*y® + x?y° + 2xy — 4
for each value of (x, y) appearing in the first table.

Use Euler’s method with step sizes 7 = 0.1, 1 = 0.05, and 7 = 0.025 to find approximate
values of the solution of the initial value problem

(3y? +4y)y' +2x +cosx =0, y(0) = 1; (Exercise 2.2.13)
atx =0,0.1,0.2,0.3, ..., 1.0.
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12.

13.

Use Euler’s method with step sizes 7 = 0.1, 1 = 0.05, and 7 = 0.025 to find approximate
values of the solution of the initial value problem

;L +DHO =D -2)
y + =
x+1
atx = 1.0,1.1,1.2,1.3,...,2.0.

Use Euler’s method and the Euler semilinear method with step sizes & = 0.1, h = 0.05, and
h = 0.025 to find approximate values of the solution of the initial value problem

0, y(1) =0 (Exercise 2.2.14)

y +3y =7 y0)=6

atx = 0,0.1,0.2,0.3, ..., 1.0. Compare these approximate values with the values of the exact
solution y = e~3¥(7x + 6), which can be obtained by the method of Section 2.1. Do you notice
anything special about the results? Explain.

The linear initial value problems in Exercises 14—19 can’t be solved exactly in terms of known elementary

functions. In each exercise, use Euler’s method and the Euler semilinear methods with the indicated step
sizes to find approximate values of the solution of the given initial value problem at 11 equally spaced
points (including the endpoints) in the interval.

14.

15

16

17

18

19.

1
y —2y=—— y@2)=2; h=0.1,0.05,0.0250n 2, 3]
1+ x2
Y +2xy = x2,  y(0) = 3 (Exercise 2.1.38); 7 =0.2,0.1,0.050n [0, 2]

: .
Y+ oy= Sl)% y(1) = 2; (Exercise 2.139); h =0.2,0.1,0.05on [, 3]

—x¢
V+y= %, y(1) = 0; (Exercise 2.140); h = 0.05,0.025,0.01250n [1, 1.5]

X

2x e
/ _ _1. : A
..C Y+ T 2) = T 12272 y(0) = 1; (Exercise 2.141); h =0.2,0.1,0.050n [0, 2]

Xy 4+ (x + )y =e*, y()=2; (Exercise 2.142); h = 0.05,0.025,0.01250n [1, 1.5]

In Exercises 20-22, use Euler’s method and the Euler semilinear method with the indicated step sizes
to find approximate values of the solution of the given initial value problem at 11 equally spaced points
(including the endpoints) in the interval.

20.
21.

22,

23.

Y 43y =xy2(y + 1), y(0)=1; h=0.1,0.050.0250n][0, 1]
X
— ~ y0)=1; h=0.1,0.050.0250n0, 1
2O+ y( [0, 1]

[C]y -4y =
2

Y +2y = li—yz y@2)=1; h=0.1,0.05,0.0250n[2,3]

NUMERICAL QUADRATURE. The fundamental theorem of calculus says that if f is continuous
on a closed interval [a, b] then it has an antiderivative F such that F'(x) = f(x) on [a, b] and

b
/ F(x)dx = F(b) — F(a). )

This solves the problem of evaluating a definite integral if the integrand f has an antiderivative
that can be found and evaluated easily. However, if f doesn’t have this property, (A) doesn’t
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provide a useful way to evaluate the definite integral. In this case we must resort to approximate
methods. There’s a class of such methods called numerical quadrature, where the approximation
takes the form

b n
[ reax Yo, (®)

a i=0
where ¢ = x9 < x1 < -+ < x, = b are suitably chosen points and ¢y, ¢y, ..., ¢, are suitably

chosen constants. We call (B) a quadrature formula.

(a) Derive the quadrature formula

n—1

b
/ f(x)dx ~h)_ fla+ih) (whereh=(b—a)/n) (©)
a i=0

by applying Euler’s method to the initial value problem
y'=f(x). y@) =0.

(b) The quadrature formula (C) is sometimes called the left rectangle rule. Draw a figure that
justifies this terminology.

(c) For several choices of a, b, and A4, apply (C) to f(x) = A withn = 10, 20, 40, 80, 160, 320.
Compare your results with the exact answers and explain what you find.

@ For several choices of a, b, A, and B, apply (C) to f(x) = A + Bx withn = 10, 20,
40, 80, 160, 320. Compare your results with the exact answers and explain what you find.

3.2 THE IMPROVED EULER METHOD AND RELATED METHODS

In Section 3.1 we saw that the global truncation error of Euler’s method is O(h), which would seem to
imply that we can achieve arbitrarily accurate results with Euler’s method by simply choosing the step size
sufficiently small. However, this isn’t a good idea, for two reasons. First, after a certain point decreasing
the step size will increase roundoff errors to the point where the accuracy will deteriorate rather than
improve. The second and more important reason is that in most applications of numerical methods to an
initial value problem

y = fx.y). y(xo0) = yo, (3.2.1)

the expensive part of the computation is the evaluation of f. Therefore we want methods that give good
results for a given number of such evaluations. This is what motivates us to look for numerical methods
better than Euler’s.
To clarify this point, suppose we want to approximate the value of e by applying Euler’s method to the
initial value problem
y =y, y(0)=1, (withsolutiony = e*)

on [0, 1], with i = 1/12, 1/24, and 1/48, respectively. Since each step in Euler’s method requires
one evaluation of f, the number of evaluations of f in each of these attempts is n = 12, 24, and 48,
respectively. In each case we accept y, as an approximation to e. The second column of Table 3.2.1
shows the results. The first column of the table indicates the number of evaluations of f required to
obtain the approximation, and the last column contains the value of e rounded to ten significant figures.
In this section we’ll study the improved Euler method, which requires two evaluations of f at each
step. We’ve used this method with 7 = 1/6, 1/12, and 1/24. The required number of evaluations of f


http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
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were 12, 24, and 48, as in the three applications of Euler’s method; however, you can see from the third
column of Table 3.2.1 that the approximation to e obtained by the improved Euler method with only 12
evaluations of f is better than the approximation obtained by Euler’s method with 48 evaluations.

In Section 3.1 we’ll study the Runge-Kutta method, which requires four evaluations of f at each step.
We’ve used this method with 2 = 1/3, 1/6, and 1/12. The required number of evaluations of f were
again 12, 24, and 48, as in the three applications of Euler’s method and the improved Euler method;
however, you can see from the fourth column of Table 3.2.1 that the approximation to e obtained by
the Runge-Kutta method with only 12 evaluations of f is better than the approximation obtained by the
improved Euler method with 48 evaluations.

Table 3.2.1. Approximations to e obtained by three numerical methods.

n Euler Improved Euler | Runge-Kutta Exact

12 | 2.613035290 | 2.707188994 | 2.718069764 | 2.718281828
24 | 2.663731258 | 2.715327371 2.718266612 | 2.718281828
48 | 2.690496599 | 2.717519565 | 2.718280809 | 2.718281828

The Improved Euler Method

The improved Euler method for solving the initial value problem (3.2.1) is based on approximating the
integral curve of (3.2.1) at (x;, y(x;)) by the line through (x;, y(x;)) with slope

e — S iy (i) + f(xigr y(xig1)) |

1 2 ’
that is, m; is the average of the slopes of the tangents to the integral curve at the endpoints of [x;, x;+1].
The equation of the approximating line is therefore

S y(xi) + f(xit1, y(xi+1))

y=y(x)+ 3 (x — x;). (3.2.2)
Setting x = x;4+1 = x; + h in (3.2.2) yields
h

Yie1 = y(xi) + 3 (f Cxiy y(xi)) + f(Xig1, y(xi41))) (3.2.3)

as an approximation to y(x;+1). As in our derivation of Euler’s method, we replace y(x;) (unknown if
i > 0) by its approximate value y;; then (3.2.3) becomes

h
Yiv1 = yi + 3 (f(xisyi) + f(xigr, y(xit1)) -

However, this still won’t work, because we don’t know y(x; 41 ), which appears on the right. We overcome
this by replacing y(xj+1) by yi + hf(x;, yi), the value that the Euler method would assign to ;1.
Thus, the improved Euler method starts with the known value y(x¢) = yo and computes y1, y2, ..., ¥n
successively with the formula

h
Yivr =yit 3 (f Cxiyyi) + f(xigr, yi +hf(xi, yi))) - (3.2.4)
The computation indicated here can be conveniently organized as follows: given y;, compute

ki = f(xipi).
kaj S (i +h,yi +hky),

h
Yiv1r = yi+ E(kli + koj).


http://www-history.mcs.st-and.ac.uk/Mathematicians/Runge.html
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The improved Euler method requires two evaluations of f(x, y) per step, while Euler’s method requires
only one. However, we’ll see at the end of this section that if f satisfies appropriate assumptions, the local
truncation error with the improved Euler method is O(h?), rather than O(h?) as with Euler’s method.
Therefore the global truncation error with the improved Euler method is O (h?); however, we won’t prove
this.

We note that the magnitude of the local truncation error in the improved Euler method and other
methods discussed in this section is determined by the third derivative y”’ of the solution of the initial
value problem. Therefore the local truncation error will be larger where |y’”| is large, or smaller where
[v"] is small.

The next example, which deals with the initial value problem considered in Example 3.1.1, illustrates
the computational procedure indicated in the improved Euler method.

Example 3.2.1 Use the improved Euler method with 4 = 0.1 to find approximate values of the solution
of the initial value problem
y 42y =x%", y0) =1 (3.2.5)

atx =0.1,0.2,0.3.

Solution Asin Example 3.1.1, we rewrite (3.2.5) as
y =2y +x372, y(0) =1,
which is of the form (3.2.1), with
f(x,y) =2y +x3"2 x9g=0, and yo = 1.

The improved Euler method yields

kio = f(x0,y0) = f(0,1) = =2,
kao = f(x1,y0+hkio) = f(1, 14 (1)(=2))
£(1,.8) = =2(.8) + (.1)%e™2 = —1.599181269,

h
yi = Yo+ E(klo + k20),
= 14 (.05)(=2 — 1.599181269) = .820040937,

kiin = f(x1,y1) = £(.1,.820040937) = —2(.820040937) + (.1)3e™2 = —1.639263142,
ko f(x2, y1 + hkyy) = f(.2,.820040937 4 .1(—1.639263142)),
£(2,.656114622) = —2(.656114622) + (2)%e~* = —1.306866684,

h
y2 = yi1+ E(k“ + k21),
= .820040937 + (.05)(—1.639263142 — 1.306866684) = .672734445,

ki = f(xa.y2) = f(2,.672734445) = —2(.672734445) + (2)3e~* = —1.340106330,
kyo = f(xa y2+hkia) = f(.3,.672734445 + .1(—1.340106330)),
£(.3,.538723812) = —2(.538723812) + (.3)%¢ ™6 = —1.062629710,

h
y3 = Y2+ E(klz + k22)
672734445 + (.05)(—1.340106330 — 1.062629710) = .552597643.

Example 3.2.2 Table 3.2.2 shows results of using the improved Euler method with step sizes 7z = 0.1
and 1 = 0.05 to find approximate values of the solution of the initial value problem

Y42y =x, y(0) =1
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at x =0, 0.1, 0.2, 0.3, ..., 1.0. For comparison, it also shows the corresponding approximate values

obtained with Euler’s method in 3.1.2, and the values of the exact solution

The results obtained by the improved Euler method with & = 0.1 are better than those obtained by Euler’s

method with 2 = 0.05.

Table 3.2.2. Numerical solution of y’ +2y = x3e~2*, y(0) = 1, by Euler’s method and the
improved Euler method.

y:

—2x

e 4
S 4).
2 x"+4)

X

h=0.1

h =0.05

h=0.1

h =0.05

Exact

0.0
0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
1.0

1.000000000
0.800000000
0.640081873
0.512601754
0.411563195
0.332126261
0.270299502
0.222745397
0.186654593
0.159660776
0.139778910

1.000000000
0.810005655
0.656266437
0.532290981
0.432887056
0.353785015
0.291404256
0.242707257
0.205105754
0.176396883
0.154715925

1.000000000
0.820040937
0.672734445
0.552597643
0.455160637
0.376681251
0.313970920
0.264287611
0.225267702
0.194879501
0.171388070

1.000000000
0.819050572
0.671086455
0.550543878
0.452890616
0.374335747
0.311652239
0.262067624
0.223194281
0.192981757
0.169680673

1.000000000
0.818751221
0.670588174
0.549922980
0.452204669
0.373627557
0.310952904
0.261398947
0.222570721
0.192412038
0.169169104

Euler

Improved Euler

Exact

Example 3.2.3 Table 3.2.3 shows analogous results for the nonlinear initial value problem

y’ — —2y2 +xy + xz, y(0) = 1.

We applied Euler’s method to this problem in Example 3.1.3.

Table 3.2.3. Numerical solution of y' = —2y2 + xy + x2, y(0) = 1, by Euler’s method

and the improved Euler method.

X

h=0.1

h =0.05

h=0.1

h =0.05

“Exact”

0.0
0.1
0.2
03
04
0.5
0.6
0.7
0.8
0.9
1.0

1.000000000
0.800000000
0.681000000
0.605867800
0.559628676
0.535376972
0.529820120
0.541467455
0.569732776
0.614392311
0.675192037

1.000000000
0.821375000
0.707795377
0.633776590
0.587454526
0.562906169
0.557143535
0.568716935
0.596951988
0.641457729
0.701764495

1.000000000
0.840500000
0.733430846
0.661600806
0.615961841
0.591634742
0.586006935
0.597712120
0.626008824
0.670351225
0.730069610

1.000000000
0.838288371
0.730556677
0.658552190
0.612884493
0.588558952
0.582927224
0.594618012
0.622898279
0.667237617
0.726985837

1.000000000
0.837584494
0.729641890
0.657580377
0.611901791
0.587575491
0.581942225
0.593629526
0.621907458
0.666250842
0.726015790

Euler

Improved Euler

“Exact”

Example 3.2.4 Use step sizes h = 0.2, h = 0.1, and & = 0.05 to find approximate values of the solution

of

y —2xy =1,

y(©0) =3
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atx = 0,0.2,04, 0.6, ..., 2.0 by (a) the improved Euler method; (b) the improved Euler semilinear
method. (We used Euler’s method and the Euler semilinear method on this problem in 3.1.4.)

SOLUTION(a) Rewriting (3.2.6) as
Y =1+2xy, y(0)=3
and applying the improved Euler method with f(x, y) = 1+ 2xy yields the results shown in Table 3.2.4.

SOLUTION(b) Since y; = ¢*” is a solution of the complementary equation y’ —2xy = 0, we can apply
the improved Euler semilinear method to (3.2.6), with

y = ue™ and u =e u(0) = 3.
The results listed in Table 3.2.5 are clearly better than those obtained by the improved Euler method.

Table 3.2.4. Numerical solution of y' —2xy = 1, y(0) = 3, by the improved Euler method.

X h=02 h=0.1 h =0.05 “Exact”

0.0 3.000000000 3.000000000 3.000000000 3.000000000
0.2 3.328000000 3.328182400 3.327973600 3.327851973
04 3.964659200 3.966340117 3.966216690 3.966059348
0.6 5.057712497 5.065700515 5.066848381 5.067039535
0.8 6.900088156 6.928648973 6.934862367 6.936700945
1.0 10.065725534 | 10.154872547 | 10.177430736 | 10.184923955
1.2 15.708954420 | 15.970033261 16.041904862 | 16.067111677
1.4 | 26244894192 | 26.991620960 | 27.210001715 | 27.289392347
1.6 | 46.958915746 | 49.096125524 | 49.754131060 | 50.000377775
1.8 | 89.982312641 | 96.200506218 | 98.210577385 | 98.982969504
2.0 | 184.563776288 | 203.151922739 | 209.464744495 | 211.954462214

Table 3.2.5. Numerical solution of y' —2xy = 1, y(0) = 3, by the improved Euler semilin-

ear method.

X h=02 h=0.1 h =0.05 “Exact”

0.0 3.000000000 3.000000000 3.000000000 3.000000000
0.2 3.326513400 3.327518315 3.327768620 3.327851973
04 3.963383070 3.965392084 3.965892644 3.966059348
0.6 5.063027290 5.066038774 5.066789487 5.067039535
0.8 6.931355329 6.935366847 6.936367564 6.936700945
1.0 10.178248417 10.183256733 10.184507253 10.184923955
1.2 16.059110511 16.065111599 16.066611672 16.067111677
14 27.280070674 27.287059732 27.288809058 27.289392347
1.6 49989741531 49.997712997 49.999711226 50.000377775
1.8 98.971025420 98.979972988 98.982219722 98.982969504
2.0 | 211.941217796 | 211.951134436 | 211.953629228 | 211.954462214
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A Family of Methods with O (h3) Local Truncation Error

We’ll now derive a class of methods with O (h?) local truncation error for solving (3.2.1). For simplicity,
we assume that f, fy, fy, fxx. fyy,and fx, are continuous and bounded for all (x, y). This implies that
if y is the solution of (3.2.1 then y” and y”’ are bounded (Exercise 31).
We begin by approximating the integral curve of (3.2.1) at (x;, y(x;)) by the line through (x;, y(x;))
with slope
m; = oy'(x;) + py'(x; + 0h),

where o, p, and 0 are constants that we’ll soon specify; however, we insist at the outset that 0 < 6 < 1,
so that
X; <x;+60h<x;41.

The equation of the approximating line is

y = yi)+mi(x—x;)
y(xi) + [0y (xi) + py' (xi + 6h)] (x — xi). (3.2.7)

Setting x = x;+1 = x; + h in (3.2.7) yields
Jiv1 = yxi) +h[oy'(xi) + py'(x; + 6h)]

as an approximation to y(x;1).
To determine o, p, and 6 so that the error

Ei = y(xiz1)—Jit1
= Y1) —y@x;i) —hloy' (x;) + py'(xi + 6h)] (3.2.8)

in this approximation is O(/3), we begin by recalling from Taylor’s theorem that

h? h3
y(Xit1) = y(xi) + hy' (x;) + 7)’”(&') + ?y”’(ﬁi),

where X; isin (x;, x;+1). Since y”” is bounded this implies that

hz
Y1) = (i) = hy' (i) = )" () = O(h?).
Comparing this with (3.2.8) shows that E; = O(h3) if

h
0y (i) + py'(xi + 0h) = y'(xi) + 53" (x1) + O(h?). (3.2.9)
However, applying Taylor’s theorem to y’ shows that

Oh)?
y'(xi + 6h) = y'(x;i) + Ohy" (x;) + (T)y”’(fi),

where X; is in (x;, x; + 6h). Since y”” is bounded, this implies that
Y (xi + 6h) = y'(x;) + 6hy" (x;) + O(h?).

Substituting this into (3.2.9) and noting that the sum of two O(h?) terms is again O(h?) shows that
E; = O(h3)if

h
(0 4+ p)y'(xi) + pOhy” (xi) = y'(xi) + Ey”(xi),
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which is true if |
o+p=1 and pf= 3 (3.2.10)
Since y’ = f(x,y), we can now conclude from (3.2.8) that
Y(xi41) = (i) + h[of (xi. yi) + pf (xi + 0h. y(xi + 0h)] + O(h?) (3.2.11)

if o, p, and 0 satisfy (3.2.10). However, this formula would not be useful even if we knew y(x;) exactly
(as we would for i = 0), since we still wouldn’t know y(x; 4+ 6h) exactly. To overcome this difficulty,
we again use Taylor’s theorem to write

y(xi + 6h) = y(x;) + 0y’ (x;) + gy”(ii),
where X; is in (x;, x; + 0h). Since y'(x;) = f(x;, y(x;)) and y” is bounded, this implies that

|y(xi + 0h) = y(xi) — Ohf (xi. y(xi)| < Kh? (32.12)
for some constant K. Since f) is bounded, the mean value theorem implies that

| f(xi +60h,u)— f(x; +60h,v)| < M|u—nv|
for some constant M. Letting

u=yx; +0h) and v =y(x;)+0hf(xi,y(xi))
and recalling (3.2.12) shows that
J(xi +6h, y(xi + 6h)) = f(xi + 6k, y(x;) + Ohf (xi, y(x:))) + O(h?).

Substituting this into (3.2.11) yields

y(xit1) = yxi)+hlof(xi, y(xi)+
pf (xi + 6h, y(x;) + Ohf(xi, y(xi)] + O(h?).

This implies that the formula

Vit1 = Yyi +hlof(xi,yi) + pf(xi + 0h, yi + Ohf(xi, yi))]

has O(h3) local truncation error if o, p, and @ satisfy (3.2.10). Substitutingo = 1 — p and 6§ = 1/2p
here yields

h h
yier =Yi +h [(1 —p)f(xi,yi) + pf (xi tovit - f(xi, yi)):| . (3.2.13)
P 2p

The computation indicated here can be conveniently organized as follows: given y;, compute
ki = f(xi, i),
h h
kai f (xi + %, i+ %k”) s
Yi¢r = yi +hl(1 = p)kyi + pkai].
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Consistent with our requirement that 0 < 6 < 1, we require that p > 1/2. Letting p = 1/2in (3.2.13)
yields the improved Euler method (3.2.4). Letting p = 3/4 yields Heun’s method,

1 3 2 2
ier =+ 1704 3 (04 3o+ Shr o) |

which can be organized as

ki = f(xi,yi).
2h 2h
kyy = f (xi + 3V + ?kli) ,
h
Yivr = yi+ Z(kli + 3ky;).

Letting p = 1 yields the midpoint method,

h h
Yi+1 = Yi +hf (xi + E’yi + Ef(xi’)’i)) )

which can be organized as

ki = f(xi, i),
h h
kyy = f (xi + 5 i + Ekli) ,
Yivr = Yi+hky;.

Examples involving the midpoint method and Heun’s method are given in Exercises 23-30.

3.2 Exercises

Most of the following numerical exercises involve initial value problems considered in the exercises in
Section 3.1. You’ll find it instructive to compare the results that you obtain here with the corresponding
results that you obtained in Section 3.1.

In Exercises 1-5 use the improved Euler method to find approximate values of the solution of the given
initial value problem at the points x; = Xo + ih, where xq is the point where the initial condition is
imposed andi =1, 2, 3.

1. [C]y =2x>+32-2, y@ =1; h=005
. y’=y+\/x2+y2, y©0)=1;, h=0.1

]y 43y =x2=3xy +)2, yO0) =2 h=005

yf:llj—yxz, y2) =3 h=0.1

. y' 4+ x2y =sinxy, y(l)=m; h=02

. Use the improved Euler method with step sizes & = 0.1, & = 0.05, and 7 = 0.025 to find
approximate values of the solution of the initial value problem

y +3y =7e*, y(0) =2

W N

=

S W

atx = 0,0.1,0.2,0.3, ..., 1.0. Compare these approximate values with the values of the exact
solution y = e** + ¢73*, which can be obtained by the method of Section 2.1. Present your
results in a table like Table 3.2.2.
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Use the improved Euler method with step sizes h = 0.1, & = 0.05, and 7 = 0.025 to find
approximate values of the solution of the initial value problem

2 3
YV+-y=5+1 y=1
X X
atx = 1.0, 1.1, 1.2, 1.3, ..., 2.0. Compare these approximate values with the values of the exact
solution |
y = 3x—2(91nx +x3+2)
which can be obtained by the method of Section 2.1. Present your results in a table like Table 3.2.2.
Use the improved Euler method with step sizes & = 0.05, & = 0.025, and # = 0.0125 to find

approximate values of the solution of the initial value problem

,_ Yty —x?
- 2z

.oy =2,
at x = 1.0, 1.05, 1.10, 1.15, ..., 1.5. Compare these approximate values with the values of the
exact solution
_ x(1+x2/3)
 1-—x2/3

obtained in Example 2.4.3. Present your results in a table like Table 3.2.2.
In Example 3.2.2 it was shown that

V24+y=x2+x—4

is an implicit solution of the initial value problem

2x + 1
[ 2)=1. A
Y= i y(2) (A)
Use the improved Euler method with step sizes # = 0.1, # = 0.05, and 2 = 0.025 to find
approximate values of the solution of (A) at x = 2.0, 2.1, 2.2, 2.3, ..., 3.0. Present your results

in tabular form. To check the error in these approximate values, construct another table of values
of the residual
R(x,y) =)y’ +y—x>—x+4

for each value of (x, y) appearing in the first table.
You can see from Example 2.5.1 that

x*y3 4 x2S 4 2xy =4
is an implicit solution of the initial value problem

4x3y3 +2xy° + 2y
== , 1) =1. A
Y 3x4y2 + 5x2y4 + 2x Y (A)

Use the improved Euler method with step sizes # = 0.1, # = 0.05, and 2 = 0.025 to find
approximate values of the solution of (A) at x = 1.0, 1.14, 1.2, 1.3, ..., 2.0. Present your results
in tabular form. To check the error in these approximate values, construct another table of values
of the residual

R(x,y) = x*y® + x%y° 4+ 2xy — 4

for each value of (x, y) appearing in the first table.
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Use the improved Euler method with step sizes h = 0.1, & = 0.05, and 7 = 0.025 to find
approximate values of the solution of the initial value problem

(3y? +4y)y’ +2x 4+ cosx =0, y(0) = 1 (Exercise 2.2.13)

atx =0,0.1,0.2,0.3, ..., 1.0.

Use the improved Euler method with step sizes h = 0.1, & = 0.05, and 7 = 0.025 to find
approximate values of the solution of the initial value problem

L, 0+ D -Dhy—=2)
y + =
x+1
atx =1.0,1.1,1.2,1.3,...,2.0.

Use the improved Euler method and the improved Euler semilinear method with step sizes
h = 0.1, h = 0.05, and & = 0.025 to find approximate values of the solution of the initial value
problem

0, y(1) = 0 (Exercise 2.2.14)

y +3y =e3¥(1—-2x), y(0)=2,

atx = 0,0.1,0.2,0.3, ..., 1.0. Compare these approximate values with the values of the exact
solution y = e73¥(2 4+ x — x2), which can be obtained by the method of Section 2.1. Do you
notice anything special about the results? Explain.

The linear initial value problems in Exercises 14—19 can’t be solved exactly in terms of known elementary

functions. In each exercise use the improved Euler and improved Euler semilinear methods with the
indicated step sizes to find approximate values of the solution of the given initial value problem at 11
equally spaced points (including the endpoints) in the interval.

14.

15.

16.

17.

18.

19.

Y =2y = y(2)=2; h=0.1,0.050.0250n[2,3]

+ x2’
Y +2xy =x2, y0)=3; h=02,0.10050n[0,2] (Exercise?2.138)
, 1 sin x .
Y+ oy= y() =2 h=0201.0050n[13] (Exercise2.139)
, e *tanx ]
Y4+y=—""_ y1)=0; h=0.050.0250.01250n1,1.5] (Exercise 2.1.40),
X

X

2x e .
YAy = T YO =1 7=02,01.0050n[0.2] (Exercise 2.141)

xy + (x + D)y =e*, y(l)=2; h=0.050.025,0.01250n[1, 1.5] (Exercise 2.1.42)

In Exercises 20-22 use the improved Euler method and the improved Euler semilinear method with the
indicated step sizes to find approximate values of the solution of the given initial value problem at 11
equally spaced points (including the endpoints) in the interval.

20.
21.

22,

23.

Y +3y =xy2(y +1). y(0) =1; h=0.1,0.050.0250n [0, 1]
X

Cly—4y=———, y0)=1; h=0.1,0.050.0250n [0, 1]

y:2y+1)

2

Y +2y = H)i—yz y@2)=1; h=0.1,0.05,0.0250n[2,3]

Do Exercise 7 with “improved Euler method” replaced by “midpoint method.”
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24, Do Exercise 7 with “improved Euler method” replaced by “Heun’s method.”
25. Do Exercise 8 with “improved Euler method” replaced by “midpoint method.”
26. Do Exercise 8 with “improved Euler method” replaced by “Heun’s method.”
27. Do Exercise 11 with “improved Euler method” replaced by “midpoint method.”
28. Do Exercise 11 with “improved Euler method” replaced by “Heun’s method.”
29. Do Exercise 12 with “improved Euler method” replaced by “midpoint method.”

30. Do Exercise 12 with “improved Euler method” replaced by “Heun’s method.”

31. Showthatif f, fx, fy, fxx, fyy,and fx, are continuous and bounded for all (x, y) and y is the
solution of the initial value problem

y' = f(x,y), y(xo0) = yo,

then y” and y”’ are bounded.
32. NUMERICAL QUADRATURE (see Exercise 3.1.23).

(a) Derive the quadrature formula

n—1

b
/ f(x)dx =~ 5h(f(a) + f(b)) +hZf(a +ih) (whereh= (b—a)/n) (A)

i=1

by applying the improved Euler method to the initial value problem
y'=f(x). y@) =0.

(b) The quadrature formula (A) is called the trapezoid rule. Draw a figure that justifies this
terminology.

(© For several choices of a, b, A, and B, apply (A) to f(x) = A + Bx, withn =
10, 20, 40, 80, 160, 320. Compare your results with the exact answers and explain what you
find.

(d) For several choices of a, b, A, B, and C, apply (A) to f(x) = A + Bx + Cx?2, with
n = 10, 20, 40, 80, 160, 320. Compare your results with the exact answers and explain what
you find.

3.3 THE RUNGE-KUTTA METHOD

In general, if k is any positive integer and f satisfies appropriate assumptions, there are numerical meth-
ods with local truncation error O (h**1) for solving an initial value problem

y' = f(x,y), y(xo) = yo. (3.3.1)

Moreover, it can be shown that a method with local truncation error O (h¥*+1) has global truncation error
O(h*). In Sections 3.1 and 3.2 we studied numerical methods where k = 1 and k = 2. We’ll skip
methods for which k¥ = 3 and proceed to the Runge-Kutta method, the most widely used method, for
which k = 4. The magnitude of the local truncation error is determined by the fifth derivative y of
the solution of the initial value problem. Therefore the local truncation error will be larger where |y |


http://www-history.mcs.st-and.ac.uk/Mathematicians/Runge.html
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is large, or smaller where | y®| is small. The Runge-Kutta method computes approximate values y1, 2,

..., yn of the solution of (3.3.1) at xg, xo + A, ..., xo + nh as follows: Given y;, compute
ki = f(xi, i),
h h
kzi = f (xi tovit Ekli) ,
h h
ki = f (xi + 5 i + EkZi) ,
kai = f(xi+h,yi + hks;),

and "
Yig1 =yi + g(kli + 2ka; + 2k3; + kaj).

The next example, which deals with the initial value problem considered in Examples 3.1.1 and 3.2.1,
illustrates the computational procedure indicated in the Runge-Kutta method.

Example 3.3.1 Use the Runge-Kutta method with 4 = 0.1 to find approximate values for the solution of
the initial value problem

y +2y =x3"2, y0) =1, (3.3.2)
atx = 0.1,0.2.

Solution Again we rewrite (3.3.2) as
y =2y +x3  y0) =1,
which is of the form (3.3.1), with
f(x,y) =2y +x%7 x9=0, and yo = 1.

The Runge-Kutta method yields

kio = f(xo0,y0) = f(0,1) = =2,
koo = f(xo+h/2,y0+ hki0/2) = f(.05,1 + (.05)(-2))
= f(.05,.9) = —2(.9) 4+ (.05)3e™! = —1.799886895,
kso = f(xo+h/2,y0+ hk/2) = f(.05,1+ (.05)(—1.799886895))
= £(.05,.910005655) = —2(.910005655) + (.05)3¢ ™! = —1.819898206,
kao = f(xo+h,yo+hkso) = f(1,1+ (.1)(—1.819898206))

= £(.1,.818010179) = —2(.818010179) + (.1)%¢~2 = —1.635201628,

h
Yy = Yo+ g(km + 2koo + 2k30 + kao),

1
= 1+ E(_Z + 2(—1.799886895) + 2(—1.819898206) — 1.635201628) = 818753803,

kin = f(x1.y1) = f(1,.818753803) = —2(.818753803)) + (.1)%e ™2 = —1.636688875,
ki = f(e1+h/2,y1+ hki1/2) = f£(.15,.818753803 + (.05)(—1.636688875))
= £(.15,.736919359) = —2(.736919359) + (.15)%¢ ™3 = —1.471338457,
kst =  f(e1+h/2, y1+ hka1/2) = £(.15,.818753803 + (.05)(—1.471338457))
= f(.15,.745186880) = —2(.745186880) + (.15)%¢ ™3 = —1.487873498,
kai = f(e1+h,y1 +hks1) = £(.2,.818753803 + (.1)(—1.487873498))

£(.2,.669966453) = —2(.669966453) + (.2)3e™* = —1.334570346,

h
Y2 = yi+ g(kn + 2ko1 + 2k31 + ka1),

1
.818753803 + g(—1.636688875 + 2(—1.471338457) + 2(—1.487873498) — 1.334570346)
.670592417.
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The Runge-Kutta method is sufficiently accurate for most applications.

Example 3.3.2 Table 3.3.1 shows results of using the Runge-Kutta method with step sizes 4 = 0.1 and
h = 0.05 to find approximate values of the solution of the initial value problem

y 42y =x%", y0)=1
at x =0, 0.1, 0.2, 0.3, ..., 1.0. For comparison, it also shows the corresponding approximate values

obtained with the improved Euler method in Example 3.2.2, and the values of the exact solution

e—2x

4
The results obtained by the Runge-Kutta method are clearly better than those obtained by the improved
Euler method in fact; the results obtained by the Runge-Kutta method with 2z = 0.1 are better than those
obtained by the improved Euler method with # = 0.05.

(x* + 4).

y:

Table 3.3.1. Numerical solution of y’ + 2y = x3¢™2*, y(0) = 1, by the Runge-Kuttta
method and the improved Euler method.

X

h=0.1

h =0.05

h=0.1

h =0.05

Exact

0.0
0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
1.0

1.000000000
0.820040937
0.672734445
0.552597643
0.455160637
0.376681251
0.313970920
0.264287611
0.225267702
0.194879501
0.171388070

1.000000000
0.819050572
0.671086455
0.550543878
0.452890616
0.374335747
0.311652239
0.262067624
0.223194281
0.192981757
0.169680673

1.000000000
0.818753803
0.670592417
0.549928221
0.452210430
0.373633492
0.310958768
0.261404568
0.222575989
0.192416882
0.169173489

1.000000000
0.818751370
0.670588418
0.549923281
0.452205001
0.373627899
0.310953242
0.261399270
0.222571024
0.192412317
0.169169356

1.000000000
0.818751221
0.670588174
0.549922980
0.452204669
0.373627557
0.310952904
0.261398947
0.222570721
0.192412038
0.169169104

Improved Euler

Runge-Kutta

Exact

Example 3.3.3 Table 3.3.2 shows analogous results for the nonlinear initial value problem

y’ — —2y2 + xy + xz, y(0) = 1.

We applied the improved Euler method to this problem in Example 3.

Table 3.3.2. Numerical solution of y/ = —2y2 + xy + x2, y(0) = 1, by the Runge-Kuttta
method and the improved Euler method.

