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Part I: Programming
environments for motion,
graphics, and geometry

Part I of this text book will discuss:
- simple programming environments
- program design
- informal versus formal notations

- reducing a solution to primitive operations, and programming as an activity independent of language.

The purpose of an artificial programming environment

A program can be designed with the barest of tools, paper and pencil, or in the programmer's head. In the realm
of such informal environments, a program design may contain vague concepts expressed in an informal notation.
Before he or she can execute this program, the programmer needs a programming environment, typically a
complex system with many distinct components: a computer and its operating system, utilities, and program
libraries; text and program editors; various programming languages and their processors. Such real programming
environments force programmers to express themselves in formal notations.

Programming is the realization of a solution to a problem, expressed in terms of those operations provided by a
given programming environment. Most programmers work in environments that provide very powerful operations
and tools.

The more powerful a programming environment, the simpler the programming task, at least to the expert who
has achieved mastery of this environment. Even an experienced programmer may need several months to master a
new programming environment, and a novice may give up in frustration at the multitude of concepts and details he
or she must understand before writing the simplest program.

The simpler a programming environment, the easier it is to write and run small programs, and the more work it
is to write substantial, useful programs. In the early days of computing, before the proliferation of programming
languages during the 1960s, most programmers worked in environments that were exceedingly simple by modern
standards: Acquaintance with an assembler, a loader, and a small program library sufficed. The programs they
wrote were small compared to what a professional programmer writes today. The simpler a programming
environment is, the better suited it is for learning to program. Alas, today simple environments are hard to find!
Even a home computer is equipped with complex software that is not easily ignored or bypassed. For the sake of
education it is useful to invent artificial programming environments. Their only purpose is to illustrate some

important concepts in the simplest possible setting and to facilitate insight. Part I of this book introduces such a toy
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programming environment suitable for programming graphics and motion, and illustrates how it can gradually be
enriched to approach a simple but useful graphics environment.

Textbooks on computer graphics. The computer-driven graphics screen is a powerful new medium for
communication. Visualization often makes it possible to present the results of a computation in intuitively
appealing ways that convey insights not easily gained in any other manner. To exploit this medium, every
programmer must master basic visualization techniques. We refer the reader interested in a systematic
introduction to computer graphics to such excellent textbooks as [BG 89], [FDFH 9o0], [NS 79], [Rog 85], [Wat 89],
and [Wol 89].
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1. Reducing a task to given
primitives: programming
motion

Learning objectives:
- primitives for specifying motion
- expressing an algorithm in informal notations and in high- and low-level programming languages
« program verification

« program optimization

A robot car, its capabilities, and the task to be performed

Some aspects of programming can be learned without a computer, by inventing an artificial programming
environment as a purely mental exercise. The example of a vehicle that moves under program control in a fictitious
landscape is a microcosmos of programming lore. In this section we introduce important concepts that will
reappear later in more elaborate settings.

The environment. Consider a two-dimensional square grid, a portion of which is enclosed by a wall made up
of horizontal and vertical line segments that run halfway between the grid points (Exhibit 1.1). A robot car enclosed
within the wall moves along this grid under computer control, one step at a time, from grid point to adjacent grid
point. Before and after each step, the robot's state is described by a location (grid point) and a direction (north, east,

south, or west).

N

Exhibit 1.1: The robot's crosshairs show its current location on the grid.

The robot is controlled by a program that uses the following commands:

left Turn 90 degrees counterclockwise.

right Turn 90 degrees clockwise.

forward Move one step, to the next grid point in front of
you

goto # Send program control to the label #.

if touch goto # If you are touching a wall to your front, send
program control to the label #.

Algorithms and Data Structures 9 A Global Text
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1. Reducing a task to given primitives: programming motion

A program for the robot is a sequence of commands with distinct labels. The labels serve merely to identify the
commands and need not be arranged either consecutively or in increasing order. Execution begins with the first
command and proceeds to successive commands in the order in which they appear, except when flow of control is

redirected by either of the goto commands.

Example

The following program moves the robot forward until it bumps into a wall:
1 if touch goto 4
2 forward
3 goto 1
4 { there is no command here; just a label }
In developing programs for the robot, we feel free to use any high-level language we prefer, and embed robot
commands in it. Thus we might have expressed our wall-finding program by the simpler statement

while not touch do forward;

and then translated it into the robot's language.
A program for this robot car to patrol the walls of a city consists of two parts: First, find a wall, the problem we
just solved. Second, move along the wall forever while maintaining two conditions:
1. Never lose touch with the wall; at all times, keep within one step of it.
2. Visit every spot along the wall in a monotonic progression.
The mental image of walking around a room with eyes closed, left arm extended, and the left hand touching the
wall at all times will prove useful. To mirror this solution we start the robot so that it has a wall on its immediate left
rather than in front. As the robot has no sensor on its left side, we will let it turn left at every step to sense the wall

with its front bumper, then turn right to resume its position with the wall to its left.

Wall-following algorithm described informally

Idea of solution: Touch the wall with your left hand; move forward, turning left or right as required to keep
touching the wall.

Wall-following algorithm described in English: Clockwise, starting at left, look for the first direction not
blocked by a wall, and if found, take a step in that direction.

Let us test this algorithm on some critical configurations. The robot inside a unit square turns forever, never
finding a direction to take a step (Exhibit 1.2). In Exhibit 1.3 the robot negotiates a left-hand spike. After each step,
there is a wall to its left-rear. In Exhibit 1.4 the robot enters a blind alley. At the end of the alley, it turns clockwise

twice, then exits by the route it entered.

Exhibit 1.2: Robot in a box spins on its heels.
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Exhibit 1.3: The robot turns around a spike.

Exhibit 1.4: Backing up in a blind alley.

Algorithm specified in a high-level language

The ideas presented informally in above section are made precise in the following elegant, concise program:

{ wall to left-rear }
loop
{ wall to left-rear }
left;
{ wall to left-front }
while touch do
{ wall to right-front }
right;
{ wall to left-front }
endwhile;
{ wall to left-front }
forward;
{ wall to left-rear }
forever;
{ wall to left-rear }

Program verification. The comments in braces are program invariants: Assertions about the state of the

robot that are true every time the flow of control reaches the place in the program where they are written. We need

three types of invariants to verify the wall-following program: "wall to left-rear", "wall to left-front", and "wall to

right-front". The relationships between the robot's position and the presence of a nearby wall that must hold for

each assertion to be true are illustrated in Exhibit 1.5. Shaded circles indicate points through which a wall must

pass. Each robot command transforms its precondition (i.e. the assertion true before the command is executed)

into its postcondition (i.e. the assertion true after its execution). Thus each of the commands 'left', 'right’, and

'forward' is a predicate transformer, as suggested in Exhibit 1.6.

M e e e g e e m ey

o

L

will to lefi-rear  wall to lefi-front  wall to nghi-front

Exhibit 1.5: Three types of invariants relate the positions of robot and wall.
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1. Reducing a task to given primitives: programming motion

—
will to left-front
forward
i)
wiall to left-front wiall to left-rear

Exhibit 1.6: Robot motions as predicate transformers.

Algorithm programmed in the robot's language
A straightforward translation from the high-level program into the robot's low-level language yields the

following seven-line wall-following program:

loop
left; 1 left
while touch do 2 if touch goto 4
3 goto 6
right; 4 right
endwhile; 5 goto 2
forward; 6 forward
forever; 7 goto 1

The robot's program optimized

In designing a program it is best to follow simple, general ideas, and to decide on details in the most
straightforward manner, without regard for the many alternative ways that are always available for handling
details. Once a program is proven correct, and runs, then we may try to improve its efficiency, measured by time
and memory requirements. This process of program transformation can often be done syntactically, that is merely
by considering the definition of individual statements, not the algorithm as a whole. As an example, we derive a
five-line version of the wall-following program by transforming the seven-line program in two steps.

If we have the complementary primitive 'if not touch goto #', we can simplify the flow of the program at the left

as shown on the right side.

{ wall to left-rear } { wall to left-rear }
1 left 1 left
2 if touch goto 4 2 1if not touch goto 6
3 goto 6
{ wall to right-front } { wall to right-front }
4 right 4 right

12
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5 goto 2 5 goto 2
6 forward 6 forward
7 goto 1 7 goto 1

An optimization technique called loop rotation allows us to shorten this program by yet another instruction. It
changes the structure of the program significantly, as we see from the way the labels have been permuted. The
assertion "wall to right-front" attached to line 4 serves as an invariant of the loop "keep turning right while you
can't advance".

{ wall to right-front }
right

if touch goto 4

forward

left
goto 2

~N o N D

Programming projects
1. Design a data structure suitable for storing a wall made up of horizontal and vertical line segments in a
square grid of bounded size. Write a "wall-editor", i.e. an interactive program that lets the user define and
modify an instance of such a wall.
2. Program the wall-following algorithm and animate its execution when tracking a wall entered with the wall-

editor. Specifically, show the robot's position and orientation after each change of state.
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2. Graphics primitives and
environments

Learning objectives:
« turtle graphics
+ QuickDraw: A graphics toolbox
« frame program
- interactive graphics input/output

- example: polyline input

Turtle graphics: a basic environment

Seymour Papert [Pap80] introduced the term turtle graphics to denote a set of primitives for line drawing.
Originally implemented in the programming language Logo, turtle graphics primitives are now available for several
computer systems and languages. They come in different versions, but the essential point is the same as that
introduced in the example of the robot car: The pen (or "turtle") is a device that has a state (position, direction) and
is driven by incremental operations “move” and “turn” that transform the turtle to a new state depending on its
current state:

move (s) { take s unit steps in the direction you are facing }
turn (d) { turn counterclockwise d degrees }

The turtle's initial state is set by the following operations:

moveto (x,V) { move to the position (x,y) in absolute coordinates }
turnto (d) { face d degrees from due east }

In addition, we can specify the color of the trail drawn by the moving pen:

pencolor (c) { where ¢ = white, black, none, etc. }

Example

The following program fragment approximates a circle tangential to the x-axis at the origin by drawing a 36-

sided polygon:

moveto (0, 0); { position pen at origin }
turnto (0) ; { face east }
step := 7; { arbitrarily chosen step length }
do 36 times { 36 sides - 10° = 360° }
{ move(step); turn(1l0) } { 10 degrees counterclockwise }

In graphics programming we are likely to use basic figures, such as circles, over and over again, each time with a

different size and position. Thus we wish to turn a program fragment such as the circle approximation above into a
reusable procedure.

Algorithms and Data Structures 14 A Global Text


http://creativecommons.org/licenses/by/3.0/

2. Graphics primitives and environments

Procedures as building blocks

A program is built from components at many different levels of complexity. At the lowest level we have the
constructs provided by the language we use: constants, variables, operators, expressions, and simple (unstructured)
statements. At the next higher level we have procedures: they let us refer to a program fragment of arbitrary size
and complexity as a single entity, and build hierarchically nested structures. Modern programming languages
provide yet another level of packaging: modules, or packages, useful for grouping related data and procedures. We
limit our discussion to the use of procedures.

Programmers accumulate their own collection of useful program fragments. Programming languages provide
the concept of a procedure as the major tool for turning fragments into reusable building blocks. A procedure
consists of two parts with distinct purposes:

1. The heading specifies an important part of the procedure's external behavior through the list of formal
parameters: namely, what type of data moves in and out of the procedure.

2. The body implements the action performed by the procedure, processing the input data and generating the
output data.

A program fragment that embodies a single coherent concept is best written as a procedure. This is particularly
true if we expect to use this fragment again in a different context. The question of how general we want a procedure
to be deserves careful thought. If the procedure is too specific, it will rarely be useful. If it is too general, it may be
unwieldy: too large, too slow, or just too difficult to understand. The generality of a procedure depends primarily on

the choice of formal parameters.

Example: the long road toward a procedure “circle”
Let us illustrate these issues by discussing design considerations for a procedure that draws a circle on the

screen. The program fragment above for drawing a regular polygon is easily turned into

procedure ngon(n,s: integer); { n = number of sides, s = step
size }
var 1i,Jj: integer;
begin
J := 360 div n;
for i := 1 to n do { move(s); turn(j) }
end;

But, a useful procedure to draw a circle requires additional arguments. Let us start with the following:

procedure circle(x, y, r, n: integer);

{ centered at (x, y); r = radius; n = number of sides }
var a, s, 1: integer; { angle, step, counter }
begin

moveto(x, y — r); { bottom of circle }

turnto (0) ; { east }

a := 360 div n;
s :=r - sinf(a); { between inscribed and circumscribed polygons }
for i :=1 to n do { move(s); turn(a) }

end;

This procedure places the burden of choosing n on the programmer. A more sophisticated, "adaptive" version
might choose the number of sides on its own as a function of the radius of the circle to be drawn. We assume that

lengths are measured in terms of pixels (picture elements) on the screen. We observe that a circle of radius r is of
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length 2mr. We approximate it by drawing short-line segments, about 3 pixels long, thus needing about 2-r line

segments.
procedure circle(x, y, r: integer); { centered at (x, y),; radius
r}
var a, s, 1i: integer; { angle, step, counter }
begin
moveto(x, y — 1); { bottom of circle }
turnto (0) ; { east }
a := 180 div r; { 360 / (# of line segments) }
s :=r - sin(a); { between inscribed and circumscribed polygons }
for i :=1 to 2 - r do { move(s); turn(a) }
end;

This circle procedure still suffers from severe shortcomings:

1. If we discretize a circle by a set of pixels, it is an unnecessary detour to do this in two steps as done above:
first, discretize the circle by a polygon; second, discretize the polygon by pixels. This two-step process is a
source of unnecessary work and errors.

2. The approximation of the circle by a polygon computed from vertex to vertex leads to rounding errors that
accumulate. Thus the polygon may fail to close, in particular when using integer computation with its
inherent large rounding error.

3. The procedure attempts to draw its circle on an infinite screen. Computer screens are finite, and attempted
drawing beyond the screen boundary may or may not cause an error. Thus the circle ought to be clipped at
the boundaries of an arbitrarily specified rectangle.

Writing a good circle procedure is a demanding task for professionals. We started this discussion of desiderata
and difficulties of a simple library procedure so that the reader may appreciate the thought and effort that go into
building a useful programming environment. In chapter 14 we return to this problem and present one possible goal

"m

of "the long road toward a procedure 'circle. We now make a huge jump from the artificially small environments

discussed so far to one of today's realistic programming environments for graphics

QuickDraw: a graphics toolbox

For the sake of concreteness, the next few sections show programs written for a specific programming
environment: MacPascal using the QuickDraw library of graphics routines [App 85]. It is not our purpose to
duplicate a manual, but only to convey the flavor of a realistic graphics package and to explain enough about
QuickDraw for the reader to understand the few programs that follow. So our treatment is highly selective and
biased.

Concerning the circle that we attempted to program above, QuickDraw offers five procedures for drawing circles
and related figures:

procedure FrameOval (r: Rect);

procedure PaintOval (r: Rect);
(r: )
(

’

procedure EraseOval Rect
procedure InvertOval (r: Rect);
procedure FillOval (r: Rect; pat: Pattern);

Each one inscribes an oval in an aligned rectangle r (sides parallel to the axes) so as to touch the four sides of r.

If r is a square, the oval becomes a circle. We quote from [App 85]:

Algorithms and Data Structures 16 A Global Text
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2. Graphics primitives and environments

FrameOQuval draws an outline just inside the oval that fits inside the specified rectangle, using the current

grafPort's pen pattern, mode, and size. The outline is as wide as the pen width and as tall as the pen height.

It's drawn with the pnPat, according to the pattern transfer mode specified by pnMode. The pen location is

not changed by this procedure.

Right away we notice a trade-off when comparing QuickDraw to the simple turtle graphics environment we
introduced earlier. At one stroke, “FrameQOval” appears to be able to produce many different pictures, but before we
can exploit this power, we have to learn about grafPorts, pen width, pen height, pen patterns, and pattern transfer
modes. 'FrameOval' draws the perimeter of an oval, 'PaintOval' paints the interior as well, 'EraseOval' paints an oval
with the current grafPort's background pattern, 'InvertOval' complements the pixels: 'white' becomes 'black’, and
vice versa. 'FillOval' has an additional argument that specifies a pen pattern used for painting the interior.

