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Preface

A free and open-source calculus
Several fundamental ideas in calculus are more than 2000 years old. As a formal
subdiscipline of mathematics, calculus was first introduced and developed in the late 1600s,
with key independent contributions from Sir Isaac Newton and Gottfried Wilhelm Leibniz.
Mathematicians agree that the subject has been understood rigorously since the work of
Augustin Louis Cauchy and Karl Weierstrass in the mid 1800s when the field of modern
analysis was developed, in part to make sense of the infinitely small quantities on which
calculus rests. Hence, as a body of knowledge calculus has been completely understood
by experts for at least 150 years. The discipline is one of our great human intellectual
achievements: among many spectacular ideas, calculus models how objects fall under
the forces of gravity and wind resistance, explains how to compute areas and volumes of
interesting shapes, enables us to work rigorously with infinitely small and infinitely large
quantities, and connects the varying rates at which quantities change to the total change
in the quantities themselves.

While each author of a calculus textbook certainly offers her own creative perspective
on the subject, it is hardly the case that many of the ideas she presents are new. Indeed, the
mathematics community broadly agrees on what the main ideas of calculus are, as well as
their justification and their importance; the core parts of nearly all calculus textbooks are
very similar. As such, it is our opinion that in the 21st century – an age where the internet
permits seamless and immediate transmission of information – no one should be required
to purchase a calculus text to read, to use for a class, or to find a coherent collection of
problems to solve. Calculus belongs to humankind, not any individual author or publishing
company. Thus, a main purpose of this work is to present a new calculus text that is free.
In addition, instructors who are looking for a calculus text should have the opportunity to
download the source files and make modifications that they see fit; thus this text is open-
source. Since August 2013, Active Calculus has been endorsed by the American Institute of
Mathematics and its Open Textbook Initiative: http://aimath.org/textbooks/.

Because the text is free, any professor or student may use the electronic version of the
text for no charge. A .pdf copy of the text may be obtained by download from

http://gvsu.edu/s/xr,

vii

http://aimath.org/textbooks/
http://gvsu.edu/s/xr
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where the user will also find a link to a print-on-demand for purchasing a bound, softcover
version for about $20. Other ancillary materials, such as WeBWorK .def files, an activities-
only workbook, and sample computer laboratory activities are available upon direct request
to the author. Furthermore, because the text is open-source, any instructor may acquire
the full set of source files, again by request to the author at boelkinm@gvsu.edu. This
work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License. The graphic

that appears throughout the text shows that the work is licensed with the Creative
Commons, that the work may be used for free by any party so long as attribution is given
to the author(s), that the work and its derivatives are used in the spirit of “share and share
alike,” and that no party may sell this work or any of its derivatives for profit, with the
following exception: it is entirely acceptable for university bookstores to sell bound photocopied
copies of the activities workbook to students at their standard markup above the copying expense.
Full details may be found by visiting

http://creativecommons.org/licenses/by-nc-sa/3.0/

or sending a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,
California, 94041, USA.

Active Calculus: our goals

In Active Calculus, we endeavor to actively engage students in learning the subject through
an activity-driven approach in which the vast majority of the examples are completed by
students. Where many texts present a general theory of calculus followed by substantial
collections of worked examples, we instead pose problems or situations, consider possibili-
ties, and then ask students to investigate and explore. Following key activities or examples,
the presentation normally includes some overall perspective and a brief synopsis of general
trends or properties, followed by formal statements of rules or theorems. While we often
offer plausibility arguments for such results, rarely do we include formal proofs. It is not
the intent of this text for the instructor or author to demonstrate to students that the ideas
of calculus are coherent and true, but rather for students to encounter these ideas in a
supportive, leading manner that enables them to begin to understand for themselves why
calculus is both coherent and true. This approach is consistent with the growing body of
scholarship that calls for students to be interactively engaged in class.

mailto:boelkinm@gvsu.edu
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://launchings.blogspot.com/2011/07/the-worst-way-to-teach.html
http://launchings.blogspot.com/2011/07/the-worst-way-to-teach.html
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Moreover, this approach is consistent with the following goals:

• To have students engage in an active, inquiry-driven approach, where learners strive
to construct solutions and approaches to ideas on their own, with appropriate
support through questions posed, hints, and guidance from the instructor and text.

• To build in students intuition for why the main ideas in calculus are natural and
true. Often, we do this through consideration of the instantaneous position and
velocity of a moving object, a scenario that is common and familiar.

• To challenge students to acquire deep, personal understanding of calculus through
reading the text and completing preview activities on their own, through working on
activities in small groups in class, and through doing substantial exercises outside of
class time.

• To strengthen students’ written and oral communicating skills by having them write
about and explain aloud the key ideas of calculus.

Features of the Text

Instructors and students alike will find several consistent features in the presentation,
including:

• Motivating Questions. At the start of each section, we list 2-3 motivating questions
that provide motivation for why the following material is of interest to us. One goal
of each section is to answer each of the motivating questions.

• Preview Activities. Each section of the text begins with a short introduction,
followed by a preview activity. This brief reading and the preview activity are
designed to foreshadow the upcoming ideas in the remainder of the section; both
the reading and preview activity are intended to be accessible to students in advance
of class, and indeed to be completed by students before a day on which a particular
section is to be considered.

• Activities. A typical section in the text has three activities. These are designed
to engage students in an inquiry-based style that encourages them to construct
solutions to key examples on their own, working individually or in small groups.

• Exercises. There are dozens of calculus texts with (collectively) tens of thousands
of exercises. Rather than repeat standard and routine exercises in this text, we
recommend the use of WeBWorK with its access to the National Problem Library
and around 20,000 calculus problems. In this text, there are approximately four
challenging exercises per section. Almost every such exercise has multiple parts,
requires the student to connect several key ideas, and expects that the student
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will do at least a modest amount of writing to answer the questions and explain
their findings. For instructors interested in a more conventional source of exercises,
consider the freely available text by Gilbert Strang of MIT, available in .pdf format
from the MIT open courseware site via http://gvsu.edu/s/bh.

• Graphics. As much as possible, we strive to demonstrate key fundamental ideas
visually, and to encourage students to do the same. Throughout the text, we use
full-color1 graphics to exemplify and magnify key ideas, and to use this graphical
perspective alongside both numerical and algebraic representations of calculus.

• Links to Java Applets. Many of the ideas of calculus are best understood dynami-
cally; java applets offer an often ideal format for investigations and demonstrations.
Relying primarily on the work of David Austin of Grand Valley State University
and Marc Renault of Shippensburg University, each of whom has developed a large
library of applets for calculus, we frequently point the reader (through active links
in the .pdf version of the text) to applets that are relevant for key ideas under
consideration.

• Summary of Key Ideas. Each section concludes with a summary of the key ideas
encountered in the preceding section; this summary normally reflects responses to
the motivating questions that began the section.

How to Use this Text

This text may be used as a stand-alone textbook for a standard first semester college
calculus course or as a supplement to a more traditional text. Chapters 1-4 address the
typical topics for differential calculus, while Chapters 5-8 provide the standard topics of
integral calculus, including a chapter on differential equations (Chapter 7) and on infinite
series (Chapter 8).

Electronically

Because students and instructors alike have access to the book in .pdf format, there are
several advantages to the text over a traditional print text. One is that the text may be
projected on a screen in the classroom (or even better, on a whiteboard) and the instructor
may reference ideas in the text directly, add comments or notation or features to graphs,
and indeed write right on the text itself. Students can do likewise, choosing to print only
whatever portions of the text are needed for them. In addition, the electronic version of
the text includes live html links to java applets, so student and instructor alike may follow
those links to additional resources that lie outside the text itself. Finally, students can have

1To keep cost low, the graphics in the print-on-demand version are in black and white. When the text
itself refers to color in images, one needs to view the .pdf file electronically.

http://gvsu.edu/s/bh


xi

access to a copy of the text anywhere they have a computer, either by downloading the
.pdf to their local machine or by the instructor posting the text on a course web site.

Activities Workbook

Each section of the text has a preview activity and at least three in-class activities embedded
in the discussion. As it is the expectation that students will complete all of these activities,
it is ideal for them to have room to work on them adjacent to the problem statements
themselves. As a separate document, we have compiled a workbook of activities that
includes only the individual activity prompts, along with space provided for students to
write their responses. This workbook is the one printing expense that students will almost
certainly have to undertake, and is available upon request.

There are also options in the source files for compiling the activities workbook with
hints for each activity, or even full solutions. These options can be engaged at the
instructor’s discretion, or upon request to the author.

Community of Users

Because this text is free and open-source, we hope that as people use the text, they
will contribute corrections, suggestions, and new material. At this time, the best way to
communicate such feedback is by email to Matt Boelkins at boelkinm@gvsu.edu. We
have also started the blog http://opencalculus.wordpress.com/, at which we will
post feedback received by email as well as other points of discussion, to which readers
may post additional comments and feedback.

Contributors

The following people have generously contributed to the development or improvement
of the text. Contributing authors David Austin and Steven Schlicker have each written
drafts of at least one chapter of the text. The following contributing editors have offered
significant feedback that includes information about typographical errors or suggestions to
improve the exposition.

Contributing Editors:
David Austin GVSU
Allan Bickle GVSU
David Clark GVSU
Will Dickinson GVSU
Charles Fortin Champlain Regional College

St-Lambert, Quebec, Canada
Marcia Frobish GVSU
Patti Hunter Westmont College

mailto:boelkinm@gvsu.edu
http://opencalculus.wordpress.com/
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Chapter 1

Understanding the Derivative

1.1 How do we measure velocity?

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How is the average velocity of a moving object connected to the values of its
position function?

• How do we interpret the average velocity of an object geometrically with regard to
the graph of its position function?

• How is the notion of instantaneous velocity connected to average velocity?

Introduction

Calculus can be viewed broadly as the study of change. A natural and important question
to ask about any changing quantity is “how fast is the quantity changing?” It turns out that
in order to make the answer to this question precise, substantial mathematics is required.

We begin with a familiar problem: a ball being tossed straight up in the air from an
initial height. From this elementary scenario, we will ask questions about how the ball
is moving. These questions will lead us to begin investigating ideas that will be central
throughout our study of differential calculus and that have wide-ranging consequences.
In a great deal of our thinking about calculus, we will be well-served by remembering
this first example and asking ourselves how the various (sometimes abstract) ideas we are
considering are related to the simple act of tossing a ball straight up in the air.

1



2 1.1. HOW DO WE MEASURE VELOCITY?

Preview Activity 1.1. Suppose that the height s of a ball (in feet) at time t (in seconds) is
given by the formula s(t) = 64 − 16(t − 1)2.

(a) Construct an accurate graph of y = s(t) on the time interval 0 ≤ t ≤ 3. Label at
least six distinct points on the graph, including the three points that correspond
to when the ball was released, when the ball reaches its highest point, and when
the ball lands.

(b) In everyday language, describe the behavior of the ball on the time interval
0 < t < 1 and on time interval 1 < t < 3. What occurs at the instant t = 1?

(c) Consider the expression

AV[0.5,1] =
s(1) − s(0.5)

1 − 0.5
.

Compute the value of AV[0.5,1]. What does this value measure geometrically? What
does this value measure physically? In particular, what are the units on AV[0.5,1]?

./

Position and average velocity

Any moving object has a position that can be considered a function of time. When this
motion is along a straight line, the position is given by a single variable, and we usually
let this position be denoted by s(t), which reflects the fact that position is a function of
time. For example, we might view s(t) as telling the mile marker of a car traveling on a
straight highway at time t in hours; similarly, the function s described in Preview Activity
1.1 is a position function, where position is measured vertically relative to the ground.

Not only does such a moving object have a position associated with its motion, but
on any time interval, the object has an average velocity. Think, for example, about driving
from one location to another: the vehicle travels some number of miles over a certain time
interval (measured in hours), from which we can compute the vehicle’s average velocity. In
this situation, average velocity is the number of miles traveled divided by the time elapsed,
which of course is given in miles per hour. Similarly, the calculation of AV[0.5,1] in Preview
Activity 1.1 found the average velocity of the ball on the time interval [0.5, 1], measured in
feet per second.

In general, we make the following definition: for an object moving in a straight line
whose position at time t is given by the function s(t), the average velocity of the object on the
interval from t = a to t = b, denoted AV[a,b], is given by the formula

AV[a,b] =
s(b) − s(a)

b − a
.
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Note well: the units on AV[a,b] are “units of s per unit of t,” such as “miles per hour” or
“feet per second.”

Activity 1.1.

The following questions concern the position function given by s(t) = 64 − 16(t − 1)2,
which is the same function considered in Preview Activity 1.1.

(a) Compute the average velocity of the ball on each of the following time intervals:
[0.4, 0.8], [0.7, 0.8], [0.79, 0.8], [0.799, 0.8], [0.8, 1.2], [0.8, 0.9], [0.8, 0.81],
[0.8, 0.801]. Include units for each value.

(b) On the provided graph in Figure 1.1, sketch the line that passes through the
points A = (0.4, s(0.4)) and B = (0.8, s(0.8)). What is the meaning of the slope
of this line? In light of this meaning, what is a geometric way to interpret each
of the values computed in the preceding question?

(c) Use a graphing utility to plot the graph of s(t) = 64 − 16(t − 1)2 on an interval
containing the value t = 0.8. Then, zoom in repeatedly on the point (0.8, s(0.8)).
What do you observe about how the graph appears as you view it more and
more closely?

(d) What do you conjecture is the velocity of the ball at the instant t = 0.8? Why?

0.4 0.8 1.2

48

56

64

feet

sec

s

A

B

Figure 1.1: A partial plot of s(t) = 64 − 16(t − 1)2.

C

Instantaneous Velocity

Whether driving a car, riding a bike, or throwing a ball, we have an intuitive sense that any
moving object has a velocity at any given moment – a number that measures how fast the
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object is moving right now. For instance, a car’s speedometer tells the driver what appears
to be the car’s velocity at any given instant. In fact, the posted velocity on a speedometer
is really an average velocity that is computed over a very small time interval (by computing
how many revolutions the tires have undergone to compute distance traveled), since velocity
fundamentally comes from considering a change in position divided by a change in time.
But if we let the time interval over which average velocity is computed become shorter
and shorter, then we can progress from average velocity to instantaneous velocity.

Informally, we define the instantaneous velocity of a moving object at time t = a to be
the value that the average velocity approaches as we take smaller and smaller intervals
of time containing t = a to compute the average velocity. We will develop a more formal
definition of this momentarily, one that will end up being the foundation of much of our
work in first semester calculus. For now, it is fine to think of instantaneous velocity this
way: take average velocities on smaller and smaller time intervals, and if those average
velocities approach a single number, then that number will be the instantaneous velocity
at that point.

Activity 1.2.

Each of the following questions concern s(t) = 64 − 16(t − 1)2, the position function
from Preview Activity 1.1.

(a) Compute the average velocity of the ball on the time interval [1.5, 2]. What is
different between this value and the average velocity on the interval [0, 0.5]?

(b) Use appropriate computing technology to estimate the instantaneous velocity
of the ball at t = 1.5. Likewise, estimate the instantaneous velocity of the ball
at t = 2. Which value is greater?

(c) How is the sign of the instantaneous velocity of the ball related to its behavior
at a given point in time? That is, what does positive instantaneous velocity tell
you the ball is doing? Negative instantaneous velocity?

(d) Without doing any computations, what do you expect to be the instantaneous
velocity of the ball at t = 1? Why?

C

At this point we have started to see a close connection between average velocity and
instantaneous velocity, as well as how each is connected not only to the physical behavior
of the moving object but also to the geometric behavior of the graph of the position
function. In order to make the link between average and instantaneous velocity more
formal, we will introduce the notion of limit in Section 1.2. As a preview of that concept,
we look at a way to consider the limiting value of average velocity through the introduction
of a parameter. Note that if we desire to know the instantaneous velocity at t = a of a
moving object with position function s, we are interested in computing average velocities
on the interval [a, b] for smaller and smaller intervals. One way to visualize this is to think
of the value b as being b = a + h, where h is a small number that is allowed to vary. Thus,
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we observe that the average velocity of the object on the interval [a, a + h] is

AV[a,a+h] =
s(a + h) − s(a)

h
,

with the denominator being simply h because (a + h) − a = h. Initially, it is fine to think
of h being a small positive real number; but it is important to note that we allow h to
be a small negative number, too, as this enables us to investigate the average velocity of
the moving object on intervals prior to t = a, as well as following t = a. When h < 0,
AV[a,a+h] measures the average velocity on the interval [a + h, a].

To attempt to find the instantaneous velocity at t = a, we investigate what happens as
the value of h approaches zero. We consider this further in the following example.

Example 1.1. For a falling ball whose position function is given by s(t) = 16 − 16t2 (where
s is measured in feet and t in seconds), find an expression for the average velocity of the
ball on a time interval of the form [0.5, 0.5 + h] where −0.5 < h < 0.5 and h , 0. Use this
expression to compute the average velocity on [0.5, 0.75] and [0.4, 0.5], as well as to make
a conjecture about the instantaneous velocity at t = 0.5.

Solution. We make the assumptions that −0.5 < h < 0.5 and h , 0 because h cannot be
zero (otherwise there is no interval on which to compute average velocity) and because the
function only makes sense on the time interval 0 ≤ t ≤ 1, as this is the duration of time
during which the ball is falling. Observe that we want to compute and simplify

AV[0.5,0.5+h] =
s(0.5 + h) − s(0.5)
(0.5 + h) − 0.5 .

The most unusual part of this computation is finding s(0.5 + h). To do so, we follow the
rule that defines the function s. In particular, since s(t) = 16 − 16t2, we see that

s(0.5 + h) = 16 − 16(0.5 + h)2
= 16 − 16(0.25 + h + h2)
= 16 − 4 − 16h − 16h2

= 12 − 16h − 16h2.
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Now, returning to our computation of the average velocity, we find that

AV[0.5,0.5+h] =
s(0.5 + h) − s(0.5)
(0.5 + h) − 0.5

=
(12 − 16h − 16h2) − (16 − 16(0.5)2)

0.5 + h − 0.5

=
12 − 16h − 16h2 − 12

h

=
−16h − 16h2

h
.

At this point, we note two things: first, the expression for average velocity clearly depends
on h, which it must, since as h changes the average velocity will change. Further, we note
that since h can never equal zero, we may further simplify the most recent expression.
Removing the common factor of h from the numerator and denominator, it follows that

AV[0.5,0.5+h] = −16 − 16h.

Now, for any small positive or negative value of h, we can compute the average velocity.
For instance, to obtain the average velocity on [0.5, 0.75], we let h = 0.25, and the average
velocity is −16 − 16(0.25) = −20 ft/sec. To get the average velocity on [0.4, 0.5], we let
h = −0.1, which tells us the average velocity is −16 − 16(−0.1) = −14.4 ft/sec. Moreover,
we can even explore what happens to AV[0.5,0.5+h] as h gets closer and closer to zero. As h
approaches zero, −16h will also approach zero, and thus it appears that the instantaneous
velocity of the ball at t = 0.5 should be −16 ft/sec.

Activity 1.3.

For the function given by s(t) = 64 − 16(t − 1)2 from Preview Activity 1.1, find the
most simplified expression you can for the average velocity of the ball on the interval
[2, 2 + h]. Use your result to compute the average velocity on [1.5, 2] and to estimate
the instantaneous velocity at t = 2. Finally, compare your earlier work in Activity 1.1.

C

Summary

In this section, we encountered the following important ideas:

• The average velocity on [a, b] can be viewed geometrically as the slope of the line
between the points (a, s(a)) and (b, s(b)) on the graph of y = s(t), as shown in Figure 1.2.

• Given a moving object whose position at time t is given by a function s, the average
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t

s

(a,s(a))

(b,s(b))

m = s(b)−s(a)
b−a

Figure 1.2: The graph of position function s together with the line through (a, s(a)) and
(b, s(b)) whose slope is m = s(b)−s(a)

b−a . The line’s slope is the average rate of change of s on
the interval [a, b].

velocity of the object on the time interval [a, b] is given by AV[a,b] = s(b)−s(a)
b−a . Viewing

the interval [a, b] as having the form [a, a+h], we equivalently compute average velocity
by the formula AV[a,a+h] = s(a+h)−s(a)

h .

• The instantaneous velocity of a moving object at a fixed time is estimated by considering
average velocities on shorter and shorter time intervals that contain the instant of
interest.

Exercises

1. A bungee jumper dives from a tower at time t = 0. Her height h (measured in feet) at
time t (in seconds) is given by the graph in Figure 1.3.

In this problem, you may base your answers on estimates from the graph or use the
fact that the jumper’s height function is given by s(t) = 100 cos(0.75t) · e−0.2t + 100.

(a) What is the change in vertical position of the bungee jumper between t = 0
and t = 15?

(b) Estimate the jumper’s average velocity on each of the following time intervals:
[0, 15], [0, 2], [1, 6], and [8, 10]. Include units on your answers.

(c) On what time interval(s) do you think the bungee jumper achieves her greatest
average velocity? Why?

(d) Estimate the jumper’s instantaneous velocity at t = 5. Show your work and
explain your reasoning, and include units on your answer.
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100

150

200
s

t

Figure 1.3: A bungee jumper’s height function.

(e) Among the average and instantaneous velocities you computed in earlier
questions, which are positive and which are negative? What does negative
velocity indicate?

2. A diver leaps from a 3 meter springboard. His feet leave the board at time t = 0,
he reaches his maximum height of 4.5 m at t = 1.1 seconds, and enters the water at
t = 2.45. Once in the water, the diver coasts to the bottom of the pool (depth 3.5 m),
touches bottom at t = 7, rests for one second, and then pushes off the bottom. From
there he coasts to the surface, and takes his first breath at t = 13.

(a) Let s(t) denote the function that gives the height of the diver’s feet (in meters)
above the water at time t. (Note that the “height” of the bottom of the pool
is −3.5 meters.) Sketch a carefully labeled graph of s(t) on the provided axes
in Figure 1.4. Include scale and units on the vertical axis. Be as detailed as
possible.

(b) Based on your graph in (a), what is the average velocity of the diver between
t = 2.45 and t = 7? Is his average velocity the same on every time interval
within [2.45, 7]?

(c) Let the function v(t) represent the instantaneous vertical velocity of the diver
at time t (i.e. the speed at which the height function s(t) is changing; note
that velocity in the upward direction is positive, while the velocity of a falling
object is negative). Based on your understanding of the diver’s behavior, as
well as your graph of the position function, sketch a carefully labeled graph of
v(t) on the axes provided in Figure 1.4. Include scale and units on the vertical
axis. Write several sentences that explain how you constructed your graph,
discussing when you expect v(t) to be zero, positive, negative, relatively large,
and relatively small.



1.1. HOW DO WE MEASURE VELOCITY? 9

2 4 6 8 10 12

s

t

2 4 6 8 10 12

v

t

Figure 1.4: Axes for plotting s(t) in part (a) and v(t) in part (c) of the diver problem.

(d) Is there a connection between the two graphs that you can describe? What
can you say about the velocity graph when the height function is increasing?
decreasing? Make as many observations as you can.

3. According to the U.S. census, the population of the city of Grand Rapids, MI, was
181,843 in 1980; 189,126 in 1990; and 197,800 in 2000.

(a) Between 1980 and 2000, by how many people did the population of Grand
Rapids grow?

(b) In an average year between 1980 and 2000, by how many people did the
population of Grand Rapids grow?

(c) Just like we can find the average velocity of a moving body by computing
change in position over change in time, we can compute the average rate of
change of any function f . In particular, the average rate of change of a function
f over an interval [a, b] is the quotient

f (b) − f (a)
b − a

.

What does the quantity f (b)− f (a)
b−a measure on the graph of y = f (x) over the

interval [a, b]?
(d) Let P(t) represent the population of Grand Rapids at time t, where t is measured

in years from January 1, 1980. What is the average rate of change of P on the
interval t = 0 to t = 20? What are the units on this quantity?

(e) If we assume the population of Grand Rapids is growing at a rate of ap-
proximately 4% per decade, we can model the population function with the
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formula
P(t) = 181843(1.04)t/10.

Use this formula to compute the average rate of change of the population on
the intervals [5, 10], [5, 9], [5, 8], [5, 7], and [5, 6].

(f) How fast do you think the population of Grand Rapids was changing on
January 1, 1985? Said differently, at what rate do you think people were being
added to the population of Grand Rapids as of January 1, 1985? How many
additional people should the city have expected in the following year? Why?
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1.2 The notion of limit

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is the mathematical notion of limit and what role do limits play in the study
of functions?

• What is the meaning of the notation lim
x→a

f (x) = L?

• How do we go about determining the value of the limit of a function at a point?

• How do we manipulate average velocity to compute instantaneous velocity??

Introduction

Functions are at the heart of mathematics: a function is a process or rule that associates
each individual input to exactly one corresponding output. Students learn in courses prior
to calculus that there are many different ways to represent functions, including through
formulas, graphs, tables, and even words. For example, the squaring function can be
thought of in any of these ways. In words, the squaring function takes any real number x
and computes its square. The formulaic and graphical representations go hand in hand,
as y = f (x) = x2 is one of the simplest curves to graph. Finally, we can also partially
represent this function through a table of values, essentially by listing some of the ordered
pairs that lie on the curve, such as (−2, 4), (−1, 1), (0, 0), (1, 1), and (2, 4).

Functions are especially important in calculus because they often model important
phenomena – the location of a moving object at a given time, the rate at which an
automobile is consuming gasoline at a certain velocity, the reaction of a patient to the
size of a dose of a drug – and calculus can be used to study how these output quantities
change in response to changes in the input variable. Moreover, thinking about concepts
like average and instantaneous velocity leads us naturally from an initial function to a
related, sometimes more complicated function. As one example of this, think about the
falling ball whose position function is given by s(t) = 64 − 16t2 and the average velocity of
the ball on the interval [1, x]. Observe that

AV[1,x] =
s(x) − s(1)

x − 1
=

(64 − 16x2) − (64 − 16)
x − 1

=
16 − 16x2

x − 1
.

Now, two things are essential to note: this average velocity depends on x (indeed, AV[1,x]
is a function of x), and our most focused interest in this function occurs near x = 1, which
is where the function is not defined. Said differently, the function g(x) = 16−16x2

x−1 tells us
the average velocity of the ball on the interval from t = 1 to t = x, and if we are interested
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in the instantaneous velocity of the ball when t = 1, we’d like to know what happens to
g(x) as x gets closer and closer to 1. At the same time, g(1) is not defined, because it
leads to the quotient 0/0.

This is where the idea of limits comes in. By using a limit, we’ll be able to allow x to
get arbitrarily close, but not equal, to 1 and fully understand the behavior of g(x) near this
value. We’ll develop key language, notation, and conceptual understanding in what follows,
but for now we consider a preliminary activity that uses the graphical interpretation of a
function to explore points on a graph where interesting behavior occurs.

Preview Activity 1.2. Suppose that g is the function given by the graph below. Use the
graph to answer each of the following questions.

(a) Determine the values g(−2), g(−1), g(0), g(1), and g(2), if defined. If the function
value is not defined, explain what feature of the graph tells you this.

(b) For each of the values a = −1, a = 0, and a = 2, complete the following sentence:
“As x gets closer and closer (but not equal) to a, g(x) gets as close as we want to

.”

(c) What happens as x gets closer and closer (but not equal) to a = 1? Does the
function g(x) get as close as we would like to a single value?

-2 -1 1 2 3

-1

1

2

3
g

Figure 1.5: Graph of y = g(x) for Preview Activity 1.2.

./

The Notion of Limit

Limits can be thought of as a way to study the tendency or trend of a function as the input
variable approaches a fixed value, or even as the input variable increases or decreases
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without bound. We put off the study of the latter idea until further along in the course
when we will have some helpful calculus tools for understanding the end behavior of
functions. Here, we focus on what it means to say that “a function f has limit L as x
approaches a.” To begin, we think about a recent example.

In Preview Activity 1.2, you saw that for the given function g, as x gets closer and
closer (but not equal) to 0, g(x) gets as close as we want to the value 4. At first, this may
feel counterintuitive, because the value of g(0) is 1, not 4. By their very definition, limits
regard the behavior of a function arbitrarily close to a fixed input, but the value of the
function at the fixed input does not matter. More formally1, we say the following.

Definition 1.1. Given a function f , a fixed input x = a, and a real number L, we say that
f has limit L as x approaches a, and write

lim
x→a

f (x) = L

provided that we can make f (x) as close to L as we like by taking x sufficiently close (but
not equal) to a. If we cannot make f (x) as close to a single value as we would like as x
approaches a, then we say that f does not have a limit as x approaches a.

For the function g pictured in Figure 1.5, we can make the following observations:

lim
x→−1

g(x) = 3, lim
x→0

g(x) = 4, and lim
x→2

g(x) = 1,

but g does not have a limit as x → 1. When working graphically, it suffices to ask if the
function approaches a single value from each side of the fixed input, while understanding
that the function value right at the fixed input is irrelevant. This reasoning explains the
values of the first three stated limits. In a situation such as the jump in the graph of g at
x = 1, the issue is that if we approach x = 1 from the left, the function values tend to get
as close to 3 as we’d like, but if we approach x = 1 from the right, the function values get
as close to 2 as we’d like, and there is no single number that all of these function values
approach. This is why the limit of g does not exist at x = 1.

For any function f , there are typically three ways to answer the question “does f have
a limit at x = a, and if so, what is the limit?” The first is to reason graphically as we
have just done with the example from Preview Activity 1.2. If we have a formula for f (x),
there are two additional possibilities: (1) evaluate the function at a sequence of inputs that
approach a on either side, typically using some sort of computing technology, and ask if
the sequence of outputs seems to approach a single value; (2) use the algebraic form of the
function to understand the trend in its output as the input values approach a. The first
approach only produces an approximation of the value of the limit, while the latter can

1What follows here is not what mathematicians consider the formal definition of a limit. To be completely
precise, it is necessary to quantify both what it means to say “as close to L as we like” and “sufficiently close
to a.” That can be accomplished through what is traditionally called the epsilon-delta definition of limits.
The definition presented here is sufficient for the purposes of this text.
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often be used to determine the limit exactly. The following example demonstrates both of
these approaches, while also using the graphs of the respective functions to help confirm
our conclusions.

Example 1.2. For each of the following functions, we’d like to know whether or not the
function has a limit at the stated a-values. Use both numerical and algebraic approaches
to investigate and, if possible, estimate or determine the value of the limit. Compare the
results with a careful graph of the function on an interval containing the points of interest.

(a) f (x) = 4 − x2

x + 2
; a = −1, a = −2

(b) g(x) = sin
(
π

x

)
; a = 3, a = 0

Solution. We first construct a graph of f along with tables of values near a = −1 and
a = −2.

x f (x)
-0.9 2.9

-0.99 2.99
-0.999 2.999

-0.9999 2.9999
-1.1 3.1

-1.01 3.01
-1.001 3.001

-1.0001 3.0001

x f (x)
-1.9 3.9

-1.99 3.99
-1.999 3.999

-1.9999 3.9999
-2.1 4.1

-2.01 4.01
-2.001 4.001

-2.0001 4.0001

-3 -1 1

1

3

5

f

Figure 1.6: Tables and graph for f (x) = 4 − x2

x + 2
.

From the left table, it appears that we can make f as close as we want to 3 by taking x
sufficiently close to −1, which suggests that lim

x→−1
f (x) = 3. This is also consistent with the

graph of f . To see this a bit more rigorously and from an algebraic point of view, consider
the formula for f : f (x) = 4−x2

x+2 . The numerator and denominator are each polynomial
functions, which are among the most well-behaved functions that exist. Formally, such
functions are continuous2, which means that the limit of the function at any point is equal

2See Section 1.7 for more on the notion of continuity.
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to its function value. Here, it follows that as x → −1, (4 − x2) → (4 − (−1)2) = 3, and
(x + 2)→ (−1 + 2) = 1, so as x → −1, the numerator of f tends to 3 and the denominator

tends to 1, hence lim
x→−1

f (x) = 3

1
= 3.

The situation is more complicated when x → −2, due in part to the fact that f (−2) is
not defined. If we attempt to use a similar algebraic argument regarding the numerator
and denominator, we observe that as x → −2, (4 − x2)→ (4 − (−2)2) = 0, and (x + 2)→
(−2 + 2) = 0, so as x → −2, the numerator of f tends to 0 and the denominator tends to
0. We call 0/0 an indeterminate form and will revisit several important issues surrounding
such quantities later in the course. For now, we simply observe that this tells us there is
somehow more work to do. From the table and the graph, it appears that f should have a
limit of 4 at x = −2. To see algebraically why this is the case, let’s work directly with the
form of f (x). Observe that

lim
x→−2

f (x) = lim
x→−2

4 − x2

x + 2

= lim
x→−2

(2 − x)(2 + x)
x + 2

.

At this point, it is important to observe that since we are taking the limit as x → −2, we
are considering x values that are close, but not equal, to −2. Since we never actually allow
x to equal −2, the quotient 2+x

x+2 has value 1 for every possible value of x. Thus, we can
simplify the most recent expression above, and now find that

lim
x→−2

f (x) = lim
x→−2

2 − x.

Because 2 − x is simply a linear function, this limit is now easy to determine, and its value
clearly is 4. Thus, from several points of view we’ve seen that lim

x→−2
f (x) = 4.

Next we turn to the function g, and construct two tables and a graph.

x g(x)
2.9 0.84864

2.99 0.86428
2.999 0.86585

2.9999 0.86601
3.1 0.88351

3.01 0.86777
3.001 0.86620

3.0001 0.86604

x g(x)
-0.1 0

-0.01 0
-0.001 0

-0.0001 0
0.1 0

0.01 0
0.001 0

0.0001 0

-3 -1 1 3

-2

2
g

Figure 1.7: Tables and graph for g(x) = sin
(
π

x

)
.
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First, as x → 3, it appears from the data (and the graph) that the function is
approaching approximately 0.866025. To be precise, we have to use the fact that πx →

π
3 ,

and thus we find that g(x) = sin( πx )→ sin( π3 ) as x → 3. The exact value of sin( π3 ) is
√
3
2 ,

which is approximately 0.8660254038. Thus, we see that

lim
x→3

g(x) =
√
3

2
.

As x → 0, we observe that π
x does not behave in an elementary way. When x is

positive and approaching zero, we are dividing by smaller and smaller positive values,
and π

x increases without bound. When x is negative and approaching zero, πx decreases
without bound. In this sense, as we get close to x = 0, the inputs to the sine function are
growing rapidly, and this leads to wild oscillations in the graph of g. It is an instructive
exercise to plot the function g(x) = sin

�
π
x

�
with a graphing utility and then zoom in on

x = 0. Doing so shows that the function never settles down to a single value near the
origin and suggests that g does not have a limit at x = 0.

How do we reconcile this with the righthand table above, which seems to suggest
that the limit of g as x approaches 0 may in fact be 0? Here we need to recognize that
the data misleads us because of the special nature of the sequence {0.1, 0.01, 0.001, . . .}:
when we evaluate g(10−k), we get g(10−k) = sin

(
π

10−k

)
= sin(10kπ) = 0 for each positive

integer value of k . But if we take a different sequence of values approaching zero, say
{0.3, 0.03, 0.003, . . .}, then we find that

g(3 · 10−k) = sin
(

π

3 · 10−k

)
= sin

(
10kπ

3

)
= −

√
3

2
≈ −0.866025.

That sequence of data would suggest that the value of the limit is
√
3
2 . Clearly the function

cannot have two different values for the limit, and this shows that g has no limit as x → 0.

An important lesson to take from Example 1.2 is that tables can be misleading when
determining the value of a limit. While a table of values is useful for investigating the
possible value of a limit, we should also use other tools to confirm the value, if we think
the table suggests the limit exists.

Activity 1.4.

Estimate the value of each of the following limits by constructing appropriate tables of
values. Then determine the exact value of the limit by using algebra to simplify the
function. Finally, plot each function on an appropriate interval to check your result
visually.

(a) lim
x→1

x2 − 1
x − 1
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(b) lim
x→0

(2 + x)3 − 8
x

(c) lim
x→0

√
x + 1 − 1

x

C

This concludes a rather lengthy introduction to the notion of limits. It is important to
remember that our primary motivation for considering limits of functions comes from our
interest in studying the rate of change of a function. To that end, we close this section by
revisiting our previous work with average and instantaneous velocity and highlighting the
role that limits play.

Instantaneous Velocity

Suppose that we have a moving object whose position at time t is given by a function s. We
know that the average velocity of the object on the time interval [a, b] is AV[a,b] = s(b)−s(a)

b−a .

We define the instantaneous velocity at a to be the limit of average velocity as b approaches
a. Note particularly that as b → a, the length of the time interval gets shorter and
shorter (while always including a). In Section 1.3, we will introduce a helpful shorthand
notation to represent the instantaneous rate of change. For now, we will write IVt=a for
the instantaneous velocity at t = a, and thus

IVt=a = lim
b→a

AV[a,b] = lim
b→a

s(b) − s(a)
b − a

.

Equivalently, if we think of the changing value b as being of the form b = a + h, where h is
some small number, then we may instead write

IVt=a = lim
h→0

AV[a,a+h] = lim
h→0

s(a + h) − s(a)
h

.

Again, the most important idea here is that to compute instantaneous velocity, we take a
limit of average velocities as the time interval shrinks. Two different activities offer the
opportunity to investigate these ideas and the role of limits further.

Activity 1.5.

Consider a moving object whose position function is given by s(t) = t2, where s is
measured in meters and t is measured in minutes.

(a) Determine the most simplified expression for the average velocity of the object
on the interval [3, 3 + h], where h > 0.

(b) Determine the average velocity of the object on the interval [3, 3.2]. Include
units on your answer.
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(c) Determine the instantaneous velocity of the object when t = 3. Include units
on your answer.

C

The closing activity of this section asks you to make some connections among average
velocity, instantaneous velocity, and slopes of certain lines.

Activity 1.6.

For the moving object whose position s at time t is given by the graph below, answer
each of the following questions. Assume that s is measured in feet and t is measured in
seconds.

1 3 5

1

3

5

t

s

Figure 1.8: Plot of the position function y = s(t) in Activity 1.6.

(a) Use the graph to estimate the average velocity of the object on each of the
following intervals: [0.5, 1], [1.5, 2.5], [0, 5]. Draw each line whose slope
represents the average velocity you seek.

(b) How could you use average velocities or slopes of lines to estimate the instanta-
neous velocity of the object at a fixed time?

(c) Use the graph to estimate the instantaneous velocity of the object when t = 2.
Should this instantaneous velocity at t = 2 be greater or less than the average
velocity on [1.5, 2.5] that you computed in (a)? Why?

C

Summary

In this section, we encountered the following important ideas:

• Limits enable us to examine trends in function behavior near a specific point. In
particular, taking a limit at a given point asks if the function values nearby tend to
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approach a particular fixed value.

• When we write lim
x→a

f (x) = L, we read this as saying “the limit of f as x approaches a

is L,” and this means that we can make the value of f (x) as close to L as we want by
taking x sufficiently close (but not equal) to a.

• If we desire to know lim
x→a

f (x) for a given value of a and a known function f , we can

estimate this value from the graph of f or by generating a table of function values that
result from a sequence of x-values that are closer and closer to a. If we want the exact
value of the limit, we need to work with the function algebraically and see if we can use
familiar properties of known, basic functions to understand how different parts of the
formula for f change as x → a.

• The instantaneous velocity of a moving object at a fixed time is found by taking the
limit of average velocities of the object over shorter and shorter time intervals that all
contain the time of interest.

Exercises

1. Consider the function whose formula is f (x) = 16 − x4

x2 − 4
.

(a) What is the domain of f ?

(b) Use a sequence of values of x near a = 2 to estimate the value of lim
x→2

f (x), if
you think the limit exists. If you think the limit doesn’t exist, explain why.

(c) Evaluate limx→2 f (x) exactly, if the limit exists, or explain how your work
shows the limit fails to exist. Here you should use algebra to factor and simplify
the numerator and denominator of f (x) as you work to evaluate the limit.
Discuss how your findings compare to your results in (b).

(d) True or false: f (2) = −8. Why?

(e) True or false: 16−x4

x2−4
= −4 − x2. Why? How is this equality connected to your

work above with the function f ?

(f) Based on all of your work above, construct an accurate, labeled graph of
y = f (x) on the interval [1, 3], and write a sentence that explains what you

now know about lim
x→2

16 − x4

x2 − 4
.

2. Let g(x) = − |x + 3|
x + 3

.

(a) What is the domain of g?

(b) Use a sequence of values near a = −3 to estimate the value of limx→−3 g(x), if
you think the limit exists. If you think the limit doesn’t exist, explain why.
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(c) Evaluate limx→2 g(x) exactly, if the limit exists, or explain how your work shows
the limit fails to exist. Here you should use the definition of the absolute value
function in the numerator of g(x) as you work to evaluate the limit. Discuss
how your findings compare to your results in (b). (Hint: |a| = a whenever
a ≥ 0, but |a| = −a whenever a < 0.)

(d) True or false: g(−3) = −1. Why?

(e) True or false: − |x+3|
x+3 = −1. Why? How is this equality connected to your work

above with the function g?

(f) Based on all of your work above, construct an accurate, labeled graph of
y = g(x) on the interval [−4,−2], and write a sentence that explains what you
now know about lim

x→−3
g(x).

3. For each of the following prompts, sketch a graph on the provided axes of a function
that has the stated properties.

-3 3

-3

3

-3 3

-3

3

Figure 1.9: Axes for plotting y = f (x) in (a) and y = g(x) in (b).

(a) y = f (x) such that

• f (−2) = 2 and lim
x→−2

f (x) = 1

• f (−1) = 3 and lim
x→−1

f (x) = 3

• f (1) is not defined and lim
x→1

f (x) = 0

• f (2) = 1 and lim
x→2

f (x) does not exist.
(b) y = g(x) such that

• g(−2) = 3, g(−1) = −1, g(1) = −2, and g(2) = 3

• At x = −2,−1, 1 and 2, g has a limit, and its limit equals the value of the
function at that point.
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• g(0) is not defined and lim
x→0

g(x) does not exist.

4. A bungee jumper dives from a tower at time t = 0. Her height s in feet at time t in
seconds is given by s(t) = 100 cos(0.75t) · e−0.2t + 100.

(a) Write an expression for the average velocity of the bungee jumper on the
interval
[1, 1 + h].

(b) Use computing technology to estimate the value of the limit as h → 0 of the
quantity you found in (a).

(c) What is the meaning of the value of the limit in (b)? What are its units?
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1.3 The derivative of a function at a point

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How is the average rate of change of a function on a given interval defined, and
what does this quantity measure?

• How is the instantaneous rate of change of a function at a particular point defined?
How is the instantaneous rate of change linked to average rate of change?

• What is the derivative of a function at a given point? What does this derivative
value measure? How do we interpret the derivative value graphically?

• How are limits used formally in the computation of derivatives?

Introduction

An idea that sits at the foundations of calculus is the instantaneous rate of change of a
function. This rate of change is always considered with respect to change in the input
variable, often at a particular fixed input value. This is a generalization of the notion
of instantaneous velocity and essentially allows us to consider the question “how do we
measure how fast a particular function is changing at a given point?” When the original
function represents the position of a moving object, this instantaneous rate of change is
precisely velocity, and might be measured in units such as feet per second. But in other
contexts, instantaneous rate of change could measure the number of cells added to a
bacteria culture per day, the number of additional gallons of gasoline consumed by going
one mile per additional mile per hour in a car’s velocity, or the number of dollars added
to a mortgage payment for each percentage increase in interest rate. Regardless of the
presence of a physical or practical interpretation of a function, the instantaneous rate of
change may also be interpreted geometrically in connection to the function’s graph, and
this connection is also foundational to many of the main ideas in calculus.

In what follows, we will introduce terminology and notation that makes it easier
to talk about the instantaneous rate of change of a function at a point. In addition,
just as instantaneous velocity is defined in terms of average velocity, the more general
instantaneous rate of change will be connected to the more general average rate of change.
Recall that for a moving object with position function s, its average velocity on the time
interval t = a to t = a + h is given by the quotient

AV[a,a+h] =
s(a + h) − s(a)

h
.
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In a similar way, we make the following definition for an arbitrary function y = f (x).
Definition 1.2. For a function f , the average rate of change of f on the interval [a, a + h]
is given by the value

AV[a,a+h] =
f (a + h) − f (a)

h
.

Equivalently, if we want to consider the average rate of change of f on [a, b], we compute

AV[a,b] =
f (b) − f (a)

b − a
.

It is essential to understand how the average rate of change of f on an interval is connected
to its graph.

Preview Activity 1.3. Suppose that f is the function given by the graph below and that
a and a + h are the input values as labeled on the x-axis. Use the graph in Figure 1.10 to
answer the following questions.

x

y

f

a a+h

Figure 1.10: Plot of y = f (x) for Preview Activity 1.3.

(a) Locate and label the points (a, f (a)) and (a + h, f (a + h)) on the graph.

(b) Construct a right triangle whose hypotenuse is the line segment from (a, f (a)) to
(a + h, f (a + h)). What are the lengths of the respective legs of this triangle?

(c) What is the slope of the line that connects the points (a, f (a)) and (a+h, f (a+h))?
(d) Write a meaningful sentence that explains how the average rate of change of the

function on a given interval and the slope of a related line are connected.

./
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The Derivative of a Function at a Point

Just as we defined instantaneous velocity in terms of average velocity, we now define
the instantaneous rate of change of a function at a point in terms of the average rate of
change of the function f over related intervals. In addition, we give a special name to “the
instantaneous rate of change of f at a,” calling this quantity “the derivative of f at a,”
with this value being represented by the shorthand notation f ′(a). Specifically, we make
the following definition.

Definition 1.3. Let f be a function and x = a a value in the function’s domain. We define
the derivative of f with respect to x evaluated at x = a, denoted f ′(a), by the formula

f ′(a) = lim
h→0

f (a + h) − f (a)
h

,

provided this limit exists.

Aloud, we read the symbol f ′(a) as either “ f -prime at a” or “the derivative of f
evaluated at x = a.” Much of the next several chapters will be devoted to understanding,
computing, applying, and interpreting derivatives. For now, we make the following
important notes.

• The derivative of f at the value x = a is defined as the limit of the average rate of
change of f on the interval [a, a + h] as h → 0. It is possible for this limit not to
exist, so not every function has a derivative at every point.

• We say that a function that has a derivative at x = a is differentiable at x = a.

• The derivative is a generalization of the instantaneous velocity of a position function:
when y = s(t) is a position function of a moving body, s′(a) tells us the instantaneous
velocity of the body at time t = a.

• Because the units on f (a+h)− f (a)
h are “units of f per unit of x,” the derivative has

these very same units. For instance, if s measures position in feet and t measures
time in seconds, the units on s′(a) are feet per second.

• Because the quantity f (a+h)− f (a)
h represents the slope of the line through (a, f (a))

and (a + h, f (a + h)), when we compute the derivative we are taking the limit of a
collection of slopes of lines, and thus the derivative itself represents the slope of a
particularly important line.

While all of the above ideas are important and we will add depth and perspective to
them through additional time and study, for now it is most essential to recognize how the
derivative of a function at a given value represents the slope of a certain line. Thus, we
expand upon the last bullet item above.



1.3. THE DERIVATIVE OF A FUNCTION AT A POINT 25

As we move from an average rate of change to an instantaneous one, we can think of
one point as “sliding towards” another. In particular, provided the function has a derivative
at (a, f (a)), the point (a + h, f (a + h)) will approach (a, f (a)) as h → 0. Because this
process of taking a limit is a dynamic one, it can be helpful to use computing technology
to visualize what the limit is accomplishing. While there are many different options3, one
of the best is a java applet in which the user is able to control the point that is moving.
See the examples referenced in the footnote here, or consider building your own, perhaps
using the fantastic free program Geogebra4.