X

h=0.1

h =0.05

h=0.1

h =0.05

“Exact”

0.0
0.1
0.2
03
04
0.5
0.6
0.7
0.8
0.9
1.0

1.000000000
0.840500000
0.733430846
0.661600806
0.615961841
0.591634742
0.586006935
0.597712120
0.626008824
0.670351225
0.730069610

1.000000000
0.838288371
0.730556677
0.658552190
0.612884493
0.588558952
0.582927224
0.594618012
0.622898279
0.667237617
0.726985837

1.000000000
0.837587192
0.729644487
0.657582449
0.611903380
0.587576716
0.581943210
0.593630403
0.621908378
0.666251988
0.726017378

1.000000000
0.837584759
0.729642155
0.657580598
0.611901969
0.587575635
0.581942342
0.593629627
0.621907553
0.666250942
0.726015908

1.000000000
0.837584494
0.729641890
0.657580377
0.611901791
0.587575491
0.581942225
0.593629526
0.621907458
0.666250842
0.726015790

Improved Euler

Runge-Kutta

“Exact”
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Example 3.3.4 Tables 3.3.3 and 3.3.4 show results obtained by applying the Runge-Kutta and Runge-
Kutta semilinear methods to to the initial value problem

y'—2xy =1, y(0) =3,

which we considered in Examples 3.1.4 and 3.2.4.

Table 3.3.3. Numerical solution of y’ — 2xy = 1, y(0) = 3, by the Runge-Kutta method.

X h=02 h=0.1 h =0.05 “Exact”

0.0 3.000000000 3.000000000 3.000000000 3.000000000
0.2 3.327846400 3.327851633 3.327851952 3.327851973
04 3.966044973 3.966058535 3.966059300 3.966059348
0.6 5.066996754 5.067037123 5.067039396 5.067039535
0.8 6.936534178 6.936690679 6.936700320 6.936700945
1.0 | 10.184232252 | 10.184877733 | 10.184920997 | 10.184923955
1.2 | 16.064344805 | 16.066915583 | 16.067098699 | 16.067111677
1.4 | 27278771833 | 27.288605217 | 27.289338955 | 27.289392347
1.6 | 49.960553660 | 49.997313966 | 50.000165744 | 50.000377775
1.8 | 98.834337815 | 98.971146146 | 98.982136702 | 98.982969504
2.0 | 211.393800152 | 211.908445283 | 211.951167637 | 211.954462214

Table 3.3.4. Numerical solution of y' —2xy = 1, y(0) = 3, by the Runge-Kutta semilinear

method.
X h=02 h=0.1 h =0.05 “Exact”
0.0 3.000000000 3.000000000 3.000000000 3.000000000
0.2 3.327853286 3.327852055 3.327851978 3.327851973
04 3.966061755 3.966059497 3.966059357 3.966059348
0.6 5.067042602 5.067039725 5.067039547 5.067039535
0.8 6.936704019 6.936701137 6.936700957 6.936700945
1.0 10.184926171 10.184924093 10.184923963 10.184923955
1.2 16.067111961 16.067111696 16.067111678 16.067111677
14 27.289389418 27.289392167 27.289392335 27.289392347
1.6 50.000370152 50.000377302 50.000377745 50.000377775
1.8 98.982955511 98.982968633 98.982969450 98.982969504
2.0 | 211.954439983 | 211.954460825 | 211.954462127 | 211.954462214

The Case Where xo Isn’t The Left Endpoint

So far in this chapter we’ve considered numerical methods for solving an initial value problem

y' = fx, ).

on an interval [xg, b], for which x¢ is the left endpoint. We haven’t discussed numerical methods for
solving (3.3.3) on an interval [a, x¢], for which x¢ is the right endpoint. To be specific, how can we
obtain approximate values y_;, y_», ..., y—p of the solution of (3.3.3) at xo — &, ..., xo — nh, where
h = (xo —a)/n? Here’s the answer to this question:

y(x0) = yo (3.3.3)

Consider the initial value problem

Z=—f(=x.2), z(=xo0) = yo. (3.3.4)
on the interval [—xo, —a], for which —xg is the left endpoint. Use a numerical method to obtain approxi-
mate values 21, Z2, ..., Zn Of the solution of (3.3.4) at —xo + h, —x¢ + 2h, ..., —xo +nh = —a. Then
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V-1 =121, V-2 = Z2,..., Y—n = Zn are approximate values of the solution of (3.3.3) at xo — h, xo — 2h,
..., Xo—nh =a.

The justification for this answer is sketched in Exercise 23. Note how easy it is to make the change the
given problem (3.3.3) to the modified problem (3.3.4): first replace f by — f and then replace x, x¢, and
¥y by —x, —xo¢, and z, respectively.

Example 3.3.5 Use the Runge-Kutta method with step size # = 0.1 to find approximate values of the
solution of
y-1% =2x+3, y1)=4 (3.3.5)

atx =0,0.1,0.2,..., 1.

Solution We first rewrite (3.3.5) in the form (3.3.3) as

2x +3
/
yV=—073 y)=4 (3.3.6)
(y—12
Since the initial condition y(1) = 4 is imposed at the right endpoint of the interval [0, 1], we apply the
Runge-Kutta method to the initial value problem
2x =3
/
I=—7, z(-1)=4 3.3.7
_1p (=D (3.3.7)
on the interval [—1, 0]. (You should verify that (3.3.7) is related to (3.3.6) as (3.3.4) is related to (3.3.3).)
Table 3.3.5 shows the results. Reversing the order of the rows in Table 3.3.5 and changing the signs of the
values of x yields the first two columns of Table 3.3.6. The last column of Table 3.3.6 shows the exact
values of y, which are given by
y=1+@x%+9%x +1513

(Since the differential equation in (3.3.6) is separable, this formula can be obtained by the method of
Section 2.2.)

2x —3
Table 3.3.5. Numerical solution of 7’ = o z(=1) = 4,0n[-1,0].

(z— 1%

X <
-1.0 | 4.000000000
-0.9 | 3.944536474
-0.8 | 3.889298649
-0.7 | 3.834355648
-0.6 | 3.779786399
-0.5 | 3.725680888
-04 | 3.672141529
-0.3 | 3.619284615
-0.2 | 3.567241862
-0.1 | 3.516161955

0.0 | 3.466212070

Table 3.3.6. Numerical solution of (y — )2y’ = 2x + 3, y(1) = 4, on [0, 1].
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X y Exact
0.00 | 3.466212070 | 3.466212074
0.10 | 3.516161955 | 3.516161958
0.20 | 3.567241862 | 3.567241864
0.30 | 3.619284615 | 3.619284617
0.40 | 3.672141529 | 3.672141530
0.50 | 3.725680888 | 3.725680889
0.60 | 3.779786399 | 3.779786399
0.70 | 3.834355648 | 3.834355648
0.80 | 3.889298649 | 3.889298649
0.90 | 3.944536474 | 3.944536474
1.00 | 4.000000000 | 4.000000000

We leave it to you to develop a procedure for handling the numerical solution of (3.3.3) on an interval

[a, b] such that a < xo < b (Exercises 26 and 27).

3.3 Exercises

Most of the following numerical exercises involve initial value problems considered in the exercises in
Sections 3.2. You’ll find it instructive to compare the results that you obtain here with the corresponding
results that you obtained in those sections.

In Exercises 1-5 use the Runge-Kutta method to find approximate values of the solution of the given initial

value problem at the points x; = x¢ + ih, where x¢ is the point where the initial condition is imposed
andi =1, 2.
1 y =2x2+3y2-2, y2)=1; h=0.05

w N

=

S W

[Cly =y+Vx2+)2, y0O) =1; h=01

[C]y +3y=x2=3xy+)2, y0)=2 h=005
1

€]y =—"2 yo=3
-y

y 4+ x2y =sinxy, y(l)=m; h=02

Use the Runge-Kutta method with step sizes & = 0.1, & = 0.05, and # = 0.025 to find
approximate values of the solution of the initial value problem

y(0) =2,

atx = 0,0.1,0.2,0.3, ..., 1.0. Compare these approximate values with the values of the exact
solution y = e** + ¢73*, which can be obtained by the method of Section 2.1. Present your
results in a table like Table 3.3.1.

Use the Runge-Kutta method with step sizes & = 0.1, & = 0.05, and # = 0.025 to find
approximate values of the solution of the initial value problem

h=0.1

y' + 3y = Te*”,

2 3
V+oy==5+1 y)=1
X X

atx = 1.0, 1.1, 1.2, 1.3, ..., 2.0. Compare these approximate values with the values of the exact
solution

1
y=350mx +x3+2),



10.

11.
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which can be obtained by the method of Section 2.1. Present your results in a table like Table 3.3.1.

Use the Runge-Kutta method with step sizes & = 0.05, h = 0.025, and 7 = 0.0125 to find
approximate values of the solution of the initial value problem

Yy —x?
Yy ="

2 .oy =2
at x = 1.0, 1.05, 1.10, 1.15 ..., 1.5. Compare these approximate values with the values of the
exact solution
_ x(1+x%/3)
o 1—x2/3 7

which was obtained in Example 2.2.3. Present your results in a table like Table 3.3.1.

In Example 2.2.3 it was shown that
V24+y=x2+x—4
is an implicit solution of the initial value problem

2x + 1
== 2) = 1. A
Y =5t y(2) (A)
Use the Runge-Kutta method with step sizes & = 0.1, & = 0.05, and & = 0.025 to find approx-
imate values of the solution of (A) at x = 2.0, 2.1, 2.2, 2.3, ..., 3.0. Present your results in
tabular form. To check the error in these approximate values, construct another table of values of
the residual

R(x,y) =)y’ +y—x*—x+4
for each value of (x, y) appearing in the first table.

You can see from Example 2.5.1 that
x*y3 4 x2S 4 2xy =4
is an implicit solution of the initial value problem

4x3y3 + 2xy> + 2y
V= XIS vy =1 (A)
3x*y?% 4+ 5x%y* + 2x

Use the Runge-Kutta method with step sizes & = 0.1, & = 0.05, and 2 = 0.025 to find approx-
imate values of the solution of (A) at x = 1.0, 1.1, 1.2, 1.3, ..., 2.0. Present your results in
tabular form. To check the error in these approximate values, construct another table of values of
the residual

R(x,y) = x*y* + x%y° +2xy — 4

for each value of (x, y) appearing in the first table.

Use the Runge-Kutta method with step sizes & = 0.1, & = 0.05, and # = 0.025 to find
approximate values of the solution of the initial value problem

(3y2 +4y)y' +2x +cosx =0, y(0) =1 (Exercise 2.2.13),

atx =0,0.1,0.2,0.3, ..., 1.0.
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12.

13.

Use the Runge-Kutta method with step sizes & = 0.1, & = 0.05, and # = 0.025 to find
approximate values of the solution of the initial value problem

L, O+ DO =D =2)
Y+ =
x+1
atx =1.0,1.1,1.2,1.3,...,2.0.

Use the Runge-Kutta method and the Runge-Kutta semilinear method with step sizes # = 0.1,
h = 0.05, and & = 0.025 to find approximate values of the solution of the initial value problem

0, y(1) = 0 (Exercise 2.2.14),

Y 43y = e (1 —dx + 3x% —4x3), y(0) = -3

atx =0,0.1,0.2,0.3, ..., 1.0. Compare these approximate values with the values of the exact
solution y = —e™3*(3—x 4 2x2 —x3 4 x*), which can be obtained by the method of Section 2.1.
Do you notice anything special about the results? Explain.

The linear initial value problems in Exercises 14—19 can’t be solved exactly in terms of known elementary

functions. In each exercise use the Runge-Kutta and the Runge-Kutta semilinear methods with the indi-
cated step sizes to find approximate values of the solution of the given initial value problem at 11 equally
spaced points (including the endpoints) in the interval.

14.

15.

16

17

18

19.

1
Y =2y =10 @ =2 h=0100500250n2,3]

y 4+ 2xy = x2, y(0)=3; h=0.2,0.1,0.050n [0, 2] (Exercise 2.1.38)

o
¥4y = Sl)% y(1)=2: h=0.2,0.1,0.050n [1,3] (Exercise 2.1.39)

)
Yty = % y(1) =0; h = 0.05,0.025,0.01250n [1, 1.5] (Exercise 2.1.40)

X

2x e
/ — — . — 1
Y+ T 2) = T2 y(0) =1, h=02,0.1,0.050n [0, 2] (Exercise 2.141)

xy + (x + D)y =e*, y(1)=2; h=0.050.25,0.01250n[1, 1.5] (Exercise 2.1.42)

In Exercises 20-22 use the Runge-Kutta method and the Runge-Kutta semilinear method with the indi-
cated step sizes to find approximate values of the solution of the given initial value problem at 11 equally
spaced points (including the endpoints) in the interval.

20.
21.

22,

23.

Yy 43y =xy*(y+1). y0)=1; h=0.1,0.050.0250n [0, 1]
X

Cly—4y=———, y(0)=1; h=0.1,0.050.0250n[0, 1]

y:2y+1

2
Y42y =——, y@ =1 h=0.1,00500250n[2,3]
1+y
Suppose a < Xxg, so that —xo < —a. Use the chain rule to show that if z is a solution of
' =—f(=x,2), z(=x0) = yo,
on [—xg, —a], then y = z(—x) is a solution of
y' = f(x.y), y(xo) = yo.

on [a, xo].
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25.

26.

27.

28.
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Use the Runge-Kutta method with step sizes & = 0.1, & = 0.05, and # = 0.025 to find
approximate values of the solution of

P e o

Y=t @ =-1
at x = 1.1, 1.2, 1.3, ...2.0. Compare these approximate values with the values of the exact
solution
_ox(4- 3x2)
S 443x2

which can be obtained by referring to Example 2.4.3.
Use the Runge-Kutta method with step sizes & = 0.1, & = 0.05, and # = 0.025 to find
approximate values of the solution of

y==xty—xy? y() =1

atx =0,0.1,0.2,..., 1.

Use the Runge-Kutta method with step sizes & = 0.1, & = 0.05, and # = 0.025 to find
approximate values of the solution of

1 7 3
/
+-y=—+3 )=~
y+y=1 y(1) >
atx = 0.5, 0.6,..., 1.5. Compare these approximate values with the values of the exact solution
_ 7Tlnx  3x
YT 27

which can be obtained by the method discussed in Section 2.1.

Use the Runge-Kutta method with step sizes & = 0.1, & = 0.05, and # = 0.025 to find
approximate values of the solution of

xy +2y =8x2, yQ2) =5

at x = 1.0, 1.1, 1.2, ..., 3.0. Compare these approximate values with the values of the exact
solution

y = 2x2% — —,
x
which can be obtained by the method discussed in Section 2.1.

NUMERICAL QUADRATURE (see Exercise 3.1.23).

(a) Derive the quadrature formula
b h h' & 2 &
/ fydx x c(f@+ fB) + 3D flatih)+ =3 f (a+ Qi =Dh/2) (A)
a i=1 i=1
(where h = (b — a)/n) by applying the Runge-Kutta method to the initial value problem
y'=f(x). y@ =0.

This quadrature formula is called Simpson’s Rule.


http://www-history.mcs.st-and.ac.uk/Mathematicians/Simpson.html
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(b) For several choices of a, b, A, B, C,and D apply (A)to f(x) = A+ Bx+ Cx + Dx3,
withn = 10, 20, 40, 80, 160, 320. Compare your results with the exact answers and explain
what you find.

(¢ For several choices of a, b, A, B, C, D, and E apply (A)to f(x) = A+ Bx + Cx? +

Dx3+ Ex*, withn = 10, 20, 40, 80, 160, 320. Compare your results with the exact answers
and explain what you find.



CHAPTER 4
Applications of First Order Equations

IN THIS CHAPTER we consider applications of first order differential equations.

SECTION 4.1 begins with a discussion of exponential growth and decay, which you have probably al-
ready seen in calculus. We consider applications to radioactive decay, carbon dating, and compound
interest. We also consider more complicated problems where the rate of change of a quantity is in part
proportional to the magnitude of the quantity, but is also influenced by other other factors for example, a
radioactive susbstance is manufactured at a certain rate, but decays at a rate proportional to its mass, or a
saver makes regular deposits in a savings account that draws compound interest.

SECTION 4.2 deals with applications of Newton’s law of cooling and with mixing problems.

SECTION 4.3 discusses applications to elementary mechanics involving Newton’s second law of mo-
tion. The problems considered include motion under the influence of gravity in a resistive medium, and
determining the initial velocity required to launch a satellite.

SECTION 4.4 deals with methods for dealing with a type of second order equation that often arises in
applications of Newton’s second law of motion, by reformulating it as first order equation with a different
independent variable. Although the method doesn’t usually lead to an explicit solution of the given
equation, it does provide valuable insights into the behavior of the solutions.

SECTION 4.5 deals with applications of differential equations to curves.

129



130 Chapter 4 Applications of First Order Equations
4.1 GROWTH AND DECAY

Since the applications in this section deal with functions of time, we’ll denote the independent variable
by ¢. If Q is a function of ¢, Q' will denote the derivative of Q with respect to ¢; thus,

o 40
dt’
Exponential Growth and Decay

One of the most common mathematical models for a physical process is the exponential model, where
it’s assumed that the rate of change of a quantity Q is proportional to Q; thus

0 =40, “.1.1)

where a is the constant of proportionality.
From Example 3, the general solution of (4.1.1) is

0 =ce”
and the solution of the initial value problem

Q'=aQ, Qo) = Qo
is
Q = Qoe~), (4.12)

Since the solutions of Q’ = aQ are exponential functions, we say that a quantity Q that satisfies this
equation grows exponentially if a > 0, or decays exponentially if a < 0 (Figure 4.1.1).

Radioactive Decay

Experimental evidence shows that radioactive material decays at a rate proportional to the mass of the
material present. According to this model the mass Q(¢) of a radioactive material present at time ¢
satisfies (4.1.1), where a is a negative constant whose value for any given material must be determined
by experimental observation. For simplicity, we’ll replace the negative constant a by —k, where k is a
positive number that we’ll call the decay constant of the material. Thus, (4.1.1) becomes

0 =—-kQ.
If the mass of the material present at t = #y is Q¢, the mass present at time ¢ is the solution of
Q'=-kQ. Q)= Qo.
From (4.1.2) with a = —k, the solution of this initial value problem is
Q = Qge kU1, (4.1.3)

The half-life T of a radioactive material is defined to be the time required for half of its mass to decay;
that is, if Q(t9) = Qy, then

O(t + 1) = % (4.1.4)
From (4.1.3) with t = 7 + 1, (4.1.4) is equivalent to
Qo
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Q
A
a>0
QE—
a<o0
i t
Figure 4.1.1 Exponential growth and decay
N
e—kr — l
2
Taking logarithms yields
1
—kt=In- =—-1n2,
2
so the half-life is |
T=—1In2. 4.1.5
3 (4.1.5)

(Figure 4.1.2). The half-life is independent of #p and Qy, since it’s determined by the properties of
material, not by the amount of the material present at any particular time.

Example 4.1.1 A radioactive substance has a half-life of 1620 years.
(a) If its mass is now 4 g (grams), how much will be left 810 years from now?

(b) Find the time ¢; when 1.5 g of the substance remain.

SOLUTION(a) From (4.1.3) with#y = 0 and Q¢ = 4,
0 =de™, (4.1.6)
where we determine k from (4.1.5), with t= 1620 years:

_ In2 _ In2

k = .
T 1620
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Figure 4.1.2 Half-life of a radioactive substance

Substituting this in (4.1.6) yields
0 = 4e~(tn2)/1620, 4.1.7)

Therefore the mass left after 810 years will be

Q(glo) — 4e—(8101n2)/1620 — 4e—(1n2)/2
=2J2¢.

SOLUTION(b) Setting ¢ = ¢1 in (4.1.7) and requiring that Q(z;) = 1.5 yields

3 4¢(111n2)/1620
7 .

Dividing by 4 and taking logarithms yields

3 t11n2
In- =— .
8 1620
Since In3/8 = —1n8/3,
In8/3
t = 1620 I A 2292 .4 years.
n

Interest Compounded Continuously

Suppose we deposit an amount of money (y in an interest-bearing account and make no further deposits
or withdrawals for ¢ years, during which the account bears interest at a constant annual rate . To calculate
the value of the account at the end of ¢ years, we need one more piece of information: how the interest
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is added to the account, or—as the bankers say—how it is compounded. 1f the interest is compounded
annually, the value of the account is multiplied by 1 4 r at the end of each year. This means that after ¢
years the value of the account is

(1) = Qo(1 +1)".
If interest is compounded semiannually, the value of the account is multiplied by (1 + r/2) every 6
months. Since this occurs twice annually, the value of the account after ¢ years is

o0 =0, (1+2)"

In general, if interest is compounded » times per year, the value of the account is multiplied n times per
year by (1 + r/n); therefore, the value of the account after # years is

0(t) = 0o (1 n %)m (4.1.8)

Thus, increasing the frequency of compounding increases the value of the account after a fixed period of
time. Table 4.1.7 shows the effect of increasing the number of compoundings over ¢ = 5 years on an
initial deposit of Q¢ = 100 (dollars), at an annual interest rate of 6%.

Table 4.1.7. Table The effect of compound interest

5n
n $100 (1 + %)
(number of compoundings | (value in dollars

per year) after 5 years)
1 $133.82
2 $134.39
4 $134.68
8 $134.83
364 $134.98

You can see from Table 4.1.7 that the value of the account after 5 years is an increasing function of
n. Now suppose the maximum allowable rate of interest on savings accounts is restricted by law, but
the time intervals between successive compoundings isn’t ; then competing banks can attract savers by
compounding often. The ultimate step in this direction is to compound continuously, by which we mean
that n — oo in (4.1.8). Since we know from calculus that

n
lim (14+5) =",
n—o00 n
this yields
nt nAt
0() = lim Qo (14 )" = 0o lim (1+)]
n—o00 n n—00 n
— Qoe”.

Observe that Q = Qge'” is the solution of the initial value problem

Q'=r0. 0Q(0) = Qo:

that is, with continuous compounding the value of the account grows exponentially.
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Example 4.1.2 If $150 is deposited in a bank that pays 5 %% annual interest compounded continuously,
the value of the account after ¢ years is

Q(t) — lsoe.OSSI

dollars. (Note that it’s necessary to write the interest rate as a decimal; thus, r = .055.) Therefore, after
t = 10 years the value of the account is

Q(10) = 150e>° ~ $259.99.

Example 4.1.3 We wish to accumulate $10,000 in 10 years by making a single deposit in a savings
account bearing 5 %% annual interest compounded continuously. How much must we deposit in the
account?

Solution The value of the account at time ¢ is

0(t) = Qpe®, (4.1.9)
Since we want Q(10) to be $10,000, the initial deposit Q¢ must satisfy the equation

10000 = Qge>°, (4.1.10)
obtained by setting = 10 and Q(10) = 10000 in (4.1.9). Solving (4.1.10) for Q¢ yields

Qo = 10000e > ~ $5769.50.
Mixed Growth and Decay

Example 4.1.4 A radioactive substance with decay constant k is produced at a constant rate of @ units of
mass per unit time.
(a) Assuming that Q(0) = Qy, find the mass Q(¢) of the substance present at time ¢.

(b) Find lim;—eo O(2).

SOLUTION(a) Here

Q' = rate of increase of Q — rate of decrease of Q.

The rate of increase is the constant a. Since Q is radioactive with decay constant k, the rate of decrease
is kQ. Therefore

Q' =a—-kO.

This is a linear first order differential equation. Rewriting it and imposing the initial condition shows that
Q is the solution of the initial value problem

Q' +kQ=a, 0(0)=Qo. 4.1.11)

kt is a solution of the complementary equation, the solutions of (4.1.11) are of the form Q =

—kt — 4, s0u’ = ae*!. Hence,

Since e~
ue %! where u'e
_ ﬁ kt

u=—e c
k+
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Ak form —

>t
Figure 4.1.3 Q(t) approaches the steady state value % ast — o0

and a

Q=ue ™ =— +ce k.

k
Since Q(0) = Qy, setting ¢t = 0 here yields
Qo= +c or CZQQ—%.

Therefore a a

0=2+ (Qo _ E) ekt (4.1.12)

SOLUTION(b) Since k > 0, lim;— o ekt =0, so from 4.1.12)
) a
t1—1>r& Q) = k
This limit depends only on @ and k, and not on Q. We say that a/ k is the steady state value of Q. From
(4.1.12) we also see that Q approaches its steady state value from above if Q¢ > a/k, or from below if
Qo <a/k.If Qo = a/k, then Q remains constant (Figure 4.1.3).

Carbon Dating

The fact that Q approaches a steady state value in the situation discussed in Example 4 underlies the
method of carbon dating, devised by the American chemist and Nobel Prize Winner W.S. Libby.

Carbon 12 is stable, but carbon-14, which is produced by cosmic bombardment of nitrogen in the upper
atmosphere, is radioactive with a half-life of about 5570 years. Libby assumed that the quantity of carbon-
12 in the atmosphere has been constant throughout time, and that the quantity of radioactive carbon-14


http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1960/libby-lecture.pdf
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achieved its steady state value long ago as a result of its creation and decomposition over millions of
years. These assumptions led Libby to conclude that the ratio of carbon-14 to carbon-12 has been nearly
constant for a long time. This constant, which we denote by R, has been determined experimentally.

Living cells absorb both carbon-12 and carbon-14 in the proportion in which they are present in the
environment. Therefore the ratio of carbon-14 to carbon-12 in a living cell is always R. However, when
the cell dies it ceases to absorb carbon, and the ratio of carbon-14 to carbon-12 decreases exponentially
as the radioactive carbon-14 decays. This is the basis for the method of carbon dating, as illustrated in
the next example.

Example 4.1.5 An archaeologist investigating the site of an ancient village finds a burial ground where
the amount of carbon-14 present in individual remains is between 42 and 44% of the amount present in
live individuals. Estimate the age of the village and the length of time for which it survived.

Solution Let Q = Q(¢) be the quantity of carbon-14 in an individual set of remains ¢ years after death,
and let Q¢ be the quantity that would be present in live individuals. Since carbon-14 decays exponentially
with half-life 5570 years, its decay constant is

_ In2
© 5570

Therefore
Q — Qoe—t(IHZ)/SS7O

if we choose our time scale so that zp = 0 is the time of death. If we know the present value of Q we can
solve this equation for #, the number of years since death occurred. This yields

an/Qo‘

t = —=5570
In2

It is given that Q = .42Q in the remains of individuals who died first. Therefore these deaths occurred

about
In.42

tp = =5570 ~ 6971

In
years ago. For the most recent deaths, Q = .44(Qy; hence, these deaths occurred about

In .44

t, = —5570
In

~ 6597

years ago. Therefore it’s reasonable to conclude that the village was founded about 7000 years ago, and
lasted for about 400 years.

A Savings Program

Example 4.1.6 A person opens a savings account with an initial deposit of $1000 and subsequently
deposits $50 per week. Find the value Q(¢) of the account at time ¢ > 0, assuming that the bank pays 6%
interest compounded continuously.

Solution Observe that Q isn’t continuous, since there are 52 discrete deposits per year of $50 each.
To construct a mathematical model for this problem in the form of a differential equation, we make
the simplifying assumption that the deposits are made continuously at a rate of $2600 per year. This
is essential, since solutions of differential equations are continuous functions. With this assumption, Q

increases continuously at the rate
Q' =2600 + .060
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and therefore Q satisfies the differential equation
Q' —.060 = 2600. (4.1.13)

(Of course, we must recognize that the solution of this equation is an approximation to the true value of
Q at any given time. We’ll discuss this further below.) Since e*%¢’ is a solution of the complementary
equation, the solutions of (4.1.13) are of the form Q = ue % where u'e:% = 2600. Hence, u’ =
2600e 0%,

2600
"y = — o061
.06
and 2600
0 =ue® = e+ ce%® (4.1.14)
Setting t = 0 and Q = 1000 here yields
2600
= 1000 + —/—,
¢ T 06
and substituting this into (4.1.14) yields
2600
0 = 1000e%%" + W(e-"‘” —1), (4.1.15)

where the first term is the value due to the initial deposit and the second is due to the subsequent weekly
deposits. [ ]

Mathematical models must be tested for validity by comparing predictions based on them with the
actual outcome of experiments. Example 6 is unusual in that we can compute the exact value of the
account at any specified time and compare it with the approximate value predicted by (4.1.15) (See
Exercise 21.). The follwing table gives a comparison for a ten year period. Each exact answer corresponds
to the time of the year-end deposit, and each year is assumed to have exactly 52 weeks.

Year Approximate Value of Q Exact Value of P Error Percentage Error
(Example 4.1.6) (Exercise 21) Q-P (Q—-P)/P
1 $3741.42 $ 3739.87 $1.55 .0413%
2 6652.36 6649.17 3.19 .0479
3 9743.30 9738.37 4.93 .0506
4 13,025.38 13,018.60 6.78 .0521
5 16,510.41 16,501.66 8.75 .0530
6 20,210.94 20,200.11 10.83 .0536
7 24.,140.30 24,127.25 13.05 .0541
8 28,312.63 28,297.23 15.40 .0544
9 32,742.97 32,725.07 17.90 .0547
10 37,447.27 37,426.72 20.55 .0549



138

Chapter 4 Applications of First Order Equations

4.1 Exercises

10.

11.

12.

13.

14.

15.

16.

The half-life of a radioactive substance is 3200 years. Find the quantity Q(¢) of the substance left
attimes > 0if Q(0) =20 g.

The half-life of a radioactive substance is 2 days. Find the time required for a given amount of the
material to decay to 1/10 of its original mass.

A radioactive material loses 25% of its mass in 10 minutes. What is its half-life?

A tree contains a known percentage pg of a radioactive substance with half-life r. When the tree
dies the substance decays and isn’t replaced. If the percentage of the substance in the fossilized
remains of such a tree is found to be p;, how long has the tree been dead?

If ¢, and ¢, are the times required for a radioactive material to decay to 1/p and 1/g times its
original mass (respectively), how are ¢, and 7, related?

Find the decay constant k for a radioactive substance, given that the mass of the substance is Q
at time #; and Q, at time ¢,.

A process creates a radioactive substance at the rate of 2 g/hr and the substance decays at a rate

proportional to its mass, with constant of proportionality k = .1(hr)~!. If Q(¢) is the mass of the
substance at time ¢, find lim;_, o, Q(?).

A bank pays interest continuously at the rate of 6%. How long does it take for a deposit of Qg to
grow in value to 2Q¢?

At what rate of interest, compounded continuously, will a bank deposit double in value in 8 years?

A savings account pays 5% per annum interest compounded continuously. The initial deposit is
Qo dollars. Assume that there are no subsequent withdrawals or deposits.

(a) How long will it take for the value of the account to triple?
(b) What is Qg if the value of the account after 10 years is $100,000 dollars?

A candymaker makes 500 pounds of candy per week, while his large family eats the candy at a
rate equal to Q(¢)/10 pounds per week, where Q(¢) is the amount of candy present at time ¢.

(a) Find Q(¢) for ¢t > 0 if the candymaker has 250 pounds of candy at ¢t = 0.
(b) Find lim; 0 Q(2).

Suppose a substance decays at a yearly rate equal to half the square of the mass of the substance
present. If we start with 50 g of the substance, how long will it be until only 25 g remain?

A super bread dough increases in volume at a rate proportional to the volume V present. If V'
increases by a factor of 10 in 2 hours and V(0) = Vp, find V' at any time 7. How long will it take
for V to increase to 100V,?

A radioactive substance decays at a rate proportional to the amount present, and half the original
quantity Qo is left after 1500 years. In how many years would the original amount be reduced to
30Q0/4? How much will be left after 2000 years?

A wizard creates gold continuously at the rate of 1 ounce per hour, but an assistant steals it con-
tinuously at the rate of 5% of however much is there per hour. Let W(¢) be the number of ounces
that the wizard has at time ¢. Find W(¢) and lim; o W(t) if W(0) = 1.

A process creates a radioactive substance at the rate of 1 g/hr, and the substance decays at an hourly
rate equal to 1/10 of the mass present (expressed in grams). Assuming that there are initially 20 g,
find the mass S(¢) of the substance present at time #, and find lim; o0 S(?).
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18.
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22,

23.
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A tank is empty at ¢ = 0. Water is added to the tank at the rate of 10 gal/min, but it leaks out
at a rate (in gallons per minute) equal to the number of gallons in the tank. What is the smallest
capacity the tank can have if this process is to continue forever?

A person deposits $25,000 in a bank that pays 5% per year interest, compounded continuously.
The person continuously withdraws from the account at the rate of $750 per year. Find V(¢), the
value of the account at time ¢ after the initial deposit.

A person has a fortune that grows at rate proportional to the square root of its worth. Find the
worth W of the fortune as a function of ¢ if it was $1 million 6 months ago and is $4 million today.

Let p = p(t) be the quantity of a product present at time ¢. The product is manufactured continu-
ously at a rate proportional to p, with proportionality constant 1/2, and it’s consumed continuously
at a rate proportional to p2, with proportionality constant 1/8. Find p(¢) if p(0) = 100.

(a) In the situation of Example 4.1.6 find the exact value P(¢) of the person’s account after ¢
years, where ¢ is an integer. Assume that each year has exactly 52 weeks, and include the
year-end deposit in the computation.

HINT: At time t the initial $1000 has been on deposit for t years. There have been 52t
deposits of $50 each. The first $50 has been on deposit for t — 1/52 years, the second for
t —2/52 years --- in general, the jth $50 has been on deposit for t — j/52 years (1 <
J =< 52t). Find the present value of each $50 deposit assuming 6% interest compounded
continuously, and use the formula
1= xn+1
l+x+ x>+ 4x" = li(x;é 1)
—-X
to find their total value.
(b) Let
Q@) — P()
1)==—""—=
p() PO)
be the relative error after ¢ years. Find
p(o0) = lim p(t).
—00

A homebuyer borrows Py dollars at an annual interest rate r, agreeing to repay the loan with equal
monthly payments of M dollars per month over N years.

(a) Derive a differential equation for the loan principal (amount that the homebuyer owes) P (¢)
at time ¢ > 0, making the simplifying assumption that the homebuyer repays the loan con-
tinuously rather than in discrete steps. (See Example 4.1.6 .)

(b) Solve the equation derived in (a).

(c) Use the result of (b) to determine an approximate value for M assuming that each year has
exactly 12 months of equal length.

(d) It can be shown that the exact value of M is given by

V‘P()

M= (1 — 1+ r/12)_12N)_1 .

Compare the value of M obtained from the answer in (c) to the exact value if (i) Py =
$50, 000, r = 7%%, N =20 (ii) Py = $150,000,r = 9.0%, N = 30.

Assume that the homebuyer of Exercise 22 elects to repay the loan continuously at the rate of aM
dollars per month, where « is a constant greater than 1. (This is called accelerated payment.)



140 Chapter 4 Applications of First Order Equations

(a) Determine the time 7' (o) when the loan will be paid off and the amount S(c) that the home-
buyer will save.

(b) Suppose Py = $50,000,r = 8%, and N = 15. Compute the savings realized by accelerated
payments with « = 1.05,1.10, and 1.15.

24. A benefactor wishes to establish a trust fund to pay a researcher’s salary for 7" years. The salary
is to start at Sp dollars per year and increase at a fractional rate of a per year. Find the amount
of money Py that the benefactor must deposit in a trust fund paying interest at a rate r per year.
Assume that the researcher’s salary is paid continuously, the interest is compounded continuously,
and the salary increases are granted continuously.