We may not need to know all of this in order to use one of these procedures, but we do need to know how to
specify a rectangle. QuickDraw has predefined a type 'Rect' that, somewhat ambiguously at the programmer's

choice, has either of the following two interpretations:

type Rect = record top, left, bottom, right: integer end;
type Rect = record topleft, botRight: Point end;

with one of the interpretations of type 'Point' being
type Point = record v, h: integer end;

Exhibit 2.1 illustrates and provides more information about these concepts. It shows a plane with first
coordinate v that runs from top to bottom, and a second coordinate h that runs from left to right. (The reason for v
running from top to bottom, rather than vice versa as used in math books, is compatibility with text coordinates
where lines are naturally numbered from top to bottom.) The domain of v and h are the integers from —2"= —32768
to 2— 1 = 32767. The points thus addressed on the screen are shown as intersections of grid lines. These lines and
grid points are infinitely thin - they have no extension. The pixels are the unit squares between them. Each pixel is
paired with its top left grid point. This may be enough information to let us draw a slightly fat point of radius 3
pixels at the grid point with integer coordinates (v, h) by calling

PaintOval(v - 3, h - 3, v + 3, h + 3);

Y rght

¥
Exhibit 2.1: Screen coordinates define the location of pixels.
To understand the procedures of this section, the reader has to understand a few details about two key aspects of
interactive graphics:

+ timing and synchronization of devices and program execution

- how screen pictures are controlled at the pixel level
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Synchronization

In interactive applications we often wish to specify a grid point by letting the user point the mouse-driven cursor
to some spot on the screen. The 'procedure GetMouse(v, h)' returns the coordinates of the grid point where the
cursor is located at the moment 'GetMouse' is executed. Thus we can track and paint the path of the mouse by a

loop such as
repeat GetMouse(v, h); PaintOval(v - 3, h - 3, v + 3, h + 3)
until stop;
This does not give the user any timing control over when he or she wants the computer to read the coordinates
of the mouse cursor. Clicking the mouse button is the usual way to tell the computer "Now!". A predefined boolean
function 'Button' returns 'true' when the mouse button is depressed, 'false' when not. We often synchronize

program execution with the user's clicks by programming busy waiting loops:
repeat until Button; { waits for the button to be pressed }
while Button do; { waits for the button to be released }
The following procedure waits for the next click:
procedure waitForClick;
begin repeat until Button; while Button do end;
Pixel acrobatics
The QuickDraw pen has four parameters that can be set to draw lines or paint textures of great visual variety:
pen location 'pnLoc', pen size 'pnSize' (a rectangle of given height and width), a pen pattern 'pnPat’, and a drawing

mode '‘pnMode'. The pixels affected by a motion of the pen are shown in Exhibit 2.2.

Exhibit 2.2: Footprint of the pen.

Predefined values of '‘pnPat’ include 'black’, 'gray’, and 'white'. 'pnPat’ is set by calling the predefined 'procedure
PenPat(pat: Pattern)' [e.g. 'PenPat(gray)']. As 'white' is the default background, drawing in 'white' usually serves for
erasing.

The result of drawing also depends critically on the transfer mode 'pnMode', whose values include 'patCopy’,
'patOr', and 'patXor'. A transfer mode is a boolean operation executed in parallel on each pair of pixels in
corresponding positions, one on the screen and one in the pen pattern.

- 'patCopy' uses the pattern pixel to overwrite the screen pixel, ignoring the latter's previous value; it is the
default and most frequently used transfer mode.
« 'patOr' paints a black pixel if either or both the screen pixel or the pattern pixel were black; it progressively

blackens the screen.
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« 'patXor' (exclusive-or, also known as "odd parity") sets the result to black iff exactly one of (screen pixel,
pattern pixel) is black. A white pixel in the pen leaves the underlying screen pixel unchanged; a black pixel
complements it. Thus a black pen inverts the screen.

'pnMode' is set by calling the predefined 'procedure PenMode(mode: integer)' [e.g. 'PenMode(patXor)'].
The meaning of the remaining predefined procedures our examples use, such as 'MoveTo' and 'LineTo', is easily
guessed. So we terminate our peep into some key details of a powerful graphics package, and turn to examples of its

use.

A graphics frame program

Reusable software is a time saving concept that can be practiced profitably in the small. We keep a program that
contains nothing but a few of the most useful input/output procedures, displays samples of their results, and
conducts a minimal dialog so that the user can step through its execution. We call this a frame program because its
real purpose is to facilitate development and testing of new procedures by embedding them in a ready-made, tested
environment. A simple frame program like the one below makes it very easy for a novice to write his first interactive
graphics program.

This particular frame program contains procedures 'GetPoint', 'DrawPoint’, 'ClickPoint’, 'DrawLine’, 'DragLine’,
'DrawCircle’, and 'DragCircle’ for input and display of points, lines, and circles on a screen idealized as a part of a
Euclidean plane, disregarding the discretization due to the raster screen. Some of these procedures are so short that
one asks why they are introduced at all. 'GetPoint', for example, only converts integer mouse coordinates v, h into a
point p with real coordinates. It enables us to refer to a point p without mentioning its coordinates explicitly. Thus,
by bringing us closer to standard geometric notation, 'GetPoint' makes programs more readable.

The procedure 'DragLine’, on the other hand, is a very useful routine for interactive input of line segments. It
uses the rubber-band technique, which is familiar to users of graphics editors. The user presses the mouse button
to fix the first endpoint of a line segment, and keeps it depressed while moving the mouse to the desired second
endpoint. At all times during this motion the program keeps displaying the line segment as it would look if the
button were released at that moment. This rubber band keeps getting drawn and erased as it moves across other
objects on the screen. The user should study a key detail in the procedure 'DragLine’ that prevents other objects
from being erased or modified as they collide with the ever-refreshed rubber band: We temporarily set
'"PenMode(patXor)'. We encourage you to experiment by modifying this procedure in two ways:

1. Change the first call of the '‘procedure DrawLine(L.p,, L.p,, black)' to 'DrawLine(L.p,, L.p,, white)'. You will
have turned the procedure 'DragLine' into an artful, if somewhat random, painting brush.

2. Remove the call 'PenMode(patXor)' (thus reestablishing the default 'pnMode = patCopy"), but leave the first
'DrawLine(L.p;, L.p., white)', followed by the second 'DrawLine(L.p,, L.p., black)'. You now have a naive
rubber-band routine: It alternates erasing (draw 'white') and drawing (draw 'black') the current rubber
band, but in so doing it modifies other objects that share pixels with the rubber band. This is our first
example of the use of the versatile exclusive-or; others will follow later in the book.

program Frame;
{ provides mouse input and drawing of points, line segments,
circles }

type point = record x, y: real end;
lineSegment = record pl, p2: point { endpoints } end;
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var ¢, p: point;
r: real; { radius of a circle }
L: lineSegment;

procedure WaitForClick;
begin repeat until Button; while Button do end;

procedure GetPoint (var p: point);
var Vv, h: integer;

begin

GetMouse (v, h);

p.x :=v; p.y :=h { convert integer to real }
end;

procedure DrawPoint (p: point; pat: Pattern);
const t = 3; { radius of a point }
begin
PenPat (pat) ;
PaintOval (round(p.y) - t, round(p.x) - t, round(p.y) + t,
round(p.x) + t)
end;

procedure ClickPoint (var p: point);

begin WaitForClick; GetPoint(p); DrawPoint (p, Black) end;
function Dist (p, g: point): real;
begin Dist := sqgrt(sqgr(p.x - g.x) + sqr(p.y - g.y)) end;
procedure DrawLine (pl, p2: point; pat: Pattern);
begin

PenPat (pat) ;

MoveTo (round (pl.x), round(pl.y)):;
LineTo (round(p2.x), round(p2.vy))
end;

procedure DraglLine(var L: lineSegment);
begin
repeat until Button; GetPoint(L.pl); L.p2 := L.pl;
PenMode (patXor) ;
while Button do Dbegin
DrawLine (L.pl, L.p2, black);
{ replace 'black' by 'white' above to get an artistic drawing
tool }
GetPoint (L.p2);
DrawLine (L.pl, L.p2, black)

end;
PenMode (patCopy)
end; { DragLine }

procedure DrawCircle(c: point; r: real; pat: Pattern);
begin
PenPat (pat) ;
FrameOval (round(c.y - r), round(c.x - r), round(c.y + 1),
round(c.x + 1))
end;

procedure DragCircle(var c: point; var r: real);
var p: point;
begin
repeat until Button; GetPoint(c); r
while Button do Dbegin
DrawCircle(c, r, black);
GetPoint (p) ;

0.0; PenMode (patXor) ;

Algorithms and Data Structures 20 A Global Text


http://creativecommons.org/licenses/by/3.0/

2. Graphics primitives and environments

r = DiSt(C, p);
DrawCircle(c, r, black);
end;

PenMode (patCopy)
end; { DragCircle }

procedure Title;

begin
ShowText; { make sure the text window and .. }
ShowDrawing; { .. the graphics window show on the screen }
WritelLn ('Frame program');
Writeln('with simple graphics and interaction routines.');
WriteLn('Click to proceed.');
WaitForClick

end; { Title }

procedure What;

begin
WritelLn('Click a point in the drawing window.');
ClickPoint (p) ;
WritelLn ('Drag mouse to enter a line segment.');

DragLine (L) ;
WriteLn('Click center of a circle and drag its radius');
DragCircle(c, 1)

end; { What }

procedure Epilog;

begin WritelLn('Bye.') end;

begin { Frame }
Title; What; Epilog
end. { Frame }

Example of a graphics routine: polyline input

Let us illustrate the use of the frame program above in developing a new graphics procedure. We choose
interactive polyline input as an example. A polyline is a chain of directed straight-line segments—the starting point
of the next segment coincides with the endpoint of the previous one. 'Polyline' is the most useful tool for interactive
input of most drawings made up of straight lines. The user clicks a starting point, and each subsequent click
extends the polyline by another line segment. A double click terminates the polyline.

We developed 'PolyLine’ starting from the frame program above, in particular the procedure 'DragLine’,
modifying and adding a few procedures. Once 'Polyline' worked, we simplified the frame program a bit. For
example, the original frame program uses reals to represent coordinates of points, because most geometric
computation is done that way. A polyline on a graphics screen only needs integers, so we changed the type "point' to
integer coordinates. At the moment, the code for polyline input is partly in the procedure 'NextLineSegment' and in
the procedure 'What'. In the next iteration, it would probably be combined into a single self-contained procedure,
with all the subprocedures it needs, and the frame program would be tossed out—it has served its purpose as a
development tool.

program PolyLine;
{ enter a chain of line segments and compute total length }
{ stop on double click }

type point = record x, y: integer; end;
var stop: boolean;
length: real;
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P, g: point;

function EgPoints (p, g: point): boolean;

begin EgPoints := (p.x = g.x) and (p.y = g.y) end;
function Dist (p, g: point): real;
begin Dist := sqrt(sqr(p.x - g.x) + sqgr(p.y - d.y)) end;

procedure DrawLine (p, g: point; c: Pattern);
begin PenPat(c); MoveTo(p.x, p.y); LineTo(g.x, g.y) end;

procedure WaitForClick;
begin repeat until Button; while Button do end;

procedure NextLineSegment (var stp, endp: point);
begin
endp := stp;
repeat
DrawlLine (stp, endp, black); { Try 'white' to generate artful
pictures! }
GetMouse (endp.x, endp.y);
DrawLine (stp, endp, black)
until Button;
while Button do
end; { NextLineSegment }

procedure Title;

begin
ShowText; ShowDrawing;
WriteLn ('Click to start a polyline.');
WriteLn('Click to end each segment.');
WriteLn ('Double click to stop.')

end; { Title }

procedure What;

begin
WaitForClick; GetMouse(p.x, p.V):;
stop := false; length := 0.0;

PenMode (patXor) ;
while not stop do Dbegin
NextLineSegment (p, 9);
stop := EgPoints(p, g); length := length + Dist(p, 9); p := g
end
end; { What }

procedure Epilog;
begin Writeln('Length of polyline = ', length); WriteLn('Bye.')
end;

begin { PolyLine }
Title; What; Epilog
end. { PolyLine }
Programming projects
1. Implement a simple package of turtle graphics operations on top of the graphics environment available on
your computer.
2. Use this package to implement and test a procedure 'circle' that meets the requirements listed at the end of

the section “Turtle graphics: a basic environment”.
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3. Implement your personal graphics frame program as described in “A graphics frame program”. Your effort

will pay off in time saved later, as you will be using this program throughout the entire course.
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3. Algorithm animation

I hear and I forget, I see and I remember, I do and I understand.

A picture is worth a thousand words—the art of presenting information in visual form.

Learning objectives:
« adding animation code to a program

- examples of algorithm snapshots

Computer-driven visualization: characteristics and techniques

The computer-driven graphics screen is a powerful new communications medium; indeed, it is the only two-way
mass communications medium we know. Other mass communications media—the printed e.g. recorded audio and
video—are one-way streets suitable for delivering a monolog. The unique strength of our new medium is interactive
presentation of information. Ideally, the viewer drives the presentation, not just by pushing a start button and
turning a channel selector, but controls the presentation at every step. He controls the flow not only with

"non

commands such as "faster", "slower

"non "non

, "repeat”, "skip"”, "play this backwards", but more important, with a barrage of
"what if?" questions. What if the area of this triangle becomes zero? What if we double the load on this beam? What
if world population grows a bit faster? This powerful new medium challenges us to use it well.

When using any medium, we must ask: What can it do well, and what does it do poorly? The computer-driven
screen is ideally suited for rapid and accurate display of information that can be deduced from large amounts of
data by means of straightforward algorithms and lengthy computation. It can do so in response to a variety of user
inputs as long as this variety is contained in an algorithmically tractable, narrow domain of discourse. It is not
adept at tasks that require judgment, experience, or insight. By comparison, a speaker at the blackboard is slow and
inaccurate and can only call upon small amounts of data and tiny computations; we hope she makes up for this
technical shortcoming by good judgment, teaching experience, and insight into the subject. By way of another
comparison, books and films may accurately and rapidly present results based on much data and computation, but
they lack the ability to react to a user's input.

Algorithm animation, the technique of displaying the state of programs in execution, is ideally suited for
presentation on a graphics screen. There is a need for this type of computation, and there are techniques for
producing them. The reasons for animating programs in execution fall into two major categories, which we label

checking and exploring.

Checking

To understand an algorithm well, it is useful to understand it from several distinct points of view. One of them is
the static point of view on which correctness proofs are based: Formulate invariants on the data and show that
these are preserved under the program's operations. This abstract approach appeals to our rational mind. A second,
equally important point of view, is dynamic: Watch the algorithm go through its paces on a variety of input data.
This concrete approach appeals to our intuition. Whereas the static approach relies mainly on "thinking", the

dynamic approach calls mostly for "doing" and "perceiving", and thus is a prime candidate for visual human-
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computer interaction. In this use of algorithm animation, the user may be checking his understanding of the
algorithm, or may be checking the algorithm's correctness—in principle, he could reason this out, but in practice, it

is faster and safer to have the computer animation as a double check.

Exploring

In a growing number of applications, computer visualization cannot be replaced by any other technique. This is
the case, for example, in exploratory data analysis, where a scientist may not know a priori what she is looking for,
and the only way to look at a mass of data is to generate pictures from it (see a special issue on scientific
visualization [Nie 89]). At times static pictures will do, but in simulations (e.g. of the onset of turbulent flow) we
prefer to see an animation over time.

Turning to the techniques of animation, computer technology is in the midst of extremely rapid evolution
toward ever-higher-quality interactive image generation on powerful graphics workstations (see [RN 91] for a
survey of the state of the art). Fortunately, animating algorithms such as those presented in this book can be done
adequately with the graphics tools available on low-cost workstations. These algorithms operate on discrete data
configurations (such as matrices, trees, graphs), and use standard data structures, such as arrays and lists. For such
limited classes of algorithms, there are software packages that help produce animations based on specifications,
with a minimum of extra programming required. An example of an algorithm animation environment is the BALSA
system [Bro 88, BS 85]. A more recent example is the XYZ GeoBench, which animates geometric algorithms
[NSDAB o91].

In our experience, the bottleneck of algorithm animation is not the extra code required, but graphic design.
What do you want to show, and how do you display it, keeping in mind the limitations of the system you have to
work with? The key point to consider is that data does not look like anything until we have defined a mapping from
the data space into visual space. Defining such a mapping ranges from trivial to practically impossible.

1. For some kinds of data, such as geometric data in two- and three-dimensional space, or real-valued
functions of one or two real variables, there are natural mappings that we learned in school. These help us
greatly in getting a feel for the data.

2. Multidimensional data (dimension > 3) can be displayed on a two-dimensional screen using a number of
straight forward techniques, such as projections into a subspace, or using color or gray level as a fourth
dimension. But our power of perception diminishes rapidly with increasing dimensionality.

3. For discrete combinatorial data there is often no natural or accepted visual representation. As an example,
we often draw a graph by mapping nodes into points and edges into lines. This representation is natural for
graphs that are embedded in Euclidean space, such as a road network, and we can readily make sense of a
map with thousands of cities and road links. When we extend it to arbitrary graphs by placing a node
anywhere on the screen, on the other hand, we get a random crisscrossing of lines of little intuitive value.

In addition to such inherent problems of visual representation, practical difficulties of the most varied type
abound. Examples:

- Some screens are awfully small, and some data sets are awfully large for display even on the largest screens.
+ An animation has to run within a narrow speed range. If it is too fast, we fail to follow, or the screen may

flicker disturbingly; if too slow, we may lack the time to observe it.
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In conclusion, we hold that it is not too difficult to animate simple algorithms as discussed here by interspersing

drawing statements into the normal code. Independent of the algorithm to be animated, you can call on your own

collection of display and interaction procedures that you have built up in your frame program (in the section "A

graphics frame program). But designing an adequate graphic representation is hard and requires a creative effort

for each algorithm—that is where animators/programmers will spend the bulk of their effort. More on this topic in

[NVH 86].