In Figure 1.11, we provide a sequence of figures with several different lines through the
points (a, f (a)) and (a + h, f (a + h)) that are generated by different values of h. These
lines (shown in the first three figures in magenta), are often called secant lines to the curve
y = f (x). A secant line to a curve is simply a line that passes through two points that lie
on the curve. For each such line, the slope of the secant line is m = f (a+h)− f (a)

h , where the
value of h depends on the location of the point we choose. We can see in the diagram
how, as h → 0, the secant lines start to approach a single line that passes through the
point (a, f (a)). In the situation where the limit of the slopes of the secant lines exists, we
say that the resulting value is the slope of the tangent line to the curve. This tangent line
(shown in the right-most figure in green) to the graph of y = f (x) at the point (a, f (a)) is
the line through (a, f (a)) whose slope is m = f ′(a).

x

y

f

a

x

y

f

a

x

y

f

a

x

y

f

a

Figure 1.11: A sequence of secant lines approaching the tangent line to f at (a, f (a)).

As we will see in subsequent study, the existence of the tangent line at x = a is
connected to whether or not the function f looks like a straight line when viewed up close
at (a, f (a)), which can also be seen in Figure 1.12, where we combine the four graphs in
Figure 1.11 into the single one on the left, and then we zoom in on the box centered at
(a, f (a)), with that view expanded on the right (with two of the secant lines omitted). Note
how the tangent line sits relative to the curve y = f (x) at (a, f (a)) and how closely it

3For a helpful collection of java applets, consider the work of David Austin of Grand Valley State University
at http://gvsu.edu/s/5r, and the particularly relevant example at http://gvsu.edu/s/5s. For applets
that have been built in Geogebra, a nice example is the work of Marc Renault of Shippensburg University at
http://gvsu.edu/s/5p, with the example at http://gvsu.edu/s/5q being especially fitting for our work
in this section. There are scores of other examples posted by other authors on the internet.

4Available for free download from http://geogebra.org.

http://gvsu.edu/s/5r
http://gvsu.edu/s/5s
http://gvsu.edu/s/5p
http://gvsu.edu/s/5q
http://geogebra.org
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resembles the curve near x = a.

x

y

f

a

Figure 1.12: A sequence of secant lines approaching the tangent line to f at (a, f (a)). At
right, we zoom in on the point (a, f (a)). The slope of the tangent line (in green) to f at
(a, f (a)) is given by f ′(a).

At this time, it is most important to note that f ′(a), the instantaneous rate of change
of f with respect to x at x = a, also measures the slope of the tangent line to the curve
y = f (x) at (a, f (a)). The following example demonstrates several key ideas involving the
derivative of a function.

Example 1.3. For the function given by f (x) = x − x2, use the limit definition of the
derivative to compute f ′(2). In addition, discuss the meaning of this value and draw a
labeled graph that supports your explanation.

Solution. From the limit definition, we know that

f ′(2) = lim
h→0

f (2 + h) − f (2)
h

.

Now we use the rule for f , and observe that f (2) = 2 − 22 = −2 and f (2 + h) =
(2 + h) − (2 + h)2. Substituting these values into the limit definition, we have that

f ′(2) = lim
h→0

(2 + h) − (2 + h)2 − (−2)
h

.

Observe that with h in the denominator and our desire to let h → 0, we have to wait
to take the limit (that is, we wait to actually let h approach 0). Thus, we do additional
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1 2

-4

-2

y = x− x2

m = f ′(2)

Figure 1.13: The tangent line to y = x − x2 at the point (2,−2).

algebra. Expanding and distributing in the numerator,

f ′(2) = lim
h→0

2 + h − 4 − 4h − h2 + 2
h

.

Combining like terms, we have

f ′(2) = lim
h→0

−3h − h2

h
.

Next, we observe that there is a common factor of h in both the numerator and denomina-
tor, which allows us to simplify and find that

f ′(2) = lim
h→0

(−3 − h).

Finally, we are able to take the limit as h → 0, and thus conclude that f ′(2) = −3.
Now, we know that f ′(2) represents the slope of the tangent line to the curve y = x− x2

at the point (2,−2); f ′(2) is also the instantaneous rate of change of f at the point (2,−2).
Graphing both the function and the line through (2,−2) with slope m = f ′(2) = −3, we
indeed see that by calculating the derivative, we have found the slope of the tangent line
at this point, as shown in Figure 1.3.

The following activities will help you explore a variety of key ideas related to derivatives.
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Activity 1.7.

Consider the function f whose formula is f (x) = 3 − 2x.

(a) What familiar type of function is f ? What can you say about the slope of f at
every value of x?

(b) Compute the average rate of change of f on the intervals [1, 4], [3, 7], and
[5, 5 + h]; simplify each result as much as possible. What do you notice about
these quantities?

(c) Use the limit definition of the derivative to compute the exact instantaneous
rate of change of f with respect to x at the value a = 1. That is, compute f ′(1)
using the limit definition. Show your work. Is your result surprising?

(d) Without doing any additional computations, what are the values of f ′(2), f ′(π),
and f ′(−√2)? Why?

C

Activity 1.8.

A water balloon is tossed vertically in the air from a window. The balloon’s height in
feet at time t in seconds after being launched is given by s(t) = −16t2 + 16t + 32. Use
this function to respond to each of the following questions.

(a) Sketch an accurate, labeled graph of s on the axes provided in Figure 1.14. You
should be able to do this without using computing technology.

1 2

16

32

t

y

Figure 1.14: Axes for plotting y = s(t) in Activity 1.8.

(b) Compute the average rate of change of s on the time interval [1, 2]. Include
units on your answer and write one sentence to explain the meaning of the
value you found.
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(c) Use the limit definition to compute the instantaneous rate of change of s with
respect to time, t, at the instant a = 1. Show your work using proper notation,
include units on your answer, and write one sentence to explain the meaning
of the value you found.

(d) On your graph in (a), sketch two lines: one whose slope represents the average
rate of change of s on [1, 2], the other whose slope represents the instantaneous
rate of change of s at the instant a = 1. Label each line clearly.

(e) For what values of a do you expect s′(a) to be positive? Why? Answer the
same questions when “positive” is replaced by “negative” and “zero.”

C

Activity 1.9.

A rapidly growing city in Arizona has its population P at time t, where t is the number
of decades after the year 2010, modeled by the formula P(t) = 25000et/5. Use this
function to respond to the following questions.

(a) Sketch an accurate graph of P for t = 0 to t = 5 on the axes provided in
Figure 1.15. Label the scale on the axes carefully.

t

y

Figure 1.15: Axes for plotting y = P(t) in Activity 1.9.

(b) Compute the average rate of change of P between 2030 and 2050. Include units
on your answer and write one sentence to explain the meaning (in everyday
language) of the value you found.

(c) Use the limit definition to write an expression for the instantaneous rate of
change of P with respect to time, t, at the instant a = 2. Explain why this limit
is difficult to evaluate exactly.

(d) Estimate the limit in (c) for the instantaneous rate of change of P at the instant
a = 2 by using several small h values. Once you have determined an accurate
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estimate of P′(2), include units on your answer, and write one sentence (using
everyday language) to explain the meaning of the value you found.

(e) On your graph above, sketch two lines: one whose slope represents the average
rate of change of P on [2, 4], the other whose slope represents the instantaneous
rate of change of P at the instant a = 2.

(f) In a carefully-worded sentence, describe the behavior of P′(a) as a increases in
value. What does this reflect about the behavior of the given function P?

C

Summary

In this section, we encountered the following important ideas:

• The average rate of change of a function f on the interval [a, b] is f (b) − f (a)
b − a

. The

units on the average rate of change are units of f per unit of x, and the numerical
value of the average rate of change represents the slope of the secant line between the
points (a, f (a)) and (b, f (b)) on the graph of y = f (x). If we view the interval as being
[a, a + h] instead of [a, b], the meaning is still the same, but the average rate of change

is now computed by
f (a + h) − f (a)

h
.

• The instantaneous rate of change with respect to x of a function f at a value x = a
is denoted f ′(a) (read “the derivative of f evaluated at a” or “ f -prime at a”) and is
defined by the formula

f ′(a) = lim
h→0

f (a + h) − f (a)
h

,

provided the limit exists. Note particularly that the instantaneous rate of change at
x = a is the limit of the average rate of change on [a, a + h] as h → 0.

• Provided the derivative f ′(a) exists, its value tells us the instantaneous rate of change
of f with respect to x at x = a, which geometrically is the slope of the tangent line to
the curve y = f (x) at the point (a, f (a)). We even say that f ′(a) is the slope of the curve
y = f (x) at the point (a, f (a)).

• Limits are the link between average rate of change and instantaneous rate of change:
they allow us to move from the rate of change over an interval to the rate of change at
a single point.

Exercises

1. Consider the graph of y = f (x) provided in Figure 1.16.

(a) On the graph of y = f (x), sketch and label the following quantities:
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• the secant line to y = f (x) on the interval [−3,−1] and the secant line to
y = f (x) on the interval [0, 2].

• the tangent line to y = f (x) at x = −3 and the tangent line to y = f (x) at
x = 0.

-4 4

-4

4
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f

Figure 1.16: Plot of y = f (x).

(b) What is the approximate value of the average rate of change of f on [−3,−1]?
On [0, 2]? How are these values related to your work in (a)?

(c) What is the approximate value of the instantaneous rate of change of f at
x = −3? At x = 0? How are these values related to your work in (a)?

2. For each of the following prompts, sketch a graph on the provided axes in Figure 1.17 of
a function that has the stated properties.

(a) y = f (x) such that

• the average rate of change of f on [−3, 0] is −2 and the average rate of
change of f on [1, 3] is 0.5, and

• the instantaneous rate of change of f at x = −1 is −1 and the instantaneous
rate of change of f at x = 2 is 1.

(b) y = g(x) such that

• g(3)−g(−2)
5 = 0 and g(1)−g(−1)

2 = −1, and
• g′(2) = 1 and g′(−1) = 0

3. Suppose that the population, P, of China (in billions) can be approximated by the
function P(t) = 1.15(1.014)t where t is the number of years since the start of 1993.

(a) According to the model, what was the total change in the population of China
between January 1, 1993 and January 1, 2000? What will be the average rate of
change of the population over this time period? Is this average rate of change
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Figure 1.17: Axes for plotting y = f (x) in (a) and y = g(x) in (b).

greater or less than the instantaneous rate of change of the population on
January 1, 2000? Explain and justify, being sure to include proper units on all
your answers.

(b) According to the model, what is the average rate of change of the population
of China in the ten-year period starting on January 1, 2012?

(c) Write an expression involving limits that, if evaluated, would give the exact
instantaneous rate of change of the population on today’s date. Then estimate
the value of this limit (discuss how you chose to do so) and explain the meaning
(including units) of the value you have found.

(d) Find an equation for the tangent line to the function y = P(t) at the point
where the t-value is given by today’s date.

4. The goal of this problem is to compute the value of the derivative at a point for several
different functions, where for each one we do so in three different ways, and then to
compare the results to see that each produces the same value.

For each of the following functions, use the limit definition of the derivative to compute
the value of f ′(a) using three different approaches: strive to use the algebraic approach
first (to compute the limit exactly), then test your result using numerical evidence (with
small values of h), and finally plot the graph of y = f (x) near (a, f (a)) along with the
appropriate tangent line to estimate the value of f ′(a) visually. Compare your findings
among all three approaches; if you are unable to complete the algebraic approach, still
work numerically and graphically.

(a) f (x) = x2 − 3x, a = 2

(b) f (x) = 1
x , a = 1

(c) f (x) = √x, a = 1
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(d) f (x) = 2 − |x − 1|, a = 1

(e) f (x) = sin(x), a = π
2
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1.4 The derivative function

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How does the limit definition of the derivative of a function f lead to an entirely
new (but related) function f ′?

• What is the difference between writing f ′(a) and f ′(x)?
• How is the graph of the derivative function f ′(x) connected to the graph of f (x)?
• What are some examples of functions f for which f ′ is not defined at one or more
points?

Introduction

Given a function y = f (x), we now know that if we are interested in the instantaneous
rate of change of the function at x = a, or equivalently the slope of the tangent line to
y = f (x) at x = a, we can compute the value f ′(a). In all of our examples to date, we
have arbitrarily identified a particular value of a as our point of interest: a = 1, a = 3, etc.
But it is not hard to imagine that we will often be interested in the derivative value for
more than just one a-value, and possibly for many of them. In this section, we explore
how we can move from computing simply f ′(1) or f ′(3) to working more generally with
f ′(a), and indeed f ′(x). Said differently, we will work toward understanding how the
so-called process of “taking the derivative” generates a new function that is derived from
the original function y = f (x). The following preview activity starts us down this path.

Preview Activity 1.4. Consider the function f (x) = 4x − x2.

(a) Use the limit definition to compute the following derivative values: f ′(0), f ′(1),
f ′(2), and f ′(3).

(b) Observe that the work to find f ′(a) is the same, regardless of the value of a. Based
on your work in (a), what do you conjecture is the value of f ′(4)? How about
f ′(5)? (Note: you should not use the limit definition of the derivative to find either
value.)

(c) Conjecture a formula for f ′(a) that depends only on the value a. That is, in the
same way that we have a formula for f (x) (recall f (x) = 4x − x2), see if you can
use your work above to guess a formula for f ′(a) in terms of a.

./
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How the derivative is itself a function

In your work in Preview Activity 1.4 with f (x) = 4x − x2, you may have found several
patterns. One comes from observing that f ′(0) = 4, f ′(1) = 2, f ′(2) = 0, and f ′(3) = −2.
That sequence of values leads us naturally to conjecture that f ′(4) = −4 and f ′(5) = −6.
Even more than these individual numbers, if we consider the role of 0, 1, 2, and 3 in the
process of computing the value of the derivative through the limit definition, we observe
that the particular number has very little effect on our work. To see this more clearly,
we compute f ′(a), where a represents a number to be named later. Following the now
standard process of using the limit definition of the derivative,

f ′(a) = lim
h→0

f (a + h) − f (a)
h

= lim
h→0

4(a + h) − (a + h)2 − (4a − a2)
h

= lim
h→0

4a + 4h − a2 − 2ha − h2 − 4a + a2

h

= lim
h→0

4h − 2ha − h2

h

= lim
h→0

h(4 − 2a − h)
h

= lim
h→0

(4 − 2a − h).

Here we observe that neither 4 nor 2a depend on the value of h, so as h → 0, (4−2a−h)→
(4 − 2a). Thus, f ′(a) = 4 − 2a.

This observation is consistent with the specific values we found above: e.g., f ′(3) =
4 − 2(3) = −2. And indeed, our work with a confirms that while the particular value of a
at which we evaluate the derivative affects the value of the derivative, that value has almost
no bearing on the process of computing the derivative. We note further that the letter
being used is immaterial: whether we call it a, x, or anything else, the derivative at a given
value is simply given by “4 minus 2 times the value.” We choose to use x for consistency
with the original function given by y = f (x), as well as for the purpose of graphing the
derivative function, and thus we have found that for the function f (x) = 4x − x2, it follows
that f ′(x) = 4 − 2x.

Because the value of the derivative function is so closely linked to the graphical
behavior of the original function, it makes sense to look at both of these functions plotted
on the same domain. In Figure 1.18, on the left we show a plot of f (x) = 4x − x2 together
with a selection of tangent lines at the points we’ve considered above. On the right, we
show a plot of f ′(x) = 4 − 2x with emphasis on the heights of the derivative graph at the
same selection of points. Notice the connection between colors in the left and right graph:
the green tangent line on the original graph is tied to the green point on the right graph
in the following way: the slope of the tangent line at a point on the lefthand graph is the
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Figure 1.18: The graphs of f (x) = 4x − x2 (at left) and f ′(x) = 4 − 2x (at right). Slopes on
the graph of f correspond to heights on the graph of f ′.

same as the height at the corresponding point on the righthand graph. That is, at each
respective value of x, the slope of the tangent line to the original function at that x-value
is the same as the height of the derivative function at that x-value. Do note, however, that
the units on the vertical axes are different: in the left graph, the vertical units are simply
the output units of f . On the righthand graph of y = f ′(x), the units on the vertical axis
are units of f per unit of x.

Of course, this relationship between the graph of a function y = f (x) and its derivative
is a dynamic one. An excellent way to explore how the graph of f (x) generates the graph
of f ′(x) is through a java applet. See, for instance, the applets at http://gvsu.edu/s/5C
or http://gvsu.edu/s/5D, via the sites of Austin and Renault5.

In Section 1.3 when we first defined the derivative, we wrote the definition in terms of
a value a to find f ′(a). As we have seen above, the letter a is merely a placeholder, and it
often makes more sense to use x instead. For the record, here we restate the definition of
the derivative.

Definition 1.4. Let f be a function and x a value in the function’s domain. We define
the derivative of f with respect to x at the value x, denoted f ′(x), by the formula f ′(x) =
lim
h→0

f (x + h) − f (x)
h

, provided this limit exists.

5David Austin, http://gvsu.edu/s/5r; Marc Renault, http://gvsu.edu/s/5p.

http://gvsu.edu/s/5C
http://gvsu.edu/s/5D
http://gvsu.edu/s/5r
http://gvsu.edu/s/5p
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We now may take two different perspectives on thinking about the derivative function:
given a graph of y = f (x), how does this graph lead to the graph of the derivative
function y = f ′(x)? and given a formula for y = f (x), how does the limit definition of
the derivative generate a formula for y = f ′(x)? Both of these issues are explored in the
following activities.

Activity 1.10.

For each given graph of y = f (x), sketch an approximate graph of its derivative
function, y = f ′(x), on the axes immediately below. The scale of the grid for the graph
of f is 1 × 1; assume the horizontal scale of the grid for the graph of f ′ is identical to
that for f . If necessary, adjust and label the vertical scale on the axes for f ′.

f

x

f ′

x
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g′

x
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x

q
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x
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When you are finished with all 8 graphs, write several sentences that describe your
overall process for sketching the graph of the derivative function, given the graph
the original function. What are the values of the derivative function that you tend
to identify first? What do you do thereafter? How do key traits of the graph of the
derivative function exemplify properties of the graph of the original function?

C

For a dynamic investigation that allows you to experiment with graphing f ′ when
given the graph of f , see http://gvsu.edu/s/8y.6

6Marc Renault, Calculus Applets Using Geogebra.

http://gvsu.edu/s/8y
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Now, recall the opening example of this section: we began with the function y =

f (x) = 4x − x2 and used the limit definition of the derivative to show that f ′(a) = 4 − 2a,
or equivalently that f ′(x) = 4 − 2x. We subsequently graphed the functions f and f ′

as shown in Figure 1.18. Following Activity 1.10, we now understand that we could have
constructed a fairly accurate graph of f ′(x) without knowing a formula for either f or f ′.
At the same time, it is ideal to know a formula for the derivative function whenever it is
possible to find one.

In the next activity, we further explore the more algebraic approach to finding f ′(x):
given a formula for y = f (x), the limit definition of the derivative will be used to develop
a formula for f ′(x).
Activity 1.11.

For each of the listed functions, determine a formula for the derivative function. For
the first two, determine the formula for the derivative by thinking about the nature of
the given function and its slope at various points; do not use the limit definition. For
the latter four, use the limit definition. Pay careful attention to the function names and
independent variables. It is important to be comfortable with using letters other than
f and x. For example, given a function p(z), we call its derivative p′(z).

(a) f (x) = 1

(b) g(t) = t

(c) p(z) = z2

(d) q(s) = s3

(e) F(t) = 1
t

(f) G(y) = √y

C

Summary

In this section, we encountered the following important ideas:

• The limit definition of the derivative, f ′(x) = limh→0
f (x+h)− f (x)

h , produces a value
for each x at which the derivative is defined, and this leads to a new function whose
formula is y = f ′(x). Hence we talk both about a given function f and its derivative
f ′. It is especially important to note that taking the derivative is a process that starts
with a given function ( f ) and produces a new, related function ( f ′).

• There is essentially no difference between writing f ′(a) (as we did regularly in Sec-
tion 1.3) and writing f ′(x). In either case, the variable is just a placeholder that is used
to define the rule for the derivative function.
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• Given the graph of a function y = f (x), we can sketch an approximate graph of its
derivative y = f ′(x) by observing that heights on the derivative’s graph correspond to
slopes on the original function’s graph.

• In Activity 1.10, we encountered some functions that had sharp corners on their graphs,
such as the shifted absolute value function. At such points, the derivative fails to exist,
and we say that f is not differentiable there. For now, it suffices to understand this as a
consequence of the jump that must occur in the derivative function at a sharp corner
on the graph of the original function.

Exercises

1. Let f be a function with the following properties: f is differentiable at every value of x
(that is, f has a derivative at every point), f (−2) = 1, and f ′(−2) = −2, f ′(−1) = −1,
f ′(0) = 0, f ′(1) = 1, and f ′(2) = 2.

(a) On the axes provided at left in Figure 1.19, sketch a possible graph of y = f (x).
Explain why your graph meets the stated criteria.

(b) On the axes at right in Figure 1.19, sketch a possible graph of y = f ′(x). What
type of curve does the provided data suggest for the graph of y = f ′(x)?

(c) Conjecture a formula for the function y = f (x). Use the limit definition of the
derivative to determine the corresponding formula for y = f ′(x). Discuss both
graphical and algebraic evidence for whether or not your conjecture is correct.

-3 3

-3

3

-3 3

-3

3

Figure 1.19: Axes for plotting y = f (x) in (a) and y = f ′(x) in (b).

2. Consider the function g(x) = x2 − x + 3.

(a) Use the limit definition of the derivative to determine a formula for g′(x).
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(b) Use a graphing utility to plot both y = g(x) and your result for y = g′(x); does
your formula for g′(x) generate the graph you expected?

(c) Use the limit definition of the derivative to find a formula for p′(x) where
p(x) = 5x2 − 4x + 12.

(d) Compare and contrast the formulas for g′(x) and p′(x) you have found. How
do the constants 5, 4, 12, and 3 affect the results?

3. Let g be a continuous function (that is, one with no jumps or holes in the graph) and
suppose that a graph of y = g′(x) is given by the graph on the right in Figure 1.20.

-2 2

-2

2

-2 2

-2

2

Figure 1.20: Axes for plotting y = g(x) and, at right, the graph of y = g′(x).

(a) Observe that for every value of x that satisfies 0 < x < 2, the value of g′(x) is
constant. What does this tell you about the behavior of the graph of y = g(x)
on this interval?

(b) On what intervals other than 0 < x < 2 do you expect y = g(x) to be a linear
function? Why?

(c) At which values of x is g′(x) not defined? What behavior does this lead you to
expect to see in the graph of y = g(x)?

(d) Suppose that g(0) = 1. On the axes provided at left in Figure 1.20, sketch an
accurate graph of y = g(x).
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4. For each graph that provides an original function y = f (x) in Figure 1.21 (on the
following page), your task is to sketch an approximate graph of its derivative function,
y = f ′(x), on the axes immediately below. View the scale of the grid for the graph of
f as being 1 × 1, and assume the horizontal scale of the grid for the graph of f ′ is
identical to that for f . If you need to adjust the vertical scale on the axes for the graph
of f ′, you should label that accordingly.

f

x

f ′

x

f

x

f ′

x

f

x

f ′

x

f

x

f ′

x

Figure 1.21: Graphs of y = f (x) and grids for plotting the corresponding graph of y = f ′(x).
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1.5 Interpreting, estimating, and using the derivative

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• In contexts other than the position of a moving object, what does the derivative of
a function measure?

• What are the units on the derivative function f ′, and how are they related to the
units of the original function f ?

• What is a central difference, and how can one be used to estimate the value of the
derivative at a point from given function data?

• Given the value of the derivative of a function at a point, what can we infer about
how the value of the function changes nearby?

Introduction

An interesting and powerful feature of mathematics is that it can often be thought of both
in abstract terms and in applied ones. For instance, calculus can be developed almost
entirely as an abstract collection of ideas that focus on properties of arbitrary functions. At
the same time, calculus can also be very directly connected to our experience of physical
reality by considering functions that represent meaningful processes. We have already
seen that for a position function y = s(t), say for a ball being tossed straight up in the air,
the ball’s velocity at time t is given by v(t) = s′(t), the derivative of the position function.
Further, recall that if s(t) is measured in feet at time t, the units on v(t) = s′(t) are feet per
second.

In what follows in this section, we investigate several different functions, each with
specific physical meaning, and think about how the units on the independent variable,
dependent variable, and the derivative function add to our understanding. To start, we
consider the familiar problem of a position function of a moving object.

Preview Activity 1.5. One of the longest stretches of straight (and flat) road in North
America can be found on the Great Plains in the state of North Dakota on state highway
46, which lies just south of the interstate highway I-94 and runs through the town of Gackle.
A car leaves town (at time t = 0) and heads east on highway 46; its position in miles from
Gackle at time t in minutes is given by the graph of the function in Figure 1.22. Three
important points are labeled on the graph; where the curve looks linear, assume that it is
indeed a straight line.

(a) In everyday language, describe the behavior of the car over the provided time



44 1.5. INTERPRETING, ESTIMATING, AND USING THE DERIVATIVE
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Figure 1.22: The graph of y = s(t), the position of the car along highway 46, which tells its
distance in miles from Gackle, ND, at time t in minutes.

interval. In particular, discuss what is happening on the time intervals [57, 68]
and [68, 104].

(b) Find the slope of the line between the points (57, 63.8) and (104, 106.8). What are
the units on this slope? What does the slope represent?

(c) Find the average rate of change of the car’s position on the interval [68, 104].
Include units on your answer.

(d) Estimate the instantaneous rate of change of the car’s position at the moment
t = 80. Write a sentence to explain your reasoning and the meaning of this value.

./

Units of the derivative function

As we now know, the derivative of the function f at a fixed value x is given by

f ′(x) = lim
h→0

f (x + h) − f (x)
h

,

and this value has several different interpretations. If we set x = a, one meaning of f ′(a)
is the slope of the tangent line at the point (a, f (a)).

In alternate notation, we also sometimes equivalently write d f
dx or dy

dx instead of f ′(x),
and these notations helps us to further see the units (and thus the meaning) of the derivative
as it is viewed as the instantaneous rate of change of f with respect to x. Note that the units
on the slope of the secant line, f (x+h)− f (x)

h , are “units of f per unit of x.” Thus, when we
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take the limit to get f ′(x), we get these same units on the derivative f ′(x): units of f per
unit of x. Regardless of the function f under consideration (and regardless of the variables
being used), it is helpful to remember that the units on the derivative function are “units
of output per unit of input,” in terms of the input and output of the original function.

For example, say that we have a function y = P(t), where P measures the population
of a city (in thousands) at the start of year t (where t = 0 corresponds to 2010 AD), and we
are told that P′(2) = 21.37. What is the meaning of this value? Well, since P is measured
in thousands and t is measured in years, we can say that the instantaneous rate of change
of the city’s population with respect to time at the start of 2012 is 21.37 thousand people
per year. We therefore expect that in the coming year, about 21,370 people will be added
to the city’s population.

Toward more accurate derivative estimates

It is also helpful to recall, as we first experienced in Section 1.3, that when we want to
estimate the value of f ′(x) at a given x, we can use the difference quotient f (x+h)− f (x)

h with
a relatively small value of h. In doing so, we should use both positive and negative values
of h in order to make sure we account for the behavior of the function on both sides of
the point of interest. To that end, we consider the following brief example to demonstrate
the notion of a central difference and its role in estimating derivatives.

Example 1.4. Suppose that y = f (x) is a function for which three values are known:
f (1) = 2.5, f (2) = 3.25, and f (3) = 3.625. Estimate f ′(2).

Solution. We know that f ′(2) = limh→0
f (2+h)− f (2)

h . But since we don’t have a graph for
y = f (x) nor a formula for the function, we can neither sketch a tangent line nor evaluate
the limit exactly. We can’t even use smaller and smaller values of h to estimate the limit.
Instead, we have just two choices: using h = −1 or h = 1, depending on which point we
pair with (2, 3.25).

So, one estimate is

f ′(2) ≈ f (1) − f (2)
1 − 2

=
2.5 − 3.25

−1
= 0.75.

The other is

f ′(2) ≈ f (3) − f (2)
3 − 2

=
3.625 − 3.25

1
= 0.375.

Since the first approximation looks only backward from the point (2, 3.25) and the second
approximation looks only forward from (2, 3.25), it makes sense to average these two
values in order to account for behavior on both sides of the point of interest. Doing so, we
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find that

f ′(2) ≈ 0.75 + 0.375

2
= 0.5625.

The intuitive approach to average the two estimates found in Example 1.4 is in fact the
best possible estimate to f ′(2) when we have just two function values for f on opposite
sides of the point of interest. To see why, we think about the diagram in Figure 1.23, which

1 2 3

1

2

3

1 2 3

1

2

3

Figure 1.23: At left, the graph of y = f (x) along with the secant line through (1, 2.5) and
(2, 3.25), the secant line through (2, 3.25) and (3, 3.625), as well as the tangent line. At
right, the same graph along with the secant line through (1, 2.5) and (3, 3.625), plus the
tangent line.

shows a possible function y = f (x) that satisfies the data given in Example 1.4. On the left,
we see the two secant lines with slopes that come from computing the backward difference
f (1)− f (2)

1−2 = 0.75 and from the forward difference f (3)− f (2)
3−2 = 0.375. Note how the first such

line’s slope over-estimates the slope of the tangent line at (2, f (2)), while the second line’s
slope underestimates f ′(2). On the right, however, we see the secant line whose slope is
given by the central difference

f (3) − f (1)
3 − 1

=
3.625 − 2.5

2
=

1.125

2
= 0.5625.

Note that this central difference has the exact same value as the average of the forward
difference and backward difference (and it is straightforward to explain why this always
holds), and moreover that the central difference yields a very good approximation to the
derivative’s value, in part because the secant line that uses both a point before and after
the point of tangency yields a line that is closer to being parallel to the tangent line.

In general, the central difference approximation to the value of the first derivative is
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given by

f ′(a) ≈ f (a + h) − f (a − h)
2h

,

and this quantity measures the slope of the secant line to y = f (x) through the points
(a − h, f (a − h)) and (a + h, f (a + h)). Anytime we have symmetric data surrounding a
point at which we desire to estimate the derivative, the central difference is an ideal choice
for so doing.

The following activities will further explore the meaning of the derivative in several
different contexts while also viewing the derivative from graphical, numerical, and algebraic
perspectives.

Activity 1.12.

A potato is placed in an oven, and the potato’s temperature F (in degrees Fahrenheit) at
various points in time is taken and recorded in the following table. Time t is measured
in minutes.

t F(t)
0 70
15 180.5
30 251
45 296
60 324.5
75 342.8
90 354.5

(a) Use a central difference to estimate the instantaneous rate of change of the
temperature of the potato at t = 30. Include units on your answer.

(b) Use a central difference to estimate the instantaneous rate of change of the
temperature of the potato at t = 60. Include units on your answer.

(c) Without doing any calculation, which do you expect to be greater: F ′(75) or
F ′(90)? Why?

(d) Suppose it is given that F(64) = 330.28 and F ′(64) = 1.341. What are the
units on these two quantities? What do you expect the temperature of the
potato to be when t = 65? when t = 66? Why?

(e) Write a couple of careful sentences that describe the behavior of the temperature
of the potato on the time interval [0, 90], as well as the behavior of the
instantaneous rate of change of the temperature of the potato on the same time
interval.

C
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Activity 1.13.

A company manufactures rope, and the total cost of producing r feet of rope is C(r)
dollars.

(a) What does it mean to say that C(2000) = 800?

(b) What are the units of C ′(r)?
(c) Suppose that C(2000) = 800 and C ′(2000) = 0.35. Estimate C(2100), and

justify your estimate by writing at least one sentence that explains your thinking.

(d) Which of the following statements do you think is true, and why?

• C ′(2000) < C ′(3000)
• C ′(2000) = C ′(3000)
• C ′(2000) > C ′(3000)

(e) Suppose someone claims that C ′(5000) = −0.1. What would the practical
meaning of this derivative value tell you about the approximate cost of the next
foot of rope? Is this possible? Why or why not?

C

Activity 1.14.

Researchers at a major car company have found a function that relates gasoline
consumption to speed for a particular model of car. In particular, they have determined
that the consumption C, in liters per kilometer, at a given speed s, is given by a
function C = f (s), where s is the car’s speed in kilometers per hour.

(a) Data provided by the car company tells us that f (80) = 0.015, f (90) = 0.02,
and f (100) = 0.027. Use this information to estimate the instantaneous rate of
change of fuel consumption with respect to speed at s = 90. Be as accurate as
possible, use proper notation, and include units on your answer.

(b) By writing a complete sentence, interpret the meaning (in the context of fuel
consumption) of “ f (80) = 0.015.”

(c) Write at least one complete sentence that interprets the meaning of the value
of f ′(90) that you estimated in (a).

C

In Section 1.4, we learned how use to the graph of a given function f to plot the
graph of its derivative, f ′. It is important to remember that when we do so, not only
does the scale on the vertical axis often have to change to accurately represent f ′, but
the units on that axis also differ. For example, suppose that P(t) = 400 − 330e−0.03t tells
us the temperature in degrees Fahrenheit of a potato in an oven at time t in minutes. In
Figure 1.24, we sketch the graph of P on the left and the graph of P′ on the right.
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Figure 1.24: Plot of P(t) = 400 − 330e−0.03t at left, and its derivative P′(t) at right.

Note how not only are the vertical scales different in size, but different in units, as the
units of P are ◦F, while those of P′ are ◦F/min. In all cases where we work with functions
that have an applied context, it is helpful and instructive to think carefully about units
involved and how they further inform the meaning of our computations.

Summary

In this section, we encountered the following important ideas:

• Regardless of the context of a given function y = f (x), the derivative always measures
the instantaneous rate of change of the output variable with respect to the input
variable.

• The units on the derivative function y = f ′(x) are units of f per unit of x. Again, this
measures how fast the output of the function f changes when the input of the function
changes.

• The central difference approximation to the value of the first derivative is given by

f ′(a) ≈ f (a + h) − f (a − h)
2h

,

and this quantity measures the slope of the secant line to y = f (x) through the
points (a − h, f (a − h)) and (a + h, f (a + h)). The central difference generates a good
approximation of the derivative’s value any time we have symmetric data surrounding a
point of interest.

• Knowing the derivative and function values at a single point enables us to estimate
other function values nearby. If, for example, we know that f ′(7) = 2, then we know
that at x = 7, the function f is increasing at an instantaneous rate of 2 units of output
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for every one unit of input. Thus, we expect f (8) to be approximately 2 units greater
than f (7). The value is approximate because we don’t know that the rate of change
stays the same as x changes.

Exercises

1. A cup of coffee has its temperature F (in degrees Fahrenheit) at time t given by the
function F(t) = 75 + 110e−0.05t , where time is measured in minutes.

(a) Use a central difference with h = 0.01 to estimate the value of F ′(10).
(b) What are the units on the value of F ′(10) that you computed in (a)? What is

the practical meaning of the value of F ′(10)?
(c) Which do you expect to be greater: F ′(10) or F ′(20)? Why?

(d) Write a sentence that describes the behavior of the function y = F ′(t) on the
time interval 0 ≤ t ≤ 30. How do you think its graph will look? Why?

2. The temperature change T (in Fahrenheit degrees), in a patient, that is generated by a
dose q (in milliliters), of a drug, is given by the function T = f (q).

(a) What does it mean to say f (50) = 0.75? Write a complete sentence to explain,
using correct units.

(b) A person’s sensitivity, s, to the drug is defined by the function s(q) = f ′(q).
What are the units of sensitivity?

(c) Suppose that f ′(50) = −0.02. Write a complete sentence to explain the meaning
of this value. Include in your response the information given in (a).

3. The velocity of a ball that has been tossed vertically in the air is given by v(t) = 16−32t,
where v is measured in feet per second, and t is measured in seconds. The ball is in
the air from t = 0 until t = 2.

(a) When is the ball’s velocity greatest?

(b) Determine the value of v′(1). Justify your thinking.

(c) What are the units on the value of v′(1)? What does this value and the
corresponding units tell you about the behavior of the ball at time t = 1?

(d) What is the physical meaning of the function v′(t)?
4. The value, V , of a particular automobile (in dollars) depends on the number of miles,

m, the car has been driven, according to the function V = h(m).
(a) Suppose that h(40000) = 15500 and h(55000) = 13200. What is the average

rate of change of h on the interval [40000, 55000], and what are the units on
this value?
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(b) In addition to the information given in (a), say that h(70000) = 11100. Deter-
mine the best possible estimate of h′(55000) and write one sentence to explain
the meaning of your result, including units on your answer.

(c) Which value do you expect to be greater: h′(30000) or h′(80000)? Why?

(d) Write a sentence to describe the long-term behavior of the function V = h(m),
plus another sentence to describe the long-term behavior of h′(m). Provide
your discussion in practical terms regarding the value of the car and the rate
at which that value is changing.
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1.6 The second derivative

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How does the derivative of a function tell us whether the function is increasing or
decreasing at a point or on an interval?

• What can we learn by taking the derivative of the derivative (to achieve the second
derivative) of a function f ?

• What does it mean to say that a function is concave up or concave down? How
are these characteristics connected to certain properties of the derivative of the
function?

• What are the units of the second derivative? How do they help us understand the
rate of change of the rate of change?

Introduction

Given a differentiable function y = f (x), we know that its derivative, y = f ′(x), is a related
function whose output at a value x = a tells us the slope of the tangent line to y = f (x)
at the point (a, f (a)). That is, heights on the derivative graph tell us the values of slopes
on the original function’s graph. Therefore, the derivative tells us important information
about the function f .

A
B

Figure 1.25: Two tangent lines on a graph demonstrate how the slope of the tangent line
tells us whether the function is rising or falling, as well as whether it is doing so rapidly or
slowly.
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At any point where f ′(x) is positive, it means that the slope of the tangent line to f is
positive, and therefore the function f is increasing (or rising) at that point. Similarly, if
f ′(a) is negative, we know that the graph of f is decreasing (or falling) at that point.

In the next part of our study, we work to understand not only whether the function
f is increasing or decreasing at a point or on an interval, but also how the function
f is increasing or decreasing. Comparing the two tangent lines shown in Figure 1.25,
we see that at point A, the value of f ′(x) is positive and relatively close to zero, which
coincides with the graph rising slowly. By contrast, at point B, the derivative is negative
and relatively large in absolute value, which is tied to the fact that f is decreasing rapidly
at B. It also makes sense to not only ask whether the value of the derivative function is
positive or negative and whether the derivative is large or small, but also to ask “how is
the derivative changing?”

We also now know that the derivative, y = f ′(x), is itself a function. This means that
we can consider taking its derivative – the derivative of the derivative – and therefore ask
questions like “what does the derivative of the derivative tell us about how the original
function behaves?” As we have done regularly in our work to date, we start with an
investigation of a familiar problem in the context of a moving object.

Preview Activity 1.6. The position of a car driving along a straight road at time t in
minutes is given by the function y = s(t) that is pictured in Figure 1.26. The car’s position
function has units measured in thousands of feet. For instance, the point (2, 4) on the
graph indicates that after 2 minutes, the car has traveled 4000 feet.
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Figure 1.26: The graph of y = s(t), the position of the car (measured in thousands of feet
from its starting location) at time t in minutes.

(a) In everyday language, describe the behavior of the car over the provided time
interval. In particular, you should carefully discuss what is happening on each of
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the time intervals [0, 1], [1, 2], [2, 3], [3, 4], and [4, 5], plus provide commentary
overall on what the car is doing on the interval [0, 12].

(b) On the lefthand axes provided in Figure 1.27, sketch a careful, accurate graph of
y = s′(t).

(c) What is the meaning of the function y = s′(t) in the context of the given problem?
What can we say about the car’s behavior when s′(t) is positive? when s′(t) is
zero? when s′(t) is negative?

(d) Rename the function you graphed in (b) to be called y = v(t). Describe the
behavior of v in words, using phrases like “v is increasing on the interval . . .” and
“v is constant on the interval . . ..”

(e) Sketch a graph of the function y = v′(t) on the righthand axes provide in Fig-
ure 1.27. Write at least one sentence to explain how the behavior of v′(t) is
connected to the graph of y = v(t).

2 6 10
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y
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y

Figure 1.27: Axes for plotting y = v(t) = s′(t) and y = v′(t).

./

Increasing, decreasing, or neither

When we look at the graph of a function, there are features that strike us naturally, and
common language can be used to name these features. In many different settings so far,
we have intuitively used the words increasing and decreasing to describe a function’s graph.
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Here we connect these terms more formally to a function’s behavior on an interval of input
values.

Definition 1.5. Given a function f (x) defined on the interval (a, b), we say that f is
increasing on (a, b) provided that for all x, y in the interval (a, b), if x < y, then f (x) < f (y).
Similarly, we say that f is decreasing on (a, b) provided that for all x, y in the interval (a, b),
if x < y, then f (x) > f (y).

Simply put, an increasing function is one that is rising as we move from left to right
along the graph, and a decreasing function is one that falls as the value of the input
increases. For a function that has a derivative, we can use the sign of the derivative to
determine whether or not the function is increasing or decreasing.

Let f be a function that is differentiable on an interval (a, b). We say that f is
increasing on (a, b) if and only if f ′(x) > 0 for every x such that a < x < b; similarly,
f is decreasing on (a, b) if and only if f ′(x) < 0. If f ′(a) = 0, then we say f is neither
increasing nor decreasing at x = a.

-2 2

-2

2

A

By = f (x)

Figure 1.28: A function that is decreasing on the intervals −3 < x < −2 and 0 < x < 2
and increasing on −2 < x < 0 and 2 < x < 3.

For example, the function pictured in Figure 1.28 is increasing on the entire interval
−2 < x < 0. Note that at both x = ±2 and x = 0, we say that f is neither increasing nor
decreasing, because f ′(x) = 0 at these values.

The Second Derivative

For any function, we are now accustomed to investigating its behavior by thinking about
its derivative. Given a function f , its derivative is a new function, one that is given by the
rule

f ′(x) = lim
h→0

f (x + h) − f (x)
h

.
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Because f ′ is itself a function, it is perfectly feasible for us to consider the derivative of
the derivative, which is the new function y = [ f ′(x)]′. We call this resulting function the
second derivative of y = f (x), and denote the second derivative by y = f ′′(x). Due to the
presence of multiple possible derivatives, we will sometimes call f ′ “the first derivative” of
f , rather than simply “the derivative” of f . Formally, the second derivative is defined by
the limit definition of the derivative of the first derivative:

f ′′(x) = lim
h→0

f ′(x + h) − f ′(x)
h

.

We note that all of the established meaning of the derivative function still holds, so
when we compute y = f ′′(x), this new function measures slopes of tangent lines to the
curve y = f ′(x), as well as the instantaneous rate of change of y = f ′(x). In other words,
just as the first derivative measures the rate at which the original function changes, the
second derivative measures the rate at which the first derivative changes. This means that
the second derivative tracks the instantaneous rate of change of the instantaneous rate
of change of f . That is, the second derivative will help us to understand how the rate of
change of the original function is itself changing.

Concavity

In addition to asking whether a function is increasing or decreasing, it is also natural
to inquire how a function is increasing or decreasing. To begin, there are three basic
behaviors that an increasing function can demonstrate on an interval, as pictured in
Figure 1.29: the function can increase more and more rapidly, increase at the same rate, or
increase in a way that is slowing down. Fundamentally, we are beginning to think about
how a particular curve bends, with the natural comparison being made to lines, which
don’t bend at all. More than this, we want to understand how the bend in a function’s
graph is tied to behavior characterized by the first derivative of the function.

For the leftmost curve in Figure 1.29, picture a sequence of tangent lines to the curve.
As we move from left to right, the slopes of those tangent lines will increase. Therefore,
the rate of change of the pictured function is increasing, and this explains why we say this
function is increasing at an increasing rate. For the rightmost graph in Figure 1.29, observe
that as x increases, the function increases but the slope of the tangent line decreases,
hence this function is increasing at a decreasing rate.

Of course, similar options hold for how a function can decrease. Here we must be
extra careful with our language, since decreasing functions involve negative slopes, and
negative numbers present an interesting situation in the tension between common language
and mathematical language. For example, it can be tempting to say that “−100 is bigger
than −2.” But we must remember that when we say one number is greater than another,
this describes how the numbers lie on a number line: x < y provided that x lies to the
left of y. So of course, −100 is less than −2. Informally, it might be helpful to say that
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Figure 1.29: Three functions that are all increasing, but doing so at an increasing rate, at a
constant rate, and at a decreasing rate, respectively.

“−100 is more negative than −2.” This leads us to note particularly that when a function’s
values are negative, and those values subsequently get more negative, the function must
be decreasing.

Now consider the three graphs shown in Figure 1.30. Clearly the middle graph
demonstrates the behavior of a function decreasing at a constant rate. If we think about a
sequence of tangent lines to the first curve that progress from left to right, we see that the
slopes of these lines get less and less negative as we move from left to right. That means
that the values of the first derivative, while all negative, are increasing, and thus we say
that the leftmost curve is decreasing at an increasing rate.

Figure 1.30: From left to right, three functions that are all decreasing, but doing so in
different ways.

This leaves only the rightmost curve in Figure 1.30 to consider. For that function, the
slope of the tangent line is negative throughout the pictured interval, but as we move
from left to right, the slopes get more and more negative. Hence the slope of the curve is
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decreasing, and we say that the function is decreasing at a decreasing rate.

This leads us to introduce the notion of concavity which provides simpler language to
describe some of these behaviors. Informally, when a curve opens up on a given interval,
like the upright parabola y = x2 or the exponential growth function y = ex , we say that
the curve is concave up on that interval. Likewise, when a curve opens down, such as the
parabola y = −x2 or the opposite of the exponential function y = −ex , we say that the
function is concave down. This behavior is linked to both the first and second derivatives
of the function.

In Figure 1.31, we see two functions along with a sequence of tangent lines to each.
On the lefthand plot where the function is concave up, observe that the tangent lines to
the curve always lie below the curve itself and that, as we move from left to right, the
slope of the tangent line is increasing. Said differently, the function f is concave up on the
interval shown because its derivative, f ′, is increasing on that interval. Similarly, on the
righthand plot in Figure 1.31, where the function shown is concave down, there we see that
the tangent lines alway lie above the curve and that the value of the slope of the tangent
line is decreasing as we move from left to right. Hence, what makes f concave down on
the interval is the fact that its derivative, f ′, is decreasing.

Figure 1.31: At left, a function that is concave up; at right, one that is concave down.

We state these most recent observations formally as the definitions of the terms concave
up and concave down.

Definition 1.6. Let f be a differentiable function on an interval (a, b). Then f is concave
up on (a, b) if and only if f ′ is increasing on (a, b); f is concave down on (a, b) if and only
if f ′ is decreasing on (a, b).

The following activities lead us to further explore how the first and second derivatives
of a function determine the behavior and shape of its graph. We begin by revisiting
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Preview Activity 1.6.

Activity 1.15.

The position of a car driving along a straight road at time t in minutes is given by
the function y = s(t) that is pictured in Figure 1.32. The car’s position function has
units measured in thousands of feet. Remember that you worked with this function and
sketched graphs of y = v(t) = s′(t) and y = v′(t) in Preview Activity 1.6.
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Figure 1.32: The graph of y = s(t), the position of the car (measured in thousands of feet
from its starting location) at time t in minutes.

(a) On what intervals is the position function y = s(t) increasing? decreasing?
Why?

(b) On which intervals is the velocity function y = v(t) = s′(t) increasing? decreas-
ing? neither? Why?

(c) Acceleration is defined to be the instantaneous rate of change of velocity, as the
acceleration of an object measures the rate at which the velocity of the object
is changing. Say that the car’s acceleration function is named a(t). How is a(t)
computed from v(t)? How is a(t) computed from s(t)? Explain.