25. A radioactive substance with decay constant k is produced at the rate of

at
14+0t0(2)

units of mass per unit time, where a and b are positive constants and Q(¢) is the mass of the
substance present at time #; thus, the rate of production is small at the start and tends to slow when
Q is large.
(a) Set up a differential equation for Q.
(b) Choose your own positive values for a, b, k, and Qo = Q(0). Use a numerical method to

discover what happens to Q(¢) as t — co. (Be precise, expressing your conclusions in terms

of a, b, k. However, no proof is required.)

26. Follow the instructions of Exercise 25, assuming that the substance is produced at the rate of
at /(1 + bt(Q(t))?) units of mass per unit of time.

27. Follow the instructions of Exercise 25, assuming that the substance is produced at the rate of
at /(1 + bt) units of mass per unit of time.

4.2 COOLING AND MIXING

Newton’s Law of Cooling

Newton’s law of cooling states that if an object with temperature 7(¢) at time ¢ is in a medium with
temperature 7, (¢), the rate of change of T at time ¢ is proportional to T'(t) — Ty, (¢); thus, T satisfies a
differential equation of the form

T' = —k(T — Tp). 4.2.1)

Here k > 0, since the temperature of the object must decrease if T > T, or increase if T < Tj,,. We’ll
call k the temperature decay constant of the medium.

For simplicity, in this section we’ll assume that the medium is maintained at a constant temperature 77, .
This is another example of building a simple mathematical model for a physical phenomenon. Like most
mathematical models it has its limitations. For example, it’s reasonable to assume that the temperature of
a room remains approximately constant if the cooling object is a cup of coffee, but perhaps not if it’s a
huge cauldron of molten metal. (For more on this see Exercise 17.)

To solve (4.2.1), we rewrite it as

T+ kT = kTy,.

Since e %" is a solution of the complementary equation, the solutions of this equation are of the form
T = ue %' where u'e %" = kT,,, sou’ = kT,,eX". Hence,

k

u = Tuek' +c,
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SO
T =ue * =T, + ce .

If T(0) = Ty, setting ¢ = 0 here yields c = Ty — Ty, s0
T =Ty + (To — Tp)e . (4.2.2)
Note that 7' — T}, decays exponentially, with decay constant k.

Example 4.2.1 A ceramic insulator is baked at 400°C and cooled in a room in which the temperature is
25°C. After 4 minutes the temperature of the insulator is 200°C. What is its temperature after 8 minutes?

Solution Here Ty = 400 and T,, = 25, so (4.2.2) becomes
T =25+ 375¢7%". (4.2.3)
We determine k from the stated condition that 7'(4) = 200; that is,
200 = 25 + 375¢ 4K,
hence,
k175 T

T 375 15
Taking logarithms and solving for k yields

Substituting this into (4.2.3) yields
15

T =254 375" 37

(Figure 4.2.1). Therefore the temperature of the insulator after 8 minutes is

T(8) =25+ 375¢720%7

7 2
=254+375| — ~ 107°C.
* (15)

Example 4.2.2 An object with temperature 72°F is placed outside, where the temperature is —20°F. At
11:05 the temperature of the object is 60°F and at 11:07 its temperature is 50°F. At what time was the
object placed outside?

Solution Let 7'(t) be the temperature of the object at time ¢. For convenience, we choose the origin
to = 0 of the time scale to be 11:05 so that Tp = 60. We must determine the time t when T'(v) = 72.
Substituting 7o = 60 and 7, = —20 into (4.2.2) yields

T = —20 + (60 — (—20))e

or
T = —20 + 80e %", (4.2.4)
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Figure 4.2.1 T = 25 4 375¢=¢/4)n15/7

We obtain k from the stated condition that the temperature of the object is 50°F at 11:07. Since 11:07 is
t = 2 on our time scale, we can determine k by substituting 7 = 50 and ¢ = 2 into (4.2.4) to obtain

50 = —20 + 80e 2K

(Figure 4.2.2); hence,
w10 7

T80 8§

Taking logarithms and solving for k yields
1.7 1 8
k=—=In-=—-In_-.
2 8 2 7
Substituting this into (4.2.4) yields
T =20+ 805" %,
and the condition 7'(t) = 72 implies that

72 = —20 4 80e 217,

hence,

Taking logarithms and solving for 7 yields

23
2In %
8
7

T =— ~~ —2.09 min.

In
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60

40 -

20 -

-5 5 10 15 20 30 35 40

Figure4.22 T = —20 + 80e—3%

Therefore the object was placed outside about 2 minutes and 5 seconds before 11:05; that is, at 11:02:55.
Mixing Problems

In the next two examples a saltwater solution with a given concentration (weight of salt per unit volume
of solution) is added at a specified rate to a tank that initially contains saltwater with a different concentra-
tion. The problem is to determine the quantity of salt in the tank as a function of time. This is an example
of a mixing problem. To construct a tractable mathematical model for mixing problems we assume in
our examples (and most exercises) that the mixture is stirred instantly so that the salt is always uniformly
distributed throughout the mixture. Exercises 22 and 23 deal with situations where this isn’t so, but the
distribution of salt becomes approximately uniform as ¢ — oco.

Example 4.2.3 A tank initially contains 40 pounds of salt dissolved in 600 gallons of water. Starting at

to = 0, water that contains 1/2 pound of salt per gallon is poured into the tank at the rate of 4 gal/min and

the mixture is drained from the tank at the same rate (Figure 4.2.3).

(a) Find a differential equation for the quantity Q(¢) of salt in the tank at time ¢ > 0, and solve the
equation to determine Q(?).

(b) Find lim;—eo O(1).

SoLuTION(a) To find a differential equation for 0, we must use the given information to derive an
expression for Q’. But Q' is the rate of change of the quantity of salt in the tank changes with respect to
time; thus, if rate in denotes the rate at which salt enters the tank and rate out denotes the rate by which
it leaves, then

Q' = rate in — rate out. (4.2.5)
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4 gal/min; .5 Ib/gal

4 gal/min

Figure 4.2.3 A mixing problem

The rate in is :
(5 lb/gal) % (4 gal/min) = 2 Ib/min.

Determining the rate out requires a little more thought. We’re removing 4 gallons of the mixture per
minute, and there are always 600 gallons in the tank; that is, we’re removing 1/150 of the mixture per
minute. Since the salt is evenly distributed in the mixture, we are also removing 1/150 of the salt per
minute. Therefore, if there are Q(¢) pounds of salt in the tank at time #, the rate out at any time ¢ is
Q()/150. Alternatively, we can arrive at this conclusion by arguing that

rate out = (concentration) X (rate of flow out)
= (Ib/gal) x (gal/min)
_ o0, _ o0
600 150
We can now write (4.2.5) as
Y
=2 =,
Q 150
This first order equation can be rewritten as
Y
"+ = =2.
Q 150

Since e~*/130 is a solution of the complementary equation, the solutions of this equation are of the form

0 = ue /150 where u'e /150 = 2, so u’ = 2¢'/15%. Hence,

u = 300e/150 4 ¢,
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250
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150
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100 200 300 400 500 600 700 800 900

Figure 4.2.4 QO = 300 — 260e /150

SO
0 = ue 150 =300 4 ce7*/1%0 (4.2.6)

(Figure 4.2.4). Since Q(0) = 40, ¢ = —260; therefore,
0 = 300 — 260e /150,

SOLUTION(b) From (4.2.6), we see that that lim;—o Q(#) = 300 for any value of Q(0). This is
intuitively reasonable, since the incoming solution contains 1/2 pound of salt per gallon and there are
always 600 gallons of water in the tank.

Example 4.2.4 A 500-liter tank initially contains 10 g of salt dissolved in 200 liters of water. Starting
at 7o = 0, water that contains 1/4 g of salt per liter is poured into the tank at the rate of 4 liters/min and
the mixture is drained from the tank at the rate of 2 liters/min (Figure 4.2.5). Find a differential equation
for the quantity Q(¢) of salt in the tank at time ¢ prior to the time when the tank overflows and find the
concentration K(¢) (g/liter ) of salt in the tank at any such time.

Solution We first determine the amount W(¢) of solution in the tank at any time ¢ prior to overflow.
Since W(0) = 200 and we’re adding 4 liters/min while removing only 2 liters/min, there’s a net gain of
2 liters/min in the tank; therefore,

W(t) = 2t + 200.

Since W(150) = 500 liters (capacity of the tank), this formula is valid for 0 < ¢ < 150.
Now let Q(¢) be the number of grams of salt in the tank at time #, where 0 < ¢ < 150. As in
Example 4.2.3,
Q' = rate in — rate out. (4.2.7)
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4 liters/min; .25 g/liter

2t+200 liters

-

Figure 4.2.5 Another mixing problem

The rate in is |
(Z g/liter) x (4 liters/min) = 1 g/min. (4.2.8)

To determine the rate out, we observe that since the mixture is being removed from the tank at the constant
rate of 2 liters/min and there are 2¢ + 200 liters in the tank at time ¢, the fraction of the mixture being
removed per minute at time 7 is

2 1

2¢t 4200 ¢+ 100
We’re removing this same fraction of the salt per minute. Therefore, since there are Q(¢) grams of salt in
the tank at time ¢,
0@)

t+100°
Alternatively, we can arrive at this conclusion by arguing that

rate out = 4.2.9)

rate out = (concentration) x (rate of flow out) = (g/liter) x (liters/min)

o0, _ 0w
2t 4+ 200 t+100°
Substituting (4.2.8) and (4.2.9) into (4.2.7) yields
0 1
[ /
=T ¥ 270

By separation of variables, 1/(¢ + 100) is a solution of the complementary equation, so the solutions of
(4.2.10) are of the form

0=1. (4.2.10)

/

L, where =1, so u =1t+100.
t + 100 t + 100

0=
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Hence,
(t + 100)?
u=———"+=+c¢
2
Since Q(0) = 10and u = (t + 100)Q, (4.2.11) implies that

42.11)

100)?
(100)(10) = ( 2) + c,
SO 5
100
¢ = 100(10) — (100) = —4000
and therefore )
t + 100
w = L0700,
2
Hence,
0= u _ 1+ 100 4000
S r+200 2 1+ 100°
Now let K(¢) be the concentration of salt at time . Then
1 2000
Kt)=-———=
®) 4 (t + 100)2
(Figure 4.2.6).
K
A
.25
.20
A5
10
.05
260 400 600 800 1000 -
2000

. 1
Flgure 4.2.6 K(f) = Z — M—TO)Z
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4.2 Exercises

10.

11.

12.

13.

A thermometer is moved from a room where the temperature is 70°F to a freezer where the tem-
perature is 12° F. After 30 seconds the thermometer reads 40°F. What does it read after 2 minutes?

A fluid initially at 100°C is placed outside on a day when the temperature is —10°C, and the
temperature of the fluid drops 20°C in one minute. Find the temperature 7'(z) of the fluid for
t>0.

At 12:00 PM a thermometer reading 10°F is placed in a room where the temperature is 70°F. It
reads 56° when it’s placed outside, where the temperature is 5°F, at 12:03. What does it read at
12:05 pm?

A thermometer initially reading 212°F is placed in a room where the temperature is 70°F. After 2
minutes the thermometer reads 125°F.

(a) What does the thermometer read after 4 minutes?
(b) When will the thermometer read 72°F?
(¢) When will the thermometer read 69°F?

An object with initial temperature 150°C is placed outside, where the temperature is 35°C. Its
temperatures at 12:15 and 12:20 are 120°C and 90°C, respectively.

(a) At what time was the object placed outside?
(b) When will its temperature be 40°C?

An object is placed in a room where the temperature is 20°C. The temperature of the object drops
by 5°C in 4 minutes and by 7°C in 8 minutes. What was the temperature of the object when it was
initially placed in the room?

A cup of boiling water is placed outside at 1:00 PM. One minute later the temperature of the water
is 152°F. After another minute its temperature is 112°F. What is the outside temperature?

A tank initially contains 40 gallons of pure water. A solution with 1 gram of salt per gallon of
water is added to the tank at 3 gal/min, and the resulting solution dranes out at the same rate. Find
the quantity Q(¢) of salt in the tank at time ¢ > 0.

A tank initially contains a solution of 10 pounds of salt in 60 gallons of water. Water with 1/2
pound of salt per gallon is added to the tank at 6 gal/min, and the resulting solution leaves at the
same rate. Find the quantity Q(¢) of salt in the tank at time ¢ > 0.

A tank initially contains 100 liters of a salt solution with a concentration of .1 g/liter. A solution
with a salt concentration of .3 g/liter is added to the tank at 5 liters/min, and the resulting mixture
is drained out at the same rate. Find the concentration K(¢) of salt in the tank as a function of 7.

A 200 gallon tank initially contains 100 gallons of water with 20 pounds of salt. A salt solution
with 1/4 pound of salt per gallon is added to the tank at 4 gal/min, and the resulting mixture is
drained out at 2 gal/min. Find the quantity of salt in the tank as it’s about to overflow.

Suppose water is added to a tank at 10 gal/min, but leaks out at the rate of 1/5 gal/min for each
gallon in the tank. What is the smallest capacity the tank can have if the process is to continue
indefinitely?

A chemical reaction in a laboratory with volume V (in ft3) produces ¢; ft3/min of a noxious gas as
a byproduct. The gas is dangerous at concentrations greater than ¢, but harmless at concentrations
< C. Intake fans at one end of the laboratory pull in fresh air at the rate of g, ft3/min and exhaust
fans at the other end exhaust the mixture of gas and air from the laboratory at the same rate.
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Assuming that the gas is always uniformly distributed in the room and its initial concentration cg
is at a safe level, find the smallest value of ¢, required to maintain safe conditions in the laboratory
for all time.

A 1200-gallon tank initially contains 40 pounds of salt dissolved in 600 gallons of water. Starting
at o = 0, water that contains 1/2 pound of salt per gallon is added to the tank at the rate of 6
gal/min and the resulting mixture is drained from the tank at 4 gal/min. Find the quantity Q(¢) of
salt in the tank at any time ¢ > 0 prior to overflow.

Tank 77 initially contain 50 gallons of pure water. Starting at ¢y = 0, water that contains 1 pound
of salt per gallon is poured into 77 at the rate of 2 gal/min. The mixture is drained from 77 at the
same rate into a second tank 75, which initially contains 50 gallons of pure water. Also starting at
to = 0, a mixture from another source that contains 2 pounds of salt per gallon is poured into 73
at the rate of 2 gal/min. The mixture is drained from 7 at the rate of 4 gal/min.

(a) Find a differential equation for the quantity Q(¢) of salt in tank 7> at time ¢ > 0.
(b) Solve the equation derived in (a) to determine Q ().
(¢) Findlim;—eo Q().

Suppose an object with initial temperature Ty is placed in a sealed container, which is in turn placed
in a medium with temperature 7,,. Let the initial temperature of the container be So. Assume that
the temperature of the object does not affect the temperature of the container, which in turn does
not affect the temperature of the medium. (These assumptions are reasonable, for example, if the
object is a cup of coffee, the container is a house, and the medium is the atmosphere.)

(a) Assuming that the container and the medium have distinct temperature decay constants k
and k,, respectively, use Newton’s law of cooling to find the temperatures S(¢) and 7'(t) of
the container and object at time ?.

(b) Assuming that the container and the medium have the same temperature decay constant k,
use Newton’s law of cooling to find the temperatures S(¢) and 7'(¢) of the container and
object at time 7.

(¢) Findlim ., S(¢) and limy o, T'(¢) .

In our previous examples and exercises concerning Newton’s law of cooling we assumed that the
temperature of the medium remains constant. This model is adequate if the heat lost or gained by
the object is insignificant compared to the heat required to cause an appreciable change in the tem-
perature of the medium. If this isn’t so, we must use a model that accounts for the heat exchanged
between the object and the medium. Let T = T(¢) and T, = T, (¢) be the temperatures of the
object and the medium, respectively, and let Ty and 7,0 be their initial values. Again, we assume
that T and T, are related by Newton’s law of cooling,

T' = —k(T — Tpy). (A)

We also assume that the change in heat of the object as its temperature changes from Ty to T is
a(T — Tp) and that the change in heat of the medium as its temperature changes from 7, to T;,
i8S am (T — Timo), where a and a,, are positive constants depending upon the masses and thermal
properties of the object and medium, respectively. If we assume that the total heat of the system
consisting of the object and the medium remains constant (that is, energy is conserved), then

a(T —To) + am (T — Trno) = 0. B)

(a) Equation (A) involves two unknown functions 7" and T,,. Use (A) and (B) to derive a differ-
ential equation involving only 7.
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(b) Find T'(¢) and Ty, (¢) fort > 0.

(¢) Find lim; o0 T(¢) and limy—, o0 Tppy (2).

Control mechanisms allow fluid to flow into a tank at a rate proportional to the volume V' of fluid
in the tank, and to flow out at a rate proportional to V2. Suppose V(0) = Vj and the constants of
proportionality are ¢ and b, respectively. Find V(¢) for ¢t > 0 and find lim; s V(¢).

Identical tanks 77 and 7> initially contain W gallons each of pure water. Starting at 7o = 0, a
salt solution with constant concentration ¢ is pumped into 7 at r gal/min and drained from 7}
into 7> at the same rate. The resulting mixture in 75 is also drained at the same rate. Find the
concentrations ¢ (¢) and c¢,(¢) in tanks 77 and 75 fort > 0.

An infinite sequence of identical tanks T4y, T3, ..., Ty, ..., initially contain W gallons each of
pure water. They are hooked together so that fluid drains from 7}, into T, (n = 1,2,---). A salt
solution is circulated through the tanks so that it enters and leaves each tank at the constant rate of
r gal/min. The solution has a concentration of ¢ pounds of salt per gallon when it enters 77.

(a) Find the concentration ¢, (¢) in tank 7}, for ¢ > 0.
(b) Find lim;_, ¢, (¢) for each n.
Tanks T and T have capacities W; and W, liters, respectively. Initially they are both full of dye
solutions with concentrations ¢; and ¢, grams per liter. Starting at 79 = 0, the solution from 77 is
pumped into 7> at a rate of r liters per minute, and the solution from 75 is pumped into 77 at the
same rate.
(a) Find the concentrations c; (¢) and c,(¢) of the dye in 77 and T fort > 0.
(b) Find lim;_, o ¢ (¢) and limy o c2(2).
Consider the mixing problem of Example 4.2.3, but without the assumption that the mixture
is stirred instantly so that the salt is always uniformly distributed throughout the mixture. Assume
instead that the distribution approaches uniformity as # — oo. In this case the differential equation
for Q is of the form
o, aln)
+—0=2
Q 150 9
where lim; oo a(t) = 1.
(a) Assuming that Q(0) = Qy, can you guess the value of lim; o, Q(¢)?.
(b) Use numerical methods to confirm your guess in the these cases:

() at) =t/ +1) Gi) a@t) =1—e (i) a(t) = 1 —sin(e™).

Consider the mixing problem of Example 4.2.4 in a tank with infinite capacity, but without
the assumption that the mixture is stirred instantly so that the salt is always uniformly distributed
throughout the mixture. Assume instead that the distribution approaches uniformity as t — oo. In
this case the differential equation for Q is of the form

a(t)
t + 100

Q'+ 0=1

where lim; oo a(t) = 1.

(a) Let K(¢) be the concentration of salt at time . Assuming that Q(0) = Qy, can you guess
the value of lim; . K(1)?
(b) Use numerical methods to confirm your guess in the these cases:

() a(t) =t/(1+1) @) a(t) =1—e* (iii) a(t) = | + sin(e™).
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4.3 ELEMENTARY MECHANICS

Newton’s Second Law of Motion

In this section we consider an object with constant mass m moving along a line under a force F. Let
y = y(¢) be the displacement of the object from a reference point on the line at time #, and let v = v ()
and a = a(t) be the velocity and acceleration of the object at time ¢. Thus, v = y’ anda = v’ = y”,
where the prime denotes differentiation with respect to . Newton’s second law of motion asserts that the
force F and the acceleration a are related by the equation

F =ma. 4.3.1)

Units

In applications there are three main sets of units in use for length, mass, force, and time: the cgs, mks, and
British systems. All three use the second as the unit of time. Table 1 shows the other units. Consistent
with (4.3.1), the unit of force in each system is defined to be the force required to impart an acceleration
of (one unit of length)/s? to one unit of mass.

Length Force Mass
cgs centimeter (cm) dyne (d) gram (g)
mks meter (m) newton (N) | kilogram (kg)
British foot (ft) pound (1b) slug (sI)
Table 1.

If we assume that Earth is a perfect sphere with constant mass density, Newton’s law of gravitation
(discussed later in this section) asserts that the force exerted on an object by Earth’s gravitational field
is proportional to the mass of the object and inversely proportional to the square of its distance from the
center of Earth. However, if the object remains sufficiently close to Earth’s surface, we may assume that
the gravitational force is constant and equal to its value at the surface. The magnitude of this force is
mg, where g is called the acceleration due to gravity. (To be completely accurate, g should be called
the magnitude of the acceleration due to gravity at Earth’s surface.) This quantity has been determined
experimentally. Approximate values of g are

g =980 cm/s? (cgs)
g =9.8m/s? (mks)
g =321us (British).

In general, the force F in (4.3.1) may depend upon ¢, y, and y’. Since a = y”, (4.3.1) can be written

in the form
my" = F(t,y,'), (4.32)

which is a second order equation. We’ll consider this equation with restrictions on F later; however, since
Chapter 2 dealt only with first order equations, we consider here only problems in which (4.3.2) can be
recast as a first order equation. This is possible if ' does not depend on y, so (4.3.2) is of the form

my" = F(1.y").
Letting v = y" and v/ = y” yields a first order equation for v:

mv' = F(t,v). (4.3.3)
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Solving this equation yields v as a function of . If we know y(#y) for some time 7, we can integrate v
to obtain y as a function of 7.
Equations of the form (4.3.3) occur in problems involving motion through a resisting medium.

Motion Through a Resisting Medium Under Constant Gravitational Force

Now we consider an object moving vertically in some medium. We assume that the only forces acting on
the object are gravity and resistance from the medium. We also assume that the motion takes place close
to Earth’s surface and take the upward direction to be positive, so the gravitational force can be assumed
to have the constant value —mg. We’ll see that, under reasonable assumptions on the resisting force, the
velocity approaches a limit as 1 — oco. We call this limit the terminal velocity.

Example 4.3.1 An object with mass m moves under constant gravitational force through a medium that
exerts a resistance with magnitude proportional to the speed of the object. (Recall that the speed of an
object is |v], the absolute value of its velocity v.) Find the velocity of the object as a function of #, and
find the terminal velocity. Assume that the initial velocity is vg.

Solution The total force acting on the object is
F =—-mg+ Fi, 434

where —mg is the force due to gravity and Fj is the resisting force of the medium, which has magnitude
k|v|, where k is a positive constant. If the object is moving downward (v < 0), the resisting force is
upward (Figure 4.3.1(a)), so

Fiy = k|v| = k(—v) = —kv.

On the other hand, if the object is moving upward (v > 0), the resisting force is downward (Fig-
ure 4.3.1(b)), so
Fy = —k|v| = —kv.

Thus, (4.3.4) can be written as
F =—-mg—kv, (4.3.5)

regardless of the sign of the velocity.
From Newton’s second law of motion,

F =ma =mv’,

so (4.3.5) yields

mv' = —mg — kv,
or
, k
vV 4+ —v=—g. 4.3.6)
m
Since e /™ is a solution of the complementary equation, the solutions of (4.3.6) are of the form v =
ue kt/m where u'e Kt/m = —g sou’ = —gek!/™. Hence,
m
u=—"8ekt/my ¢
o) mg
v = ue Kt/m — -+ cekt/m, (4.3.7)
Since v(0) = vy,
mg
vo = ——= +c,

k
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Figure 4.3.1 Resistive forces

SO mg
cTwT
and (4.3.7) becomes
=_"s ( %) ~kt/m
v X + (vo + X e .
Letting ¢t — oo here shows that the terminal velocity is
i =_"8
tlggov(t) Tk

which is independent of the initial velocity vo (Figure 4.3.2).

Example 4.3.2 A 960-1b object is given an initial upward velocity of 60 ft/s near the surface of Earth.
The atmosphere resists the motion with a force of 3 1b for each ft/s of speed. Assuming that the only other
force acting on the object is constant gravity, find its velocity v as a function of ¢, and find its terminal
velocity.

Solution Since mg = 960 and g = 32, m = 960/32 = 30. The atmospheric resistance is —3v b if v is
expressed in feet per second. Therefore

300" = —960 — 3v,

which we rewrite as |
vV 4+ —v = -32.
10
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\J

Figure 4.3.2 Solutions of mv’ = —mg — kv

Since e~*/19 is a solution of the complementary equation, the solutions of this equation are of the form

v = ue 0 where u'e™"/10 = —32, sou’ = —32¢'/1°, Hence,
u = —32010 4 ¢,
)
v =ue 10 = _320 + ce /10, (4.3.8)

The initial velocity is 60 ft/s in the upward (positive) direction; hence, vo = 60. Substituting # = 0 and
v = 60 in (4.3.8) yields
60 = —320 + ¢,

so ¢ = 380, and (4.3.8) becomes
v = —320 + 380e /10 fi/s

The terminal velocity is

lim v(¢) = —320 ft/s.
1—>00

Example 4.3.3 A 10 kg mass is given an initial velocity vo < 0 near Earth’s surface. The only forces
acting on it are gravity and atmospheric resistance proportional to the square of the speed. Assuming that
the resistance is 8 N if the speed is 2 m/s, find the velocity of the object as a function of ¢, and find the
terminal velocity.

Solution Since the object is falling, the resistance is in the upward (positive) direction. Hence,

mv' = —mg + kv?, (4.3.9)
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where k is a constant. Since the magnitude of the resistance is 8 N when v = 2 m/s,

k(2%) =8,
s0 k = 2 N-s?/m?. Since m = 10 and g = 9.8, (4.3.9) becomes
100" = —98 + 2v% = 2(v? — 49). (4.3.10)
If vg = —7,then v = —7 forall t > 0. If vy # —7, we separate variables to obtain
BN (4.3.11)
‘U = — o
v2 —49 5
which is convenient for the required partial fraction expansion
1 1 1 1 1
— = |— - . (4.3.12)
v2—49 (w-7w+7) 14[{v-T7 v+7

Substituting (4.3.12) into (4.3.11) yields
1 1 1 , 1
- — V= -,
14|lv-7 v+7 5

1 17, 14
- V= —.
v—7 v+47 5

Injv—7]—Infv+7| =14t/5+ k.

SO

Integrating this yields

Therefore
v—7

v+7

Since Theorem 2.3.1 implies that (v — 7)/(v + 7) can’t change sign (why?), we can rewrite the last
equation as

‘ — €k€14t/5.

% — e/, (4.3.13)
which is an implicit solution of (4.3.10). Solving this for v yields
¢+ e—14t/5
Since v(0) = vy, it (4.3.13) implies that
_ Vo — 7
Cvg+ 7

Substituting this into (4.3.14) and simplifying yields

71)()(1 + e—14t/5) _ 7(1 _ e—14t/5)
vo(l _ e—14t/5) _ 7(1 + e—14t/5°

Since vg < 0, v is defined and negative for all # > 0. The terminal velocity is

lim v(¢t) = =7 m/s,
—>00

independent of vg. More generally, it can be shown (Exercise 11) that if v is any solution of (4.3.9) such

that vg < 0 then
- —_ "
tll>rgo v(t) = k

(Figure 4.3.3).
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v

ve—(mgk)Rf - -

Figure 4.3.3 Solutions of mv’ = —mg + kv?2, v(0) = vg <0

Example 4.3.4 A 10-kg mass is launched vertically upward from Earth’s surface with an initial velocity
of vo m/s. The only forces acting on the mass are gravity and atmospheric resistance proportional to the
square of the speed. Assuming that the atmospheric resistance is 8 N if the speed is 2 m/s, find the time
T required for the mass to reach maximum altitude.

Solution The mass will climb while v > 0 and reach its maximum altitude when v = 0. Therefore
v>0for0 <t < T andv(T) = 0. Although the mass of the object and our assumptions concerning the
forces acting on it are the same as those in Example 3, (4.3.10) does not apply here, since the resisting
force is negative if v > 0; therefore, we replace (4.3.10) by

100" = —98 — 202, (4.3.15)

Separating variables yields

and integrating this yields
5t Y ;
—tan"" — = —t +c.
7

7
(Recall that tan—! u is the number 6 such that —/2 < § < /2 and tan & = u.) Since v(0) = vy,
5 t —1 Yo
¢c=—tan  —,
7 7

so v is defined implicitly by

0<r<T (4.3.16)
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Figure 4.3.4 Solutions of (4.3.15) for various vy > 0

Solving this for v yields

7t
v="7tan | —= +tan~! 2. 4.3.17)
5 7
Using the identity
tan A — tan B
tan(A — B) = a a

1 +tan Atan B
with A = tan~!(v/7) and B = 7¢/5, and noting that tan(tan~! §) = 6, we can simplify (4.3.17) to

vo — Ttan(7¢/5)
7+ vo tan(7t/5)

Since v(T) = 0 and tan™'(0) = 0, (4.3.16) implies that

5 —1 Yo
-7 + =t — =0.
T

Therefore
5 —1 Vo
T =—-tan ~ —.
7 7

Since tan~! (v /7) < 7/2 for all vy, the time required for the mass to reach its maximum altitude is less

than 5
2T 1122
14

regardless of the initial velocity. Figure 4.3.4 shows graphs of v over [0, T'] for various values of vg.
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Figure 4.3.5 Escape velocity

Escape Velocity

Suppose a space vehicle is launched vertically and its fuel is exhausted when the vehicle reaches an
altitude i above Earth, where & is sufficiently large so that resistance due to Earth’s atmosphere can be
neglected. Let # = 0 be the time when burnout occurs. Assuming that the gravitational forces of all other
celestial bodies can be neglected, the motion of the vehicle for # > 0 is that of an object with constant
mass m under the influence of Earth’s gravitational force, which we now assume to vary inversely with
the square of the distance from Earth’s center; thus, if we take the upward direction to be positive then
gravitational force on the vehicle at an altitude y above Earth is

K
F = —m, (4.3.18)

where R is Earth’s radius (Figure 4.3.5).
Since F' = —mg when y = 0, setting y = 0 in (4.3.18) yields

K

therefore K = mgR? and (4.3.18) can be written more specifically as

mgR?
F = —m. (4.3.19)

From Newton’s second law of motion,

d?y
F=m=—3,
mdt2
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so (4.3.19) implies that
dZy _ gRZ
dt2~  (y + R)?’

We’ll show that there’s a number v,, called the escape velocity, with these properties:

(4.3.20)

1. If vo > v, then v(¢) > O for all t+ > 0, and the vehicle continues to climb for all # > 0; that is,
it “escapes” Earth. (Is it really so obvious that lim;—. ¥(f) = oo in this case? For a proof, see
Exercise 20.)

2. If vo < v, then v(¢) decreases to zero and becomes negative. Therefore the vehicle attains a
maximum altitude y,, and falls back to Earth.

Since (4.3.20) is second order, we can’t solve it by methods discussed so far. However, we’re concerned
with v rather than y, and v is easier to find. Since v = y’ the chain rule implies that
d’>y dv dvdy dv
—_— - — = —— = ) —.
dt2  dr dydt dy

Substituting this into (4.3.20) yields the first order separable equation

dv gR?
—_— = 4.3.21
Udy (v + R)? ( )

When ¢ = 0, the velocity is vy and the altitude is 4. Therefore we can obtain v as a function of y by
solving the initial value problem

dv gR?
v—=—"-—— v(h) = vg.
dy — (y+R)? () =o
Integrating (4.3.21) with respect to y yields
v = gk? + (4.3.22)
7 T )R c. 3.
Since v(h) = vy,
v(z) gR?
c= - ,
2 h+R
so (4.3.22) becomes
v? gR? v(z) gR?
- = - = . 4.3.23
2 y+R + ( 2 h+ R) ( )

If

2 R2 1/2
Vo = £ ,
h+ R

the parenthetical expression in (4.3.23) is nonnegative, so v(y) > 0 for y > h. This proves that there’s
an escape velocity v.. We’ll now prove that

2 R2 1/2
Ve = &
(757)
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by showing that the vehicle falls back to Earth if

20R? 1/2
vo < (h i R) . (4.3.24)

If (4.3.24) holds then the parenthetical expression in (4.3.23) is negative and the vehicle will attain a
maximum altitude y,, > h that satisfies the equation

RZ 2 RZ
0= (D &),
Ym + R 2 h+R
The velocity will be zero at the maximum altitude, and the object will then fall to Earth under the influence
of gravity.

4.3 Exercises

Except where directed otherwise, assume that the magnitude of the gravitational force on an object with
mass m is constant and equal to mg. In exercises involving vertical motion take the upward direction to
be positive.

1. A firefighter who weighs 192 1b slides down an infinitely long fire pole that exerts a frictional
resistive force with magnitude proportional to his speed, with k = 2.5 1b-s/ft. Assuming that he
starts from rest, find his velocity as a function of time and find his terminal velocity.

2. A firefighter who weighs 192 Ib slides down an infinitely long fire pole that exerts a frictional
resistive force with magnitude proportional to her speed, with constant of proportionality k. Find
k, given that her terminal velocity is -16 ft/s, and then find her velocity v as a function of 7. Assume
that she starts from rest.

3. Aboat weighs 64,000 1b. Its propellor produces a constant thrust of 50,000 b and the water exerts
a resistive force with magnitude proportional to the speed, with & = 2000 1b-s/ft. Assuming that
the boat starts from rest, find its velocity as a function of time, and find its terminal velocity.

4. A constant horizontal force of 10 N pushes a 20 kg-mass through a medium that resists its motion
with .5 N for every m/s of speed. The initial velocity of the mass is 7 m/s in the direction opposite
to the direction of the applied force. Find the velocity of the mass for # > 0.

5. A stone weighing 1/2 1b is thrown upward from an initial height of 5 ft with an initial speed of 32
ft/s. Air resistance is proportional to speed, with k = 1/128 Ib-s/ft. Find the maximum height
attained by the stone.

6. A 3200-1b car is moving at 64 ft/s down a 30-degree grade when it runs out of fuel. Find its
velocity after that if friction exerts a resistive force with magnitude proportional to the square of
the speed, with k = 1 Ib-s?/ft2. Also find its terminal velocity.

7. A 96 1b weight is dropped from rest in a medium that exerts a resistive force with magnitude
proportional to the speed. Find its velocity as a function of time if its terminal velocity is -128 ft/s.

8. An object with mass m moves vertically through a medium that exerts a resistive force with magni-
tude proportional to the speed. Let y = y(¢) be the altitude of the object at time ¢, with y(0) = yy.
Use the results of Example 4.3.1 to show that

m
y() = yo + E(UO —v—gt).
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An object with mass m is launched vertically upward with initial velocity vy from Earth’s surface
(yo = 0) in a medium that exerts a resistive force with magnitude proportional to the speed. Find
the time T when the object attains its maximum altitude y,,. Then use the result of Exercise 8 to
find yy,.

An object weighing 256 1b is dropped from rest in a medium that exerts a resistive force with
magnitude proportional to the square of the speed. The magnitude of the resisting force is 1 Ib
when |v| = 4 ft/s. Find v for ¢t > 0, and find its terminal velocity.

An object with mass m is given an initial velocity vy < 0 in a medium that exerts a resistive force

with magnitude proportional to the square of the speed. Find the velocity of the object for ¢ > 0,
and find its terminal velocity.