Example: the convex hull of points in the plane

The following program is an illustrative example for algorithm animation. 'ConvexHull' animates an on-line

algorithm that constructs half the convex hull (say, the upper half) of a set of points presented incrementally. It

accepts one point at a time, which must lie to the right of all preceding ones, and immediately extends the convex

hull. The algorithm is explained in detail in “sample problems and algorithms”.

program ConvexHull;

const nmax = 19;
r = 3;

var x, y, dx, dy:
b: arrayl[0

n: integer;

{ max number of points }
{ radius of point plot }
array|[0

nmax |

nmax |
of integer;

of integer;
{ backpointer }
{ number of points entered so far }

{ of n £ 20 points in two dimensions }

pPx, py: integer; { new point }
procedure PointZero;
begin
n := 0;
x[0 = 5; yI[0] := 20; { the first point at fixed location }
dx[0] := 0; dyl[0] 1; { assume vertical tangent }
b[0] := 0; { points back to itself }
PaintOval(y[0] - r, x[0] - r, y[0] + r, x[0] + 1)
end;
function NextRight: boolean;
begin
if n 2 nmax then
NextRight := false
else Dbegin
repeat until Button;
while Button do GetMouse (px, pPYy):
if px £ x[n] then
NextRight := false
else Dbegin
PaintOval(py - r, pXx — ¥, py + ¥, px + r);
n:=n+ 1; x[n] := px; yln] py;
dx[n] := x[n] - x[n - 1]; { dx > 0 } dy[n] := y[n] - y[n -1];
bn] (= n - 1;
MoveTo (px, py); Line(-dx[n], -dy[n]l); NextRight := true
end
end
end;
procedure ComputeTangent;
var i: integer;
begin
i := b[n];
while dyl[n] dx[1] > dyl[i] dx[n] do Dbegin { dy[n]/dx[n] >

dy[i]/dx[1] }
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i := b[i];
dx[n] := x[n] - x[i]; dyln] := y[n] - yIlil;
MoveTo (px, py); Line(-dx[n], -dyl[n]):;
bln] =1
end;
MoveTo (px, py):; PenSize(2, 2); Line(-dx[n], —-dy[n]); PenNormal

end;

procedure Title;

begin
ShowText; ShowDrawing; { make sure windows lie on top }
WriteLn ('The convex hull');
WriteLn('of n points in the plane sorted by x-coordinate');

WritelLn ('is computed in linear time.');
Write('Click next point to the right, or Click left to quit.')
end;

begin { ConvexHull }
Title; PointZero;
while NextRight do ComputeTangent;
Write('That's it!")
end.

A gallery of algorithm snapshots

The screen dumps shown in Exhibit 3.1 were taken from demonstration programs that we use to illustrate topics

discussed in class. Although snapshots cannot convey the information and the impact of animations, they may give

the reader ideas to try out. We select two standard algorithm animation topics (sorting and random number

generation), and an example showing the effect of cumulative rounding errors.
I Array Representation |

The array size is 100, The elements are the numbers 1 through 100,

The array is represented by a peint pattern in a matrix,
The line index represents the element position,
the column index the element value.

position + - ¢=>» arraylposition] = value

I Aarvay Setup

( fiscending Order ]

[ Descending Drder ]

[ Nuicksort's Worst Case ]

[ mandam Distribution ]

~.-. N ( sTOP ]

Exhibit 3.1: Initial configuration of data, ...
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TSRS, Heapsort —

4Z4 Comparisons
218 Exchanges
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COMTIMNUE

*

232 Comparisons
59 Exchanges
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CUONTINUE
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S
o

Exhibit 3.1: ... and snapshots from two sorting algorithms.

Visual test for randomness

Our visual system is amazingly powerful at detecting patterns of certain kinds in the midst of noise. Random
number generators (RNGs) are intended to simulate "noise" by means of simple formulas. When patterns appear in
the visual representation of supposedly random numbers, chances are that this RNG will also fail more rigorous
statistical tests. The eyes' pattern detection ability serves well to disqualify a faulty RNG but cannot certify one as
adequate. Exhibit 3.2 shows a simulation of the Galton board. In theory, the resulting density diagram should
approximate a bellshaped Gaussian distribution. Obviously, the RNG used falls short of expectations.

Exhibit 3.2: One look suffices to unmask a bad RNG.

Numerics of chaos, or chaos of numerical computation?
The following example shows the effect of rounding errors and precision in linear recurrence relations. The d-

step linear recurrence with constant coefficients in the domain of real or complex numbers,
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d
Zx = 2.G%k . G €C

i=1
is one of the most frequent formulas evaluated in scientific and technical computation (e.g. for the solution of
differential equations). By proper choice of the constants c; and of initial values z,, zi, ... , Zsx We can generate
sequences zx that when plotted in the plane of complex numbers form many different figures. With d= 1 and |X.|=1,
for example, we generate circles. The pictures in Exhibit 3.3 were all generated with d = 3 and conditions that
determine a curve that is most easily described as a circle 3 running around the perimeter of another circle 2 that
runs around a stationary circle 1. We performed this computation with a floating-point package that lets us pick
precision P (i.e. the number of bits in the mantissa). The resulting pictures look a bit chaotic, with a behavior we
have come to associate with fractals—even if the mathematics of generating them is completely different, and linear
recurrences computed without error would look much more regular. Notice that the first two images are generated
by the same formula, with a single bit of difference in the precision used. The whim of this 1-bit difference in

precision changes the image entirely.
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B=2, P=1
N1=3, R1=15
NZ=5, R2=40
N3=7, R3=10

Iterations; 1993

2

B=2,P=1%

NimZ, Ri=1S
N2=S, R2=40
N3=7, R3=10

Iterations: 14498

EB=2,P=15S
N1=5JR|=!0
N2=7,R2=50
N3=11,R3=20

Iterations: 4357
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Bu2,P=i2

Hi=3 Ri1=30
NZ=5, RZ=20
NI=7,RI=10

Iterations: 3143

B=2, P=12
N1=3, R1=40
N2=5, R2=10
N3=7, R3=20 &h‘*
Iterations: 4336 2.

e ,:“”

X4
E

B=Z, P=12

N1=3 Ri=40
N2=5, R2=20
N3=7, R3=10

Iterations: 3088

Exhibit 3.3: The effect of rounding errors in linear recurrence relations.

Programming projects

1. Use your personal graphics frame program (the programming project of “graphics primitives and

environments”) to implement and animate the convex hull algorithm example.
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2. Use your graphics frame program to implement and animate the behavior of recurrence relations as
discussed in the section “A gallery of algorithm snapshots”.

3. Extend your graphics frame program with a set of dialog control operations sufficient to guide the user
through the various steps of the animation of recurrence relations: in particular, to give him the options, at
any time, to enter a new set of parameters, then execute the algorithm and animate it in either 'movie
mode' (it runs at a predetermined speed until stopped by the user), or 'step mode' [the display changes only

when the user enters a logical command 'mext' (e.g. by clicking the mouse or hitting a specific key)].
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Part ll: Programming
concepts: beyond notation

Thoughts on the role of programming notations

A programming language is the main interface between a programmer and the physical machine, and a novice
programmer will tend to identify "programming" with "programming in the particular language she has learned".
The realization that there is much to programming "beyond notation" (i.e. principles that transcend any one
language) is a big step forward in a programmer's development.

Part IT aims to help the reader take this step forward. We present examples that are best understood by focusing

on abstract principles of algorithm design, and only later do we grope for suitable notations to turn this principle
into an algorithm expressed in sufficient detail to become executable. In keeping with our predilection for graphic
communication, the first informal expression of an algorithmic idea is often pictorial. We show by example how
such representations, although they may be incomplete, can be turned into programs in a formal notation.
The literature on programming and languages. There are many books that present principles of
programming and of programming languages from a higher level of abstraction. The principles highlighted differ
from author to author, ranging from intuitive understanding to complete formality. The following textbooks
provide an excellent sample from the broad spectrum of approaches: [ASS 84], [ASU 86], [Ben 82], [Ben 85], [Ben
88], [Dij 761, [DF 88], [Gri 81], and [Mey 90].
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4, Algorithms and programs
as literature: substance and
form

Learning objectives:
« programming in the large versus programming in the small
« large flat programs versus small deep programs
« programs as literature
« fractal pictures: snowflakes and Hilbert's space-filling curve
- recursive definition of fractals by production or rewrite rules

» Pascal and programming notations

Programming in the large versus programming in the small
In studying and discussing the art of programming it is useful to distinguish between large programs and small

programs, since these two types impose fundamentally different demands on the programmer.

Programming in the large

Large programs (e.g. operating systems, database systems, compilers, application packages) tax our
organizational ability. The most important issues to be dealt with include requirements analysis, functional
specification, compatibility with other systems, how to break a large program into modules of manageable size,
documentation, adaptability to new systems and new requirements, how to organize the team of programmers, and
how to test the software. These issues are the staple of software engineering. When compared to the daunting
managerial and design challenges, the task of actual coding is relatively simple. Large programs are often flat: Most
of the listing consists of comments, interface specifications, definitions, declarations, initializations, and a lot of
code that is executed only rarely. Although the function of any single page of source code may be rather trivial when
considered by itself, it is difficult to understand the entire program, as you need a lot of information to understand

how this page relates to the whole. The classic book on programming in the large is [Bro 75].

Programming in the small

Small programs, of the kind discussed in this book, challenge our technical know-how and inventiveness.
Algorithmic issues dominate the programmer's thinking: Among several algorithms that all solve the same
problem, which is the most efficient under the given circumstances? How much time and space does it take? What
data structures do we use? In contrast to large programs, small programs are usually deep, consisting of short,
compact code many of whose statements are executed very often. Understanding a small program may also be
difficult, at least initially, since the chain of thought is often subtle. Once you understand it thoroughly, you can

reproduce it at any time with much less effort than was first required. Mastery of interesting small programs is the
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best way to get started in computer science. We encourage the reader to work out all the details of the examples we
present.

This book is concerned only with programming in the small. This decision determines our choice of
topics to be presented, our style of presentation, and the notation we use to express programs, explanations, and
proofs, and heavily influences our comments on techniques of programming. Our style of presentation appeals to
the reader's intuition more than to formal rigor. We aim at highlighting the key idea of any argument that we make
rather than belaboring the details. We take the liberty of using a free notation that suits the purpose of any specific
argument we wish to make, trusting that the reader understands our small programs so well that he can translate
them into the programming language of his choice. In a nut shell, we emphasize substance over form.

The purpose of Part II is to help engender a fluency in using different notations. We provide yet other examples
of unconventional notations that match the nature of the problem they are intended to describe, and we show how
to translate them into Pascal-like programs. Since much of the difference between programming languages is
merely syntactic, we include two chapters that cover the basics of syntax and syntax analysis. These topics are
important in their own right; we present them early in the hope that they will help the student see through

differences of notation that are merely "syntactic sugar".

Documentation versus literature: is it meant to be read?

It is instructive to distinguish two types of written materials, and two corresponding types of writing tasks:
documents and literature. Documents are constrained by requirements of many kinds, are read when a specific
need arises (rarely for pleasure), and their quality is judged by criteria such as formality, conformity to a standard,
completeness, accuracy, and consistency. Literature is a form of art free from conventions, read for education or
entertainment, and its quality is judged by aesthetic criteria much harder to enumerate than the ones above. The
touchstone is the question: Is it meant to be read? If the answer is "only if necessary", then it's a document, not
literature.

As the name implies, the documentation of large programs is a typical document-writing chore. Much has been
written in software engineering about documentation, a topic whose importance grows with the size and complexity
of the system to be documented. We hold that small programs are not documented, they are explained. As such,
they are literature, or ought to be. The idea of programs as literature is widely held (see, e.g. [Knu 84]). The key idea
is that an algorithm or program is part of the text and melts into the text in the same way as a paragraph, a formula,
or a picture does. There are also formal notations and systems designed to support a style of programming that
integrates text and code to form a package that is both readable for humans and executable by machines [Knu 83].

Whatever notation is used for literate programming, it has to describe all phases of a program's evolution, from
idea to specification to algorithm to program. Details of a good program cannot be understood, or at least not
appreciated, without an awareness of the grand design that guided the programmer. Whereas details are usually
well expressed in some formal notation, grand designs are not. For this reason we renounce formality and attempt
to convey ideas in whatever notation suits our purpose of insightful explanation. Let us illustrate this philosophy

with some examples.
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A snowflake

Fractal pictures are intuitively characterized by the requirement that any part of the picture, of any size, when
sufficiently magnified, looks like the whole picture. Two pieces of information are required to define a specific
fractal:

1. A picture primitive that serves as a building-block: Many copies of this primitive, scaled to many different
sizes, are composed to generate the picture.
2. Arecursive rule that defines the relative position of the primitives of different size.

A picture primitive is surely best defined by a drawing, and the manner of composing primitives in space again
calls for a pictorial representation, perhaps augmented by a verbal explanation. In this style we define the fractal
'Snowflake' by the following production rule, which we read as follows: A line segment, as shown on the left-hand
side, must be replaced by a polyline, a chain of four shorter segments, as shown at the right-hand side (Exhibit 4.1).
We start with an initial configuration (the zero-generation) consisting of a single segment (Exhibit 4.2). If we apply
the production rule just once to every segment of the current generation, we obtain successively a first, second, and
third generation, as shown in Exhibit 4.3. Further generations quickly exhaust the resolution of a graphics screen or
the printed page, so we stop drawing them. The curve obtained as the limit when this process is continued
indefinitely is a fractal. Although we cannot draw it exactly, one can study it as a mathematical object and prove

theorems about it.

_h,.
Exhibit 4.1: Production for replacing a straight-line segment by a polyline

Exhibit 4.2: The simplest initial configuration
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Exhibit 4.3: The first three generations

The production rule drawn above is the essence of this fractal, and of the sequence of pictures that lead up to it.
The initial configuration, on the other hand, is quite arbitrary: If we had started with a regular hexagon, rather than
a single line segment, the pictures obtained would really have lived up to their name, snowflake. Any other initial
configuration still generates curves with the unmistakable pattern of snowflakes, as the reader is encouraged to
verify.

After having familiarized ourselves with the objects described, let us turn our attention to the method of
description and raise three questions about the formality and executability of such notations.

1. Is our notation sufficiently formal to serve as a program for a computer to draw the family of generations of
snowflakes? Certainly not, as we stated certain rules in colloquial language and left others completely

unsaid, implying them only by sample drawings. As an example of the latter, consider the question: If a
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segment is to be replaced by a "plain with a mountain in the center”, on which side of the segment should
the peak point? The drawings above suggest that all peaks stick out on the same side of the curve, the
outside.

2. Could our method of description be extended and formalized to serve as a programming language for
fractals? Of course. As an example, the production shown in Exhibit 4.4 specifies the side on which the
peak is to point. Every segment now has a + side and a — side. The production above states that the new
peak is to grow over the + side of the original segment and specifies the + sides and — sides of each of the
four new segments. For every other aspect that our description may have left unspecified, such as
placement on the screen, some notation could readily be designed to specify every detail with complete
rigor. In “Syntax” and “Syntax analysis” we introduce some of the basic techniques for designing and using

formal notations.

A
+ .|./_\.|-
— -

Exhibit 4.4: Refining the description to specify a "left-right" orientation.

3. Should we formalize this method of description and turn it into a machine-executable notation? It depends
on the purpose for which we plan to use it. Often in this book we present just one or a few examples that
share a common design. Our goal is for the reader to understand these few examples, not to practice the
design of artificial programming languages. To avoid being sidetracked by a pedantic insistence on rigorous
notation, with its inevitable overhead of introducing formalisms needed to define all details, we prefer to
stop when we have given enough information for an attentive reader to grasp the main idea of each

example.

Hilbert's space-filling curve

Space-filling curves have been an object of mathematical curiosity since the nineteenth century, as they can be
used to prove that the cardinality of an interval, considered as a set of points, equals the cardinality of a square (or
any other finite two-dimensional region). The term space-filling describes the surprising fact that such a curve

visits every point within a square. In mathematics, space-filling curves are constructed as the limit to which an

infinite sequence of curves C; converges. On a discretized plane, such as a raster-scanned screen, no limiting
process is needed, and typically one of the first dozen curves in the sequence already paints every pixel, so the term
space-filling is quickly seen to be appropriate.

Let us illustrate this phenomenon using Hilbert's space-filling curve (David Hilbert, 1862—-1943), whose first six
approximations are shown in Exhibit 4.5. As the pictures suggest, Hilbert curves are best-described recursively, but
the composition rule is more complicated than the one for snowflakes. We propose the two productions shown in
Exhibit 4.6 to capture the essence of Hilbert (and similar) curves. This pictorial program requires explanation, but
we hope the reader who has once understood it will find this notation useful for inventing fractals of her own. As
always, a production is read: "To obtain an instance of the left-handside, get instances of all the things listed on the
right-handside", or equivalently, "to do the task specified by the left-hand side, do all the tasks listed on the right-
hand side".
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Exhibit 4.5: Six generations of the family of Hilbert curves
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Exhibit 4.6: Productions for painting a square in terms of its quadrants
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The left-hand side of the first production stands for the task: paint a square of given size, assuming that you
enter at the lower left corner facing in the direction indicated by the arrow and must leave in the upper left corner,
again facing in the direction indicated by that arrow. We assume turtle graphics primitives, where the state of the
brush is given by a position and a direction. The hatching indicates the area to be painted. It lies to the right of the
line that connects entry and exit corners, which we read as "paint with your right hand", and the hatching is in thick
strokes. The left-hand side of the second production is similar: Paint a square "with your left hand" (hatching is in
thin strokes), entering and exiting as indicated by the arrows.