(d) What can you say about s′′ whenever s′ is increasing? Why?

(e) Using only the words increasing, decreasing, constant, concave up, concave down,
and linear, complete the following sentences. For the position function s with
velocity v and acceleration a,

• on an interval where v is positive, s is .

• on an interval where v is negative, s is .

• on an interval where v is zero, s is .
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• on an interval where a is positive, v is .

• on an interval where a is negative, v is .

• on an interval where a is zero, v is .

• on an interval where a is positive, s is .

• on an interval where a is negative, s is .

• on an interval where a is zero, s is .

C

The context of position, velocity, and acceleration is an excellent one in which to
understand how a function, its first derivative, and its second derivative are related to one
another. In Activity 1.15, we can replace s, v, and a with an arbitrary function f and its
derivatives f ′ and f ′′, and essentially all the same observations hold. In particular, note
that f ′ is increasing if and only if f is concave up, and similarly f ′ is increasing if and
only if f ′′ is positive. Likewise, f ′ is decreasing if and only if f is concave down, and f ′

is decreasing if and only if f ′′ is negative.

Activity 1.16.

A potato is placed in an oven, and the potato’s temperature F (in degrees Fahrenheit) at
various points in time is taken and recorded in the following table. Time t is measured
in minutes. In Activity 1.12, we computed approximations to F ′(30) and F ′(60) using
central differences. Those values and more are provided in the second table below,
along with several others computed in the same way.

t F(t)
0 70
15 180.5
30 251
45 296
60 324.5
75 342.8
90 354.5

t F ′(t)
0 NA
15 6.03
30 3.85
45 2.45
60 1.56
75 1.00
90 NA

(a) What are the units on the values of F ′(t)?
(b) Use a central difference to estimate the value of F ′′(30).
(c) What is the meaning of the value of F ′′(30) that you have computed in (b) in

terms of the potato’s temperature? Write several careful sentences that discuss,
with appropriate units, the values of F(30), F ′(30), and F ′′(30), and explain
the overall behavior of the potato’s temperature at this point in time.

(d) Overall, is the potato’s temperature increasing at an increasing rate, increasing
at a constant rate, or increasing at a decreasing rate? Why?
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C

Activity 1.17.

This activity builds on our experience and understanding of how to sketch the graph
of f ′ given the graph of f .

f

x

f ′

x

f ′′

x

f

x

f ′

x

f ′′

x

Figure 1.33: Two given functions f , with axes provided for plotting f ′ and f ′′ below.

In Figure 1.33, given the respective graphs of two different functions f , sketch the
corresponding graph of f ′ on the first axes below, and then sketch f ′′ on the second
set of axes. In addition, for each, write several careful sentences in the spirit of those in
Activity 1.15 that connect the behaviors of f , f ′, and f ′′. For instance, write something
such as

f ′ is on the interval , which is connected
to the fact that f is on the same interval ,



62 1.6. THE SECOND DERIVATIVE

and f ′′ is on the interval as well

but of course with the blanks filled in. Throughout, view the scale of the grid for the
graph of f as being 1 × 1, and assume the horizontal scale of the grid for the graph of
f ′ is identical to that for f . If you need to adjust the vertical scale on the axes for the
graph of f ′ or f ′′, you should label that accordingly.

C

Summary

In this section, we encountered the following important ideas:

• A differentiable function f is increasing at a point or on an interval whenever its first
derivative is positive, and decreasing whenever its first derivative is negative.

• By taking the derivative of the derivative of a function f , we arrive at the second
derivative, f ′′. The second derivative measures the instantaneous rate of change of the
first derivative, and thus the sign of the second derivative tells us whether or not the
slope of the tangent line to f is increasing or decreasing.

• A differentiable function is concave up whenever its first derivative is increasing (or
equivalently whenever its second derivative is positive), and concave down whenever its
first derivative is decreasing (or equivalently whenever its second derivative is negative).
Examples of functions that are everywhere concave up are y = x2 and y = ex ; examples
of functions that are everywhere concave down are y = −x2 and y = −ex .

• The units on the second derivative are “units of output per unit of input per unit of
input.” They tell us how the value of the derivative function is changing in response to
changes in the input. In other words, the second derivative tells us the rate of change
of the rate of change of the original function.

Exercises

1. Suppose that y = f (x) is a differentiable function for which the following information
is known: f (2) = −3, f ′(2) = 1.5, f ′′(2) = −0.25.

(a) Is f increasing or decreasing at x = 2? Is f concave up or concave down at
x = 2?

(b) Do you expect f (2.1) to be greater than −3, equal to −3, or less than −3? Why?

(c) Do you expect f ′(2.1) to be greater than 1.5, equal to 1.5, or less than 1.5?
Why?

(d) Sketch a graph of y = f (x) near (2, f (2)) and include a graph of the tangent
line.
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2. For a certain function y = g(x), its derivative is given by the function pictured in
Figure 1.34.
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y = g′(x)

Figure 1.34: The graph of y = g′(x).

(a) What is the approximate slope of the tangent line to y = g(x) at the point
(2, g(2))?

(b) How many real number solutions can there be to the equation g(x) = 0? Justify
your conclusion fully and carefully by explaining what you know about how
the graph of g must behave based on the given graph of g′.

(c) On the interval −3 < x < 3, how many times does the concavity of g change?
Why?

(d) Use the provided graph to estimate the value of g′′(2).
3. A bungee jumper’s height h (in feet ) at time t (in seconds) is given in part by the data

in the following table:

t 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
h(t) 200 184.2 159.9 131.9 104.7 81.8 65.5 56.8 55.5 60.4 69.8

t 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
h(t) 81.6 93.7 104.4 112.6 117.7 119.4 118.2 114.8 110.0 104.7

(a) Use the given data to estimate h′(4.5), h′(5), and h′(5.5). At which of these
times is the bungee jumper rising most rapidly?

(b) Use the given data and your work in (a) to estimate h′′(5).
(c) What physical property of the bungee jumper does the value of h′′(5) measure?

What are its units?

(d) Based on the data, on what approximate time intervals is the function y = h(t)
concave down? What is happening to the velocity of the bungee jumper on
these time intervals?
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4. For each prompt that follows, sketch a possible graph of a function on the interval
−3 < x < 3 that satisfies the stated properties.

(a) y = f (x) such that f is increasing on −3 < x < 3, f is concave up on
−3 < x < 0, and f is concave down on 0 < x < 3.

(b) y = g(x) such that g is increasing on −3 < x < 3, g is concave down on
−3 < x < 0, and g is concave up on 0 < x < 3.

(c) y = h(x) such that h is decreasing on −3 < x < 3, h is concave up on
−3 < x < −1, neither concave up nor concave down on −1 < x < 1, and h is
concave down on 1 < x < 3.

(d) y = p(x) such that p is decreasing and concave down on −3 < x < 0 and p is
increasing and concave down on 0 < x < 3.
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1.7 Limits, Continuity, and Differentiability

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What does it mean graphically to say that f has limit L as x → a? How is this
connected to having a left-hand limit at x = a and having a right-hand limit at
x = a?

• What does it mean to say that a function f is continuous at x = a? What role do
limits play in determining whether or not a function is continuous at a point?

• What does it mean graphically to say that a function f is differentiable at x = a?
How is this connected to the function being locally linear?

• How are the characteristics of a function having a limit, being continuous, and
being differentiable at a given point related to one another?

Introduction

In Section 1.2, we learned about how the concept of limits can be used to study the trend
of a function near a fixed input value. As we study such trends, we are fundamentally
interested in knowing how well-behaved the function is at the given point, say x = a.
In this present section, we aim to expand our perspective and develop language and
understanding to quantify how the function acts and how its value changes near a
particular point. Beyond thinking about whether or not the function has a limit L at
x = a, we will also consider the value of the function f (a) and how this value is related to
limx→a f (x), as well as whether or not the function has a derivative f ′(a) at the point of
interest. Throughout, we will build on and formalize ideas that we have encountered in
several settings.

We begin to consider these issues through the following preview activity that asks you
to consider the graph of a function with a variety of interesting behaviors.

Preview Activity 1.7. A function f defined on −4 < x < 4 is given by the graph in
Figure 1.35. Use the graph to answer each of the following questions. Note: to the right
of x = 2, the graph of f is exhibiting infinite oscillatory behavior similar to the function
sin( πx ) that we encountered in the key example early in Section 1.2.

(a) For each of the values a = −3,−2,−1, 0, 1, 2, 3, determine whether or not lim
x→a

f (x)
exists. If the function has a limit L at a given point, state the value of the limit
using the notation lim

x→a
f (x) = L. If the function does not have a limit at a given

point, write a sentence to explain why.
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Figure 1.35: The graph of y = f (x).

(b) For each of the values of a from part (a) where f has a limit, determine the value
of f (a) at each such point. In addition, for each such a value, does f (a) have the
same value as lim

x→a
f (x)?

(c) For each of the values a = −3,−2,−1, 0, 1, 2, 3, determine whether or not f ′(a)
exists. In particular, based on the given graph, ask yourself if it is reasonable
to say that f has a tangent line at (a, f (a)) for each of the given a-values. If so,
visually estimate the slope of the tangent line to find the value of f ′(a).

./

Having a limit at a point

In Section 1.2, we first encountered limits and learned that we say that f has limit L as
x approaches a and write lim

x→a
f (x) = L provided that we can make the value of f (x) as

close to L as we like by taking x sufficiently close (but not equal to) a. Here, we expand
further on this definition and focus in more depth on what it means for a function not to
have a limit at a given value.

Essentially there are two behaviors that a function can exhibit at a point where it fails
to have a limit. In Figure 1.36, at left we see a function f whose graph shows a jump at
a = 1. In particular, if we let x approach 1 from the left side, the value of f approaches 2,
while if we let x go to 1 from the right, the value of f tends to 3. Because the value of
f does not approach a single number as x gets arbitrarily close to 1 from both sides, we
know that f does not have a limit at a = 1.

Since f does approach a single value on each side of a = 1, we can introduce the
notion of left and right (or one-sided ) limits. We say that f has limit L1 as x approaches a
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from the left and write
lim
x→a−

f (x) = L1

provided that we can make the value of f (x) as close to L1 as we like by taking x
sufficiently close to a while always having x < a. In this case, we call L1 the left-hand limit
of f as x approaches a. Similarly, we say L2 is the right-hand limit of f as x approaches a
and write

lim
x→a+

f (x) = L2

provided that we can make the value of f (x) as close to L2 as we like by taking x sufficiently
close to a while always having x > a. In the graph of the function f in Figure 1.36, we see
that

lim
x→1−

f (x) = 2 and lim
x→1+

f (x) = 3

and precisely because the left and right limits are not equal, the overall limit of f as x → 1
fails to exist.
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Figure 1.36: Functions f and g that each fail to have a limit at a = 1.

For the function g pictured at right in Figure 1.36, the function fails to have a limit at
a = 1 for a different reason. While the function does not have a jump in its graph at a = 1,
it is still not the case that g approaches a single value as x approaches 1. In particular, due
to the infinitely oscillating behavior of g to the right of a = 1, we say that the right-hand
limit of g as x → 1+ does not exist, and thus lim

x→1
g(x) does not exist.

To summarize, anytime either a left- or right-hand limit fails to exist or the left- and
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right-hand limits are not equal to each other, the overall limit will not exist. Said differently,

A function f has limit L as x → a if and only if

lim
x→a−

f (x) = L = lim
x→a+

f (x).

That is, a function has a limit at x = a if and only if both the left- and right-hand
limits at x = a exist and share the same value.

In Preview Activity 1.7, the function f given in Figure 1.35 only fails to have a limit at
two values: at a = −2 (where the left- and right-hand limits are 2 and −1, respectively) and
at x = 2, where limx→2+ f (x) does not exist). Note well that even at values like a = −1
and a = 0 where there are holes in the graph, the limit still exists.

Activity 1.18.

Consider a function that is piecewise-defined according to the formula

f (x) =




3(x + 2) + 2 for −3 < x < −2
2
3 (x + 2) + 1 for −2 ≤ x < −1
2
3 (x + 2) + 1 for −1 < x < 1

2 for x = 1

4 − x for x > 1

Use the given formula to answer the following questions.

-2 -1 1 2

-1

1
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Figure 1.37: Axes for plotting the function y = f (x) in Activity 1.18.

(a) For each of the values a = −2,−1, 0, 1, 2, compute f (a).
(b) For each of the values a = −2,−1, 0, 1, 2, determine lim

x→a−
f (x) and lim

x→a+
f (x).

(c) For each of the values a = −2,−1, 0, 1, 2, determine lim
x→a

f (x). If the limit fails
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to exist, explain why by discussing the left- and right-hand limits at the relevant
a-value.

(d) For which values of a is the following statement true?

lim
x→a

f (x) , f (a)

(e) On the axes provided in Figure 1.37, sketch an accurate, labeled graph of
y = f (x). Be sure to carefully use open circles (◦) and filled circles (•) to
represent key points on the graph, as dictated by the piecewise formula.

C

Being continuous at a point

Intuitively, a function is continuous if we can draw it without ever lifting our pencil from
the page. Alternatively, we might say that the graph of a continuous function has no jumps
or holes in it. We first consider three specific situations in Figure 1.38 where all three
functions have a limit at a = 1, and then work to make the idea of continuity more precise.
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Figure 1.38: Functions f , g, and h that demonstrate subtly different behaviors at a = 1.

Note that f (1) is not defined, which leads to the resulting hole in the graph of f at
a = 1. We will naturally say that f is not continuous at a = 1. For the next function g in in
Figure 1.38, we observe that while limx→1 g(x) = 3, the value of g(1) = 2, and thus the
limit does not equal the function value. Here, too, we will say that g is not continuous, even
though the function is defined at a = 1. Finally, the function h appears to be the most
well-behaved of all three, since at a = 1 its limit and its function value agree. That is,

lim
x→1

h(x) = 3 = h(1).

With no hole or jump in the graph of h at a = 1, we desire to say that h is continuous there.
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More formally, we make the following definition.

Definition 1.7. A function f is continuous at x = a provided that

(a) f has a limit as x → a,

(b) f is defined at x = a, and

(c) lim
x→a

f (x) = f (a).

Conditions (a) and (b) are technically contained implicitly in (c), but we state them
explicitly to emphasize their individual importance. In words, (c) essentially says that a
function is continuous at x = a provided that its limit as x → a exists and equals its
function value at x = a. If a function is continuous at every point in an interval [a, b], we
say the function is “continuous on [a, b].” If a function is continuous at every point in
its domain, we simply say the function is “continuous.” Thus, continuous functions are
particularly nice: to evaluate the limit of a continuous function at a point, all we need to
do is evaluate the function.

For example, consider p(x) = x2 − 2x + 3. It can be proved that every polynomial is a
continuous function at every real number, and thus if we would like to know limx→2 p(x),
we simply compute

lim
x→2

(x2 − 2x + 3) = 22 − 2 · 2 + 3 = 3.

This route of substituting an input value to evaluate a limit works anytime we know the
function being considered is continuous. Besides polynomial functions, all exponential
functions and the sine and cosine functions are continuous at every point, as are many
other familiar functions and combinations thereof.

Activity 1.19.

This activity builds on your work in Preview Activity 1.7, using the same function f as
given by the graph that is repeated in Figure 1.39

(a) At which values of a does limx→a f (x) not exist?
(b) At which values of a is f (a) not defined?
(c) At which values of a does f have a limit, but limx→a f (x) , f (a)?
(d) State all values of a for which f is not continuous at x = a.

(e) Which condition is stronger, and hence implies the other: f has a limit at x = a
or f is continuous at x = a? Explain, and hence complete the following sen-
tence: “If f at x = a, then f
at x = a,” where you complete the blanks with has a limit and is continuous,
using each phrase once.

C
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Figure 1.39: The graph of y = f (x) for Activity 1.19.

Being differentiable at a point

We recall that a function f is said to be differentiable at x = a whenever f ′(a) exists.
Moreover, for f ′(a) to exist, we know that the function y = f (x) must have a tangent line
at the point (a, f (a)), since f ′(a) is precisely the slope of this line. In order to even ask
if f has a tangent line at (a, f (a)), it is necessary that f be continuous at x = a: if f
fails to have a limit at x = a, if f (a) is not defined, or if f (a) does not equal the value of
limx→a f (x), then it doesn’t even make sense to talk about a tangent line to the curve at
this point.

Indeed, it can be proved formally that if a function f is differentiable at x = a, then it
must be continuous at x = a. So, if f is not continuous at x = a, then it is automatically
the case that f is not differentiable there. For example, in Figure 1.38 from our early
discussion of continuity, both f and g fail to be differentiable at x = 1 because neither
function is continuous at x = 1. But can a function fail to be differentiable at a point
where the function is continuous?

In Figure 1.40, we revisit the situation where a function has a sharp corner at a point,
something we encountered several times in Section 1.4. For the pictured function f , we
observe that f is clearly continuous at a = 1, since limx→1 f (x) = 1 = f (1).

But the function f in Figure 1.40 is not differentiable at a = 1 because f ′(1) fails to
exist. One way to see this is to observe that f ′(x) = −1 for every value of x that is less
than 1, while f ′(x) = +1 for every value of x that is greater than 1. That makes it seem that
either +1 or −1 would be equally good candidates for the value of the derivative at x = 1.
Alternately, we could use the limit definition of the derivative to attempt to compute f ′(1),
and discover that the derivative does not exist. A similar problem will be investigated in
Activity 1.20. Finally, we can also see visually that the function f in Figure 1.40 does not
have a tangent line. When we zoom in on (1, 1) on the graph of f , no matter how closely
we examine the function, it will always look like a “V”, and never like a single line, which
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1

1

f

(1,1)

Figure 1.40: A function f that is continuous at a = 1 but not differentiable at a = 1; at
right, we zoom in on the point (1, 1) in a magnified version of the box in the left-hand plot.

tells us there is no possibility for a tangent line there.

To make a more general observation, if a function does have a tangent line at a given
point, when we zoom in on the point of tangency, the function and the tangent line should
appear essentially indistinguishable7. Conversely, if we have a function such that when we
zoom in on a point the function looks like a single straight line, then the function should
have a tangent line there, and thus be differentiable. Hence, a function that is differentiable
at x = a will, up close, look more and more like its tangent line at (a, f (a)), and thus we
say that a function is differentiable at x = a is locally linear.

To summarize the preceding discussion of differentiability and continuity, we make
several important observations.

• If f is differentiable at x = a, then f is continuous at x = a. Equivalently, if f fails
to be continuous at x = a, then f will not be differentiable at x = a.

• A function can be continuous at a point, but not be differentiable there. In particular,
a function f is not differentiable at x = a if the graph has a sharp corner (or cusp)
at the point (a, f (a)).

• If f is differentiable at x = a, then f is locally linear at x = a. That is, when a
function is differentiable, it looks linear when viewed up close because it resembles
its tangent line there.

7See, for instance, http://gvsu.edu/s/6J for an applet (due to David Austin, GVSU) where zooming in
shows the increasing similarity between the tangent line and the curve.

http://gvsu.edu/s/6J
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Activity 1.20.

In this activity, we explore two different functions and classify the points at which each
is not differentiable. Let g be the function given by the rule g(x) = |x |, and let f be the
function that we have previously explored in Preview Activity 1.7, whose graph is given
again in Figure 1.41.

(a) Reasoning visually, explain why g is differentiable at every point x such that
x , 0.

(b) Use the limit definition of the derivative to show that g′(0) = limh→0
|h |
h .

(c) Explain why g′(0) fails to exist by using small positive and negative values of h.
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Figure 1.41: The graph of y = f (x) for Activity 1.20.

(d) State all values of a for which f is not differentiable at x = a. For each, provide
a reason for your conclusion.

(e) True or false: if a function p is differentiable at x = b, then limx→b p(x) must
exist. Why?

C

Summary

In this section, we encountered the following important ideas:

• A function f has limit L as x → a if and only if f has a left-hand limit at x = a, has a
right-hand limit at x = a, and the left- and right-hand limits are equal. Visually, this
means that there can be a hole in the graph at x = a, but the function must approach
the same single value from either side of x = a.
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• A function f is continuous at x = a whenever f (a) is defined, f has a limit as x → a,
and the value of the limit and the value of the function agree. This guarantees that
there is not a hole or jump in the graph of f at x = a.

• A function f is differentiable at x = a whenever f ′(a) exists, which means that f has a
tangent line at (a, f (a)) and thus f is locally linear at the value x = a. Informally, this
means that the function looks like a line when viewed up close at (a, f (a)) and that
there is not a corner point or cusp at (a, f (a)).

• Of the three conditions discussed in this section (having a limit at x = a, being
continuous at x = a, and being differentiable at x = a), the strongest condition is
being differentiable, and the next strongest is being continuous. In particular, if f is
differentiable at x = a, then f is also continuous at x = a, and if f is continuous at
x = a, then f has a limit at x = a.

Exercises

1. Consider the graph of the function y = p(x) that is provided in Figure 1.42. Assume
that each portion of the graph of p is a straight line, as pictured.
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Figure 1.42: At left, the piecewise linear function y = p(x). At right, axes for plotting
y = p′(x).

(a) State all values of a for which limx→a p(x) does not exist.
(b) State all values of a for which p is not continuous at a.

(c) State all values of a for which p is not differentiable at x = a.

(d) On the axes provided in Figure 1.42, sketch an accurate graph of y = p′(x).
2. For each of the following prompts, give an example of a function that satisfies the

stated criteria. A formula or a graph, with reasoning, is sufficient for each. If no such
example is possible, explain why.
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(a) A function f that is continuous at a = 2 but not differentiable at a = 2.

(b) A function g that is differentiable at a = 3 but does not have a limit at a = 3.

(c) A function h that has a limit at a = −2, is defined at a = −2, but is not
continuous at a = −2.

(d) A function p that satisfies all of the following:

• p(−1) = 3 and limx→−1 p(x) = 2

• p(0) = 1 and p′(0) = 0

• limx→1 p(x) = p(1) and p′(1) does not exist
3. Let h(x) be a function whose derivative y = h′(x) is given by the graph on the right in

Figure 1.43.

(a) Based on the graph of y = h′(x), what can you say about the behavior of the
function y = h(x)?

(b) At which values of x is y = h′(x) not defined? What behavior does this lead
you to expect to see in the graph of y = h(x)?

(c) Is it possible for y = h(x) to have points where h is not continuous? Explain
your answer.

(d) On the axes provided at left, sketch at least two distinct graphs that are
possible functions y = h(x) that each have a derivative y = h′(x) that matches
the provided graph at right. Explain why there are multiple possibilities for
y = h(x).
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Figure 1.43: Axes for plotting y = h(x) and, at right, the graph of y = h′(x).

4. Consider the function g(x) = √|x |.
(a) Use a graph to explain visually why g is not differentiable at x = 0.



76 1.7. LIMITS, CONTINUITY, AND DIFFERENTIABILITY

(b) Use the limit definition of the derivative to show that

g′(0) = lim
h→0

√|h|
h

.

(c) Investigate the value of g′(0) by estimating the limit in (b) using small positive

and negative values of h. For instance, you might compute
√
|−0.01|
0.01 . Be sure to

use several different values of h (both positive and negative), including ones
closer to 0 than 0.01. What do your results tell you about g′(0)?

(d) Use your graph in (a) to sketch an approximate graph of y = g′(x).



1.8. THE TANGENT LINE APPROXIMATION 77

1.8 The Tangent Line Approximation

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is the formula for the general tangent line approximation to a differentiable
function y = f (x) at the point (a, f (a))?

• What is the principle of local linearity and what is the local linearization of a
differentiable function f at a point (a, f (a))?

• How does knowing just the tangent line approximation tell us information about
the behavior of the original function itself near the point of approximation? How
does knowing the second derivative’s value at this point provide us additional
knowledge of the original function’s behavior?

Introduction

Among all functions, linear functions are simplest. One of the powerful consequences
of a function y = f (x) being differentiable at a point (a, f (a)) is that, up close, the
function y = f (x) is locally linear and looks like its tangent line at that point. In certain
circumstances, this allows us to approximate the original function f with a simpler function
L that is linear: this can be advantageous when we have limited information about f
or when f is computationally or algebraically complicated. We will explore all of these
situations in what follows.

It is essential to recall that when f is differentiable at x = a, the value of f ′(a) provides
the slope of the tangent line to y = f (x) at the point (a, f (a)). By knowing both a point
on the line and the slope of the line we are thus able to find the equation of the tangent
line. Preview Activity 1.8 will refresh these concepts through a key example and set the
stage for further study.

Preview Activity 1.8. Consider the function y = g(x) = −x2 + 3x + 2.

(a) Use the limit definition of the derivative to compute a formula for y = g′(x).
(b) Determine the slope of the tangent line to y = g(x) at the value x = 2.

(c) Compute g(2).
(d) Find an equation for the tangent line to y = g(x) at the point (2, g(2)). Write your

result in point-slope form8.

8Recall that a line with slope m that passes through (x0, y0) has equation y − y0 = m(x − x0), and this is
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Figure 1.44: Axes for plotting y = g(x) and its tangent line to the point (2, g(2)).

(e) On the axes provided in Figure 1.44, sketch an accurate, labeled graph of y = g(x)
along with its tangent line at the point (2, g(2)).

./

The tangent line

Given a function f that is differentiable at x = a, we know that we can determine the slope
of the tangent line to y = f (x) at (a, f (a)) by computing f ′(a). The resulting tangent line
through (a, f (a)) with slope m = f ′(a) has its equation in point-slope form given by

y − f (a) = f ′(a)(x − a),
which we can also express as y = f ′(a)(x − a)+ f (a). Note well: there is a major difference
between f (a) and f (x) in this context. The former is a constant that results from using
the given fixed value of a, while the latter is the general expression for the rule that defines
the function. The same is true for f ′(a) and f ′(x): we must carefully distinguish between
these expressions. Each time we find the tangent line, we need to evaluate the function
and its derivative at a fixed a-value.

In Figure 1.45, we see a labeled plot of the graph of a function f and its tangent line
at the point (a, f (a)). Notice how when we zoom in we see the local linearity of f more
clearly highlighted as the function and its tangent line are nearly indistinguishable up
close. This can also be seen dynamically in the java applet at http://gvsu.edu/s/6J.

the point-slope form of the equation.

http://gvsu.edu/s/6J
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x

y
y = f (x)

a

(a, f (a))

y = f ′(a)(x−a)+ f (a)

(a, f (a))

y = f (x)

y = L(x)

Figure 1.45: A function y = f (x) and its tangent line at the point (a, f (a)): at left, from a
distance, and at right, up close. At right, we label the tangent line function by y = L(x)
and observe that for x near a, f (x) ≈ L(x).

The local linearization

A slight change in perspective and notation will enable us to be more precise in discussing
how the tangent line to y = f (x) at (a, f (a)) approximates f near x = a. Taking the
equation for the tangent line and solving for y, we observe that the tangent line is given by

y = f ′(a)(x − a) + f (a)
and moreover that this line is itself a function of x. Replacing the variable y with the
expression L(x), we call

L(x) = f ′(a)(x − a) + f (a)
the local linearization of f at the point (a, f (a)). In this notation, it is particularly important
to observe that L(x) is nothing more than a new name for the tangent line, and that for x
close to a, we have that f (x) ≈ L(x).

Say, for example, that we know that a function y = f (x) has its tangent line approxi-
mation given by L(x) = 3 − 2(x − 1) at the point (1, 3), but we do not know anything else
about the function f . If we are interested in estimating a value of f (x) for x near 1, such
as f (1.2), we can use the fact that f (1.2) ≈ L(1.2) and hence

f (1.2) ≈ L(1.2) = 3 − 2(1.2 − 1) = 3 − 2(0.2) = 2.6.

Again, much of the new perspective here is only in notation since y = L(x) is simply a
new name for the tangent line function. In light of this new notation and our observations
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above, we note that since L(x) = f (a) + f ′(a)(x − a) and L(x) ≈ f (x) for x near a, it also
follows that we can write

f (x) ≈ f (a) + f ′(a)(x − a) for x near a.

The next activity explores some additional important properties of the local lineariza-
tion y = L(x) to a function f at given a-value.

Activity 1.21.

Suppose it is known that for a given differentiable function y = g(x), its local lineariza-
tion at the point where a = −1 is given by L(x) = −2 + 3(x + 1).

(a) Compute the values of L(−1) and L′(−1).
(b) What must be the values of g(−1) and g′(−1)? Why?

(c) Do you expect the value of g(−1.03) to be greater than or less than the value
of g(−1)? Why?

(d) Use the local linearization to estimate the value of g(−1.03).
(e) Suppose that you also know that g′′(−1) = 2. What does this tell you about the

graph of y = g(x) at a = −1?

(f) For x near −1, sketch the graph of the local linearization y = L(x) as well as a
possible graph of y = g(x) on the axes provided in Figure 1.46.

Figure 1.46: Axes for plotting y = L(x) and y = g(x).

C

As we saw in the example provided by Activity 1.21, the local linearization y = L(x)
is a linear function that shares two important values with the function y = f (x) that it is
derived from. In particular, observe that since L(x) = f (a) + f ′(a)(x − a), it follows that
L(a) = f (a). In addition, since L is a linear function, its derivative is its slope. Hence,
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L′(x) = f ′(a) for every value of x, and specifically L′(a) = f ′(a). Therefore, we see that
L is a linear function that has both the same value and the same slope as the function f
at the point (a, f (a)).

In situations where we know the linear approximation y = L(x), we therefore know
the original function’s value and slope at the point of tangency. What remains unknown,
however, is the shape of the function f at the point of tangency. There are essentially four
possibilities, as enumerated in Figure 1.47.

Figure 1.47: Four possible graphs for a nonlinear differentiable function and how it can be
situated relative to its tangent line at a point.

These stem from the fact that there are three options for the value of the second
derivative: either f ′′(a) < 0, f ′′(a) = 0, or f ′′(a) > 0. If f ′′(a) > 0, then we know the
graph of f is concave up, and we see the first possibility on the left, where the tangent line
lies entirely below the curve. If f ′′(a) < 0, then we find ourselves in the second situation
(from left) where f is concave down and the tangent line lies above the curve. In the
situation where f ′′(a) = 0 and f ′′ changes sign at x = a, the concavity of the graph will
change, and we will see either the third or fourth option9. A fifth option (that is not very
interesting) can occur, which is where the function f is linear, and so f (x) = L(x) for all
values of x.

The plots in Figure 1.47 highlight yet another important thing that we can learn from
the concavity of the graph near the point of tangency: whether the tangent line lies above
or below the curve itself. This is key because it tells us whether or not the tangent line
approximation’s values will be too large or too small in comparison to the true value of f .
For instance, in the first situation in the leftmost plot in Figure 1.47 where f ′′(a) > 0, since
the tangent line falls below the curve, we know that L(x) ≤ f (x) for all values of x near a.

We explore these ideas further in the following activity.

Activity 1.22.

This activity concerns a function f (x) about which the following information is known:

9It is possible to have f ′′(a) = 0 and have f ′′ not change sign at x = a, in which case the graph will look
like one of the first two options.
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• f is a differentiable function defined at every real number x

• f (2) = −1
• y = f ′(x) has its graph given in Figure 1.48
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Figure 1.48: At center, a graph of y = f ′(x); at left, axes for plotting y = f (x); at right,
axes for plotting y = f ′′(x).

Your task is to determine as much information as possible about f (especially near the
value a = 2) by responding to the questions below.

(a) Find a formula for the tangent line approximation, L(x), to f at the point
(2,−1).

(b) Use the tangent line approximation to estimate the value of f (2.07). Show your
work carefully and clearly.

(c) Sketch a graph of y = f ′′(x) on the righthand grid in Figure 1.48; label it
appropriately.

(d) Is the slope of the tangent line to y = f (x) increasing, decreasing, or neither
when x = 2? Explain.

(e) Sketch a possible graph of y = f (x) near x = 2 on the lefthand grid in
Figure 1.48. Include a sketch of y = L(x) (found in part (a)). Explain how you
know the graph of y = f (x) looks like you have drawn it.

(f) Does your estimate in (b) over- or under-estimate the true value of f (2.07)?
Why?

C

The idea that a differentiable function looks linear and can be well-approximated by a
linear function is an important one that finds wide application in calculus. For example, by
approximating a function with its local linearization, it is possible to develop an effective



1.8. THE TANGENT LINE APPROXIMATION 83

algorithm to estimate the zeroes of a function. Local linearity also helps us to make further
sense of certain challenging limits. For instance, we have seen that a limit such as

lim
x→0

sin(x)
x

is indeterminate because both its numerator and denominator tend to 0. While there is no
algebra that we can do to simplify sin(x)

x , it is straightforward to show that the linearization
of f (x) = sin(x) at the point (0, 0) is given by L(x) = x. Hence, for values of x near 0,
sin(x) ≈ x. As such, for values of x near 0,

sin(x)
x
≈

x
x
= 1,

which makes plausible the fact that

lim
x→0

sin(x)
x
= 1.

These ideas and other applications of local linearity will be explored later on in our work.

Summary

In this section, we encountered the following important ideas:

• The tangent line to a differentiable function y = f (x) at the point (a, f (a)) is given in
point-slope form by the equation

y − f (a) = f ′(a)(x − a).

• The principle of local linearity tells us that if we zoom in on a point where a function
y = f (x) is differentiable, the function should become indistinguishable from its tangent
line. That is, a differentiable function looks linear when viewed up close. We rename
the tangent line to be the function y = L(x) where L(x) = f (a) + f ′(a)(x − a) and note
that f (x) ≈ L(x) for all x near x = a.

• If we know the tangent line approximation L(x) = f (a) + f ′(a)(x − a), then because
L(a) = f (a) and L′(a) = f ′(a), we also know both the value and the derivative of the
function y = f (x) at the point where x = a. In other words, the linear approximation
tells us the height and slope of the original function. If, in addition, we know the value
of f ′′(a), we then know whether the tangent line lies above or below the graph of
y = f (x) depending on the concavity of f .

Exercises

1. A certain function y = p(x) has its local linearization at a = 3 given by L(x) = −2x + 5.
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(a) What are the values of p(3) and p′(3)? Why?

(b) Estimate the value of p(2.79).
(c) Suppose that p′′(3) = 0 and you know that p′′(x) < 0 for x < 3. Is your

estimate in (b) too large or too small?

(d) Suppose that p′′(x) > 0 for x > 3. Use this fact and the additional information
above to sketch an accurate graph of y = p(x) near x = 3. Include a sketch of
y = L(x) in your work.

2. A potato is placed in an oven, and the potato’s temperature F (in degrees Fahrenheit) at
various points in time is taken and recorded in the following table. Time t is measured
in minutes.

t F(t)
0 70
15 180.5
30 251
45 296
60 324.5
75 342.8
90 354.5

(a) Use a central difference to estimate F ′(60). Use this estimate as needed in
subsequent questions.

(b) Find the local linearization y = L(t) to the function y = F(t) at the point where
a = 60.

(c) Determine an estimate for F(63) by employing the local linearization.

(d) Do you think your estimate in (c) is too large or too small? Why?

3. An object moving along a straight line path has a differentiable position function
y = s(t); s(t) measures the object’s position relative to the origin at time t. It is known
that at time t = 9 seconds, the object’s position is s(9) = 4 feet (i.e., 4 feet to the right
of the origin). Furthermore, the object’s instantaneous velocity at t = 9 is −1.2 feet per
second, and its acceleration at the same instant is 0.08 feet per second per second.

(a) Use local linearity to estimate the position of the object at t = 9.34.

(b) Is your estimate likely too large or too small? Why?

(c) In everyday language, describe the behavior of the moving object at t = 9.
Is it moving toward the origin or away from it? Is its velocity increasing or
decreasing?
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4. For a certain function f , its derivative is known to be f ′(x) = (x − 1)e−x2 . Note that
you do not know a formula for y = f (x).

(a) At what x-value(s) is f ′(x) = 0? Justify your answer algebraically, but include a
graph of f ′ to support your conclusion.

(b) Reasoning graphically, for what intervals of x-values is f ′′(x) > 0? What does
this tell you about the behavior of the original function f ? Explain.

(c) Assuming that f (2) = −3, estimate the value of f (1.88) by finding and using
the tangent line approximation to f at x = 2. Is your estimate larger or smaller
than the true value of f (1.88)? Justify your answer.
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Chapter 2

Computing Derivatives

2.1 Elementary derivative rules

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What are alternate notations for the derivative?

• How can we sometimes use the algebraic structure of a function f (x) to easily
compute a formula for f ′(x)?

• What is the derivative of a power function of the form f (x) = xn? What is the
derivative of an exponential function of form f (x) = ax?

• If we know the derivative of y = f (x), how is the derivative of y = k f (x) computed,
where k is a constant?

• If we know the derivatives of y = f (x) and y = g(x), how is the derivative of
y = f (x) + g(x) computed?

Introduction

In Chapter 1, we developed the concept of the derivative of a function. We now know
that the derivative f ′ of a function f measures the instantaneous rate of change of f with
respect to x as well as the slope of the tangent line to y = f (x) at any given value of x.
To date, we have focused primarily on interpreting the derivative graphically or, in the
context of functions in a physical setting, as a meaningful rate of change. To actually
calculate the value of the derivative at a specific point, we have typically relied on the limit

87
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definition of the derivative.

In this present chapter, we will investigate how the limit definition of the derivative,

f ′(x) = lim
h→0

f (x + h) − f (x)
h

,

leads to interesting patterns and rules that enable us to quickly find a formula for f ′(x)
based on the formula for f (x) without using the limit definition directly. For example, we
already know that if f (x) = x, then it follows that f ′(x) = 1. While we could use the limit
definition of the derivative to confirm this, we know it to be true because f (x) is a linear
function with slope 1 at every value of x. One of our goals is to be able to take standard
functions, say ones such as g(x) = 4x7 − sin(x) + 3ex , and, based on the algebraic form of
the function, be able to apply shortcuts to almost immediately determine the formula for
g′(x).
Preview Activity 2.1. Functions of the form f (x) = xn, where n = 1, 2, 3, . . ., are often
called power functions. The first two questions below revisit work we did earlier in Chapter 1,
and the following questions extend those ideas to higher powers of x.

(a) Use the limit definition of the derivative to find f ′(x) for f (x) = x2.

(b) Use the limit definition of the derivative to find f ′(x) for f (x) = x3.

(c) Use the limit definition of the derivative to find f ′(x) for f (x) = x4. (Hint:
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4. Apply this rule to (x + h)4 within the
limit definition.)

(d) Based on your work in (a), (b), and (c), what do you conjecture is the derivative of
f (x) = x5? Of f (x) = x13?

(e) Conjecture a formula for the derivative of f (x) = xn that holds for any positive
integer n. That is, given f (x) = xn where n is a positive integer, what do you think
is the formula for f ′(x)?

./

Some Key Notation

In addition to our usual f ′ notation for the derivative, there are other ways to symbolically
denote the derivative of a function, as well as the instruction to take the derivative. We
know that if we have a function, say f (x) = x2, that we can denote its derivative by f ′(x),
and we write f ′(x) = 2x. Equivalently, if we are thinking more about the relationship
between y and x, we sometimes denote the derivative of y with respect to x with the
symbol

dy
dx
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which we read “dee-y dee-x.” This notation comes from the fact that the derivative is
related to the slope of a line, and slope is measured by 4y

4x . Note that while we read 4y
4x

as “change in y over change in x,” for the derivative symbol dy
dx , we view this is a single

symbol, not a quotient of two quantities1. For example, if y = x2, we’ll write that the
derivative is dy

dx = 2x.

Furthermore, we use a variant of dy
dx notation to convey the instruction to take the

derivative of a certain quantity with respect to a given variable. In particular, if we write

d
dx

[�]

this means “take the derivative of the quantity in � with respect to x.” To continue our
example above with the squaring function, here we may write d

dx [x2] = 2x.

It is important to note that the independent variable can be different from x. If we
have f (z) = z2, we then write f ′(z) = 2z. Similarly, if y = t2, we can say dy

dt = 2t. And
changing the variable and derivative notation once more, it is also true that d

dq [q2] = 2q.

This notation may also be applied to second derivatives: f ′′(z) = d
dz

[
d f
dz

]
=

d2 f

dz2
.

In what follows, we’ll be working to widely expand our repertoire of functions for
which we can quickly compute the corresponding derivative formula

Constant, Power, and Exponential Functions

So far, we know the derivative formula for two important classes of functions: constant
functions and power functions. For the first kind, observe that if f (x) = c is a constant
function, then its graph is a horizontal line with slope zero at every point. Thus, d

dx [c] = 0.
We summarize this with the following rule.

Constant Functions: For any real number c, if f (x) = c, then f ′(x) = 0.

Thus, if f (x) = 7, then f ′(x) = 0. Similarly, d
dx [
√
3] = 0.

For power functions, from your work in Preview Activity 2.1, you have conjectured that
for any positive integer n, if f (x) = xn, then f ′(x) = nxn−1. Not only can this rule be
formally proved to hold for any positive integer n, but also for any nonzero real number
(positive or negative).

Power Functions: For any nonzero real number, if f (x) = xn, then f ′(x) = nxn−1.

This rule for power functions allows us to find derivatives such as the following:
if g(z) = z−3, then g′(z) = −3z−4. Similarly, if h(t) = t7/5, then dh

dt =
7
5 t2/5; likewise,

d
dq [qπ] = πqπ−1.

1That is, we do not say “dee-y over dee-x.”
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As we next turn to thinking about derivatives of combinations of basic functions, it will
be instructive to have one more type of basic function whose derivative formula we know.
For now, we simply state this rule without explanation or justification; we will explore why
this rule is true in one of the exercises at the end of this section, plus we will encounter
graphical reasoning for why the rule is plausible in Preview Activity 2.2.

Exponential Functions: For any positive real number a, if f (x) = ax , then f ′(x) =
ax ln(a).
For instance, this rule tells us that if f (x) = 2x , then f ′(x) = 2x ln(2). Similarly, for

p(t) = 10t , p′(t) = 10t ln(10). It is especially important to note that when a = e, where e
is the base of the natural logarithm function, we have that

d
dx

[ex] = ex ln(e) = ex

since ln(e) = 1. This is an extremely important property of the function ex : its derivative
function is itself!

Finally, note carefully the distinction between power functions and exponential func-
tions: in power functions, the variable is in the base, as in x2, while in exponential
functions, the variable is in the power, as in 2x . As we can see from the rules, this makes
a big difference in the form of the derivative.

The following activity will check your understanding of the derivatives of the three
basic types of functions noted above.

Activity 2.1.

Use the three rules above to determine the derivative of each of the following functions.
For each, state your answer using full and proper notation, labeling the derivative with
its name. For example, if you are given a function h(z), you should write “h′(z) =” or
“ dhdz =” as part of your response.

(a) f (t) = π
(b) g(z) = 7z

(c) h(w) = w3/4

(d) p(x) = 31/2

(e) r(t) = (√2)t

(f) d
dq [q−1]

(g) m(t) = 1
t3

C
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Constant Multiples and Sums of Functions

Of course, most of the functions we encounter in mathematics are more complicated than
being simply constant, a power of a variable, or a base raised to a variable power. In this
section and several following, we will learn how to quickly compute the derivative of a
function constructed as an algebraic combination of basic functions. For instance, we’d
like to be able to understand how to take the derivative of a polynomial function such as
p(t) = 3t5 − 7t4 + t2 − 9, which is a function made up of constant multiples and sums of
powers of t. To that end, we develop two new rules: the Constant Multiple Rule and the
Sum Rule.

Say we have a function y = f (x) whose derivative formula is known. How is the
derivative of y = k f (x) related to the derivative of the original function? Recall that when
we multiply a function by a constant k, we vertically stretch the graph by a factor of |k |
(and reflect the graph across y = 0 if k < 0). This vertical stretch affects the slope of the
graph, making the slope of the function y = k f (x) be k times as steep as the slope of
y = f (x). In terms of the derivative, this is essentially saying that when we multiply a
function by a factor of k, we change the value of its derivative by a factor of k as well.
Thus2, the Constant Multiple Rule holds:

The Constant Multiple Rule: For any real number k, if f (x) is a differentiable
function with derivative f ′(x), then d

dx [k f (x)] = k f ′(x).
In words, this rule says that “the derivative of a constant times a function is the

constant times the derivative of the function.” For example, if g(t) = 3 · 5t , we have
g′(t) = 3 · 5t ln(5). Similarly, d

dz [5z−2] = 5(−2z−3).
Next we examine what happens when we take a sum of two functions. If we have

y = f (x) and y = g(x), we can compute a new function y = ( f + g)(x) by adding the
outputs of the two functions: ( f + g)(x) = f (x) + g(x). Not only does this result in the
value of the new function being the sum of the values of the two known functions, but also
the slope of the new function is the sum of the slopes of the known functions. Therefore3,
we arrive at the following Sum Rule for derivatives:

The Sum Rule: If f (x) and g(x) are differentiable functions with derivatives f ′(x)
and g′(x) respectively, then d

dx [ f (x) + g(x)] = f ′(x) + g′(x).
In words, the Sum Rule tells us that “the derivative of a sum is the sum of the

derivatives.” It also tells us that any time we take a sum of two differentiable functions, the
result must also be differentiable. Furthermore, because we can view the difference function
y = ( f −g)(x) = f (x)−g(x) as y = f (x)+ (−1 · g(x)), the Sum Rule and Constant Multiple

2The Constant Multiple Rule can be formally proved as a consequence of properties of limits, using the
limit definition of the derivative.

3Like the Constant Multiple Rule, the Sum Rule can be formally proved as a consequence of properties of
limits, using the limit definition of the derivative.
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Rules together tell us that d
dx [ f (x) + (−1 · g(x))] = f ′(x) − g′(x), or that “the derivative of

a difference is the difference of the derivatives.” Hence we can now compute derivatives of
sums and differences of elementary functions. For instance, d

dw (2w + w2) = 2w ln(2) + 2w,
and if h(q) = 3q6 − 4q−3, then h′(q) = 3(6q5) − 4(−3q−4) = 18q5 + 12q−4.

Activity 2.2.

Use only the rules for constant, power, and exponential functions, together with the
Constant Multiple and Sum Rules, to compute the derivative of each function below
with respect to the given independent variable. Note well that we do not yet know any
rules for how to differentiate the product or quotient of functions. This means that
you may have to do some algebra first on the functions below before you can actually
use existing rules to compute the desired derivative formula. In each case, label the
derivative you calculate with its name using proper notation such as f ′(x), h′(z), dr/dt,
etc.

(a) f (x) = x5/3 − x4 + 2x

(b) g(x) = 14ex + 3x5 − x

(c) h(z) = √z + 1
z4
+ 5z

(d) r(t) = √53 t7 − πet + e4

(e) s(y) = (y2 + 1)(y2 − 1)

(f) q(x) = x3 − x + 2
x

(g) p(a) = 3a4 − 2a3 + 7a2 − a + 12

C

In the same way that we have shortcut rules to help us find derivatives, we introduce
some language that is simpler and shorter. Often, rather than say “take the derivative of
f ,” we’ll instead say simply “differentiate f .” This phrasing is tied to the notion of having
a derivative to begin with: if the derivative exists at a point, we say “ f is differentiable,”
which is tied to the fact that f can be differentiated.

As we work more and more with the algebraic structure of functions, it is important to
strive to develop a big picture view of what we are doing. Here, we can note several general
observations based on the rules we have so far. One is that the derivative of any polynomial
function will be another polynomial function, and that the degree of the derivative is one
less than the degree of the original function. For instance, if p(t) = 7t5 − 4t3 + 8t, p is a
degree 5 polynomial, and its derivative, p′(t) = 35t4 − 12t2 + 8, is a degree 4 polynomial.
Additionally, the derivative of any exponential function is another exponential function:
for example, if g(z) = 7 · 2z , then g′(z) = 7 · 2z ln(2), which is also exponential.