An object with mass m is launched vertically upward with initial velocity vo in a medium that
exerts a resistive force with magnitude proportional to the square of the speed.

(a) Find the time 7" when the object reaches its maximum altitude.

(b) Use the result of Exercise 11 to find the velocity of the object fort > T.

An object with mass m is given an initial velocity vg < 0 in a medium that exerts a resistive
force of the form alv|/(1 + [v[), where a is positive constant.

(a) Set up a differential equation for the speed of the object.

(b) Use your favorite numerical method to solve the equation you found in (a), to convince your-
self that there’s a unique number ag such that lim;_, o, s(¢) = o0 if a < ag and lim; oo 5(t)
exists (finite) if a > ag. (We say that ag is the bifurcation value of a.) Try to find a¢ and
lim; o0 s(¢) in the case where a > ag. HINT: See Exercise 14.

An object of mass m falls in a medium that exerts a resistive force f = f(s), where s = |v]| is
the speed of the object. Assume that f(0) = 0 and f is strictly increasing and differentiable on
(0, 0).

(a) Write a differential equation for the speed s = s(¢) of the object. Take it as given that all
solutions of this equation with s(0) > 0 are defined for all # > 0 (which makes good sense
on physical grounds).

(b) Show that if limg_,0 f(s5) < mg then lim;_,o 5(t) = 00.

(c) Show that if limg—, 00 f(s5) > mg then lim;, o s(¢) = st (terminal speed), where f(s7) =
mg. HINT: Use Theorem 2.3.1.

A 100-g mass with initial velocity vg < 0 falls in a medium that exerts a resistive force proportional

to the fourth power of the speed. The resistance is .1 N if the speed is 3 m/s.

(a) Set up the initial value problem for the velocity v of the mass for z > 0.

(b) Use Exercise 14(c) to determine the terminal velocity of the object.

(c) To confirm your answer to (b), use one of the numerical methods studied in Chapter 3
to compute approximate solutions on [0, 1] (seconds) of the initial value problem of (a), with

initial values v9 = 0, —2, —4, ..., —12. Present your results in graphical form similar to
Figure 4.3.3.

A 64-1b object with initial velocity vg < O falls through a dense fluid that exerts a resistive force
proportional to the square root of the speed. The resistance is 64 1b if the speed is 16 ft/s.

(a) Set up the initial value problem for the velocity v of the mass for z > 0.

(b) Use Exercise 14(c) to determine the terminal velocity of the object.

(¢ To confirm your answer to (b), use one of the numerical methods studied in Chapter 3
to compute approximate solutions on [0, 4] (seconds) of the initial value problem of (a), with
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initial values vg = 0, —5, —10, ..., —30. Present your results in graphical form similar to
Figure 4.3.3.

In Exercises 17-20, assume that the force due to gravity is given by Newton’s law of gravitation. Take the
upward direction to be positive.

17. A space probe is to be launched from a space station 200 miles above Earth. Determine its escape
velocity in miles/s. Take Earth’s radius to be 3960 miles.

18. A space vehicle is to be launched from the moon, which has a radius of about 1080 miles. The
acceleration due to gravity at the surface of the moon is about 5.31 ft/s?. Find the escape velocity
in miles/s.

19. (a) Show that Eqn. (4.3.23) can be rewritten as

h—y
2 2 2
vt = v, + vg.
y+R ¢ °
(b) Show that if v9 = pv, with 0 < p < 1, then the maximum altitude y,, attained by the space
vehicle is
h+ Rp?
Ym = 1_7102

(¢) By requiring that v(ym,) = 0, use Eqn. (4.3.22) to deduce that if v9 < v, then

1/2
(1= p)m =1 1"
vl =ve | ————F——|
y+R
where y,, and p are as defined in (b) and y > h.

(d) Deduce from (c) thatif v < v,, the vehicle takes equal times to climb fromy = htoy = y,
and to fall back from y = y,, to y = h.

20. In the situation considered in the discussion of escape velocity, show that lim; .0 y(f) = oo if
v(t) > Oforallz > 0.

HINT: Use a proof by contradiction. Assume that there’s a number y,, such that y(t) < ym forall
t > 0. Deduce from this that there’s positive number « such that y"(t) < —a for all t > 0. Show
that this contradicts the assumption that v(t) > 0 for all t > 0.

4.4 AUTONOMOUS SECOND ORDER EQUATIONS

A second order differential equation that can be written as

y'=F©y.y) (4.4.1)

where F is independent of ¢, is said to be autonomous. An autonomous second order equation can be
converted into a first order equation relating v = y” and y. If we let v = y’, (4.4.1) becomes

v' = F(y,v). (4.4.2)

Since

,_dv _dvdy _ dv

= — = — =v— 4.4,
YTa T aya T ay (4.4.3)
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(4.4.2) can be rewritten as

d

vl — F(y,v). (4.4.4)

dy
The integral curves of (4.4.4) can be plotted in the (y, v) plane, which is called the Poincaré phase plane
of (4.4.1). If y is a solution of (4.4.1) then y = y(t),v = y’(¢) is a parametric equation for an integral
curve of (4.4.4). We’ll call these integral curves trajectories of (4.4.1), and we’ll call (4.4.4) the phase
plane equivalent of (4.4.1).

In this section we’ll consider autonomous equations that can be written as

y'+q(.y)y + p(y) =0. (4.4.5)

Equations of this form often arise in applications of Newton’s second law of motion. For example,
suppose y is the displacement of a moving object with mass m. It’s reasonable to think of two types
of time-independent forces acting on the object. One type - such as gravity - depends only on position.
We could write such a force as —mp(y). The second type - such as atmospheric resistance or friction -
may depend on position and velocity. (Forces that depend on velocity are called damping forces.) We
write this force as —mq(y, y’)y’, where ¢(y, y’) is usually a positive function and we’ve put the factor
y’ outside to make it explicit that the force is in the direction opposing the motion. In this case Newton’s,
second law of motion leads to (4.4.5).
The phase plane equivalent of (4.4.5) is

dv

dy

v +q(y,v)v+ p(y) =0. (4.4.6)

Some statements that we’ll be making about the properties of (4.4.5) and (4.4.6) are intuitively reasonable,
but difficult to prove. Therefore our presentation in this section will be informal: we’ll just say things
without proof, all of which are true if we assume that p = p(y) is continuously differentiable for all y
and ¢ = q(y, v) is continuously differentiable for all (y, v). We begin with the following statements:

o Statement 1. If y¢ and v are arbitrary real numbers then (4.4.5) has a unique solution on (—o0, 00)
such that y(0) = yo and y’(0) = vy.

e Statement 2.) If y = y(¢) is a solution of (4.4.5) and t is any constant then y; = y(f — 1) is also
a solution of (4.4.5), and y and y; have the same trajectory.

e Statement 3. If two solutions y and y; of (4.4.5) have the same trajectory then y;(¢) = y(t — 1)
for some constant .

e Statement 4. Distinct trajectories of (4.4.5) can’t intersect; that is, if two trajectories of (4.4.5)
intersect, they are identical.

e Statement 5. If the trajectory of a solution of (4.4.5) is a closed curve then (y(¢), v(¢)) traverses
the trajectory in a finite time 7', and the solution is periodic with period T'; thatis, y(t + T) = y(¢)
for all 7 in (—o0, 00).

If y is a constant such that p(y) = 0 then y = J is a constant solution of (4.4.5). We say that y is an
equilibrium of (4.4.5) and (¥, 0) is a critical point of the phase plane equivalent equation (4.4.6). We say
that the equilibrium and the critical point are stable if, for any given € > 0 no matter how small, there’s a

8 > 0, sufficiently small, such that if
Vo =32 +v§ <8


http://www-history.mcs.st-and.ac.uk/Mathematicians/Poincare.html
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then the solution of the initial value problem
Y +q(r. ¥y +p(y) =0 y(0)=yo. y'(0)=nwo

satisfies the inequality

V@) =92 + @)? <e

forall # > 0. Figure 4.4.1 illustrates the geometrical interpretation of this definition in the Poincaré phase
plane: if (o, vo) is in the smaller shaded circle (with radius §), then (y(¢), v(¢)) must be in in the larger
circle (with radius €) for all > 0.

v
<

Figure 4.4.1 Stability: if (yo, vo) is in the smaller circle then (y(¢), v(¢)) is in the larger circle for all
t>0

If an equilibrium and the associated critical point are not stable, we say they are unstable. To see if
you really understand what stable means, try to give a direct definition of unstable (Exercise 22). We’ll
illustrate both definitions in the following examples.

The Undamped Case

We’ll begin with the case where g = 0, so (4.4.5) reduces to
y'+ p(y)=0. (4.4.7)

We say that this equation - as well as any physical situation that it may model - is undamped. The phase
plane equivalent of (4.4.7) is the separable equation

dv

& + p(y) =0.

v
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Integrating this yields
2

% + PO =c, (4.4.8)

where c is a constant of integration and P(y) = [ p(y)dy is an antiderivative of p.

If (4.4.7) is the equation of motion of an object of mass m, then mv? /2 is the kinetic energy and m P (y)
is the potential energy of the object; thus, (4.4.8) says that the total energy of the object remains constant,
or is conserved. In particular, if a trajectory passes through a given point (yo, vg) then

2
v
c= 70 + P (o).

Example 4.4.1 [The Undamped Spring - Mass System] Consider an object with mass m suspended from
a spring and moving vertically. Let y be the displacement of the object from the position it occupies when
suspended at rest from the spring (Figure 4.4.2).

Figure442 (a) y >0 (b)y =0 (¢)y <0

Assume that if the length of the spring is changed by an amount AL (positive or negative), then the
spring exerts an opposing force with magnitude k|AL|, where k is a positive constant. In Section 6.1 it
will be shown that if the mass of the spring is negligible compared to m and no other forces act on the
object then Newton’s second law of motion implies that

my" = —ky, (4.4.9)

which can be written in the form (4.4.7) with p(y) = ky/m. This equation can be solved easily by a
method that we’ll study in Section 5.2, but that method isn’t available here. Instead, we’ll consider the
phase plane equivalent of (4.4.9).
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> <

A
Y

Figure 4.4.3 Trajectories of my” +ky =0

From (4.4.3), we can rewrite (4.4.9) as the separable equation

dv
mvE —ky.
Integrating this yields
mv? _ ky?
o T T e
which implies that
mv? +ky? =p (4.4.10)

(p = 2c¢). This defines an ellipse in the Poincaré phase plane (Figure 4.4.3).
We can identify p by setting # = 0in (4.4.10); thus, p = mv(z) + ky(z), where yo = y(0) and vo = v(0).
To determine the maximum and minimum values of y we set v = 0 in (4.4.10); thus,

Ymax =R and  ypn = —R, with R = g. 44.11)
Equation (4.4.9) has exactly one equilibrium, y = 0, and it’s stable. You can see intuitively why this is
so: if the object is displaced in either direction from equilibrium, the spring tries to bring it back.
In this case we can find y explicitly as a function of . (Don’t expect this to happen in more complicated
problems!) If v > 0 on an interval 7, (4.4.10) implies that

dy _ _ [p=ky?
e m
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======= AN
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Figure 4.4.4 y = Rsin(wot + ¢)

on /. This is equivalent to

Vi ody [k
——— =g, Where wy=,—. 4.4.12)
Ve —kyrd m

Vkdy o [k (Y
ﬁzsm ;y + ¢ = sin (E)+c

(see (4.4.11)), (4.4.12) implies that that there’s a constant ¢ such that

Since

(YN _

sin (R)—a)ot+¢
or

y = Rsin(wot + ¢)

for all ¢ in /. Although we obtained this function by assuming that v > 0, you can easily verify that y
satisfies (4.4.9) for all values of ¢. Thus, the displacement varies periodically between —R and R, with
period T = 27 /wq (Figure 4.4.4). (If you’ve taken a course in elementary mechanics you may recognize
this as simple harmonic motion.)

Example 4.4.2 [The Undamped Pendulum] Now we consider the motion of a pendulum with mass m,
attached to the end of a weightless rod with length L that rotates on a frictionless axle (Figure 4.4.5). We
assume that there’s no air resistance.
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Figure 4.4.5 The undamped pendulum

(a) Stable equilibrium (b) Unstable equilibrium

Figure 4.4.6 (a) Stable equilibrium (b) Unstable equilibrium

Let y be the angle measured from the rest position (vertically downward) of the pendulum, as shown
in Figure 4.4.5. Newton’s second law of motion says that the product of m and the tangential acceleration
equals the tangential component of the gravitational force; therefore, from Figure 4.4.5,

mLy"” = —mgsiny,

or
Yy = —% sin y. (4.4.13)

Since sinnm = 0 if n is any integer, (4.4.13) has infinitely many equilibria’y,, = nx. If n is even, the
mass is directly below the axle (Figure 4.4.6 (a)) and gravity opposes any deviation from the equilibrium.
However, if n is odd, the mass is directly above the axle (Figure 4.4.6 (b)) and gravity increases any
deviation from the equilibrium. Therefore we conclude on physical grounds that y,,, = 2mu is stable
and y,,,4+1 = (2m + 1)m is unstable.

The phase plane equivalent of (4.4.13) is

dv g .
v @ =-7 sin y,
where v = y’ is the angular velocity of the pendulum. Integrating this yields
v g
5 = T cosy +c. 4.4.14)
If v = vo when y = 0, then
V% _&
2 L
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so (4.4.14) becomes

2

v Ch 0o 28 ..,

=20 _21= — 0 _ %5 Z,

> > (1 —cosy) 7 sin >
which is equivalent to

v2 = v2 — v2 sin? % (4.4.15)
where
Ve =2 %

The curves defined by (4.4.15) are the trajectories of (4.4.13). They are periodic with period 27 in y,
which isn’t surprising, since if y = y(¢) is a solution of (4.4.13) then so is y, = y(t) + 2nx for any
integer n. Figure 4.4.7 shows trajectories over the interval [—r, r]. From (4.4.15), you can see that if
|vo| > v, then v is nonzero for all £, which means that the object whirls in the same direction forever, as in
Figure 4.4.8. The trajectories associated with this whirling motion are above the upper dashed curve and
below the lower dashed curve in Figure 4.4.7. You can also see from (4.4.15) that if 0 < |vg| < v¢,then
v = 0 when y = % ynax, Where

Ymax = 2sin"(Jvo|/ve).

In this case the pendulum oscillates periodically between —ymax and ymax, as shown in Figure 4.4.9. The
trajectories associated with this kind of motion are the ovals between the dashed curves in Figure 4.4.7.
It can be shown (see Exercise 21 for a partial proof) that the period of the oscillation is

/2 do
T = 8/ S
0 ,/vcz—v(z)sinZQ

Although this integral can’t be evaluated in terms of familiar elementary functions, you can see that it’s
finite if |vg| < vc.

The dashed curves in Figure 4.4.7 contain four trajectories. The critical points (7, 0) and (—x, 0) are
the trajectories of the unstable equilibrium solutions y = 4. The upper dashed curve connecting (but
not including) them is obtained from initial conditions of the form y(z9) = 0, v(tp) = vc. If y is any
solution with this trajectory then

(4.4.16)

lim y(t) =7 and lim y(t) = —m.
t—>00 t——00

The lower dashed curve connecting (but not including) them is obtained from initial conditions of the

form y(t9) = 0, v(fo) = —v.. If y is any solution with this trajectory then
lim y(tf) = —7 and lim y() =m.
t—>00 t——00

Consistent with this, the integral (4.4.16) diverges to oo if vg = £v,. (Exercise 21) .
Since the dashed curves separate trajectories of whirling solutions from trajectories of oscillating solu-
tions, each of these curves is called a separatrix.
In general, if (4.4.7) has both stable and unstable equilibria then the separatrices are the curves given
by (4.4.8) that pass through unstable critical points. Thus, if (3, 0) is an unstable critical point, then
02
5t P(y) = P(Q) (4.4.17)

defines a separatrix passing through (7, 0).
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Figure 4.4.7 Trajectories of the undamped pendulum

‘\\
4 .\\ ® ,4:}@9{ {’rpg)g,;\
® °
e
- ~ . -7
Figure 4.4.8 The whirling undamped pendulum Figure 4.4.9 The oscillating undamped pendulum
Stability and Instability Conditions for y” + p(y) =0
It can be shown (Exercise 23) that an equilibrium y of an undamped equation
y'+p(y) =0 (4.4.18)

is stable if there’s an open interval (a, b) containing y such that

p(y)<0ifa<y<yand p(y) >0 if y<y<b. (4.4.19)

If we regard p(y) as a force acting on a unit mass, (4.4.19) means that the force resists all sufficiently
small displacements from y.

We’ve already seen examples illustrating this principle. The equation (4.4.9) for the undamped spring-
mass system is of the form (4.4.18) with p(y) = ky/m, which has only the stable equilibriumy = 0. In
this case (4.4.19) holds with a = —oo and b = oco. The equation (4.4.13) for the undamped pendulum is
of the form (4.4.18) with p(y) = (g/L)sin y. We’ve seen that y = 2mr is a stable equilibrium if m is
an integer. In this case

p(y)=siny <0 if Qm—1)r <y <2mnx

and
p(y) >0 if 2mr <y < (2m + Dm.
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It can also be shown (Exercise 24) that y is unstable if there’s a » > ¥ such that
p(y) <0 if y<y<b (4.4.20)

or an a <y such that
py)>0ifa<y<y. (4.4.21)

If we regard p(y) as a force acting on a unit mass, (4.4.20) means that the force tends to increase all
sufficiently small positive displacements from y, while (4.4.21) means that the force tends to increase the
magnitude of all sufficiently small negative displacements from y.

The undamped pendulum also illustrates this principle. We’ve seen that y = (2m + 1) is an unstable
equilibrium if m is an integer. In this case

siny <0 if Cm+ )r <y < (2m + 2)m,
0 (4.4.20) holds with b = (2m + 2)7x, and
siny >0 if 2mn <y < (2m + )m,
so (4.4.21) holds witha = 2m.

Example 4.4.3 The equation
yVi+yy-1)=0 (4.422)

is of the form (4.4.18) with p(y) = y(y — 1). Therefore y = 0 and y = 1 are the equilibria of (4.4.22).
Since
yo—-1)>0 ify<Oory>lI,
<0 if0<y<l,

v = Ois unstable and y = 1 is stable.
The phase plane equivalent of (4.4.22) is the separable equation

dv
v—+y(y—-1)=0.
dy
Integrating yields
w2 3 )2
—+ L =,
2 + 3 2
which we rewrite as |
v? + 3 Y22y —-3)=c (4.4.23)

after renaming the constant of integration. These are the trajectories of (4.4.22). If y is any solution of
(4.4.22), the point (y(¢), v(¢)) moves along the trajectory of y in the direction of increasing y in the upper
half plane (v = y’ > 0), or in the direction of decreasing y in the lower half plane (v = y’ < 0).

Figure 4.4.10 shows typical trajectories. The dashed curve through the critical point (0, 0), obtained by
setting ¢ = 0 in (4.4.23), separates the y-v plane into regions that contain different kinds of trajectories;
again, we call this curve a separatrix. Trajectories in the region bounded by the closed loop (b) are closed
curves, so solutions associated with them are periodic. Solutions associated with other trajectories are not
periodic. If y is any such solution with trajectory not on the separatrix, then

lim y(t1) = —oo, lim y() = -—oo,
t—>00 t——00

lim v(t) = -—oo, lim v(t) = 0.
t—>00 t——00
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Figure 4.4.10 Trajectories of y” + y(y —1) =0

The separatrix contains four trajectories of (4.4.22). One is the point (0, 0), the trajectory of the equi-
librium y = 0. Since distinct trajectories can’t intersect, the segments of the separatrix marked (a), (b),
and (c¢) — which don’t include (0, 0) — are distinct trajectories, none of which can be traversed in finite
time. Solutions with these trajectories have the following asymptotic behavior:

lim y(t) = 0, lim y(t) = -—oo,
—>00 —>—00
lim v(t) = 0, lim v() = oo (on (a))
1—>00 —>—00
lim y(t) = 0, lim y@) = 0,
—>00 —>—00
lim v(t) = 0, lim v() = 0 (on(b)) °
1—>00 —>—00
lim y(t) = -—oo, lim y() = 0,
t—>00 t——00
lim v(t) = —oo, lim wv(?) 0 (on(c)).
t—>00 t——00
The Damped Case
The phase plane equivalent of the damped autonomous equation
Yita(y. )y +p() =0 (4.4.24)

is
vj—v +q(y,v)v+ p(y) =0.
y
This equation isn’t separable, so we can’t solve it for v in terms of y, as we did in the undamped case,
and conservation of energy doesn’t hold. (For example, energy expended in overcoming friction is lost.)
However, we can study the qualitative behavior of its solutions by rewriting it as
r(Q)

d
d_” = —q(y,v) - 2 (4.4.25)
y v
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and considering the direction fields for this equation. In the following examples we’ll also be showing
computer generated trajectories of this equation, obtained by numerical methods. The exercises call for
similar computations. The methods discussed in Chapter 3 are not suitable for this task, since p(y)/v in
(4.4.25) is undefined on the y axis of the Poincaré phase plane. Therefore we’re forced to apply numerical
methods briefly discussed in Section 10.1 to the system

! v

Vo= —q(y.v)v = p(y).
which is equivalent to (4.4.24) in the sense defined in Section 10.1. Fortunately, most differential equation
software packages enable you to do this painlessly.

In the text we’ll confine ourselves to the case where ¢ is constant, so (4.4.24) and (4.4.25) reduce to

y'+ey' +p(y)=0 (4.4.26)
and
dv _p®)
dy v

(We’ll consider more general equations in the exercises.) The constant ¢ is called the damping constant.
In situations where (4.4.26) is the equation of motion of an object, ¢ is positive; however, there are
situations where ¢ may be negative.

The Damped Spring-Mass System

Earlier we considered the spring - mass system under the assumption that the only forces acting on the
object were gravity and the spring’s resistance to changes in its length. Now we’ll assume that some
mechanism (for example, friction in the spring or atmospheric resistance) opposes the motion of the
object with a force proportional to its velocity. In Section 6.1 it will be shown that in this case Newton’s
second law of motion implies that

my” + ¢y +ky =0, (4.4.27)

where ¢ > 0 is the damping constant. Again, this equation can be solved easily by a method that
we’ll study in Section 5.2, but that method isn’t available here. Instead, we’ll consider its phase plane
equivalent, which can be written in the form (4.4.25) as

av__¢_ky (4.4.28)

(A minor note: the ¢ in (4.4.26) actually corresponds to ¢/m in this equation.) Figure 4.4.11 shows a
typical direction field for an equation of this form. Recalling that motion along a trajectory must be in the
direction of increasing y in the upper half plane (v > 0) and in the direction of decreasing y in the lower
half plane (v < 0), you can infer that all trajectories approach the origin in clockwise fashion. To confirm
this, Figure 4.4.12 shows the same direction field with some trajectories filled in. All the trajectories
shown there correspond to solutions of the initial value problem

my” + ¢y +ky =0, y(0)=yo. »'(0)=nvo,

where
mv(z) + ky(z) = p (apositive constant);

thus, if there were no damping (¢ = 0), all the solutions would have the same dashed elliptic trajectory,
shown in Figure 4.4.14.
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Figure 4.4.11 A typical direction field for
my” +cy' +ky =0with0 < ¢ < ¢;
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Figure 4.4.12 Figure 4.4.11 with some trajectories
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Solutions corresponding to the trajectories in Figure 4.4.12 cross the y-axis infinitely many times. The
corresponding solutions are said to be oscillatory (Figure 4.4.13) It is shown in Section 6.2 that there’s
a number ¢ such that if 0 < ¢ < ¢ then all solutions of (4.4.27) are oscillatory, while if ¢ > ¢;, no
solutions of (4.4.27) have this property. (In fact, no solution not identically zero can have more than two
zeros in this case.) Figure 4.4.14 shows a direction field and some integral curves for (4.4.28) in this case.

A

Figure 4.4.13 An oscillatory solution of my” + ¢y’ +ky =0

Example 4.4.4 (The Damped Pendulum) Now we return to the pendulum. If we assume that some
mechanism (for example, friction in the axle or atmospheric resistance) opposes the motion of the pen-
dulum with a force proportional to its angular velocity, Newton’s second law of motion implies that

mLy" = —cy' —mgsiny, (4.4.29)

where ¢ > 0 is the damping constant. (Again, a minor note: the ¢ in (4.4.26) actually corresponds to
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¢/mL in this equation.) To plot a direction field for (4.4.29) we write its phase plane equivalent as

Figure 4.4.15 shows trajectories of four solutions of (4.4.29), all satisfying y(0)

2, 3, imparting the initial velocity v(0) = vp,
then settle into decaying oscillation about the stable equilibriumy = 2mm.

+ 949  °o o ¥ o o -
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Figure 4.4.14 A typical direction field for my” + ¢y’ + ky = 0 with ¢ > ¢;

Figure 4.4.15 Four trajectories of the damped pendulum
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4.4 Exercises

In Exercises 1-4 find the equations of the trajectories of the given undamped equation. Identify the
equilibrium solutions, determine whether they are stable or unstable, and plot some trajectories. HINT:
Use Egn. (4.4.8) to obtain the equations of the trajectories.

1. y//+y3:O 2. y//+y2:O

3. y”+y|y|=0 4. y”+ye‘y=0

In Exercises 5-8 find the equations of the trajectories of the given undamped equation. Identify the
equilibrium solutions, determine whether they are stable or unstable, and find the equations of the sepa-
ratrices (that is, the curves through the unstable equilibria). Plot the separatrices and some trajectories
in each of the regions of Poincaré plane determined by them. HINT: Use Eqn. (4.4.17) to determine the
separatrices.

5. yﬂ—y3+4)’=0 6. y”+y3_4y:()
7. [CG]y 4y =D =4 =0 8 [CG]y +y( -2 -D+2) =0

In Exercises 9—12 plot some trajectories of the given equation for various values (positive, negative, zero)
of the parameter a. Find the equilibria of the equation and classify them as stable or unstable. Explain
why the phase plane plots corresponding to positive and negative values of a differ so markedly. Can you
think of a reason why zero deserves to be called the critical value of a?

9. y”+y2—a=0 10. y”+y3—ay=0
1. [L]y" =y*+ay=0 12. [L]y' +y-ay®=0

In Exercises 13-18 plot trajectories of the given equation for ¢ = 0 and small nonzero (positive and
negative) values of c to observe the effects of damping.

13. y”+cy’+y3=0 14. y”-l—Cy/—y:O
15. y”+cy’+y3=0 16. y”+cy’+y2=0
17. y”+cy’+y|y|=0 18. y”+y(y—1)+cy=0

19. The van der Pol equation

Yy —pu(l—y»y +y =0, (A)

where p is a positive constant and y is electrical current (Section 6.3), arises in the study of an
electrical circuit whose resistive properties depend upon the current. The damping term
—u(1 = y?)y’" works to reduce |y| if |y| < 1 or to increase |y| if |y| > 1. It can be shown that


http://www-history.mcs.st-and.ac.uk/Mathematicians/Van_der_Pol.html

20.

21.
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van der Pol’s equation has exactly one closed trajectory, which is called a limit cycle. Trajectories
inside the limit cycle spiral outward to it, while trajectories outside the limit cycle spiral inward to it
(Figure 4.4.16). Use your favorite differential equations software to verify this for u = .5,1.1.5, 2.
Useagridwith—4 <y <4and —4 <v < 4.

Figure 4.4.16 Trajectories of van der Pol’s equation

Rayleigh’s equation,
Y == /3)y +y =0
also has a limit cycle. Follow the directions of Exercise 19 for this equation.
In connection with Eqn (4.4.15), suppose y(0) = 0 and y’(0) = v, where 0 < vg < ve.

(a) Let 77 be the time required for y to increase from zero to yp.x = 2 sin~! (vo/ve). Show that
W _ g sintyja 0<i<T A
o= vg —v2sin” y/2, <t<T. (A)

(b) Separate variables in (A) and show that

Ymax d
T, = / i (B)
o JvZ—vZsinfu/2

(¢) Substitutesinu/2 = (vg/v,) sin 0 in (B) to obtain

/2
Ty =2/ I (©)
0 Jv2—1v2sin?0
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(d) Conclude from symmetry that the time required for (y(¢), v(¢)) to traverse the trajectory

2 _ 2 202
Ve =g — v sin” y/2

is T = 4T}, and that consequently y(t + T) = y(¢) and v(r + T) = v(¢); that is, the
oscillation is periodic with period T .

(e) Show that if vy = v, the integral in (C) is improper and diverges to co. Conclude from this
that y(¢#) < m forall ¢ and lim; o y(¢) = 7.

22. Give a direct definition of an unstable equilibrium of y” + p(y) = 0.

23. Let p be continuous for all y and p(0) = 0. Suppose there’s a positive number p such that
p(y)>0if0<y<pand p(y) <0if—p <y <0.For0 <r < plet

r 0 r 0
oc(r):min{/o p(x)dx,/ |p(x)|dx} and ,B(r):max{/o p(x)dx,/ |p(x)|dx}.

—r —r

Let y be the solution of the initial value problem

y'+p(») =0, y(0)=wvo, y'(0)=nvo,

and define ¢ (o, vo) = v3 + 2 [;° p(x) dx.
(a) Show that

0 < c(vo,v0) < g +2B(Iyol) if 0 <|yol < p.
(b) Show that

y
v + 2/ p(x)dx = c(yo,v9), t>0.
0

(¢) Conclude from (b) that if ¢(yo, vo) < 20(r) then |y| < r, t > 0.
(d) Givene > 0, let § > 0 be chosen so that

82 +2B(8) < max {62/2, 2a(€/«/§)} .

Show that if /y2 4+ v2 < § then y/y2 + v2 < € for 1 > 0, which implies that y = Ois a
stable equilibrium of y” + p(y) = 0.
(e) Now let p be continuous for all y and p(y) = 0, where y is not necessarily zero. Suppose
there’s a positive number p such that p(y) > 0if y < y <y + pand p(y) < 0if
Yy —p <y <7y. Show thaty is a stable equilibrium of y”" + p(y) = 0.
24. Let p be continuous for all y.

(a) Suppose p(0) = 0 and there’s a positive number p such that p(y) < 0if0 < y < p. Let € be
any number such that 0 < € < p. Show that if y is the solution of the initial value problem

y'+p(») =0, y(0)=yo. »(0)=0

with 0 < yo < €, then y(t) > € for some t > 0. Conclude that y = 0 is an unstable
equilibriumof y” 4+ p(y) = 0. HINT: Let k = miny,<x<c (—p(x)), which is positive. Show
thatif y(t) < € for0 <t < T then kT? < 2(e — yo).

(b) Now let p(y) = 0, where y isn’t necessarily zero. Suppose there’s a positive number p such
that p(y) < 0if y < y <3 + p. Show that y is an unstable equilibrium of y” + p(y) = 0.
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(¢) Modify your proofs of (a) and (b) to show that if there’s a positive number p such that
y your p p P
p(y) >0if y — p < y <y, then y is an unstable equilibrium of y” + p(y) = 0.

4.5 APPLICATIONS TO CURVES

One-Parameter Families of Curves

We begin with two examples of families of curves generated by varying a parameter over a set of real
numbers.

Example 4.5.1 For each value of the parameter c, the equation
y—cx?2=0 4.5.1)

defines a curve in the xy-plane. If ¢ # 0, the curve is a parabola through the origin, opening upward if
¢ > 0 ordownward if ¢ < 0. If ¢ = 0, the curve is the x axis (Figure 4.5.1).

Figure 4.5.1 A family of curves defined by y —cx? = 0

Example 4.5.2 For each value of the parameter ¢ the equation
y=x+c 4.5.2)

defines a line with slope 1(Figure 4.5.2).
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<

)
Y

Figure 4.5.3 A family of circles defined by
Figure 4.5.2 A family of lines defined by y = x 4 ¢ x24+y2—-c2=0

Definition 4.5.1 An equation that can be written in the form
H(x,y,c)=0 (4.5.3)

is said to define a one-parameter family of curves if, for each value of ¢ in in some nonempty set of real
numbers, the set of points (x, y) that satisfy (4.5.3) forms a curve in the xy-plane.

Equations (4.5.1) and (4.5.2) define one—parameter families of curves. (Although (4.5.2) isn’t in the
form (4.5.3), it can be written in this formas y —x —c¢ = 0.)

Example 4.5.3 If ¢ > 0, the graph of the equation
x24+y2—c=0 (45.4)

is a circle with center at (0, 0) and radius /c. If ¢ = 0, the graph is the single point (0, 0). (We don’t
regard a single point as a curve.) If ¢ < 0, the equation has no graph. Hence, (4.5.4) defines a one—
parameter family of curves for positive values of ¢. This family consists of all circles centered at (0, 0)
(Figure 4.5.3).

Example 4.5.4 The equation

x24+y24+c2=0
does not define a one-parameter family of curves, since no (x, y) satisfies the equation if ¢ # 0, and only
the single point (0, 0) satisfies itif ¢ = 0. |

Recall from Section 1.2 that the graph of a solution of a differential equation is called an integral curve
of the equation. Solving a first order differential equation usually produces a one—parameter family of
integral curves of the equation. Here we are interested in the converse problem: given a one—parameter
family of curves, is there a first order differential equation for which every member of the family is an
integral curve. This suggests the next definition.

Definition 4.5.2 If every curve in a one-parameter family defined by the equation

H(x,y,c)=0 4.5.5)
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is an integral curve of the first order differential equation
F(x,y,y) =0, (4.5.6)
then (4.5.6) is said to be a differential equation for the family.

To find a differential equation for a one—parameter family we differentiate its defining equation (4.5.5)
implicitly with respect to x, to obtain

Hx(xvyvc)-'_Hy(x’yac)y/:O‘ (457)

If this equation doesn’t, then it’s a differential equation for the family. If it does contain c, it may be
possible to obtain a differential equation for the family by eliminating ¢ between (4.5.5) and (4.5.7).

Example 4.5.5 Find a differential equation for the family of curves defined by

y = cx? (4.5.8)

Solution Differentiating (4.5.8) with respect to x yields
y = 2cx.
Therefore ¢ = y’/2x, and substituting this into (4.5.8) yields

xy'

y=2

as a differential equation for the family of curves defined by (4.5.8). The graph of any function of the
form y = cx? is an integral curve of this equation. [ ]

The next example shows that members of a given family of curves may be obtained by joining integral
curves for more than one differential equation.

Example 4.5.6
(a) Try to find a differential equation for the family of lines tangent to the parabola y = x2.

(b) Find two tangent lines to the parabola y = x? that pass through (2, 3), and find the points of
tangency.

SOLUTION(a) The equation of the line through a given point (xo, yo) with slope m is
Y = yo +m(x — Xxp). (4.5.9)

If (x0, yo) is on the parabola, then yo = x(z) and the slope of the tangent line through (xg, x(z)) ism = 2Xxp;
hence, (4.5.9) becomes
y = x% + 2x0(x — x0),

or, equivalently,
y = —x3 + 2x0x. (4.5.10)
Here x¢ plays the role of the constant ¢ in Definition 4.5.1; that is, varying xo over (—oo, co) produces
the family of tangent lines to the parabola y = x2.
Differentiating (4.5.10) with respect to x yields y’ = 2xy.. We can express x¢ in terms of x and y by
rewriting (4.5.10) as
xg —2xox +y =0
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and using the quadratic formula to obtain

Xo=x=%Vx2—y. (4.5.11)

We must choose the plus sign in (4.5.11) if x < x¢ and the minus sign if x > x¢; thus,

Xo = (x+\/x2—y) if x < xo
and

xoz(x—\/xz—y) if x > xp.