The right-hand sides of the productions are now easily explained. They say that in order to paint a square you

must paint each of its quadrants, in the order indicated. They give explicit instructions on where to enter and exit,
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what direction to face, and whether you are painting with your right or left hand. The last detail is to make sure that
when the brush exits from one quadrant it gets into the correct state for entering the next. This requires the brush
to turn by 90°, either left or right, as the curved arrows in the pictures indicate. In the continuous plane we imagine
the brush to "turn on its heels", whereas on a discrete grid it also moves to the first grid point of the adjacent
quadrant.

These productions omit any rule for termination, thus simulating the limiting process of true space-filling
curves. To draw anything on the screen we need to add some termination rules that specify two things: (1) when to
invoke the termination rule (e.g. at some fixed depth of recursion), and (2) how to paint the square that invokes the
termination rule (e.g. paint it all black). As was the case with snowflakes and with all fractals, the primitive pictures
are much less important than the composition rule, so we omit it.

The following program implements a specific version of the two pictorial productions shown above. The
procedure 'Walk' implements the curved arrows in the productions: the brush turns by 'halfTurn’, takes a step of
length s, and turns again by 'halfTurn'. The parameter 'halfTurn' is introduced to show the effect of cumulative
small errors in recursive procedures. halfTurn = 45' causes the brush to make right-angle turns and yields Hilbert
curves. The reader is encouraged to experiment with 'halfTurn = 43, 44, 46, 47', and other values.

program PaintAndWalk;

const pi = 3.14159; s = 3; { step size of walk }

var turtleHeading: real; { counterclockwise, radians }
halfTurn, depth: integer; { recursive depth of painting }

procedure TurtleTurn (angle: real);

{ turn the turtle angle degrees counterclockwise }

begin { angle is converted to radian before adding }
turtleHeading := turtleHeading + angle - pi / 180.0

end; { TurtleTurn }

procedure Turtleline(dist: real);
{ draws a straight line, dist units long }
begin
Line (round(dist - cos(turtleHeading)), round(-dist-sin(turtle
Heading)))

end; { TurtleLine }

procedure Walk (halfTurn: integer);
begin TurtleTurn (halfTurn); Turtleline(s); TurtleTurn (halfTurn)
end;

procedure Qpaint (level: integer; halfTurn: integer);
begin
if level = 0 then
TurtleTurn (2 - halfTurn)
else Dbegin
Qpaint (level - 1, -halfTurn);
Walk (halfTurn) ;
Qpaint (level - 1, halfTurn);
Walk (-halfTurn) ;
Qpaint (level - 1, halfTurn);
Walk (halfTurn) ;
Qpaint (level - 1, -halfTurn)
end
end; { Qpaint }

begin { PaintAndWalk }
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ShowText; ShowDrawing;

MoveTo (100, 100); turtleHeading := 0; { initialize turtle
state }
WriteLn ('Enter halfTurn 0 .. 359 (45 for Hilbert curves): ');

ReadLn (halfTurn) ;
TurtleTurn (-halfTurn) ; { init turtle turning angle }
Write ('Enter depth 1 .. 6: '); ReadLn (depth);
Qpaint (depth, halfTurn)
end. { PaintAndwalk }

As a summary of this discourse on notation, we point to the fact that an executable program necessarily has to
specify many details that are irrelevant from the point of view of human understanding. This book assumes that the
reader has learned the basic steps of programming, of thinking up such details, and being able to express them
formally in a programming language. Compare the verbosity of the one-page program above with the clarity and
conciseness of the two pictorial productions above. The latter state the essentials of the recursive construction, and
no more, in a manner that a human can understand "at a glance". We aim our notation to appeal to a human mind,

not necessarily to a computer, and choose our notation accordingly.

Pascal and its dialects: lingua franca of computer science
Lingua franca (1619):
1. A common language that consists of Italian mixed with French, Spanish, Greek and Arabic and is spoken
in Mediterranean ports
2. Any of various languages used as common or commercial tongues among peoples of diverse speech
3. Something resembling a common language

(From Webster's Collegiate Dictionary)

Pascal as representative of today's programming languages

The definition above fits Pascal well: In the mainstream of the development of programming languages for a
couple of decades, Pascal embodies, in a simple design, some of the most important language features that became
commonly accepted in the 19770s. This simplicity, combined with Pascal's preference for language features that are
now well understood, makes Pascal a widely understood programming notation. A few highlights in the
development of programming languages may explain how Pascal got to be a lingua franca of computer science.

Fortran emerged in 1954 as the first high-level programming language to gain acceptance and became the
programming language of the 1950s and early 1960s. Its appearance generated great activity in language design,
and suddenly, around 1960, dozens of programming languages emerged. Three among these, Algol 60, COBOL, and
Lisp, became milestones in the development of programming languages, each in its own way. Whereas COBOL
became the most widely used language of the 1960s and 1970s, and Lisp perhaps the most innovative, Algol 60
became the most influential in several respects: it set new standards of rigor for the definition and description of a
language, it pioneered hierarchical block structure as the major technique for organizing large programs, and
through these major technical contributions became the first of a family of mainstream programming languages
that includes PL/1, Algol 68, Pascal, Modula-2, and Ada.

The decade of the 1960s remained one of great ferment and productivity in the field of programming languages.
PL/1 and Algol 68, two ambitious projects that attempted to integrate many recent advances in programming

language technology and theory, captured the lion's share of attention for several years. Pascal, a much smaller
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project and language designed by Niklaus Wirth during the 1960s, ended up eclipsing both of these major efforts.
Pascal took the best of Algol 60, in streamlined form, and added just one major extension, the then novel type
definitions [Hoa 72]. This lightweight edifice made it possible to implement efficient Pascal compilers on the
microcomputers that mushroomed during the mid 1970s (e.g. UCSD Pascal), which opened the doors to
universities and high schools. Thus Pascal became the programming language most widely used in introductory
computer science education, and every computer science student must be fluent in it.

Because Pascal is so widely understood, we base our programming notation on it but do not adhere to it
slavishly. Pascal is more than 20 years old, and many of its key ideas are 30 years old. With today's insights into
programming languages, many details would probably be chosen differently. Indeed, there are many "dialects" of
Pascal, which typically extend the standard defined in 1969 [Wir 71] in different directions. One extension relevant
for a publication language is that with today's hardware that supports large character sets and many different fonts
and styles, a greater variety of symbols can be used to make the source more readable. The following examples

introduce some of the conventions that we use often.

"Syntactic sugar": the look of programming notations
Pascal statements lack an explicit terminator. This makes the frequent use of begin-end brackets necessary, as in
the following program fragment, which implements the insertion sort algorithm (see chapter 17 and the section

"Simple sorting algorithms that work in time"); —c denotes a constant < any key value:

A[Q] := —o;
for i := 2 to n do Dbegin
J o= 1i;
while A[j] < A[§ - 1] do
begin t := A[j]; A[J] := A[jJ - 11; A[J - 1] :=t; J :=73 -1 end;
end;

We aim at brevity and readability but wish to retain the flavor of Pascal to the extent that any new notation we

introduce can be translated routinely into standard Pascal. Thus we write the statements above as follows:

A[0] = —o;
for i := 2 to n do begin
J o= 1y { comments appear in italics }
while A[J] < A[j - 11 do { A[j] :=: A[J - 1]1; J :=3 - 11}
{ braces serve as general-purpose brackets, including begin-end }
{ :=: denotes the exchange operator }
end;

Borrowing heavily from standard mathematical notation, we use conventional mathematical signs to denote
operators whose Pascal designation was constrained by the small character sets typical of the early days, such as:

# < 2 # - OOOOnO\ |x| instead of
<><=>=<> not and or in not in - + - abs(x) respectively

We also use signs that may have no direct counterpart in Pascal, such

as:
gopoog Set-theoretic relations
o0 Infinity, often used for a

"sentinel" (i.e. a number
larger than all numbers to
be processed in a given
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application)

+ Plus-or-minus, used to
define an interval [of
uncertainty]

211 Sum and product

k0 Ceiling of a real number x
(i.e. the smallest integer
2 x)

kO Floor of a real number x (i.e. the

largest integer < x)

v Square root

log Logarithm to the base 2

1n Natural logarithm, to the base e

iff If and only if

Although we may take a cavalier attitude toward notational differences, and readily use concise notations such
as 0 Ofor the more verbose 'and', 'or', we will try to remind readers explicitly about our assumptions when there is a
question about semantics. As an example, we assume that the boolean operators and Oare conditional, also called
'cand' and 'cor': An expression containing these operators is evaluated from left to right, and the evaluation stops as
soon as the result is known. In the expression x Oy, for example, x is evaluated first. If x evaluates to 'false’, the
entire expression is 'false' without y ever being evaluated. This convention makes it possible to leave y undefined

when x is 'false’. Only if x evaluates to 'true' do we proceed to evaluate y. An analogous convention applies to x Oy.

Program structure

Whereas the concise notations introduced above to denote operators can be translated almost one-to-one into a
single line of standard Pascal, we also introduce a few extensions that may affect the program structure. In our view
these changes make programs more elegant and easier to understand. Borrowing from many modern languages, we

introduce a 'return()' statement to exit from procedures and functions and to return the value computed by a

function.
Example
function gcd(u, v: integer): integer;
{ computes the greatest common divisor (gcd) of u and v }
begin if v = 0 then return(u) else return(gcd(v, u mod Vv))
end;

In this example, 'return()’ merely replaces the Pascal assignments 'ged := u' and 'ged := ged(v, u mod v)'. The
latter in particular illustrates how 'return()' avoids a notational blemish in Pascal: On the left of the second
assignment, 'ged’ denotes a variable, on the right a function. 'Return()’ also has the more drastic consequence that it
causes control to exit from the surrounding procedure or function as soon as it is executed. Without entering into a
controversy over the general advantages and disadvantages of this "flow of control" mechanism, let us present one

example, typical of many search procedures, where 'return()' greatly simplifies coding. The point is that a search
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routine terminates in one of (at least) two different ways: successfully, by having found the item in question, or
unsuccessfully, because of a number of reasons (the item is not present, and some index is about to fall outside the
range of a table; we cannot insert an item because the table is full, or we cannot pop a stack because it is empty,
etc.). For the sake of efficiency as well as readability we prefer to exit from the routine as soon as a case has been
identified and dealt with, as the following example from “Address computation:” illustrates:

function insert-into-hash-table(x: key): addr;
var a: addr;
begin
a := h(x); { locate the home address of the item x to be
inserted }
while T[a] # empty do Dbegin
{ skipping over cells that are already occupied }
if T[a] = x then return(a); { x is already present; return
its address }

a := (a + 1) modm { keep searching at the next address }
end;
{ we've found an empty cell; see 1f there is room for x to be
inserted }

if n<m-1 then { n :=n+ 1; Tl[la] := x } else err-
msg ('table is full');
return (a) { return the address where x was lnserted }
end;

This code can only be appreciated by comparing it with alternatives that avoid the use of 'return()’. We
encourage readers to try their hands at this challenge. Notice the three different ways this procedure can terminate:
(1) no need to insert x because x is already in the table, (2) impossible to insert x because the table is full, and (3)
the normal case when x is inserted. Standard Pascal incorporates no facilities for "exception handling" (e.g. to
cover the first two cases that should occur only rarely) and forces all three outcomes to exit the procedure at its
textual end.

Let us just mention a few other liberties that we may take. Whereas Pascal limits results of functions to certain
simple types, we will let them be of any type: in particular, structured types, such as records and arrays. Rather
than nesting if-then-else statements in order to discriminate among more than two mutually exclusive cases, we use
the "flat" and more legible control structure:

if B4 then Sq elsif By then So elsif .. else Sy i

Our sample programs do not return dynamically allocated storage explicitly. They rely on a memory
management system that retrieves free storage through "garbage collection". Many implementations of Pascal avoid
garbage collection and instead provide a procedure 'dispose(...)"' for the programmer to explicitly return unneeded
cells. If you work with such a version of Pascal and write list-processing programs that use significant amounts of
memory, you must insert calls to 'dispose(...)' in appropriate places in your programs.

The list above is not intended to be exhaustive, and neither do we argue that the constructs we use are
necessarily superior to others commonly available. Our reason for extending the notation of Pascal (or any other
programming language we might have chosen as a starting point) is the following: in addressing human readers, we
believe an open-ended, somewhat informal notation is preferable to the straightjacket of any one programming

language. The latter becomes necessary if and when we execute a program, but during the incubation period when
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our understanding slowly grows toward a firm grasp of an idea, supporting intuition is much more important than
formality. Thus we describe data structures and algorithms with the help of figures, words, and programs as we see

fit in any particular instance.

Programming project

1. Use your graphics frame program of “Graphics primitives and environments” to implement an editor for
simple graphics productions such as those used to define snowflakes (e.g. 'any line segment gets replaced
by a specified sequence of line segments'), and an interpreter that draws successive generations of the

fractals defined by these productions.
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5. Divide-and-conquer and
recursion

Learning objectives:

« The algorithmic principle of divide-and-conquer leads directly to recursive procedures.

- Examples: Merge sort, tree traversal. Recursion and iteration.

+ My friend liked to claim "I'm 2/3 Cherokee." Until someone would challenge him "Two- thirds? You mean
1/2, or, or maybe 3/8, how on earth can you be 2/3 of anything?" "It's easy," said Jim, "both my parents are
2/3."

An algorithmic principle
Let A(D) denote the application of an algorithm A to a set of data D, producing a result R. An important class of
algorithms, of a type called divide-and-conquer, processes data in two distinct ways, according to whether the data
is small or large:
« If the set D is small, and/or of simple structure, we invoke a simple algorithm A, whose application A,(D)
yields R.
« If the set D is large, and/or of complex structure, we partition it into smaller subsets D, ..., Dx. For each i,
apply A(Dy) to yield a result R;. Combine the results R, ..., Rx to yield R.
This algorithmic principle of divide-and-conquer leads naturally to the notion of recursive procedures. The
following example outlines the concept in a high-level notation, highlighting the role of parameters and local
variables.

procedure A(D: data; var R: result);
var Dl’ -y Dk: data; Rl’ -y Rk: result;

begin
if simple (D) then R := AO(D)

else { Dl’ . Dk := partition (D) ;
Rl = A(Dl),‘ R Rk = A(Dk);
R := combine(Rl, R Rk) }

end;

Notice how an initial data set D spawns sets D, ... , Dx which, in turn, spawn children of their own. Thus the
collection of all data sets generated by the partitioning scheme is a tree with root D. In order for the recursive
procedure A(D) to terminate in all cases, the partitioning function must meet the following condition: Each branch
of the partitioning tree, starting from the root D, eventually terminates with a data set D, that satisfies the predicate
'simple(D,)', to which we can apply the algorithm.

Divide-and-conquer reduces a problem on data set D to k instances of the same problem on new sets D, ... , Dk

that are "simpler" than the original set D. Simpler often means "has fewer elements”, but any measure of
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"simplicity" that monotonically heads for the predicate 'simple' will do, when algorithm Ao will finish the job. "D is
simple" may mean "D has no elements", in which case A, may have to do nothing at all; or it may mean "D has
exactly one element", and Ao may just mark this element as having been visited.

The following sections show examples of divide-and-conquer algorithms. As we will see, the actual workload is
sometimes distributed unequally among different parts of the algorithm. In the sorting example, the step
'R:=combine(R,, ... , Ri)' requires most of the work; in the "Tower of Hanoi" problem, the application of algorithm
Ao takes the most effort.

Divide-and-conquer expressed as a diagram: merge sort

Suppose that we wish to sort a sequence of names alphabetically, as shown in Exhibit 5.1. We make use of the
divide-and-conquer strategy by partitioning a "large" sequence D into two subsequences D, and D., sorting each
subsequence, and then merging them back together into sorted order. This is our algorithm A(D). If D contains at

most one element, we do nothing at all. A, is the identity algorithm, A,(D) = D.

Ay
Z|—»(z
Z A
— A -
A 0 zZ
zZ Al—»[a A
Al D
S Al.'l S
D s|—»(8 Z
S D
D| | A > g
D|—2»D

Exhibit 5.1: Sorting the sequence {Z, A, S, D} by using a divide-and-conquer scheme

procedure sort(var D: sequence);
var Dl’ D2: sequence;

function combine(Dl, D2: sequence) : sequence;

begin { combine }
merge the two sorted sequences Dy and Do

into a single sorted sequence D';
return(D")
end; { combine }

begin { sort}
if |D|] > 1 then { split D into two sequences Dy and Dy of

equal size;
sort(Dl); sort(Dz); D := combine(Dl, D2) }

{ if |D| £ 1, D is trivially sorted, do nothing }
end; { sort }
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In the chapter on “sorting and its complexity”, under the section “merging and merge sorts” we turn this divide-

and-conquer scheme into a program.

Recursively defined trees

A tree, more precisely, a rooted, ordered tree, is a data type used primarily to model any type of hierarchical
organization. Its primitive parts are nodes and leaves. It has a distinguished node called the root, which, in
violation of nature, is typically drawn at the top of the page, with the tree growing downward. Each node has a
certain number of children, either leaves or nodes; leaves have no children. The exact definition of such trees can
differ slightly with respect to details and terminology. We may define a binary tree, for example, by the condition
that each node has either exactly, or at most, two children.