Furthermore, while our current emphasis is on learning shortcut rules for finding
derivatives without directly using the limit definition, we should be certain not to lose
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sight of the fact that all of the meaning of the derivative still holds that we developed
in Chapter 1. That is, anytime we compute a derivative, that derivative measures the
instantaneous rate of change of the original function, as well as the slope of the tangent
line at any selected point on the curve. The following activity asks you to combine the
just-developed derivative rules with some key perspectives that we studied in Chapter 1.

Activity 2.3.

Each of the following questions asks you to use derivatives to answer key questions
about functions. Be sure to think carefully about each question and to use proper
notation in your responses.

(a) Find the slope of the tangent line to h(z) = √z + 1
z at the point where z = 4.

(b) A population of cells is growing in such a way that its total number in millions
is given by the function P(t) = 2(1.37)t + 32, where t is measured in days.

i. Determine the instantaneous rate at which the population is growing on
day 4, and include units on your answer.

ii. Is the population growing at an increasing rate or growing at a decreasing
rate on day 4? Explain.

(c) Find an equation for the tangent line to the curve p(a) = 3a4−2a3+7a2−a+12
at the point where a = −1.

(d) What is the difference between being asked to find the slope of the tangent line
(asked in (a)) and the equation of the tangent line (asked in (c))?

C

Summary

In this section, we encountered the following important ideas:

• Given a differentiable function y = f (x), we can express the derivative of f in several
different notations: f ′(x), d f

dx ,
dy
dx , and

d
dx [ f (x)].

• The limit definition of the derivative leads to patterns among certain families of
functions that enable us to compute derivative formulas without resorting directly to
the limit definition. For example, if f is a power function of the form f (x) = xn, then
f ′(x) = nxn−1 for any real number n other than 0. This is called the Rule for Power
Functions.

• We have stated a rule for derivatives of exponential functions in the same spirit as
the rule for power functions: for any positive real number a, if f (x) = ax , then
f ′(x) = ax ln(a).

• If we are given a constant multiple of a function whose derivative we know, or a sum of
functions whose derivatives we know, the Constant Multiple and Sum Rules make it
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straightforward to compute the derivative of the overall function. More formally, if f (x)
and g(x) are differentiable with derivatives f ′(x) and g′(x) and a and b are constants,
then

d
dx

[a f (x) + bg(x)] = a f ′(x) + bg′(x).

Exercises

1. Let f and g be differentiable functions for which the following information is known:
f (2) = 5, g(2) = −3, f ′(2) = −1/2, g′(2) = 2.

(a) Let h be the new function defined by the rule h(x) = 3 f (x)− 4g(x). Determine
h(2) and h′(2).

(b) Find an equation for the tangent line to y = h(x) at the point (2, h(2)).
(c) Let p be the function defined by the rule p(x) = −2 f (x)+ 1

2g(x). Is p increasing,
decreasing, or neither at a = 2? Why?

(d) Estimate the value of p(2.03) by using the local linearization of p at the point
(2, p(2)).

2. Let functions p and q be the piecewise linear functions given by their respective graphs
in Figure 2.1. Use the graphs to answer the following questions.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3
p

q

Figure 2.1: The graphs of p (in blue) and q (in green).

(a) At what values of x is p not differentiable? At what values of x is q not
differentiable? Why?

(b) Let r(x) = p(x) + 2q(x). At what values of x is r not differentiable? Why?

(c) Determine r ′(−2) and r ′(0).
(d) Find an equation for the tangent line to y = r(x) at the point (2, r(2)).
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3. Consider the functions r(t) = tt and s(t) = arccos(t), for which you are given the facts
that r ′(t) = tt (ln(t) + 1) and s′(t) = − 1√

1−t2
. Do not be concerned with where these

derivative formulas come from. We restrict our interest in both functions to the domain
0 < t < 1.

(a) Let w(t) = 3tt − 2 arccos(t). Determine w′(t).
(b) Find an equation for the tangent line to y = w(t) at the point (12,w(12 )).
(c) Let v(t) = tt + arccos(t). Is v increasing or decreasing at the instant t = 1

2?
Why?

4. Let f (x) = ax . The goal of this problem is to explore how the value of a affects the
derivative of f (x), without assuming we know the rule for d

dx [ax] that we have stated
and used in earlier work in this section.

(a) Use the limit definition of the derivative to show that

f ′(x) = lim
h→0

ax · ah − ax

h
.

(b) Explain why it is also true that

f ′(x) = ax · lim
h→0

ah − 1

h
.

(c) Use computing technology and small values of h to estimate the value of

L = lim
h→0

ah − 1

h

when a = 2. Do likewise when a = 3.

(d) Note that it would be ideal if the value of the limit L was 1, for then f would
be a particularly special function: its derivative would be simply ax , which
would mean that its derivative is itself. By experimenting with different values
of a between 2 and 3, try to find a value for a for which

L = lim
h→0

ah − 1

h
= 1.

(e) Compute ln(2) and ln(3). What does your work in (b) and (c) suggest is true
about d

dx [2x] and d
dx [3x]?

(f) How do your investigations in (d) lead to a particularly important fact about
the function f (x) = ex?
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2.2 The sine and cosine functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is a graphical justification for why d
dx [ax] = ax ln(a)?

• What do the graphs of y = sin(x) and y = cos(x) suggest as formulas for their
respective derivatives?

• Once we know the derivatives of sin(x) and cos(x), how do previous derivative
rules work when these functions are involved?

Introduction

Throughout Chapter 2, we will be working to develop shortcut derivative rules that will
help us to bypass the limit definition of the derivative in order to quickly determine the
formula for f ′(x) when we are given a formula for f (x). In Section 2.1, we learned the
rule for power functions, that if f (x) = xn, then f ′(x) = nxn−1, and justified this in part
due to results from different n-values when applying the limit definition of the derivative.
We also stated the rule for exponential functions, that if a is a positive real number and
f (x) = ax , then f ′(x) = ax ln(a). Later in this present section, we are going to work
to conjecture formulas for the sine and cosine functions, primarily through a graphical
argument. To help set the stage for doing so, the following preview activity asks you to
think about exponential functions and why it is reasonable to think that the derivative of
an exponential function is a constant times the exponential function itself.

Preview Activity 2.2. Consider the function g(x) = 2x , which is graphed in Figure 2.2.

(a) At each of x = −2,−1, 0, 1, 2, use a straightedge to sketch an accurate tangent line
to y = g(x).

(b) Use the provided grid to estimate the slope of the tangent line you drew at each
point in (a).

(c) Use the limit definition of the derivative to estimate g′(0) by using small values of
h, and compare the result to your visual estimate for the slope of the tangent line
to y = g(x) at x = 0 in (b).

(d) Based on your work in (a), (b), and (c), sketch an accurate graph of y = g′(x) on
the axes adjacent to the graph of y = g(x).

(e) Write at least one sentence that explains why it is reasonable to think that
g′(x) = cg(x), where c is a constant. In addition, calculate ln(2), and then
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discuss how this value, combined with your work above, reasonably suggests that
g′(x) = 2x ln(2).
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Figure 2.2: At left, the graph of y = g(x) = 2x . At right, axes for plotting y = g′(x).
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The sine and cosine functions

The sine and cosine functions are among the most important functions in all of math-
ematics. Sometimes called the circular functions due to their genesis in the unit circle,
these periodic functions play a key role in modeling repeating phenomena such as the
location of a point on a bicycle tire, the behavior of an oscillating mass attached to a
spring, tidal elevations, and more. Like polynomial and exponential functions, the sine and
cosine functions are considered basic functions, ones that are often used in the building of
more complicated functions. As such, we would like to know formulas for d

dx [sin(x)] and
d
dx [cos(x)], and the next two activities lead us to that end.

Activity 2.4.

Consider the function f (x) = sin(x), which is graphed in Figure 2.3 below. Note
carefully that the grid in the diagram does not have boxes that are 1 × 1, but rather
approximately 1.57 × 1, as the horizontal scale of the grid is π/2 units per box.

(a) At each of x = −2π,−3π
2 ,−π,−

π
2 , 0,

π
2 , π,

3π
2 , 2π, use a straightedge to sketch an

accurate tangent line to y = f (x).
(b) Use the provided grid to estimate the slope of the tangent line you drew at

each point. Pay careful attention to the scale of the grid.
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(c) Use the limit definition of the derivative to estimate f ′(0) by using small values
of h, and compare the result to your visual estimate for the slope of the tangent
line to y = f (x) at x = 0 in (b). Using periodicity, what does this result suggest
about f ′(2π)? about f ′(−2π)?

(d) Based on your work in (a), (b), and (c), sketch an accurate graph of y = f ′(x)
on the axes adjacent to the graph of y = f (x).

(e) What familiar function do you think is the derivative of f (x) = sin(x)?

-1

1

−2π −π π

2π

−2π −π π 2π-1

1

Figure 2.3: At left, the graph of y = f (x) = sin(x).

C

Activity 2.5.

Consider the function g(x) = cos(x), which is graphed in Figure 2.4 below. Note
carefully that the grid in the diagram does not have boxes that are 1 × 1, but rather
approximately 1.57 × 1, as the horizontal scale of the grid is π/2 units per box.

-1

1

−2π −π π 2π −2π −π π 2π-1

1

Figure 2.4: At left, the graph of y = g(x) = cos(x).

(a) At each of x = −2π,−3π
2 ,−π,−

π
2 , 0,

π
2 , π,

3π
2 , 2π, use a straightedge to sketch an

accurate tangent line to y = g(x).
(b) Use the provided grid to estimate the slope of the tangent line you drew at

each point. Again, note the scale of the axes and grid.

(c) Use the limit definition of the derivative to estimate g′( π2 ) by using small values
of h, and compare the result to your visual estimate for the slope of the tangent
line to y = g(x) at x = π

2 in (b). Using periodicity, what does this result suggest
about g′(−3π

2 )? can symmetry on the graph help you estimate other slopes
easily?
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(d) Based on your work in (a), (b), and (c), sketch an accurate graph of y = g′(x)
on the axes adjacent to the graph of y = g(x).

(e) What familiar function do you think is the derivative of g(x) = cos(x)?

C

The results of the two preceding activities suggest that the sine and cosine functions
not only have the beautiful interrelationships that are learned in a course in trigonometry
– connections such as the identities sin2(x) + cos2(x) = 1 and cos(x − π

2 ) = sin(x) – but
that they are even further linked through calculus, as the derivative of each involves the
other. The following rules summarize the results of the activities4.

Sine and Cosine Functions: For all real numbers x,

d
dx

[sin(x)] = cos(x) and
d
dx

[cos(x)] = − sin(x)

We have now added two additional functions to our library of basic functions whose
derivatives we know: power functions, exponential functions, and the sine and cosine
functions. The constant multiple and sum rules still hold, of course, and all of the inherent
meaning of the derivative persists, regardless of the functions that are used to constitute a
given choice of f (x). The following activity puts our new knowledge of the derivatives of
sin(x) and cos(x) to work.

Activity 2.6.

Answer each of the following questions. Where a derivative is requested, be sure to
label the derivative function with its name using proper notation.

(a) Determine the derivative of h(t) = 3 cos(t) − 4 sin(t).
(b) Find the exact slope of the tangent line to y = f (x) = 2x + sin(x)

2 at the point
where x = π

6 .

(c) Find the equation of the tangent line to y = g(x) = x2 + 2 cos(x) at the point
where x = π

2 .

(d) Determine the derivative of p(z) = z4 + 4z + 4 cos(z) − sin( π2 ).
(e) The function P(t) = 24 + 8 sin(t) represents a population of a particular kind

of animal that lives on a small island, where P is measured in hundreds and t
is measured in decades since January 1, 2010. What is the instantaneous rate of
change of P on January 1, 2030? What are the units of this quantity? Write a
sentence in everyday language that explains how the population is behaving at
this point in time.

4These two rules may be formally proved using the limit definition of the derivative and the expansion
identities for sin(x + h) and cos(x + h).
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C

Summary

In this section, we encountered the following important ideas:

• If we consider the graph of an exponential function f (x) = ax (where a > 1), the graph
of f ′(x) behaves similarly, appearing exponential and as a possibly scaled version of the
original function ax . For f (x) = 2x , careful analysis of the graph and its slopes suggests
that d

dx [2x] = 2x ln(2), which is a special case of the rule we stated in Section 2.1.

• By carefully analyzing the graphs of y = sin(x) and y = cos(x), plus using the limit
definition of the derivative at select points, we found that d

dx [sin(x)] = cos(x) and
d
dx [cos(x)] = − sin(x).

• We note that all previously encountered derivative rules still hold, but now may also be
applied to functions involving the sine and cosine, plus all of the established meaning
of the derivative applies to these trigonometric functions as well.

Exercises

1. Suppose that V (t) = 24 · 1.07t + 6 sin(t) represents the value of a person’s investment
portfolio in thousands of dollars in year t, where t = 0 corresponds to January 1, 2010.

(a) At what instantaneous rate is the portfolio’s value changing on January 1, 2012?
Include units on your answer.

(b) Determine the value of V ′′(2). What are the units on this quantity and what
does it tell you about how the portfolio’s value is changing?

(c) On the interval 0 ≤ t ≤ 20, graph the function V (t) = 24 · 1.07t + 6 sin(t) and
describe its behavior in the context of the problem. Then, compare the graphs
of the functions A(t) = 24 · 1.07t and V (t) = 24 · 1.07t + 6 sin(t), as well as
the graphs of their derivatives A′(t) and V ′(t). What is the impact of the term
6 sin(t) on the behavior of the function V (t)?

2. Let f (x) = 3 cos(x) − 2 sin(x) + 6.
(a) Determine the exact slope of the tangent line to y = f (x) at the point where

a = π
4 .

(b) Determine the tangent line approximation to y = f (x) at the point where
a = π.

(c) At the point where a = π
2 , is f increasing, decreasing, or neither?

(d) At the point where a = 3π
2 , does the tangent line to y = f (x) lie above the

curve, below the curve, or neither? How can you answer this question without
even graphing the function or the tangent line?
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3. In this exercise, we explore how the limit definition of the derivative more formally
shows that d

dx [sin(x)] = cos(x). Letting f (x) = sin(x), note that the limit definition of
the derivative tells us that

f ′(x) = lim
h→0

sin(x + h) − sin(x)
h

.

(a) Recall the trigonometric identity for the sine of a sum of angles α and β:
sin(α + β) = sin(α) cos(β) + cos(α) sin(β). Use this identity and some algebra
to show that

f ′(x) = lim
h→0

sin(x)(cos(h) − 1) + cos(x) sin(h)
h

.

(b) Next, note that as h changes, x remains constant. Explain why it therefore
makes sense to say that

f ′(x) = sin(x) · lim
h→0

cos(h) − 1
h

+ cos(x) · lim
h→0

sin(h)
h

.

(c) Finally, use small values of h to estimate the values of the two limits in (c):

lim
h→0

cos(h) − 1
h

and lim
h→0

sin(h)
h

.

(d) What do your results in (c) thus tell you about f ′(x)?
(e) By emulating the steps taken above, use the limit definition of the derivative to

argue convincingly that d
dx [cos(x)] = − sin(x).
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2.3 The product and quotient rules

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How does the algebraic structure of a function direct us in computing its derivative
using shortcut rules?

• How do we compute the derivative of a product of two basic functions in terms of
the derivatives of the basic functions?

• How do we compute the derivative of a quotient of two basic functions in terms of
the derivatives of the basic functions?

• How do the product and quotient rules combine with the sum and constant
multiple rules to expand the library of functions we can quickly differentiate?

Introduction

So far, the basic functions we know how to differentiate include power functions (xn),
exponential functions (ax ), and the two fundamental trigonometric functions (sin(x) and
cos(x)). With the sum rule and constant multiple rules, we can also compute the derivative
of combined functions such as

f (x) = 7x11 − 4 · 9x + π sin(x) − √3 cos(x),
because the function f is fundamentally a sum of basic functions. Indeed, we can now
quickly say that f ′(x) = 77x10 − 4 · 9x ln(9) + π cos(x) + √3 sin(x).

But we can of course combine basic functions in ways other than multiplying them by
constants and taking sums and differences. For example, we could consider the function
that results from a product of two basic functions, such as

p(z) = z3 cos(z),
or another that is generated by the quotient of two basic functions, one like

q(t) = sin(t)
2t

.

While the derivative of a sum is the sum of the derivatives, it turns out that the rules for
computing derivatives of products and quotients are more complicated. In what follows we
explore why this is the case, what the product and quotient rules actually say, and work to
expand our repertoire of functions we can easily differentiate. To start, Preview Activity 2.3
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asks you to investigate the derivative of a product and quotient of two polynomials.

Preview Activity 2.3. Let f and g be the functions defined by f (t) = 2t2 and g(t) = t3+4t.

(a) Determine f ′(t) and g′(t).
(b) Let p(t) = 2t2(t3 + 4t) and observe that p(t) = f (t) · g(t). Rewrite the formula for

p by distributing the 2t2 term. Then, compute p′(t) using the sum and constant
multiple rules.

(c) True or false: p′(t) = f ′(t) · g′(t).

(d) Let q(t) = t3 + 4t
2t2

and observe that q(t) = g(t)
f (t) . Rewrite the formula for q by

dividing each term in the numerator by the denominator and simplify to write q
as a sum of constant multiples of powers of t. Then, compute q′(t) using the sum
and constant multiple rules.

(e) True or false: q′(t) = g′(t)
f ′(t) .

./

The product rule

As parts (b) and (d) of Preview Activity 2.3 show, it is not true in general that the derivative
of a product of two functions is the product of the derivatives of those functions. Indeed, the
rule for differentiating a function of the form p(x) = f (x) · g(x) in terms of the derivatives
of f and g is more complicated than simply taking the product of the derivatives of f and
g. To see further why this is the case, as well as to begin to understand how the product
rule actually works, we consider an example involving meaningful functions.

Say that an investor is regularly purchasing stock in a particular company. Let N(t) be
a function that represents the number of shares owned on day t, where t = 0 represents
the first day on which shares were purchased. Further, let S(t) be a function that gives the
value of one share of the stock on day t; note that the units on S(t) are dollars per share.
Moreover, to compute the total value on day t of the stock held by the investor, we use the
function V (t) = N(t) · S(t). By taking the product

V (t) = N(t) shares · S(t) dollars per share,
we have the total value in dollars of the shares held. Observe that over time, both the
number of shares and the value of a given share will vary. The derivative N ′(t) measures
the rate at which the number of shares held is changing, while S′(t) measures the rate at
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which the value per share is changing. The big question we’d like to answer is: how do
these respective rates of change affect the rate of change of the total value function?

To help better understand the relationship among changes in N , S, and V , let’s
consider some specific data. Suppose that on day 100, the investor owns 520 shares of
stock and the stock’s current value is $27.50 per share. This tells us that N(100) = 520
and S(100) = 27.50. In addition, say that on day 100, the investor purchases an additional
12 shares (so the number of shares held is rising at a rate of 12 shares per day), and that
on that same day the price of the stock is rising at a rate of 0.75 dollars per share per
day. Viewed in calculus notation, this tells us that N ′(100) = 12 (shares per day) and
S′(100) = 0.75 (dollars per share per day). At what rate is the value of the investor’s total
holdings changing on day 100?

Observe that the increase in total value comes from two sources: the growing number
of shares, and the rising value of each share. If only the number of shares is rising (and
the value of each share is constant), the rate at which which total value would rise is found
by computing the product of the current value of the shares with the rate at which the
number of shares is changing. That is, the rate at which total value would change is given
by

S(100) · N ′(100) = 27.50
dollars
share

· 12
shares
day

= 330
dollars
day

.

Note particularly how the units make sense and explain that we are finding the rate at
which the total value V is changing, measured in dollars per day. If instead the number of
shares is constant, but the value of each share is rising, then the rate at which the total
value would rise is found similarly by taking the product of the number of shares with the
rate of change of share value. In particular, the rate total value is rising is

N(100) · S′(100) = 520 shares · 0.75
dollars per share

day
= 390

dollars
day

.

Of course, when both the number of shares is changing and the value of each share is
changing, we have to include both of these sources, and hence the rate at which the total
value is rising is

V ′(100) = S(100) · N ′(100) + N(100) · S′(100) = 330 + 390 = 720
dollars
day

.

This tells us that we expect the total value of the investor’s holdings to rise by about
$720 on the 100th day.5

5While this example highlights why the product rule is true, there are some subtle issues to recognize. For
one, if the stock’s value really does rise exactly $0.75 on day 100, and the number of shares really rises by 12
on day 100, then we’d expect that V (101) = N(101) · S(101) = 532 · 28.25 = 15029. If, as noted above, we
expect the total value to rise by $720, then with V (100) = N(100) · S(100) = 520 · 27.50 = 14300, then it
seems like we should find that V (101) = V (100) + 720 = 15020. Why do the two results differ by 9? One way
to understand why this difference occurs is to recognize that N ′(100) = 12 represents an instantaneous rate of
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Next, we expand our perspective from the specific example above to the more general
and abstract setting of a product p of two differentiable functions, f and g. If we have
P(x) = f (x) · g(x), our work above suggests that P′(x) = f (x)g′(x) + g(x) f ′(x). Indeed,
a formal proof using the limit definition of the derivative can be given to show that the
following rule, called the product rule, holds in general.

Product Rule: If f and g are differentiable functions, then their product P(x) =
f (x) · g(x) is also a differentiable function, and

P′(x) = f (x)g′(x) + g(x) f ′(x).

In light of the earlier example involving shares of stock, the product rule also makes
sense intuitively: the rate of change of P should take into account both how fast f and g

are changing, as well as how large f and g are at the point of interest. Furthermore, we
note in words what the product rule says: if P is the product of two functions f (the first
function) and g (the second), then “the derivative of P is the first times the derivative of
the second, plus the second times the derivative of the first.” It is often a helpful mental
exercise to say this phrasing aloud when executing the product rule.

For example, if P(z) = z3 · cos(z), we can now use the product rule to differentiate P.
The first function is z3 and the second function is cos(z). By the product rule, P′ will be
given by the first, z3, times the derivative of the second, − sin(z), plus the second, cos(z),
times the derivative of the first, 3z2. That is,

P′(z) = z3(− sin(z)) + cos(z)3z2 = −z3 sin(z) + 3z2 cos(z).
The following activity further explores the use of the product rule.

Activity 2.7.

Use the product rule to answer each of the questions below. Throughout, be sure to
carefully label any derivative you find by name. It is not necessary to algebraically
simplify any of the derivatives you compute.

(a) Let m(w) = 3w174w . Find m′(w).
(b) Let h(t) = (sin(t) + cos(t))t4. Find h′(t).
(c) Determine the slope of the tangent line to the curve y = f (x) at the point

where a = 1 if f is given by the rule f (x) = ex sin(x).
(d) Find the tangent line approximation L(x) to the function y = g(x) at the point

where a = −1 if g is given by the rule g(x) = (x2 + x)2x .
C

change, while our (informal) discussion has also thought of this number as the total change in the number of
shares over the course of a single day. The formal proof of the product rule reconciles this issue by taking the
limit as the change in the input tends to zero.
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The quotient rule

Because quotients and products are closely linked, we can use the product rule to un-
derstand how to take the derivative of a quotient. In particular, let Q(x) be defined by
Q(x) = f (x)/g(x), where f and g are both differentiable functions. We desire a formula
for Q′ in terms of f , g, f ′, and g′. It turns out that Q is differentiable everywhere that
g(x) , 0. Moreover, taking the formula Q = f /g and multiplying both sides by g, we can
observe that

f (x) = Q(x) · g(x).
Thus, we can use the product rule to differentiate f . Doing so,

f ′(x) = Q(x)g′(x) + g(x)Q′(x).
Since we want to know a formula for Q′, we work to solve this most recent equation for
Q′(x), finding first that

Q′(x)g(x) = f ′(x) −Q(x)g′(x).
Dividing both sides by g(x), we have

Q′(x) = f ′(x) −Q(x)g′(x)
g(x) .

Finally, we also recall that Q(x) = f (x)
g(x) . Using this expression in the preceding equation

and simplifying, we have

Q′(x) =
f ′(x) − f (x)

g(x)g
′(x)

g(x)

=
f ′(x) − f (x)

g(x)g
′(x)

g(x) ·
g(x)
g(x)

=
g(x) f ′(x) − f (x)g′(x)

g(x)2 .

This shows the fundamental argument for why the quotient rule holds.

Quotient Rule: If f and g are differentiable functions, then their quotient Q(x) = f (x)
g(x)

is also a differentiable function for all x where g(x) , 0, and

Q′(x) = g(x) f ′(x) − f (x)g′(x)
g(x)2 .

Like the product rule, it can be helpful to think of the quotient rule verbally. If a
function Q is the quotient of a top function f and a bottom function g, then Q′ is given
by “the bottom times the derivative of the top, minus the top times the derivative of
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the bottom, all over the bottom squared.” For example, if Q(t) = sin(t)/2t , then we can
identify the top function as sin(t) and the bottom function as 2t . By the quotient rule, we
then have that Q′ will be given by the bottom, 2t , times the derivative of the top, cos(t),
minus the top, sin(t), times the derivative of the bottom, 2t ln(2), all over the bottom
squared, (2t )2. That is,

Q′(t) = 2t cos(t) − sin(t)2t ln(2)
(2t )2 .

In this particular example, it is possible to simplify Q′(t) by removing a factor of 2t from
both the numerator and denominator, hence finding that

Q′(t) = cos(t) − sin(t) ln(2)
2t

.

In general, we must be careful in doing any such simplification, as we don’t want to
correctly execute the quotient rule but then find an incorrect overall derivative due to an
algebra error. As such, we will often place more emphasis on correctly using derivative
rules than we will on simplifying the result that follows. The next activity further explores
the use of the quotient rule.

Activity 2.8.

Use the quotient rule to answer each of the questions below. Throughout, be sure to
carefully label any derivative you find by name. That is, if you’re given a formula for
f (x), clearly label the formula you find for f ′(x). It is not necessary to algebraically
simplify any of the derivatives you compute.

(a) Let r(z) = 3z

z4 + 1
. Find r ′(z).

(b) Let v(t) = sin(t)
cos(t) + t2

. Find v′(t).

(c) Determine the slope of the tangent line to the curve R(x) = x2 − 2x − 8
x2 − 9

at the

point where x = 0.

(d) When a camera flashes, the intensity I of light seen by the eye is given by the
function

I(t) = 100t
et

,

where I is measured in candles and t is measured in milliseconds. Compute
I ′(0.5), I ′(2), and I ′(5); include appropriate units on each value; and discuss
the meaning of each.

C



108 2.3. THE PRODUCT AND QUOTIENT RULES

Combining rules

One of the challenges to learning to apply various derivative shortcut rules correctly and
effectively is recognizing the fundamental structure of a function. For instance, consider
the function given by

f (x) = x sin(x) + x2

cos(x) + 2 .
How do we decide which rules to apply? Our first task is to recognize the overall structure
of the given function. Observe that the function f is fundamentally a sum of two slightly
less complicated functions, so we can apply the sum rule6 and get

f ′(x) = d
dx

[
x sin(x) + x2

cos(x) + 2
]

=
d
dx

[x sin(x)] + d
dx

[
x2

cos(x) + 2
]

Now, the left-hand term above is a product, so the product rule is needed there, while
the right-hand term is a quotient, so the quotient rule is required. Applying these rules
respectively, we find that

f ′(x) = (x cos(x) + sin(x)) + (cos(x) + 2)2x − x2(− sin(x))
(cos(x) + 2)2

= x cos(x) + sin(x) + 2x cos(x) + 4x2 + x2 sin(x)
(cos(x) + 2)2 .

We next consider how the situation changes with the function defined by

s(y) = y · 7y

y2 + 1
.

Overall, s is a quotient of two simpler function, so the quotient rule will be needed. Here,
we execute the quotient rule and use the notation d

dy to defer the computation of the
derivative of the numerator and derivative of the denominator. Thus,

s′(y) =
(y2 + 1) · d

dy [y · 7y] − y · 7y · d
dy

�
y2 + 1

�

(y2 + 1)2 .

Now, there remain two derivatives to calculate. The first one, d
dy [y · 7y] calls for use of

the product rule, while the second, d
dy

�
y2 + 1

�
takes only an elementary application of the

6When taking a derivative that involves the use of multiple derivative rules, it is often helpful to use the
notation d

dx [ ] to wait to apply subsequent rules. This is demonstrated in each of the two examples presented
here.
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sum rule. Applying these rules, we now have

s′(y) = (y2 + 1)[y · 7y ln(7) + 7y · 1] − y · 7y[2y]
(y2 + 1)2 .

While some minor simplification is possible, we are content to leave s′(y) in its current
form, having found the desired derivative of s. In summary, to compute the derivative of s,
we applied the quotient rule. In so doing, when it was time to compute the derivative of
the top function, we used the product rule; at the point where we found the derivative of
the bottom function, we used the sum rule.

In general, one of the main keys to success in applying derivative rules is to recognize
the structure of the function, followed by the careful and diligent application of relevant
derivative rules. The best way to get good at this process is by doing a large number of
exercises, and the next activity provides some practice and exploration to that end.

Activity 2.9.

Use relevant derivative rules to answer each of the questions below. Throughout, be
sure to use proper notation and carefully label any derivative you find by name.

(a) Let f (r) = (5r3 + sin(r))(4r − 2 cos(r)). Find f ′(r).

(b) Let p(t) = cos(t)
t6 · 6t

. Find p′(t).

(c) Let g(z) = 3z7ez − 2z2 sin(z) + z
z2 + 1

. Find g′(z).
(d) A moving particle has its position in feet at time t in seconds given by the

function s(t) = 3 cos(t) − sin(t)
et

. Find the particle’s instantaneous velocity at

the moment t = 1.

(e) Suppose that f (x) and g(x) are differentiable functions and it is known that
f (3) = −2, f ′(3) = 7, g(3) = 4, and g′(3) = −1. If p(x) = f (x) · g(x) and
q(x) = f (x)

g(x) , calculate p′(3) and q′(3).
C

As the algebraic complexity of the functions we are able to differentiate continues to
increase, it is important to remember that all of the derivative’s meaning continues to hold.
Regardless of the structure of the function f , the value of f ′(a) tells us the instantaneous
rate of change of f with respect to x at the moment x = a, as well as the slope of the
tangent line to y = f (x) at the point (a, f (a)).
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Summary

In this section, we encountered the following important ideas:

• If a function is a sum, product, or quotient of simpler functions, then we can use the
sum, product, or quotient rules to differentiate the overall function in terms of the
simpler functions and their derivatives.

• The product rule tells us that if P is a product of differentiable functions f and g

according to the rule P(x) = f (x)g(x), then
P′(x) = f (x)g′(x) + g(x) f ′(x).

• The quotient rule tells us that if Q is a quotient of differentiable functions f and g

according to the rule Q(x) = f (x)
g(x) , then

Q′(x) = g(x) f ′(x) − f (x)g′(x)
g(x)2 .

• The product and quotient rules now complement the constant multiple and sum
rules and enable us to compute the derivative of any function that consists of sums,
constant multiples, products, and quotients of basic functions we already know how to
differentiate. For instance, if F has the form

F(x) = 2a(x) − 5b(x)
c(x) · d(x) ,

then F is fundamentally a quotient, and the numerator is a sum of constant multiples
and the denominator is a product. Hence the derivative of F can be found by applying
the quotient rule and then using the sum and constant multiple rules to differentiate
the numerator and the product rule to differentiate the denominator.

Exercises

1. Let f and g be differentiable functions for which the following information is known:
f (2) = 5, g(2) = −3, f ′(2) = −1/2, g′(2) = 2.

(a) Let h be the new function defined by the rule h(x) = g(x) · f (x). Determine
h(2) and h′(2).

(b) Find an equation for the tangent line to y = h(x) at the point (2, h(2)) (where h
is the function defined in (a)).

(c) Let r be the function defined by the rule r(x) = g(x)
f (x) . Is r increasing, decreasing,

or neither at a = 2? Why?
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(d) Estimate the value of r(2.06) (where r is the function defined in (c)) by using
the local linearization of r at the point (2, r(2)).

2. Consider the functions r(t) = tt and s(t) = arccos(t), for which you are given the facts
that r ′(t) = tt (ln(t) + 1) and s′(t) = − 1√

1−t2
. Do not be concerned with where these

derivative formulas come from. We restrict our interest in both functions to the domain
0 < t < 1.

(a) Let w(t) = tt arccos(t). Determine w′(t).
(b) Find an equation for the tangent line to y = w(t) at the point (12,w(12 )).
(c) Let v(t) = t t

arccos(t) . Is v increasing or decreasing at the instant t = 1
2? Why?

3. Let functions p and q be the piecewise linear functions given by their respective graphs
in Figure 2.5. Use the graphs to answer the following questions.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3
p

q

Figure 2.5: The graphs of p (in blue) and q (in green).

(a) Let r(x) = p(x) · q(x). Determine r ′(−2) and r ′(0).
(b) Are there values of x for which r ′(x) does not exist? If so, which values, and

why?

(c) Find an equation for the tangent line to y = r(x) at the point (2, r(2)).
(d) Let z(x) = q(x)

p(x) . Determine z′(0) and z′(2).
(e) Are there values of x for which z′(x) does not exist? If so, which values, and

why?

4. A farmer with large land holdings has historically grown a wide variety of crops. With
the price of ethanol fuel rising, he decides that it would be prudent to devote more and
more of his acreage to producing corn. As he grows more and more corn, he learns
efficiencies that increase his yield per acre. In the present year, he used 7000 acres of
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his land to grow corn, and that land had an average yield of 170 bushels per acre. At
the current time, he plans to increase his number of acres devoted to growing corn at a
rate of 600 acres/year, and he expects that right now his average yield is increasing
at a rate of 8 bushels per acre per year. Use this information to answer the following
questions.

(a) Say that the present year is t = 0, that A(t) denotes the number of acres the
farmer devotes to growing corn in year t, Y (t) represents the average yield in
year t (measured in bushels per acre), and C(t) is the total number of bushels
of corn the farmer produces. What is the formula for C(t) in terms of A(t) and
Y (t)? Why?

(b) What is the value of C(0)? What does it measure?

(c) Write an expression for C ′(t) in terms of A(t), A′(t), Y (t), and Y ′(t). Explain
your thinking.

(d) What is the value of C ′(0)? What does it measure?

(e) Based on the given information and your work above, estimate the value of
C(1).

5. Let f (v) be the gas consumption (in liters/km) of a car going at velocity v (in km/hour).
In other words, f (v) tells you how many liters of gas the car uses to go one kilometer
if it is traveling at v kilometers per hour. In addition, suppose that f (80) = 0.05 and
f ′(80) = 0.0004.

(a) Let g(v) be the distance the same car goes on one liter of gas at velocity v.
What is the relationship between f (v) and g(v)? Hence find g(80) and g′(80).

(b) Let h(v) be the gas consumption in liters per hour of a car going at velocity v.
In other words, h(v) tells you how many liters of gas the car uses in one hour if
it is going at velocity v. What is the algebraic relationship between h(v) and
f (v)? Hence find h(80) and h′(80).

(c) How would you explain the practical meaning of these function and derivative
values to a driver who knows no calculus? Include units on each of the function
and derivative values you discuss in your response.
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2.4 Derivatives of other trigonometric functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What are the derivatives of the tangent, cotangent, secant, and cosecant functions?

• How do the derivatives of tan(x), cot(x), sec(x), and csc(x) combine with other
derivative rules we have developed to expand the library of functions we can
quickly differentiate?

Introduction

One of the powerful themes in trigonometry is that the entire subject emanates from a
very simple idea: locating a point on the unit circle.

1

θ

(x,y)

sin(θ)

cos(θ)

Figure 2.6: The unit circle and the definition of the sine and cosine functions.

Because each angle θ corresponds to one and only one point (x, y) on the unit circle,
the x- and y-coordinates of this point are each functions of θ. Indeed, this is the very
definition of cos(θ) and sin(θ): cos(θ) is the x-coordinate of the point on the unit circle
corresponding to the angle θ, and sin(θ) is the y-coordinate. From this simple definition,
all of trigonometry is founded. For instance, the fundamental trigonometric identity,

sin2(θ) + cos2(θ) = 1,

is a restatement of the Pythagorean Theorem, applied to the right triangle shown in
Figure 2.6.
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We recall as well that there are four other trigonometric functions, each defined in
terms of the sine and/or cosine functions. These six trigonometric functions together offer
us a wide range of flexibility in problems involving right triangles. The tangent function is
defined by tan(θ) = sin(θ)

cos(θ) , while the cotangent function is its reciprocal: cot(θ) = cos(θ)
sin(θ) .

The secant function is the reciprocal of the cosine function, sec(θ) = 1
cos(θ) , and the

cosecant function is the reciprocal of the sine function, csc(θ) = 1
sin(θ) .

Because we know the derivatives of the sine and cosine function, and the other four
trigonometric functions are defined in terms of these familiar functions, we can now
develop shortcut differentiation rules for the tangent, cotangent, secant, and cosecant
functions. In this section’s preview activity, we work through the steps to find the derivative
of y = tan(x).

Preview Activity 2.4. Consider the function f (x) = tan(x), and remember that

tan(x) = sin(x)
cos(x) .

(a) What is the domain of f ?

(b) Use the quotient rule to show that one expression for f ′(x) is

f ′(x) = cos(x) cos(x) + sin(x) sin(x)
cos2(x) .

(c) What is the Fundamental Trigonometric Identity? How can this identity be used
to find a simpler form for f ′(x)?

(d) Recall that sec(x) = 1
cos(x) . How can we express f ′(x) in terms of the secant

function?

(e) For what values of x is f ′(x) defined? How does this set compare to the domain
of f ?

./

Derivatives of the cotangent, secant, and cosecant functions

In Preview Activity 2.4, we found that the derivative of the tangent function can be
expressed in several ways, but most simply in terms of the secant function. Next, we
develop the derivative of the cotangent function.

Let g(x) = cot(x). To find g′(x), we observe that g(x) = cos(x)
sin(x) and apply the quotient
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rule. Hence

g′(x) = sin(x)(− sin(x)) − cos(x) cos(x)
sin2(x)

= −
sin2(x) + cos2(x)

sin2(x)
By the Fundamental Trigonometric Identity, we see that g′(x) = − 1

sin2(x) ; recalling that

csc(x) = 1
sin(x) , it follows that we can most simply express g′ by the rule

g′(x) = − csc2(x).
Note that neither g nor g′ is defined when sin(x) = 0, which occurs at every integer
multiple of π. Hence we have the following rule.

Cotangent Function: For all real numbers x such that x , kπ, where k =
0,±1,±2, . . .,

d
dx

[cot(x)] = − csc2(x).

Observe that the shortcut rule for the cotangent function is very similar to the rule we
discovered in Preview Activity 2.4 for the tangent function.

Tangent Function: For all real numbers x such that x , (2k+1)π
2 , where k =

±1,±2, . . .,
d
dx

[tan(x)] = sec2(x).

In the next two activities, we develop the rules for differentiating the secant and
cosecant functions.

Activity 2.10.

Let h(x) = sec(x) and recall that sec(x) = 1
cos(x) .

(a) What is the domain of h?

(b) Use the quotient rule to develop a formula for h′(x) that is expressed completely
in terms of sin(x) and cos(x).

(c) How can you use other relationships among trigonometric functions to write
h′(x) only in terms of tan(x) and sec(x)?

(d) What is the domain of h′? How does this compare to the domain of h?

C
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Activity 2.11.

Let p(x) = csc(x) and recall that csc(x) = 1
sin(x) .

(a) What is the domain of p?

(b) Use the quotient rule to develop a formula for p′(x) that is expressed completely
in terms of sin(x) and cos(x).

(c) How can you use other relationships among trigonometric functions to write
p′(x) only in terms of cot(x) and csc(x)?

(d) What is the domain of p′? How does this compare to the domain of p?

C

The quotient rule has thus enabled us to determine the derivatives of the tangent,
cotangent, secant, and cosecant functions, expanding our overall library of basic functions
we can differentiate. Moreover, we observe that just as the derivative of any polynomial
function is a polynomial, and the derivative of any exponential function is another
exponential function, so it is that the derivative of any basic trigonometric function is
another function that consists of basic trigonometric functions. This makes sense because
all trigonometric functions are periodic, and hence their derivatives will be periodic, too.

As has been and will continue to be the case throughout our work in Chapter 2, the
derivative retains all of its fundamental meaning as an instantaneous rate of change and
as the slope of the tangent line to the function under consideration. Our present work
primarily expands the list of functions for which we can quickly determine a formula for
the derivative. Moreover, with the addition of tan(x), cot(x), sec(x), and csc(x) to our
library of basic functions, there are many more functions we can differentiate through the
sum, constant multiple, product, and quotient rules.

Activity 2.12.

Answer each of the following questions. Where a derivative is requested, be sure to
label the derivative function with its name using proper notation.

(a) Let f (x) = 5 sec(x) − 2 csc(x). Find the slope of the tangent line to f at the
point where x = π

3 .

(b) Let p(z) = z2 sec(z) − z cot(z). Find the instantaneous rate of change of p at
the point where z = π

4 .

(c) Let h(t) = tan(t)
t2 + 1

− 2et cos(t). Find h′(t).

(d) Let g(r) = r sec(r)
5r

. Find g′(r).
(e) When a mass hangs from a spring and is set in motion, the object’s position

oscillates in a way that the size of the oscillations decrease. This is usually called
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a damped oscillation. Suppose that for a particular object, its displacement from
equilibrium (where the object sits at rest) is modeled by the function

s(t) = 15 sin(t)
et

.

Assume that s is measured in inches and t in seconds. Sketch a graph of
this function for t ≥ 0 to see how it represents the situation described. Then
compute ds/dt, state the units on this function, and explain what it tells you
about the object’s motion. Finally, compute and interpret s′(2).

C

Summary

In this section, we encountered the following important ideas:

• The derivatives of the other four trigonometric functions are

d
dx

[tan(x)] = sec2(x), d
dx

[cot(x)] = − csc2(x),

d
dx

[sec(x)] = sec(x) tan(x), and d
dx

[csc(x)] = − csc(x) cot(x).
Each derivative exists and is defined on the same domain as the original function. For
example, both the tangent function and its derivative are defined for all real numbers x
such that x , kπ

2 , where k = ±1,±2, . . ..

• The above four rules for the derivatives of the tangent, cotangent, secant, and cosecant
can be used along with the rules for power functions, exponential functions, and the
sine and cosine, as well as the sum, constant multiple, product, and quotient rules, to
quickly differentiate a wide range of different functions.

Exercises

1. An object moving vertically has its height at time t (measured in feet, with time in
seconds) given by the function h(t) = 3 + 2 cos(t)

1.2t .

(a) What is the object’s instantaneous velocity when t = 2?

(b) What is the object’s acceleration at the instant t = 2?

(c) Describe in everyday language the behavior of the object at the instant t = 2.

2. Let f (x) = sin(x) cot(x).
(a) Use the product rule to find f ′(x).
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(b) True or false: for all real numbers x, f (x) = cos(x).
(c) Explain why the function that you found in (a) is almost the opposite of the

sine function, but not quite. (Hint: convert all of the trigonometric functions
in (a) to sines and cosines, and work to simplify. Think carefully about the
domain of f and the domain of f ′.)

3. Let p(z) be given by the rule

p(z) = z tan(z)
z2 sec(z) + 1 + 3ez + 1.

(a) Determine p′(z).
(b) Find an equation for the tangent line to p at the point where z = 0.

(c) At z = 0, is p increasing, decreasing, or neither? Why?
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2.5 The chain rule

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is a composite function and how do we recognize its structure algebraically?

• Given a composite function C(x) = f (g(x)) that is built from differentiable func-
tions f and g, how do we compute C ′(x) in terms of f , g, f ′, and g′? What is the
statement of the Chain Rule?

Introduction

In addition to learning how to differentiate a variety of basic functions, we have also been
developing our ability to understand how to use rules to differentiate certain algebraic
combinations of them. For example, we not only know how to take the derivative of
f (x) = sin(x) and g(x) = x2, but now we can quickly find the derivative of each of the
following combinations of f and g:

s(x) = 3x2 − 5 sin(x),
p(x) = x2 sin(x), and

q(x) = sin(x)
x2

.

Finding s′ uses the sum and constant multiple rules, determining p′ requires the product
rule, and q′ can be attained with the quotient rule. Again, we note the importance of
recognizing the algebraic structure of a given function in order to find its derivative:
s(x) = 3g(x) − 5 f (x), p(x) = g(x) · f (x), and q(x) = f (x)

g(x) .
There is one more natural way to algebraically combine basic functions, and that is by

composing them. For instance, let’s consider the function

C(x) = sin(x2),
and observe that any input x passes through a chain of functions. In particular, in the
process that defines the function C(x), x is first squared, and then the sine of the result is
taken. Using an arrow diagram,

x −→ x2 −→ sin(x2).
In terms of the elementary functions f and g, we observe that x is first input in the
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function g, and then the result is used as the input in f . Said differently, we can write

C(x) = f (g(x)) = sin(x2)
and say that C is the composition of f and g. We will refer to g, the function that is first
applied to x, as the inner function, while f , the function that is applied to the result, is the
outer function.

The main question that we answer in the present section is: given a composite function
C(x) = f (g(x)) that is built from differentiable functions f and g, how do we compute
C ′(x) in terms of f , g, f ′, and g′? In the same way that the rate of change of a product
of two functions, p(x) = f (x) · g(x), depends on the behavior of both f and g, it makes
sense intuitively that the rate of change of a composite function C(x) = f (g(x)) will also
depend on some combination of f and g and their derivatives. The rule that describes
how to compute C ′ in terms of f and g and their derivatives will be called the chain rule.

But before we can learn what the chain rule says and why it works, we first need to be
comfortable decomposing composite functions so that we can correctly identify the inner
and outer functions, as we did in the example above with C(x) = sin(x2).
Preview Activity 2.5. For each function given below, identify its fundamental algebraic
structure. In particular, is the given function a sum, product, quotient, or composition
of basic functions? If the function is a composition of basic functions, state a formula
for the inner function g and the outer function f so that the overall composite function
can be written in the form f (g(x)). If the function is a sum, product, or quotient of basic
functions, use the appropriate rule to determine its derivative.

(a) h(x) = tan(2x)
(b) p(x) = 2x tan(x)
(c) r(x) = (tan(x))2

(d) m(x) = etan(x)

(e) w(x) = √x + tan(x)
(f) z(x) = √

tan(x)

./

The chain rule

One of the challenges of differentiating a composite function is that it often cannot be
written in an alternate algebraic form. For instance, the function C(x) = sin(x2) cannot
be expanded or otherwise rewritten, so it presents no alternate approaches to taking the
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derivative. But other composite functions can be expanded or simplified, and these present
a way to begin to explore how the chain rule might have to work. To that end, we consider
two examples of composite functions that present alternate means of finding the derivative.

Example 2.1. Let f (x) = −4x + 7 and g(x) = 3x − 5. Determine a formula for C(x) =
f (g(x)) and compute C ′(x). How is C ′ related to f and g and their derivatives?

Solution. By the rules given for f and g,

C(x) = f (g(x))
= f (3x − 5)
= −4(3x − 5) + 7
= −12x + 20 + 7

= −12x + 27.

Thus, C ′(x) = −12. Noting that f ′(x) = −4 and g′(x) = 3, we observe that C ′ appears to
be the product of f ′ and g′.

From one perspective, Example 2.1 may be too elementary. Linear functions are the
simplest of all functions, and perhaps composing linear functions (which yields another
linear function) does not exemplify the true complexity that is involved with differentiating
a composition of more complicated functions. At the same time, we should remember
the perspective that any differentiable function is locally linear, so any function with a
derivative behaves like a line when viewed up close. From this point of view, the fact that
the derivatives of f and g are multiplied to find the derivative of their composition turns
out to be a key insight.

We now consider a second example involving a nonlinear function to gain further
understanding of how differentiating a composite function involves the basic functions that
combine to form it.