Since y’ = 2xy, this implies that

y =2 (x + /2= y) L if x < xo (4.5.12)

and
y =2 (x - y) . if x> xo. (4.5.13)

Neither (4.5.12) nor (4.5.13) is a differential equation for the family of tangent lines to the parabola
y = x2. However, if each tangent line is regarded as consisting of two tangent half lines joined at the
point of tangency, (4.5.12) is a differential equation for the family of tangent half lines on which x is less
than the abscissa of the point of tangency (Figure 4.5.4(a)), while (4.5.13) is a differential equation for
the family of tangent half lines on which x is greater than this abscissa (Figure 4.5.4(b)). The parabola
y = x2 is also an integral curve of both (4.5.12) and (4.5.13).

<
<

Figure 4.5.4

SOLUTION(b) From (4.5.10) the point (x, y) = (2, 3) is on the tangent line through (xo, x2) if and only
if
3= —xg + 4x,
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which is equivalent to
X2 —4x04+3 = (x0 —3)(xo— 1) = 0.
Letting xo = 3 in (4.5.10) shows that (2, 3) is on the line
y = -9+ 6x,

which is tangent to the parabola at (xo, x(z)) = (3, 9), as shown in Figure 4.5.5
Letting xo = 1 in (4.5.10) shows that (2, 3) is on the line

y=—1+2x,

which is tangent to the parabola at (xqo. x2) = (1. 1), as shown in Figure 4.5.5.

Figure 4.5.5

Geometric Problems

We now consider some geometric problems that can be solved by means of differential equations.
Example 4.5.7 Find curves y = y(x) such that every point (xo, y(xo)) on the curve is the midpoint

of the line segment with endpoints on the coordinate axes and tangent to the curve at (xo, y(xo)) (Fig-
ure 4.5.6).

Solution The equation of the line tangent to the curve at P = (x¢, y(xo) is
y = y(xo) + ' (x0)(x — Xo).
If we denote the x and y intercepts of the tangent line by x; and y; (Figure 4.5.6), then

0 = y(xo) + ¥ (x0)(x1 — x0) (4.5.14)
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and
y1 = y(xo0) — ¥'(x0)xo. (4.5.15)

From Figure 4.5.6, P is the midpoint of the line segment connecting (x7,0) and (0, yy) if and only if
x7 = 2xp and y; = 2y(x¢). Substituting the first of these conditions into (4.5.14) or the second into
(4.5.15) yields

y(x0) + ¥’ (x0)x0 = 0.

Since xy is arbitrary we drop the subscript and conclude that y = y(x) satisfies

y+xy =0,
which can be rewritten as
(xy) = 0.
Integrating yields xy = ¢, or
c
y=—.
X

If ¢ = O this curve is the line y = 0, which does not satisfy the geometric requirements imposed by the
problem; thus, ¢ # 0, and the solutions define a family of hyperbolas (Figure 4.5.7).

y y
A A

Figure 4.5.6 Figure 4.5.7

Example 4.5.8 Find curves y = y(x) such that the tangent line to the curve at any point (x¢, y(x0))
intersects the x-axis at (x(z), 0). Figure 4.5.8 illustrates the situation in the case where the curve is in the
first quadrant and 0 < x < 1.

Solution The equation of the line tangent to the curve at (xo, y(xo)) is
y = y(x0) + ¥'(x0)(x — xo).
Since (x(z) ,0) is on the tangent line,
0 = y(x0) + ' (x0) (x5 — o).
Since xy is arbitrary we drop the subscript and conclude that y = y(x) satisfies

y 4y (x%=x)=0.
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7

y

Figure 4.5.8 Figure 4.5.9
Therefor
y 1 1 1 1
y  x2—-x  x(x—=1 x x-=1
o) X
1n|y|=1n|x|—1n|x—l|+k=1n‘ 1‘+k,
X —
and
_ox
YR T

If ¢ = 0, the graph of this function is the x-axis. If ¢ # 0, it’s a hyperbola with vertical asymptote x = 1
and horizontal asymptote y = c¢. Figure 4.5.9 shows the graphs for ¢ # 0.

Orthogonal Trajectories

Two curves C; and C, are said to be orthogonal at a point of intersection (xg, yo) if they have perpen-
dicular tangents at (xo, o). (Figure 4.5.10). A curve is said to be an orthogonal trajectory of a given
family of curves if it’s orthogonal to every curve in the family. For example, every line through the origin
is an orthogonal trajectory of the family of circles centered at the origin. Conversely, any such circle is
an orthogonal trajectory of the family of lines through the origin (Figure 4.5.11).

Orthogonal trajectories occur in many physical applications. For example, if u = u(x, y) is the
temperature at a point (x, y), the curves defined by

ulx,y)=c (4.5.16)

are called isothermal curves. The orthogonal trajectories of this family are called heat-flow lines, because
at any given point the direction of maximum heat flow is perpendicular to the isothermal through the
point. If u represents the potential energy of an object moving under a force that depends upon (x, y),
the curves (4.5.16) are called equipotentials, and the orthogonal trajectories are called lines of force.
From analytic geometry we know that two nonvertical lines L, and L, with slopes m and m, re-
spectively, are perpendicular if and only if m, = —1/my; therefore, the integral curves of the differential
equation
1

S(x,y)

/

y ==

N\
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y
Figure 4.5.10 Curves orthogonal at a point of Figure 4.5.11 Orthogonal families of circles and
intersection lines

are orthogonal trajectories of the integral curves of the differential equation

y' = f(x.y),

because at any point (xo, yo) where curves from the two families intersect the slopes of the respective

tangent lines are
1

 f(x0.y0)

This suggests a method for finding orthogonal trajectories of a family of integral curves of a first order
equation.

mi; = f(xo,y0) and my =

Finding Orthogonal Trajectories

Step 1. Find a differential equation
Y= f(x.y)
for the given family.

Step 2. Solve the differential equation

1
S(x,y)

/

y:

to find the orthogonal trajectories.
Example 4.5.9 Find the orthogonal trajectories of the family of circles

x2+y2=c% (c>0). (4.5.17)
Solution To find a differential equation for the family of circles we differentiate (4.5.17) implicitly with

respect to x to obtain
2x +2yy' =0,
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or

Therefore the integral curves of

are orthogonal trajectories of the given family. We leave it to you to verify that the general solution of
this equation is
y = kx,

where k is an arbitrary constant. This is the equation of a nonvertical line through (0, 0). The y axis is
also an orthogonal trajectory of the given family. Therefore every line through the origin is an orthogonal
trajectory of the given family (4.5.17) (Figure 4.5.11). This is consistent with the theorem of plane
geometry which states that a diameter of a circle and a tangent line to the circle at the end of the diameter
are perpendicular.

Example 4.5.10 Find the orthogonal trajectories of the family of hyperbolas
xy=c¢ (c#0) (4.5.18)

(Figure 4.5.7).

Solution Differentiating (4.5.18) implicitly with respect to x yields

y+xy =0,
or
/ Y.
y =-=
x
thus, the integral curves of
, X
y ==
y

and integrating yields
y2 _ X2 — k,

which is the equation of a hyperbolaif k # 0, or of the lines y = x and y = —x if k = 0 (Figure 4.5.12).
Example 4.5.11 Find the orthogonal trajectories of the family of circles defined by
(x—c)+y2=c? (c#0). (4.5.19)

These circles are centered on the x-axis and tangent to the y-axis (Figure 4.5.13(a)).

Solution Multiplying out the left side of (4.5.19) yields

x2—2cx +y? =0, (4.5.20)
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y

7

| N

Figure 4.5.12 Orthogonal trajectories of the hyperbolas xy = ¢

and differentiating this implicitly with respect to x yields

2(x —c)+2yy' =0. (4.5.21)
From (4.5.20),
2., .2
xX“+y
- o2x
S0
. _x_x2+y2 _x2o)?
N 2 2x

Substituting this into (4.5.21) and solving for y’ yields

2_ .2
y=2_1 (4.5.22)
2xy
The curves defined by (4.5.19) are integral curves of (4.5.22), and the integral curves of
p_ 2%y
T2 y2

are orthogonal trajectories of the family (4.5.19). This is a homogeneous nonlinear equation, which we
studied in Section 2.4. Substituting y = ux yields
2x (ux) 2u

/
ux+u= =
x2— (ux)?2 1 —u?’

SO
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Separating variables yields

1—u? , 1

u(u? + 1)u X

1 2u ], 1
- |u = -
u uz+1 X

Inju| —In(u? + 1) = In|x| + k.

or, equivalently,

Therefore

By substitutingu = y/x, we see that
In|y| —In|x| — In(x* + y?) + In(x?) = In|x| + &,
which, since In(x?) = 21n|x/, is equivalent to
In|y| —In(x* + y*) = k,

or

Iyl =eF* + 7).
To see what these curves are we rewrite this equation as

Ay —e =0
and complete the square to obtain
22 4 (Iyl = e7F/2)* = (/2%

This can be rewritten as

x>+ (y—h?=n
where

— ify =0,

—-—— ify <o0.
) y =
Thus, the orthogonal trajectories are circles centered on the y axis and tangent to the x axis (Fig-
ure 4.5.13(b)). The circles for which 2 > 0 are above the x-axis, while those for which 2 < 0 are

below.

T oo o A E 1 £ T v ot A [ N2 L2 D BN T e ot A 2 1\2 1.2
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4.5 Exercises

In Exercises 1-8 find a first order differential equation for the given family of curves.

10.

y(x2 + yz) =c 2. ¥ = cy
In|xy| = c(x? + y?) 4. y=x"24cx
y=e +ce™ 6. y=x3+5
X
y =sinx + ce* 8. y=e*+c(l+x?

Show that the family of circles
(x—xo)2+y2 =1, —00 < x9 < 00,

can be obtained by joining integral curves of two first order differential equations. More specifi-
cally, find differential equations for the families of semicircles

(x—x0)2+y2=1, Xo<Xx<xp+1, —00 < x9 <00,
2 2 _
(x=x0)"+y"=1,x0—1<x <Xx9, —00 < X9 < 00.

Suppose f and g are differentiable for all x. Find a differential equation for the family of functions
y = f + cg (c=constant).

In Exercises 11-13 find a first order differential equation for the given family of curves.

11.
12.
13.
14.

15.

Lines through a given point (xo, yo).
Circles through (-1, 0) and (1, 0).
Circles through (0, 0) and (0, 2).

Use the method Example 4.5.6(a) to find the equations of lines through the given points tangent to
the parabola y = x2. Also, find the points of tangency.

@ (5.9 (b) (6.11) (¢) (=6,20) @ (=3.5)
(a) Show that the equation of the line tangent to the circle

x*4y?=1 (A)
at a point (xo, yo) on the circle is
1—
y= 00 i g £ 1 (B)
Yo

(b) Show that if y’ is the slope of a nonvertical tangent line to the circle (A) and (x, y) is a point
on the tangent line then

O *=1)—2xyy +y*—1=0. (©)



16.

17.

18.

(c)

(d)
(e)

(a)

(b)

(c)

(d)
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Show that the segment of the tangent line (B) on which (x — x¢)/yo > 0 is an integral curve

of the differential equation
xy —/x2+y2—1
y' = e : (D)

while the segment on which (x — x¢)/yo < 0is an integral curve of the differential equation

;XY x4 y2 -1
x2—1 ’

B)

HINT: Use the quadratic formula to solve (C) for y’. Then substitute (B) for y and choose
the + sign in the quadratic formula so that the resulting expression for y' reduces to the
known slope y' = —x¢/ yo.

Show that the upper and lower semicircles of (A) are also integral curves of (D) and (E).
Find the equations of two lines through (5,5) tangent to the circle (A), and find the points of
tangency.

Show that the equation of the line tangent to the parabola
x =y (A)
at a point (xo, yo) # (0, 0) on the parabola is

Yo X
=24 . B
Y 2 2yo ®)

Show that if y’ is the slope of a nonvertical tangent line to the parabola (A) and (x, y) is a
point on the tangent line then

4x%2(y")? —4xyy' +x = 0. (©)

Show that the segment of the tangent line defined in (a) on which x > X is an integral curve
of the differential equation

l y+ vy 2—x
y = YEVY )
X
while the segment on which x < X is an integral curve of the differential equation
y—Vy*—x
V= (E)

2x ’

HINT: Use the quadratic formula to solve (C) for y’. Then substitute (B) for y and choose
the + sign in the quadratic formula so that the resulting expression for y' reduces to the
known slope y/ = —.
2y0

Show that the upper and lower halves of the parabola (A), givenby y = /x and y = —/x
for x > 0, are also integral curves of (D) and (E).

Use the results of Exercise 16 to find the equations of two lines tangent to the parabola x = y?
and passing through the given point. Also find the points of tangency.

Find a curve y = y(x) through (1,2) such that the tangent to the curve at any point (xo, y(xo))
intersects the x axis at x; = x¢/2.
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19.

20.

21.

22,

23.

24.
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Find all curves y = y(x) such that the tangent to the curve at any point (x¢, y(xo)) intersects the
X axis at xy = xg.

Find all curves y = y(x) such that the tangent to the curve at any point passes through a given
point (x1, y1).

Find a curve y = y(x) through (1, —1) such that the tangent to the curve at any point (xo, y(xo))
intersects the y axis at y; = xg.

Find all curves y = y(x) such that the tangent to the curve at any point (x¢, y(xo)) intersects the
y axis at y; = Xo.

Find a curve y = y(x) through (0, 2) such that the normal to the curve at any point (xo, y(x0))
intersects the x axis at x; = xo + 1.

Find a curve y = y(x) through (2, 1) such that the normal to the curve at any point (xo, y(xo))
intersects the y axis at yy = 2y(xo).

In Exercises 25-29 find the orthogonal trajectories of the given family of curves.

25.

27.

29.
30.

31.

32.

33.

34.

x2 4+2y? =¢? 26. x24+4xy+yr=c
y =ce** 28. xyex2 =c

ce*
y=—

X

Find a curve through (—1, 3) orthogonal to every parabola of the form
y=1+ cx?
that it intersects. Which of these parabolas does the desired curve intersect?

Show that the orthogonal trajectories of
x2 4+ 2axy+y*=c

satisf
’ ly —x*Fy +x1*" =k

If lines L and L intersect at (xg, yo) and « is the smallest angle through which L must be rotated
counterclockwise about (xg, yo) to bring it into coincidence with L, we say that « is the angle
from L to Ly; thus, 0 < o < m. If L and L are tangents to curves C and Cj, respectively, that
intersect at (xo, yo), we say that C; intersects C at the angle «. Use the identity

tan A + tan B

1 —tan A tan B

to show that if C and C; are intersecting integral curves of

f(x,y) +tanw T
1— f(x,y)tana (oc 7 _)’

respectively, then C; intersects C at the angle o.

tan(A + B) =

y'=f(x,y) and y =

Use the result of Exercise 32 to find a family of curves that intersect every nonvertical line through
the origin at the angle « = /4.
Use the result of Exercise 32 to find a family of curves that intersect every circle centered at the
origin at a given angle o # /2.



CHAPTER 5
Linear Second Order Equations

IN THIS CHAPTER we study a particularly important class of second order equations. Because of
their many applications in science and engineering, second order differential equation have historically
been the most thoroughly studied class of differential equations. Research on the theory of second order
differential equations continues to the present day. This chapter is devoted to second order equations that
can be written in the form

Po(x)y" + P1(x)y’ + P2(x)y = F(x).

Such equations are said to be linear. As in the case of first order linear equations, (A) is said to be
homogeneous if F = 0, or nonhomogeneous if F 0.

SECTION 5.1 is devoted to the theory of homogeneous linear equations.
SECTION 5.2 deals with homogeneous equations of the special form
ay” + by +cy =0,
where a, b, and ¢ are constant (¢ # 0). When you’ve completed this section you’ll know everything there
is to know about solving such equations.
SECTION 5.3 presents the theory of nonhomogeneous linear equations.

SECTIONS 5.4 AND 5.5 present the method of undetermined coefficients, which can be used to solve
nonhomogeneous equations of the form

ay” +by' +cy = F(x),

where a, b, and ¢ are constants and F' has a special form that is still sufficiently general to occur in many
applications. In this section we make extensive use of the idea of variation of parameters introduced in
Chapter 2.

SECTION 5.6 deals with reduction of order, a technique based on the idea of variation of parameters,
which enables us to find the general solution of a nonhomogeneous linear second order equation provided
that we know one nontrivial (not identically zero) solution of the associated homogeneous equation.

SECTION 5.6 deals with the method traditionally called variation of parameters, which enables us to
find the general solution of a nonhomogeneous linear second order equation provided that we know two
nontrivial solutions (with nonconstant ratio) of the associated homogeneous equation.
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5.1 HOMOGENEOUS LINEAR EQUATIONS

A second order differential equation is said to be linear if it can be written as

V' p@)y +qx)y = f(x). (5.1.1)

We call the function f on the right a forcing function, since in physical applications it’s often related to
a force acting on some system modeled by the differential equation. We say that (5.1.1) is homogeneous
if f = 0 or nonhomogeneous if f % 0. Since these definitions are like the corresponding definitions in
Section 2.1 for the linear first order equation

V' 4+ px)y = f(x). (5.12)

it’s natural to expect similarities between methods of solving (5.1.1) and (5.1.2). However, solving (5.1.1)
is more difficult than solving (5.1.2). For example, while Theorem 2.1.1 gives a formula for the general
solution of (5.1.2) in the case where f = 0 and Theorem 2.1.2 gives a formula for the case where f # 0,
there are no formulas for the general solution of (5.1.1) in either case. Therefore we must be content to
solve linear second order equations of special forms.

In Section 2.1 we considered the homogeneous equation y’+ p(x)y = 0 first, and then used a nontrivial
solution of this equation to find the general solution of the nonhomogeneous equation y'+ p(x)y = f(x).
Although the progression from the homogeneous to the nonhomogeneous case isn’t that simple for the
linear second order equation, it’s still necessary to solve the homogeneous equation

V' 4+ px)y +qx)y =0 (5.1.3)

in order to solve the nonhomogeneous equation (5.1.1). This section is devoted to (5.1.3).
The next theorem gives sufficient conditions for existence and uniqueness of solutions of initial value
problems for (5.1.3). We omit the proof.

Theorem 5.1.1 Suppose p and q are continuous on an open interval (a, b), let x¢ be any point in (a, b),
and let kg and ky be arbitrary real numbers. Then the initial value problem

V' p)y +q(x)y =0, y(xo) = ko, ¥'(x0) = ki
has a unique solution on (a, b).

Since y = 0 is obviously a solution of (5.1.3) we call it the trivial solution. Any other solution is
nontrivial. Under the assumptions of Theorem 5.1.1, the only solution of the initial value problem

V' 4+ p(x)y" 4+ q(x)y =0, y(xo) =0, y'(x0) =0

on (a, b) is the trivial solution (Exercise 24).

The next three examples illustrate concepts that we’ll develop later in this section. You shouldn’t be
concerned with how to find the given solutions of the equations in these examples. This will be explained
in later sections.

Example 5.1.1 The coefficients of y” and y in
y'—y=0 (5.1.4)

are the constant functions p = 0 and ¢ = —1, which are continuous on (—o0, 0c0). Therefore Theo-
rem 5.1.1 implies that every initial value problem for (5.1.4) has a unique solution on (—o0, 00).
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(a) Verify that y; = ¢* and y, = e~ are solutions of (5.1.4) on (—o0, 00).

(b) Verity that if ¢; and ¢, are arbitrary constants, y = cje* + cpe™*

(—00, 00).

is a solution of (5.1.4) on

(¢) Solve the initial value problem

4

y'—y=0, y0) =1, »(0)=3. (5.1.5)

SOLUTION(a) If yy = e¥ then yj = e* and y{ = e* = yi. 50 y{ —y1 = 0. If y = ™", then
vy =—e " and yj = e™* = y3,50 yj — y2 = 0.

SoLUTION(b) If

y=cre’ +ce” (5.1.6)
then

V' =cie* —cre™* (5.1.7)
and

y'=cre® + e,
SO

y'i—y = (c1e* +cre™™) —(c1e* + cre™)
ci1(e*—e*)+cafe™ —e ) =0

for all x. Therefore y = c1e* + cpe™* is a solution of (5.1.4) on (—o0, 00).

SOLUTION(¢) We can solve (5.1.5) by choosing ¢ and ¢ in (5.1.6) so that y(0) = 1 and y’(0) = 3.
Setting x = 01in (5.1.6) and (5.1.7) shows that this is equivalent to

c1+cy =
C1—Cp = 3.
Solving these equations yields ¢c; = 2 and ¢c; = —1. Therefore y = 2e* — e™* is the unique solution of

(5.1.5) on (—o0, 00).
Example 5.1.2 Let w be a positive constant. The coefficients of y” and y in
V' + 0’y =0 (5.1.8)

are the constant functions p = 0 and ¢ = w?, which are continuous on (—oo, o0). Therefore Theo-
rem 5.1.1 implies that every initial value problem for (5.1.8) has a unique solution on (—o0, 00).
(a) Verify that y; = cos wx and y, = sinwx are solutions of (5.1.8) on (—o0, 00).

(b) Verify thatif ¢; and ¢, are arbitrary constants then y = ¢ cos wx + ¢, sin wx is a solution of (5.1.8)
on (—00, 00).

(¢) Solve the initial value problem

V' +w?y =0, y0) =1, y'(0)=3. (5.1.9)
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SOLUTION(a) If y; = coswx then y| = —wsinwx and y] = —0? coswx = —w?y1,50 y| +w?y; =
0. If y, = sinwx then, y, = wcoswx and yj = —w? sinwx = —w2y,,s0 yj + 0%y, = 0.

SOLUTION(b) If

Y = €1 €08 WX + ¢ sinwx (5.1.10)
then
¥y = w(—cy sinwx + c3 cos wx) (5.1.11)
and
y" = —w?(cy cos wx + 3 sinwx),
so
V' '+ w0’y = —w*(cicoswx + casinwx) + w?(cq cos wx + ¢ sinwx)

= cla)z(— CcOS WX + cos wx) + cza)z(— sinwx + sinwx) =0
for all x. Therefore y = c¢; cos wx + c; sinwx is a solution of (5.1.8) on (—o0, 00).

SOLUTION(¢) To solve (5.1.9), we must choosing ¢ and ¢5 in (5.1.10) so that y(0) = 1 and y’(0) = 3.
Setting x = 01in (5.1.10) and (5.1.11) shows that ¢; = 1 and ¢, = 3/w. Therefore

y = coswx + —sinwx
1)

is the unique solution of (5.1.9) on (—o0, 00). [ ]
Theorem 5.1.1 implies that if k¢ and k are arbitrary real numbers then the initial value problem

Po(x)y" + P1(x)y + P2(x)y =0, y(xo) = ko, y'(x0) =ki (5.1.12)

has a unique solution on an interval (a, b) that contains xg, provided that Py, P;, and P, are continuous
and Py has no zeros on (a, b). To see this, we rewrite the differential equation in (5.1.12) as

Pi(x) ,  Pa(x)

"
+ =0
Y TP T P
and apply Theorem 5.1.1 with p = Py /Py and ¢ = P,/ Py.
Example 5.1.3 The equation
_xzy”+xy/—4y :O (5113)

has the form of the differential equation in (5.1.12), with Py(x) = x2, Py (x) = x, and Pr(x) = —4,
which are are all continuous on (—o0, c0). However, since P(0) = 0 we must consider solutions of
(5.1.13) on (—00, 0) and (0, c0). Since Py has no zeros on these intervals, Theorem 5.1.1 implies that the
initial value problem

x2y" +xy' —4y =0, y(xo) =ko, y'(x0)=ky
has a unique solution on (0, 00) if xo > 0, or on (—o0, 0) if x¢ < 0.
(a) Verify that y; = x? is a solution of (5.1.13) on (—o0, 00) and y, = 1/x? is a solution of (5.1.13)
on (—o0, 0) and (0, c0).

(b) Verify that if ¢ and c; are any constants then y = ¢1x2+c,/x2 is a solution of (5.1.13) on (—o0, 0)
and (0, 00).
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(¢) Solve the initial value problem

x%y" +xy —4y =0, y()=2, y(@)=0. (5.1.14)

(d) Solve the initial value problem

X2y +xy =4y =0, y(=)=2. y(=1)=0. G.1.15)

SOLUTION(a) If y; = x? then y| = 2x and y{ = 2, so
X2y xyi — 4y = x2(2) + x(2x) —4x% =0

for x in (—o0, 00). If y» = 1/x2, then y), = —2/x3 and y§ = 6/x*, so

6 2 4
2.7 / .2 —
xy2+xy2—4yz—x (F)—X(F)—;—O

for x in (—o0, 0) or (0, 00).

SoLUTION(b) If

¢
y=axt+ 2 (5.1.16)
X
then )
¢
Y =2ex - 22 (5.1.17)
X
and 6
¢
y// = ch + x—42’
SO
6¢ 2c c
x2y" +xy -4y = x2(261 + —42) + x(chx - —32) — 4(61x2 + —i)
X X X

6 2 4
c1(2x? 4+ 2x? — 4x%) + cz( ————— )
x

= ¢1:04+¢c2-0=0
for x in (—o00, 0) or (0, 00).

SOLUTION(¢) To solve (5.1.14), we choose ¢; and ¢ in (5.1.16) so that y(1) = 2 and y’(1) = 0. Setting
x = 11in (5.1.16) and (5.1.17) shows that this is equivalent to

c1+ ¢ = 2
2C1—2C2 = 0.

Solving these equations yields ¢; = 1 and ¢; = 1. Therefore y = x2 + 1/x2 is the unique solution of
(5.1.14) on (0, c0).

SoLuTION(d) We can solve (5.1.15) by choosing ¢; and ¢; in (5.1.16) so that y(—1) = 2 and y'(—1) =
0. Setting x = —11in (5.1.16) and (5.1.17) shows that this is equivalent to

c1+ ¢ = 2
—2c14+2c2 = 0.
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Solving these equations yields ¢; = 1 and ¢; = 1. Therefore y = x2 + 1/x2 is the unique solution of
(5.1.15) on (—o0, 0). [ |

Although the formulas for the solutions of (5.1.14) and (5.1.15) are both y = x2 + 1/x2, you should
not conclude that these two initial value problems have the same solution. Remember that a solution of
an initial value problem is defined on an interval that contains the initial point; therefore, the solution
of (5.1.14) is y = x2 + 1/x? on the interval (0, 00), which contains the initial point xo = 1, while the
solution of (5.1.15) is y = x2 + 1/x2 on the interval (—oo, 0), which contains the initial point xo = —1.

The General Solution of a Homogeneous Linear Second Order Equation
If y; and y, are defined on an interval (a, b) and c; and ¢, are constants, then
y =c1yr+c2)2
is a linear combination of y, and y,. For example, y = 2cosx + 7sinx is a linear combination of
y1 =cosx and y, = sinx, withc; =2and ¢y, = 7.
The next theorem states a fact that we’ve already verified in Examples 5.1.1, 5.1.2, and 5.1.3.

Theorem 5.1.2 If y; and y, are solutions of the homogeneous equation

y'+p(x)y +q(x)y =0 (5.1.18)
on (a, b), then any linear combination

Yy =ci1y1 +c2)2 (5.1.19)

of y1 and y, is also a solution of (5.1.18) on (a, b).

Proof If
Yy =ci1y1 +c2)2
then
Y =cayy+cey, and Yy =ciy] +c2);.
Therefore
Y+ p(x)y +q(x)y = (c1y] +c2yy) + p(x)(c1yy + c2yy) + q(x)(c1y1 + c2y2)

= 1 (0 + @)y +q()y) +ca (5 + p(x)ys + q(x)y2)

= ¢1:04¢c:-0=0,
since y; and y, are solutions of (5.1.18). [ ]

We say that {y1, y2} is a fundamental set of solutions of (5.1.18) on (a, b) if every solution of (5.1.18)
on (a, b) can be written as a linear combination of y; and y, as in (5.1.19). In this case we say that
(5.1.19) is general solution of (5.1.18) on (a, b).

Linear Independence

We need a way to determine whether a given set {y1, y2} of solutions of (5.1.18) is a fundamental set.
The next definition will enable us to state necessary and sufficient conditions for this.

We say that two functions y; and y, defined on an interval (a, b) are linearly independent on (a, b)
if neither is a constant multiple of the other on (a, ). (In particular, this means that neither can be the
trivial solution of (5.1.18), since, for example, if y; = 0 we could write y; = 0y,.) We’ll also say that
the set {y1, y2} is linearly independent on (a, b).
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Theorem 5.1.3 Suppose p and q are continuous on (a, b). Then a set {y1, y2} of solutions of

V' +p(x)y +q(x)y =0 (5.1.20)
on (a, b) is a fundamental set if and only if {y1, y2} is linearly independent on (a, b).

We’ll present the proof of Theorem 5.1.3 in steps worth regarding as theorems in their own right.
However, let’s first interpret Theorem 5.1.3 in terms of Examples 5.1.1, 5.1.2, and 5.1.3.

Example 5.1.4

(a) Since e*/e™* = e2* is nonconstant, Theorem 5.1.3 implies that y = c1e* + coe ™ is the general
solution of y” — y = 0 on (—o0, 00).

(b) Since cos wx/sinwx = cotwx is nonconstant, Theorem 5.1.3 implies that y = c¢;coswx +
¢3 sin wx is the general solution of y” + w?y = 0 on (—o0, 00).

(¢) Since x2/x~2 = x* is nonconstant, Theorem 5.1.3 implies that y = ¢1x? + ¢,/x? is the general

solution of x2y” + xy’ — 4y = 0 on (—o0, 0) and (0, c0).

The Wronskian and Abel’s Formula

To motivate a result that we need in order to prove Theorem 5.1.3, let’s see what is required to prove that
{¥1, y2} is a fundamental set of solutions of (5.1.20) on (a, b). Let xo be an arbitrary point in (a, b), and
suppose y is an arbitrary solution of (5.1.20) on (a, b). Then y is the unique solution of the initial value
problem

V' 4+ p)y +q(x)y =0, y(xo) =ko, ¥ (x0)=ki; (5.121)

that is, ko and k; are the numbers obtained by evaluating y and y’ at xo. Moreover, ko and k; can
be any real numbers, since Theorem 5.1.1 implies that (5.1.21) has a solution no matter how ko and k;
are chosen. Therefore {y;, y»} is a fundamental set of solutions of (5.1.20) on (a, b) if and only if it’s
possible to write the solution of an arbitrary initial value problem (5.1.21) as y = c¢1y1 + c2y2. Thisis
equivalent to requiring that the system

c1y1(x0) + c2y2(x0) = ko

5.1.22
Clyll(xO)+C2y/2(X0) = ki ( )

has a solution (c1, ¢;) for every choice of (kg, k1). Let’s try to solve (5.1.22).
Multiplying the first equation in (5.1.22) by y5(xo) and the second by y»(xo) yields

c1y1(x0)y5(x0) + c2y2(x0)¥5(x0) = yi(x0)ko
c1y1(x0)y2(x0) + c2y5(x0)y2(x0) = ya(xo)ky,

and subtracting the second equation here from the first yields
(v1(x0)¥5(x0) — ¥1(x0)y2(x0)) c1 = y5(x0)ko — y2(x0)k. (5.1.23)
Multiplying the first equation in (5.1.22) by ¥} (xo) and the second by y;(xo) yields

c1y1(x0)y1(x0) + c2y2(x0)y1 (x0) = ¥i(x0)ko
c1y1(x0)y1(x0) + c2¥5(x0)y1(xo) y1(xo)kr,

and subtracting the first equation here from the second yields

(v1(x0)¥5(x0) — ¥1(x0)y2(x0)) c2 = y1(x0)k1 — ¥} (x0)ko. (5.1.24)
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If
¥1(x0)y3(xX0) — ¥} (x0)y2(x0) = 0,
it’s impossible to satisfy (5.1.23) and (5.1.24) (and therefore (5.1.22)) unless ko and k1 happen to satisfy

yi(xo)ki — yi(xo)ko = 0
Vo (xo)ko — y2(xo)ky = 0.
On the other hand, if
¥1(x0)y3(x0) — ¥ (x0)y2(x0) # 0 (5.1.25)

we can divide (5.1.23) and (5.1.24) through by the quantity on the left to obtain

V5 (x0)ko — y2(x0)k1
¥1(x0)y3(x0) — ¥ (x0)y2(xo)
y1(xo)k1 — y1(xo0)ko
y1(x0)y5(x0) — ¥} (x0)y2(xo)’

C1
(5.1.26)

2

no matter how ko and ky are chosen. This motivates us to consider conditions on y; and y, that imply
(5.1.25).

Theorem 5.1.4 Suppose p and q are continuous on (a, b), let y1 and y, be solutions of

Y+ p(x)y +q(x)y =0 (5.1.27)
on (a,b), and define
W = y1y, = y12. (5.1.28)
Let xg be any point in (a, b). Then
W(x) = Wxo)e oD% g < x < b, (5.1.29)

Therefore either W has no zeros in (a,b) or W = 0 on (a, b).
Proof Differentiating (5.1.28) yields
W' = 152+ 7155 = Y1y = Y1Y2 = 3155 = i y2- (5.1.30)
Since y; and y, both satisfy (5.1.27),
Y =-pyi—qy1 and yy=—py;—qya.

Substituting these into (5.1.30) yields

W' = —yi(pys +qy2) + y2(pyi + ay1)
= —p1yy—y2y1) —q(1y2 — y2y1)
= —p(1yy—y2yy) = —pW.

Therefore W’ + p(x)W = 0; that is, W is the solution of the initial value problem

Y+ p(x)y =0, y(xo) = W(xo).
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We leave it to you to verify by separation of variables that this implies (5.1.29). If W(xo) # 0, (5.1.29)

implies that W has no zeros in (a, b), since an exponential is never zero. On the other hand, if W(x¢) = 0,

(5.1.29) implies that W(x) = 0 for all x in (a, b). [ ]
The function W defined in (5.1.28) is the Wronskian of {y1, y»}. Formula (5.1.29) is Abel’s formula.
The Wronskian of {y1, y»} is usually written as the determinant

yi 2
i

W =

The expressions in (5.1.26) for ¢; and ¢, can be written in terms of determinants as

1 y1(x0) ko

a= W(xo)

CHhr =
2 Wi(xo) y’l(xo) kq

ko  y2(xo) 1
ki y5(x0)

If you’ve taken linear algebra you may recognize this as Cramer’s rule.

Example 5.1.5 Verify Abel’s formula for the following differential equations and the corresponding so-
lutions, from Examples 5.1.1, 5.1.2, and 5.1.3:

@ y'—y=0 y1=e* yp=e"

(b) Y’ +w?y =0; Y1 = CoswX, yy = sinwx

(© x2y"+xy —dy=0; y; =x2 y,=1/x?

SOLUTION(a) Since p = 0, we can verify Abel’s formula by showing that W is constant, which is true,

since

e~ e
W(x) = =e¥(—e ) —efeT =2
er¥ —e”

for all x.