The pictorial grammar shown in Exhibit 5.2 captures this recursive definition of 'binary tree' and fixes the
details left unspecified by the verbal description above. It uses an alphabet of three symbols: the nonterminal 'tree

symbol', which is also the start symbol; and two terminal symbols, for 'node' and for 'leaf'.
A - /O\
tree symbol leaf symbol node symbol
Exhibit 5.2: The three symbols of the alphabet of a tree grammar

There are two production or rewriting rules, p1 and p2 (Exhibit 5.3). The derivation shown in Exhibit 5.4

illustrates the application of the production rules to generate a tree from the nonterminal start symbol.

i P - i P2

Exhibit 5.3: Rule p; generates a leaf, rule p, generates a node and two new trees

Exhibit 5.4: One way to derive the tree at right

We may make the production rules more detailed by explicitly naming the coordinates associated with each
symbol. On a display device such as a computer screen, the x- and y-values of a point are typically Cartesian
coordinates with the origin in the upper-left corner. The x-values increase toward the bottom and the y-values
increase toward the right of the display. Let (x, y) denote the screen position associated with a particular symbol,
and let d denote the depth of a node in the tree. The root has depth 0, and the children of a node with depth d have
depth d+1. The different levels of the tree are separated by some constant distance s. The separation between
siblings is determined by a (rapidly decreasing) function t(d) which takes as argument the depth of the siblings and
depends on the drawing size of the symbols and the resolution of the screen. These more detailed productions are

shown in Exhibit 5.5.
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Exhibit 5.5: Adding coordinate information to productions in order to control graphic layout

The translation of these two rules into high-level code is now plain:

procedure pl(x, y: coordinate);

begin
eraseTreeSymbol (x, Vy);
drawLeafSymbol (x, V)
end;

procedure p2(x, y: coordinate; d: level);

begin
eraseTreeSymbol (x, Vy);
drawNodeSymbol (x, Vy);
drawTreeSymbol (x + s, v — t(d + 1));
drawTreeSymbol (x + s, y + t(d + 1))
end;

If we choose t(d) = ¢ - 279, these two procedures produce the display shown in Exhibit 5.6 of the tree generated
in Exhibit 5.4.

Exhibit 5.6: Sample layout obtained by halving horizontal displacement at each successive level

Technical remark about the details of defining binary trees: Our grammar forces every node to have exactly two
children: A child may be a node or a leaf. This lets us subsume two frequently occurring classes of binary trees
under one common definition.

1. 0-2 (binary) trees. We may identify leaves and nodes, making no distinction between them (replace the
squares by circles in Exhibit 5.3 and Exhibit 5.4). Every node in the new tree now has either zero or two
children, but not one. The smallest tree has a single node, the root.

2. (Arbitrary) Binary trees. Ignore the leaves (drop the squares in Exhibit 5.3 and Exhibit 5.4 and the
branches leading into a square). Every node in the new tree now has either zero, one, or two children. The
smallest tree (which consisted of a single leaf) now has no node at all; it is empty.

For clarity's sake, the following examples use the terminology of nodes and leaves introduced in the defining

grammar. In some instances we point out what happens under the interpretation that leaves are dropped.
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Recursive tree traversal

Recursion is a powerful tool for programming divide-and-conquer algorithms in a straightforward manner. In
particular, when the data to be processed is defined recursively, a recursive processing algorithm that mirrors the
structure of the data is most natural. The recursive tree traversal procedure below illustrates this point.

Traversing a tree (in general: a graph, a data structure) means visiting every node and every leaf in an orderly
sequence, beginning and ending at the root. What needs to be done at each node and each leaf is of no concern to
the traversal algorithm, so we merely designate that by a call to a 'procedure visit( )'. You may think of inspecting
the contents of all nodes and/or leaves, and writing them to a file.

Recursive tree traversals use divide-and-conquer to decompose a tree into its subtrees: At each node visited
along the way, the two subtrees L and R to the left and right of this node must be traversed. There are three natural
ways to sequence the node visit and the subtree traversals:

1. node; L; R { preorder, or prefix }
2. L; node; R { inorder or infix }

3. L; R; node { postorder or suffix }

The following example translates this traversal algorithm into a recursive procedure:

procedure traverse (T: tree);
{ preorder, inorder, or postorder traversal of tree T with
leaves }
begin
if leaf(T) then visitleaf (T)
else { T is composite }

{ visiti(root(T));
traverse (leftsubtree(T))
visity (root (T));
traverse (rightsubtree (T) ;
visits(root (T)) }
end;
When leaves are ignored (i.e. a tree consisting of a single leaf is considered to be empty), the procedure body

becomes slightly simpler:
if not empty(T) then { ..}

To accomplish the k-th traversal scheme (k = 1, 2, 3), 'visity' performs the desired operation on the node, while
the other two visits do nothing. If all three visits print out the name of the node, we obtain a sequence of node
names called 'triple tree traversal', shown in Exhibit 5.7 along with the three traversal orders of which it is

composed. During the traversal the nodes are visited in the following sequence:
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ACEDB: postorder, postfix

Exhibit 5.7: Three standard orders merged into a triple tree traversal

Recursion versus iteration: the Tower of Hanoi
The "Tower of Hanoi" is a stack of n disks of different sizes, held in place by a tall peg (Exhibit 5.8). The task is to
transfer the tower from source peg S to a target peg T via an intermediate peg I, one disk at a time, without ever
placing a larger disk on a smaller one. In this case the data set D is a tower of n disks, and the divide-and-conquer
algorithm A partitions D asymmetrically into a small "tower" consisting of a single disk (the largest, at the bottom
of the pile) and another tower D' (usually larger, but conceivably empty) consisting of the n — 1 topmost disks. The
puzzle is solved recursively in three steps:
1. Transfer D' to the intermediate peg I.
2. Move the largest disk to the target peg T.

3. Transfer D' on top of the largest disk at the target peg T.

S I T

Exhibit 5.8: Initial configuration of the Tower of Hanoi.

Step 1 deserves more explanation. How do we transfer the n — 1 topmost disks from one peg to another? Notice
that they themselves constitute a tower, to which we may apply the same three-step algorithm. Thus we are
presented with successively simpler problems to solve, namely, transferring the n — 1 topmost disks from one peg to
another, for decreasing n, until finally, for n = 0, we do nothing.

procedure Hanoi (n: integer; x, y, z: peg);
{ transfer a tower with n disks from peg x, via y, to z }

begin
if n >0 then { Hanoi(n - 1, x, z, y); move(x, z); Hanoi(n -
1, v, %, z) }
end;

Recursion has the advantage of intuitive clarity. Elegant and efficient as this solution may be, there is some

complexity hidden in the bookkeeping implied by recursion.
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The following procedure is an equally elegant and more efficient iterative solution to this problem. It assumes

that the pegs are cyclically ordered, and the target peg where the disks will first come to rest depends on this order

and on the parity of n (Exhibit 5.9). For odd values of n, 'TterativeHanoi' moves the tower to peg I, for even values of
n, to peg T.

Y

S——» [ ———» T

Exhibit 5.9: Cyclic order of the pegs.

procedure IterativeHanoi (n:

integer) ;
var odd: boolean;

{ odd represents the parity of the move }
begin
odd := true;
repeat
case odd of
true: transfer smallest disk cyclically to next peg;
false: make the only legal move leaving the smallest in place
end;
odd := not odd
until entire tower is on target peg
end;

Exercise: recursive or iterative pictures?

Chapter 4 presented some beautiful examples of recursive pictures, which would be hard to program without

recursion. But for simple recursive pictures iteration is just as natural. Specify a convenient set of graphics

primitives and use them to write an iterative procedure to draw Exhibit 5.10 to a nesting depth given by a
parameter d.

N S

Exhibit 5.10: Interleaved circles and equilateral triangles cause the radius to be exactly halved at each step.
Solution

There are many choices of suitable primitives and many ways to program these pictures. Specifying an

equilateral triangle by its center and the radius of its circumscribed circle simplifies the notation. Assume that we
may use the procedures:

procedure circle(x,

y, r: real); { coordinates of center and
radius }

procedure equitr (x,

y, r: real);
circumscribed circle}

{ center and radius of
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procedure citr(x, y, r: real; d: integer);
var vr: real; { variable radius }
i: integer;
begin
vr := r;
for 1 := 1 to d do { equitr(x, y, vr); vr := vr/2; circle(x, vy,
vr) }
{ show that the radius of consecutively nested circles gets
exactly halved at each step }
end;
The flag of Alfanumerica: an algorithmic novel on iteration and recursion
In the process of automating its flag industry, the United States of Alfanumerica announced a competition for

the most elegant program to print its flag:

FHRIFHA I KX FHLFTE | blanks fol | owed by k stars

il krEF*XFX* twice (k/2 blanks followed by k/2 stars)
* % %k % * % %k % * %k %k % * %k %k % .

*k k% kk k% k% *xx ** xx continue doubling and hal ving
* % x % % x % % x % % x % % x % down to runs length of 1.

All solutions submitted to the prize committee fell into one of two classes, the iterative and recursive programs.
The proponents of these two algorithm design principles could not agree on a winner, and the selection process
sparked a civil war that split the nation into two: the Iterative States of Alfanumerica (ISA) and the Recursive States
of Alfanumerica (RSA). Both nations fly the same flag but use entirely different production algorithms.

1. Writea
procedure ISA (k: integer);

to print the ISA flag, using an iterative algorithm, of course. Assume that k is a power of 2 and k < (half the
line length of the printer).

2. Explain why the printer industry in RSA is much more innovative than the one in ISA. All modern RSA
printers include operations for positioning the writing head anywhere within a line, and line feed works
both forward and backward.

3. Specify the precise operations for some RSA printer of your design. Using these operations, write a
recursive

procedure RSA (k: integer);

to print the RSA flag.
4. Explain an unforeseen consequence of this drive to automate the flag industry of Alfanumerica: In both ISA

and RSA, a growing number of flags can be seen fluttering in the breeze turned around by 90°.

Exercises

1. Whereas divide-and-conquer algorithms usually attempt to divide the data in equal halves, the recursive
Tower of Hanoi procedure presented in the section 'Recursion versus iteration: The Tower of Hanoi"
divides the data in a very asymmetric manner: a single disk versus n — 1 disks. Why?

2. Prove by induction on n that the iterative program 'TterativeHanoi' solves the problem in 2"—1 iterations.
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6. Syntax

Learning objectives:
+ syntax and semantics
« syntax diagrams and EBNF describe context-free grammars
« terminal and nonterminal symbols
« productions
« definition of EBNF by itself
* parse tree
- grammars must avoid ambiguities
- infix, prefix, and postfix notation for arithmetic expressions

« prefix and postfix notation do not need parentheses

Syntax and semantics

Computer science has borrowed some important concepts from the study of natural languages (e.g. the notions
of syntax and semantics). Syntax rules prescribe how the sentences of a language are formed, independently of
their meaning. Semantics deals with their meaning. The two sentences "The child draws the horse" and "The horse
draws the child" are both syntactically correct according to the accepted rules of grammar. The first sentence clearly
makes sense, whereas the second sentence is baffling: perhaps senseless (if "draw" means "drawing a picture"),
perhaps meaningful (if "draw" means "pull"). Semantic aspects—whether a sentence is meaningful or not, and if so,
what it means—are much more difficult to formalize and decide than syntactic issues.

However, the analogy between natural languages and programming languages does not go very far. The choice
of English words and phrases such as "begin", "end", "goto", "if-then-else" lends a programming language a
superficial similarity to natural language, but no more. The possibility of verbal encoding of mathematical formulas
into pseudo-English has deliberately been built into COBOL; for example, "compute velocity times time giving
distance" is nothing but syntactic sugar for "distance := velocity - time". Much more important is the distinction
that natural languages are not rigorously defined (neither the vocabulary, nor the syntax, and certainly not the
semantics), whereas programming languages should be defined according to a rigorous formalism. Programming
languages are much closer to the formal notations of mathematics than to natural languages, and programming
notation would be a more accurate term.

The lexical part of a modern programming language [the alphabet, the set of reserved words, the construction
rules for the identifiers (i.e. the equivalent to the vocabulary of a natural language) and the syntax are usually
defined formally. However, system-dependent differences are not always described precisely. The compiler often
determines in detail the syntactic correctness of a program with respect to a certain system (computer and
operating system). The semantics of a programming language could also be defined formally, but this is rarely

done, because formal semantic definitions are extensive and difficult to read.
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The syntax of a programming language is not as important as the semantics, but good understanding of the
syntax often helps in understanding the language. With some practice one can often guess the semantics from the

syntax, since the syntax of a well-designed programming language is the frame that supports the semantics.

Grammars and their representation: syntax diagrams and EBNF

The syntax of modern programming languages is defined by grammars. These are mostly of a type called
context-free grammars, or close variants thereof, and can be given in different notations. Backus-Naur form
(BNF), a milestone in the development of programming languages, was introduced in 1960 to define the syntax of
Algol. It is the basis for other notations used today, such as EBNF (extended BNF) and graphical representations
such as syntax diagrams. EBNF and syntax diagrams are syntactic notations that describe exactly the context-free
grammars of formal language theory.

Recursion is a central theme of all these notations: the syntactic correctness and structure of a large program
text are reduced to the syntactic correctness and structure of its textual components. Other common notions
include: terminal symbol, nonterminal symbol, and productions or rewriting rules that describe how nonterminal
symbols generate strings of symbols.

The set of terminal symbols forms the alphabet of a language, the symbols from which the sentences are built. In
EBNF a terminal symbol is enclosed in single quotation marks; in syntax diagrams a terminal symbol is represented

by writing it in an oval:

N @

Nonterminal symbols represent syntactic entities: statements, declarations, or expressions. Each nonterminal
symbol is given a name consisting of a sequence of letters and digits, where the first character must be a letter. In

syntax diagrams a nonterminal symbol is represented by writing its name in a rectangular box:
:

If a construct consists of the catenation of constructs A and B, this is expressed by

AB —A =5 —»

If a construct consists of either A or B, this is denoted by

A —
A | R l—b
B —

If a construct may be either construct A or nothing, this is expressed by

-

A ;-

[A] ) A
If a construct consists of the catenation of any number of A's (including none), this is denoted by

(A} C e >

In EBNF parentheses may be used to group entities [e.g. (A | B)].
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For each nonterminal symbol there must be at least one production that describes how this syntactic entity is

formed from other terminal or nonterminal symbols using the composition constructs above:

The following examples show productions and the constructs they generate. A, B, C, D may denote terminal or

nonterminal symbols.

S=(A|B)(C|D). Li_’ » 1»
B

D —

penerates: AC AD BC BD

T=A[B]C._ - A -
\—DB_J
generales: AC ABC

Lol e

U=A{BA}. >A r— = >
A+B

or
Caed
peneratess A ABA ABABA ABABABA .

EBNF is a formal language over a finite alphabet of symbols introduced above, built according to the rules
explained above. Thus it is no great surprise that EBNF can be used to define itself. We use the following names for

syntactic entities:

stmt A syntactic equation.

expr A list of alternative terms.

term A concatenation of factors.

factor A single syntactic entity or parenthesized expression.

nts Nonterminal symbol that denotes a syntactic entity. It consists of a sequence of letters and digits

where the first character must be a letter.

ts Terminal symbol that belongs to the defined language's vocabulary. Since the vocabulary

depends on the language to be defined there is no production for ts.

EBNF is now defined by the following productions:
EBNF= {stmt}.
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stmt = nts'="expr'.'.
expr = term{'|'term}.
term = factor { factor }.

factor = nts|ts|'("expr")' | '['expr']' | '{' expr '} .
nts= letter { letter | digit } .

Example: syntax of simple expressions

The following productions for the three nonterminals E(xpression), T(erm), and F(actor) can be traced back to
Algol 60. They form the core of all grammars for arithmetic expressions. We have simplified this grammar to define
a class of expressions that lacks, for example, a unary minus operator and many other convenient notations. These
details are but not important for our purpose: namely, understanding how this grammar assigns the correct

structure to each expression. We have further simplified the grammar so that constants and variables are replaced
by the single terminal symbol # (Exhibit 6.1):

E =T ( ( '+ | '=')T)
T=F{( (' |"/)F)
le#lll('E')'

E T F

T > » F > w5 (r
- O EPG—
~D+

Exhibit 6.1: Syntax diagrams for simple arithmetic expressions.

From the nonterminal E we can derive different expressions. In the opposite direction we start with a sequence
of terminal symbols and check by syntactic analysis, or parsing, whether a given sequence is a valid expression. If

this is the case the grammar assigns to this expression a unique tree structure, the parse tree (Exhibit 6.2).
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E

T

\
./

o —

g - ( £ Y + & I #

Exhibit 6.2: Parse tree for the expression #-(# )+ #/ #.

Exercise: syntax diagrams for palindromes

A palindrome is a string that reads the same when read forward or backward. Examples: 0110 and 01010. 01 is
not a palindrome, as it differs from its reverse 10.