Example 2.2. Let C(x) = sin(2x). Use the double angle identity to rewrite C as a product
of basic functions, and use the product rule to find C ′. Rewrite C ′ in the simplest form
possible.

Solution. By the double angle identity for the sine function,

C(x) = sin(2x) = 2 sin(x) cos(x).
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Applying the product rule and simplifying,

C ′(x) = 2 sin(x)(− sin(x)) + cos(x)(2 cos(x)) = 2(cos2(x) − sin2(x)).
Next, we recall that one of the double angle identities for the cosine function tells us that

cos(2x) = cos2(x) − sin2(x).
Substituting this result in our expression for C ′(x), we now have that

C ′(x) = 2 cos(2x).

So from Example 2.2, we see that if C(x) = sin(2x), then C ′(x) = 2 cos(2x). Letting
g(x) = 2x and f (x) = sin(x), we observe that C(x) = f (g(x)). Moreover, with g′(x) = 2
and f ′(x) = cos(x), it follows that we can view the structure of C ′(x) as

C ′(x) = 2 cos(2x) = g′(x) f ′(g(x)).
In this example, we see that for the composite function C(x) = f (g(x)), the derivative C ′

is (as in the example involving linear functions) constituted by multiplying the derivatives
of f and g, but with the special condition that f ′ is evaluated at g(x), rather than at x.

It makes sense intuitively that these two quantities are involved in understanding the
rate of change of a composite function: if we are considering C(x) = f (g(x)) and asking
how fast C is changing at a given x value as x changes, it clearly matters how fast g is
changing at x, as well as how fast f is changing at the value of g(x). It turns out that
this structure holds not only for the functions in Examples 2.1 and 2.2, but indeed for all
differentiable functions7 as is stated in the Chain Rule.

Chain Rule: If g is differentiable at x and f is differentiable at g(x), then the
composite function C defined by C(x) = f (g(x)) is differentiable at x and

C ′(x) = f ′(g(x))g′(x).

As with the product and quotient rules, it is often helpful to think verbally about what
the chain rule says: “If C is a composite function defined by an outer function f and an
inner function g, then C ′ is given by the derivative of the outer function, evaluated at the
inner function, times the derivative of the inner function.”

At least initially in working particular examples requiring the chain rule, it can also
be helpful to clearly identify the inner function g and outer function f , compute their

7Like other differentiation rules, the Chain Rule can be proved formally using the limit definition of the
derivative.
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derivatives individually, and then put all of the pieces together to generate the derivative
of the overall composite function. To see what we mean by this, consider the function

r(x) = (tan(x))2.
The function r is composite, with inner function g(x) = tan(x) and outer function
f (x) = x2. Organizing the key information involving f , g, and their derivatives, we have

f (x) = x2 g(x) = tan(x)
f ′(x) = 2x g′(x) = sec2(x)
f ′(g(x)) = 2 tan(x)

Applying the chain rule, which tells us that r ′(x) = f ′(g(x))g′(x), we find that for
r(x) = (tan(x))2, its derivative is

r ′(x) = 2 tan(x) sec2(x).

As a side note, we remark that another way to write r(x) is r(x) = tan2(x). Observe
that in this format, the composite nature of the function is more implicit, but this is
common notation for powers of trigonometric functions: cos4(x), sin5(x), and sec2(x) are
all composite functions, with the outer function a power function and the inner function a
trigonometric one.

The chain rule now substantially expands the library of functions we can differentiate,
as the following activity demonstrates.

Activity 2.13.

For each function given below, identify an inner function g and outer function f to
write the function in the form f (g(x)). Then, determine f ′(x), g′(x), and f ′(g(x)), and
finally apply the chain rule to determine the derivative of the given function.

(a) h(x) = cos(x4)
(b) p(x) = √

tan(x)
(c) s(x) = 2sin(x)

(d) z(x) = cot5(x)
(e) m(x) = (sec(x) + ex)9

C

Using multiple rules simultaneously

The chain rule now joins the sum, constant multiple, product, and quotient rules in
our collection of the different techniques for finding the derivative of a function through
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understanding its algebraic structure and the basic functions that constitute it. It takes
substantial practice to get comfortable with navigating multiple rules in a single problem;
using proper notation and taking a few extra steps can be particularly helpful as well. We
demonstrate with an example and then provide further opportunity for practice in the
following activity.

Example 2.3. Find a formula for the derivative of h(t) = 3t
2+2t sec4(t).

Solution. We first observe that the most basic structure of h is that it is the product of two
functions: h(t) = a(t) · b(t) where a(t) = 3t

2+2t and b(t) = sec4(t). Therefore, we see that
we will need to use the product rule to differentiate h. When it comes time to differentiate
a and b in their roles in the product rule, we observe that since each is a composite
function, the chain rule will be needed. We therefore begin by working separately to
compute a′(t) and b′(t).

Writing a(t) = f (g(t)) = 3t
2+2t , and finding the derivatives of f and g, we have

f (t) = 3t g(t) = t2 + 2t
f ′(t) = 3t ln(3) g′(t) = 2t + 2
f ′(g(t)) = 3t

2+2t ln(3)

Thus, by the chain rule, it follows that a′(t) = f ′(g(t))g′(t) = 3t
2+2t ln(3)(2t + 2).

Turning next to b, we write b(t) = r(s(t)) = sec4(t) and find the derivatives of r and g.
Doing so,

r(t) = t4 s(t) = sec(t)
r ′(t) = 4t3 s′(t) = sec(t) tan(t)
r ′(s(t)) = 4 sec3(t)

By the chain rule, we now know that b′(t) = r ′(s(t))s′(t) = 4 sec3(t) sec(t) tan(t) =
4 sec4(t) tan(t).

Now we are finally ready to compute the derivative of the overall function h. Recalling
that h(t) = 3t

2+2t sec4(t), by the product rule we have

h′(t) = 3t
2+2t d

dt
[sec4(t)] + sec4(t) d

dt
[3t2+2t ].

From our work above with a and b, we know the derivatives of 3t
2+2t and sec4(t), and

therefore
h′(t) = 3t

2+2t4 sec4(t) tan(t) + sec4(t)3t2+2t ln(3)(2t + 2).
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Activity 2.14.

For each of the following functions, find the function’s derivative. State the rule(s) you
use, label relevant derivatives appropriately, and be sure to clearly identify your overall
answer.

(a) p(r) = 4
√

r6 + 2er

(b) m(v) = sin(v2) cos(v3)

(c) h(y) = cos(10y)
e4y + 1

(d) s(z) = 2z
2 sec(z)

(e) c(x) = sin(ex2)
C

The chain rule now adds substantially to our ability to do different familiar problems
that involve derivatives. Whether finding the equation of the tangent line to a curve,
the instantaneous velocity of a moving particle, or the instantaneous rate of change of
a certain quantity, if the function under consideration involves a composition of other
functions, the chain rule is indispensable.

Activity 2.15.

Use known derivative rules, including the chain rule, as needed to answer each of the
following questions.

(a) Find an equation for the tangent line to the curve y =
√

ex + 3 at the point
where x = 0.

(b) If s(t) = 1

(t2 + 1)3 represents the position function of a particle moving horizon-

tally along an axis at time t (where s is measured in inches and t in seconds),
find the particle’s instantaneous velocity at t = 1. Is the particle moving to the
left or right at that instant?

(c) At sea level, air pressure is 30 inches of mercury. At an altitude of h feet above
sea level, the air pressure, P, in inches of mercury, is given by the function

P = 30e−0.0000323h .

Compute dP/dh and explain what this derivative function tells you about air
pressure, including a discussion of the units on dP/dh. In addition, determine
how fast the air pressure is changing for a pilot of a small plane passing through
an altitude of 1000 feet.

(d) Suppose that f (x) and g(x) are differentiable functions and that the following
information about them is known:
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x f (x) f ′(x) g(x) g′(x)
−1 2 −5 −3 4

2 −3 4 −1 2

If C(x) is a function given by the formula f (g(x)), determine C ′(2). In addition,
if D(x) is the function f ( f (x)), find D′(−1).

C

The composite version of basic function rules

As we gain more experience with differentiating complicated functions, we will become
more comfortable in the process of simply writing down the derivative without taking
multiple steps. We demonstrate part of this perspective here by showing how we can find
a composite rule that corresponds to two of our basic functions. For instance, we know
that d

dx [sin(x)] = cos(x). If we instead want to know

d
dx

[sin(u(x))],

where u is a differentiable function of x, then this requires the chain rule with the sine
function as the outer function. Applying the chain rule,

d
dx

[sin(u(x))] = cos(u(x)) · u′(x).

Similarly, since d
dx [ax] = ax ln(a), it follows by the chain rule that

d
dx

[au(x)] = au(x) ln(a) · u′(x).

In the process of getting comfortable with derivative rules, an excellent exercise is to write
down a list of all basic functions whose derivatives are known, list those derivatives, and
then write the corresponding chain rule for the composite version with the inner function
being an unknown function u(x) and the outer function being the known basic function.
These versions of the chain rule are particularly simple when the inner function is linear,
since the derivative of a linear function is a constant. For instance,

d
dx

�(5x + 7)10�
= 10(5x + 7)9 · 5,

d
dx

[tan(17x)] = 17 sec2(17x), and
d
dx

�
e−3x

�
= −3e−3x .

Summary
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In this section, we encountered the following important ideas:

• A composite function is one where the input variable x first passes through one
function, and then the resulting output passes through another. For example, the
function h(x) = 2sin(x) is composite since x −→ sin(x) −→ 2sin(x).

• Given a composite function C(x) = f (g(x)) that is built from differentiable functions
f and g, the chain rule tells us that we compute C ′(x) in terms of f , g, f ′, and g′

according to the formula
C ′(x) = f ′(g(x))g′(x).

Exercises

1. Consider the basic functions f (x) = x3 and g(x) = sin(x).
(a) Let h(x) = f (g(x)). Find the exact instantaneous rate of change of h at the

point where x = π
4 .

(b) Which function is changing most rapidly at x = 0.25: h(x) = f (g(x)) or
r(x) = g( f (x))? Why?

(c) Let h(x) = f (g(x)) and r(x) = g( f (x)). Which of these functions has a
derivative that is periodic? Why?

2. Let u(x) be a differentiable function. For each of the following functions, determine the
derivative. Each response will involve u and/or u′.

(a) p(x) = eu(x)

(b) q(x) = u(ex)
(c) r(x) = cot(u(x))
(d) s(x) = u(cot(x))
(e) a(x) = u(x4)
(f) b(x) = u4(x)

3. Let functions p and q be the piecewise linear functions given by their respective graphs
in Figure 2.7. Use the graphs to answer the following questions.

(a) Let C(x) = p(q(x)). Determine C ′(0) and C ′(3).
(b) Find a value of x for which C ′(x) does not exist. Explain your thinking.

(c) Let Y (x) = q(q(x)) and Z(x) = q(p(x)). Determine Y ′(−2) and Z ′(0).
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Figure 2.7: The graphs of p (in blue) and q (in green).

4. If a spherical tank of radius 4 feet has h feet of water present in the tank, then the
volume of water in the tank is given by the formula

V =
π

3
h2(12 − h).

(a) At what instantaneous rate is the volume of water in the tank changing with
respect to the height of the water at the instant h = 1? What are the units on
this quantity?

(b) Now suppose that the height of water in the tank is being regulated by an
inflow and outflow (e.g., a faucet and a drain) so that the height of the water at
time t is given by the rule h(t) = sin(πt) + 1, where t is measured in hours (and
h is still measured in feet). At what rate is the height of the water changing
with respect to time at the instant t = 2?

(c) Continuing under the assumptions in (b), at what instantaneous rate is the
volume of water in the tank changing with respect to time at the instant t = 2?

(d) What are the main differences between the rates found in (a) and (c)? Include a
discussion of the relevant units.
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2.6 Derivatives of Inverse Functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is the derivative of the natural logarithm function?

• What are the derivatives of the inverse trigonometric functions arcsin(x) and
arctan(x)?

• If g is the inverse of a differentiable function f , how is g′ computed in terms of f ,
f ′, and g?

Introduction

Much of mathematics centers on the notion of function. Indeed, throughout our study
of calculus, we are investigating the behavior of functions, often doing so with particular
emphasis on how fast the output of the function changes in response to changes in the
input. Because each function represents a process, a natural question to ask is whether or
not the particular process can be reversed. That is, if we know the output that results from
the function, can we determine the input that led to it? Connected to this question, we
now also ask: if we know how fast a particular process is changing, can we determine how
fast the inverse process is changing?

As we have noted, one of the most important functions in all of mathematics is the
natural exponential function f (x) = ex . Because the natural logarithm, g(x) = ln(x), is the
inverse of the natural exponential function, the natural logarithm is similarly important.
One of our goals in this section is to learn how to differentiate the logarithm function,
and thus expand our library of basic functions with known derivative formulas. First,
we investigate a more familiar setting to refresh some of the basic concepts surrounding
functions and their inverses.

Preview Activity 2.6. The equation y = 5
9 (x − 32) relates a temperature given in x

degrees Fahrenheit to the corresponding temperature y measured in degrees Celcius.

(a) Solve the equation y = 5
9 (x − 32) for x to write x (Fahrenheit temperature) in terms

of y (Celcius temperature).

(b) Let C(x) = 5
9 (x − 32) be the function that takes a Fahrenheit temperature as input

and produces the Celcius temperature as output. In addition, let F(y) be the
function that converts a temperature given in y degrees Celcius to the temperature
F(y) measured in degrees Fahrenheit. Use your work in (a) to write a formula for
F(y).
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(c) Next consider the new function defined by p(x) = F(C(x)). Use the formulas for
F and C to determine an expression for p(x) and simplify this expression as much
as possible. What do you observe?

(d) Now, let r(y) = C(F(y)). Use the formulas for F and C to determine an expression
for r(y) and simplify this expression as much as possible. What do you observe?

(e) What is the value of C ′(x)? of F ′(y)? How do these values appear to be related?

./

Basic facts about inverse functions

A function f : A→ B is a rule that associates each element in the set A to one and only
one element in the set B. We call A the domain of f and B the codomain of f . If there
exists a function g : B → A such that g( f (a)) = a for every possible choice of a in the
set A and f (g(b)) = b for every b in the set B, then we say that g is the inverse of f .
We often use the notation f −1 (read “ f -inverse”) to denote the inverse of f . Perhaps the
most essential thing to observe about the inverse function is that it undoes the work of f .
Indeed, if y = f (x), then

f −1(y) = f −1( f (x)) = x,

and this leads us to another key observation: writing y = f (x) and x = f −1(y) say the
exact same thing. The only difference between the two equations is one of perspective –
one is solved for x, while the other is solved for y.

Here we briefly remind ourselves of some key facts about inverse functions. For a
function f : A→ B,

• f has an inverse if and only if f is one-to-one8 and onto9;

• provided f −1 exists, the domain of f −1 is the codomain of f , and the codomain of
f −1 is the domain of f ;

• f −1( f (x)) = x for every x in the domain of f and f ( f −1(y)) = y for every y in the
codomain of f ;

• y = f (x) if and only if x = f −1(y).

The last stated fact reveals a special relationship between the graphs of f and f −1. In
particular, if we consider y = f (x) and a point (x, y) that lies on the graph of f , then it
is also true that x = f −1(y), which means that the point (y, x) lies on the graph of f −1.

8A function f is one-to-one provided that no two distinct inputs lead to the same output.
9A function f is onto provided that every possible element of the codomain can be realized as an output

of the function for some choice of input from the domain.
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This shows us that the graphs of f and f −1 are the reflections of one another across the
line y = x, since reflecting across y = x is precisely the geometric action that swaps the
coordinates in an ordered pair. In Figure 2.8, we see this exemplified for the function
y = f (x) = 2x and its inverse, with the points (−1, 12 ) and (12,−1) highlighting the reflection
of the curves across y = x.

-2 2

-2

2

y = f (x)

y = f−1(x)

(−1, 1
2 )

( 1
2 ,−1)

y = x

Figure 2.8: A graph of a function y = f (x) along with its inverse, y = f −1(x).

To close our review of important facts about inverses, we recall that the natural
exponential function y = f (x) = ex has an inverse function, and its inverse is the natural
logarithm, x = f −1(y) = ln(y). Indeed, writing y = ex is interchangeable with x = ln(y),
plus ln(ex) = x for every real number x and eln(y) = y for every positive real number y.

The derivative of the natural logarithm function

In what follows, we determine a formula for the derivative of g(x) = ln(x). To do so, we
take advantage of the fact that we know the derivative of the natural exponential function,
which is the inverse of g. In particular, we know that writing g(x) = ln(x) is equivalent
to writing eg(x) = x. Now we differentiate both sides of this most recent equation. In
particular, we observe that

d
dx

[
eg(x)

]
=

d
dx

[x].
The righthand side is simply 1; applying the chain rule to the left side, we find that

eg(x)g′(x) = 1.

Since our goal is to determine g′(x), we solve for g′(x), so

g′(x) = 1

eg(x)
.
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Finally, we recall that since g(x) = ln(x), eg(x) = eln(x) = x, and thus

g′(x) = 1

x
.

Natural Logarithm: For all positive real numbers x,
d
dx

[ln(x)] = 1

x
.

This rule for the natural logarithm function now joins our list of other basic derivative
rules that we have already established. There are two particularly interesting things to
note about the fact that d

dx [ln(x)] = 1
x . One is that this rule is restricted to only apply

to positive values of x, as these are the only values for which the original function is
defined. The other is that for the first time in our work, differentiating a basic function
of a particular type has led to a function of a very different nature: the derivative of the
natural logarithm is not another logarithm, nor even an exponential function, but rather a
rational one.

Derivatives of logarithms may now be computed in concert with all of the rules known
to date. For instance, if f (t) = ln(t2 + 1), then by the chain rule, f ′(t) = 1

t2+1
· 2t.

Activity 2.16.

For each function given below, find its derivative.

(a) h(x) = x2 ln(x)

(b) p(t) = ln(t)
et + 1

(c) s(y) = ln(cos(y) + 2)
(d) z(x) = tan(ln(x))
(e) m(z) = ln(ln(z))

C

In addition to the important rule we have derived for the derivative of the natural
log functions, there are additional interesting connections to note between the graphs of
f (x) = ex and f −1(x) = ln(x).

In Figure 2.9, we are reminded that since the natural exponential function has the
property that its derivative is itself, the slope of the tangent to y = ex is equal to the
height of the curve at that point. For instance, at the point A = (ln(0.5), 0.5), the slope
of the tangent line is mA = 0.5, and at B = (ln(5), 5), the tangent line’s slope is mB = 5.
At the corresponding points A′ and B′ on the graph of the natural logarithm function
(which come from reflecting across the line y = x), we know that the slope of the tangent
line is the reciprocal of the x-coordinate of the point (since d

dx [ln(x)] = 1
x ). Thus, with

A′ = (0.5, ln(0.5)), we have mA′ =
1
0.5 = 2, and at B′ = (5, ln(5)), mB′ =

1
5 .



2.6. DERIVATIVES OF INVERSE FUNCTIONS 133
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y = ln(x)
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B
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B′

Figure 2.9: A graph of the function y = ex along with its inverse, y = ln(x), where both
functions are viewed using the input variable x.

In particular, we observe that mA′ =
1
mA

and mB′ =
1

mB
. This is not a coincidence,

but in fact holds for any curve y = f (x) and its inverse, provided the inverse exists. One
rationale for why this is the case is due to the reflection across y = x: in so doing, we
essentially change the roles of x and y, thus reversing the rise and run, which leads to
the slope of the inverse function at the reflected point being the reciprocal of the slope of
the original function. At the close of this section, we will also look at how the chain rule
provides us with an algebraic formulation of this general phenomenon.

Inverse trigonometric functions and their derivatives

Trigonometric functions are periodic, so they fail to be one-to-one, and thus do not have
inverses. However, if we restrict the domain of each trigonometric function, we can force
the function to be one-to-one. For instance, consider the sine function on the domain
[− π2 , π2 ].

Because no output of the sine function is repeated on this interval, the function is
one-to-one and thus has an inverse. In particular, if we view f (x) = sin(x) as having
domain [− π2 , π2 ] and codomain [−1, 1], then there exists an inverse function f −1 such that

f −1 : [−1, 1]→ [−π
2
,
π

2
].

We call f −1 the arcsine (or inverse sine) function and write f −1(y) = arcsin(y). It is
especially important to remember that writing

y = sin(x) and x = arcsin(y)
say the exact same thing. We often read “the arcsine of y” as “the angle whose sine is
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−π
2

π
2

−π
2

π
2

f

f−1

(π
2 ,1)

(1, π
2 )

Figure 2.10: A graph of f (x) = sin(x) (in blue), restricted to the domain [− π2 , π2 ], along
with its inverse, f −1(x) = arcsin(x) (in magenta).

y.” For example, we say that π
6 is the angle whose sine is 1

2 , which can be written more
concisely as arcsin(12 ) = π

6 , which is equivalent to writing sin( π6 ) = 1
2 .

Next, we determine the derivative of the arcsine function. Letting h(x) = arcsin(x),
our goal is to find h′(x). Since h(x) is the angle whose sine is x, it is equivalent to write

sin(h(x)) = x.

Differentiating both sides of the previous equation, we have

d
dx

[sin(h(x))] = d
dx

[x],

and by the fact that the righthand side is simply 1 and by the chain rule applied to the left
side,

cos(h(x))h′(x) = 1.

Solving for h′(x), it follows that

h′(x) = 1

cos(h(x)) .

Finally, we recall that h(x) = arcsin(x), so the denominator of h′(x) is the function
cos(arcsin(x)), or in other words, “the cosine of the angle whose sine is x.” A bit of right
triangle trigonometry allows us to simplify this expression considerably.

Let’s say that θ = arcsin(x), so that θ is the angle whose sine is x. From this, it follows
that we can picture θ as an angle in a right triangle with hypotenuse 1 and a vertical
leg of length x, as shown in Figure 2.11. The horizontal leg must be

√
1 − x2, by the

Pythagorean Theorem. Now, note particularly that θ = arcsin(x) since sin(θ) = x, and
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x1

θ
√

1− x2

Figure 2.11: The right triangle that corresponds to the angle θ = arcsin(x).

recall that we want to know a different expression for cos(arcsin(x)). From the figure,
cos(arcsin(x)) = cos(θ) = √1 − x2.

Thus, returning to our earlier work where we established that if h(x) = arcsin(x), then
h′(x) = 1

cos(arcsin(x)) , we have now shown that

h′(x) = 1
√
1 − x2

.

Inverse sine: For all real numbers x such that −1 < x < 1,
d
dx

[arcsin(x)] = 1
√
1 − x2

.

Activity 2.17.

The following prompts in this activity will lead you to develop the derivative of the
inverse tangent function.

(a) Let r(x) = arctan(x). Use the relationship between the arctangent and tangent
functions to rewrite this equation using only the tangent function.

(b) Differentiate both sides of the equation you found in (a). Solve the resulting
equation for r ′(x), writing r ′(x) as simply as possible in terms of a trigonometric
function evaluated at r(x).

(c) Recall that r(x) = arctan(x). Update your expression for r ′(x) so that it only
involves trigonometric functions and the independent variable x.

(d) Introduce a right triangle with angle θ so that θ = arctan(x). What are the
three sides of the triangle?

(e) In terms of only x and 1, what is the value of cos(arctan(x))?
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(f) Use the results of your work above to find an expression involving only 1 and x
for r ′(x).

C

While derivatives for other inverse trigonometric functions can be established similarly,
we primarily limit ourselves to the arcsine and arctangent functions. With these rules
added to our library of derivatives of basic functions, we can differentiate even more
functions using derivative shortcuts. In Activity 2.18, we see each of these rules at work.

Activity 2.18.

Determine the derivative of each of the following functions.

(a) f (x) = x3 arctan(x) + ex ln(x)
(b) p(t) = 2t arcsin(t)

(c) h(z) = (arcsin(5z) + arctan(4 − z))27
(d) s(y) = cot(arctan(y))
(e) m(v) = ln(sin2(v) + 1)

(f) g(w) = arctan

(
ln(w)
1 + w2

)
C

The link between the derivative of a function and the derivative of its in-
verse

In Figure 2.9, we saw an interesting relationship between the slopes of tangent lines to
the natural exponential and natural logarithm functions at points that corresponded to
reflection across the line y = x. In particular, we observed that for a point such as (ln(2), 2)
on the graph of f (x) = ex , the slope of the tangent line at this point is f ′(ln(2)) = 2,
while at the corresponding point (2, ln(2)) on the graph of f −1(x) = ln(x), the slope of the
tangent line at this point is ( f −1)′(2) = 1

2 , which is the reciprocal of f ′(ln(2)).
That the two corresponding tangent lines having slopes that are reciprocals of one

another is not a coincidence. If we consider the general setting of a differentiable function
f with differentiable inverse g such that y = f (x) if and only if x = g(y), then we know
that f (g(x)) = x for every x in the domain of f −1. Differentiating both sides of this
equation with respect to x, we have

d
dx

[ f (g(x))] = d
dx

[x],

and by the chain rule,
f ′(g(x))g′(x) = 1.
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Solving for g′(x), we have g′(x) = 1
f ′(g(x)) . Here we see that the slope of the tangent line to

the inverse function g at the point (x, g(x)) is precisely the reciprocal of the slope of the
tangent line to the original function f at the point (g(x), f (g(x))) = (g(x), x).

m = g′(b)
y = f (x)

y = g(x)

(a,b)

m = f ′(a)

(b,a)

Figure 2.12: A graph of function y = f (x) along with its inverse, y = g(x) = f −1(x).
Observe that the slopes of the two tangent lines are reciprocals of one another.

To see this more clearly, consider the graph of the function y = f (x) shown in
Figure 2.12, along with its inverse y = g(x). Given a point (a, b) that lies on the graph of
f , we know that (b, a) lies on the graph of g; said differently, f (a) = b and g(b) = a. Now,
applying the rule that g′(x) = 1/ f ′(g(x)) to the value x = b, we have

g′(b) = 1

f ′(g(b)) =
1

f ′(a),

which is precisely what we see in the figure: the slope of the tangent line to g at (b, a)
is the reciprocal of the slope of the tangent line to f at (a, b), since these two lines are
reflections of one another across the line y = x.

Derivative of an inverse function: Suppose that f is a differentiable function with
inverse g and that (a, b) is a point that lies on the graph of f at which f ′(a) , 0.
Then

g′(b) = 1

f ′(a) .
More generally, for any x in the domain of g′, we have g′(x) = 1/ f ′(g(x)).
The rules we derived for ln(x), arcsin(x), and arctan(x) are all just specific examples

of this general property of the derivative of an inverse function. For example, with
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g(x) = ln(x) and f (x) = ex , it follows that

g′(x) = 1

f ′(g(x)) =
1

eln(x)
=

1

x
.

Summary

In this section, we encountered the following important ideas:

• For all positive real numbers x,
d
dx

[ln(x)] = 1

x
.

• For all real numbers x such that −1 < x < 1,
d
dx

[arcsin(x)] = 1
√
1 − x2

. In addition,

for all real numbers x,
d
dx

[arctan(x)] = 1

1 + x2
.

• If g is the inverse of a differentiable function f , then for any point x in the domain of

g′, g′(x) = 1

f ′(g(x)) .

Exercises

1. Determine the derivative of each of the following functions. Use proper notation and
clearly identify the derivative rules you use.

(a) f (x) = ln(2 arctan(x) + 3 arcsin(x) + 5)
(b) r(z) = arctan(ln(arcsin(z)))
(c) q(t) = arctan2(3t) arcsin4(7t)

(d) g(v) = ln

(
arctan(v)

arcsin(v) + v2
)

2. Consider the graph of y = f (x) provided in Figure 2.13 and use it to answer the
following questions.

(a) Use the provided graph to estimate the value of f ′(1).
(b) Sketch an approximate graph of y = f −1(x). Label at least three distinct points

on the graph that correspond to three points on the graph of f .

(c) Based on your work in (a), what is the value of ( f −1)′(−1)? Why?

3. Let f (x) = 1
4 x3 + 4.

(a) Sketch a graph of y = f (x) and explain why f is an invertible function.

(b) Let g be the inverse of f and determine a formula for g.
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y = f (x)

Figure 2.13: A function y = f (x) for use in Exercise 2.

(c) Compute f ′(x), g′(x), f ′(2), and g′(6). What is the special relationship between
f ′(2) and g′(6)? Why?

4. Let h(x) = x + sin(x).
(a) Sketch a graph of y = h(x) and explain why h must be invertible.

(b) Explain why it does not appear to be algebraically possible to determine a
formula for h−1.

(c) Observe that the point ( π2 , π2 + 1) lies on the graph of y = h(x). Determine the
value of (h−1)′( π2 + 1).
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2.7 Derivatives of Functions Given Implicitly

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What does it mean to say that a curve is an implicit function of x, rather than an
explicit function of x?

• How does implicit differentiation enable us to find a formula for dy
dx when y is an

implicit function of x?

• In the context of an implicit curve, how can we use dy
dx to answer important

questions about the tangent line to the curve?

Introduction

In all of our studies with derivatives to date, we have worked in a setting where we can
express a formula for the function of interest explicitly in terms of x. But there are many
interesting curves that are determined by an equation involving x and y for which it is
impossible to solve for y in terms of x. Perhaps the simplest and most natural of all such

A

B

x2 + y2 = 16

-4 4

-4

4
x3 − y3 = 6xy

x

Figure 2.14: At left, the circle given by x2 + y2 = 16. In the middle, the portion of the circle
x2 + y2 = 16 that has been highlighted in the box at left. And at right, the lemniscate
given by x3 − y3 = 6xy.

curves are circles. Because of the circle’s symmetry, for each x value strictly between
the endpoints of the horizontal diameter, there are two corresponding y-values. For
instance, in Figure 2.14, we have labeled A = (−3,√7) and B = (−3,−√7), and these points
demonstrate that the circle fails the vertical line test. Hence, it is impossible to represent
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the circle through a single function of the form y = f (x). At the same time, portions of
the circle can be represented explicitly as a function of x, such as the highlighted arc that
is magnified in the center of Figure 2.14. Moreover, it is evident that the circle is locally
linear, so we ought to be able to find a tangent line to the curve at every point; thus, it
makes sense to wonder if we can compute dy

dx at any point on the circle, even though we
cannot write y explicitly as a function of x. Finally, we note that the righthand curve
in Figure 2.14 is called a lemniscate and is just one of many fascinating possibilities for
implicitly given curves.

In working with implicit functions, we will often be interested in finding an equation for
dy
dx that tells us the slope of the tangent line to the curve at a point (x, y). To do so, it will
be necessary for us to work with y while thinking of y as a function of x, but without being
able to write an explicit formula for y in terms of x. The following preview activity reminds
us of some ways we can compute derivatives of functions in settings where the function’s
formula is not known. For instance, recall the earlier example d

dx [eu(x)] = eu(x)u′(x).
Preview Activity 2.7. Let f be a differentiable function of x (whose formula is not known)
and recall that d

dx [ f (x)] and f ′(x) are interchangeable notations. Determine each of the
following derivatives of combinations of explicit functions of x, the unknown function f ,
and an arbitrary constant c.

(a)
d
dx

�
x2 + f (x)�

(b)
d
dx

�
x2 f (x)�

(c)
d
dx

�
c + x + f (x)2�

(d)
d
dx

�
f (x2)�

(e)
d
dx

[x f (x) + f (cx) + c f (x)]

./

Implicit Differentiation

Because a circle is perhaps the simplest of all curves that cannot be represented explicitly
as a single function of x, we begin our exploration of implicit differentiation with the
example of the circle given by x2 + y2 = 16. It is visually apparent that this curve is locally
linear, so it makes sense for us to want to find the slope of the tangent line to the curve
at any point, and moreover to think that the curve is differentiable. The big question is:
how do we find a formula for dy

dx , the slope of the tangent line to the circle at a given
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point on the circle? By viewing y as an implicit10 function of x, we essentially think of y as
some function whose formula f (x) is unknown, but which we can differentiate. Just as y
represents an unknown formula, so too its derivative with respect to x, dy

dx , will be (at least
temporarily) unknown.

Consider the equation x2 + y2 = 16 and view y as an unknown differentiable function
of x. Differentiating both sides of the equation with respect to x, we have

d
dx

�
x2 + y2

�
=

d
dx

[16] .

On the right, the derivative of the constant 16 is 0, and on the left we can apply the sum
rule, so it follows that

d
dx

�
x2

�
+

d
dx

�
y2

�
= 0.

Next, it is essential that we recognize the different roles being played by x and y. Since x is
the independent variable, it is the variable with respect to which we are differentiating, and
thus d

dx

�
x2

�
= 2x. But y is the dependent variable and y is an implicit function of x. Thus,

when we want to compute d
dx [y2] it is identical to the situation in Preview Activity 2.7

where we computed d
dx [ f (x)2]. In both situations, we have an unknown function being

squared, and we seek the derivative of the result. This requires the chain rule, by which
we find that d

dx [y2] = 2y1 dy
dx . Therefore, continuing our work in differentiating both sides

of x2 + y2 = 16, we now have that

2x + 2y
dy
dx
= 0.

Since our goal is to find an expression for dy
dx , we solve this most recent equation for dy

dx .
Subtracting 2x from both sides and dividing by 2y,

dy
dx
= −

2x
2y
= −

x
y
.

There are several important things to observe about the result that dy
dx = −

x
y . First,

this expression for the derivative involves both x and y. It makes sense that this should be
the case, since for each value of x between −4 and 4, there are two corresponding points
on the circle, and the slope of the tangent line is different at each of these points. Second,
this formula is entirely consistent with our understanding of circles. If we consider the
radius from the origin to the point (a, b), the slope of this line segment is mr =

b
a . The

tangent line to the circle at (a, b) will be perpendicular to the radius, and thus have slope
mt = −

a
b , as shown in Figure 2.15. Finally, the slope of the tangent line is zero at (0, 4) and

10Essentially the idea of an implicit function is that it can be broken into pieces where each piece can be
viewed as an explicit function of x, and the combination of those pieces constitutes the full implicit function.
For the circle, we could choose to take the top half as one explicit function of x, and the bottom half as
another.
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mt = − a
b

(a,b)

mr = b
a

Figure 2.15: The circle given by x2 + y2 = 16 with point (a, b) on the circle and the tangent
line at that point, with labeled slopes of the radial line, mr , and tangent line, mt .

(0,−4), and is undefined at (−4, 0) and (4, 0); all of these values are consistent with the
formula dy

dx = −
x
y .

We consider the following more complicated example to investigate and demonstrate
some additional algebraic issues that arise in problems involving implicit differentiation.

Example 2.4. For the curve given implicitly by x3 + y2 − 2xy = 2, shown in Figure 2.16,
find the slope of the tangent line at (−1, 1).

-3 3

-3

3

x

y

Figure 2.16: The curve x3 + y2 − 2xy = 2.

Solution. We begin by differentiating the curve’s equation implicitly. Taking the derivative
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of each side with respect to x,

d
dx

�
x3 + y2 − 2xy

�
=

d
dx

[2] ,

by the sum rule and the fact that the derivative of a constant is zero, we have

d
dx

[x3] + d
dx

[y2] − d
dx

[2xy] = 0.

For the three derivatives we now must execute, the first uses the simple power rule,
the second requires the chain rule (since y is an implicit function of x), and the third
necessitates the product rule (again since y is a function of x). Applying these rules, we
now find that

3x2 + 2y
dy
dx
− [2x

dy
dx
+ 2y] = 0.

Remembering that our goal is to find an expression for dy
dx so that we can determine the

slope of a particular tangent line, we want to solve the preceding equation for dy
dx . To

do so, we get all of the terms involving dy
dx on one side of the equation and then factor.

Expanding and then subtracting 3x2 − 2y from both sides, it follows that

2y
dy
dx
− 2x

dy
dx
= 2y − 3x2.

Factoring the left side to isolate dy
dx , we have

dy
dx

(2y − 2x) = 2y − 3x2.

Finally, we divide both sides by (2y − 2x) and conclude that

dy
dx
=

2y − 3x2

2y − 2x
.

Here again, the expression for dy
dx depends on both x and y. To find the slope of the

tangent line at (−1, 1), we substitute this point in the formula for dy
dx , using the notation

dy
dx

�����(−1,1)
=

2(1) − 3(−1)2
2(1) − 2(−1) = −

1

4
.

This value matches our visual estimate of the slope of the tangent line shown in Figure 2.16.

Example 2.4 shows that it is possible when differentiating implicitly to have multiple
terms involving dy

dx . Regardless of the particular curve involved, our approach will be
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similar each time. After differentiating, we expand so that each side of the equation is a
sum of terms, some of which involve dy

dx . Next, addition and subtraction are used to get

all terms involving dy
dx on one side of the equation, with all remaining terms on the other.

Finally, we factor to get a single instance of dy
dx , and then divide to solve for dy

dx .

Note, too, that since dy
dx is often a function of both x and y, we use the notation

dy
dx

�����(a,b)

to denote the evaluation of dy
dx at the point (a, b). This is analogous to writing f ′(a) when

f ′ depends on a single variable.

Finally, there is a big difference between writing d
dx and dy

dx . For example,

d
dx

[x2 + y2]

gives an instruction to take the derivative with respect to x of the quantity x2 + y2,
presumably where y is a function of x. On the other hand,

dy
dx

(x2 + y2)

means the product of the derivative of y with respect to x with the quantity x2 + y2.
Understanding this notational subtlety is essential.

The following activities present opportunities to explore several different problems
involving implicit differentiation.

Activity 2.19.

Consider the curve defined by the equation x = y5 − 5y3 + 4y, whose graph is pictured
in Figure 2.17.

(a) Explain why it is not possible to express y as an explicit function of x.

(b) Use implicit differentiation to find a formula for dy/dx.

(c) Use your result from part (b) to find an equation of the line tangent to the
graph of x = y5 − 5y3 + 4y at the point (0, 1).

(d) Use your result from part (b) to determine all of the points at which the graph
of x = y5 − 5y3 + 4y has a vertical tangent line.

C

Two natural questions to ask about any curve involve where the tangent line can be
vertical or horizontal. To be horizontal, the slope of the tangent line must be zero, while
to be vertical, the slope must be undefined. It is typically the case when differentiating
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x

y

Figure 2.17: The curve x = y5 − 5y3 + 4y.

implicitly that the formula for dy
dx is expressed as a quotient of functions of x and y, say

dy
dx
=

p(x, y)
q(x, y) .

Thus, we observe that the tangent line will be horizontal precisely when the numerator is
zero and the denominator is nonzero, making the slope of the tangent line zero. Similarly,
the tangent line will be vertical whenever q(x, y) = 0 and p(x, y) , 0, making the slope
undefined. If both x and y are involved in an equation such as p(x, y) = 0, we try to solve
for one of them in terms of the other, and then use the resulting condition in the original
equation that defines the curve to find an equation in a single variable that we can solve to
determine the point(s) that lie on the curve at which the condition holds. It is not always
possible to execute the desired algebra due to the possibly complicated combinations of
functions that often arise.

Activity 2.20.

Consider the curve defined by the equation y(y2 − 1)(y − 2) = x(x − 1)(x − 2), whose
graph is pictured in Figure 2.18. Through implicit differentiation, it can be shown that

dy
dx
=

(x − 1)(x − 2) + x(x − 2) + x(x − 1)
(y2 − 1)(y − 2) + 2y2(y − 2) + y(y2 − 1) .

Use this fact to answer each of the following questions.

(a) Determine all points (x, y) at which the tangent line to the curve is horizon-
tal. (Use technology appropriately to find the needed zeros of the relevant
polynomial function.)

(b) Determine all points (x, y) at which the tangent line is vertical. (Use technology
appropriately to find the needed zeros of the relevant polynomial function.)
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y

Figure 2.18: The curve y(y2 − 1)(y − 2) = x(x − 1)(x − 2).

(c) Find the equation of the tangent line to the curve at one of the points where
x = 1.

C

The closing activity in this section offers more opportunities to practice implicit
differentiation.

Activity 2.21.

For each of the following curves, use implicit differentiation to find dy/dx and determine
the equation of the tangent line at the given point.

(a) x3 − y3 = 6xy, (−3, 3)
(b) sin(y) + y = x3 + x, (0, 0)
(c) 3xe−xy = y2, (0.619061, 1)

C

Summary

In this section, we encountered the following important ideas:

• When we have an equation involving x and y where y cannot be solved for explicitly in
terms of x, but where portions of the curve can be thought of as being generated by
explicit functions of x, we say that y is an implicit function of x. A good example of
such a curve is the unit circle.

• In the process of implicit differentiation, we take the equation that generates an implicitly
given curve and differentiate both sides with respect to x while treating y as a function
of x. In so doing, the chain rule leads dy

dx to arise, and then we may subsequently solve

for dy
dx using algebra.
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• While dy
dx may now involve both the variables x and y, dy

dx still measures the slope of
the tangent line to the curve, and thus this derivative may be used to decide when the
tangent line is horizontal ( dydx = 0) or vertical ( dydx is undefined), or to find the equation
of the tangent line at a particular point on the curve.

Exercises

1. Consider the curve given by the equation 2y3 + y2 − y5 = x4 − 2x3 + x2. Find all
points at which the tangent line to the curve is horizontal or vertical. Be sure to use a
graphing utility to plot this implicit curve and to visually check the results of algebraic
reasoning that you use to determine where the tangent lines are horizontal and vertical.

2. For the curve given by the equation sin(x + y) + cos(x − y) = 1, find the equation of
the tangent line to the curve at the point ( π2 , π2 ).

3. Implicit differentiation enables us a different perspective from which to see why the
rule d

dx [ax] = ax ln(a) holds, if we assume that d
dx [ln(x)] = 1

x . This exercise leads you
through the key steps to do so.

(a) Let y = ax . Rewrite this equation using the natural logarithm function to write
x in terms of y (and the constant a).

(b) Differentiate both sides of the equation you found in (a) with respect to x,
keeping in mind that y is implicitly a function of x.

(c) Solve the equation you found in (b) for dy
dx , and then use the definition of y to

write dy
dx solely in terms of x. What have you found?
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2.8 Using Derivatives to Evaluate Limits

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How can derivatives be used to help us evaluate indeterminate limits of the form
0
0?

• What does it mean to say that limx→∞ f (x) = L and limx→a f (x) = ∞?
• How can derivatives assist us in evaluating indeterminate limits of the form ∞

∞
?

Introduction

Because differential calculus is based on the definition of the derivative, and the definition
of the derivative involves a limit, there is a sense in which all of calculus rests on limits.
In addition, the limit involved in the limit definition of the derivative is one that always
generates an indeterminate form of 0

0 . If f is a differentiable function for which f ′(x)
exists, then when we consider

f ′(x) = lim
h→0

f (x + h) − f (x)
h

,

it follows that not only does h → 0 in the denominator, but also ( f (x + h) − f (x))→ 0 in
the numerator, since f is continuous. Thus, the fundamental form of the limit involved
in the definition of f ′(x) is 0

0 . Remember, saying a limit has an indeterminate form only
means that we don’t yet know its value and have more work to do: indeed, limits of the
form 0

0 can take on any value, as is evidenced by evaluating f ′(x) for varying values of x
for a function such as f ′(x) = x2.

Of course, we have learned many different techniques for evaluating the limits that
result from the derivative definition, and including a large number of shortcut rules that
enable us to evaluate these limits quickly and easily. In this section, we turn the situation
upside-down: rather than using limits to evaluate derivatives, we explore how to use
derivatives to evaluate certain limits. This topic will combine several different ideas,
including limits, derivative shortcuts, local linearity, and the tangent line approximation.

Preview Activity 2.8. Let h be the function given by h(x) = x5 + x − 2
x2 − 1

.

(a) What is the domain of h?

(b) Explain why lim
x→1

x5 + x − 2
x2 − 1

results in an indeterminate form.



150 2.8. USING DERIVATIVES TO EVALUATE LIMITS

(c) Next we will investigate the behavior of both the numerator and denominator of h
near the point where x = 1. Let f (x) = x5 + x − 2 and g(x) = x2 − 1. Find the
local linearizations of f and g at a = 1, and call these functions L f (x) and Lg(x),
respectively.

(d) Explain why h(x) ≈ L f (x)
Lg(x) for x near a = 1.

(e) Using your work from (c) and (d), evaluate

lim
x→1

L f (x)
Lg(x) .

What do you think your result tells us about lim
x→1

h(x)?

(f) Investigate the function h(x) graphically and numerically near x = 1. What do
you think is the value of lim

x→1
h(x)?

./

Using derivatives to evaluate indeterminate limits of the form 0
0 .

a

g

Lg

f
L f

a
Lg ≈ g

L f ≈ f

Figure 2.19: At left, the graphs of f and g near the value a, along with their tangent line
approximations L f and Lg at x = a. At right, zooming in on the point a and the four
graphs.

The fundamental idea of Preview Activity 2.8 – that we can evaluate an indeterminate
limit of the form 0

0 by replacing each of the numerator and denominator with their local
linearizations at the point of interest – can be generalized in a way that enables us to
easily evaluate a wide range of limits. We begin by assuming that we have a function
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h(x) that can be written in the form h(x) = f (x)
g(x) where f and g are both differentiable at

x = a and for which f (a) = g(a) = 0. We are interested in finding a way to evaluate the
indeterminate limit given by lim

x→a
h(x). In Figure 2.19, we see a visual representation of the

situation involving such functions f and g. In particular, we see that both f and g have
an x-intercept at the point where x = a. In addition, since each function is differentiable,
each is locally linear, and we can find their respective tangent line approximations L f and
Lg at x = a, which are also shown in the figure. Since we are interested in the limit of
f (x)
g(x) as x → a, the individual behaviors of f (x) and g(x) as x → a are key to understand.
Here, we take advantage of the fact that each function and its tangent line approximation
become indistinguishable as x → a.

First, let’s reall that L f (x) = f ′(a)(x − a) + f (a) and Lg(x) = g′(a)(x − a) + g(a). The
critical observation we make is that when taking the limit, because x is getting arbitrarily
close to a, we can replace f with L f and replace g with Lg, and thus we observe that

lim
x→a

f (x)
g(x) = lim

x→a

L f (x)
Lg(x)

= lim
x→a

f ′(a)(x − a) + f (a)
g′(a)(x − a) + g(a) .

Next, we remember a key fundamental assumption: that both f (a) = 0 and g(a) = 0, as
this is precisely what makes the original limit indeterminate. Substituting these values for
f (a) and g(a) in the limit above, we now have

lim
x→a

f (x)
g(x) = lim

x→a

f ′(a)(x − a)
g′(a)(x − a)

= lim
x→a

f ′(a)
g′(a) ,

where the latter equality holds since x is approaching (but not equal to) a, so x−a
x−a = 1.

Finally, we note that f ′(a)
g′(a) is constant with respect to x, and thus

lim
x→a

f (x)
g(x) =

f ′(a)
g′(a) .

We have, of course, implicitly made the assumption that g′(a) , 0, which is essential to
the overall limit having the value f ′(a)

g′(a) . We summarize our work above with the statement
of L’Hopital’s Rule, which is the formal name of the result we have shown.

L’Hopital’s Rule: Let f and g be differentiable at x = a, and suppose that
f (a) = g(a) = 0 and that g′(a) , 0. Then limx→a

f (x)
g(x) =

f ′(a)
g′(a) .

In practice, we typically work with a slightly more general version of L’Hopital’s Rule,
which states that (under the identical assumptions as the boxed rule above and the extra
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assumption that g′ is continuous at x = a)

lim
x→a

f (x)
g(x) = lim

x→a

f ′(x)
g′(x) ,

provided the righthand limit exists. This form reflects the fundamental benefit of L’Hopital’s
Rule: if f (x)

g(x) produces an indeterminate limit of form 0
0 as x → a, it is equivalent to

consider the limit of the quotient of the two functions’ derivatives, f ′(x)
g′(x) . For example, if

we consider the limit from Preview Activity 2.8,

lim
x→1

x5 + x − 2
x2 − 1

,

by L’Hopital’s Rule we have that

lim
x→1

x5 + x − 2
x2 − 1

= lim
x→1

5x4 + 1
2x

=
6

2
= 3.