SOLUTION(b) Again, since p = 0, we can verify Abel’s formula by showing that W is constant, which
18 true, since

COS WX sinwx
Wx) =

—w SiInwXx w CcoS WX

= coswx(wcoswx) — (—w sinwx) sin wx

= w(cos? wx + sin* wx) = w
for all x.

SOLUTION(¢) Computing the Wronskian of y; = x2 and y, = 1/x? directly yields

= 2(—3)—2 (i)——i (5.1.31)
=X x3 X x2 = x. .

To verify Abel’s formula we rewrite the differential equation as

x2  1/x?

2x  —2/x3

W =

" 1/ 4
Y+ =-=5y=0
X X


http://www-history.mcs.st-and.ac.uk/Mathematicians/Wronski.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Abel.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Cramer.html
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to see that p(x) = 1/x. If xo and x are either both in (—oo, 0) or both in (0, co) then

/p(t)dtz/ ﬂ=1n(i),
X0 xo X0

so Abel’s formula becomes

W) = Wixoe ") = W(xg) >
= —(i) (@) from (5.1.31)
X0 X
4
- -2
which is consistent with (5.1.31). |

The next theorem will enable us to complete the proof of Theorem 5.1.3.
Theorem 5.1.5 Suppose p and q are continuous on an open interval (a, b), let y1 and y, be solutions of

Y+ p(x)y +q(x)y =0 (5.1.32)

on(a,b),andlet W = y1y, — ¥ y2. Then yi and y; are linearly independent on (a, b) if and only if W
has no zeros on (a, b).

Proof We first show that if W(xo) = 0 for some xg in (@, b), then y; and y, are linearly dependent on
(a,b). Let I be a subinterval of (a, b) on which y; has no zeros. (If there’s no such subinterval, y; = 0
on (a,b), so y1 and y, are linearly independent, and we’re finished with this part of the proof.) Then
y2/y1 is defined on 7, and

(2)/ _ ey W (5.1.33)
y1 1 1

However, if W(xo) = 0, Theorem 5.1.4 implies that W = 0 on (a, b). Therefore (5.1.33) implies that
(y2/y1) = 0,80 y2/y1 = ¢ (constant) on . This shows that y,(x) = cyj(x) for all x in 7. However,
we want to show that y, = cy;(x) forall x in (a, b). Let Y = y, —cy;. Then Y is a solution of (5.1.32)
on (a, b) such that Y = 0 on I, and therefore Y’ = 0 on I. Consequently, if xq is chosen arbitrarily in /

then Y is a solution of the initial value problem

V'+ px)y +4qx)y =0, y(xo) =0, y'(xo) =0,

which implies that Y = 0 on (a, b), by the paragraph following Theorem 5.1.1. (See also Exercise 24).
Hence, y» —cy1 = 0 on (a, b), which implies that y; and y, are not linearly independent on (a, b).

Now suppose W has no zeros on (a, b). Then y; can’t be identically zero on (a, b) (why not?), and
therefore there is a subinterval / of (a, b) on which y; has no zeros. Since (5.1.33) implies that y,/y; is
nonconstant on /, y, isn’t a constant multiple of y; on (a, b). A similar argument shows that y; isn’t a
constant multiple of y, on (a, b), since

(&)’ Y-y W
y2 v3 v3
on any subinterval of (a, b) where y, has no zeros. |
We can now complete the proof of Theorem 5.1.3. From Theorem 5.1.5, two solutions y; and y, of
(5.1.32) are linearly independent on (a, b) if and only if W has no zeros on (a, ). From Theorem 5.1.4
and the motivating comments preceding it, {y1, y»} is a fundamental set of solutions of (5.1.32) if and
only if W has no zeros on (a, b). Therefore {yi, y»} is a fundamental set for (5.1.32) on (a, b) if and
only if {y1, y»} is linearly independent on (a, b). ]
The next theorem summarizes the relationships among the concepts discussed in this section.
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Theorem 5.1.6 Suppose p and q are continuous on an open interval (a, b) and let y1 and y, be solutions
of
V' +p(x)y +q(x)y =0 (5.1.34)

on (a,b). Then the following statements are equivalent; that is, they are either all true or all false.
(@) The general solution of (5.1.34) on (a,b) is y = c1y1 + C2y2.

(b) {¥1,y2} is a fundamental set of solutions of (5.1.34) on (a, b).
(©) {y1,y2} is linearly independent on (a, b).

(d) The Wronskian of {y1, y2} is nonzero at some point in (a, b).
(e) The Wronskian of {y1, y2} is nonzero at all points in (a, b).

We can apply this theorem to an equation written as
Po(x)y" + Pi1(x)y" + P2(x)y =0
on an interval (a, b) where Py, Py, and P, are continuous and Py has no zeros.

Theorem 5.1.7 Suppose c is in (a,b) and a and B are real numbers, not both zero. Under the assump-
tions of Theorem 5.1.7, suppose y| and y, are solutions of (5.1.34) such that

ayi(c) + Byi(c) =0 and aya(c) + Byy(c) = 0. (5.1.35)
Then {y1, y2} isn’t linearly independent on (a, b).
Proof Since « and f are not both zero, (5.1.35) implies that

‘yl(C) TN NP ‘yl(C) a(e) | _
y2(c)  ys(c) ’ yi(e)  y3(c)

and Theorem 5.1.6 implies the stated conclusion.

5.1 Exercises

1. (a) Verifythat y; = e?* and y2 = e>* are solutions of
y' =1y + 10y =0 (A)

on (—o0, 00).

(b) Verity that if ¢; and ¢, are arbitrary constants then y = c1e%* + ce* is a solution of (A)
on (—00, 00).

(¢) Solve the initial value problem

y' =7y +10y =0, y(0)=-1, y'(0)=1.
(d) Solve the initial value problem
Y'=Ty"+ 10y =0, y(0) =ko. y'(0)=ki.
2. (a) Verifythat y; = e*cosx and y, = e* sin x are solutions of
y'=2y'+2y =0 (A)

on (—o0, 00).
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(b) Verify that if ¢; and c; are arbitrary constants then y = c1e* cos x + cpe”* sin x is a solution
of (A) on (—o0, ).
(¢) Solve the initial value problem

y'=2y' +2y =0, y0) =3, y(0)=-2.
(d) Solve the initial value problem
Y'=2y'+2y =0, y(0)=ko. y'(0)=ki.
3. (a) Verifythat y; = e* and y, = xe”* are solutions of
y'=2y'+y=0 (A)

on (—o0, 00).

(b) Verify that if ¢; and ¢, are arbitrary constants then y = e*(c; + c2x) is a solution of (A) on
(—o00, 00).

(¢) Solve the initial value problem

Y'=2y'+y=0. y0) =7 y(0) =4
(d) Solve the initial value problem
Y'=2y'+y =0, y(0)=ko. y(0)=ki.
4. (a) Verifythat y; = 1/(x — 1) and y, = 1/(x + 1) are solutions of
(> =1y +4xy' +2y =0 (A)

on (—oo,—1), (—1,1), and (1, 00). What is the general solution of (A) on each of these
intervals?

(b) Solve the initial value problem
(x2=1)y" +4xy' +2y =0, y0)=-5y'(0)=1.

What is the interval of validity of the solution?

(© Graph the solution of the initial value problem.
(d) Verify Abel’s formula for y; and y,, with xo = 0.

5. Compute the Wronskians of the given sets of functions.

(a) {1, e*} (b) {e*, e*sin x}
(©{x+1,x2+2} (d) {x'/2, x71/3}
@ (25 (0 {xinxl, 41 b

(g) {e* cos \/)%, e” sin /x}

6. Find the Wronskian of a given set {y1, y2} of solutions of
y' 4+ 3(x* + 1)y =2y =0,

given that W(xr) = 0.
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Find the Wronskian of a given set {y1, y»} of solutions of
(1—=x%)y" —2xy" +a(@+ 1)y =0,
given that W(0) = 1. (This is Legendre’s equation.)

Find the Wronskian of a given set {y1, y»} of solutions of

x2y" + xy' + (x2 —1v?)y =0,

given that W(1) = 1. (This is Bessel’s equation.)

(This exercise shows that if you know one nontrivial solution of y”" + p(x)y" + ¢(x)y = 0, you
can use Abel’s formula to find another.)

Suppose p and g are continuous and y; is a solution of

V' 4+ px)y +qx)y =0 (A)

that has no zeros on (a, b). Let P(x) = [ p(x) dx be any antiderivative of p on (a, b).

(a) Show thatif K is an arbitrary nonzero constant and y, satisfies
Y1V = ¥iy2 = Ke P (B)

on (a, b), then y, also satisfies (A) on (a, b), and {y1, y»} is a fundamental set of solutions
on (A) on (a, b).
e—P(x)

(b) Conclude from (a) that if y, = uy; where u’ = K m
1

, then {y1, y»} is a fundamental

set of solutions of (A) on (a, b).

In Exercises 10-23 use the method suggested by Exercise 9 to find a second solution y, that isn’t a
constant multiple of the solution y;. Choose K conveniently to simplify y,.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

22,
23.

Y'=2y' =3y =0; y=e>
Y' =6y +9y =0, y1=e*
y" —2ay’ +a®?y =0 (a = constant); y; = e9*
X2y +xy'—y=0; y=x
X2y —xy' +y=0, yi=x
x2y” — (2a — 1)xy’ +a*y = 0 (a = nonzero constant); x > 0; y; = x?
4x2y" —4xy + 3 —16x2)y =0; y; = x'/2e2x
=1y =xy' +y =0, yr=e"
x2y" —2xy' + (x> +2)y =0; y; = xcosx
4x2(sin x)y” — 4x(x cos x + sinx)y’ + (2x cosx + 3sinx)y =0; y; =x/2
Gx =1y =(Bx+2)y —(6x—8)y =0; y =e>
1

(2 =4y +4xy +2y =0; y1=——

1
2x + Dxy” —=22x2 = 1)y —4(x + 1)y =0; y; = .

(2 =2x)y"+2=x%)y +(2x=2)y=0; y; =e*


http://www-history.mcs.st-and.ac.uk/PictDisplay/Legendre.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Bessel.html
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24.

25.

26.

27.

28.

29.

Suppose p and ¢ are continuous on an open interval (a, b) and let x¢ be in (a,b). Use Theo-
rem 5.1.1 to show that the only solution of the initial value problem

V' 4+ p(x)y +q(x)y =0, y(xo) =0, y'(x0) =0

on (a, b) is the trivial solution y = 0.

Suppose Py, P, and P, are continuous on («, b) and let x¢ be in (a, b). Show that if either of the
following statements is true then Po(x) = 0 for some x in (a, b).

(a) The initial value problem
Po(x)y" + P1(x)y" 4+ P2(x)y =0, y(xo) = ko, y'(x0) =k

has more than one solution on (a, b).
(b) The initial value problem

Po(x)y" + P1(x)y" + Pa(x)y =0, y(x0) =0, »(x0) =0

has a nontrivial solution on (a, b).

Suppose p and ¢ are continuous on (@, b) and y; and y; are solutions of

V' 4+ px)y +qx)y =0 (A)

on (a, b). Let

Zi=ay1+ By, and  zo = yy1 + 8y2,
where «, B, v, and § are constants. Show that if {71, z»} is a fundamental set of solutions of (A)
on (a, b) then so is {y1, y2}.

Suppose p and ¢ are continuous on (a, b) and {y1, y»} is a fundamental set of solutions of

y'4+ px)y +qx)y =0 (A)

on (a, b). Let
Zr =oay1+ By, and zp = yy1 + 8y,
where «, B, ¥, and § are constants. Show that {z1, z,} is a fundamental set of solutions of (A) on
(a,b)if and only if ey — B§ # 0.
Suppose y; is differentiable on an interval (a, b) and y, = ky, where k is a constant. Show that

the Wronskian of {y;, y»} is identically zero on (a, b).

Let

3
3 x>, x>0,
=X and =

N1 2 —x3, x<O.

(a) Show that the Wronskian of {y1, y»} is defined and identically zero on (—o0, 00).
(b) Supposea < 0 < b. Show that {y;, y»} is linearly independent on (a, b).

(¢) Use Exercise 25(b) to show that these results don’t contradict Theorem 5.1.5, because neither
Y1 nor y, can be a solution of an equation

Y+ p(x)y +qx)y =0

on (a, b) if p and ¢ are continuous on (a, b).



30.

31.

32.

33.

34.

3s.

36.

Section 5.1 Homogeneous Linear Equations 207

Suppose p and ¢ are continuous on (@, b) and {y1, y»} is a set of solutions of

Y+ p@)y +q(x)y =0
on (a, b) such that either y1(xo) = y2(x0) = 0 or y](xo) = y5(xo) = 0 for some x in (a, b).
Show that {y1, y»} is linearly dependent on (a, b).

Suppose p and g are continuous on (a, b) and {y1, y»} is a fundamental set of solutions of

V' 4+ px)y +qx)y =0

on (a,b). Show that if y1(x;) = y1(x2) = 0, where a < x1 < xp < b, then y,(x) = 0 for
some x in (x1, x2). HINT: Show that if y, has no zeros in (x1, x2), then y1/y, is either strictly
increasing or strictly decreasing on (X1, x2), and deduce a contradiction.

Suppose p and ¢ are continuous on (@, b) and every solution of

Y+ px)y +q(x)y =0 (A)
on (a, b) can be written as a linear combination of the twice differentiable functions {y1, y2}. Use
Theorem 5.1.1 to show that y; and y, are themselves solutions of (A) on (a, b).

Suppose p1, p2, g1, and g, are continuous on (a, b) and the equations

Y ' + p1(x)y +q1(x)y =0 and Y’ + pa(x)y’ + q2(x)y =0

have the same solutions on (@, b). Show that p; = p» and g1 = ¢ on (a, b). HINT: Use Abel’s
Sformula.

(For this exercise you have to know about 3 x 3 determinants.) Show that if y; and y, are twice
continuously differentiable on (a, b) and the Wronskian W of {y1, y»} has no zeros in (a, b) then
the equation

Yy yir )2
1
wlYy o oy =0
A A
can be written as
Y+ p()y +q(x)y =0, (&)

where p and ¢ are continuous on (a, b) and {y1, y»} is a fundamental set of solutions of (A) on
(a, b). HINT: Expand the determinant by cofactors of its first column.

Use the method suggested by Exercise 34 to find a linear homogeneous equation for which the
given functions form a fundamental set of solutions on some interval.

(a) e* cos2x, e*sin2x (b) x, e3*
(¢)x, xlnx (d) cos(Inx), sin(lnx)
(e) coshx, sinhx ®x2-1, x2+1

Suppose p and ¢ are continuous on (a, b) and {y1, y»} is a fundamental set of solutions of

Y+ p(x)y +qx)y =0 (A)

on (a,b). Show that if y is a solution of (A) on (a, b), there’s exactly one way to choose ¢; and
¢y sothat y = c¢1y1 + ¢ay2 on (a, b).
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37.

38.

39.

40.

Suppose p and ¢ are continuous on (a, b) and xg is in (a, b). Let y; and y, be the solutions of

Y4+ px)y +qx)y =0 (A)

such that
yi(xo) =1, »i(xg) =0 and y»(xo) =0, y5(xp) = 1.

(Theorem 5.1.1 implies that each of these initial value problems has a unique solution on (a, b).)

(a) Show that {y1, y»} is linearly independent on (a, b).
(b) Show that an arbitrary solution y of (A) on (@, b) can be written as y = y(xo)y1 + ¥'(x0)y2.
(c) Express the solution of the initial value problem

V' 4+ px)y +qx)y =0, y(xo) =ko, ¥(x0)=ki

as a linear combination of y; and y».

Find solutions y; and y, of the equation y” = 0 that satisfy the initial conditions
yi(xo) =1, yi(x0) =0 and ya(xo) =0, ys(xo)=1.
Then use Exercise 37 (c¢) to write the solution of the initial value problem
y'=0, y0)=ko, Y(0)=k

as a linear combination of y; and y,.

Let xo be an arbitrary real number. Given (Example 5.1.1) that e* and e~ are solutions of y” —
y =0, find solutions y; and y, of y”” — y = 0 such that

yixo) =1, yj(xo) =0 and ya(xo) =0, yj(xo) = 1.
Then use Exercise 37 (c¢) to write the solution of the initial value problem
y'=y =0, y(xo)=ko, Y(xo)=rki

as a linear combination of y; and y,.

Let x¢ be an arbitrary real number. Given (Example 5.1.2) that cos wx and sin wx are solutions of
y” 4+ w?y = 0, find solutions of y” 4+ w?y = 0 such that

yi(xo) =1, yi(x0) =0 and ya(xo) =0, ys(xo) = 1.
Then use Exercise 37 (c¢) to write the solution of the initial value problem
V' +w?y =0, y(xo) =ko, ¥ (x0)=k
as a linear combination of y; and y,. Use the identities

cos(A+ B) = cosAcosB —sinAsinB
sin(A+ B) = sinAcosB + cos Asin B

to simplify your expressions for y;, y,, and y.



41.

42.

43.
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Recall from Exercise 4 that 1/(x — 1) and 1/(x + 1) are solutions of

@2 =1)y"+4xy' +2y =0 (A)

on (—1, 1). Find solutions of (A) such that

y1(0) =1, y;(0)=0 and y,(0) =0, y5(0) = 1.

Then use Exercise 37 (c¢) to write the solution of initial value problem

@2 —=1)y" +4xy" +2y =0, y(0) =ko, Y (0) =k

as a linear combination of y; and y,.

(a)

(b)

(c)

(d)

(a)

(b)

Verify that y; = x2 and y, = x3 satisfy
x2y" —4xy' + 6y =0 (A)

on (—o0, 00) and that {y;, y»} is a fundamental set of solutions of (A) on (—o0,0) and
(0, 0).
Let ay, a», b1, and b, be constants. Show that

| aix® +axx®, x>0,
bix2 4+ byx3, x <0

is a solution of (A) on (—o0, 0o) if and only if @; = by. From this, justify the statement that
y is a solution of (A) on (—o0, co) if and only if

| ax?+cx3, x>0,
c1x2+ce3x3, x <0,

where c1, ¢2, and ¢3 are arbitrary constants.
For what values of k¢ and k; does the initial value problem

x2y" —4xy' +6y =0, y(0)=ko, Y (0) =k
have a solution? What are the solutions?
Show that if xo # 0 and k¢, k1 are arbitrary constants, the initial value problem
x2y" —4xy' + 6y =0, y(xo) =ko, y'(x0)=ky (B)
has infinitely many solutions on (—oo, co). On what interval does (B) have a unique solution?
Verify that y; = x and y, = x?2 satisfy
x2y" —2xy' +2y =0 (A)

on (—o0, 00) and that {y;, y»} is a fundamental set of solutions of (A) on (—o0,0) and
(0, 0).
Let ay, a», b1, and b, be constants. Show that

ar\x +a»x?, x>0,
bix +byx2, x<0

is a solution of (A) on (—o0, 0c0) if and only if a; = by and a, = b,. From this, justify the
statement that the general solution of (A) on (—o0,00) isy = c1x + c2x2, where ¢q and ¢,
are arbitrary constants.
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(¢) For what values of k¢ and k; does the initial value problem
x2y" —2xy' +2y =0, y(0)=ko, Y (0)=k,

have a solution? What are the solutions?
(d) Show thatif x¢ 7 0 and kg, k; are arbitrary constants then the initial value problem

x2y" —2xy' +2y =0, y(xo) =ko. y'(x0) =k
has a unique solution on (—o00, 00).
44. (a) Verify that y; = x3 and y, = x* satisfy
x2y" —6xy’ + 12y =0 (A)

on (—o0, 00), and that {y1, y»} is a fundamental set of solutions of (A) on (—o0,0) and
(0, 00).
(b) Show that y is a solution of (A) on (—o0, co) if and only if

ar1x3 +ax*, x>0,
b1x3 + byx*, x <0,

where ay, az, b1, and b, are arbitrary constants.
(¢) For what values of k¢ and k; does the initial value problem

x?y" —6xy + 12y =0, y(0) =ko, y'(0) =k

have a solution? What are the solutions?
(d) Show thatif x¢ # 0 and kg, k; are arbitrary constants then the initial value problem

X2y —6xy +12y =0, y(xo) =ko, '(x0) =k (B)

has infinitely many solutions on (—oo, 00). On what interval does (B) have a unique solution?

5.2 CONSTANT COEFFICIENT HOMOGENEOUS EQUATIONS

If a, b, and c are real constants and a # 0, then
ay” + by’ +cy = F(x)

is said to be a constant coefficient equation. In this section we consider the homogeneous constant coef-
ficient equation
ay” + by +cy =0. (5.2.1)

As we’ll see, all solutions of (5.2.1) are defined on (—o0, c0). This being the case, we’ll omit references
to the interval on which solutions are defined, or on which a given set of solutions is a fundamental set,
etc., since the interval will always be (—oo, 00).

The key to solving (5.2.1) is that if y = e”* where r is a constant then the left side of (5.2.1) is a
multiple of e”*; thus, if y = e"* then y’ = re”~ and y” = r2e"*, so

ay” + by +cy =ar?e"™ +bre"™ +ce™ = (ar? + br + c)e’". (5.2.2)
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The quadratic polynomial
p(ry=ar®> +br +c
is the characteristic polynomial of (5.2.1), and p(r) = 0 is the characteristic equation. From (5.2.2) we
can see that y = e”* is a solution of (5.2.1) if and only if p(r) = 0.
The roots of the characteristic equation are given by the quadratic formula

. —b £ +/b%2 —4dac

2 (5.2.3)
We consider three cases:
CASE 1. b% — 4ac > 0, so the characteristic equation has two distinct real roots.
CASE 2. b%2 — 4ac = 0, so the characteristic equation has a repeated real root.
CASE 3. b%2 — 4ac < 0, so the characteristic equation has complex roots.
In each case we’ll start with an example.
Case 1: Distinct Real Roots
Example 5.2.1
(a) Find the general solution of
y' 4+ 6y +5y=0. (5.2.4)
(b) Solve the initial value problem
y' +6y +5y =0, y@0) =3, y(0)=-L. (5.2.5)

SOLUTION(a) The characteristic polynomial of (5.2.4) is
p(r)=r24+6r+5=@r+1)(r+5).

Since p(—1) = p(=5) = 0, y; = e~ and y, = e~>* are solutions of (5.2.4). Since y,/y; = e ** is
nonconstant, 5.1.6 implies that the general solution of (5.2.4) is
y =cie™™ 4 cre ", (5.2.6)

SOLUTION(b) We must determine ¢; and ¢; in (5.2.6) so that y satisfies the initial conditions in (5.2.5).
Differentiating (5.2.6) yields

y = —cie™* —5ce7>". (5.2.7)
Imposing the initial conditions y(0) = 3, y’(0) = —1 in (5.2.6) and (5.2.7) yields
c1+ ¢ = 3
—C1 — 5C2 = —1.

The solution of this system is ¢; = 7/2, ¢ = —1/2. Therefore the solution of (5.2.5) is

7 —X 1 —5x
y=e 7€
Figure 5.2.1 is a graph of this solution.
If the characteristic equation has arbitrary distinct real roots r and r;, then y; = e"'* and y, = e"2*
are solutions of ay” + by’ + ¢y = 0. Since y,/y; = e"27")* is nonconstant, Theorem 5.1.6 implies

that {y1, y»} is a fundamental set of solutions of ay” + by’ + cy = 0.
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X 1 —5x

7
Figure 5.2.1 y = Ee_ - Ee

Case 2: A Repeated Real Root

Example 5.2.2
(a) Find the general solution of
¥+ 6y +9y =0. (5.2.8)
(b) Solve the initial value problem
y' +6y +9y =0, y(0) =3, y(0)=-1. (5.2.9)

SOLUTION(a) The characteristic polynomial of (5.2.8) is
p(r)=r24+6r+9=(r+3)>2,

so the characteristic equation has the repeated real root r; = —3. Therefore y; = e 3% is a solution
of (5.2.8). Since the characteristic equation has no other roots, (5.2.8) has no other solutions of the
form e”*. We look for solutions of the form y = uy; = ue3*, where u is a function that we’ll now
determine. (This should remind you of the method of variation of parameters used in Section 2.1 to
solve the nonhomogeneous equation y’ + p(x)y = f(x), given a solution y; of the complementary
equation y’ + p(x)y = 0. It’s also a special case of a method called reduction of order that we’ll study
in Section 5.6. For other ways to obtain a second solution of (5.2.8) that’s not a multiple of e™3¥, see
Exercises 5.1.9, 5.1.12, and 33.
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If y = ue™3%, then
y/ — u/e—3x _ 3ue—3x and y// — u//e—3x _ 6u/e—3x + 9ue—3x’
o)

Y46y +9y = e[ —6u + 9u)+ 6(u’ —3u)+ 9ul
= e [u—(6-6u +(9—18+u| =u"e >

Therefore y = ue 3% is a solution of (5.2.8) if and only if u”" = 0, which is equivalent to u = ¢1 + ¢2x,

where ¢ and ¢, are constants. Therefore any function of the form
y = e 3(c + cax) (5.2.10)

is a solution of (5.2.8). Letting ¢c; = 1 and ¢, = 0 yields the solution y; = e~3* that we already knew.
Letting c; = 0 and ¢, = 1 yields the second solution y, = xe3*. Since y,/y; = x is nonconstant,
5.1.6 implies that {y1, y»} is fundamental set of solutions of (5.2.8), and (5.2.10) is the general solution.

SOLUTION(b) Differentiating (5.2.10) yields
/

y = =3e73*(c; + c2x) + c2e 3 . (5.2.11)

Imposing the initial conditions y(0) = 3, y’(0) = —1 in (5.2.10) and (5.2.11) yields ¢; = 3 and
—3c1 4+ ¢ = —1, so ¢, = 8. Therefore the solution of (5.2.9) is

y =e (3 + 8x).

Figure 5.2.2 is a graph of this solution.

Y
x

Figure 522 y = ¢3¥(3 + 8x)
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If the characteristic equation of ay” + by’ + ¢y = 0 has an arbitrary repeated root ry, the characteristic
polynomial must be
p(r) =a(r —r)* =a@?=2rr +rd).

Therefore
ar®> +br+c=ar’- 2ary)r + arlz,

which implies that b = —2ar; and ¢ = ar?. Therefore ay” + by’ + cy = 0 can be written as

a(y” —2r1y' + r2y) = 0. Since a # 0 this equation has the same solutions as
y'—=2ry +riy =0. (5.2.12)

Since p(r1) = 0,t y; = e"* isasolutionof ay” +by’+cy = 0, and therefore of (5.2.12). Proceeding
as in Example 5.2.2, we look for other solutions of (5.2.12) of the form y = ue”!*; then

y =u'e™* +rue™ and y”" =u"e"* + 2rju’e"* + rlzue”x,

S0
y'=2ry +riy = € [ + 2r + riu) —2r; (' + riu) + rlzu]
= e'¥ [u” + @Q2ry —2r)u’ + (rl2 — 2r12 + rlz)u] =u"e"*,

Therefore y = ue™* is a solution of (5.2.12) if and only if u” = 0, which is equivalent to u = ¢1 + ¢,
where ¢ and ¢, are constants. Hence, any function of the form

y = e (c1 + cax) (5.2.13)

is a solution of (5.2.12). Letting ¢c; = 1 and ¢» = 0 here yields the solution y; = e"'* that we already
knew. Letting ¢c; = 0 and ¢, = 1 yields the second solution y, = xe"*. Since y»/y; = x is
nonconstant, 5.1.6 implies that {y1, y»} is a fundamental set of solutions of (5.2.12), and (5.2.13) is the
general solution.

Case 3: Complex Conjugate Roots

Example 5.2.3
(a) Find the general solution of
y'+4y" + 13y =0. (5.2.14)
(b) Solve the initial value problem
V' 44y + 13y =0, y(0) =2, y'(0) = -3. (5.2.15)

SOLUTION(a) The characteristic polynomial of (5.2.14) is
p(r)=r’4+4r+13=r>+4r +44+9=(+2%*+0.

The roots of the characteristic equation are r; = —2 + 3i and r, = —2 —3i. By analogy with Case 1, it’s
reasonable to expect that e("2+30x gnd ¢ (230X gre solutions of (5.2.14). This is true (see Exercise 34);
however, there are difficulties here, since you are probably not familiar with exponential functions with
complex arguments, and even if you are, it’s inconvenient to work with them, since they are complex—
valued. We’ll take a simpler approach, which we motivate as follows: the exponential notation suggests
that

e(—2+3i)x —2x ,3ix

—e e and e(—2—3i)x —2x ,—3ix

=e e M,
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so even though we haven’t defined e3'* and e ~3'¥, it’s reasonable to expect that every linear combination

of e(=2+30% and (2730 can be written as y = e 2*, where u depends upon x. To determine u, we
note that if y = ue™2* then

y/ — u/e—Zx _ 2ue—2x and y// — u//e—Zx _ 4u/e—2x + 4ue—2x’
SO
Y44y +13y = [(u” — 4y’ + 4u) + 40 —2u) + 13u]
= e F[u — (-4 + 48+ 13)u] = e X" + ).

—2x

Therefore y = ue is a solution of (5.2.14) if and only if

u” +9u = 0.
From Example 5.1.2, the general solution of this equation is
U = ¢1¢083x + ¢y sin 3x.
Therefore any function of the form

y = e 2*(c1 cos 3x + ¢; sin3x) (5.2.16)

is a solution of (5.2.14). Letting ¢c; = 1 and ¢, = 0 yields the solution y; = e~2* cos 3x. Lettingc; = 0

and ¢, = 1 yields the second solution y, = e~2¥*sin3x. Since y,/y; = tan3x is nonconstant, 5.1.6
implies that {y1, y»} is a fundamental set of solutions of (5.2.14), and (5.2.16) is the general solution.

SOLUTION(b) Imposing the condition y(0) = 2 in (5.2.16) shows that ¢; = 2. Differentiating (5.2.16)
yields

y = —Ze_zx(cl cos3x + ¢, sin3x) + 3e_2x(—cl sin 3x + ¢, cos 3x),
and imposing the initial condition y’(0) = —3 here yields —3 = —2¢; + 3¢2 = —4 + 3¢2,s0 ¢ = 1/3.
Therefore the solution of (5.2.15) is

1
y =e 2*(2cos3x + 3 sin 3x).

Figure 5.2.3 is a graph of this function. [ ]
Now suppose the characteristic equation of ay” + by’ + ¢y = 0 has arbitrary complex roots; thus,
b? — 4ac < 0 and, from (5.2.3), the roots are

_—b+i«/4ac—b2 —b —i+/4ac —b?

rl_ ’ r2: Za ’

2a

which we rewrite as
rn=A+tio, mn=A-io, 5.2.17)

with

b Vdac — b2

2a’ 2a
Don’t memorize these formulas. Just remember that 1 and r, are of the form (5.2.17), where A is an
arbitrary real number and w is positive; A and w are the real and imaginary parts, respectively, of r;.
Similarly, A and —w are the real and imaginary parts of r,. We say that 1 and r, are complex conjugates,
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1
Figure 5.2.3 y = e >*(2cos 3x + 3 sin3x)

which means that they have the same real part and their imaginary parts have the same absolute values,
but opposite signs.

As in Example 5.2.3, it’s reasonable to to expect that the solutions of ay” + by’ + ¢y = 0 are linear
combinations of e+ ®)* and ¢*~7®)* ' Again, the exponential notation suggests that

e(/l+ia))x e/lx iwx

e and e A—iw)x Ax —iwx

=e™e ,

so even though we haven’t defined e/®~ and e " ®*, it’s reasonable to expect that every linear combination
of e+ @)* and ¢A—7®)* can be written as y = ue**, where u depends upon x. To determine u we first
observe that since r; = A 4+ iw and r, = A — i are the roots of the characteristic equation, p must be

of the form
p(r) = a(lr—r)(r—r2)
= ar—A—iw)(r—A+iw)
= a[(r—21)?+ ?]
= a(r? =2Ar + A% + 0?).

Therefore ay” 4+ by’ + ¢y = 0 can be written as
aly” =21y + (A* + w?)y] =0.
Since a # 0 this equation has the same solutions as
V" =24y + (A2 + w?)y = 0. (5.2.18)
To determine u we note that if y = ue’* then

y/ — u/e,lx + Xue'lx and y// — u//e,lx + Zku/e'lx + que'lx.
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Substituting these expressions into (5.2.18) and dropping the common factor e** yields
" + 20 + 2%u) = 20’ + Au) + (A2 4+ 0*)u =0,

which simplifies to

U’ + w*u =0.
From Example 5.1.2, the general solution of this equation is

U = C1COSWX + CSinwXx.
Therefore any function of the form
y = e*(¢1 coswx + ¢3 sinwx) (5.2.19)

is a solution of (5.2.18). Letting ¢; = 1 and ¢, = 0 here yields the solution y; = e** cos wx. Letting
c1 = 0and ¢, = 1 yields a second solution y, = e* sinwx. Since ¥2/y1 = tan wx is nonconstant,
so Theorem 5.1.6 implies that {y;, y,} is a fundamental set of solutions of (5.2.18), and (5.2.19) is the
general solution.

Summary

The next theorem summarizes the results of this section.
Theorem 5.2.1 Let p(r) = ar? + br + ¢ be the characteristic polynomial of

ay” + by +cy=0. (5.2.20)

Then:
(@) If p(r) = 0 has distinct real roots ry and ry, then the general solution of (5.2.20) is

y =c1e" 4 cpe”*.
(b) If p(r) = 0 has a repeated root r1, then the general solution of (5.2.20) is
y = e (c1 + cax).

(©) If p(r) = 0 has complex conjugate roots ry = A +iw andry, = A —iw (Where @ > 0), then the
general solution of (5.2.20) is

y = e’lx(cl COS WX + C3 sinwx).

5.2 Exercises

In Exercises 1-12 find the general solution.

1. Yy +5Y—-6y=0 2. y/'—4y'+5y=0
3. ' +8)/+7y=0 4. y'—4y'+4y=0

5. y'+2y+10y =0 6. Yy +6y+10y=0
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7. V' =8y +16y =0 8. y'+y' =0
9. y'=2y'+3y=0 10. y"+6y' +13y =0
1. 4y +4y +10y =0 12 10y" =3y’ =y =0

In Exercises 13—17 solve the initial value problem.

13, y’" 414y’ +50y =0, y(0) =2, y(0)=-17
4. 6y"—y —y=0, y0)=10, y'(0)=0
15. 6y"+y —y=0, y(0)=-1, y'(0)=3

13 23
16. 4y”" —4y’ —3y =0, 0) =—, "0) ==
y' —4y' =3y YO =, yO) =
5
17. 4" —-12y'+9y =0, »(0)=3, »(0) = 3
In Exercises 18-21 solve the initial value problem and graph the solution.

18. Y 47y 412y =0, y0)=—1, y'(0)=0
19. y'—6y +9y =0, y0)=0, y(0) =2
20. 36y —12y' +y =0, y(0)=3, y(0)=
21. V' 44y +10y =0, y(0) =3, y'(0)=-2

22. (a) Suppose y is a solution of the constant coefficient homogeneous equation

N

ay” + by +cy =0.
Let z(x) = y(x — xo), where xg is an arbitrary real number. Show that

a7’ + b7 +cz =0.