1.  What is the shortest palindrome?
2. Specify the syntax of palindromes over the alphabet {0, 1} in EBNF-notation, and by drawing syntax
diagrams.
Solution
1. The shortest palindrome is the null or empty string.
2. S=['0"]"1]] "'0'S'0" | 'I'S'1' (Exhibit 6.3).
S

- >

- ..@ v

Exhibit 6.3: Syntax diagram for palindromes

An overly simple syntax for simple expressions
Why does the grammar given in previous section contain term and factor? An expression E that involves only
binary operators (e.g. +, —, - and /) is either a primitive operand, abbreviated as #, or of the form 'E op E'. Consider
a "simpler" grammar for simple, parenthesis-free expressions ( Exhibit 6.4):
E="#"1TE ('+" | '=* | """ | '"/")E.
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~» E < 7™ E —

Exhibit 6.4: A syntax that generates parse trees of ambiguous structure

Now the expression # - # + # can be derived from E in two different ways (Exhibit 6.5). Such an ambiguous
grammar is useless since we want to derive the semantic interpretation from the syntactic structure, and the tree at

the left contradicts the conventional operator precedence of - over +.

E E
E E E E
T T
# . # + # # - # + #

Exhibit 6.5: Two incompatible structures for the expression # - # + # .

“Everything should be explained as simply as possible, but not simpler.”
(Albert Einstein)
We can salvage the idea of a grammar with a single nonterminal E by enclosing every expression of the form 'E
op E' in parentheses, thus ensuring that every expression has a unique structure (Exhibit 6.6):
E="#"1"'"("E (""" | "= [ " ] /) E "'

= (2 >

S+ OE = e

(T

Exhibit 6.6: Parentheses serve to restore unique structure.
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In doing so we change the language. The more complex grammar with three nonterminals E(xpression, T(erm),
and F(actor) lets us write expressions that are only partially parenthesized and assigns to them a unique structure

compatible with our priority conventions: - and / have higher priority than + and —.

Exercise: the ambiguity of the dangling "else"

The problem of the dangling "else" is an example of a syntax chosen to be "too simple" for the task it is supposed
to handle. The syntax of several programming languages (e.g., Pascal) assigns to nested 'if-then[-else]' statements
an ambiguous structure. It is left to the semantics of the language to disambiguate.

Let E, E,, E,, ... denote Boolean expressions, S, S,, S, ... statements. Pascal syntax allows two types of if
statements:

if E then S

and
if E then S else S

1. Draw one syntax diagram that expresses both of these syntactic possibilities.
2. Show all the possible syntactic structures of the statement
if Eq then if E, then S{ else S

3. Propose a small modification to the Pascal language that avoids the syntactic ambiguity of the dangling
else. Show that in your modified Pascal any arbitrarily nested structure of 'if-then' and 'if-then-else'

statements must have a unique syntactic structure.

Parenthesis-free notation for arithmetic expressions

In the usual infix notation for arithmetic expressions a binary operator is written between its two operands.
Even with operator precedence conventions, some parentheses are required to guarantee a unique syntactic
structure. The selective use of parentheses complicates the syntax of infix expressions: Syntax analysis,
interpretative evaluation, and code generation all become more complicated.

Parenthesis-free or Polish notation (named for the Polish logician Jan Lukasiewicz) is a simpler notation for
arithmetic expressions. All operators are systematically written either before (prefix notation) or after (postfix or
suffix notation) the operands to which they apply. We restrict our examples to the binary operators +, —, - and /.
Operators with different arities (i.e. different numbers of arguments) are easily handled provided that the number
of arguments used is uniquely determined by the operator symbol. To introduce the unary minus we simply need a
different symbol than for the binary minus.

Infix atb at(b-c) (atb) 'c
Prefix +ab +a -bc ‘+abc
Postfix ab+ abc-+ ab+c:

Postfix notation mirrors the sequence of operations performed during the evaluation of an expression. 'ab+' is
interpreted as: load a (find first operand); load b (find the second operand); add both. The syntax of arithmetic
expressions in postfix notation is determined by the following grammar:

S="#"1ss ('"+" [ '"=" | /)
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Exhibit 6.7: Suffix expressions have a unique structure even without the use of parentheses.

Exercises

1.

Consider the following syntax, given in EBNF:

S=A.
A=B|'IF A'THEN' A 'ELSE' A.
B=C|B'OR'C.

C=D|C'AND'D.
D=%"|'("A")' | 'NOT'D.
(a) Determine the sets of terminal and nonterminal symbols.
(b) Give the syntax diagrams corresponding to the rules above.
(c) Which of the following expressions is correct corresponding to the given syntax? For the correct
expressions show how they can be derived from the given rules:
x AND x
x NOT AND x
(x OR x) AND NOT x
IF x AND x THEN x OR x ELSE NOT x
x AND OR x
Extend the grammar of Section 6.3 to include the 'unary minus' (i.e. an arithmetic operator that turns any
expression into its negative, as in —x). Do this under two different assumptions:
(a) The unary minus is denoted by a different character than the binary minus, say -.
(b) The character — is 'overloaded’ (i.e. it is used to denote both unary and binary minus). For any specific
occurrence of —, only the context determines which operator it designates.
Extended Backus-Naur form and syntax diagrams
Define each of the four languages described below using both EBNF and syntax diagrams. Use the following
conventions and notations: Uppercase letters denote nonterminal symbols. Lowercase letters and the three

"

separators ',' '(' and ')’ denote terminal symbols. "" stands for the empty or null string. Notice that the blank

character does not occur in these languages, so we use it to separate distinct sentences.
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L ==a|b|..|z Letter
D ==of1]2]|3|4[5]6]7[8]|9 Digit
S =:=D{D} Sequence of digits I ==L{L|D} Identifier
(a) Real numbers (constants) in Pascal
Examples: —3 + 3.14 10e—06 —10.0e6 but not 10e6
(b) Nonnested lists of identifiers (including the empty list)
Examples: () (a) (year, month, day) butnot (a,(b)) and not
(c) Nested lists of identifiers (including empty lists)

Examples: in addition to the examples in part (b), we have lists such as
(0,0 (a, ) (name, (first, middle, last)) but not (a)(b) and not ""
(d) Parentheses expressions
Almost the same problem as part (c), except that we allow the null string, we omit identifiers and commas,

and we allow multiple outermost pairs of parentheses.

Examples: " () 00 00) 00000
4. Use both syntax diagrams and EBNF to define the repeated if-then-else statement:

if Bl then Sl elsif B2 then 52 elsif .. else S
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/. Syntax analysis

Learning objectives:
- syntax is the frame that carries the semantics of a language
« syntax analysis
» syntax tree

+ top-down parser

syntax analysis of parenthesis-free expressions by counting

syntax analysis by recursive descent

« recursive coroutines

The role of syntax analysis

The syntax of a language is the skeleton that carries the semantics. Therefore, we will try to get as much work as
possible done as a side effect of syntax analysis; for example, compiling a program (i.e. translating it from one
language into another) is a mainly semantic task. However, a good language and compiler are designed in such a
way that syntax analysis determines where to start with the translation process. Many processes in computer
science are syntax-driven in this sense. Hence syntax analysis is important. In this section we derive algorithms for
syntax analysis directly from syntax diagrams. These algorithms reflect the recursive nature of the underlying
grammars. A program for syntax analysis is called a parser.

The composition of a sentence can be represented by a syntax tree or parse tree. The root of the tree is the start
symbol; the leaves represent the sentence to be recognized. The tree describes how a syntactically correct sentence

can be derived from the start symbol by applying the productions of the underlying grammar ( Exhibit 7.1).
E

T T

F F F
| | |
# a # + #

Exhibit 7.1: The unique parse tree for # - # + #

Top-down parsers begin with the start symbol as the goal of the analysis. In our example, "search for an E". The
production for E tells us that we obtain an E if we find a sequence of T's separated by + or —. Hence we look for T's.
The structure tree of an expression grows in this way as a sequence of goals from top (the root) to bottom (the
leaves). While satisfying the goals (nonterminal symbols) the parser reads suitable symbols (terminal symbols)

from left to right. In many practical cases a parser needs no backtrack. No backtracking is required if the current
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input symbol and the nonterminal to be expanded determine uniquely the production to be applied. A recursive-
descent parser uses a set of recursive procedures to recognize its input with no backtracking.
Bottom-up methods build the structure tree from the leaves to the root. The text is reduced until the start

symbol is obtained.

Syntax analysis of parenthesis-free expressions by counting

Syntax analysis can be very simple. Arithmetic expressions in Polish notation are analyzed by counting. For sake
of simplicity we assume that each operand in an arithmetic expression is denoted by the single character #. In order
to decide whether a given string c, ¢, ... ¢, is a correct expression in postfix notation, we form an integer sequence t,,

ty, ... , tn according to the following rule:

tO:O.
tiyg =t + 1, if 1 > 0 and Ci41 is an operand.
ti+1 = ti -1, if i > 0 and Ci41 is an operator.

Example of a correct expression:
o O# #F - - + %

Cl C2 C3 C4 05 C6 C7 C8 C9
tp t1 totztytgtgtytgty

012 3 43 2121

Example of an incorrect expression (one operator is missing):

# # # + . # # /
1 C2 ¢©3 Cq Cs Cs C7 Cg

tg t; tp, t3 t; ts tg tg tg

Theorem: The string ¢, ¢, ... ¢, over the alphabet A= { #, +, —, -, / } is a syntactically correct expression in
postfix notation if and only if the associated integer sequence to, t1, ... , tn satisfies the following conditions:

t; >0 for 1 < i< n, ty = 1.

Proof [J: Let ¢, ¢, ... ¢, be a correct arithmetic expression in postfix notation. We prove by induction on the
length n of the string that the corresponding integer sequence satisfies the conditions.

Base of induction: For n = 1 the only correct postfix expression is ¢, = #, and the sequence t, = 0, t; = 1 has the

desired properties.
Induction hypothesis: The theorem is correct for all expressions of length < m.

Induction step: Consider a correct postfix expression S of length m + 1 > 1 over the given alphabet A. Let s = (s;) o<i

< m« De the integer sequence associated with S. Then S is of the form S = T U Op, where 'Op' is an operator and T

and U are correct postfix expressions of length j < m and lengthk <m, j + k =m. Let t = (t;) o<1<jand u = (u;) o <i<x

be the integer sequences associated with T and U. We apply the induction hypothesis to T and U. The sequence s is

composed from t and u as follows:
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S:SO,Sl,Sz,..., Sj,Sj+l, Sj+2,..., Sm, SITH‘].

to, tl,t2,..., tj,ul+l,u2+l,..., Uk+l,1

0o, .. ,1,..,2,1

Since t ends with 1, we add 1 to each element in u, and the subsequence therefore ends with ux + 1 = 2. Finally,
the operator 'O,' decreases this element by 1, and s therefore ends with s, = 1. Since t;> 0 for 1 <i < j and u; > o for
1 <i < k, we obtain that s; > 0 for 1 < i < k + 1. Hence s has the desired properties, and we have proved one direction

of the theorem.

Proof [J: We prove by induction on the length n that a string ¢, c. ... ¢, over A is a correct arithmetic expression

in postfix notation if the associated integer sequence satisfies the conditions stated in the theorem.

Base of induction: For n = 1 the only sequence is t, = 0, t;, = 1. It follows from the definition of the sequence that
¢, = #, which is a correct arithmetic expression in postfix notation.

Induction hypothesis: The theorem is correct for all expressions of length < m.

Induction step: Let s = (8;) o <i<m+ b€ the integer sequence associated with a string S = ¢, ¢; ... €ms: of length m + 1

> 1 over the given alphabet A which satisfies the conditions stated in the theorem. Let j < m + 1 be the largest index

with 5j = 1. Since s; = 1 such an index j exists. Consider the substrings T = c, ¢, ... ¢;and U = ¢; ¢ji ... ¢m. The integer
sequences (Si) o<i<jand (si — 1) j<i<m associated with T and U both satisfy the conditions stated in the theorem.

Hence we can apply the induction hypothesis and obtain that both T and U are correct postfix expressions. From
the definition of the integer sequence we obtain that cm.; is an operand 'O,'. Since T and U are correct postfix
expressions, S = T U O,is also a correct postfix expression, and the theorem is proved.

A similar proof shows that the syntactic structure of a postfix expression is unique. The integer sequence
associated with a postfix expression is of practical importance: The sequence describes the depth of the stack during
evaluation of the expression, and the largest number in the sequence is therefore the maximum number of storage

cells needed.

Analysis by recursive descent

We return to the syntax of the simple arithmetic expressions of chapter 6 in the section “Example: syntax of
simple expressions” (Exhibit 7.2). Using the expression # - (# — #) as an example, we show how these syntax
diagrams are used to analyze any expressions by means of a technique called recursive-descent parsing. The
progress of the analysis depends on the current state and the next symbol to be read: a lookahead of exactly one
symbol suffices to avoid backtracking. In Exhibit 7.3 we move one step to the right after each symbol has been

recognized, and we move vertically to step up or down in the recursion.
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E T » L _WF » I L&D (r
— O EP—
—(O

Exhibit 7.2: Standard syntax for simple arithmetic expressions (graphic does not match)

# - ( # - # ) eymbol

Exhibit 7.3: Trace of syntax analysis algorithm parsing the expression # - ( # — # ).

Turning syntax diagrams into a parser

In a programming language that allows recursion the three syntax diagrams for simple arithmetic expressions
can be translated directly into procedures. A nonterminal symbol corresponds to a procedure call, a loop in the
diagram generates a while loop, and a selection is translated into an if statement. When a procedure wants to
delegate a goal it calls another, in cyclic order: E calls T calls F calls E, and so on. Procedures implementing such a

recursive control structure are often called recursive coroutines.
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The procedures that follow must be embedded into a program that provides the variable 'ch' and the procedures
'read’ and 'error'. We assume that the procedure 'error' prints an error message and terminates the program. In a
more sophisticated implementation, 'error' would return a message to the calling procedure (e.g. 'factor'). Then this
error message is returned up the ladder of all recursive procedure calls active at the moment.

procedure expression;
begin
term;
while (ch="+") or (ch ="'-") do { read(ch); term }

end;
\ procedure term;

begin
factor;

/ while (ch="") or(ch="") do{ read(ch); factor}
end;

procedure factor;

begin

it  ch="'(" then {read(ch); expression; if ch=") then read (ch) else error}
elsif ch="#" then read(ch)

else error

end;

Before the first call of the procedure 'expression’, a character has to be read into 'ch'. Furthermore, we assume

that a correct expression is terminated by a period:

read (ch); expression; if ch # '.! then error;

Exercises

1. Design recursive algorithms to translate the simple arithmetic expressions of chapter 6 in the section
“Example: syntax of a simple expressions” into corresponding prefix and postfix expressions as defined in
chapter 6 in the section “Parenthesis-free notation for arithmetic expressions”. Same for the inverse
translations.

2. Using syntax diagrams and EBNF define a language of 'correctly nested parentheses expressions'. You have
a bit of freedom (how much?) in defining exactly what is correctly nested and what is not, but obviously
your definition must include expressions such as (), ((())), (0(0)), and must exclude strings such as (, )(, ())
0.

3. Design two parsing algorithms for your class of correctly nested parentheses expressions: one that works by

counting, the other through recursive descent.
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Part lll: Objects, algorithms,
programs

Computing with numbers and other objects

Since the introduction of computers four or five decades ago the meaning of the word computation has kept
expanding. Whereas "computation” traditionally implied "numbers", today we routinely compute pictures, texts,
and many other types of objects. When classified according to the types of objects being processed, three types of
computer applications stand out prominently with respect to the influence they had on the development of
computer science.

The first generation involved numerical computing, applied mainly to scientific and technical problems. Data to
be processed consisted almost exclusively of numbers, or sets of numbers with a simple structure, such as vectors
and matrices. Programs were characterized by long execution times but small sets of input and output data.
Algorithms were more important than data structures, and many new numerical algorithms were invented. Lasting
achievements of this first phase of computer applications include systematic study of numerical algorithms, error
analysis, the concept of program libraries, and the first high-level programming languages, Fortran and Algol.

The second generation, hatched by the needs of commercial data processing, leads to the development of many
new data structures. Business applications thrive on record keeping and updating, text and form processing, and
report generation: there is not much computation in the numeric sense of the word, but a lot of reading, storing,
moving, and printing of data. In other words, these applications are data intensive rather than computation
intensive. By focusing attention on the problem of efficient management of large, dynamically varying data
collections, this phase created one of the core disciplines of computer science: data structures, and corresponding
algorithms for managing data, such as searching and sorting.

We are now in a third generation of computer applications, dominated by computing with geometric and
pictorial objects. This change of emphasis was triggered by the advent of computers with bitmap graphics. In turn,
this leads to the widespread use of sophisticated user interfaces that depend on graphics, and to a rapid increase in
applications such as computer-aided design (CAD) and image processing and pattern recognition (in medicine,
cartography, robot control). The young discipline of computational geometry has emerged in response to the
growing importance of processing geometric and pictorial objects. It has created novel data structures and
algorithms, some of which are presented in Parts V and VI.

Our selection of algorithms in Part III reflects the breadth of applications whose history we have just sketched.
We choose the simplest types of objects from each of these different domains of computation and some of the most
concise and elegant algorithms designed to process them. The study of typical small programs is an essential part of
programming. A large part of computer science consists of the knowledge of how typical problems can be solved;

and the best way to gain such knowledge is to study the main ideas that make standard programs work.
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Algorithms and programs

Theoretical computer science treats algorithm as a formal concept, rigorously defined in a number of ways, such
as Turing machines or lambda calculus. But in the context of programming, algorithm is typically used as an
intuitive concept designed to help people express solutions to their problems. The formal counterpart of an
algorithm is a procedure or program (fragment) that expresses the algorithm in a formally defined programming
language. The process of formalizing an algorithm as a program typically requires many decisions: some superficial
(e.g. what type of statement is chosen to set up a loop), some of great practical consequence (e.g. for a given range
of values of n, is the algorithm's asymptotic complexity analysis relevant or misleading?).