By being able to replace the numerator and denominator with their respective derivatives,
we often move from an indeterminate limit to one whose value we can easily determine.

Activity 2.22.

Evaluate each of the following limits. If you use L’Hopital’s Rule, indicate where it was
used, and be certain its hypotheses are met before you apply it.

(a) lim
x→0

ln(1 + x)
x

(b) lim
x→π

cos(x)
x

(c) lim
x→1

2 ln(x)
1 − ex−1

(d) lim
x→0

sin(x) − x
cos(2x) − 1

C

While L’Hopital’s Rule can be applied in an entirely algebraic way, it is important to
remember that the genesis of the rule is graphical: the main idea is that the slopes of the
tangent lines to f and g at x = a determine the value of the limit of f (x)

g(x) as x → a. We
see this in Figure 2.20, which is a modified version of Figure 2.19, where we can see from
the grid that f ′(a) = 2 and g′(a) = −1, hence by L’Hopital’s Rule,

lim
x→a

f (x)
g(x) =

f ′(a)
g′(a) =

2

−1
= −2.

Indeed, what we observe is that it’s not the fact that f and g both approach zero that
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a

g

m = g′(a)

f

m = f ′(a)

a m = g′(a)

m = f ′(a)

Figure 2.20: Two functions f and g that satisfy L’Hopital’s Rule.

matters most, but rather the rate at which each approaches zero that determines the value
of the limit. This is a good way to remember what L’Hopital’s Rule says: if f (a) = g(a) = 0,
the the limit of f (x)

g(x) as x → a is given by the ratio of the slopes of f and g at x = a.

Activity 2.23.

In this activity, we reason graphically from the following figure to evaluate limits of
ratios of functions about which some information is known.

1 2 3 4

-2

-1

1

2 f
g

1 2 3 4

-2

-1

1

2
p

q

1 2 3 4

-2

-1

1

2

s

r

Figure 2.21: Three graphs referenced in the questions of Activity 2.23.

(a) Use the left-hand graph to determine the values of f (2), f ′(2), g(2), and g′(2).
Then, evaluate

lim
x→2

f (x)
g(x) .

(b) Use the middle graph to find p(2), p′(2), q(2), and q′(2). Then, determine the
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value of

lim
x→2

p(x)
q(x) .

(c) Use the right-hand graph to compute r(2), r ′(2), s(2), s′(2). Explain why you
cannot determine the exact value of

lim
x→2

r(x)
s(x)

without further information being provided, but that you can determine the
sign of limx→2

r(x)
s(x) . In addition, state what the sign of the limit will be, with

justification.

C

Limits involving ∞

The concept of infinity, denoted ∞, arises naturally in calculus, like it does in much of
mathematics. It is important to note from the outset that ∞ is a concept, but not a number
itself. Indeed, the notion of ∞ naturally invokes the idea of limits. Consider, for example,
the function f (x) = 1

x , whose graph is pictured in Figure 2.22. We note that x = 0 is not

1

1
f (x) = 1

x

Figure 2.22: The graph of f (x) = 1
x .

in the domain of f , so we may naturally wonder what happens as x → 0. As x → 0+, we
observe that f (x) increases without bound. That is, we can make the value of f (x) as large
as we like by taking x closer and closer (but not equal) to 0, while keeping x > 0. This is a
good way to think about what infinity represents: a quantity is tending to infinity if there
is no single number that the quantity is always less than.

Recall that when we write lim
x→a

f (x) = L, this means that can make f (x) as close to L



2.8. USING DERIVATIVES TO EVALUATE LIMITS 155

as we’d like by taking x sufficiently close (but not equal) to a. We thus expand this notation
and language to include the possibility that either L or a can be ∞. For instance, for
f (x) = 1

x , we now write

lim
x→0+

1

x
= ∞,

by which we mean that we can make 1
x as large as we like by taking x sufficiently close

(but not equal) to 0. In a similar way, we naturally write

lim
x→∞

1

x
= 0,

since we can make 1
x as close to 0 as we’d like by taking x sufficiently large (i.e., by letting

x increase without bound).

In general, we understand the notation lim
x→a

f (x) = ∞ to mean that we can make f (x)
as large as we’d like by taking x sufficiently close (but not equal) to a, and the notation
lim
x→∞

f (x) = L to mean that we can make f (x) as close to L as we’d like by taking x

sufficiently large. This notation applies to left- and right-hand limits, plus we can also use
limits involving −∞. For example, returning to Figure 2.22 and f (x) = 1

x , we can say that

lim
x→0−

1

x
= −∞ and lim

x→−∞

1

x
= 0.

Finally, we write
lim
x→∞

f (x) = ∞
when we can make the value of f (x) as large as we’d like by taking x sufficiently large. For
example,

lim
x→∞

x2 = ∞.

Note particularly that limits involving infinity identify vertical and horizontal asymptotes
of a function. If limx→a f (x) = ∞, then x = a is a vertical asymptote of f , while if
limx→∞ f (x) = L, then y = L is a horizontal asymptote of f . Similar statements can be
made using −∞, as well as with left- and right-hand limits as x → a− or x → a+.

In precalculus classes, it is common to study the end behavior of certain families of
functions, by which we mean the behavior of a function as x → ∞ and as x → −∞. Here
we briefly examine a library of some familiar functions and note the values of several
limits involving ∞.

For the natural exponential function ex , we note that limx→∞ ex = ∞ and limx→−∞ ex =
0, while for the related exponential decay function e−x , observe that these limits are re-
versed, with limx→∞ e−x = 0 and limx→−∞ e−x = ∞. Turning to the natural logarithm
function, we have limx→0+ ln(x) = −∞ and limx→∞ ln(x) = ∞. While both ex and ln(x)
grow without bound as x → ∞, the exponential function does so much more quickly than
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the logarithm function does. We’ll soon use limits to quantify what we mean by “quickly.”

-4 4 8

-4

4

8
y = ex

y = ln(x)

-2 2

-64

64

y = f (x)

y = g(x)

10

1
y = sin(x)

Figure 2.23: Graphs of some familiar functions whose end behavior as x → ±∞ is known.
In the middle graph, f (x) = x3 − 16x and g(x) = x4 − 16x2 − 8.

For polynomial functions of the form p(x) = anxn + an−1xn−1 + · · · a1x + a0, the
end behavior depends on the sign of an and whether the highest power n is even or
odd. If n is even and an is positive, then limx→∞ p(x) = ∞ and limx→−∞ p(x) = ∞, as
in the plot of g in Figure 2.23. If instead an is negative, then limx→∞ p(x) = −∞ and
limx→−∞ p(x) = −∞. In the situation where n is odd, then either limx→∞ p(x) = ∞ and
limx→−∞ p(x) = −∞ (which occurs when an is positive, as in the graph of f in Figure 2.23),
or limx→∞ p(x) = −∞ and limx→−∞ p(x) = ∞ (when an is negative).

A function can fail to have a limit as x → ∞. For example, consider the plot of the
sine function at right in Figure 2.23. Because the function continues oscillating between
−1 and 1 as x → ∞, we say that limx→∞ sin(x) does not exist.

Finally, it is straightforward to analyze the behavior of any rational function as x → ∞.
Consider, for example, the function

q(x) = 3x2 − 4x + 5
7x2 + 9x − 10

.

Note that both (3x2−4x+5)→ ∞ as x → ∞ and (7x2+9x−10)→ ∞ as x → ∞. Here we
say that limx→∞ q(x) has indeterminate form ∞

∞
, much like we did when we encountered

limits of the form 0
0 . We can determine the value of this limit through a standard algebraic

approach. Multiplying the numerator and denominator each by 1
x2
, we find that

lim
x→∞

q(x) = lim
x→∞

3x2 − 4x + 5
7x2 + 9x − 10

·

1
x2

1
x2

= lim
x→∞

3 − 4 1
x + 5

1
x2

7 + 9 1
x − 10

1
x2

=
3

7
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since 1
x2
→ 0 and 1

x → 0 as x → ∞. This shows that the rational function q has a
horizontal asymptote at y = 3

7 . A similar approach can be used to determine the limit of
any rational function as x → ∞.

But how should we handle a limit such as

lim
x→∞

x2

ex
?

Here, both x2 → ∞ and ex → ∞, but there is not an obvious algebraic approach that
enables us to find the limit’s value. Fortunately, it turns out that L’Hopital’s Rule extends
to cases involving infinity.

L’Hopital’s Rule (∞): If f and g are differentiable and both approach zero or both
approach ±∞ as x → a (where a is allowed to be ∞) , then

lim
x→a

f (x)
g(x) = lim

x→a

f ′(x)
g′(x) .

(To be technically correct, we need to the additional hypothesis that g′(x) , 0 on an
open interval that contains a or in every neighborhood of infinity if a is ∞; this is almost
always met in practice.)

To evaluate limx→∞
x2

ex , we observe that we can apply L’Hopital’s Rule, since both
x2 → ∞ and ex → ∞. Doing so, it follows that

lim
x→∞

x2

ex
= lim

x→∞

2x
ex
.

This updated limit is still indeterminate and of the form ∞
∞
, but it is simpler since 2x has

replaced x2. Hence, we can apply L’Hopital’s Rule again, by which we find that

lim
x→∞

x2

ex
= lim

x→∞

2x
ex
= lim

x→∞

2

ex
.

Now, since 2 is constant and ex → ∞ as x → ∞, it follows that 2
ex → 0 as x → ∞, which

shows that

lim
x→∞

x2

ex
= 0.

Activity 2.24.

Evaluate each of the following limits. If you use L’Hopital’s Rule, indicate where it was
used, and be certain its hypotheses are met before you apply it.

(a) lim
x→∞

x
ln(x)
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(b) lim
x→∞

ex + x
2ex + x2

(c) lim
x→0+

ln(x)
1
x

(d) lim
x→ π

2
−

tan(x)
x − π

2

(e) lim
x→∞

xe−x

C

When we are considering the limit of a quotient of two functions f (x)
g(x) that results in

an indeterminate form of ∞
∞
, in essence we are asking which function is growing faster

without bound. We say that the function g dominates the function f as x → ∞ provided
that

lim
x→∞

f (x)
g(x) = 0,

whereas f dominates g provided that limx→∞
f (x)
g(x) = ∞. Finally, if the value of limx→∞

f (x)
g(x)

is finite and nonzero, we say that f and g grow at the same rate. For example, from earlier
work we know that limx→∞

x2

ex = 0, so ex dominates x2, while limx→∞
3x2−4x+5
7x2+9x−10

= 3
7 , so

f (x) = 3x2 − 4x + 5 and g(x) = 7x2 + 9x − 10 grow at the same rate.

Summary

In this section, we encountered the following important ideas:

• Derivatives be used to help us evaluate indeterminate limits of the form 0
0 through

L’Hopital’s Rule, which is developed by replacing the functions in the numerator and
denominator with their tangent line approximations. In particular, if f (a) = g(a) = 0
and f and g are differentiable at a, L’Hopital’s Rule tells us that

lim
x→a

f (x)
g(x) = lim

x→a

f ′(x)
g′(x) .

• When we write x → ∞, this means that x is increasing without bound. We thus use
∞ along with limit notation to write limx→∞ f (x) = L, which means we can make
f (x) as close to L as we like by choosing x to be sufficiently large, and similarly
limx→a f (x) = ∞, which means we can make f (x) as large as we like by choosing x
sufficiently close to a.

• A version of L’Hopital’s Rule also allows us to use derivatives to assist us in evaluating
indeterminate limits of the form ∞

∞
. In particular, If f and g are differentiable and both
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approach zero or both approach ±∞ as x → a (where a is allowed to be ∞), then

lim
x→a

f (x)
g(x) = lim

x→a

f ′(x)
g′(x) .

Exercises

1. Let f and g be differentiable functions about which the following information is known:
f (3) = g(3) = 0, f ′(3) = g′(3) = 0, f ′′(3) = −2, and g′′(3) = 1. Let a new function h
be given by the rule h(x) = f (x)

g(x) . On the same set of axes, sketch possible graphs of f
and g near x = 3, and use the provided information to determine the value of

lim
x→3

h(x).

Provide explanation to support your conclusion.

2. Find all vertical and horizontal asymptotes of the function

R(x) = 3(x − a)(x − b)
5(x − a)(x − c),

where a, b, and c are distinct, arbitrary constants. In addition, state all values of x for
which R is not continuous. Sketch a possible graph of R, clearly labeling the values of
a, b, and c.

3. Consider the function g(x) = x2x , which is defined for all x > 0. Observe that
limx→0+ g(x) is indeterminate due to its form of 00. (Think about how we know that
0k = 0 for all k > 0, while b0 = 1 for all b , 0, but that neither rule can apply to 00.)

(a) Let h(x) = ln(g(x)). Explain why h(x) = 2x ln(x).
(b) Next, explain why it is equivalent to write h(x) = 2 ln(x)

1
x

.

(c) Use L’Hopital’s Rule and your work in (b) to compute limx→0+ h(x).
(d) Based on the value of limx→0+ h(x), determine limx→0+ g(x).

4. Recall we say that function g dominates function f provided that limx→∞ f (x) = ∞,
limx→∞ g(x) = ∞, and limx→∞

f (x)
g(x) = 0.

(a) Which function dominates the other: ln(x) or √x?

(b) Which function dominates the other: ln(x) or n
√

x? (n can be any positive
integer)

(c) Explain why ex will dominate any polynomial function.

(d) Explain why xn will dominate ln(x) for any positive integer n.
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(e) Give any example of two nonlinear functions such that neither dominates the
other.



Chapter 3

Using Derivatives

3.1 Using derivatives to identify extreme values

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What are the critical numbers of a function f and how are they connected to
identifying the most extreme values the function achieves?

• How does the first derivative of a function reveal important information about the
behavior of the function, including the function’s extreme values?

• How can the second derivative of a function be used to help identify extreme
values of the function?

Introduction

In many different settings, we are interested in knowing where a function achieves its
least and greatest values. These can be important in applications – say to identify a point
at which maximum profit or minimum cost occurs – or in theory to understand how to
characterize the behavior of a function or a family of related functions. Consider the
simple and familiar example of a parabolic function such as s(t) = −16t2 + 32t + 48 (shown
at left in Figure 3.1) that represents the height of an object tossed vertically: its maximum
value occurs at the vertex of the parabola and represents the highest value that the object
reaches. Moreover, this maximum value identifies an especially important point on the
graph, the point at which the curve changes from increasing to decreasing.

More generally, for any function we consider, we can investigate where its lowest

161
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1 2
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20

30

40
y = s(t)V

y = g(x)

(a,g(a))

(b,g(b))

(c,g(c))

Figure 3.1: At left, s(t) = −16t2 + 24t + 32 whose vertex is (34, 41); at right, a function g

that demonstrates several high and low points.

and highest points occur in comparison to points nearby or to all possible points on the
graph. Given a function f , we say that f (c) is a global or absolute maximum provided
that f (c) ≥ f (x) for all x in the domain of f , and similarly call f (c) a global or absolute
minimum whenever f (c) ≤ f (x) for all x in the domain of f . For instance, for the function
g given at right in Figure 3.1, g has a global maximum of g(c), but g does not appear to
have a global minimum, as the graph of g seems to decrease without bound. We note that
the point (c, g(c)) marks a fundamental change in the behavior of g, where g changes from
increasing to decreasing; similar things happen at both (a, g(a)) and (b, g(b)), although
these points are not global mins or maxes.

For any function f , we say that f (c) is a local maximum or relative maximum provided
that f (c) ≥ f (x) for all x near c, while f (c) is called a local or relative minimum whenever
f (c) ≤ f (x) for all x near c. Any maximum or minimum may be called an extreme value of
f . For example, in Figure 3.1, g has a relative minimum of g(b) at the point (b, g(b)) and a
relative maximum of g(a) at (a, g(a)). We have already identified the global maximum of
g as g(c); this global maximum can also be considered a relative maximum.

We would like to use fundamental calculus ideas to help us identify and classify key
function behavior, including the location of relative extremes. Of course, if we are given a
graph of a function, it is often straightforward to locate these important behaviors visually.
We investigate this situation in the following preview activity.

Preview Activity 3.1. Consider the function h given by the graph in Figure 3.2. Use the
graph to answer each of the following questions.

(a) Identify all of the values of c for which h(c) is a local maximum of h.

(b) Identify all of the values of c for which h(c) is a local minimum of h.
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-2 -1 1 2

-2

-1

1

2
y = h(x)

Figure 3.2: The graph of a function h on the interval [−3, 3].

(c) Does h have a global maximum on the interval [−3, 3]? If so, what is the value of
this global maximum?

(d) Does h have a global minimum on the interval [−3, 3]? If so, what is its value?
(e) Identify all values of c for which h′(c) = 0.

(f) Identify all values of c for which h′(c) does not exist.
(g) True or false: every relative maximum and minimum of h occurs at a point where

h′(c) is either zero or does not exist.

(h) True or false: at every point where h′(c) is zero or does not exist, h has a relative
maximum or minimum.

./

Critical numbers and the first derivative test

If a function has a relative extreme value at a point (c, f (c)), the function must change its
behavior at c regarding whether it is increasing or decreasing before or after the point.

For example, if a continuous function has a relative maximum at c, such as those
pictured in the two leftmost functions in Figure 3.3, then it is both necessary and sufficient
that the function change from being increasing just before c to decreasing just after c. In
the same way, a continuous function has a relative minimum at c if and only if the function
changes from decreasing to increasing at c. See, for instance, the two functions pictured
at right in Figure 3.3. There are only two possible ways for these changes in behavior to
occur: either f ′(c) = 0 or f ′(c) is undefined.
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Figure 3.3: From left to right, a function with a relative maximum where its derivative is
zero; a function with a relative maximum where its derivative is undefined; a function with
neither a maximum nor a minimum at a point where its derivative is zero; a function with
a relative minimum where its derivative is zero; and a function with a relative minimum
where its derivative is undefined.

Because these values of c are so important, we call them critical numbers. More
specifically, we say that a function f has a critical number at x = c provided that c is
in the domain of f , and f ′(c) = 0 or f ′(c) is undefined. Critical numbers provide us
with the only possible locations where the function f may have relative extremes. Note
that not every critical number produces a maximum or minimum; in the middle graph of
Figure 3.3, the function pictured there has a horizontal tangent line at the noted point, but
the function is increasing before and increasing after, so the critical number does not yield
a location where the function is greater than every value nearby, nor less than every value
nearby.

We also sometimes use the terminology that, when c is a critical number, that (c, f (c))
is a critical point of the function, or that f (c) is a critical value .

The first derivative test summarizes how sign changes in the first derivative indicate
the presence of a local maximum or minimum for a given function.

First Derivative Test: If p is a critical number of a continuous function f that is
differentiable near p (except possibly at x = p), then f has a relative maximum at
p if and only if f ′ changes sign from positive to negative at p, and f has a relative
minimum at p if and only if f ′ changes sign from negative to positive at p.

We consider an example to show one way the first derivative test can be used to
identify the relative extreme values of a function.

Example 3.1. Let f be a function whose derivative is given by the formula f ′(x) =
e−2x(3 − x)(x + 1)2. Determine all critical numbers of f and decide whether a relative
maximum, relative minimum, or neither occurs at each.

Solution. Since we already have f ′(x) written in factored form, it is straightforward to
find the critical numbers of f . Since f ′(x) is defined for all values of x, we need only
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determine where f ′(x) = 0. From the equation

e−2x(3 − x)(x + 1)2 = 0

and the zero product property, it follows that x = 3 and x = −1 are critical numbers of f .
(Note particularly that there is no value of x that makes e−2x = 0.)

Next, to apply the first derivative test, we’d like to know the sign of f ′(x) at inputs
near the critical numbers. Because the critical numbers are the only locations at which
f ′ can change sign, it follows that the sign of the derivative is the same on each of the
intervals created by the critical numbers: for instance, the sign of f ′ must be the same for
every x < −1. We create a first derivative sign chart to summarize the sign of f ′ on the
relevant intervals along with the corresponding behavior of f .

sign( f ′)

behav( f )

+++

+

INC −1

+++

+

INC 3

+−+

−

DEC

f ′(x) = e−2x(3− x)(x+1)2

Figure 3.4: The first derivative sign chart for a function f whose derivative is given by the
formula f ′(x) = e−2x(3 − x)(x + 1)2.

The first derivative sign chart in Figure 3.4 comes from thinking about the sign of
each of the terms in the factored form of f ′(x) at one selected point in the interval under
consideration. For instance, for x < −1, we could consider x = −2 and determine the sign
of e−2x , (3 − x), and (x + 1)2 at the value x = −2. We note that both e−2x and (x + 1)2
are positive regardless of the value of x, while (3 − x) is also positive at x = −2. Hence,
each of the three terms in f ′ is positive, which we indicate by writing “+ + +.” Taking
the product of three positive terms obviously results in a value that is positive, which we
denote by the “+” in the interval to the left of x = −1 indicating the overall sign of f ′.
And, since f ′ is positive on that interval, we further know that f is increasing, which we
summarize by writing “INC” to represent the corresponding behavior of f . In a similar
way, we find that f ′ is positive and f is increasing on −1 < x < 3, and f ′ is negative and
f is decreasing for x > 3.

Now, by the first derivative test, to find relative extremes of f we look for critical
numbers at which f ′ changes sign. In this example, f ′ only changes sign at x = 3, where
f ′ changes from positive to negative, and thus f has a relative maximum at x = 3. While
f has a critical number at x = −1, since f is increasing both before and after x = −1, f
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has neither a minimum nor a maximum at x = −1.

Activity 3.1.

Suppose that g(x) is a function continuous for every value of x , 2 whose first

derivative is g′(x) = (x + 4)(x − 1)2
x − 2

. Further, assume that it is known that g has a

vertical asymptote at x = 2.

(a) Determine all critical numbers of g.

(b) By developing a carefully labeled first derivative sign chart, decide whether g
has as a local maximum, local minimum, or neither at each critical number.

(c) Does g have a global maximum? global minimum? Justify your claims.

(d) What is the value of lim
x→∞

g′(x)? What does the value of this limit tell you about

the long-term behavior of g?

(e) Sketch a possible graph of y = g(x).

C

The second derivative test

Recall that the second derivative of a function tells us several important things about the
behavior of the function itself. For instance, if f ′′ is positive on an interval, then we know
that f ′ is increasing on that interval and, consequently, that f is concave up, which also
tells us that throughout the interval the tangent line to y = f (x) lies below the curve at
every point. In this situation where we know that f ′(p) = 0, it turns out that the sign of
the second derivative determines whether f has a local minimum or local maximum at
the critical number p.

In Figure 3.5, we see the four possibilities for a function f that has a critical number p
at which f ′(p) = 0, provided f ′′(p) is not zero on an interval including p (except possibly
at p). On either side of the critical number, f ′′ can be either positive or negative, and
hence f can be either concave up or concave down. In the first two graphs, f does not
change concavity at p, and in those situations, f has either a local minimum or local
maximum. In particular, if f ′(p) = 0 and f ′′(p) < 0, then we know f is concave down at
p with a horizontal tangent line, and this guarantees f has a local maximum there. This
fact, along with the corresponding statement for when f ′′(p) is positive, is stated in the
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Figure 3.5: Four possible graphs of a function f with a horizontal tangent line at a critical
point.

second derivative test.

Second Derivative Test: If p is a critical number of a continuous function f such
that f ′(p) = 0 and f ′′(p) , 0, then f has a relative maximum at p if and only if
f ′′(p) < 0, and f has a relative minimum at p if and only if f ′′(p) > 0.

In the event that f ′′(p) = 0, the second derivative test is inconclusive. That is, the test
doesn’t provide us any information. This is because if f ′′(p) = 0, it is possible that f has
a local minimum, local maximum, or neither.1

Just as a first derivative sign chart reveals all of the increasing and decreasing behavior
of a function, we can construct a second derivative sign chart that demonstrates all of the
important information involving concavity.

Example 3.2. Let f (x) be a function whose first derivative is f ′(x) = 3x4−9x2. Construct
both first and second derivative sign charts for f , fully discuss where f is increasing and
decreasing and concave up and concave down, identify all relative extreme values, and
sketch a possible graph of f .

Solution. Since we know f ′(x) = 3x4 − 9x2, we can find the critical numbers of f by
solving 3x4 − 9x2 = 0. Factoring, we observe that

0 = 3x2(x2 − 3) = 3x2(x + √3)(x − √3),
so that x = 0,±

√
3 are the three critical numbers of f . It then follows that the first

derivative sign chart for f is given in Figure 3.6. Thus, f is increasing on the intervals
(−∞,−√3) and (√3,∞), while f is decreasing on (−√3, 0) and (0,√3). Note particularly
that by the first derivative test, this information tells us that f has a local maximum at

1Consider the functions f (x) = x4, g(x) = −x4, and h(x) = x3 at the critical point p = 0.
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sign( f ′)

behav( f )

+−−

+

INC −
√

3

++−

−

DEC 0

++−

−

DEC √
3

+++

+

INC

f ′(x) = 3x2(x+
√

3)(x−
√

3)

Figure 3.6: The first derivative sign chart for f when f ′(x) = 3x4 − 9x2 = 3x2(x2 − 3).

x = −
√
3 and a local minimum at x =

√
3. While f also has a critical number at x = 0,

neither a maximum nor minimum occurs there since f ′ does not change sign at x = 0.

Next, we move on to investigate concavity. Differentiating f ′(x) = 3x4 − 9x2, we see
that f ′′(x) = 12x3 − 18x. Since we are interested in knowing the intervals on which f ′′ is
positive and negative, we first find where f ′′(x) = 0. Observe that

0 = 12x3 − 18x = 12x
(
x2 −

3

2

)
= 12x *

,
x +

√
3

2
+
-

*
,

x −

√
3

2
+
-
,

which implies that x = 0,±
√

3
2 . Building a sign chart for f ′′ in the exact same way we

do for f ′, we see the result shown in Figure 3.7. Therefore, f is concave down on the

sign( f ′′)

behav( f )

−−−

−

CCD
−
√

3
2

−+−

+

CCU 0

++−

−

CCD √
3
2

+++

+

CCU

f ′′(x) = 12x
(

x+
√

3
2

)(
x−

√
3
2

)

Figure 3.7: The second derivative sign chart for f when f ′′(x) = 12x3 − 18x =

12x2
(
x2 −

√
3
2

)
.

intervals (−∞,−
√

3
2 ) and (0,

√
3
2 ), and concave up on (−

√
3
2, 0) and (

√
3
2,∞).

Putting all of the above information together, we now see a complete and accurate
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possible graph of f in Figure 3.8. The point A = (−√3, f (−√3)) is a local maximum, as

−
√

3 −
√

1.5
√

3
√

1.5

A

E

D

B

C

f

Figure 3.8: A possible graph of the function f in Example 3.2.

f is increasing prior to A and decreasing after; similarly, the point E = (√3, f (√3) is a
local minimum. Note, too, that f is concave down at A and concave up at B, which is
consistent both with our second derivative sign chart and the second derivative test. At
points B and D, concavity changes, as we saw in the results of the second derivative sign
chart in Figure 3.7. Finally, at point C, f has a critical point with a horizontal tangent line,
but neither a maximum nor a minimum occurs there since f is decreasing both before
and after C. It is also the case that concavity changes at C.

While we completely understand where f is increasing and decreasing, where f is
concave up and concave down, and where f has relative extremes, we do not know any
specific information about the y-coordinates of points on the curve. For instance, while we
know that f has a local maximum at x = −

√
3, we don’t know the value of that maximum

because we do not know f (−√3). Any vertical translation of our sketch of f in Figure 3.8
would satisfy the given criteria for f .

Points B, C, and D in Figure 3.8 are locations at which the concavity of f changes.
We give a special name to any such point: if p is a value in the domain of a continuous
function f at which f changes concavity, then we say that (p, f (p)) is an inflection point
of f . Just as we look for locations where f changes from increasing to decreasing at
points where f ′(p) = 0 or f ′(p) is undefined, so too we find where f ′′(p) = 0 or f ′′(p) is
undefined to see if there are points of inflection at these locations.

It is important at this point in our study to remind ourselves of the big picture that
derivatives help to paint: the sign of the first derivative f ′ tells us whether the function
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f is increasing or decreasing, while the sign of the second derivative f ′′ tells us how the
function f is increasing or decreasing.

Activity 3.2.

Suppose that g is a function whose second derivative, g′′, is given by the following
graph.

1 2

1

2g′′

Figure 3.9: The graph of y = g′′(x).

(a) Find the x-coordinates of all points of inflection of g.

(b) Fully describe the concavity of g by making an appropriate sign chart.

(c) Suppose you are given that g′(−1.67857351) = 0. Is there is a local maximum,
local minimum, or neither (for the function g) at this critical number of g, or is
it impossible to say? Why?

(d) Assuming that g′′(x) is a polynomial (and that all important behavior of g′′ is
seen in the graph above), what degree polynomial do you think g(x) is? Why?

C

As we will see in more detail in the following section, derivatives also help us to
understand families of functions that differ only by changing one or more parameters.
For instance, we might be interested in understanding the behavior of all functions of the
form f (x) = a(x − h)2 + k where a, h, and k are numbers that may vary. In the following
activity, we investigate a particular example where the value of a single parameter has
considerable impact on how the graph appears.

Activity 3.3.

Consider the family of functions given by h(x) = x2 + cos(k x), where k is an arbitrary
positive real number.

(a) Use a graphing utility to sketch the graph of h for several different k-values,
including k = 1, 3, 5, 10. Plot h(x) = x2 + cos(3x) on the axes provided below.
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What is the smallest value of k at which you think you can see (just by looking

-2 2

4

8

12

Figure 3.10: Axes for plotting y = h(x).
at the graph) at least one inflection point on the graph of h?

(b) Explain why the graph of h has no inflection points if k ≤
√
2, but infinitely

many inflection points if k >
√
2.

(c) Explain why, no matter the value of k, h can only have finitely many critical
numbers.

C

Summary

In this section, we encountered the following important ideas:

• The critical numbers of a continuous function f are the values of p for which f ′(p) = 0
or f ′(p) does not exist. These values are important because they identify horizontal
tangent lines or corner points on the graph, which are the only possible locations at
which a local maximum or local minimum can occur.

• Given a differentiable function f , whenever f ′ is positive, f is increasing; whenever f ′

is negative, f is decreasing. The first derivative test tells us that at any point where f
changes from increasing to decreasing, f has a local maximum, while conversely at any
point where f changes from decreasing to increasing f has a local minimum.

• Given a twice differentiable function f , if we have a horizontal tangent line at x = p
and f ′′(p) is nonzero, then the fact that f ′′ tells us the concavity of f will determine
whether f has a maximum or minimum at x = p. In particular, if f ′(p) = 0 and
f ′′(p) < 0, then f is concave down at p and f has a local maximum there, while if
f ′(p) = 0 and f ′′(p) > 0, then f has a local minimum at p. If f ′(p) = 0 and f ′′(p) = 0,
then the second derivative does not tell us whether f has a local extreme at p or not.
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Exercises

1. This problem concerns a function about which the following information is known:

• f is a differentiable function defined at every real number x

• f (0) = −1/2
• y = f ′(x) has its graph given at center in Figure 3.11

1

x

1

2

x

f ′

1

x

Figure 3.11: At center, a graph of y = f ′(x); at left, axes for plotting y = f (x); at right,
axes for plotting y = f ′′(x).

(a) Construct a first derivative sign chart for f . Clearly identify all critical numbers
of f , where f is increasing and decreasing, and where f has local extrema.

(b) On the right-hand axes, sketch an approximate graph of y = f ′′(x).
(c) Construct a second derivative sign chart for f . Clearly identify where f is

concave up and concave down, as well as all inflection points.

(d) On the left-hand axes, sketch a possible graph of y = f (x).
2. Suppose that g is a differentiable function and g′(2) = 0. In addition, suppose that on

1 < x < 2 and 2 < x < 3 it is known that g′(x) is positive.
(a) Does g have a local maximum, local minimum, or neither at x = 2? Why?

(b) Suppose that g′′(x) exists for every x such that 1 < x < 3. Reasoning
graphically, describe the behavior of g′′(x) for x-values near 2.

(c) Besides being a critical number of g, what is special about the value x = 2 in
terms of the behavior of the graph of g?

3. Suppose that h is a differentiable function whose first derivative is given by the graph
in Figure 3.12.
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h′

Figure 3.12: The graph of y = h′(x).

(a) How many real number solutions can the equation h(x) = 0 have? Why?

(b) If h(x) = 0 has two distinct real solutions, what can you say about the signs of
the two solutions? Why?

(c) Assume that limx→∞ h′(x) = 3, as appears to be indicated in Figure 3.12. How
will the graph of y = h(x) appear as x → ∞? Why?

(d) Describe the concavity of y = h(x) as fully as you can from the provided
information.

4. Let p be a function whose second derivative is p′′(x) = (x + 1)(x − 2)e−x .
(a) Construct a second derivative sign chart for p and determine all inflection

points of p.

(b) Suppose you also know that x =
√
5−1
2 is a critical number of p. Does p have a

local minimum, local maximum, or neither at x =
√
5−1
2 ? Why?

(c) If the point (2, 12
e2
) lies on the graph of y = p(x) and p′(2) = − 5

e2
, find the

equation of the tangent line to y = p(x) at the point where x = 2. Does the
tangent line lie above the curve, below the curve, or neither at this value? Why?
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3.2 Using derivatives to describe families of functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• Given a family of functions that depends on one or more parameters, how does
the shape of the graph of a typical function in the family depend on the value of
the parameters?

• How can we construct first and second derivative sign charts of functions that
depend on one or more parameters while allowing those parameters to remain
arbitrary constants?

Introduction

Mathematicians are often interested in making general observations, say by describing
patterns that hold in a large number of cases. For example, think about the Pythagorean
Theorem: it doesn’t tell us something about a single right triangle, but rather a fact
about every right triangle, thus providing key information about every member of the right
triangle family. In the next part of our studies, we would like to use calculus to help
us make general observations about families of functions that depend on one or more
parameters. People who use applied mathematics, such as engineers and economists, often
encounter the same types of functions in various settings where only small changes to
certain constants occur. These constants are called parameters.

We are already familiar with certain families of functions. For example, f (t) =
a sin(b(t − c)) + d is a stretched and shifted version of the sine function with amplitude
a, period 2π

b , phase shift c, and vertical shift d. We understand from experience with
trigonometric functions that a affects the size of the oscillation, b the rapidity of oscillation,
and c where the oscillation starts, as shown in Figure 3.13, while d affects the vertical
positioning of the graph.

In addition, there are several basic situations that we already understand completely.
For instance, every function of the form y = mx + b is a line with slope m and y-intercept
(0, b). Note that the form y = mx + b allows us to consider every possible line by using two
parameters (except for vertical lines which are of the form x = a). Further, we understand
that the value of m affects the line’s steepness and whether the line rises or falls from left
to right, while the value of b situates the line vertically on the coordinate axes.

For other less familiar families of functions, we would like to use calculus to understand
and classify where key behavior occurs: where members of the family are increasing or
decreasing, concave up or concave down, where relative extremes occur, and more, all
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c c+ 2π
b

d

d +a

f (t) = asin(b(t − c))+d

Figure 3.13: The graph of f (t) = a sin(b(t − c)) + d based on parameters a, b, c, and d.

in terms of the parameters involved. To get started, we revisit a common collection of
functions to see how calculus confirms things we already know.

Preview Activity 3.2. Let a, h, and k be arbitrary real numbers with a , 0, and let f be
the function given by the rule f (x) = a(x − h)2 + k .

(a) What familiar type of function is f ? What information do you know about f just
by looking at its form? (Think about the roles of a, h, and k .)

(b) Next we use some calculus to develop familiar ideas from a different perspective.
To start, treat a, h, and k as constants and compute f ′(x).

(c) Find all critical numbers of f . (These will depend on at least one of a, h, and k .)

(d) Assume that a < 0. Construct a first derivative sign chart for f .

(e) Based on the information you’ve found above, classify the critical values of f as
maxima or minima.

./

Describing families of functions in terms of parameters

Given a family of functions that depends on one or more parameters, our goal is to
describe the key characteristics of the overall behavior of each member of the familiy in
terms of those parameters. By finding the first and second derivatives and constructing
first and second derivative sign charts (each of which may depend on one or more of the
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parameters), we can often make broad conclusions about how each member of the family
will appear. The fundamental steps for this analysis are essentially identical to the work
we did in Section 3.1, as we demonstrate through the following example.

Example 3.3. Consider the two-parameter family of functions given by g(x) = axe−bx,
where a and b are positive real numbers. Fully describe the behavior of a typical member
of the family in terms of a and b, including the location of all critical numbers, where g is
increasing, decreasing, concave up, and concave down, and the long term behavior of g.

Solution. We begin by computing g′(x). By the product rule,

g′(x) = ax
d
dx

[
e−bx

]
+ e−bx

d
dx

[ax],

and thus by applying the chain rule and constant multiple rule, we find that

g′(x) = axe−bx(−b) + e−bx(a).
To find the critical numbers of g, we solve the equation g′(x) = 0. Here, it is especially
helpful to factor g′(x). We thus observe that setting the derivative equal to zero implies

0 = ae−bx(−bx + 1).
Since we are given that a , 0 and we know that e−bx , 0 for all values of x, the only way
the preceding equation can hold is when −bx + 1 = 0. Solving for x, we find that x = 1

b ,
and this is therefore the only critical number of g.

Now, recall that we have shown g′(x) = ae−bx(1−bx) and that the only critical number
of g is x = 1

b . This enables us to construct the first derivative sign chart for g that is
shown in Figure 3.14.

sign(g′)

behav(g)

++

+

INC 1
b

+−

−

DEC

g′(x) = ae−bx(1−bx)

Figure 3.14: The first derivative sign chart for g(x) = axe−bx .
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Note particularly that in g′(x) = ae−bx(1 − bx), the term ae−bx is always positive, so
the sign depends on the linear term (1− bx), which is zero when x = 1

b . Note that this line
has negative slope (−b), so (1 − bx) is positive for x < 1

b and negative for x > 1
b . Hence

we can not only conclude that g is always increasing for x < 1
b and decreasing for x > 1

b ,
but also that g has a global maximum at ( 1b , g( 1b )) and no local minimum.

We turn next to analyzing the concavity of g. With g′(x) = −abxe−bx + ae−bx , we
differentiate to find that

g′′(x) = −abxe−bx(−b) + e−bx(−ab) + ae−bx(−b).
Combining like terms and factoring, we now have

g′′(x) = ab2xe−bx − 2abe−bx = abe−bx(bx − 2).
Similar to our work with the first derivative, we observe that abe−bx is always positive,

sign(g′′)

behav(g)

+−

−

CCD 2
b

++

+

CCU

g′′(x) = abe−bx(bx−2)

Figure 3.15: The second derivative sign chart for g(x) = axe−bx .

and thus the sign of g′′ depends on the sign of (bx − 2), which is zero when x = 2
b . Since(bx − 2) represents a line with positive slope (b), the value of (bx − 2) is negative for

x < 2
b and positive for x > 2

b , and thus the sign chart for g′′ is given by the one shown in
Figure 3.15. Thus, g is concave down for all x < 2

b and concave up for all x > 2
b .

Finally, we analyze the long term behavior of g by considering two limits. First, we
note that

lim
x→∞

g(x) = lim
x→∞

axe−bx = lim
x→∞

ax
ebx

.

Since this limit has indeterminate form ∞
∞
, we can apply L’Hopital’s Rule and thus find

that limx→∞ g(x) = 0. In the other direction,

lim
x→−∞

g(x) = lim
x→−∞

axe−bx = −∞,

since ax → −∞ and e−bx → ∞ as x → −∞. Hence, as we move left on its graph, g
decreases without bound, while as we move to the right, g(x)→ 0.
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All of the above information now allows us to produce the graph of a typical member
of this family of functions without using a graphing utility (and without choosing particular
values for a and b), as shown in Figure 3.16.

1
b

global max
a
b e−1

2
b

inflection pt

g(x) = axe−bx

Figure 3.16: The graph of g(x) = axe−bx .

We note that the value of b controls the horizontal location of the global maximum
and the inflection point, as neither depends on a. The value of a affects the vertical stretch
of the graph. For example, the global maximum occurs at the point ( 1b , g( 1b )) = ( 1b , ab e−1),
so the larger the value of a, the greater the value of the global maximum.

The kind of work we’ve completed in Example 3.3 can often be replicated for other
families of functions that depend on parameters. Normally we are most interested in
determining all critical numbers, a first derivative sign chart, a second derivative sign chart,
and some analysis of the limit of the function as x → ∞. Throughout, we strive to work
with the parameters as arbitrary constants. If stuck, it is always possible to experiment
with some particular values of the parameters present to reduce the algebraic complexity
of our work. The following sequence of activities offers several key examples where we
see that the values of different parameters substantially affect the behavior of individual
functions within a given family.

Activity 3.4.

Consider the family of functions defined by p(x) = x3 − ax, where a , 0 is an arbitrary
constant.

(a) Find p′(x) and determine the critical numbers of p. How many critical numbers
does p have?

(b) Construct a first derivative sign chart for p. What can you say about the overall
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behavior of p if the constant a is positive? Why? What if the constant a is
negative? In each case, describe the relative extremes of p.

(c) Find p′′(x) and construct a second derivative sign chart for p. What does this
tell you about the concavity of p? What role does a play in determining the
concavity of p?

(d) Without using a graphing utility, sketch and label typical graphs of p(x) for the
cases where a > 0 and a < 0. Label all inflection points and local extrema.

(e) Finally, use a graphing utility to test your observations above by entering and
plotting the function p(x) = x3 − ax for at least four different values of a. Write
several sentences to describe your overall conclusions about how the behavior
of p depends on a.

C

Activity 3.5.

Consider the two-parameter family of functions of the form h(x) = a(1 − e−bx), where
a and b are positive real numbers.

(a) Find the first derivative and the critical numbers of h. Use these to construct a
first derivative sign chart and determine for which values of x the function h is
increasing and decreasing.

(b) Find the second derivative and build a second derivative sign chart. For which
values of x is a function in this family concave up? concave down?

(c) What is the value of lim
x→∞

a(1 − e−bx)? lim
x→−∞

a(1 − e−bx)?
(d) How does changing the value of b affect the shape of the curve?

(e) Without using a graphing utility, sketch the graph of a typical member of this
family. Write several sentences to describe the overall behavior of a typical
function h and how this behavior depends on a and b.

C

Activity 3.6.

Let L(t) = A
1 + ce−kt

, where A, c, and k are all positive real numbers.

(a) Observe that we can equivalently write L(t) = A(1 + ce−kt )−1. Find L′(t)
and explain why L has no critical numbers. Is L always increasing or always
decreasing? Why?

(b) Given the fact that

L′′(t) = Ack2e−kt
ce−kt − 1

(1 + ce−kt )3 ,
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find all values of t such that L′′(t) = 0 and hence construct a second derivative
sign chart. For which values of t is a function in this family concave up?
concave down?

(c) What is the value of lim
t→∞

A
1 + ce−kt

? lim
t→−∞

A
1 + ce−kt

?

(d) Find the value of L(x) at the inflection point found in (b).

(e) Without using a graphing utility, sketch the graph of a typical member of this
family. Write several sentences to describe the overall behavior of a typical
function L and how this behavior depends on A, c, and k number.

(f) Explain why it is reasonable to think that the function L(t) models the growth
of a population over time in a setting where the largest possible population the
surrounding environment can support is A.

C

Summary

In this section, we encountered the following important ideas:

• Given a family of functions that depends on one or more parameters, by investigating
how critical numbers and locations where the second derivative is zero depend on the
values of these parameters, we can often accurately describe the shape of the function
in terms of the parameters.

• In particular, just as we can created first and second derivative sign charts for a single
function, we often can do so for entire families of functions where critical numbers and
possible inflection points depend on arbitrary constants. These sign charts then reveal
where members of the family are increasing or decreasing, concave up or concave down,
and help us to identify relative extremes and inflection points.

Exercises

1. Consider the one-parameter family of functions given by p(x) = x3 − ax2, where a > 0.

(a) Sketch a plot of a typical member of the family, using the fact that each is a
cubic polynomial with a repeated zero at x = 0 and another zero at x = a.

(b) Find all critical numbers of p.

(c) Compute p′′ and find all values for which p′′(x) = 0. Hence construct a second
derivative sign chart for p.
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(d) Describe how the location of the critical numbers and the inflection point of p
change as a changes. That is, if the value of a is increased, what happens to
the critical numbers and inflection point?

2. Let q(x) = e−x

x − c
be a one-parameter family of functions where c > 0.

(a) Explain why q has a vertical asymptote at x = c.

(b) Determine lim
x→∞

q(x) and lim
x→−∞

q(x).
(c) Compute q′(x) and find all critical numbers of q.

(d) Construct a first derivative sign chart for q and determine whether each critical
number leads to a local minimum, local maximum, or neither for the function
q.

(e) Sketch a typical member of this family of functions with important behaviors
clearly labeled.

3. Let E(x) = e−
(x−m)2
2s2 , where m is any real number and s is a positive real number.

(a) Compute E ′(x) and hence find all critical numbers of E.

(b) Construct a first derivative sign chart for E and classify each critical number
of the function as a local minimum, local maximum, or neither.

(c) It can be shown that E ′′(x) is given by the formula

E ′′(x) = e−
(x−m)2
2s2

( (x − m)2 − s2

s4

)
.

Find all values of x for which E ′′(x) = 0.

(d) Determine lim
x→∞

E(x) and lim
x→−∞

E(x).
(e) Construct a labeled graph of a typical function E that clearly shows how

important points on the graph of y = E(x) depend on m and s.
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3.3 Global Optimization

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What are the differences between finding relative extreme values and global extreme
values of a function?

• How is the process of finding the global maximum or minimum of a function over
the function’s entire domain different from determining the global maximum or
minimum on a restricted domain?

• For a function that is guaranteed to have both a global maximum and global
minimum on a closed, bounded interval, what are the possible points at which
these extreme values occur?

Introduction

We have seen that we can use the first derivative of a function to determine where the
function is increasing or decreasing, and the second derivative to know where the function
is concave up or concave down. Each of these approaches provides us with key information
that helps us determine the overall shape and behavior of the graph, as well as whether
the function has a relative minimum or relative maximum at a given critical number.
Remember that the difference between a relative maximum and a global maximum is
that there is a relative maximum of f at x = p if f (p) ≥ f (x) for all x near p, while
there is a global maximum at p if f (p) ≥ f (x) for all x in the domain of f . For instance,

f

relative max

a

relative min

b

global max

c

Figure 3.17: A function f with a global maximum, but no global minimum.
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in Figure 3.17, we see a function f that has a global maximum at x = c and a relative
maximum at x = a, since f (c) is greater than f (x) for every value of x, while f (a) is only
greater than the value of f (x) for x near a. Since the function appears to decrease without
bound, f has no global minimum, though clearly f has a relative minimum at x = b.

Our emphasis in this section is on finding the global extreme values of a function (if
they exist). In so doing, we will either be interested in the behavior of the function over its
entire domain or on some restricted portion. The former situation is familiar and similar
to work that we did in the two preceding sections of the text. We explore this through a
particular example in the following preview activity.

Preview Activity 3.3. Let f (x) = 2 +
3

1 + (x + 1)2 .

(a) Determine all of the critical numbers of f .

(b) Construct a first derivative sign chart for f and thus determine all intervals on
which f is increasing or decreasing.

(c) Does f have a global maximum? If so, why, and what is its value and where is the
maximum attained? If not, explain why.