(b)

(c)

Let z1(x) = y1(x — x0) and z2(x) = ya2(x — x¢), where {y1, 2} is a fundamental set of
solutions of (A). Show that {z1, 2} is also a fundamental set of solutions of (A).

The statement of Theorem 5.2.1 is convenient for solving an initial value problem
ay” +by +cy =0, y(0)=ko, y'(0)=ki,
where the initial conditions are imposed at xo = 0. However, if the initial value problem is
ay” + by +cy =0, y(xo)=ko, Y (x0)=ki, (B)
where xo # 0, then determining the constants in
y =cre"¥ 4 0",y =e"¥(c) + c2x), or y = e** (¢ coswx + ¢2 sinwx)

(whichever is applicable) is more complicated. Use (b) to restate Theorem 5.2.1 in a form
more convenient for solving (B).

In Exercises 23-28 use a method suggested by Exercise 22 to solve the initial value problem.

23.

V' +3y'+2y =0, y(l)=-1, y(1)=4



24.
25.

26.

27.
28.
29.

30.

31.

32.

33.
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y'=6y' =Ty =0, y@2) = —é, y'(2)=-5
y' =14y’ +49y =0, y(1)=2, y()=11
o6 Hr=0, YO =2 YO =
9" +4y =0, y(r/4) =2, y(r/4)=-2
y'+3y =0, y/3)=2 y(n/3)=-1

Prove: If the characteristic equation of
ay” + by +cy=0 (A)

has a repeated negative root or two roots with negative real parts, then every solution of (A) ap-
proaches zero as x — oo.

Suppose the characteristic polynomial of ay” + by’ 4+ cy = 0 has distinct real roots r; and r.
Use a method suggested by Exercise 22 to find a formula for the solution of

ay” +by' +cy =0, y(xo) =ko, y'(xo)=ki.

Suppose the characteristic polynomial of ay” + by’ 4+ ¢y = 0 has a repeated real root r1. Use a
method suggested by Exercise 22 to find a formula for the solution of

ay” +by +cy =0, y(xo) =ko, »'(xo0)=ki.

Suppose the characteristic polynomial of ay” + by’ + cy = 0 has complex conjugate roots A +i w.
Use a method suggested by Exercise 22 to find a formula for the solution of

ay” + by +cy=0, y(xo)=ko, Y (x0)=ki.
Suppose the characteristic equation of
ay” + by +cy=0 (A)

has a repeated real root r;. Temporarily, think of ¢”* as a function of two real variables x and r.

(a) Show that
32 rx 3 rx rx 2 rx
a——E*)+b—(")+ce" =a(r—ry)e . (B)
02x 0x

(b) Differentiate (B) with respect to r to obtain

a 32 rx ba a rx rx\ __ 2 rx C
aa—r(ﬂ(e ))+ B_r(a(e ))+C(xe ) =12+ —r)xla(r —re™.  (C)

(c) Reverse the orders of the partial differentiations in the first two terms on the left side of (C)
to obtain

2 0

a-—(xe™) +b—(xe") +c(xe™) = 24 (r —ri)x]a(r —r1)e’™. (D)
0x x

(d) Setr = ryin (B)and (D) to see that y; = e"'* and y, = xe"!* are solutions of (A)
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34. Incalculus you learned that e¥, cos u, and sinu can be represented by the infinite series

X un u2 u3 u
Z — = + ottt (A)
e uZn 4 2n
— _ 1\ — - - 1)\ .
cosu = Z=:( 1) an)! =1- 5 + 2 + -4 (=1) n )' ; (B)
and
Z( 1y 2+l 03 . uS sy 21 . ©
sinu = — —— — (=D ...
Qn+ ! ST @n +1)!

for all real values of u. Even though you have previously considered (A) only for real values of u,
we can set u = 6, where 6 is real, to obtain

df =3 (l'9)"‘ D)

n!
n=0

Given the proper background in the theory of infinite series with complex terms, it can be shown
that the series in (D) converges for all real 6.

(a) Recalling that i2 = —1, write enough terms of the sequence {i"} to convince yourself that
the sequence is repetitive:

17 ia _la _ia 131" _17 _ia 131" _17 _ia 17 ia _la_ia“'

Use this to group the terms in (D) as

2 4 3 5
eie = 1_9_+9_+... +1i 9_9_+9_+...
2 4 3t 5!
2n+1
- Z(_ )n 1 I
@)l @n+ 1!

By comparing this result with (B) and (C), conclude that

e = cos 0 + i siné. (E)
This is Euler’s identity.
(b) Starting from

0101102 — (cos 6y + i sinB)(cos O + i sin By),

collect the real part (the terms not multiplied by i) and the imaginary part (the terms multi-
plied by i) on the right, and use the trigonometric identities
cos(f1 +602) = cosBcosbtr —sinb sinb,

sin(f; + 6;) = sin#; cos B, + cos by sin b,

to verify that
ei(el +6>) — eieleiez’

as you would expect from the use of the exponential notation e


http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
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(¢) If @ and B are real numbers, define
@B = %P — ¢%(cos B + i sin B). (F)
Show thatif z; = a1 + iB; and 2z, = ap + i3, then

ezl+zz = e%le?2,

(d) Leta, b, and ¢ be real numbers, with a # 0. Let z = u + iv where u and v are real-valued
functions of x. Then we say that z is a solution of

ay” +by +cy=0 (G)
if u and v are both solutions of (G). Use Theorem 5.2.1(c) to verify @hat if the characteristic
equation of (G) has complex conjugate roots A = i then z; = eA @) and 7, = A -7®)x

are both solutions of (G).

5.3 NONHOMOGENEOUS LINEAR EQUATIONS

We’ll now consider the nonhomogeneous linear second order equation

Vi+p)y +qx)y = f(x), (5.3.1)

where the forcing function f isn’t identically zero. The next theorem, an extension of Theorem 5.1.1,
gives sufficient conditions for existence and uniqueness of solutions of initial value problems for (5.3.1).
We omit the proof, which is beyond the scope of this book.

Theorem 5.3.1 Suppose p, ,q and f are continuous on an open interval (a, b), let xo be any point in
(a,b), and let ko and ky be arbitrary real numbers. Then the initial value problem

Y+ Py +q(x)y = f(x). y(xo) =ko. y'(x0) =k
has a unique solution on (a, b).

To find the general solution of (5.3.1) on an interval (a,b) where p, ¢, and f are continuous, it’s
necessary to find the general solution of the associated homogeneous equation

V' 4+ px)y +qx)y =0 (5.3.2)

on (a, b). We call (5.3.2) the complementary equation for (5.3.1).

The next theorem shows how to find the general solution of (5.3.1) if we know one solution y, of
(5.3.1) and a fundamental set of solutions of (5.3.2). We call y, a particular solution of (5.3.1); it can be
any solution that we can find, one way or another.

Theorem 5.3.2 Suppose p, q, and [ are continuous on (a, b). Let y, be a particular solution of

Yt Py +qx)y = fx) (5.3.3)
on (a,b), and let {y1, y2} be a fundamental set of solutions of the complementary equation
Y+ p()y +qx)y =0 (5.3.4)

on (a,b). Then y is a solution of (5.3.3) on (a, b) if and only if

Yy =Yp+ciyr1+c2yz, (5.3.5)

where c1 and ¢, are constants.



222 Chapter 5 Linear Second Order Equations

Proof We first show that y in (5.3.5) is a solution of (5.3.3) for any choice of the constants ¢; and c5.
Differentiating (5.3.5) twice yields

y =y, tayi+ey, and Y =yp+ciy) + 2y,

SO

Vi p)Y +q(x)y = (v + ey +eayy) + po) (), +c1yy +cayy)
+q(x)(yp + c1y1 + c2)2)
= (O +r@y, +9@)yp) + (] + p(xX)y; +q(x)y1)
+c2(y5 + p(x)ys +q(x)y2)
= f+c1-04+c2-0=F

since y, satisfies (5.3.3) and y; and y, satisfy (5.3.4).

Now we’ll show that every solution of (5.3.3) has the form (5.3.5) for some choice of the constants ¢
and c,. Suppose y is a solution of (5.3.3). We’ll show that y — y, is a solution of (5.3.4), and therefore
of the form y — y, = c1y1 + ¢2y2, which implies (5.3.5). To see this, we compute

=)+ @)Y =yp) +q)»—yp) = =)+ PO =)
+q(x)(y —yp)
= 0"+ p)y +q(x)y)
—(y, + Py, +q(x)yp)
= f(x)—fx)=0,

since y and y, both satisfy (5.3.3). [ ]
We say that (5.3.5) is the general solution of (5.3.3) on (a, b).
If Py, Py, and F are continuous and Py has no zeros on (a, b), then Theorem 5.3.2 implies that the
general solution of
Po(x)y" + P1(x)y" + Pa(x)y = F(x) (5.3.6)

on(a,b)isy = yp + c1y1 + c2)2, where y,, is a particular solution of (5.3.6) on (a, b) and {y1, y2} is
a fundamental set of solutions of

Po(x)y” + P1(x)y" + P2(x)y =0
on (a, b). To see this, we rewrite (5.3.6) as
P P Fe)
Po(x) Po(x) Po(x)

and apply Theorem 5.3.2 with p = Py /Py, q = P>/ Py, and f = F/Py.

To avoid awkward wording in examples and exercises, we won’t specify the interval (a, b) when we ask
for the general solution of a specific linear second order equation, or for a fundamental set of solutions of
a homogeneous linear second order equation. Let’s agree that this always means that we want the general
solution (or a fundamental set of solutions, as the case may be) on every open interval on which p, ¢, and
f are continuous if the equation is of the form (5.3.3), or on which Py, Py, P, and F are continuous
and Py has no zeros, if the equation is of the form (5.3.6). We leave it to you to identify these intervals in
specific examples and exercises.

For completeness, we point out that if Py, Py, P2, and F are all continuous on an open interval (a, b),
but Py does have a zero in (a, b), then (5.3.6) may fail to have a general solution on («, b) in the sense
just defined. Exercises 42—44 illustrate this point for a homogeneous equation.

In this section we to limit ourselves to applications of Theorem 5.3.2 where we can guess at the form
of the particular solution.

y// +
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Example 5.3.1

(a) Find the general solution of
yio+y=1 5.3.7)

(b) Solve the initial value problem

yVi+y=1, y0)=2, y(©0) =71 (5.3.8)

SoLuTIiON(a) We can apply Theorem 5.3.2 with (a, b) = (—o0, 00), since the functions p =0, ¢ = 1,
and f = 1 in (5.3.7) are continuous on (—oo, 00). By inspection we see that y, = 1 is a particu-
lar solution of (5.3.7). Since y; = cosx and y, = sinx form a fundamental set of solutions of the
complementary equation y” 4+ y = 0, the general solution of (5.3.7) is

y=1+4cicosx + ¢ sinx. (5.3.9)
SOLUTION(b) Imposing the initial condition y(0) = 2 in (5.3.9) yields 2 = 1 + ¢1, soc; = 1.

Differentiating (5.3.9) yields
y' = —cy sinx + ¢ cos x.

Imposing the initial condition y’(0) = 7 here yields ¢c; = 7, so the solution of (5.3.8) is
y =14cosx + 7sinx.

Figure 5.3.1 is a graph of this function.

Example 5.3.2
(a) Find the general solution of
y' =2y +y=-3—x+x% (5.3.10)
(b) Solve the initial value problem
y' =2y +y=-"3—x+x% y0) =-2, y(0) =1. (5.3.11)

SOLUTION(a) The characteristic polynomial of the complementary equation
y'=2y'+y=0

isr2—2r+1 = (r—1)%, 50 y; = e* and y, = xe* form a fundamental set of solutions of the
complementary equation. To guess a form for a particular solution of (5.3.10), we note that substituting a
second degree polynomial y, = A+ Bx + Cx? into the left side of (5.3.10) will produce another second
degree polynomial with coefficients that depend upon A, B, and C. The trick is to choose 4, B, and C
so the polynomials on the two sides of (5.3.10) have the same coefficients; thus, if

yl,=A+Bx+Cx2 then y;=B+2Cx and yg:zc’
)

Yy =2y 4y, = 2C—2(B+2Cx)+ (A+ Bx + Cx?)
= (2C —2B + A) + (—4C + B)x + Cx?> = =3 — x + x°.
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Figure 5.3.1 y =14 cosx + 7sinx

Equating coefficients of like powers of x on the two sides of the last equality yields

c = 1
B—4C = -1
A—2B+2C = -3,

s0C=1,B=—-14+4C =3,and A = —3—2C +2B = 1. Therefore y, = 1+ 3x + x? is a particular
solution of (5.3.10) and Theorem 5.3.2 implies that

y=1+3x+ x>+ e¥(c; + c2x) (5.3.12)

is the general solution of (5.3.10).

SoLuTIioN(b) Imposing the initial condition y(0) = —2 in (5.3.12) yields =2 = 1 + ¢, so ¢; = —3.
Differentiating (5.3.12) yields

Yy =34 2x + e*(c1 + c2x) + cze”,

and imposing the initial condition y’(0) = 1 here yields 1 = 3 + ¢1 + ¢2, so ¢ = 1. Therefore the
solution of (5.3.11) is
y=14+3x+x2—e*3—x).

Figure 5.3.2 is a graph of this solution.
Example 5.3.3 Find the general solution of

x2y" 4+ xy —4y =2x* (5.3.13)
on (—o0, 0) and (0, 00).
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Figure 5.3.2 y =1+ 3x + x2 —e*(3 —x)

Solution In Example 5.1.3, we verified that y; = x? and y, = 1/x? form a fundamental set of solutions

of the complementary equation

xzy// +xy/ _4y =0

on (—oo, 0) and (0, o). To find a particular solution of (5.3.13), we note that if y, = Ax*, where A is a
constant then both sides of (5.3.13) will be constant multiples of x* and we may be able to choose A so
the two sides are equal. This is true in this example, since if y, = Ax* then

xzyg +xy, =4y, = x2(124x%) 4+ x(4Ax3) — 44x* = 124x* = 2x*

if A = 1/6; therefore, y, = x*/6 is a particular solution of (5.3.13) on (—o0, 00). Theorem 5.3.2
implies that the general solution of (5.3.13) on (—o0, 0) and (0, c0) is

4
X 2 (6]
= —+cx"+ —.
Y% ! x?
The Principle of Superposition

The next theorem enables us to break a nonhomogeous equation into simpler parts, find a particular
solution for each part, and then combine their solutions to obtain a particular solution of the original
problem.

Theorem 5.3.3 [The Principle of Superposition] Suppose yp, is a particular solution of
Yt )y +qx)y = filx)
on (a,b) and y,, is a particular solution of

Vi p@)y +qx)y = falx)
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on (a,b). Then
Yp =Ypi tVm
is a particular solution of
Y+ Py +q(x)y = fi(x) + fa(x)
on (a,b).

Proof Ify, = yp, + yp, then
Yo+ )Y, +q@)yp = o +3p)" + PO p +3p) + )Yy + o)

(Vo + PV, +a0)yp) + (W, + ()Y, +9(X)yp,)
Si(x) + f2(x). m

It’s easy to generalize Theorem 5.3.3 to the equation

V' p)y +qx)y = f(x) (5.3.14)

where
f=h+ o+t fis
thus, if y, is a particular solution of
Yt p@)y +qx)y = fi(x)

on (a,b)fori =1,2,..., k, then y,, + yp, + -+ + yp, is a particular solution of (5.3.14) on (a, b).
Moreover, by a proof similar to the proof of Theorem 5.3.3 we can formulate the principle of superposition
in terms of a linear equation written in the form

Po(x)y" + Pr(x)y" + P2(x)y = F(x)
(Exercise 39); that is, if y,, is a particular solution of
Po(x)y" + P1(x)y" + P2(x)y = Fi(x)
on (a, b) and yp, is a particular solution of
Po(x)y" + P1(x)y" + P2(x)y = Fa(x)
on (a,b), then y,, + yp, is a solution of
Po(x)y” + P1(x)y" + P2(x)y = Fi(x) + F2(x)
on (a, b).
Example 5.3.4 The function y,, = x*/15 is a particular solution of
x2y" 4 dxy’ + 2y =2x* (5.3.15)
on (—o0, 00) and y,, = x2/3 is a particular solution of
x2y" + 4xy’ + 2y = 4x? (5.3.16)
on (—o0, 00). Use the principle of superposition to find a particular solution of
x2y" 4 dxy’ + 2y = 2x* + 4x? (5.3.17)

on (—o0, 00).
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Solution The right side F(x) = 2x* + 4x2 in (5.3.17) is the sum of the right sides
Fi(x) =2x* and Fo(x) = 4x2.

in (5.3.15) and (5.3.16). Therefore the principle of superposition implies that

IS

X x2

Yp =DVp1 T Vp2 15 3

is a particular solution of (5.3.17).

5.3 Exercises
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In Exercises 1-6 find a particular solution by the method used in Example 5.3.2. Then find the general

solution and, where indicated, solve the initial value problem and graph the solution.

y" 4+ 5y — 6y =22 + 18x — 18x2

y'—4y' +5y=1+45x

V' + 8y + 7y = —8 — x + 24x% 4+ 7x3

y' — 4y’ +4y =2+ 8x — 4x2

Y’ 42y + 10y = 4+ 26x + 6x2 4+ 10x3, y(0) =2, '(0) =9
Y+ 6y +10y =22 420x, y(0) =2, y/(0) = —2

Show that the method used in Example 5.3.2 won’t yield a particular solution of

A A I

V' +y =142x+x%

(A)

that is, (A) does’nt have a particular solution of the form y, = A + Bx + Cx?, where A, B, and

C are constants.

In Exercises 8—13 find a particular solution by the method used in Example 5.3.3.

9. x2y"—7xy + 7y =13x1/2
8. x%y"+7xy +8y=—
y y y P

23,1 _ l — 3 1
10. x%y" —xy'+y =2x 1. x?y" +5xy" +4y = —
x
12. x%y" 4+ xy +y=10x'3 13, x%y” —3xy’ + 13y = 2x*

14. Show that the method suggested for finding a particular solution in Exercises 8-13 won’t yield a

particular solution of
2.,/ 4 1
X7y 4 3xy =3y =
x
that is, (A) doesn’t have a particular solution of the form y, = 4/x3.
15. Prove: Ifa, b, ¢, «, and M are constants and M # 0O then

ax?y” +bxy +cy = Mx*®

has a particular solution y, = Ax® (A = constant) if and only if act(o — 1) + b + ¢ # 0.

(A)
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Ifa, b, ¢, and a are constants, then

a(e®)" 4+ b(e*) + ce* = (aa’® + ba + c)e**.

Use this in Exercises 16-21 to find a particular solution . Then find the general solution and, where
indicated, solve the initial value problem and graph the solution.

16.
18.
19.

20.
22,

23.

y" + 5y — 6y = 6e>* 17. y' —4y +5y = e**
Y +8) 4+ Ty =107, y(0) = -2, y'(0) = 10
Y =4y +4y =X, y(0)=2, y(0)=0

Y42y + 10y = e*/? 21 "+ 6y +10y = e
Show that the method suggested for finding a particular solution in Exercises 16-21 won’t yield a
particular solution of

y' =Ty + 12y = 5¢*%; (A)
that is, (A) doesn’t have a particular solution of the form y, = Ae**.

Prove: If « and M are constants and M # 0 then constant coefficient equation

ay//+by/+cy :Meotx

ox

has a particular solution y, = Ae“* (A = constant) if and only if e** isn’t a solution of the

complementary equation.

If w is a constant, differentiating a linear combination of cos wx and sinwx with respect to x yields
another linear combination of cos wx and sin wx. In Exercises 24-29 use this to find a particular solution
of the equation. Then find the general solution and, where indicated, solve the initial value problem and
graph the solution.

24.
25.
26.
27.
28.
29.
30.

31.

y" —8y + 16y = 23 cosx — 7sinx
Yy 4+ y' = —8cos2x + 6sin2x

y" —2y" + 3y = —6cos3x + 6sin3x
y" + 6y’ 4+ 13y = 18cosx + 6sinx

y' +7y' 4+ 12y = —2cos2x + 36sin2x, y(0) =—3, y'(0) =3
y" —6y' + 9y = 18cos3x + 18sin3x, y(0) =2, y'(0) =2
Find the general solution of

y" +wiy = M coswx + N sinwx,

where M and N are constants and @ and wq are distinct positive numbers.

Show that the method suggested for finding a particular solution in Exercises 24-29 won’t yield a
particular solution of
y" 4+ y = cos x + sinx; (A)

that is, (A) does not have a particular solution of the form y, = Acosx + B sinx.
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Prove: If M, N are constants (not both zero) and w > 0, the constant coefficient equation
ay” + by’ +cy = M coswx + N sinwx (A)

has a particular solution that’s a linear combination of cos wx and sin wx if and only if the left side
of (A) is not of the form a(y” + w?y), so that cos wx and sin wx are solutions of the complemen-
tary equation.

In Exercises 33-38 refer to the cited exercises and use the principal of superposition to find a particular
solution. Then find the general solution.

33.
34.
35.
36.
37.
38.
39.

40.

V" 4+ 5y" — 6y = 22 + 18x — 18x2 + 6e3* (See Exercises 1 and 16.)
V" —4y" + 5y = 1 + 5x + e (See Exercises 2 and 17.)
V" +8y" + 7y = —8 — x + 24x2 + 7x3 4 10e72* (See Exercises 3 and 18.)
y" —4y" + 4y =2 + 8x — 4x2 + e* (See Exercises 4 and 19.)
V" +2y" + 10y = 4 4+ 26x + 6x2 4 10x> + e*/2 (See Exercises 5 and 20.)
y" 4+ 6y’ + 10y = 22 + 20x + e~3* (See Exercises 6 and 21.)
Prove: If y,, is a particular solution of

Po(x)y" + P1(x)y" + P2(x)y = F1(x)
on (a,b) and y,, is a particular solution of

Po(x)y" + P1(x)y" + P2(x)y = F2(x)
on (a,b), then y, = yp, + yp, is a solution of

Po(x)y" + P1(x)y" + P2(x)y = Fi(x) + F2(x)

on (a, b).

Suppose p, ¢, and f are continuouson (a, b). Let y1, y», and y, be twice differentiable on (a, b),
such that y = c1y1 + c2y2 + yp is a solution of

V4 p@)y +qx)y = f

on (a, b) for every choice of the constants ¢y, ¢c;. Show that y; and y, are solutions of the com-
plementary equation on (a, b).

5.4 THE METHOD OF UNDETERMINED COEFFICIENTS I

In this section we consider the constant coefficient equation

ay” + by’ +cy = e**G(x), (5.4.1)

where « is a constant and G is a polynomial.
From Theorem 5.3.2, the general solutionof (5.4.1) is y = y, 4+ c1y1 + c2y2, where y,, is a particular
solution of (5.4.1) and {y1, y,} is a fundamental set of solutions of the complementary equation

ay” + by +cy =0.

In Section 5.2 we showed how to find {y1, y>}. In this section we’ll show how to find y,. The procedure
that we’ll use is called the method of undetermined coefficients.
Our first example is similar to Exercises 16-21.
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Example 5.4.1 Find a particular solution of
V' =7y 4+ 12y = 4e*, (5.4.2)

Then find the general solution.

Solution Substituting y, = Ae?* for y in (5.4.2) will produce a constant multiple of Ae?* on the left
side of (5.4.2), so it may be possible to choose A so that y, is a solution of (5.4.2). Let’s try it; if
yp = Ae?* then

Vo =Ty, + 12y, = 446> — 144> + 124" = 24¢*" = 4>

if A = 2. Therefore y, = 2¢2* is a particular solution of (5.4.2). To find the general solution, we note
that the characteristic polynomial of the complementary equation

y' =Ty +12y =0 (5.4.3)

is p(r) = r2 —7r + 12 = (r — 3)(r — 4), so {e3*,e**} is a fundamental set of solutions of (5.4.3).
Therefore the general solution of (5.4.2) is

y = 2e% + c1e3* + et
Example 5.4.2 Find a particular solution of
V' =Ty + 12y = 5e**. (5.4.4)

Then find the general solution.

Solution Fresh from our success in finding a particular solution of (5.4.2) — where we chose y, = Ae?*
because the right side of (5.4.2) is a constant multiple of ¢2* — it may seem reasonable to try y, = Ae**
as a particular solution of (5.4.4). However, this won’t work, since we saw in Example 5.4.1 that e** is
a solution of the complementary equation (5.4.3), so substituting y, = Ae** into the left side of (5.4.4)
produces zero on the left, no matter how we chooseA. To discover a suitable form for y,, we use the
same approach that we used in Section 5.2 to find a second solution of

ay” +by +cy =0

in the case where the characteristic equation has a repeated real root: we look for solutions of (5.4.4) in
the form y = ue**, where u is a function to be determined. Substituting

y =ue*™, y =ue*™ +4ue**, and )y’ =u"e*™ + 8u'e* + 16ue** (5.4.5)

into (5.4.4) and canceling the common factor e** yields
" + 8w + 16u) — 7’ + 4u) + 12u = 5,
or
u" +u' =5

By inspection we see that u, = 5x is a particular solution of this equation, so y, = 5xe** is a particular
solution of (5.4.4). Therefore

y = 5xe*™ + c1e3* + et

is the general solution.
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Example 5.4.3 Find a particular solution of

y" —8y' + 16y = 2¢**. (5.4.6)

Solution Since the characteristic polynomial of the complementary equation
y' =8y +16y =0 (5.4.7)

is p(r) = r2 —8r + 16 = (r — 4)2, both y; = e** and y, = xe** are solutions of (5.4.7). Therefore
(5.4.6) does not have a solution of the form y, = Ae** or y, = Axe**. As in Example 5.4.2, we look
for solutions of (5.4.6) in the form y = ue*~, where u is a function to be determined. Substituting from
(5.4.5) into (5.4.6) and canceling the common factor e*x yields

" + 8u’ + 16u) — 8(u' + 4u) + 16u = 2,

or
u”" =2.
2

Integrating twice and taking the constants of integration to be zero shows that u, = x

solution of this equation, so y, = x2e** is a particular solution of (5.4.4). Therefore

is a particular

y = e*(x? + ¢1 + c2x)

is the general solution. [ ]
The preceding examples illustrate the following facts concerning the form of a particular solution y
of a constant coefficent equation
ay// + by’ +ey = ke®*,

where k is a nonzero constant:

(a) If e** isn’t a solution of the complementary equation
ay” + by +cy =0, (5.4.8)

then y, = Ae®*, where A is a constant. (See Example 5.4.1).

(b) If e** is a solution of (5.4.8) but xe®* is not, then y, = Axe**, where A4 is a constant. (See
Example 5.4.2.)

(c) If both e** and xe®” are solutions of (5.4.8), then y, = AxZ%e®*, where A is a constant. (See
Example 5.4.3.)
See Exercise 30 for the proofs of these facts.
In all three cases you can just substitute the appropriate form for y, and its derivatives directly into

ayy + by, +cyp = ke,
and solve for the constant A, as we did in Example 5.4.1. (See Exercises 31-33.) However, if the equation
is
ay” + by +cy = ke®*G(x),

where G is a polynomial of degree greater than zero, we recommend that you use the substitution y =
ue®* as we did in Examples 5.4.2 and 5.4.3. The equation for u will turn out to be

au” + p'(a)u’ + pla)u = G(x), (5.4.9)
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where p(r) = ar? + br + c is the characteristic polynomial of the complementary equation and p’(r) =
2ar + b (Exercise 30); however, you shouldn’t memorize this since it’s easy to derive the equation for
u in any particular case. Note, however, that if e** is a solution of the complementary equation then
p(a) =0, s0 (5.4.9) reduces to

au” + p'()u’ = G(x),

while if both e** and xe** are solutions of the complementary equation then p(r) = a(r — «)? and
p'(r) =2a(r — ), so p(e) = p’(e) = 0 and (5.4.9) reduces to

au” = G(x).
Example 5.4.4 Find a particular solution of

V"' =3y 42y = e3¥ (=1 + 2x + x?). (5.4.10)

Solution Substituting
y=ue>, y =u'e® +3ue®, andy” = u"e> + 6u'e> + Jue
into (5.4.10) and canceling e3* yields
" +6u’ +9u) — 3’ + 3u) +2u = —1 + 2x + x?,

or
w +3u +2u=—142x + x> (5.4.11)

As in Example 2, in order to guess a form for a particular solution of (5.4.11), we note that substituting a
second degree polynomial u, = A+ Bx + Cx? for u in the left side of (5.4.11) produces another second
degree polynomial with coefficients that depend upon A, B, and C; thus,

if up=A+Bx+Cx*> then u),=B+2Cx and u),=2C.
If up, is to satisfy (5.4.11), we must have

wh 4+ 3u, +2u, = 2C+3(B+2Cx)+2(A+ Bx + Cx?)
= (2C +3B +2A4) 4 (6C +2B)x +2Cx* = —1 4 2x + x%.

Equating coefficients of like powers of x on the two sides of the last equality yields

2 = 1
2B+6C = 2
24+3B+2C = -1.
Solving these equations for C, B, and A (in that order) yields C = 1/2,B = —1/2,4 = —1/4.

Therefore |
Uy = _Z(l + 2x — 2x2)

is a particular solution of (5.4.11), and

_ 3x__i _ 2
Yp = upe* = 4(1+2x 2x%)

is a particular solution of (5.4.10).
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Example 5.4.5 Find a particular solution of

V" — 4y’ + 3y = e3> (6 + 8x + 12x?). (5.4.12)

Solution Substituting

y = ue3x’ y/ — u/e3x + 3ue3x’ and y// — u//e3x + 6u/e3x + 9ue3x

into (5.4.12) and canceling e3* yields
(" 4 6u’ 4+ 9u) — 4’ + 3u) + 3u = 6 + 8x + 12x2,

or
w +2u =6+ 8x + 12x2. (5.4.13)

There’s no u term in this equation, since e3* is a solution of the complementary equation for (5.4.12).

(See Exercise 30.) Therefore (5.4.13) does not have a particular solution of the formu, = A+ Bx+C x?
that we used successfully in Example 5.4.4, since with this choice of up,

uy +2u’, = 2C 4 (B +2Cx)

can’t contain the last term (12x2) on the right side of (5.4.13). Instead, let’s try u, = Ax + Bx? + Cx3
on the grounds that
u, =A+2Bx + 3Cx? and uy =2B +6Cx

together contain all the powers of x that appear on the right side of (5.4.13).
Substituting these expressions in place of u” and u” in (5.4.13) yields

(2B + 6Cx) +2(A +2Bx +3Cx?) = 2B +24) + (6C + 4B)x + 6Cx? = 6 + 8x + 12x2.

Comparing coefficients of like powers of x on the two sides of the last equality shows that u , satisfies
(5.4.13) if

6C = 12
4B+ 6C = 8
2A+2B = 6.
Solving these equations successively yields C = 2, B = —1, and A = 4. Therefore

up = x(4—x +2x?)
is a particular solution of (5.4.13), and
Vp = upe’™ = xe3¥(4—x +2x?%)
is a particular solution of (5.4.12).
Example 5.4.6 Find a particular solution of

4y" + 4y' 4+ y = e ¥/2(—8 + 48x + 144x?). (5.4.14)

Solution Substituting

y = ue—x/z’ I — g X2 lue—x/z’ and y// — u//e—x/z _ u/e—x/z + lue—x/z
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—x/2

into (5.4.14) and canceling e yields

4(u”—u’+3)+4(u’—5)+u—4u”——8+48x+144x2
4 2 - ’

or
w’ = =2+ 12x + 36x2, (5.4.15)

—x/2 —x/2

which does not contain u or u’ because e and xe are both solutions of the complementary
equation. (See Exercise 30.) To obtain a particular solution of (5.4.15) we integrate twice, taking the
constants of integration to be zero; thus,

why =—2x + 6x% +12x> and wup = —x? +2x7 + 3x* = x*(—1 + 2x + 3x?).

Therefore
yp = upe % = x2e72(—1 4 2x + 3x?)

is a particular solution of (5.4.14).
Summary

The preceding examples illustrate the following facts concerning particular solutions of a constant coef-
ficent equation of the form
ay” + by +cy = e**G(x),

where G is a polynomial (see Exercise 30):
(a) If e** isn’t a solution of the complementary equation

ay” + by +cy =0, (5.4.16)

then y, = e** Q(x), where Q is a polynomial of the same degree as G. (See Example 5.4.4).

(b) If e%* is a solution of (5.4.16) but xe** is not, then y, = xe**Q(x), where Q is a polynomial of
the same degree as G. (See Example 5.4.5.)

(¢) Ifboth e®* and xe®* are solutions of (5.4.16), then y, = x2e** Q(x), where Q is a polynomial of
the same degree as G. (See Example 5.4.6.)
In all three cases, you can just substitute the appropriate form for y, and its derivatives directly into

ayy +by, +cyp =e*G(x),

and solve for the coefficients of the polynomial Q. However, if you try this you will see that the compu-
tations are more tedious than those that you encounter by making the substitution y = ue** and finding
a particular solution of the resulting equation for u. (See Exercises 34-36.) In Case (a) the equation for u
will be of the form

au” + p'()u’ + p(a)u = G(x),

with a particular solution of the form u, = Q(x), a polynomial of the same degree as G, whose coeffi-
cients can be found by the method used in Example 5.4.4. In Case (b) the equation for u will be of the
form

au” + p'(a)u’ = G(x)

(no u term on the left), with a particular solution of the form u, = xQ(x), where Q is a polynomial of
the same degree as G whose coefficents can be found by the method used in Example 5.4.5. In Case (c)
the equation for u will be of the form

au” = G(x)
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with a particular solution of the form u, = x?Q(x) that can be obtained by integrating G(x)/a twice
and taking the constants of integration to be zero, as in Example 5.4.6.

Using the Principle of Superposition

The next example shows how to combine the method of undetermined coefficients and Theorem 5.3.3,
the principle of superposition.

Example 5.4.7 Find a particular solution of

V' =Ty 4+ 12y = 4> 4 5¢**. (5.4.17)

Solution In Example 5.4.1 we found that y,, = 2e?* is a particular solution of
y' =Ty + 12y = 4e*,

and in Example 5.4.2 we found that y,, = 5xe** is a particular solution of
y' =Ty + 12y = 5¢**.

Therefore the principle of superposition implies that y, = 2e2* + 5xe** is a particular solution of
(5.4.17).

5.4 Exercises

In Exercises 1-14 find a particular solution.

Loy =3y +2y =e¥(1+x) 2. =6y 45y =eTM(35-8x)
3.y =2y =3y=e"(-8+3x) 4.y 42y +y=e2(=T7—15x + 9x?)
5. Y'4dy=eF(T—4x+5x%) 6. y'—y =2y =e"(9+2x —4x?)

7. y'—4y —5y = —6xe”* 8. y'—=3y +2y=e"(3—4x)

9. y'+y —12y=€¥(=6+7x) 10. 2y" -3y —2y = e (=6 + 10x)

. Y42y +y=e2+3x) 12 y'=2y'+y=e"(1-6x)
13. )" —4y +4y = e2*(1 — 3x + 6x2)
14 9"+ 6y +y =e3(2—4x +4x%)

In Exercises 15—19 find the general solution.

15. y" =3y +2y =e3*(1 + x) 16. "' —6y + 8y = e*(11 — 6x)

17. ' 4+6y' +9y =e*>*(3—5x) 18 y" 42y’ =3y = —l6xe”
19. y' =2y +y=e*(2—-12x)
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In Exercises 20-23 solve the initial value problem and plot the solution.