We present algorithms in whatever notation appears to convey the key ideas most clearly, and we have a clear
preference for pictures. We present programs in an extended version of Pascal; readers should have little difficulty
translating this into any programming language of their choice. Mastery of interesting small programs is the best
way to get started in computer science. We encourage the reader to work the examples in detail.

The literature on algorithms. The development of new algorithms has been proceeding at a very rapid pace
for several decades, and even a specialist can only stay abreast with the state of the art in some subfield, such as
graph algorithms, numerical algorithms, or geometric algorithms. This rapid development is sure to continue
unabated, particularly in the increasingly important field of parallel algorithms. The cutting edge of algorithm
research is published in several journals that specialize in this research topic, including the Journal of Algorithms
and Algorithmica. This literature is generally accessible only after a student has studied a few textbooks on
algorithms, such as [AHU 75], [Baa 88], [BB 88], [CLR 90], [GB 91], [HS 78], [Knu 73a], [Knu 81], [Knu 73b],
[Man 89], [Meh 84a], [Meh 84b], [Meh 84c], [RND 771, [Sed 88], [Wil 86], and [Wir 86].
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8. Truth values, the data
type ‘set’, and bit acrobatics

Learning objectives:
« truth values, bits
« boolean variables and functions
« bit sum: four clever algorithms compared

« trade-off between time and space

Bits and boolean functions

The English mathematician George Boole (1815-1864) became one of the founders of symbolic logic when he
endeavored to express logical arguments in mathematical form. The goal of his 1854 book The Laws Of Thought
was "to investigate the laws of those operations of the mind by which reasoning is performed; to give expression to
them in the symbolic language of calculus. ..."

Truth values or boolean values, named in Boole's honor, possess the smallest possible useful domain: the binary
domain, represented by yes/no, 1/0, true/false, T/F. In the late 1940s, as the use of binary arithmetic became
standard and as information theory came to regard a two-valued quantity as the natural unit of information, the
concise term bit was coined as an abbreviation of "binary digit". A bit, by any other name, is truly a primitive data
element—at a sufficient level of detail, (almost) everything that happens in today's computers is bit manipulation.
Just because bits are simple data quantities does not mean that processing them is necessarily simple, as we
illustrate in this section by presenting some clever and efficient bit manipulation algorithms.

Boolean variables range over boolean values, and boolean functions take boolean arguments and produce
boolean results. There are only four distinct boolean functions of a single boolean variable, among which 'not' is the
most useful: It yields the complement of its argument (i.e. turns o0 into 1, and vice versa). The other three are the
identity and the functions that yield the constants 0 and 1. There are 16 distinct boolean functions of two boolean
variables, of which several are frequently used, in particular: 'and’, 'or'; their negations 'nand’, 'nor'; the exclusive-or

'xor'; and the implication '[1'. These functions are defined as follows:

al b| aandb aorb anandb anorb axorb alb
ol o] o o 1 1 o 1
ofl 1| o 1 1 o) 1 1
1| ol o 1 1 0 1 0]
1 1] 1 1 o 0 o} 1

Bits are the atomic data elements of today's computers, and most programming languages provide a data type

'boolean' and built-in operators for 'and’, 'or', 'not'. To avoid the necessity for boolean expressions to be fully
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parenthesized, precedence relations are defined on these operators: 'not' takes precedence over 'and’, which takes
precedence over 'or'. Thus
xandnotyornotxandy = ((xand (noty)) or ((not x) and y)).
What can you compute with boolean variables? Theoretically everything, since large finite domains can always
be represented by a sufficient number of boolean variables: 16-bit integers, for example, use 16 boolean variables to
represent the integer domain —2' .. 2'5-1. Boolean variables are often used for program optimization in practical

problems where efficiency is important.

Swapping and crossovers: the versatile exclusive-or
Consider the swap statement x :=: y, which we use to abbreviate the cuambersome triple: t:=x; x:=y; y:=t.
On computers that provide bitwise boolean operations on registers, the swap operator :=: can be implemented
efficiently without the use of a temporary variable.
The operator exclusive-or, often abbreviated as 'xor', is defined as
xxory = xand noty or not x and y.
It yields true iff exactly one of its two arguments is true.
The bitwise boolean operation z:= x op y on n-bit registers: x[1 .. n], y[1.. n], z[1 .. n], is defined as
for i:=1 to n do z[i] := x[i] op y[i]
With a bitwise exclusive-or, the swap x :=: y can be programmed as

X 1= X XOr y; Yy = X XOr y; X = X XOr Yy;

It still takes three statements, but no temporary variable. Given that registers are usually in short supply, and
that a logical operation on registers is typically just as fast as an assignment, the latter code is preferable. Exhibit
8.1 traces the execution of this code on two 4-bit registers and shows exhaustively that the swap is performed

correctly for all possible values of x and y.

x [0]o]1]1]mzorr™{0[1]1]0 xory»{[1]0]1

¥ (0]1]0]1 XOr 0101 1—™0|0|1|1

Exhibit 8.1: Trace of registers x and y under repeated exclusive-or operations.

Exercise: planar circuits without crossover of wires

The code above has yet another interpretation: How should we design a logical circuit that effects a logical
crossover of two wires x and y while avoiding any physical crossover? If we had an 'xor' gate, the circuit diagram
shown in Exhibit 8.2 would solve the problem. 'xor' gates must typically be realized as circuits built from simpler
primitives, such as 'and’, 'or', 'not'. Design a circuit consisting of 'and’, 'or', 'not' gates only, which has the effect of

crossing wires x and y while avoiding physical crossover.

< ) (a0

/

y (zop x

Exhibit 8.2: Three exclusive-or gates in series interchange values on two wires.

Y
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The bit sum or "population count”

A computer word is a fixed-length sequence of bits, call it a bit vector. Typical word lengths are 16, 32, or 64, and
most instructions in most computers operate on all the bits in a word at the same time, in parallel. When efficiency
is of great importance, it is worth exploiting to the utmost the bit parallelism built into the hardware of most
computers. Today's programming languages often fail to refer explicitly to hardware features such as registers or
words in memory, but it is usually possible to access individual bits if one knows the representation of integers or
other data types. In this section we take the freedom to drop the constraint of strong typing built into Pascal and
other modern languages. We interpret the content of a register or a word in memory as it suits the need of the
moment: a bit string, an integer, or a set.

We are well aware of the dangers of such ambiguous interpretations: Programs become system and compiler
dependent, and thus lose portability. If such ambiguity is localized in a single, small procedure, the danger may be
kept under control, and the gain in efficiency may outweigh these drawbacks. In Pascal, for example, the type 'set' is
especially well suited to operate at the bit level. 'type s = set of (a, b, ¢)' consists of the 23 sets that can be formed
from the three elements a, b, c. If the basic set M underlying the declaration of

type S = set of M
consists of n elements, then S has 2" elements. Usually, a value of type S is internally represented by a vector of n
contiguously allocated bits, one bit for each element of the set M. When computing with values of type S we operate
on single bits using the boolean operators. The union of two sets of type S is obtained by applying bitwise 'or', the
intersection by applying bitwise 'and'. The complement of a set is obtained by applying bitwise not'.

Example

M= {0, 1, .., 7}
Set Bit vector
7 6 5 4 3 2 1 0 FElements
s, {0, 3, 4, 6} 01 01 1 001
82{0,1,4,5} 0 01 10011

s;0s, (0, 1,3, 4,5 6}, 01111011
sy N s, {0, 4} 00010001
-~ s; (1, 2, 5, 7} 10100110

Integers are represented on many small computers by 16 bits. We assume that a type 'w16', for "word of length
16", can be defined. In Pascal, this might be
type wlé6 = set of 0 .. 15;

A variable of type 'w16' is a set of at most 16 elements represented as a vector of 16 bits.

Asking for the number of elements in a set s is therefore the same as asking for the number of 1's in the bit
pattern that represents s. The operation that counts the number of elements in a set, or the number of 1's in a word,
is called the population count or bit sum. The bit sum is frequently used in inner loops of combinatorial
calculations, and many a programmer has tried to make it as fast as possible. Let us look at four of these tries,

beginning with the obvious.
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Inspect every bit

function bitsumo(w: wl6): integer;
var i, c: integer;
begin
c := 0;
for i :=0 to 15 do { inspect every bit }
if 1 0w {(w[i] =1} then ¢ :=c¢c + 1; { count the ones}
return (c)
end;
Skip the zeros

Is there a faster way? The following algorithm looks mysterious and tricky. The expression w n (w — 1) contains
both an intersection operation 'n', which assumes that its operands are sets, and a subtraction, which assumes that

w is an integer:
c := 0;
while w# 0 do { c :=c¢c+ 1; w:=wn (w-1)1%;
Such mixing makes sense only if we can rely on an implicit assumption on how sets and integers are represented
as bit vectors. With the usual binary number representation, an example shows that when the body of the loop is

executed once, the rightmost 1 of w is replaced by o:

w 1000100011001000
w -1 1000100011000111
wn (w - 1) 1000100011000000

This clever code seems to look at the 1's only and skip over all the 0's: Its loop is executed only as many times as
there are 1's in the word. This savings is worthwhile for long, sparsely populated words (few 1's and many 0's).

In the statement w := w N (w — 1), w is used both as an integer (in w — 1) and as a set (as an operand in the
intersection operation 'Nn’'). Strongly typed languages, such as Pascal, do not allow such mixing of types. In the
following function 'bitsum,', the conversion routines 'wi6toi' and 'itow16' are introduced to avoid this double
interpretation of w. However, 'bitsum,’' is of interest only if such a type conversion requires no extra time (i.e. if one
knows how sets and integers are represented internally).

function bitsumg (w: wl6): integer;

var ¢, 1: integer; Wo, Wit wl6;

begin
wg 1= w; C = 0;
while wgy # @ { empty set } do begin
i := wl6toi(wo); { wlétoi converts type wlé6 to integer }
i :=1i - 1;
Wi 1= itowl6 (1) ; { itowl6 converts type integer to wlé }
Wy 1= Wg Nowq;g { intersection of two sets }
c :=c + 1
end;
return (c)
end;

72



This book is licensed under a Creative Commons Attribution 3.0 License

Most languages provide some facility for permitting purely formal type conversions that result in no work:
'EQUIVALENCE' statements in Fortran, 'UNSPEC' in PL/1, variant records in Pascal. Such "conversions" are done

merely by interpreting the contents of a given storage location in different ways.

Logarithmic bit sum

For a computer of word length n, the following algorithm computes the bit sum of a word w running through its
loop only [log2 n] times, as opposed to n times for 'bitsum,' or up to n times for 'bitsum,'. The following
description holds for arbitrary n but is understood most easily if n = 2h.

The logarithmic bit sum works on the familiar principle of divide-and-conquer. Let w denote a word consisting
of n = 2h bits, and let S(w) be the bit sum of the bit string w. Split w into two halves and denote its left part by wL
and its right part by wR. The bit sum obviously satisfies the recursive equation S(w) = S(wL) + S(WR). Repeating
the same argument on the substrings wL and wR, and, in turn, on the substrings they create, we arrive at a process
to compute S(w). This process terminates when we hit substrings of length 1 [i.e. substrings consisting of a single
bit b; in this case we have S(b) = b]. Repeated halving leads to a recursive decomposition of w, and the bit sum is

computed by a tree of n — 1 additions as shown below for n = 4 (Exhibit 8.3).

ECNSIVE |
. o
compotabon of the
bat som by a tree
of addshon=
L [0[0]1]1]

Exhibit 8.3: Logarithmic bit sum algorithm as a result of divide-and-conquer.

This approach of treating both parts of w symmetrically and repeated halving leads to a computation of depth h
= [log2 n] . To obtain a logarithmic bit sum, we apply the additional trick of performing many additions in parallel.
Notice that the total length of all operands on the same level is always n. Thus we can pack them into a single word
and, if we arrange things cleverly, perform all the additions at the same level in one machine operation, an addition
of two n-bit words.

Exhibit 8.4 shows how a number of the additions on short strings are carried out by a single addition on long
strings. S(w) now denotes not only the bit sum but also its binary representation, padded with zeros to the left so as
to have the appropriate length. Since the same algorithm is being applied to w.. and wx, and since wi. and wr are of
equal length, exactly the same operations are performed at each stage on wL and its parts as on wR and its
corresponding parts. Thus if the operations of addition and shifting operate on words of length n, a single one of
these operations can be interpreted as performing many of the same operations on the shorter parts into which w
has been split. This logarithmic speedup works up to the word length of the computer. For n = 64, for example,

recursive splitting generates six levels and translates into six iterations of the loop below.
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W
[ L R
ve | bit snm algornithm appled to
bit sam slep wy and wy, simmltanconsly
algmgin Y \
“low [ sep S(vg)
f
000 ... 000 S5(vg)
final |
step +000 ... 000 S(wy)

4 S s(w) = S(WL) + S(WR)

Exhibit 8.4: All processes generated by divide-and-conquer are performed in parallel

on shared data registers.

The algorithm is best explained with an example; we use n = 8.

W, We W5 Wy W3 Wa Wi Wo

w 1 1 (6] 1 (6] (6] (6] 1

First, extract the even-indexed bits we w, w, w, and place a zero to the left of each bit to obtain Weyen. The newly
inserted zeros are shown in small type.

W(, W4 W2 Wo

Weven ° 1 ° 1 ° 0 0 1
Next, extract the odd-indexed bits w, w; w; wy, shift them right by one place into bit positions we w, w, w,, and
place a zero to the left of each bit to obtain woga.

w, \A A w;

Wodd ° 1 0 ) 0 ) 0 )

Then, numerically add weven and weaq, considered as integers written in base 2, to obtain w'.

w', w's W w'y w's w', wh wh
Weven 0 1 0 1 0 o) o) 1
Wodd 0 1 0 0 0 0 0 0
w' 1 0 0 1 0 0 0 1

Next, we index not bits, but pairs of bits, from right to left: (w'; w',) is the zeroth pair, (w'; w',) is the second pair.

Extract the even-indexed pairs w'; w', and w', w's, and place a pair of zeros to the left of each pair to obtain W' even.
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' ' ' '

W5 W4 Wi Wo

Ween ° ° 0 1 ° ° 0 1

Next, extract the odd-indexed pairs w', w's and w'y w', , shift them right by two places into bit positions w'; w',
and w'; w's , respectively, and insert a pair of zeros to the left of each pair to obtain w'sqa.

w', W's W'y W'

Wodd  © © 1 0 © © 0 0
Numerically, add w'even and w'saa to obtain w".

va7 W“e W"5 va4 W', w", w", w"o

"

w (6] (6] 1 1 (6] (6] (6] 1

Next, we index quadruples of bits, extract the quadruple w"; w", w", w",, and place four zeros to the left to obtain

]
w evene

W'een  ° 0 ° ° 0 0 0 1

Extract the quadruple w", w"s w"; w",, shift it right four places into bit positions w"; w", w", w",, and place four

zeros to the left to obtain w"aq.

W'oaa  ° ° ° ° 0 0 1 1

Finally, numerically add w"een and w'"o4q to obtain w'' = (00000100), which is the representation in base 2 of the
bit sum of w (4 in this example). The following function implements this algorithm.

Logarithmic bit sum implemented for a 16-bit computer:

In 'bitsum,' we apply addition and division operations directly to variables of type 'w16' without performing the
type conversions that would be necessary in a strongly typed language such as Pascal.

function bitsumz(w: wl6): integer;

const mask[0] = '0101010101010101";
mask([1l] = '0011001100110011";
mask([2] = '0000111100001111";
mask[3] = '0000000011111111";

var i, d: integer; Weven’ Yodd: wl6;

begin
d := 2;
for i1 :=0 to 3 do Dbegin
Woyen = W N mask[i];

w :=w / d; { shift w right 21 bits }

d := d2;
Wodd =W N mask[i];
W = Weyen t Yodd
end;
return (w)
end;
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Trade-off between time and space: the fastest algorithm

Are there still faster algorithms for computing the bit sum of a word? Is there an optimal algorithm? The
question of optimality of algorithms is important, but it can be answered only in special cases. To show that an
algorithm is optimal, one must specify precisely the class of algorithms allowed and the criterion of optimality. In
the case of bit sum algorithms, such specifications would be complicated and largely arbitrary, involving specific
details of how computers work.

However, we can make a plausible argument that the following bit sum algorithm is the fastest possible, since it
uses a table lookup to obtain the result in essentially one operation. The penalty for this speed is an extravagant use
of memory space (2" locations), thereby making the algorithm impractical except for small values of n. The choice
of an algorithm almost always involves trade-offs among various desirable properties, and the better an algorithm is
from one aspect, the worse it may be from another.

The algorithm is based on the idea that we can precompute the solutions to all possible questions, store the
results, and then simply look them up when needed. As an example, for n = 3, we would store the information

Word Bit sum

PR R OOOO
PP OO KOO
PORrRrORFr ORFr O
WNNEFE DN O

What is the fastest way of looking up a word w in this table? Under assumptions similar to those used in the
preceding algorithms, we can interpret w as an address of a memory cell that contains the bit sum of w, thus giving
us an algorithm that requires only one memory reference.