(d) Determine lim
x→∞

f (x) and lim
x→−∞

f (x).

(e) Explain why f (x) > 2 for every value of x.

(f) Does f have a global minimum? If so, why, and what is its value and where is the
minimum attained? If not, explain why.

./

Global Optimization

For the functions in Figure 3.17 and Preview Activity 3.3, we were interested in finding
the global minimum and global maximum on the entire domain, which turned out to be
(−∞,∞) for each. At other times, our perspective on a function might be more focused due
to some restriction on its domain. For example, rather than considering f (x) = 2+ 3

1+(x+1)2
for every value of x, perhaps instead we are only interested in those x for which 0 ≤ x ≤ 4,
and we would like to know which values of x in the interval [0, 4] produce the largest
possible and smallest possible values of f . We are accustomed to critical numbers playing
a key role in determining the location of extreme values of a function; now, by restricting
the domain to an interval, it makes sense that the endpoints of the interval will also be
important to consider, as we see in the following activity. When limiting ourselves to a
particular interval, we will often refer to the absolute maximum or minimum value, rather
than the global maximum or minimum.
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Activity 3.7.

Let g(x) = 1
3 x3 − 2x + 2.

(a) Find all critical numbers of g that lie in the interval −2 ≤ x ≤ 3.

(b) Use a graphing utility to construct the graph of g on the interval −2 ≤ x ≤ 3.

(c) From the graph, determine the x-values at which the absolute minimum and
absolute maximum of g occur on the interval [−2, 3].

(d) How do your answers change if we instead consider the interval −2 ≤ x ≤ 2?

(e) What if we instead consider the interval −2 ≤ x ≤ 1?

C

In Activity 3.7, we saw how the absolute maximum and absolute minimum of a
function on a closed, bounded interval [a, b], depend not only on the critical numbers of
the function, but also on the selected values of a and b. These observations demonstrate
several important facts that hold much more generally. First, we state an important result
called the Extreme Value Theorem.

The Extreme Value Theorem: If f is a continuous function on a closed interval
[a, b], then f attains both an absolute minimum and absolute maximum on [a, b].
That is, for some value xm such that a ≤ xm ≤ b, it follows that f (xm) ≤ f (x) for all
x in [a, b]. Similarly, there is a value xM in [a, b] such that f (xM ) ≥ f (x) for all x in
[a, b]. Letting m = f (xm) and M = f (xM ), it follows that m ≤ f (x) ≤ M for all x in
[a, b].
The Extreme Value Theorem tells us that provided a function is continuous, on any

closed interval [a, b] the function has to achieve both an absolute minimum and an
absolute maximum. Note, however, that this result does not tell us where these extreme
values occur, but rather only that they must exist. As seen in the examples of Activity 3.7,
it is apparent that the only possible locations for relative extremes are either the endpoints
of the interval or at a critical number (the latter being where a relative minimum or
maximum could occur, which is a potential location for an absolute extreme). Thus,
we have the following approach to finding the absolute maximum and minimum of a
continuous function f on the interval [a, b]:

• find all critical numbers of f that lie in the interval;

• evaluate the function f at each critical number in the interval and at each endpoint
of the interval;

• from among the noted function values, the smallest is the absolute minimum of f
on the interval, while the largest is the absolute maximum.
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Activity 3.8.

Find the exact absolute maximum and minimum of each function on the stated interval.

(a) h(x) = xe−x , [0, 3]
(b) p(t) = sin(t) + cos(t), [− π2 , π2 ]
(c) q(x) = x2

x−2 , [3, 7]
(d) f (x) = 4 − e−(x−2)2 , (−∞,∞)
(e) h(x) = xe−ax , [0, 2a ] (a > 0)

(f) f (x) = b − e−(x−a)2 , (−∞,∞), a, b > 0

C

One of the big lessons in finding absolute extreme values is the realization that the
interval we choose has nearly the same impact on the problem as the function under
consideration. Consider, for instance, the function pictured in Figure 3.18. In sequence,

-2 3

2
g

-2 2

2
g

-2 1

2
g

Figure 3.18: A function g considered on three different intervals.

from left to right, as we see the interval under consideration change from [−2, 3] to [−2, 2]
to [−2, 1], we move from having two critical numbers in the interval with the absolute
minimum at one critical number and the absolute maximum at the right endpoint, to
still having both critical numbers in the interval but then with the absolute minimum and
maximum at the two critical numbers, to finally having just one critical number in the
interval with the absolute maximum at one critical number and the absolute minimum at
one endpoint. It is particularly essential to always remember to only consider the critical
numbers that lie within the interval.
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Moving towards applications

In Section 3.4, we will focus almost exclusively on applied optimization problems: problems
where we seek to find the absolute maximum or minimum value of a function that
represents some physical situation. We conclude this current section with an example
of one such problem because it highlights the role that a closed, bounded domain can
play in finding absolute extrema. In addition, these problems often involve considerable
preliminary work to develop the function which is to be optimized, and this example
demonstrates that process.

Example 3.4. A 20 cm piece of wire is cut into two pieces. One piece is used to form a
square and the other an equilateral triangle. How should the wire be cut to maximize the
total area enclosed by the square and triangle? to minimize the area?

Solution. We begin by constructing a picture that exemplifies the given situation. The
primary variable in the problem is where we decide to cut the wire. We thus label that
point x, and note that the remaining portion of the wire then has length 20 − x As shown

x 20− x

x
3 20−x

4

Figure 3.19: A 20 cm piece of wire cut into two pieces, one of which forms an equilateral
triangle, the other which yields a square.

in Figure 3.19, we see that the x cm of the wire that are used to form the equilateral
triangle result in a triangle with three sides of length x

3 . For the remaining 20 − x cm of
wire, the square that results will have each side of length 20−x

4 .

At this point, we note that there are obvious restrictions on x: in particular, 0 ≤ x ≤ 20.
In the extreme cases, all of the wire is being used to make just one figure. For instance, if
x = 0, then all 20 cm of wire are used to make a square that is 5 × 5.

Now, our overall goal is to find the absolute minimum and absolute maximum areas

that can be enclosed. We note that the area of the triangle is A4 = 1
2bh = 1

2 ·
x
3 ·

x
√
3

6 , since
the height of an equilateral triangle is

√
3 times half the length of the base. Further, the
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area of the square is A� = s2 =
�
20−x
4

�2
. Therefore, the total area function is

A(x) =
√
3x2

36
+

(20 − x
4

)2
.

Again, note that we are only considering this function on the restricted domain [0, 20] and
we seek its absolute minimum and absolute maximum.

Differentiating A(x), we have

A′(x) =
√
3x
18
+ 2

(20 − x
4

) (
−
1

4

)
=

√
3

18
x +

1

8
x −

5

2
.

Setting A′(x) = 0, it follows that x = 180
4
√
3+9
≈ 11.3007 is the only critical number of A,

and we note that this lies within the interval [0, 20].
Evaluating A at the critical number and endpoints, we see that

• A
(

180

4
√
3 + 9

)
=

√
3( 180

4
√
3+9

)2
4

+
*.
,

20 − 180
4
√
3+9

4
+/
-

2

≈ 10.8741

• A(0) = 25

• A(20) =
√
3

36
(400) = 100

9

√
3 ≈ 19.2450

Thus, the absolute minimum occurs when x ≈ 11.3007 and results in the minimum area
of approximately 10.8741 square centimeters, while the absolute maximum occurs when
we invest all of the wire in the square (and none in the triangle), resulting in 25 square
centimeters of area. These results are confirmed by a plot of y = A(x) on the interval
[0, 20], as shown in Figure 3.20.

Activity 3.9.

A piece of cardboard that is 10× 15 (each measured in inches) is being made into a box
without a top. To do so, squares are cut from each corner of the box and the remaining
sides are folded up. If the box needs to be at least 1 inch deep and no more than 3
inches deep, what is the maximum possible volume of the box? what is the minimum
volume? Justify your answers using calculus.

(a) Draw a labeled diagram that shows the given information. What variable
should we introduce to represent the choice we make in creating the box? Label
the diagram appropriately with the variable, and write a sentence to state what
the variable represents.
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5 10 15 20

5

10

15

20

25

y = A(x)

Figure 3.20: A plot of the area function from Example 3.4.

(b) Determine a formula for the function V (that depends on the variable in (a))
that tells us the volume of the box.

(c) What is the domain of the function V ? That is, what values of x make sense
for input? Are there additional restrictions provided in the problem?

(d) Determine all critical numbers of the function V .

(e) Evaluate V at each of the endpoints of the domain and at any critical numbers
that lie in the domain.

(f) What is the maximum possible volume of the box? the minimum?

C

The approaches shown in Example 3.4 and experienced in Activity 3.9 include standard
steps that we undertake in almost every applied optimization problem: we draw a picture
to demonstrate the situation, introduce one or more variables to represent quantities that
are changing, work to find a function that models the quantity to be optimized, and then
decide an appropriate domain for that function. Once that work is done, we are in the
familiar situation of finding the absolute minimum and maximum of a function over a
particular domain, at which time we apply the calculus ideas that we have been studying
to this point in Chapter 3.

Summary

In this section, we encountered the following important ideas:

• To find relative extreme values of a function, we normally use a first derivative sign
chart and classify all of the function’s critical numbers. If instead we are interested in
absolute extreme values, we first decide whether we are considering the entire domain
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of the function or a particular interval.

• In the case of finding global extremes over the function’s entire domain, we again use
a first or second derivative sign chart in an effort to make overall conclusions about
whether or not the function can have a absolute maximum or minimum. If we are
working to find absolute extremes on a restricted interval, then we first identify all
critical numbers of the function that lie in the interval.

• For a continuous function on a closed, bounded interval, the only possible points at
which absolute extreme values occur are the critical numbers and the endpoints. Thus,
to find said absolute extremes, we simply evaluate the function at each endpoint and
each critical number in the interval, and then we compare the results to decide which
is largest (the absolute maximum) and which is smallest (the absolute minimum).

Exercises

1. Based on the given information about each function, decide whether the function
has global maximum, a global minimum, neither, both, or that it is not possible to
say without more information. Assume that each function is twice differentiable and
defined for all real numbers, unless noted otherwise. In each case, write one sentence
to explain your conclusion.

(a) f is a function such that f ′′(x) < 0 for every x.

(b) g is a function with two critical numbers a and b (where a < b), and g′(x) < 0
for x < a, g′(x) < 0 for a < x < b, and g′(x) > 0 for x > b.

(c) h is a function with two critical numbers a and b (where a < b), and h′(x) < 0
for x < a, h′(x) > 0 for a < x < b, and h′(x) < 0 for x > b. In addition,
limx→∞ h(x) = 0 and limx→−∞ h(x) = 0.

(d) p is a function differentiable everywhere except at x = a and p′′(x) > 0 for
x < a and p′′(x) < 0 for x > a.

2. For each family of functions that depends on one or more parameters, determine the
function’s absolute maximum and absolute minimum on the given interval.

(a) p(x) = x3 − a2x, [0, a] (a > 0)

(b) r(x) = axe−bx , [ 1
2b , b] (a, b > 0)

(c) w(x) = a(1 − e−bx), [b, 3b] (a, b > 0)

(d) s(x) = sin(k x), [ π3k , 5π6k ]
3. For each of the functions described below (each continuous on [a, b]), state the location

of the function’s absolute maximum and absolute minimum on the interval [a, b], or
say there is not enough information provided to make a conclusion. Assume that
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any critical numbers mentioned in the problem statement represent all of the critical
numbers the function has in [a, b]. In each case, write one sentence to explain your
answer.

(a) f ′(x) ≤ 0 for all x in [a, b]
(b) g has a critical number at c such that a < c < b and g′(x) > 0 for x < c and

g′(x) < 0 for x > c

(c) h(a) = h(b) and h′′(x) < 0 for all x in [a, b]
(d) p(a) > 0, p(b) < 0, and for the critical number c such that a < c < b, p′(x) < 0

for x < c and p′(x) > 0 for x > c

4. Let s(t) = 3 sin(2(t − π
6 )) + 5. Find the exact absolute maximum and minimum of s on

the provided intervals by testing the endpoints and finding and evaluating all relevant
critical numbers of s.

(a) [ π6 , 7π6 ]
(b) [0, π2 ]
(c) [0, 2π]
(d) [ π3 , 5π6 ]
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critical number

3.4 Applied Optimization

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• In a setting where a situation is described for which optimal parameters are sought,
how do we develop a function that models the situation and use calculus to find
the desired maximum or minimum?

Introduction

Near the conclusion of Section 3.3, we considered two examples of optimization problems
where determining the function to be optimized was part of a broader question. In
Example 3.4, we sought to use a single piece of wire to build two geometric figures (an
equilateral triangle and square) and to understand how various choices for how to cut the
wire led to different values of the area enclosed. One of our conclusions was that in order
to maximize the total combined area enclosed by the triangle and square, all of the wire
must be used to make a square. In the subsequent Activity 3.9, we investigated how the
volume of a box constructed from a piece of cardboard by removing squares from each
corner and folding up the sides depends on the size of the squares removed.

Both of these problems exemplify situations where there is not a function explicitly
provided to optimize. Rather, we first worked to understand the given information in the
problem, drawing a figure and introducing variables, and then sought to develop a formula
for a function that models the quantity (area or volume, in the two examples, respectively)
to be optimized. Once the function was established, we then considered what domain was
appropriate on which to pursue the desired absolute minimum or maximum (or both). At
this point in the problem, we are finally ready to apply the ideas of calculus to determine
and justify the absolute minimum or maximum. Thus, what is primarily different about
problems of this type is that the problem-solver must do considerable work to introduce
variables and develop the correct function and domain to represent the described situation.

Throughout what follows in the current section, the primary emphasis is on the reader
solving problems. Initially, some substantial guidance is provided, with the problems
progressing to require greater independence as we move along.

Preview Activity 3.4. According to U.S. postal regulations, the girth plus the length of a
parcel sent by mail may not exceed 108 inches, where by “girth” we mean the perimeter of
the smallest end. What is the largest possible volume of a rectangular parcel with a square
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end that can be sent by mail? What are the dimensions of the package of largest volume?

Figure 3.21: A rectangular parcel with a square end.

(a) Let x represent the length of one side of the square end and y the length of
the longer side. Label these quantities appropriately on the image shown in
Figure 3.21.

(b) What is the quantity to be optimized in this problem? Find a formula for this
quantity in terms of x and y.

(c) The problem statement tells us that the parcel’s girth plus length may not exceed
108 inches. In order to maximize volume, we assume that we will actually need the
girth plus length to equal 108 inches. What equation does this produce involving
x and y?

(d) Solve the equation you found in (c) for one of x or y (whichever is easier).

(e) Now use your work in (b) and (d) to determine a formula for the volume of the
parcel so that this formula is a function of a single variable.

(f) Over what domain should we consider this function? Note that both x and y must
be positive; how does the constraint that girth plus length is 108 inches produce
intervals of possible values for x and y?

(g) Find the absolute maximum of the volume of the parcel on the domain you
established in (f) and hence also determine the dimensions of the box of greatest
volume. Justify that you’ve found the maximum using calculus.

./
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More applied optimization problems

Many of the steps in Preview Activity 3.4 are ones that we will execute in any applied
optimization problem. We briefly summarize those here to provide an overview of our
approach in subsequent questions.

• Draw a picture and introduce variables. It is essential to first understand what
quantities are allowed to vary in the problem and then to represent those values
with variables. Constructing a figure with the variables labeled is almost always
an essential first step. Sometimes drawing several diagrams can be especially
helpful to get a sense of the situation. A nice example of this can be seen at
http://gvsu.edu/s/99, where the choice of where to bend a piece of wire into
the shape of a rectangle determines both the rectangle’s shape and area.

• Identify the quantity to be optimized as well as any key relationships among the
variable quantities. Essentially this step involves writing equations that involve the
variables that have been introduced: one to represent the quantity whose minimum
or maximum is sought, and possibly others that show how multiple variables in the
problem may be interrelated.

• Determine a function of a single variable that models the quantity to be optimized;
this may involve using other relationships among variables to eliminate one or
more variables in the function formula. For example, in Preview Activity 3.4, we
initially found that V = x2y, but then the additional relationship that 4x + y = 108
(girth plus length equals 108 inches) allows us to relate x and y and thus observe
equivalently that y = 108 − 4x. Substituting for y in the volume equation yields
V (x) = x2(108− 4x), and thus we have written the volume as a function of the single
variable x.

• Decide the domain on which to consider the function being optimized. Often the
physical constraints of the problem will limit the possible values that the independent
variable can take on. Thinking back to the diagram describing the overall situation
and any relationships among variables in the problem often helps identify the
smallest and largest values of the input variable.

• Use calculus to identify the absolute maximum and/or minimum of the quantity
being optimized. This always involves finding the critical numbers of the function
first. Then, depending on the domain, we either construct a first derivative sign
chart (for an open or unbounded interval) or evaluate the function at the endpoints
and critical numbers (for a closed, bounded interval), using ideas we’ve studied so
far in Chapter 3.

• Finally, we make certain we have answered the question: does the question seek the
absolute maximum of a quantity, or the values of the variables that produce the

http://gvsu.edu/s/99
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maximum? That is, finding the absolute maximum volume of a parcel is different
from finding the dimensions of the parcel that produce the maximum.

Activity 3.10.

A soup can in the shape of a right circular cylinder is to be made from two materials.
The material for the side of the can costs $0.015 per square inch and the material for
the lids costs $0.027 per square inch. Suppose that we desire to construct a can that
has a volume of 16 cubic inches. What dimensions minimize the cost of the can?

(a) Draw a picture of the can and label its dimensions with appropriate variables.

(b) Use your variables to determine expressions for the volume, surface area, and
cost of the can.

(c) Determine the total cost function as a function of a single variable. What is the
domain on which you should consider this function?

(d) Find the absolute minimum cost and the dimensions that produce this value.

C

Familiarity with common geometric formulas is particularly helpful in problems like
the one in Activity 3.10. Sometimes those involve perimeter, area, volume, or surface
area. At other times, the constraints of a problem introduce right triangles (where the
Pythagorean Theorem applies) or other functions whose formulas provide relationships
among variables present.

Activity 3.11.

A hiker starting at a point P on a straight road walks east towards point Q, which
is on the road and 3 kilometers from point P. Two kilometers due north of point Q
is a cabin. The hiker will walk down the road for a while, at a pace of 8 kilometers
per hour. At some point Z between P and Q, the hiker leaves the road and makes a
straight line towards the cabin through the woods, hiking at a pace of 3 kph, as pictured
in Figure 3.22. In order to minimize the time to go from P to Z to the cabin, where
should the hiker turn into the forest?

C

In more geometric problems, we often use curves or functions to provide natural con-
straints. For instance, we could investigate which isosceles triangle that circumscribes a unit
circle has the smallest area, which you can explore for yourself at http://gvsu.edu/s/9b.
Or similarly, for a region bounded by a parabola, we might seek the rectangle of largest
area that fits beneath the curve, as shown at http://gvsu.edu/s/9c. The next activity
is similar to the latter problem.

critical number

Activity 3.12.

http://gvsu.edu/s/9b
http://gvsu.edu/s/9c
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3

2

P QZ

cabin

Figure 3.22: A hiker walks from P to Z to the cabin, as pictured.

Consider the region in the x-y plane that is bounded by the x-axis and the function
f (x) = 25 − x2. Construct a rectangle whose base lies on the x-axis and is centered at
the origin, and whose sides extend vertically until they intersect the curve y = 25 − x2.
Which such rectangle has the maximum possible area? Which such rectangle has the
greatest perimeter? Which has the greatest combined perimeter and area? (Challenge:
answer the same questions in terms of positive parameters a and b for the function
f (x) = b − ax2.)

C

Activity 3.13.

A trough is being constructed by bending a 4 × 24 (measured in feet) rectangular piece
of sheet metal. Two symmetric folds 2 feet apart will be made parallel to the longest
side of the rectangle so that the trough has cross-sections in the shape of a trapezoid,
as pictured in Figure 3.23. At what angle should the folds be made to produce the
trough of maximum volume?

2

1 1

θ

Figure 3.23: A cross-section of the trough formed by folding to an angle of θ.

C

Summary

In this section, we encountered the following important ideas:
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• While there is no single algorithm that works in every situation where optimization
is used, in most of the problems we consider, the following steps are helpful: draw
a picture and introduce variables; identify the quantity to be optimized and find
relationships among the variables; determine a function of a single variable that models
the quantity to be optimized; decide the domain on which to consider the function
being optimized; use calculus to identify the absolute maximum and/or minimum of
the quantity being optimized.

Exercises

1. A rectangular box with a square bottom and closed top is to be made from two
materials. The material for the side costs $1.50 per square foot and the material for the
bottom costs $3.00 per square foot. If you are willing to spend $15 on the box, what is
the largest volume it can contain? Justify your answer completely using calculus.

2. A farmer wants to start raising cows, horses, goats, and sheep, and desires to have a
rectangular pasture for the animals to graze in. However, no two different kinds of
animals can graze together. In order to minimize the amount of fencing she will need,
she has decided to enclose a large rectangular area and then divide it into four equally
sized pens by adding three segments of fence inside the large rectangle that are parallel
to two existing sides. She has decided to purchase 7500 ft of fencing. What is the
maximum possible area that each of the four pens will enclose?

3. Two vertical poles of heights 60 ft and 80 ft stand on level ground, with their bases
100 ft apart. A cable that is stretched from the top of one pole to some point on the
ground between the poles, and then to the top of the other pole. What is the minimum
possible length of cable required? Justify your answer completely using calculus.

4. A company is designing propane tanks that are cylindrical with hemispherical ends.
Assume that the company wants tanks that will hold 1000 cubic feet of gas, and that the
ends are more expensive to make, costing $5 per square foot, while the cylindrical barrel
between the ends costs $2 per square foot. Use calculus to determine the minimum
cost to construct such a tank.
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3.5 Related Rates

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• If two quantities that are related, such as the radius and volume of a spherical
balloon, are both changing as implicit functions of time, how are their rates of
change related? That is, how does the relationship between the values of the
quantities affect the relationship between their respective derivatives with respect
to time?

Introduction

In most of our applications of the derivative so far, we have worked in settings where one
quantity (often called y) depends explicitly on another (say x), and in some way we have
been interested in the instantaneous rate at which y changes with respect to x, leading us
to compute dy

dx . These settings emphasize how the derivative enables us to quantify how
the quantity y is changing as x changes at a given x-value.

We are next going to consider situations where multiple quantities are related to one
another and changing, but where each quantity can be considered an implicit function of
the variable t, which represents time. Through knowing how the quantities are related,
we will be interested in determining how their respective rates of change with respect to
time are related. For example, suppose that air is being pumped into a spherical balloon
in such a way that its volume increases at a constant rate of 20 cubic inches per second. It
makes sense that since the balloon’s volume and radius are related, by knowing how fast
the volume is changing, we ought to be able to relate this rate to how fast the radius is
changing. More specifically, can we find how fast the radius of the balloon is increasing at
the moment the balloon’s diameter is 12 inches?

The following preview activity leads you through the steps to answer this question.

Preview Activity 3.5. A spherical balloon is being inflated at a constant rate of 20 cubic
inches per second. How fast is the radius of the balloon changing at the instant the
balloon’s diameter is 12 inches? Is the radius changing more rapidly when d = 12 or when
d = 16? Why?

(a) Draw several spheres with different radii, and observe that as volume changes, the
radius, diameter, and surface area of the balloon also change.

(b) Recall that the volume of a sphere of radius r is V = 4
3πr3. Note well that in the

setting of this problem, both V and r are changing as time t changes, and thus
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both V and r may be viewed as implicit functions of t, with respective derivatives
dV
dt and dr

dt .

Differentiate both sides of the equation V = 4
3πr3 with respect to t (using the chain

rule on the right) to find a formula for dV
dt that depends on both r and dr

dt .

(c) At this point in the problem, by differentiating we have “related the rates” of
change of V and r . Recall that we are given in the problem that the balloon is
being inflated at a constant rate of 20 cubic inches per second. Is this rate the
value of dr

dt or dV
dt ? Why?

(d) From part (c), we know the value of dV
dt at every value of t. Next, observe that

when the diameter of the balloon is 12, we know the value of the radius. In the
equation dV

dt = 4πr2 dr
dt , substitute these values for the relevant quantities and solve

for the remaining unknown quantity, which is dr
dt . How fast is the radius changing

at the instant d = 12?

(e) How is the situation different when d = 16? When is the radius changing more
rapidly, when d = 12 or when d = 16?

./

Related Rates Problems

In problems where two or more quantities can be related to one another, and all of the
variables involved can be viewed as implicit functions of time, t, we are often interested in
how the rates of change of the individual quantities with respect to time are themselves
related; we call these related rates problems. Often these problems involve identifying one or
more key underlying geometric relationships to relate the variables involved. Once we have
an equation establishing the fundamental relationship among variables, we differentiate
implicitly with respect to time to find connections among the rates of change.

For example, consider the situation where sand is being dumped by a conveyor belt on
a pile so that the sand forms a right circular cone, as pictured in Figure 3.24. As sand falls
from the conveyor belt onto the top of the pile, obviously several features of the sand pile
will change: the volume of the pile will grow, the height will increase, and the radius will
get bigger, too. All of these quantities are related to one another, and the rate at which
each is changing is related to the rate at which sand falls from the conveyor.

The first key steps in any related rates problem involve identifying which variables are
changing and how they are related. In the current problem involving a conical pile of sand,
we observe that the radius and height of the pile are related to the volume of the pile by
the standard equation for the volume of a cone,

V =
1

3
πr2h.
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r

h

Figure 3.24: A conical pile of sand.

Viewing each of V , r , and h as functions of t, we can differentiate implicitly to determine
an equation that relates their respective rates of change. Taking the derivative of each side
of the equation with respect to t,

d
dt
[V ] = d

dt

[1
3
πr2h

]
.

On the left, d
dt [V ] is simply dV

dt . On the right, the situation is more complicated, as both r
and h are implicit functions of t, hence we have to use the product and chain rules. Doing
so, we find that

dV
dt

=
d
dt

[1
3
πr2h

]

=
1

3
πr2

d
dt
[h] + 1

3
πh

d
dt
[r2]

=
1

3
πr2

dh
dt
+
1

3
πh2r

dr
dt

Note particularly how we are using ideas from Section 2.7 on implicit differentiation. There
we found that when y is an implicit function of x, d

dx [y2] = 2y dy
dx . The exact same thing

is occurring here when we compute d
dt [r2] = 2r dr

dt .

With our arrival at the equation

dV
dt
=

1

3
πr2

dh
dt
+
2

3
πrh

dr
dt
,

we have now related the rates of change of V , h, and r . If we are given sufficient information,
we may then find the value of one or more of these rates of change at one or more points
in time. Say, for instance, that we know the following: (a) sand falls from the conveyor in
such a way that the height of the pile is always half the radius, and (b) sand falls from the
conveyor belt at a constant rate of 10 cubic feet per minute. With this information given,
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we can answer questions such as: how fast is the height of the sandpile changing at the
moment the radius is 4 feet?

The information that the height is always half the radius tells us that for all values of
t, h = 1

2r . Differentiating with respect to t, it follows that dh
dt =

1
2
dr
dt . These relationships

enable us to relate dV
dt exclusively to just one of r or h. Substituting the expressions

involving r and dr
dt for h and dh

dt , we now have that

dV
dt
=

1

3
πr2 ·

1

2

dr
dt
+
2

3
πr ·

1

2
r ·

dr
dt
. (3.1)

Since sand falls from the conveyor at the constant rate of 10 cubic feet per minute, this tells
us the value of dV

dt , the rate at which the volume of the sand pile changes. In particular,
dV
dt = 10 ft3/min. Furthermore, since we are interested in how fast the height of the pile is
changing at the instant r = 4, we use the value r = 4 along with dV

dt = 10 in Equation (3.1),
and hence find that

10 =
1

3
π42 ·

1

2

dr
dt

�����r=4
+
2

3
π4 ·

1

2
4 ·

dr
dt

�����r=4
=

8

3
π

dr
dt

�����r=4
+
16

3
π

dr
dt

�����r=4
.

With only the value of dr
dt

���r=4 remaining unknown, we solve for dr
dt

���r=4 and find that

10 = 8π dr
dt

���r=4, so that
dr
dt

�����r=4
=

10

8π
≈ 0.39789

feet per second. Because we were interested in how fast the height of the pile was changing
at this instant, we want to know dh

dt when r = 4. Since dh
dt =

1
2
dr
dt for all values of t, it

follows
dh
dt

�����r=4
=

5

8π
≈ 0.19894 ft/min.

Note particularly how we distinguish between the notations dr
dt and dr

dt
���r=4. The former

represents the rate of change of r with respect to t at an arbitrary value of t, while the
latter is the rate of change of r with respect to t at a particular moment, in fact the moment
r = 4. While we don’t know the exact value of t, because information is provided about
the value of r , it is important to distinguish that we are using this more specific data.

The relationship between h and r , with h = 1
2r for all values of t, enables us to transition

easily between questions involving r and h. Indeed, had we known this information at the
problem’s outset, we could have immediately simplified our work. Using h = 1

2r , it follows
that since V = 1

3πr2h, we can write V solely in terms of r to have

V =
1

3
πr2

(1
2

h
)
=

1

6
πr3.
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From this last equation, differentiating with respect to t implies

dV
dt
=

1

2
πr2

dr
dt
,

from which the same conclusions made earlier about dr
dt and dh

dt can be made.

Our work with the sandpile problem above is similar in many ways to our approach
in Preview Activity 3.5, and these steps are typical of most related rates problems. In
certain ways, they also resemble work we do in applied optimization problems, and here
we summarize the main approach for consideration in subsequent problems.

• Identify the quantities in the problem that are changing and choose clearly defined
variable names for them. Draw one or more figures that clearly represent the
situation.

• Determine all rates of change that are known or given and identify the rate(s) of
change to be found.

• Find an equation that relates the variables whose rates of change are known to those
variables whose rates of change are to be found.

• Differentiate implicitly with respect to t to relate the rates of change of the involved
quantities.

• Evaluate the derivatives and variables at the information relevant to the instant at
which a certain rate of change is sought. Use proper notation to identify when a
derivative is being evaluated at a particular instant, such as dr

dt
���r=4.

In the first step of identifying changing quantities and drawing a picture, it is important
to think about the dynamic ways in which the involved quantities change. Sometimes a
sequence of pictures can be helpful; for some already-drawn pictures that can be easily
modified as applets built in Geogebra, see the following links2 which represent

• how a circular oil slick’s area grows as its radius increases http://gvsu.edu/s/9n;

• how the location of the base of a ladder and its height along a wall change as the
ladder slides http://gvsu.edu/s/9o;

• how the water level changes in a conical tank as it fills with water at a constant rate
http://gvsu.edu/s/9p (compare the problem in Activity 3.14);

• how a skateboarder’s shadow changes as he moves past a lamppost
http://gvsu.edu/s/9q.

2We again refer to the work of Prof. Marc Renault of Shippensburg University, found at
http://gvsu.edu/s/5p.

http://gvsu.edu/s/9n
http://gvsu.edu/s/9o
http://gvsu.edu/s/9p
http://gvsu.edu/s/9q
http://gvsu.edu/s/5p
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Drawing well-labeled diagrams and envisioning how different parts of the figure change is
a key part of understanding related rates problems and being successful at solving them.

Activity 3.14.

A water tank has the shape of an inverted circular cone (point down) with a base of
radius 6 feet and a depth of 8 feet. Suppose that water is being pumped into the tank
at a constant instantaneous rate of 4 cubic feet per minute.

(a) Draw a picture of the conical tank, including a sketch of the water level at a
point in time when the tank is not yet full. Introduce variables that measure
the radius of the water’s surface and the water’s depth in the tank, and label
them on your figure.

(b) Say that r is the radius and h the depth of the water at a given time, t. What
equation relates the radius and height of the water, and why?

(c) Determine an equation that relates the volume of water in the tank at time t to
the depth h of the water at that time.

(d) Through differentiation, find an equation that relates the instantaneous rate
of change of water volume with respect to time to the instantaneous rate of
change of water depth at time t.

(e) Find the instantaneous rate at which the water level is rising when the water in
the tank is 3 feet deep.

(f) When is the water rising most rapidly: at h = 3, h = 4, or h = 5?

C

Recognizing familiar geometric configurations is one way that we relate the changing
quantities in a given problem. For instance, while the problem in Activity 3.14 is centered
on a conical tank, one of the most important observations is that there are two key right
triangles present. In another setting, a right triangle might be indicative of an opportunity
to take advantage of the Pythagorean Theorem to relate the legs of the triangle. But in
the conical tank, the fact that the water at any time fills a portion of the tank in such
a way that the ratio of radius to depth is constant turns out to be the most important
relationship with which to work. That enables us to write r in terms of h and reduce the
overall problem to one that involves only one variable, where the volume of water depends
simply on h, and hence to subsequently relate dV

dt and dh
dt . In other situations where a

changing angle is involved, a right triangle may offer the opportunity to find relationships
among various parts of the triangle using trigonometric functions.

Activity 3.15.

A television camera is positioned 4000 feet from the base of a rocket launching pad.
The angle of elevation of the camera has to change at the correct rate in order to
keep the rocket in sight. In addition, the auto-focus of the camera has to take into
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account the increasing distance between the camera and the rocket. We assume that
the rocket rises vertically. (A similar problem is discussed and pictured dynamically
at http://gvsu.edu/s/9t. Exploring the applet at the link will be helpful to you in
answering the questions that follow.)

(a) Draw a figure that summarizes the given situation. What parts of the picture
are changing? What parts are constant? Introduce appropriate variables to
represent the quantities that are changing.

(b) Find an equation that relates the camera’s angle of elevation to the height of
the rocket, and then find an equation that relates the instantaneous rate of
change of the camera’s elevation angle to the instantaneous rate of change of
the rocket’s height (where all rates of change are with respect to time).

(c) Find an equation that relates the distance from the camera to the rocket to
the rocket’s height, as well as an equation that relates the instantaneous rate
of change of distance from the camera to the rocket to the instantaneous rate
of change of the rocket’s height (where all rates of change are with respect to
time).

(d) Suppose that the rocket’s speed is 600 ft/sec at the instant it has risen 3000
feet. How fast is the distance from the television camera to the rocket changing
at that moment? If the camera is following the rocket, how fast is the camera’s
angle of elevation changing at that same moment?

(e) If from an elevation of 3000 feet onward the rocket continues to rise at 600
feet/sec, will the rate of change of distance with respect to time be greater when
the elevation is 4000 feet than it was at 3000 feet, or less? Why?

C

In addition to being able to find instantaneous rates of change at particular points
in time, we are often able to make more general observations about how particular rates
themselves will change over time. For instance, when a conical tank (point down) is filling
with water at a constant rate, we naturally intuit that the depth of the water should increase
more slowly over time. Note how carefully we need to speak: we mean to say that while the
depth, h, of the water is increasing, its rate of change dh

dt is decreasing (both as a function
of t and as a function of h). These observations may often be made by taking the general
equation that relates the various rates and solving for one of them, and doing this without
substituting any particular values for known variables or rates. For instance, in the conical
tank problem in Activity 3.14, we established that

dV
dt
=

1

16
πh2

dh
dt
,

and hence
dh
dt
=

16

πh2
dV
dt
.

http://gvsu.edu/s/9t
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Provided that dV
dt is constant, it is immediately apparent that as h gets larger, dh

dt will get
smaller, while always remaining positive. Hence, the depth of the water is increasing at a
decreasing rate.

Activity 3.16.

As pictured in the applet at http://gvsu.edu/s/9q, a skateboarder who is 6 feet tall
rides under a 15 foot tall lamppost at a constant rate of 3 feet per second. We are
interested in understanding how fast his shadow is changing at various points in time.

(a) Draw an appropriate right triangle that represents a snapshot in time of the
skateboarder, lamppost, and his shadow. Let x denote the horizontal distance
from the base of the lamppost to the skateboarder and s represent the length
of his shadow. Label these quantities, as well as the skateboarder’s height and
the lamppost’s height on the diagram.

(b) Observe that the skateboarder and the lamppost represent parallel line segments
in the diagram, and thus similar triangles are present. Use similar triangles to
establish an equation that relates x and s.

(c) Use your work in (b) to find an equation that relates dx
dt and ds

dt .

(d) At what rate is the length of the skateboarder’s shadow increasing at the instant
the skateboarder is 8 feet from the lamppost?

(e) As the skateboarder’s distance from the lamppost increases, is his shadow’s
length increasing at an increasing rate, increasing at a decreasing rate, or
increasing at a constant rate?

(f) Which is moving more rapidly: the skateboarder or the tip of his shadow?
Explain, and justify your answer.

C

As we progress further into related rates problems, less direction will be provided. In
the first three activities of this section, we have been provided with guided instruction to
build a solution in a step by step way. For the closing activity and the following exercises,
most of the detailed work is left to the reader.

Activity 3.17.

A baseball diamond is 90′ square. A batter hits a ball along the third base line and
runs to first base. At what rate is the distance between the ball and first base changing
when the ball is halfway to third base, if at that instant the ball is traveling 100 feet/sec?
At what rate is the distance between the ball and the runner changing at the same
instant, if at the same instant the runner is 1/8 of the way to first base running at 30
feet/sec?

C

http://gvsu.edu/s/9q


3.5. RELATED RATES 205

Summary

In this section, we encountered the following important ideas:

• When two or more related quantities are changing as implicit functions of time, their
rates of change can be related by implicitly differentiating the equation that relates the
quantities themselves. For instance, if the sides of a right triangle are all changing as
functions of time, say having lengths x, y, and z, then these quantities are related by
the Pythagorean Theorem: x2 + y2 = z2. It follows by implicitly differentiating with
respect to t that their rates are related by the equation

2x
dx
dt
+ 2y

dy
dt
= 2z

dz
dt
,

so that if we know the values of x, y, and z at a particular time, as well as two of the
three rates, we can deduce the value of the third.

Exercises

1. A sailboat is sitting at rest near its dock. A rope attached to the bow of the boat is
drawn in over a pulley that stands on a post on the end of the dock that is 5 feet higher
than the bow. If the rope is being pulled in at a rate of 2 feet per second, how fast is
the boat approaching the dock when the length of rope from bow to pulley is 13 feet?

2. A swimming pool is 60 feet long and 25 feet wide. Its depth varies uniformly from 3
feet at the shallow end to 15 feet at the deep end, as shown in the Figure 3.25. Suppose

15

25

60

3

Figure 3.25: The swimming pool described in Exercise 2.

the pool has been emptied and is now being filled with water at a rate of 800 cubic feet
per minute. At what rate is the depth of water (measured at the deepest point of the
pool) increasing when it is 5 feet deep at that end? Over time, describe how the depth
of the water will increase: at an increasing rate, at a decreasing rate, or at a constant
rate. Explain.
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3. A baseball diamond is a square with sides 90 feet long. Suppose a baseball player is
advancing from second to third base at the rate of 24 feet per second, and an umpire is
standing on home plate. Let θ be the angle between the third baseline and the line of
sight from the umpire to the runner. How fast is θ changing when the runner is 30 feet
from third base?

4. Sand is being dumped off a conveyor belt onto a pile in such a way that the pile forms
in the shape of a cone whose radius is always equal to its height. Assuming that the
sand is being dumped at a rate of 10 cubic feet per minute, how fast is the height of the
pile changing when there are 1000 cubic feet on the pile?



Chapter 4

The Definite Integral

4.1 Determining distance traveled from velocity

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• If we know the velocity of a moving body at every point in a given interval, can
we determine the distance the object has traveled on the time interval?

• How is the problem of finding distance traveled related to finding the area under a
certain curve?

• What does it mean to antidifferentiate a function and why is this process relevant
to finding distance traveled?

• If velocity is negative, how does this impact the problem of finding distance
traveled?

Introduction

In the very first section of the text, we considered a situation where a moving object had
a known position at time t. In particular, we stipulated that a tennis ball tossed into the
air had its height s (in feet) at time t (in seconds) given by s(t) = 64 − 16(t − 1)2. From
this starting point, we investigated the average velocity of the ball on a given interval
[a, b], computed by the difference quotient s(b)−s(a)

b−a , and eventually found that we could
determine the exact instantaneous velocity of the ball at time t by taking the derivative of

207
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the position function,

s′(t) = lim
h→0

s(t + h) − s(t)
h

.

Thus, given a differentiable position function, we are able to know the exact velocity of
the moving object at any point in time.

Moreover, from this foundational problem involving position and velocity we have
learned a great deal. Given a differentiable function f , we are now able to find its derivative
and use this derivative to determine the function’s instantaneous rate of change at any
point in the domain, as well as to find where the function is increasing or decreasing, is
concave up or concave down, and has relative extremes. The vast majority of the problems
and applications we have considered have involved the situation where a particular function
is known and we seek information that relies on knowing the function’s instantaneous rate
of change. That is, we have typically proceeded from a function f to its derivative, f ′,
and then used the meaning of the derivative to help us answer important questions.

In a much smaller number of situations so far, we have encountered the reverse
situation where we instead know the derivative, f ′, and have tried to deduce information
about f . It is this particular problem that will be the focus of our attention in most of
Chapter 4: if we know the instantaneous rate of change of a function, are we able to
determine the function itself? To begin, we start with a more focused question: if we know
the instantaneous velocity of an object moving along a straight line path, can we determine
its corresponding position function?

Preview Activity 4.1. Suppose that a person is taking a walk along a long straight path
and walks at a constant rate of 3 miles per hour.

(a) On the left-hand axes provided in Figure 4.1, sketch a labeled graph of the velocity
function v(t) = 3. Note that while the scale on the two sets of axes is the same,

1 2

4

8
mph

hrs

1 2

4

8
miles

hrs

Figure 4.1: At left, axes for plotting y = v(t); at right, for plotting y = s(t).

the units on the right-hand axes differ from those on the left. The right-hand axes



4.1. DETERMINING DISTANCE TRAVELED FROM VELOCITY 209

will be used in question (d).

(b) How far did the person travel during the two hours? How is this distance related
to the area of a certain region under the graph of y = v(t)?

(c) Find an algebraic formula, s(t), for the position of the person at time t, assuming
that s(0) = 0. Explain your thinking.

(d) On the right-hand axes provided in Figure 4.1, sketch a labeled graph of the
position function y = s(t).

(e) For what values of t is the position function s increasing? Explain why this is the
case using relevant information about the velocity function v.

./

Area under the graph of the velocity function

In Preview Activity 4.1, we encountered a fundamental fact: when a moving object’s velocity
is constant (and positive), the area under the velocity curve over a given interval tells us
the distance the object traveled. As seen at left in Figure 4.2, if we consider an object

1 2 3

1

3
mph

hrs

v(t) = 2

A1

1 2 3

1

3
mph

hrs

y = v(t)

A2

Figure 4.2: At left, a constant velocity function; at right, a non-constant velocity function.

moving at 2 miles per hour over the time interval [1, 1.5], then the area A1 of the shaded
region under y = v(t) on [1, 1.5] is

A1 = 2
miles
hour

·
1

2
hours = 1mile.

This principle holds in general simply due to the fact that distance equals rate times time,
provided the rate is constant. Thus, if v(t) is constant on the interval [a, b], then the
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distance traveled on [a, b] is the area A that is given by

A = v(a)(b − a) = v(a)4t,

where 4t is the change in t over the interval. Note, too, that we could use any value of
v(t) on the interval [a, b], since the velocity is constant; we simply chose v(a), the value at
the interval’s left endpoint. For several examples where the velocity function is piecewise
constant, see http://gvsu.edu/s/9T.1

The situation is obviously more complicated when the velocity function is not constant.
At the same time, on relatively small intervals on which v(t) does not vary much, the area
principle allows us to estimate the distance the moving object travels on that time interval.
For instance, for the non-constant velocity function shown at right in Figure 4.2, we see
that on the interval [1, 1.5], velocity varies from v(1) = 2.5 down to v(1.5) ≈ 2.1. Hence,
one estimate for distance traveled is the area of the pictured rectangle,

A2 = v(1)4t = 2.5
miles
hour

·
1

2
hours = 1.25miles.

Because v is decreasing on [1, 1.5] and the rectangle lies above the curve, clearly A2 = 1.25
is an over-estimate of the actual distance traveled.

If we want to estimate the area under the non-constant velocity function on a wider
interval, say [0, 3], it becomes apparent that one rectangle probably will not give a good
approximation. Instead, we could use the six rectangles pictured in Figure 4.3, find the

1 2 3

1

3
mph

hrs

y = v(t)

Figure 4.3: Using six rectangles to estimate the area under y = v(t) on [0, 3].

area of each rectangle, and add up the total. Obviously there are choices to make and
issues to understand: how many rectangles should we use? where should we evaluate the
function to decide the rectangle’s height? what happens if velocity is sometimes negative?

1Marc Renault, calculus applets.

http://gvsu.edu/s/9T
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can we attain the exact area under any non-constant curve? These questions and more
are ones we will study in what follows; for now it suffices to realize that the simple idea of
the area of a rectangle gives us a powerful tool for estimating both distance traveled from
a velocity function as well as the area under an arbitrary curve. To explore the setting of
multiple rectangles to approximate area under a non-constant velocity function, see the
applet found at http://gvsu.edu/s/9U.2

Activity 4.1.

Suppose that a person is walking in such a way that her velocity varies slightly according
to the information given in the table below and graph given in Figure 4.4.

t 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

v(t) 1.500 1.789 1.938 1.992 2.000 2.008 2.063 2.211 2.500

1 2

1

2

3
mph

hrs

y = v(t)

Figure 4.4: The graph of y = v(t).

(a) Using the grid, graph, and given data appropriately, estimate the distance
traveled by the walker during the two hour interval from t = 0 to t = 2. You
should use time intervals of width 4t = 0.5, choosing a way to use the function
consistently to determine the height of each rectangle in order to approximate
distance traveled.

(b) How could you get a better approximation of the distance traveled on [0, 2]?
Explain, and then find this new estimate.

(c) Now suppose that you know that v is given by v(t) = 0.5t3 − 1.5t2 + 1.5t + 1.5.
Remember that v is the derivative of the walker’s position function, s. Find a
formula for s so that s′ = v.

(d) Based on your work in (c), what is the value of s(2)− s(0)? What is the meaning
of this quantity?

C
2Marc Renault, calculus applets.

http://gvsu.edu/s/9U
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Two approaches: area and antidifferentiation

When the velocity of a moving object is positive, the object’s position is always increasing.
While we will soon consider situations where velocity is negative and think about the
ramifications of this condition on distance traveled, for now we continue to assume that
we are working with a positive velocity function. In that setting, we have established that
whenever v is actually constant, the exact distance traveled on an interval is the area
under the velocity curve; furthermore, we have observed that when v is not constant,
we can estimate the total distance traveled by finding the areas of rectangles that help
to approximate the area under the velocity curve on the given interval. Hence, we see
the importance of the problem of finding the area between a curve and the horizontal
axis: besides being an interesting geometric question, in the setting of the curve being the
(positive) velocity of a moving object, the area under the curve over an interval tells us
the exact distance traveled on the interval. We can estimate this area any time we have a
graph of the velocity function or a table of data that tells us some relevant values of the
function.

In Activity 4.1, we also encountered an alternate approach to finding the distance
traveled. In particular, if we know a formula for the instantaneous velocity, y = v(t), of the
moving body at time t, then we realize that v must be the derivative of some corresponding
position function s. If we can find a formula for s from the formula for v, it follows that we
know the position of the object at time t. In addition, under the assumption that velocity
is positive, the change in position over a given interval then tells us the distance traveled
on that interval.

For a simple example, consider the situation from Preview Activity 4.1, where a person
is walking along a straight line and has velocity function v(t) = 3 mph. As pictured in

1 2

4

8
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hrs

v(t) = 3

A = 3 ·1.25 = 3.75

1 2

4

8
miles

hrss(0.25) = 0.75

s(1.5) = 4.5

s(t) = 3t

Figure 4.5: The velocity function v(t) = 3 and corresponding position function s(t) = 3t.