20.
21.
22,
23.

Y =4y =5y =9e*(1+x), y(0)=0, y(0)=-10
V' 43y —dy =e2*(T+6x), y(0) =2, y(0)=38
V' 44y +3y=—eF2+8x), y0) =1 '(0) =2
Y =3y =10y =7e7, y(0) =1, y'(0)=-17

In Exercises 24-29 use the principle of superposition to find a particular solution.

24.
25.
26.
27.
28.
29.
30.

Y+ y +y=xe*+e (1 +2x)

V' =Ty + 12y = —e*(17 — 42x) — e3¥

V" —8y' + 16y = 6xe** + 2 + 16x + 16x2

y" =3y 42y = —e?*(3 4 4x) — e*

y' =2y +2y =e*(1 + x) + e *(2 — 8x + 5x2)

V' 4y =e ¥ Q2 —4x +2x2%) + 3¥(8 — 12x — 10x?)

(a)

(b)

(c)

(d)

Prove that y is a solution of the constant coefficient equation
ay” + by +cy = e**G(x) (A)
if and only if y = ue®*, where u satisfies
au” + p'(e)’ + p(@)u = G(x) (B)
and p(r) = ar? + br + c is the characteristic polynomial of the complementary equation
ay” + by +cy =0.

For the rest of this exercise, let G be a polynomial. Give the requested proofs for the case
where

G(x) = go + g1x + g2x% + g3x>.

Prove that if ¢®* isn’t a solution of the complementary equation then (B) has a particular
solution of the form u, = A(x), where A is a polynomial of the same degree as G, as in
Example 5.4.4. Conclude that (A) has a particular solution of the form y, = e** A(x).
Show that if e** is a solution of the complementary equation and xe®* isn’t, then (B)
has a particular solution of the form u, = xA(x), where A4 is a polynomial of the same
degree as G, as in Example 5.4.5. Conclude that (A) has a particular solution of the form
Yp = xe** A(x).

Show that if e** and xe®* are both solutions of the complementary equation then (B) has a
particular solution of the form u, = x2A(x), where A is a polynomial of the same degree as
G, and x? A(x) can be obtained by integrating G/a twice, taking the constants of integration

to be zero, as in Example 5.4.6. Conclude that (A) has a particular solution of the form
— x2 ax g
Yp = Xx"e (x).

Exercises 31-36 treat the equations considered in Examples 5.4.1-5.4.6. Substitute the suggested form
of yp into the equation and equate the resulting coefficients of like functions on the two sides of the
resulting equation to derive a set of simultaneous equations for the coefficients in y,. Then solve for
the coefficients to obtain y,. Compare the work you’ve done with the work required to obtain the same
results in Examples 5.4.1-5.4.6.
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32.

33.

34.

35.

36.

37.

38.

Section 5.4 The Method of Undetermined Coefficients 237
Compare with Example 5.4.1:
y' =Ty + 12y = 4e*;  y, = Ae**

Compare with Example 5.4.2:

V' =Ty + 12y = 5e**;  y, = Axe*”
Compare with Example 5.4.3.

y" =8y + 16y =2e**; y, = Ax%e**
Compare with Example 5.4.4:

y' =3y 42y =3 (=1 +2x +x?), yp, =e>*(A+ Bx + Cx?)
Compare with Example 5.4.5:
Y — 4y’ + 3y =3 (6 + 8x + 12x2), y, = e>*(Ax + Bx? + Cx?)

Compare with Example 5.4.6:

4y" +4y' +y = e ¥/2(—8 4 48x + 144x?2), y, = e ¥/2(Ax® 4+ Bx> + Cx*)

Write y = ue®** to find the general solution.

—x
@y’ +2y +y= _i‘/— (b) y" + 6y’ + 9y = e~ Inx
X
2x
¢ 1
(€) y" =4y +4y = @) 4y" +4y +y =4de7/? (_ + x)
1+x X

Suppose & # 0 and k is a positive integer. In most calculus books integrals like [ xke®* dx are
evaluated by integrating by parts k times. This exercise presents another method. Let

y = /e‘”P(x) dx
with
Px)=po+ p1x+---+ pkxk, (where pi # 0).

(a) Show that y = e**u, where
u' +au = P(x). (A)
(b) Show that (A) has a particular solution of the form
up = Ao+ Arx + -+ + Apx*,
where Ay, Ag—1, ..., Ag can be computed successively by equating coefficients of xk, xk_l, |

on both sides of the equation
u, +aup = P(x).

(¢) Conclude that
/e"‘xP(x) dx = (AO +Aix+---+ Akxk) e +c,

where c is a constant of integration.
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39. Use the method of Exercise 38 to evaluate the integral.

(@) [e*(4 + x)dx (b) [ e (=1 + x?)dx
(¢) [x3e > dx @ [e*(1 +x)*dx
(e) [e3*(—14 4+ 30x + 27x?) dx (0 [e*(1 + 6x% — 14x3 + 3x*) dx

40. Use the method suggested in Exercise 38 to evaluate [ xke®* dx, where k is an arbitrary positive
integer and @ # 0.

5.5 THE METHOD OF UNDETERMINED COEFFICIENTS II

In this section we consider the constant coefficient equation
ay” + by’ + cy = e** (P(x)cos wx + Q(x) sin wx) (5.5.1)

where A and w are real numbers, ® # 0, and P and Q are polynomials. We want to find a particular
solution of (5.5.1). As in Section 5.4, the procedure that we will use is called the method of undetermined
coefficients.

Forcing Functions Without Exponential Factors

We begin with the case where A = 0 in (5.5.1); thus, we we want to find a particular solution of
ay” + by +cy = P(x)coswx + Q(x)sinwx, (5.52)

where P and Q are polynomials.
Differentiating x” cos wx and x" sin wx yields

—x"coswx = —wx"sinwx +rx "' coswx

dx

and d—x’ sinwox =  wx coswx + rx" " sinwx.

X

This implies that if
yp = A(x)cos wx + B(x)sinwx

where A and B are polynomials, then
ayy + by, + cyp = F(x)cos wx + G(x) sinwx,

where F and G are polynomials with coefficients that can be expressed in terms of the coefficients of A
and B. This suggests that we try to choose A and B so that F = P and G = Q, respectively. Then y,
will be a particular solution of (5.5.2). The next theorem tells us how to choose the proper form for y .
For the proof see Exercise 37.

Theorem 5.5.1 Suppose w is a positive number and P and Q are polynomials. Let k be the larger of the
degrees of P and Q. Then the equation

ay” + by +cy = P(x)coswx + Q(x)sinwx

has a particular solution
yp = A(x)cos wx + B(x)sinwx, (5.5.3)
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where
A(x) = Ag + A1x 4 -+ Agx* and  B(x) = Bo + Bix + --- + BpxF,

provided that cos wx and sin wx are not solutions of the complementary equation. The solutions of
a(y" + w?y) = P(x)cos wx + Q(x) sinwx
(for which cos wx and sinwx are solutions of the complementary equation) are of the form (5.5.3), where
A(x) = Aox + A1x® + -+ Apx*1 and  B(x) = Box + Bix? + -+ + BpxFt1.
For an analog of this theorem that’s applicable to (5.5.1), see Exercise 38.

Example 5.5.1 Find a particular solution of

y" =2y +y = 5co0s2x + 10sin2x. (5.5.4)
Solution In (5.5.4) the coefficients of cos2x and sin2x are both zero degree polynomials (constants).
Therefore Theorem 5.5.1 implies that (5.5.4) has a particular solution

yp = Acos2x + B sin2x.

Since
y, = —2Asin2x +2Bcos2x and y, = —4(Acos2x + Bsin2x),

replacing y by y, in (5.5.4) yields

Yp =2y, +yp = —4(Acos2x + Bsin2x) —4(—Asin2x + B cos2x)
+(A cos 2x + Bsin2x)
= (—3A—4B)cos2x + (44 — 3B)sin2x.

Equating the coefficients of cos 2x and sin2x here with the corresponding coefficients on the right side
of (5.5.4) shows that y, is a solution of (5.5.4) if

—34-4B = 5
44-3B = 10.

Solving these equations yields A = 1, B = —2. Therefore
Yp = cos2x — 2sin2x
is a particular solution of (5.5.4).
Example 5.5.2 Find a particular solution of
y” + 4y = 8cos2x + 12sin2x. (5.5.5)
Solution The procedure used in Example 5.5.1 doesn’t work here; substituting y,, = A cos 2x 4 B sin2x
for y in (5.5.5) yields

yp +4yp = —4(Acos 2x + Bsin2x) 4 4(A cos 2x + Bsin2x) = 0
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for any choice of A and B, since cos2x and sin2x are both solutions of the complementary equation
for (5.5.5). We're dealing with the second case mentioned in Theorem 5.5.1, and should therefore try a
particular solution of the form

yp = x(Acos2x + B sin2x). (5.5.6)
Then
y, = Acos2x + Bsin2x + 2x(—Asin2x + B cos2x)
and yg = —4Asin2x + 4B cos2x — 4x(Acos2x + B sin2x)
—4Asin2x + 4B cos 2x — 4y, (see (5.5.6)),
o)

Yy + 4yp = —4Asin2x + 4B cos 2x.
Therefore y, is a solution of (5.5.5) if

—4Asin2x + 4B cos2x = 8cos2x + 12sin2x,
which holds if A = —3 and B = 2. Therefore
Yp = —x(3cos2x —2sin2x)
is a particular solution of (5.5.5).
Example 5.5.3 Find a particular solution of
y" 4+ 3y" + 2y = (16 + 20x) cos x + 10sin x. (5.5.7)

Solution The coefficients of cos x and sin x in (5.5.7) are polynomials of degree one and zero, respec-
tively. Therefore Theorem 5.5.1 tells us to look for a particular solution of (5.5.7) of the form

yp = (Ao + A1x)cosx + (Bo + Bix)sinx. (5.5.8)
Then
y; = (A1 + Bo + Bix)cosx + (B; — Ag — A1x)sinx (5.5.9)
and
yg = 2By — Ag — A1x)cos x — (2A1 + Bo + B1x)sinx, (5.5.10)
SO
Vy +3y,+2yp = [Ao+3A41 +3Bo+2B1 + (A1 + 3B1)x]|cosx (5.5.11)

+[Bo+ 3By —3A49 —2A; + (By — 3A1)x]sin x.

Comparing the coefficients of x cos x, x sin x, cos x, and sin x here with the corresponding coefficients
in (5.5.7) shows that y, is a solution of (5.5.7) if

A1 +3B; = 20

—3414+ By = 0

Ao +3Bg+ 341 +2B; = 16
—3A4A9+ Bo—241+3B; = 10.

Solving the first two equations yields A; = 2, By = 6. Substituting these into the last two equations
yields

Ao + 3By
—3A40+ Bo

16 —34; —2B; = -2
10+ 24, — 3By = —4.
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Solving these equations yields A9 = 1, By = —1. Substituting A9 = 1, A; =2, By = —1, By = 6into
(5.5.8) shows that
yp = (1 +2x)cosx — (1 — 6x)sinx

is a particular solution of (5.5.7).
A Useful Observation

In (5.5.9), (5.5.10), and (5.5.11) the polynomials multiplying sin x can be obtained by replacing Ag, A1, Bo,
and B; by By, B1, —Ay, and — A, respectively, in the polynomials mutiplying cos x. An analogous result
applies in general, as follows (Exercise 36).

Theorem 5.5.2 If
Vp = A(x)cos wx + B(x)sinwx,

where A(x) and B(x) are polynomials with coefficients Ay ..., Ax and By, ..., By, then the polynomials
multiplying sin wx in

Voo Vneoayy+by,+cy, and yy+ oy,

can be obtained by replacing Ay, ..., Ax by By, ..., Bx and By, ..., By by —Ay, ..., —Ag in the
corresponding polynomials multiplying cos wx.

We won’t use this theorem in our examples, but we recommend that you use it to check your manipu-
lations when you work the exercises.

Example 5.5.4 Find a particular solution of

y" 4y = (8 —4x)cosx — (8 + 8x) sin x. (5.5.12)

Solution According to Theorem 5.5.1, we should look for a particular solution of the form

yp = (Aox + A1x?)cos x + (Box + B1x?)sinx, (5.5.13)
since cos x and sin x are solutions of the complementary equation. However, let’s try

yp = (Ao + A1x)cosx + (Bo + B1x)sinx (5.5.14)
first, so you can see why it doesn’t work. From (5.5.10),
yg = 2By — Ag — A1x)cos x — (2A1 + Bo + Bix)sinx,
which together with (5.5.14) implies that
Yp+ ¥p =2Bicosx —2A;sinx.

Since the right side of this equation does not contain x cos x or x sin x, (5.5.14) can’t satisfy (5.5.12) no
matter how we choose Ag, A1, Bg, and Bj.
Now let y, be as in (5.5.13). Then

YQ; = [Ao + (241 + Bo)x + lez] cos X
+ [Bo + 2By — Ap)x — A1x2] sin x
and V, = [241 + 2By — (Ao — 4B1)x — Alxz] cos x

+[2B1 — 240 — (Bo + 4A41)x — Byx?]sinx,
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SO
¥y +Vp = (A1 4+ 2By + 4B1x)cos x + (2B; —2A49 —4A;x)sin x.

Comparing the coefficients of cos x and sin x here with the corresponding coefficients in (5.5.12) shows
that y, is a solution of (5.5.12) if

4B; = —4

—44; = -8

2By +247 = 8
—2A¢0+2B; = -8.

The solution of this system is A; = 2, B; = —1, A9 = 3, By = 2. Therefore
yp =x[(3+2x)cosx + (2 — x)sinx]
is a particular solution of (5.5.12).
Forcing Functions with Exponential Factors
To find a particular solution of
ay” + by’ + cy = e** (P(x)cos wx + Q(x) sin wx) (5.5.15)

when A # 0, we recall from Section 5.4 that substituting y = ue** into (5.5.15) will produce a constant
coefficient equation for u with the forcing function P (x) cos wx + Q(x) sin wx. We can find a particular
solution u ,, of this equation by the procedure that we used in Examples 5.5.1-5.5.4. Then y, = u pe’lx
is a particular solution of (5.5.15).

Example 5.5.5 Find a particular solution of

y" =3y +2y = e 2* [2cos 3x — (34 — 150x) sin 3x]. (5.5.16)

Solution Let y = ue™2*. Then

Yy =3y +2y = e[ —4u +4u)— 30 —2u) + 2u]
= e X —Tu + 12u)
= e 2 [2cos3x — (34 — 150x) sin3x]

if
u’ —7u’ + 12u = 2cos3x — (34 — 150x) sin 3x. (5.5.17)

Since cos 3x and sin 3x aren’t solutions of the complementary equation
w —7u +12u =0,

Theorem 5.5.1 tells us to look for a particular solution of (5.5.17) of the form

up = (Ag + A1x)cos3x + (Bo + Bix)sin3x. (5.5.18)
Then
u’p = (Ay; +3Bo+3B1x)cos3x + (B; —3A49 — 3A;1x) sin 3x
and u’; = (=940 + 6B; —941x)cos3x — (9Bg + 6A4; + 9B x) sin 3x,
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SO

uy —Tu, 4+ 12u, = [349—21Bo—TA1 + 6By + (341 —21By)x] cos 3x
42140 + 3Bo — 641 — 7By + (2141 + 3B1)x] sin 3x.

Comparing the coefficients of x cos 3x, x sin 3x, cos 3x, and sin 3x here with the corresponding coeffi-
cients on the right side of (5.5.17) shows that u, is a solution of (5.5.17) if

341 -21B; = 0
2141+ 3By = 150
340—21By—TA1 + 6B, = 2 (5.5.19)
2149+ 3Bp—6A1— 7B1 = -—34.
Solving the first two equations yields A; = 7, By = 1. Substituting these values into the last two
equations of (5.5.19) yields
349 —21By = 24+ 7A; —6B; =45
2140+ 3By = —-34+4+6A1+7B; =15.

Solving this system yields A9 = 1, By = —2. Substituting A9 = 1, A1 =7, Bo = —2,and B} = 1 into
(5.5.18) shows that
up = (14 7x)cos3x — (2 —x)sin3x

is a particular solution of (5.5.17). Therefore

yp = e 2*[(1 4+ 7x)cos 3x — (2 — x) sin 3x]
is a particular solution of (5.5.16).
Example 5.5.6 Find a particular solution of

V" 42y 4+ 5y = e [(6 — 16x) cos 2x — (8 + 8x) sin2x]. (5.5.20)

Solution Let y = ue™. Then

Y +2y +5y = e[ —2u' +u) + 2’ —u) + 5u
= e *W’ + 4u)
e ¥ [(6 —16x) cos2x — (8 + 8x) sin2x]

if
u” + 4u = (6 — 16x) cos 2x — (8 + 8x) sin2x. (5.5.21)

Since cos 2x and sin 2x are solutions of the complementary equation
u +4u =0,
Theorem 5.5.1 tells us to look for a particular solution of (5.5.21) of the form

up = (Aox + A1x?)cos2x + (Box + B1x?)sin2x.
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Then
u’p = [Ao + (241 + 2Bg)x + Zlez] cos 2x
+ [Bo + (2B1 —2A4¢)x — 2A1x2] sin 2x
and u, = [241 + 4By — (449 — 8B1)x — 4A1x2] cos2x
+[2B1 — 440 — (4Bo + 8A1)x — 4B x*]sin2x,
)

u’; +4up, = (2A1 + 4B+ 8B1x)cos2x + (2B —4A¢ — 8A1x) sin2x.

Equating the coefficients of x cos 2x, x sin2x, cos 2x, and sin 2x here with the corresponding coefficients
on the right side of (5.5.21) shows that u, is a solution of (5.5.21) if

8B; = -—16
i 2
—4A9+2B; = 8.
The solution of this systemis A; = 1, Bj = =2, Bg = 1, Ag = 1. Therefore
up = x[(1 4+ x)cos2x + (1 — 2x) sin 2x]
is a particular solution of (5.5.21), and
yp = xe *[(1 4+ x)cos2x + (I —2x) sin2x]
is a particular solution of (5.5.20). |

You can also find a particular solution of (5.5.20) by substituting
yp = xe ¥ [(Ap + A1x)cos 2x + (Bo + B1x)sin2x]

for y in (5.5.20) and equating the coefficients of xe ™ cos 2x, xe ¥ sin 2x, e~* cos 2x, and e ™" sin 2x in
the resulting expression for
Vo 42y, 4+ 5yp

with the corresponding coefficients on the right side of (5.5.20). (See Exercise 38). This leads to the same
system (5.5.22) of equations for Ag, A1, By, and B; that we obtained in Example 5.5.6. However, if you
try this approach you’ll see that deriving (5.5.22) this way is much more tedious than the way we did it
in Example 5.5.6.

5.5 Exercises

In Exercises 1-17 find a particular solution.

y" 4+ 3y’ +2y = Tcosx —sinx

¥’ +3y +y=(2-6x)cosx —9sinx

y' 42y +y =e*(6cosx + 17sinx)

y" 4+ 3y’ —2y = —e?*(5cos 2x + 9sin2x)

Y=y +y=e*2+ x)sinx

y" 4+ 3y —2y = e72* [(4 4 20x) cos 3x + (26 — 32x) sin 3x]

SNk Wb
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7. y"+4y = —12cos2x — 4sin2x
Y +y=(—4+8x)cosx + (8 —4x)sinx

9. 4y"+y=—4cosx/2—8xsinx/2
10. y”" +2y" +2y = e *(8cosx — 6sinx)
1L y"=2y"+ 5y = " [(6 4 8x) cos 2x + (6 — 8x) sin 2x]
12. y" 42y +y =8x2cosx — 4xsinx
13.  y" +3y" +2y = (12 4 20x + 10x?) cos x + 8x sinx
14. y" 43y +2y = (1 —x —4x?)cos2x — (1 4+ 7x + 2x?) sin2x
15. y" =5y + 6y = —e* [(4 + 6x — x?) cosx — (2 — 4x + 3x?) sin x|
16. y’' -2y’ +y=—e" [(3 +4x —x?)cos x + (3 —4x — x?)sin x]
17. " =2y’ +2y = e* [(2—2x — 6x?) cos x + (2 — 10x + 6x?) sin x]

In Exercises 1-17 find a particular solution and graph it.

18. Y42y +y=e*[(5—2x)cosx — (3 + 3x)sin x]

19. y”" 4+ 9y = —6cos3x — 12sin3x

20. V' 43y +2y = (1 —x —4x?)cos 2x — (1 + 7x + 2x2)sin2x
21. y'+4y +3y =e*[(2+ x + x?)cosx + (5 + 4x + 2x?) sinx]

In Exercises 22-26 solve the initial value problem.

22. y' =Ty 4+ 6y =—e*(17cosx —7sinx), y(0) =4, y'(0)=2

23. y' =2y 4+2y =—e*(6cosx +4sinx), y0) =1, y'(0) =4

24. y" + 6y’ + 10y = —40e*sinx, y(©0) =2, y'(0) = -3

25. y"—6y + 10y = —e3*(6cosx + 4sinx), y(0) =2, y'(0)=7

26. y'—3y +2y =e3*[21cosx — (11 4+ 10x)sinx], y(0) =0, y'(0)=6

In Exercises 27-32 use the principle of superposition to find a particular solution. Where indicated, solve
the initial value problem.

27. y'—2y -3y = 4e3% 4 e*(cos x —2sinx)
28. y'+y=4cosx —2sinx +xe* +e *

29. )’ —3y +2y = xe* + 22 +sinx

30. y"—2y +2y =4xe cosx +xe ¥ + 1+ x?2

3.y —4y +4y =e?*(1 +x) +e?>*(cosx —sinx) +3e3 + 1 +x

32. ' —4y' +4y = 6e?* +25sinx, y(0) =35, y'(0)=3
In Exercises 33-35 solve the initial value problem and graph the solution.
33. V' 4+ 4y = —e 2 [(4 —Tx)cosx + (2—4x)sinx], y(0) =3, ' (0) =1

34. y' +4y 4+ 4y =2cos2x + 3sin2x + e ¥, y(0) =-1, y'(0) =2
3s. V" 4+ 4y = e*(11 + 15x) + 8cos2x — 12sin2x, y(0) =3, y'(0) =5
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36. (a) Verify thatif
yp = A(x)cos wx + B(x)sinwx

where A and B are twice differentiable, then

y, = (A'+woB)coswx + (B'—wA)sinwx and
v, = (A" +20wB" — w?A)coswx + (B” —2wA' — w?B)sinwx.

(b) Use the results of (a) to verify that
ayy + by, +cy, = [(c— aw®)A + bwB + 2awB’ + bA' + aA”]cos wx +
[~bwA + (c — aw®)B —2awA’ + bB' + aB" ] sinwx.
(¢) Use the results of (a) to verify that
Vo 4+ ?yp = (A" + 2wB’) cos wx + (B” — 20A") sinwx.
(d) Prove Theorem 5.5.2.
37. Leta,b, ¢, and w be constants, with @ # 0 and w > 0, and let
P(x) =po+ prx+---+px* and  Q(x) =qo + q1x + - + qrx,

where at least one of the coefficients pg, gx is nonzero, so k is the larger of the degrees of P
and Q.

(a) Show that if cos wx and sinwx are not solutions of the complementary equation
ay” + by +cy =0,
then there are polynomials

A(x) = Ag + Ajx + -+ Agx* and  B(x) = By + Bix + -+ + Brx* (A)

such that
(c —aw®)A +bwB + 2awB’ + bA' +aA” = P
—bwA + (c —aw?)B —2awA’ + bB' +aB” = 0,
where (Ag, Bx), (Ax—1, Brk—1), ...,(Ao, Bog) can be computed successively by solving the
systems
(c —aw*)Ay + bwBr = pi
—bwA + (c —aw?®)By = qx,
and,if 1 <r <k,
(c— awz)Ak—r +bwBr—y = pi—r+---
—bwAg—y + (c — awz)Bk—r = qk—r+- -,
where the terms indicated by “ --” depend upon the previously computed coefficients with

subscripts greater than k — r. Conclude from this and Exercise 36(b) that
yp = A(x)cos wx + B(x)sinwx B)
is a particular solution of

ay” + by’ + cy = P(x)coswx + Q(x)sinwx.
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(b) Conclude from Exercise 36(c) that the equation
a(y" + w?y) = P(x)cos wx + Q(x)sin wx (©)

does not have a solution of the form (B) with 4 and B as in (A). Then show that there are
polynomials

A(x) = Aox + Ax?+-+ Akxk+1 and B(x) = Box + Bix?> 4.+ kak+1

such that
a(A” +2wB’) = P
a(B” —=2wA’) = 0,
where the pairs (Ag, By), (Ax—1, Br—1), ..., (Ao, Bo) can be computed successively as
follows:
dk
A __ k.
k 2aw(k + 1)
Pk
B, = T
k 2aw(k + 1)
and, ifk > 1,
1 Gk—j ;
Api = —|—————(k—j +2)By_;
k—j 2w[a(k—j+1) ( J ) kj+1:|
1 Dk—j :
Bi_i = — | —— —(k— DAp—;
k—j 2w[a(k—j+1) (k—j+ )kj+1:|

for 1 < j < k. Conclude that (B) with this choice of the polynomials A and B is a particular
solution of (C).

Show that Theorem 5.5.1 implies the next theorem: Suppose w is a positive number and P and Q
are polynomials. Let k be the larger of the degrees of P and Q. Then the equation

ay” + by’ + cy = e’ (P(x) cos wx + Q(x) sin wx)
has a particular solution
yp = €™ (A(x) cos wx + B(x)sinwx), (A)
where
A(x) = Ag + A1x + -+ Agx* and B(x) = By + Bix + -+ + Bxk,

provided that e** cos wx and e** sinwx are not solutions of the complementary equation. The
equation
aly” =21y + (A* + 0?)y] = e* (P(x) cos ox + Q(x) sin wx)

(for which e** cos wx and e** sinwx are solutions of the complementary equation) has a partic-
ular solution of the form (A), where

A(x) = Aox + A1x2 4ot Akxk'H and B(x) = Box + lez + -+ kak-H‘
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39. This exercise presents a method for evaluating the integral
y = /e“ (P(x)coswx + Q(x)sinwx) dx

where @ # 0 and
P(x) =po+pix+-+px’, 0 =qo+qix+-+qx*.
(a) Show thaty = e**u, where
u' + Au = P(x)coswx + Q(x)sin wx. (A)
(b) Show that (A) has a particular solution of the form
up, = A(x)coswx + B(x)sinwx,
where
A(xX) = Ao+ Arx + -+ Agx®, B(x) = Bo + Bix + -+ + Bix¥,

and the pairs of coefficients (Ag, By), (Ax—1, Bx—1), - --,(Ao, Bo) can be computed succes-
sively as the solutions of pairs of equations obtained by equating the coefficients of x” cos wx
and x” sinwx forr =k, k—1,...,0.

(¢) Conclude that

/e“ (P(x)cos wx + Q(x)sinwx) dx = e** (A(x) cos wx + B(x)sinwx) + ¢,

where c is a constant of integration.

40. Use the method of Exercise 39 to evaluate the integral.

(@) [ x*cos x dx (b) [ x?e* cosx dx
(¢) [ xe *sin2x dx (d) [ x%e *sinx dx
(e) [ x3e* sinx dx (f) [e* [xcosx — (1 + 3x)sinx] dx

(8 [e™*[(1 4+ x?)cosx + (1 —x?)sinx] dx

5.6 REDUCTION OF ORDER

In this section we give a method for finding the general solution of
Po(x)y" + P1(x)y" + P2(x)y = F(x) (5.6.1)

if we know a nontrivial solution y; of the complementary equation
Po(x)y” + Pi(x)y + Py(x)y = 0. (5.6.2)

The method is called reduction of order because it reduces the task of solving (5.6.1) to solving a first
order equation. Unlike the method of undetermined coefficients, it does not require Py, P;, and P; to be
constants, or F' to be of any special form.
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By now you shoudn’t be surprised that we look for solutions of (5.6.1) in the form

Yy =uy (5.6.3)

where u is to be determined so that y satisfies (5.6.1). Substituting (5.6.3) and

/

u'yr + uyj

y
"= uyr + 22Uy +uyy

/

into (5.6.1) yields
Po(x)("y1 + 2u'yy +uy{) + Pr(x)('y1 +uy}) + P2(x)uyr = F(x).
Collecting the coefficients of u, u’, and u” yields
(Poyou” + 2Poyy + Piy)u' + (Poy{ + P1yy + Payi)u = F. (5.6.4)
However, the coefficient of u is zero, since y; satisfies (5.6.2). Therefore (5.6.4) reduces to
Qo + Q1 (v’ = F, (5.6.5)

with
Qo= Pyy; and Q; =2Poy| + Piy1.

(It isn’t worthwhile to memorize the formulas for Q¢ and Q1!) Since (5.6.5) is a linear first order equation
in u’, we can solve it for 4’ by variation of parameters as in Section 1.2, integrate the solution to obtain
u, and then obtain y from (5.6.3).

Example 5.6.1

(a) Find the general solution of
xy" —@2x + 1)y + (x + 1)y = x2, (5.6.6)
given that y; = e* is a solution of the complementary equation

xy" = Qx+ 1)y +(x+1)y=0. (5.6.7)

(b) As abyproduct of (a), find a fundamental set of solutions of (5.6.7).

SoLuTION(a) If y = ue*, then y’ = u'e* 4+ ue® and y” = u”e* + 2u’'e® + ue*, so

Xy =Q2x+ 1Dy +(x+1)y = x@’e* +2u'e” +uev)
—2x + )'e* +ue*) + (x + Due*

= (xu” —u)e~.

Therefore y = ue”™ is a solution of (5.6.6) if and only if

(xu// _ u/)ex — xz’

which is a first order equation in u’. We rewrite it as

u/

u’ — = xe X, (5.6.8)
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To focus on how we apply variation of parameters to this equation, we temporarily write z = u’, so that

(5.6.8) becomes

7 - % = xe™*. (5.6.9)

We leave it to you to show (by separation of variables) that z; = x is a solution of the complementary

equation
<
Z-==0
x

for (5.6.9). By applying variation of parameters as in Section 1.2, we can now see that every solution of
(5.6.9) is of the form

z=vx where vVx=xe™, so vV=e* and v=—"+C.
Since u’ = z = vx, u is a solution of (5.6.8) if and only if
U =vx = —xe ™ + Cyx.
Integrating this yields
u=(x+ e ™ + %xz + Cs.

Therefore the general solution of (5.6.6) is

C
y=ue*=x+1+ %xzex + Cye*. (5.6.10)

SOLUTION(b) By letting C; = C, = 01in (5.6.10), we see that y,, = x + 1 is a solution of (5.6.6).
By letting C; = 2 and C, = 0, we see that y,, = x + 1 + x2e* is also a solution of (5.6.6). Since

the difference of two solutions of (5.6.6) is a solution of (5.6.7), y2 = y,, — ¥p, = x2e* is a solution
of (5.6.7). Since y»/y: is nonconstant and we already know that y; = e* is a solution of (5.6.6),
Theorem 5.1.6 implies that {e*, x2e*} is a fundamental set of solutions of (5.6.7). [ ]

Although (5.6.10) is a correct form for the general solution of (5.6.6), it’s silly to leave the arbitrary
coefficient of x2e* as C1/2 where Cj is an arbitrary constant. Moreover, it’s sensible to make the
subscripts of the coefficients of y; = e* and y, = x2e* consistent with the subscripts of the functions
themselves. Therefore we rewrite (5.6.10) as

y=x+14cre’ + cpx2e”

by simply renaming the arbitrary constants. We’ll also do this in the next two examples, and in the
answers to the exercises.

Example 5.6.2

(a) Find the general solution of

xzy//+xy/_y :x2+ 1,

given that y; = x is a solution of the complementary equation

x2y" +xy' —y =0. (5.6.11)

As a byproduct of this result, find a fundamental set of solutions of (5.6.11).
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(b) Solve the initial value problem

¥y +xy —y=x24+1, y)=2,y'(1)=-3. (5.6.12)

SoLuTioN(a) If y = ux, then y) = u'x + u and y” = u”x 4+ 2u/, so

X2y 4+ xy —y = xX*’x+2u) +x'x +u) —ux

= xu’ +3x%/.
Therefore y = ux is a solution of (5.6.12) if and only if
3w+ 3x% = X%+ 1,
which is a first order equation in u’. We rewrite it as

, 3, 1 1

To focus on how we apply variation of parameters to this equation, we temporarily write z = u’, so that

(5.6.13) becomes
, 3 1 1
T+ =+ (5.6.14)
x X x
We leave it to you to show by separation of variables that z; = 1/x3 is a solution of the complementary
equation

, 3
Z+-z=0
X
for (5.6.14). By variation of parameters, every solution of (5.6.14) is of the form

v v 1 1 x3
z=— where —=—-—4+—, so v =x>4+1 and v=—+x+Ci.
x3 x3  x X3 3

Since v’ = z = v/x3, u is a solution of (5.6.14) if and only if

, v 1 1 C1

Uw=—_==-+—+—.
x3 3 x2 x3
Integrating this yields
X 1 C1

=2 -,
" 3 x 2x2+ 2

Therefore the general solution of (5.6.12) is

2
x C
y=ux=——1-—% 4 Cyx. (5.6.15)
3 2x
Reasoning as in the solution of Example 5.6.1(a), we conclude that y; = x and y, = 1/x form a

fundamental set of solutions for (5.6.11).
As we explained above, we rename the constants in (5.6.15) and rewrite it as

x2

y= lteax+ 2 (5.6.16)
3 X
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SOLUTION(b) Differentiating (5.6.16) yields

I (5.6.17)
X

Setting x = 1 in (5.6.16) and (5.6.17) and imposing the initial conditions y(1) = 2 and y’(1) = =3
yields

c1+cy =

CiL—Cr = —

w|:°’|°°

Solving these equations yields ¢c; = —1/2, ¢c2 = 19/6. Therefore the solution of (5.6.12) is

_x2 : x+19
Y =3 2 " ex

Using reduction of order to find the general solution of a homogeneous linear second order equation
leads to a homogeneous linear first order equation in u’ that can be solved by separation of variables. The
next example illustrates this.

Example 5.6.3 Find the general solution and a fundamental set of solutions of
x2y" —3xy’ +3y =0, (5.6.18)

given that y; = x is a solution.

Solution If y = ux then y’ = w'x + w and y” = u”x + 2u/, so

X2y =3xy' +3y = xXPW'x +2) = 3x('x +u) + 3ux

= X3 —x%/.

Therefore y = ux is a solution of (5.6.18) if and only if
3

3w —x2 =0.

Separating the variables u’ and x yields

u” 1
s
SO
In|u'| =1In|x| +k, or,equivalently, u’' = Cjx.
Therefore c
1 2
U= —x°4+C,,
3 2
so the general solution of (5.6.18) is
C
y=ux = 71)63 + Cox,

which we rewrite as

y=c1x+ sz3.
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Therefore {x, x3} is a fundamental set of solutions of (5.6.18).
5.6 Exercises
In Exercises 1-17 find the general solution, given that y; satisfies the complementary equation. As a

byproduct, find a fundamental set of solutions of the complementary equation.

1.

10.
11.
12.
13.
14.
15.
16.
17.
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