Table lookup implemented for a 16-bit computer:

function bitsum3(w: wl6): integer;

const «c¢: array[0O .. 65535] of integer = [0, 1, 1, 2, 1, 2, 2, 3,
., 15, 161;

begin return(cl[w]) end;

In concluding this example, we notice the variety of algorithms that exist for computing the bit sum, each one
based on entirely different principles, giving us a different trade-off between space and time. 'bitsum,' and 'bitsum,'
solve the problem by "brute force" and are simple to understand: 'bitsum,' looks at each bit and so requires much
time; 'bitsum;' stores the solution for each separate case and thus requires much space. The logarithmic bit sum
algorithm is an elegant compromise: efficient with respect to both space and time, it merely challenges the

programmer's wits.

Exercises
1. Show that there are exactly 16 distinct boolean functions of two variables.
2. Show that each of the boolean functions 'nand' and 'nor' is universal in the following sense: Any boolean
function f(x, y) can be written as a nested expression involving only 'nands', and it can also be written using

only 'nors'. Show that no other boolean function of two variables is universal.
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3. Consider the logarithmic bit sum algorithm, and show that any strategy for splitting w (not just the halving

split) requires n — 1 additions.
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9. Ordered sets

Learning objectives:
+ searching in ordered sets
« sequential search. proof of program correctness
- binary search
« in-place permutation
« nondeterministic algorithms
« cycle rotation
« cycle clipping
Sets of elements processed on a computer are always ordered according to some criterion. In the preceding
example of the "population count” operation, a set is ordered arbitrarily and implicitly simply because it is mapped
onto linear storage; a programmer using that set can ignore any order imposed by the implementation and access
the set through functions that hide irrelevant details. In most cases, however, the order imposed on a set is not
accidental, but is prescribed by the problem to be solved and/or the algorithm to be used. In such cases the
programmer explicitly deals with issues of how to order a set and how to use any existing order to advantage.
Searching in ordered sets is one of the most frequent tasks performed by computers: whenever we operate on a
data item, that item must be selected from a set of items. Searching is also an ideal ground for illustrating basic
concepts and techniques of programming.
At times, ordered sets need to be rearranged (permuted). The chapter “Sorting and its complexity” is dedicated
to the most frequent type of rearrangement: permuting a set of elements into ascending order. Here we discuss

another type of rearrangement: reordering a set according to a given permutation.

Sequential search

Consider the simple case where a fixed set of n data elements is given in an array A:

const n = .. ; { n >0 }
type index = 0 n; elt = . ;
var A: array|l n] of elt; or var A: array[0 .. n] of elt;

Sequential or linear search is the simplest technique for determining whether A contains a given element x. It is
a trivial example of an incremental algorithm, which processes a set of data one element at a time. If the search for
x is successful, we return an index i, 1 < i < n, to point to x. The convention that i = 0 signals unsuccessful search is

convenient and efficient, as it encodes all possible outcomes in a single parameter.

function find(x: elt): index;
var 1i: index;
begin
i := n;
while (1 > 0) { can access A } cand (A[i] # Xx) { not yet
found } do
(1) { (1 <i<n) 0Ok, i < k: A[k] # x) }
i =1 -1;
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(2) { (Uk, i < k: A[k] # x) 0 ((i=0) O((1 < i < n) O(A[i] = x))) }
return (1)
end;

The 'cand' operator used in the termination condition is the conditional 'and'. Evaluation proceeds from left to
right and stops as soon as the value of the boolean expression is determined: If i > 0 yields 'false’, we immediately
terminate evaluation of the boolean expression without accessing A[i], thus avoiding an out-of-bounds error.

We have included two assertions, (1) and (2), that express the main points necessary for a formal proof of
correctness: mainly, that each iteration of the loop extends by one element the subarray known not to contain the
search argument x. Assertion (1) is trivially true after the initialization i := n, and remains true whenever the body
of the while loop is about to be executed. Assertion (2) states that the loop terminates in one of two ways:

- i = 0 signals that the entire array has been scanned unsuccessfully.
« x has been found at index i.

A formal correctness proof would have to include an argument that the loop does indeed terminate—a simple
argument here, since i is initialized to n, decreases by 1 in each iteration, and thus will become o after a finite
number of steps.

The loop is terminated by a Boolean expression composed of two terms: reaching the end of the array, i = 0, and
testing the current array element, A[i] = x. The second term is unavoidable, but the first one can be spared by
making sure that x is always found before the index i drops off the end of the array. This is achieved by extending
the array by one cell A[0] and placing the search argument x in it as a sentinel. If no true element x stops the scan of
the array, the sentinel will. Upon exit from the loop, the value of i reveals the outcome of the search, with the

convention that o signals an unsuccessful search:

function find(x: elt): index;
var 1i: index;
begin

A[0] := x; = n;

1
while A[i] # x
return (i)
end;
How efficient is sequential search? An unsuccessful search always scans the entire array. If all n array elements

have equal probability of being searched for, the average number of iterations of the while loop in a successful

search is

1 n+1
n(1+2+K +n)= 2 -

This algorithm needs time proportional to n in the average and the worst case.

Binary search

If the data elements stored in the array A are ordered according to the order relation < defined on their domain,
that is

Ok, 1<k <n: A[k] < A[k + 1]
the search for an element x can be made much faster because a comparison of x with any array element A[m]
provides more information than it does in the unordered case. The result x # A[m] excludes not only A[m], but also

all elements on one or the other side of A[m], depending on whether x is greater or smaller than A[m] (Exhibit 9.1).
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A[m] < x " X < A[m]

m m
X cannot liein IIIII

Exhibit 9.1: Binary search identifies regions where the search argument is guaranteed to be absent.

The following function exploits this additional information:

const n = .. ; { n> 0 }
type index =1 .. n; elt = .. ;
var A: arrayll n] of elt;

function find(x: elt; wvar m: index): boolean;
var u, v: index;

begin
u :=1; v := n;
while u £ v do begin
(1) { (u <v) OO0k, 1< k < u: A[k] < x) OOk, v<=kZ<n: Alk] >
x) '}
m := any value such that u £ m £ v ;
if X < A[m] thenv (= m - 1
elsif X > A[m] then u (= m + 1
(2) else {(x = A[m] } return (true)
end;
(3) { (u=v + 1) OOk, 1 < k < u: Alk]jJ< x) 0O (0Ok, v <k < n:

Alk] > x) }
return (false)
end;

u and v bound the interval of uncertainty that might contain x. Assertion (1) states that A[1], ... , A[u — 1] are known
to be smaller than x; A[v + 1], ... , A[n] are known to be greater than x. Assertion (2), before exit from the function,
states that x has been found at index m. In assertion (3), u = v + 1 signals that the interval of uncertainty has shrunk
to become empty. If there exists more than one match, this algorithm will find one of them.

This algorithm is correct independently of the choice of m but is most efficient when m is the midpoint of the
current search interval:

m := (u + v) div 2;

With this choice of m each comparison either finds x or eliminates half of the remaining elements. Thus at most

[log. n| iterations of the loop are performed in the worst case.

Exercise: binary search
The array

var A: array [1 .. n] of integer;

contains n integers in ascending order: A[1] < A[2] < ... < A[n].
(a) Write a recursive binary search

function rbs (x, u, v: integer): integer;

that returns o if x is not in A, and an index i such that A[i] = x if x is in A.

(b) What is the maximal depth of recursive calls of 'rbs' in terms of n?
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(c) Describe the advantages and disadvantages of this recursive binary search as compared to the iterative

binary search.

Exercise: searching in a partially ordered two-dimensional array

Consider the n by m array:

var A: array([l .. n, 1 .. m] of integer;

and assume that the integers in each row and in each column are in ascending order; that is,
Ali, 3] £ A[i, J +1]for i =1, .., nand j =1, .., m - 1;
Ali, J] £ A[i +1, jlfor i =1, .., n -1 and j =1, .., m.
(a) Design an algorithm that determines whether a given integer x is stored in the array A. Describe your

algorithm in words and figures. Hint: Start by comparing x with A[1, m] (Exhibit 9.2).

Exhibit 9.2: Another example of the idea of excluded regions.

(b) Implement your algorithm by a

function IsInArray (x: integer): boolean;

(c) Show that your algorithm is correct and terminates, and determine its worst case time complexity.

Solution
(a) The algorithm compares x first with A[1, m]. If x is smaller than A[1, m], then x cannot be contained in the
last column, and the search process is continued by comparing x with A[1, m — 1]. If x is greater than A[1,
m], then x cannot be contained in the first row, and the search process is continued by comparing x with

A[2, m]. Exhibit 9.3 shows part of a typical search process.

comparmyg; X to
resulls 0 an asserhon
ot in o
Tt in

Exhibit 9.3: Excluded regions combine to leave only a staircase-shaped strip to examine.

(b) function IsInArray(x: integer): boolean;
var r, c: integer;
begin
r :=1; c :=m;
while (r € n) and (¢ 2 1) do
{1} ifx < A[r, c] thenc := ¢ -1
elsif x > Alr, c] thenr :=r + 1
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else { x = A[r, c] } {2} return(true);
{3} return(false)
end;

(c) At positions {1}, {2}, and {3}, the invariant
OiL1<isn0j1<j<m:
G>cOx#A[l,jD0OG<r0 x+A[l,j]1(D
states that the hatched rows and columns of A do not contain x. At {2},
(1srsn)0@0@<c=<m)d&x=A[r,c])
states that r and c are within index range and x has been found at (r, ¢). At {3},
(r=n+1)0c=0)
states that r or ¢ are outside the index range. This coupled with (*) implies that x is not in A:
(r=n+1)0(c=0)0 Oi,1<i,=sn,0j.1<j<m:x+Alj,jl.
Each iteration through the loop either decreases ¢ by one or increases r by one. If x is not contained in the array,
either ¢ becomes zero or r becomes greater than n after a finite number of steps, and the algorithm terminates. In
each step, the algorithm eliminates either a row from the top or a column from the right. In the worst case it works

its way from the upper right corner to the lower left corner in n + m — 1 steps, leading to a complexity of ©(n + m).

In-place permutation

Representations of a permutation. Consider an array D[1 .. n] that holds n data elements of type 'elt'".
These are ordered by their position in the array and must be rearranged according to a specific permutation given
in another array. Exhibit 9.4 shows an example for n = 5. Assume that a, b, ¢, d, e, stored in this order, are to be
rearranged in the order ¢, e, d, a, b. This permutation is represented naturally by either of the two permutation
arrays t (to) or f (from) declared as

var t, f: arrayl[l .. n] of 1 .. n;

The exhibit also shows a third representation of the same permutation: the decomposition of this permutation
into cycles. The element in D[1] moves into D[4], the one in D[4] into D[3], the one in D[3] into D[1], closing a cycle
that we abbreviate as (1 4 3), or (4 3 1), or (3 1 4). There is another cycle (2 5), and the entire permutation is

represented by (1 4 3) (2 5).
D [a[blcfd]e]

Cydex (143) and (25)

D [cfefdfa]b]

Exhibit 9.4: A permutation and its representations in terms of 'to', 'from’, and cycles.

The cycle representation is intuitively most informative, as it directly reflects the decomposition of the problem
into independent subproblems, and both the 'to' and 'from' information is easily extracted from it. But 'to' and

'from' dispense with parentheses and lead to more concise programs.
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Consider the problem of executing this permutation in place: Both the given data and the result are stored in the
same array D, and only a (small) constant amount of auxiliary storage may be used, independently of n. Let us use
the example of in-place permutation to introduce a notation that is frequently convenient, and to illustrate how the
choice of primitive operations affects the solution.

A multiple assignment statement will do the job, using either 'to' or 'from":

// (1 <i<n) {DItil] := D[i] }

or

// @ <i<n) {DI[il} := DIf[il] }

The characteristic properties of a multiple assignment statement are:

- The left-hand side is a sequence of variables, the right-hand side is a sequence of expressions, and the two
sequences are matched according to length and type. The value of the i-th expression on the right is
assigned to the i-th variable on the left.

« All the expressions on the right-hand side are evaluated using the original values of all variables that occur
in them, and the resulting values are assigned "simultaneously" to the variables on the left-hand side. We
use the sign // to designate concurrent or parallel execution.

Few of today's programming languages offer multiple assignments, in particular those of variable length used
above. Breaking a multiple assignment into single assignments usually forces the programmer to introduce
temporary variables. As an example, notice that the direct sequentialization:

for i:=1 to n do DI[t[i]] := DJi]

or

for i:=1 to n do D[i] := D[f[i]]

is faulty, as some of the elements in D will be overwritten before they can be moved. Overwriting can be avoided at
the cost of nearly doubling memory requirements by allocating an array A[1 .. n] of data elements for temporary
storage:

for i:=1 to n do A[t[i]] := DI[il;

for i:=1 to n do DJi] := A[i];

This, however, is not an in-place computation, as the amount of auxiliary storage grows with n. It is
unnecessarily inefficient: There are elegant in-place permutation algorithms based on the conventional primitive of
the single assignment statement. They all assume that the permutation array may be destroyed as the permutation
is being executed. If the representation of the permutation must be preserved, additional storage is required for
bookkeeping, typically of a size proportional to n. Although this additional space may be as little as n bits, perhaps
in order to distinguish the elements processed from those yet to be moved, such an algorithm is not technically in
place.

Nondeterministic algorithms. Problems of rearrangement always appear to admit many different solutions
—a phenomenon that is most apparent when one considers the multitude of sorting algorithms in the literature.
The reason is clear: When n elements must be moved, it may not matter much which elements are moved first and
which ones later. Thus it is useful to look for nondeterministic algorithms that refrain from specifying the precise
sequence of all actions taken, and instead merely iterate condition [0 action statements, with the meaning
"wherever condition applies perform the corresponding action". These algorithms are nondeterministic because

each of several distinct conditions may apply at lots of different places, and we may "fire" any action that is
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currently enabled. Adding sequential control to a nondeterministic algorithm turns it into a deterministic
algorithm. Thus a nondeterministic algorithm corresponds to a class of deterministic ones that share common
invariants, but differ in the order in which steps are executed. The correctness of a nondeterministic algorithm
implies the correctness of all its sequential instances. Thus it is good algorithm design practice to develop a correct
nondeterministic algorithm first, then turn it into a deterministic one by ordering execution of its steps with the
goal of efficiency in mind.

Deterministic sequential algorithms come in a variety of forms depending on the choice of primitive (assignment
or swap), data representation ('to' or 'from'), and technique. We focus on the latter and consider two techniques:
cycle rotation and cycle clipping. Cycle rotation follows naturally from the idea of decomposing a permutation into
cycles and processing one cycle at a time, using temporary storage for a single element. It fits the 'from'
representation somewhat more efficiently than the 'to' representation, as the latter requires a swap of two elements
where the former uses an assignment. Cycle clipping uses the primitive 'swap two elements' so effectively as a step
toward executing a permutation that it needs no temporary storage for elements. Because no temporary storage is
tied up, it is not necessary to finish processing one cycle before starting on the next one—elements can be clipped
from their cycles in any order. Clipping works efficiently with either representation, but is easier to understand with
'to'. We present cycle rotation with 'from' and cycle clipping with 'to' and leave the other two algorithms as

exercises.

Cycle rotation

A search for an in-place algorithm naturally leads to the idea of processing a permutation one cycle at a time:
every element we place at its destination bumps another one, but we avoid holding an unbounded number of
bumped elements in temporary storage by rotating each cycle, one element at a time. This works best using the
'from' representation. The following loop rotates the cycle that passes through an arbitrary index i:

Rotate the cycle starting at index i, updating f:

j := 1;{ initialize a two-pronged fork to travel along the cycle }
p := f[jl; { p is j's predecessor in the cycle }

A :=DI[]J]; { save a single element in an auxiliary variable A }
while p # i do { D[J] := DI[pl; £fI[3] :=3; J :=p; p = £f[J1} ;
D[j] := A; { reinsert the saved element into the former cycle .. }
f[3] = 3; { .. but now it is a fixed point }

This code works trivially for a cycle of length 1, where p = f[i] = i guards the body of the loop from ever being
executed. The statement f[j] := j in the loop is unnecessary for rotating the cycle. Its purpose is to identify an
element that has been placed at its final destination, so this code can be iterated for 1 < i < n to yield an in-place
permutation algorithm. For the sake of efficiency we add two details: (1) We avoid unnecessary movements A :=
D[j]; DI[j] := A of a possibly voluminous element by guarding cycles of length 1 with the test i # f[i]', and (2) we
terminate the iteration at n — 1 on the grounds that when n — 1 elements of a permutation are in their correct place,
the n-th one is also. Using the code above, this leads to

for i:=1ton-1do if i+f{[i] then rotate the cycle starting at index i, updating f

Exercise
Implement cycle rotation using the 'to' representation. Hint: Use the swap primitive rather than element

assignment.
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Cycle clipping

Cycle clipping is the key to elegant in-place permutation using the 'to' representation. At each step, we clip an
arbitrary element d out of an arbitrary cycle of length > 1, thus reducing the latter's length by 1. As shown in Exhibit
9.5, we place d at its destination, where it forms a cycle of length 1 that needs no further processing. The element it
displaces, c, can find a (temporary) home in the cell vacated by d. It is probably out of place there, but no more so
than it was at its previous home; its time will come to be relocated to its final destination. Since we have permuted
elements, we must update the permutation array to reflect accurately the permutatio