Figure 4.5, we see the already noted relationship between area and distance traveled on
the left-hand graph of the velocity function. In addition, because the velocity is constant
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at 3, we know that if3 s(t) = 3t, then s′(t) = 3, so s(t) = 3t is a function whose derivative
is v(t). Furthermore, we now observe that s(1.5) = 4.5 and s(0.25) = 0.75, which are the
respective locations of the person at times t = 0.25 and t = 1.5, and therefore

s(1.5) − s(0.25) = 4.5 − 0.75 = 3.75 miles.

This is not only the change in position on [0.25, 1.5], but also precisely the distance
traveled on [0.25, 1.5], which can also be computed by finding the area under the velocity
curve over the same interval. There are profound ideas and connections present in this
example that we will spend much of the remainder of Chapter 4 studying and exploring.

For now, it is most important to observe that if we are given a formula for a velocity
function v, it can be very helpful to find a function s that satisfies s′ = v. In this context, we
say that s is an antiderivative of v. More generally, just as we say that f ′ is the derivative of
f for a given function f , if we are given a function g and G is a function such that G′ = g,
we say that G is an antiderivative of g. For example, if g(x) = 3x2 + 2x, an antiderivative
of g is G(x) = x3 + x2, since G′(x) = g(x). Note that we say “an” antiderivative of g
rather than “the” antiderivative of g because H(x) = x3 + x2 + 5 is also a function whose
derivative is g, and thus H is another antiderivative of g.

Activity 4.2.

A ball is tossed vertically in such a way that its velocity function is given by v(t) =
32 − 32t, where t is measured in seconds and v in feet per second. Assume that this
function is valid for 0 ≤ t ≤ 2.

(a) For what values of t is the velocity of the ball positive? What does this tell you
about the motion of the ball on this interval of time values?

(b) Find an antiderivative, s, of v that satisfies s(0) = 0.

(c) Compute the value of s(1) − s(12 ). What is the meaning of the value you find?

(d) Using the graph of y = v(t) provided in Figure 4.6, find the exact area of the
region under the velocity curve between t = 1

2 and t = 1. What is the meaning
of the value you find?

(e) Answer the same questions as in (c) and (d) but instead using the interval [0, 1].
(f) What is the value of s(2) − s(0)? What does this result tell you about the flight

of the ball? How is this value connected to the provided graph of y = v(t)?
Explain.

C

3Here we are making the implicit assumption that s(0) = 0; we will further discuss the different possibilities
for values of s(0) in subsequent study.
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v(t) = 32−32t

Figure 4.6: The graph of y = v(t).

When velocity is negative

Most of our work in this section has occurred under the assumption that velocity is positive.
This hypothesis guarantees that the movement of the object under consideration is always
in a single direction, and hence ensures that the moving body’s change in position is the
same as the distance it travels on a given interval. As we saw in Activity 4.2, there are
natural settings in which a moving object’s velocity is negative; we would like to understand
this scenario fully as well.

Consider a simple example where a person goes for a walk on a beach along a stretch
of very straight shoreline that runs east-west. We can naturally assume that their initial
position is s(0) = 0, and further stipulate that their position function increases as they
move east from their starting location. For instance, a position of s = 1 mile represents
being one mile east of the start location, while s = −1 tells us the person is one mile west
of where they began walking on the beach. Now suppose the person walks in the following
manner. From the outset at t = 0, the person walks due east at a constant rate of 3 mph
for 1.5 hours. After 1.5 hours, the person stops abruptly and begins walking due west at
the constant rate of 4 mph and does so for 0.5 hours. Then, after another abrupt stop and
start, the person resumes walking at a constant rate of 3 mph to the east for one more
hour. What is the total distance the person traveled on the time interval t = 0 to t = 3?
What is the person’s total change in position over that time?

On one hand, these are elementary questions to answer because the velocity involved
is constant on each interval. From t = 0 to t = 1.5, the person traveled

D[0,1.5] = 3 miles per hour · 1.5 hours = 4.5 miles.

Similarly, on t = 1.5 to t = 2, having a different rate, the distance traveled is

D[1.5,2] = 4 miles per hour · 0.5 hours = 2 miles.
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Finally, similar calculations reveal that in the final hour, the person walked

D[2,3] = 3 miles per hour · 1 hours = 3 miles,

so the total distance traveled is

D = D[0,1.5] + D[1.5,2] + D[2,3] = 4.5 + 2 + 3 = 9.5 miles.

Since the velocity on 1.5 < t < 2 is actually v = −4, being negative to indicate motion in
the westward direction, this tells us that the person first walked 4.5 miles east, then 2 miles
west, followed by 3 more miles east. Thus, the walker’s total change in position is

change in position = 4.5 − 2 + 3 = 5.5 miles.

While we have been able to answer these questions fairly easily, it is also important to
think about this problem graphically in order that we can generalize our solution to the
more complicated setting when velocity is not constant, as well as to note the particular
impact that negative velocity has. In Figure 4.7, we see how the distances we computed
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y = s(t)

Figure 4.7: At left, the velocity function of the person walking; at right, the corresponding
position function.

above can be viewed as areas: A1 = 4.5 comes from taking rate times time (3 · 1.5), as
do A2 and A3 for the second and third rectangles. The big new issue is that while A2

is an area (and is therefore positive), because this area involves an interval on which the
velocity function is negative, its area has a negative sign associated with it. This helps us
to distinguish between distance traveled and change in position.

The distance traveled is the sum of the areas,

D = A1 + A2 + A3 = 4.5 + 2 + 3 = 9.5 miles.
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But the change in position has to account for the sign associated with the area, where
those above the t-axis are considered positive while those below the t-axis are viewed as
negative, so that

s(3) − s(0) = (+4.5) + (−2) + (+3) = 5.5 miles,

assigning the “−2” to the area in the interval [1.5, 2] because there velocity is negative and
the person is walking in the “negative” direction. In other words, the person walks 4.5
miles in the positive direction, followed by two miles in the negative direction, and then
3 more miles in the positive direction. This affect of velocity being negative is also seen
in the graph of the function y = s(t), which has a negative slope (specifically, its slope is
−4) on the interval 1.5 < t < 2 since the velocity is −4 on that interval, which shows the
person’s position function is decreasing due to the fact that she is walking east, rather
than west. On the intervals where she is walking west, the velocity function is positive and
the slope of the position function s is therefore also positive.

To summarize, we see that if velocity is sometimes negative, this makes the moving
object’s change in position different from its distance traveled. By viewing the intervals on
which velocity is positive and negative separately, we may compute the distance traveled
on each such interval, and then depending on whether we desire total distance traveled or
total change in position, we may account for negative velocities that account for negative
change in position, while still contributing positively to total distance traveled. We close
this section with one additional activity that further explores the effects of negative velocity
on the problem of finding change in position and total distance traveled.

Activity 4.3.

Suppose that an object moving along a straight line path has its velocity v (in meters
per second) at time t (in seconds) given by the piecewise linear function whose graph is
pictured in Figure 4.8. We view movement to the right as being in the positive direction
(with positive velocity), while movement to the left is in the negative direction. Suppose

2 4 6 8
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Figure 4.8: The velocity function of a moving object.
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further that the object’s initial position at time t = 0 is s(0) = 1.

(a) Determine the total distance traveled and the total change in position on the
time interval 0 ≤ t ≤ 2. What is the object’s position at t = 2?

(b) On what time intervals is the moving object’s position function increasing?
Why? On what intervals is the object’s position decreasing? Why?

(c) What is the object’s position at t = 8? How many total meters has it traveled to
get to this point (including distance in both directions)? Is this different from
the object’s total change in position on t = 0 to t = 8?

(d) Find the exact position of the object at t = 1, 2, 3, . . . , 8 and use this data to
sketch an accurate graph of y = s(t) on the axes provided at right. How can
you use the provided information about y = v(t) to determine the concavity of
s on each relevant interval?

C

Summary

In this section, we encountered the following important ideas:

• If we know the velocity of a moving body at every point in a given interval and the
velocity is positive throughout, we can estimate the object’s distance traveled and in
some circumstances determine this value exactly.

• In particular, when velocity is positive on an interval, we can find the total distance
traveled by finding the area under the velocity curve and above the t-axis on the given
time interval. We may only be able to estimate this area, depending on the shape of
the velocity curve.

• An antiderivative of a function f is a new function F whose derivative is f . That
is, F is an antiderivative of f provided that F ′ = f . In the context of velocity and
position, if we know a velocity function v, an antiderivative of v is a position function s
that satisfies s′ = v. If v is positive on a given interval, say [a, b], then the change in
position, s(b) − s(a), measures the distance the moving object traveled on [a, b].

• In the setting where velocity is sometimes negative, this means that the object is
sometimes traveling in the opposite direction (depending on whether velocity is positive
or negative), and thus involves the object backtracking. To determine distance traveled,
we have to think about the problem separately on intervals where velocity is positive
and negative and account for the change in position on each such interval.
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Exercises

1. Along the eastern shore of Lake Michigan from Lake Macatawa (near Holland) to Grand
Haven, there is a bike bath that runs almost directly north-south. For the purposes of
this problem, assume the road is completely straight, and that the function s(t) tracks
the position of the biker along this path in miles north of Pigeon Lake, which lies
roughly halfway between the ends of the bike path.

Suppose that the biker’s velocity function is given by the graph in Figure 4.9 on the
time interval 0 ≤ t ≤ 4 (where t is measured in hours), and that s(0) = 1.
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Figure 4.9: The graph of the biker’s velocity, y = v(t), at left. At right, axes to plot an
approximate sketch of y = s(t).

(a) Approximately how far north of Pigeon Lake was the cyclist when she was the
greatest distance away from Pigeon Lake? At what time did this occur?

(b) What is the cyclist’s total change in position on the time interval 0 ≤ t ≤ 2? At
t = 2, was she north or south of Pigeon Lake?

(c) What is the total distance the biker traveled on 0 ≤ t ≤ 4? At the end of the
ride, how close was she to the point at which she started?

(d) Sketch an approximate graph of y = s(t), the position function of the cyclist,
on the interval 0 ≤ t ≤ 4. Label at least four important points on the graph of
s.

2. A toy rocket is launched vertically from the ground on a day with no wind. The rocket’s
vertical velocity at time t (in seconds) is given by v(t) = 500 − 32t feet/sec.

(a) At what time after the rocket is launched does the rocket’s velocity equal zero?
Call this time value a. What happens to the rocket at t = a?

(b) Find the value of the total area enclosed by y = v(t) and the t-axis on the
interval 0 ≤ t ≤ a. What does this area represent in terms of the physical
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setting of the problem?

(c) Find an antiderivative s of the function v. That is, find a function s such that
s′(t) = v(t).

(d) Compute the value of s(a) − s(0). What does this number represent in terms of
the physical setting of the problem?

(e) Compute s(5) − s(1). What does this number tell you about the rocket’s flight?

3. An object moving along a horizontal axis has its instantaneous velocity at time t in
seconds given by the function v pictured in Figure 4.10, where v is measured in feet/sec.
Assume that the curves that make up the parts of the graph of y = v(t) are either

1 2 3 4 5 6 7

-1

1
y = v(t)

Figure 4.10: The graph of y = v(t), the velocity function of a moving object.

portions of straight lines or portions of circles.

(a) Determine the exact total distance the object traveled on 0 ≤ t ≤ 2.

(b) What is the value and meaning of s(5) − s(2), where y = s(t) is the position
function of the moving object?

(c) On which time interval did the object travel the greatest distance: [0, 2], [2, 4],
or [5, 7]?

(d) On which time interval(s) is the position function s increasing? At which point(s)
does s achieve a relative maximum?

4. Filters at a water treatment plant become dirtier over time and thus become less
effective; they are replaced every 30 days. During one 30-day period, the rate at which
pollution passes through the filters into a nearby lake (in units of particulate matter
per day) is measured every 6 days and is given in the following table. The time t is
measured in days since the filters were replaced.

Day, t 0 6 12 18 24 30
Rate of pollution in units per day, p(t) 7 8 10 13 18 35
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(a) Plot the given data on a set of axes with time on the horizontal axis and the
rate of pollution on the vertical axis.

(b) Explain why the amount of pollution that entered the lake during this 30-day
period would be given exactly by the area bounded by y = p(t) and the t-axis
on the time interval [0, 30].

(c) Estimate the total amount of pollution entering the lake during this 30-day
period. Carefully explain how you determined your estimate.
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4.2 Riemann Sums

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How can we use a Riemann sum to estimate the area between a given curve and
the horizontal axis over a particular interval?

• What are the differences among left, right, middle, and random Riemann sums?

• How can we write Riemann sums in an abbreviated form??

Introduction

In Section 4.1, we learned that if we have a moving object with velocity function v, whenever
v(t) is positive, the area between y = v(t) and the t-axis over a given time interval tells us
the distance traveled by the object over that time period; in addition, if v(t) is sometimes
negative and we view the area of any region below the t-axis as having an associated
negative sign, then the sum of these signed areas over a given interval tells us the moving
object’s change in position over the time interval. For instance, for the velocity function

y = v(t)

a b

A1

A2

A3

Figure 4.11: A velocity function that is sometimes negative.

given in Figure 4.11, if the areas of shaded regions are A1, A2, and A3 as labeled, then the
total distance D traveled by the moving object on [a, b] is

D = A1 + A2 + A3,
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while the total change in the object’s position on [a, b] is
s(b) − s(a) = A1 − A2 + A3.

Because the motion is in the negative direction on the interval where v(t) < 0, we subtract
A2 when determining the object’s total change in position.

Of course, finding D and s(b) − s(a) for the situation given in Figure 4.11 presumes
that we can actually find the areas represented by A1, A2, and A3. In most of our work in
Section 4.1, such as in Activities 4.2 and 4.3, we worked with velocity functions that were
either constant or linear, so that by finding the areas of rectangles and triangles, we could
find the area bounded by the velocity function and the horizontal axis exactly. But when
the curve that bounds a region is not one for which we have a known formula for area, we
are unable to find this area exactly. Indeed, this is one of our biggest goals in Chapter 4:
to learn how to find the exact area bounded between a curve and the horizontal axis for
as many different types of functions as possible.

To begin, we expand on the ideas in Activity 4.1, where we encountered a nonlinear
velocity function and approximated the area under the curve using four and eight rectangles,
respectively. In the following preview activity, we focus on three different options for
deciding how to find the heights of the rectangles we will use.

Preview Activity 4.2. A person walking along a straight path has her velocity in miles
per hour at time t given by the function v(t) = 0.25t3 − 1.5t2 + 3t + 0.25, for times in the
interval 0 ≤ t ≤ 2. The graph of this function is also given in each of the three diagrams in
Figure 4.12. Note that in each diagram, we use four rectangles to estimate the area under
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Figure 4.12: Three approaches to estimating the area under y = v(t) on the interval [0, 2].

y = v(t) on the interval [0, 2], but the method by which the four rectangles’ respective
heights are decided varies among the three individual graphs.
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(a) How are the heights of rectangles in the left-most diagram being chosen? Explain,
and hence determine the value of

S = A1 + A2 + A3 + A4

by evaluating the function y = v(t) at appropriately chosen values and observing
the width of each rectangle. Note, for example, that

A3 = v(1) · 1
2
= 2 ·

1

2
= 1.

(b) Explain how the heights of rectangles are being chosen in the middle diagram and
find the value of

T = B1 + B2 + B3 + B4.

(c) Likewise, determine the pattern of how heights of rectangles are chosen in the
right-most diagram and determine

U = C1 + C2 + C3 + C4.

(d) Of the estimates S, T , and U , which do you think is the best approximation of D,
the total distance the person traveled on [0, 2]? Why?

./

Sigma Notation

It is apparent from several different problems we have considered that sums of areas of
rectangles is one of the main ways to approximate the area under a curve over a given
interval. Intuitively, we expect that using a larger number of thinner rectangles will provide
a way to improve the estimates we are computing. As such, we anticipate dealing with
sums with a large number of terms. To do so, we introduce the use of so-called sigma
notation, named for the Greek letter Σ, which is the capital letter S in the Greek alphabet.

For example, say we are interested in the sum

1 + 2 + 3 + · · · + 100,

which is the sum of the first 100 natural numbers. Sigma notation provides a shorthand
notation that recognizes the general pattern in the terms of the sum. It is equivalent to
write

100∑
k=1

k = 1 + 2 + 3 + · · · + 100.
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We read the symbol
100∑
k=1

k as “the sum from k equals 1 to 100 of k .” The variable k is

usually called the index of summation, and the letter that is used for this variable is
immaterial. Each sum in sigma notation involves a function of the index; for example,

10∑
k=1

(k2 + 2k) = (12 + 2 · 1) + (22 + 2 · 2) + (32 + 2 · 3) + · · · + (102 + 2 · 10),

and more generally,
n∑

k=1

f (k) = f (1) + f (2) + · · · + f (n).

Sigma notation allows us the flexibility to easily vary the function being used to track the
pattern in the sum, as well as to adjust the number of terms in the sum simply by changing
the value of n. We test our understanding of this new notation in the following activity.

Activity 4.4.

For each sum written in sigma notation, write the sum long-hand and evaluate the
sum to find its value. For each sum written in expanded form, write the sum in sigma
notation.

(a)
5∑

k=1

(k2 + 2)

(b)
6∑
i=3

(2i − 1)

(c) 3 + 7 + 11 + 15 + · · · + 27

(d) 4 + 8 + 16 + 32 + · · · + 256

(e)
6∑
i=1

1

2i

C

Riemann Sums

When a moving body has a positive velocity function y = v(t) on a given interval [a, b],
we know that the area under the curve over the interval is the total distance the body
travels on [a, b]. While this is the fundamental motivating force behind our interest in
the area bounded by a function, we are also interested more generally in being able to
find the exact area bounded by y = f (x) on an interval [a, b], regardless of the meaning
or context of the function f . For now, we continue to focus on determining an accurate
estimate of this area through the use of a sum of the areas of rectangles, doing so in the
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setting where f (x) ≥ 0 on [a, b]. Throughout, unless otherwise indicated, we also assume
that f is continuous on [a, b].

The first choice we make in any such approximation is the number of rectangles. If we

x0

a

x1 x2 · · · xi xi+1

△x

· · · xn−1 xn

b

Figure 4.13: Subdividing the interval [a, b] into n subintervals of equal length 4x.

say that the total number of rectangles is n, and we desire n rectangles of equal width to
subdivide the interval [a, b], then each rectangle must have width 4x = b−a

n . We observe
further that x1 = x0 + 4x, x2 = x0 + 24x, and thus in general xi = a + i4x, as pictured in
Figure 4.13.

We use each subinterval [xi, xi+1] as the base of a rectangle, and next must choose
how to decide the height of the rectangle that will be used to approximate the area under
y = f (x) on the subinterval. There are three standard choices: use the left endpoint of
each subinterval, the right endpoint of each subinterval, or the midpoint of each. These
are precisely the options encountered in Preview Activity 4.2 and seen in Figure 4.12. We
next explore how these choices can be reflected in sigma notation.

If we now consider an arbitrary positive function f on [a, b] with the interval subdi-
vided as shown in Figure 4.13, and choose to use left endpoints, then on each interval of
the form [xi, xi+1], the area of the rectangle formed is given by

Ai+1 = f (xi) · 4x,

as seen in Figure 4.14. If we let Ln denote the sum of the areas of rectangles whose heights
are given by the function value at each respective left endpoint, then we see that

Ln = A1 + A2 + · · · + Ai+1 + · · · + An

= f (x0) · 4x + f (x1) · 4x + · · · + f (xi) · 4x + · · · + f (xn−1) · 4x.

In the more compact sigma notation, we have

Ln =

n−1∑
i=0

f (xi)4x.

Note particularly that since the index of summation begins at 0 and ends at n − 1, there
are indeed n terms in this sum. We call Ln the left Riemann sum for the function f on the
interval [a, b].
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x0 x1 x2 xi xi+1 xn−1 xn

A1 A2 · · · Ai+1 · · ·

y = f (x)

An

Figure 4.14: Subdividing the interval [a, b] into n subintervals of equal length 4x and
approximating the area under y = f (x) over [a, b] using left rectangles.

There are now two fundamental issues to explore: the number of rectangles we
choose to use and the selection of the pattern by which we identify the height of each
rectangle. It is best to explore these choices dynamically, and the applet4 found at
http://gvsu.edu/s/a9 is a particularly useful one. There we see the image shown in

Figure 4.15: A snapshot of the applet found at http://gvsu.edu/s/a9.

Figure 4.15, but with the opportunity to adjust the slider bars for the left endpoint and
the number of subintervals. By moving the sliders, we can see how the heights of the
rectangles change as we consider left endpoints, midpoints, and right endpoints, as well as
the impact that a larger number of narrower rectangles has on the approximation of the
exact area bounded by the function and the horizontal axis.

To see how the Riemann sums for right endpoints and midpoints are constructed,

4Marc Renault, Geogebra Calculus Applets.

http://gvsu.edu/s/a9
http://gvsu.edu/s/a9
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we consider Figure 4.16. For the sum with right endpoints, we see that the area of the

x0 x1 x2 xi xi+1 xn−1 xn

B1 B2 · · · Bi+1 · · ·

y = f (x)

Bn

x0 x1 x2 xi xi+1 xn−1 xn

C1 C2 · · · Ci+1 · · ·

y = f (x)

Cn

Figure 4.16: Riemann sums using right endpoints and midpoints.

rectangle on an arbitrary interval [xi, xi+1] is given by Bi+1 = f (xi+1) · 4x, so that the sum
of all such areas of rectangles is given by

Rn = B1 + B2 + · · · + Bi+1 + · · · + Bn

= f (x1) · 4x + f (x2) · 4x + · · · + f (xi+1) · 4x + · · · + f (xn) · 4x

=

n∑
i=1

f (xi)4x.

We call Rn the right Riemann sum for the function f on the interval [a, b]. For the sum
that uses midpoints, we introduce the notation

xi+1 =
xi + xi+1

2

so that xi+1 is the midpoint of the interval [xi, xi+1]. For instance, for the rectangle with
area C1 in Figure 4.16, we now have

C1 = f (x1) · 4x.

Hence, the sum of all the areas of rectangles that use midpoints is

Mn = C1 + C2 + · · · + Ci+1 + · · · + Cn

= f (x1) · 4x + f (x2) · 4x + · · · + f (xi+1) · 4x + · · · + f (xn) · 4x

=

n∑
i=1

f (xi)4x,

and we say that Mn is the middle Riemann sum for f on [a, b].
When f (x) ≥ 0 on [a, b], each of the Riemann sums Ln, Rn, and Mn provides an
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estimate of the area under the curve y = f (x) over the interval [a, b]; momentarily, we will
discuss the meaning of Riemann sums in the setting when f is sometimes negative. We also
recall that in the context of a nonnegative velocity function y = v(t), the corresponding
Riemann sums are approximating the distance traveled on [a, b] by the moving object with
velocity function v.

There is a more general way to think of Riemann sums, and that is to not restrict the
choice of where the function is evaluated to determine the respective rectangle heights.
That is, rather than saying we’ll always choose left endpoints, or always choose midpoints,
we simply say that a point x∗i+1 will be selected at random in the interval [xi, xi+1] (so that
xi ≤ x∗i+1 ≤ xi+1), which makes the Riemann sum given by

f (x∗1) · 4x + f (x∗2) · 4x + · · · + f (x∗i+1) · 4x + · · · + f (x∗n) · 4x =
n∑
i=1

f (x∗i )4x.

At http://gvsu.edu/s/a9, the applet noted earlier and referenced in Figure 4.15, by
unchecking the “relative” box at the top left, and instead checking “random,” we can easily
explore the effect of using random point locations in subintervals on a given Riemann sum.
In computational practice, we most often use Ln, Rn, or Mn, while the random Riemann
sum is useful in theoretical discussions. In the following activity, we investigate several
different Riemann sums for a particular velocity function.

Activity 4.5.

Suppose that an object moving along a straight line path has its velocity in feet per
second at time t in seconds given by v(t) = 2

9 (t − 3)2 + 2.
(a) Carefully sketch the region whose exact area will tell you the value of the

distance the object traveled on the time interval 2 ≤ t ≤ 5.

(b) Estimate the distance traveled on [2, 5] by computing L4, R4, and M4.

(c) Does averaging L4 and R4 result in the same value as M4? If not, what do you
think the average of L4 and R4 measures?

(d) For this question, think about an arbitrary function f , rather than the particular
function v given above. If f is positive and increasing on [a, b], will Ln over-
estimate or under-estimate the exact area under f on [a, b]? Will Rn over- or
under-estimate the exact area under f on [a, b]? Explain.

C

When the function is sometimes negative

For a Riemann sum such as

Ln =

n−1∑
i=0

f (xi)4x,

http://gvsu.edu/s/a9
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we can of course compute the sum even when f takes on negative values. We know
that when f is positive on [a, b], the corresponding left Riemann sum Ln estimates the
area bounded by f and the horizontal axis over the interval. For a function such as the

y = f (x)

a b c d

y = f (x)

a b c d

y = f (x)

A1

A2

A3

a b c d

Figure 4.17: At left and center, two left Riemann sums for a function f that is sometimes
negative; at right, the areas bounded by f on the interval [a, d].

one pictured in Figure 4.17, where in the first figure a left Riemann sum is being taken
with 12 subintervals over [a, d], we observe that the function is negative on the interval
b ≤ x ≤ c, and so for the four left endpoints that fall in [b, c], the terms f (xi)4x have
negative function values. This means that those four terms in the Riemann sum produce
an estimate of the opposite of the area bounded by y = f (x) and the x-axis on [b, c].

In Figure 4.17, we also see evidence that by increasing the number of rectangles used
in a Riemann sum, it appears that the approximation of the area (or the opposite of the
area) bounded by a curve appears to improve. For instance, in the middle graph, we use
24 left rectangles, and from the shaded areas, it appears that we have decreased the error
from the approximation that uses 12. When we proceed to Section 4.3, we will discuss the
natural idea of letting the number of rectangles in the sum increase without bound.

For now, it is most important for us to observe that, in general, any Riemann sum of a
continuous function f on an interval [a, b] approximates the difference between the area
that lies above the horizontal axis on [a, b] and under f and the area that lies below the
horizontal axis on [a, b] and above f . In the notation of Figure 4.17, we may say that

L24 ≈ A1 − A2 + A3,

where L24 is the left Riemann sum using 24 subintervals shown in the middle graph, and
A1 and A3 are the areas of the regions where f is positive on the interval of interest, while
A2 is the area of the region where f is negative. We will also call the quantity A1− A2+ A3

the net signed area bounded by f over the interval [a, d], where by the phrase “signed area”
we indicate that we are attaching a minus sign to the areas of regions that fall below the
horizontal axis.
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Finally, we recall from the introduction to this present section that in the context
where the function f represents the velocity of a moving object, the total sum of the areas
bounded by the curve tells us the total distance traveled over the relevant time interval,
while the total net signed area bounded by the curve computes the object’s change in
position on the interval.

Activity 4.6.

Suppose that an object moving along a straight line path has its velocity v (in feet per
second) at time t (in seconds) given by

v(t) = 1

2
t2 − 3t +

7

2
.

(a) Compute M5, the middle Riemann sum, for v on the time interval [1, 5]. Be
sure to clearly identify the value of 4t as well as the locations of t0, t1, · · · , t5.
In addition, provide a careful sketch of the function and the corresponding
rectangles that are being used in the sum.

(b) Building on your work in (a), estimate the total change in position of the object
on the interval [1, 5].

(c) Building on your work in (a) and (b), estimate the total distance traveled by the
object on [1, 5].

(d) Use appropriate computing technology5 to compute M10 and M20. What exact
value do you think the middle sum eventually approaches as n increases without
bound? What does that number represent in the physical context of the overall
problem?

C

Summary

In this section, we encountered the following important ideas:

• A Riemann sum is simply a sum of products of the form f (x∗i )4x that estimates the
area between a positive function and the horizontal axis over a given interval. If
the function is sometimes negative on the interval, the Riemann sum estimates the
difference between the areas that lie above the horizontal axis and those that lie below
the axis.

• The three most common types of Riemann sums are left, right, and middle sums, plus
we can also work with a more general, random Riemann sum. The only difference

5For instance, consider the applet at http://gvsu.edu/s/a9 and change the function and adjust the
locations of the blue points that represent the interval endpoints a and b.

http://gvsu.edu/s/a9
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among these sums is the location of the point at which the function is evaluated to
determine the height of the rectangle whose area is being computed in the sum. For
a left Riemann sum, we evaluate the function at the left endpoint of each subinterval,
while for right and middle sums, we use right endpoints and midpoints, respectively.

• The left, right, and middle Riemann sums are denoted Ln, Rn, and Mn, with formulas

Ln = f (x0)4x + f (x1)4x + · · · + f (xn−1)4x =
n−1∑
i=0

f (xi)4x,

Rn = f (x1)4x + f (x2)4x + · · · + f (xn)4x =
n∑
i=1

f (xi)4x,

Mn = f (x1)4x + f (x2)4x + · · · + f (xn)4x =
n∑
i=1

f (xi)4x,

where x0 = a, xi = a + i4x, and xn = b, using 4x = b−a
n . For the midpoint sum,

xi = (xi−1 + xi)/2.

Exercises

1. Consider the function f (x) = 3x + 4.

(a) Compute M4 for y = f (x) on the interval [2, 5]. Be sure to clearly identify the
value of 4x, as well as the locations of x0, x1, . . . , x4. Include a careful sketch
of the function and the corresponding rectangles being used in the sum.

(b) Use a familiar geometric formula to determine the exact value of the area of
the region bounded by y = f (x) and the x-axis on [2, 5].

(c) Explain why the values you computed in (a) and (b) turn out to be the same.
Will this be true if we use a number different than n = 4 and compute Mn? Will
L4 or R4 have the same value as the exact area of the region found in (b)?

(d) Describe the collection of functions g for which it will always be the case that
Mn, regardless of the value of n, gives the exact net signed area bounded
between the function g and the x-axis on the interval [a, b].

2. Let S be the sum given by

S = ((1.4)2+1) ·0.4+((1.8)2+1) ·0.4+((2.2)2+1) ·0.4+((2.6)2+1) ·0.4+((3.0)2+1) ·0.4.

(a) Assume that S is a right Riemann sum. For what function f and what interval
[a, b] is S an approximation of the area under f and above the x-axis on [a, b]?
Why?
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(b) How does your answer to (a) change if S is a left Riemann sum? a middle
Riemann sum?

(c) Suppose that S really is a right Riemann sum. What is geometric quantity does
S approximate?

(d) Use sigma notation to write a new sum R that is the right Riemann sum for the
same function, but that uses twice as many subintervals as S.

3. A car traveling along a straight road is braking and its velocity is measured at several
different points in time, as given in the following table.

seconds, t 0 0.3 0.6 0.9 1.2 1.5 1.8
Velocity in ft/sec, v(t) 100 88 74 59 40 19 0

(a) Plot the given data on a set of axes with time on the horizontal axis and the
velocity on the vertical axis.

(b) Estimate the total distance traveled during the car the time brakes using a
middle Riemann sum with 3 subintervals.

(c) Estimate the total distance traveled on [0, 1.8] by computing L6, R6, and
1
2 (L6 + R6).

(d) Assuming that v(t) is always decreasing on [0, 1.8], what is the maximum
possible distance the car traveled before it stopped? Why?

4. The rate at which pollution escapes a scrubbing process at a manufacturing plant
increases over time as filters and other technologies become less effective. For this
particular example, assume that the rate of pollution (in tons per week) is given by the
function r that is pictured in Figure 4.18.

1 2 3 4

1

2

3

4

y = r(t)

weeks

tons/weektons/week

Figure 4.18: The rate, r(t), of pollution in tons per week.

(a) Use the graph to estimate the value of M4 on the interval [0, 4].
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(b) What is the meaning of M4 in terms of the pollution discharged by the plant?

(c) Suppose that r(t) = 0.5e0.5t . Use this formula for r to compute L5 on [0, 4].
(d) Determine an upper bound on the total amount of pollution that can escape

the plant during the pictured four week time period that is accurate within an
error of at most one ton of pollution.
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4.3 The Definite Integral

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How does increasing the number of subintervals affect the accuracy of the approxi-
mation generated by a Riemann sum?

• What is the definition of the definite integral of a function f over the interval
[a, b]?

• What does the definite integral measure exactly, and what are some of the key
properties of the definite integral?

Introduction

In Figure 4.17, which is repeated below as Figure 4.19, we see visual evidence that increasing
the number of rectangles in a Riemann sum improves the accuracy of the approximation
of the net signed area that is bounded by the given function on the interval under
consideration. We thus explore the natural idea of allowing the number of rectangles to

y = f (x)

a b c d

y = f (x)

a b c d

y = f (x)

A1

A2

A3

a b c d

Figure 4.19: At left and center, two left Riemann sums for a function f that is sometimes
negative; at right, the exact areas bounded by f on the interval [a, d].

increase without bound in an effort to compute the exact net signed area bounded by a
function on an interval. In addition, it is important to think about the differences among
left, right, and middle Riemann sums and the different results they generate as the value
of n increases. As we have done throughout our investigations with area, we begin with
functions that are exclusively positive on the interval under consideration.



4.3. THE DEFINITE INTEGRAL 235

Preview Activity 4.3. Consider the applet found at http://gvsu.edu/s/aw6. There,
you will initially see the situation shown in Figure 4.20. Note that the value of the chosen

Figure 4.20: A right Riemann sum with 10 subintervals for the function f (x) = sin(2x) −
x2

10 + 3 on the interval [1, 7]. The value of the sum is R10 = 4.90595.

Riemann sum is displayed next to the word “relative,” and that you can change the type of
Riemann sum being computed by dragging the point on the slider bar below the phrase
“sample point placement.”

Explore to see how you can change the window in which the function is viewed, as well
as the function itself. You can set the minimum and maximum values of x by clicking and
dragging on the blue points that set the endpoints; you can change the function by typing
a new formula in the “f(x)” window at the bottom; and you can adjust the overall window
by “panning and zooming” by using the Shift key and the scrolling feature of your mouse.
More information on how to pan and zoom can be found at http://gvsu.edu/s/Fl.

Work accordingly to adjust the applet so that it uses a left Riemann sum with n = 5
subintervals for the function is f (x) = 2x + 1. You should see the updated figure shown in
Figure 4.21. Then, answer the following questions.

(a) Update the applet (and view window, as needed) so that the function being
considered is f (x) = 2x + 1 on [1, 4], as directed above. For this function on this
interval, compute Ln, Mn, Rn for n = 5, n = 25, and n = 100. What appears to be
the exact area bounded by f (x) = 2x + 1 and the x-axis on [1, 4]?

(b) Use basic geometry to determine the exact area bounded by f (x) = 2x + 1 and

6Marc Renault, Shippensburg University, Geogebra Applets for Calclulus, http://gvsu.edu/s/5p.

http://gvsu.edu/s/a9
http://gvsu.edu/s/Fl
http://gvsu.edu/s/5p
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Figure 4.21: A left Riemann sum with 5 subintervals for the function f (x) = 2x + 1 on the
interval [1, 4]. The value of the sum is L5 = 16.2.

the x-axis on [1, 4].

(c) Based on your work in (a) and (b), what do you observe occurs when we increase
the number of subintervals used in the Riemann sum?

(d) Update the applet to consider the function f (x) = x2 + 1 on the interval [1, 4]
(note that you need to enter “x∧2 + 1” for the function formula). Use the applet
to compute Ln, Mn, Rn for n = 5, n = 25, and n = 100. What do you conjecture is
the exact area bounded by f (x) = x2 + 1 and the x-axis on [1, 4]?

(e) Why can we not compute the exact value of the area bounded by f (x) = x2 + 1
and the x-axis on [1, 4] using a formula like we did in (b)?

./

The definition of the definite integral

In both examples in Preview Activity 4.3, we saw that as the number of rectangles got
larger and larger, the values of Ln, Mn, and Rn all grew closer and closer to the same
value. It turns out that this occurs for any continuous function on an interval [a, b], and
even more generally for a Riemann sum using any point x∗i+1 in the interval [xi, xi+1].
Said differently, as we let n → ∞, it doesn’t really matter where we choose to evaluate the
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function within a given subinterval, because

lim
n→∞

Ln = lim
n→∞

Rn = lim
n→∞

Mn = lim
n→∞

n∑
i=1

f (x∗i )4x.

That these limits always exist (and share the same value) for a continuous7 function f
allows us to make the following definition.

Definition 4.1. The definite integral of a continuous function f on the interval [a, b],
denoted

∫ b

a

f (x) dx, is the real number given by

∫ b

a

f (x) dx = lim
n→∞

n∑
i=1

f (x∗i )4x,

where 4x = b−a
n , xi = a + i4x (for i = 0, . . . , n), and x∗i satisfies xi−1 ≤ x∗i ≤ xi (for

i = 1, . . . , n).

We call the symbol
∫

the integral sign, the values a and b the limits of integration, and

the function f the integrand . The process of determining the real number
∫ b

a
f (x) dx is

called evaluating the definite integral. While we will come to understand that there are
several different interpretations of the value of the definite integral, for now the most

important is that
∫ b

a
f (x) dx measures the net signed area bounded by y = f (x) and the

x-axis on the interval [a, b]. For example, in the notation of the definite integral, if f is
the function pictured in Figure 4.22 and A1, A2, and A3 are the exact areas bounded by f
and the x-axis on the respective intervals [a, b], [b, c], and [c, d], then∫ b

a

f (x) dx = A1,

∫ c

b

f (x) dx = −A2,

∫ d

c

f (x) dx = A3,

and ∫ d

a

f (x) dx = A1 − A2 + A3.

We can also use definite integrals to express the change in position and distance traveled
by a moving object. In the setting of a velocity function v on an interval [a, b], it follows
from our work above and in preceding sections that the change in position, s(b) − s(a), is
given by

s(b) − s(a) =
∫ b

a

v(t) dt .

7It turns out that a function need not be continuous in order to have a definite integral. For our purposes,
we assume that the functions we consider are continuous on the interval(s) of interest. It is straightforward
to see that any function that is piecewise continuous on an interval of interest will also have a well-defined
definite integral.
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y = f (x)

A1

A2

A3

a b c d

Figure 4.22: A continuous function f on the interval [a, d].

If the velocity function is nonnegative on [a, b], then ∫ b

a
v(t) dt tells us the distance the

object traveled. When velocity is sometimes negative on [a, b], the areas bounded by the
function on intervals where v does not change sign can be found using integrals, and the
sum of these values will tell us the distance the object traveled.

If we wish to compute the value of a definite integral using the definition, we have to
take the limit of a sum. While this is possible to do in select circumstances, it is also tedious
and time-consuming; moreover, computing these limits does not offer much additional
insight into the meaning or interpretation of the definite integral. Instead, in Section 4.4,
we will learn the Fundamental Theorem of Calculus, a result that provides a shortcut for
evaluating a large class of definite integrals. This will enable us to determine the exact
net signed area bounded by a continuous function and the x-axis in many circumstances,

including examples such as
∫ 4

1
(x2 + 1) dx, which we approximated by Riemann sums in

Preview Activity 4.3.

For now, our goal is to understand the meaning and properties of the definite integral,
rather than how to actually compute its value using ideas in calculus. Thus, we temporarily
rely on the net signed area interpretation of the definite integral and observe that if a
given curve produces regions whose areas we can compute exactly through known area
formulas, we can thus compute the exact value of the integral. For instance, if we wish

to evaluate the definite integral
∫ 4

1
(2x + 1) dx, we can observe that the region bounded

by this function and the x-axis is the trapezoid shown in Figure 4.23, and by the known
formula for the area of a trapezoid, its area is A = 1

2 (3 + 9) · 3 = 18, so∫ 4

1
(2x + 1) dx = 18.
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1 4

3

9
f (x) = 2x+1

∫ 4
1 (2x+1)dx

Figure 4.23: The area bounded by f (x) = 2x + 1 and the x-axis on the interval [1, 4].

Activity 4.7.

Use known geometric formulas and the net signed area interpretation of the definite
integral to evaluate each of the definite integrals below.

(a)
∫ 1

0
3x dx

(b)
∫ 4

−1
(2 − 2x) dx

(c)
∫ 1

−1

√
1 − x2 dx

(d)
∫ 4

−3
g(x) dx, where g is the function pictured in Figure 4.24. Assume that each

portion of g is either part of a line or part of a circle.

-3 -2 -1 1 2 3 4

-1

1
y = g(x)

Figure 4.24: A function g that is piecewise defined; each piece of the function is part of a
circle or part of a line.

C
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Some properties of the definite integral

With the perspective that the definite integral of a function f over an interval [a, b]
measures the net signed area bounded by f and the x-axis over the interval, we naturally
arrive at several different standard properties of the definite integral. In addition, it is
helpful to remember that the definite integral is defined in terms of Riemann sums that
fundamentally consist of the areas of rectangles.

If we consider the definite integral
∫ a

a
f (x) dx for any real number a, it is evident

that no area is being bounded because the interval begins and ends with the same point.
Hence,

If f is a continuous function and a is a real number, then
∫ a

a

f (x) dx = 0.

y = f (x)

A1 A2

a b c

Figure 4.25: The area bounded by y = f (x) on the interval [a, c].

Next, we consider the results of subdividing a given interval. In Figure 4.25, we see
that ∫ b

a

f (x) dx = A1,

∫ c

b

f (x) dx = A2, and
∫ c

a

f (x) dx = A1 + A2,

which is indicative of the following general rule.

If f is a continuous function and a, b, and c are real numbers, then∫ c

a

f (x) dx =
∫ b

a

f (x) dx +
∫ c

b

f (x) dx.

While this rule is most apparent in the situation where a < b < c, it in fact holds in
general for any values of a, b, and c. This result is connected to another property of the
definite integral, which states that if we reverse the order of the limits of integration, we
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change the sign of the integral’s value.

If f is a continuous function and a and b are real numbers, then∫ a

b

f (x) dx = −
∫ b

a

f (x) dx.

This result makes sense because if we integrate from a to b, then in the defining Riemann
sum 4x = b−a

n , while if we integrate from b to a, 4x = a−b
n = −

b−a
n , and this is the only

change in the sum used to define the integral.

There are two additional properties of the definite integral that we need to understand.
Recall that when we worked with derivative rules in Chapter 2, we found that both the
Constant Multiple Rule and the Sum Rule held. The Constant Multiple Rule tells us that
if f is a differentiable function and k is a constant, then

d
dx

[k f (x)] = k f ′(x),

and the Sum Rule states that if f and g are differentiable functions, then

d
dx

[ f (x) + g(x)] = f ′(x) + g′(x).

These rules are useful because they enable us to deal individually with the simplest parts
of certain functions and take advantage of the elementary operations of addition and
multiplying by a constant. They also tell us that the process of taking the derivative
respects addition and multiplying by constants in the simplest possible way.

It turns out that similar rules hold for the definite integral. First, let’s consider the
situation pictured in Figure 4.26, where we examine the effect of multiplying a function by

a xi

A = f (xi)△x

A

xi+1 b

y = f (x)

a xi

B

B = 2 f (xi)△x

xi+1 b

y = 2 f (x)

Figure 4.26: The areas bounded by y = f (x) and y = 2 f (x) on [a, b].
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a factor of 2 on the area it bounds with the x-axis. Because multiplying the function by
2 doubles its height at every x-value, we see that if we consider a typical rectangle from
a Riemann sum, the difference in area comes from the changed height of the rectangle:
f (xi) for the original function, versus 2 f (xi) in the doubled function, in the case of left
sum. Hence, in Figure 4.26, we see that for the pictured rectangles with areas A and B, it
follows B = 2A. As this will happen in every such rectangle, regardless of the value of n
and the type of sum we use, we see that in the limit, the area of the red region bounded
by y = 2 f (x) will be twice that of the area of the blue region bounded by y = f (x). As
there is nothing special about the value 2 compared to an arbitrary constant k, it turns
out that the following general principle holds.

Constant Multiple Rule: If f is a continuous function and k is any real number
then ∫ b

a

k · f (x) dx = k
∫ b

a

f (x) dx.

Finally, we see a similar situation geometrically with the sum of two functions f and g.
In particular, as shown in Figure 4.27, if we take the sum of two functions f and g, at every

a xi

A = f (xi)△x

A

xi+1 b

f

a xi

B = g(xi)△x

B

xi+1 b

g

a xi

C = ( f (xi)+g(xi))△x

C

xi+1 b

f +g

Figure 4.27: The areas bounded by y = f (x) and y = g(x) on [a, b], as well as the area
bounded by y = f (x) + g(x).

point in the interval, the height of the function f +g is given by ( f +g)(xi) = f (xi)+g(xi),
which is the sum of the individual function values of f and g (taken at left endpoints).
Hence, for the pictured rectangles with areas A, B, and C, it follows that C = A + B, and
because this will occur for every such rectangle, in the limit the area of the gray region will
be the sum of the areas of the blue and red regions. Stated in terms of definite integrals,
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we have the following general rule.

Sum Rule: If f and g are continuous functions, then∫ b

a

[ f (x) + g(x)] dx =
∫ b

a

f (x) dx +
∫ b

a

g(x) dx.

More generally, the Constant Multiple and Sum Rules can be combined to make the
observation that for any continuous functions f and g and any constants c and k ,∫ b

a

[c f (x) ± kg(x)] dx = c
∫ b

a

f (x) dx ± k
∫ b

a

g(x) dx.

Activity 4.8.

Suppose that the following information is known about the functions f , g, x2, and x3:

•
∫ 2

0
f (x) dx = −3;

∫ 5

2
f (x) dx = 2

•
∫ 2

0
g(x) dx = 4;

∫ 5

2
g(x) dx = −1

•
∫ 2

0
x2 dx = 8

3 ;
∫ 5

2
x2 dx = 117

3

•
∫ 2

0
x3 dx = 4;

∫ 5

2
x3 dx = 609

4

Use the provided information and the rules discussed in the preceding section to
evaluate each of the following definite integrals.

(a)
∫ 2

5
f (x) dx

(b)
∫ 5

0
g(x) dx

(c)
∫ 5

0
( f (x) + g(x)) dx

(d)
∫ 5

2
(3x2 − 4x3) dx

(e)
∫ 0

5
(2x3 − 7g(x)) dx

C

How the definite integral is connected to a function’s average value

One of the most valuable applications of the definite integral is that it provides a way to
meaningfully discuss the average value of a function, even for a function that takes on
infinitely many values. Recall that if we wish to take the average of n numbers y1, y2, . . .,
yn, we do so by computing

Avg =
y1 + y2 + · · · + yn

n
.
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Since integrals arise from Riemann sums in which we add n values of a function, it
should not be surprising that evaluating an integral is something like averaging the output
values of a function. Consider, for instance, the right Riemann sum Rn of a function f ,
which is given by

Rn = f (x1)4x + f (x2)4x + · · · + f (xn)4x = ( f (x1) + f (x2) + · · · + f (xn))4x.

Since 4x = b−a
n , we can thus write

Rn = ( f (x1) + f (x2) + · · · + f (xn)) · b − a
n
= (b − a) f (x1) + f (x2) + · · · + f (xn)

n
. (4.1)

Here, we see that the right Riemann sum with n subintervals is the length of the interval
(b− a) times the average of the n function values found at the right endpoints. And just as
with our efforts to compute area, we see that the larger the value of n we use, the more
accurate our average of the values of f will be. Indeed, we will define the average value of
f on [a, b] to be

fAVG[a,b] = lim
n→∞

f (x1) + f (x2) + · · · + f (xn)
n

.

But we also know that for any continuous function f on [a, b], taking the limit of a

Riemann sum leads precisely to the definite integral. That is, lim
n→∞

Rn =

∫ b

a

f (x) dx, and

thus taking the limit as n → ∞ in Equation (4.1), we have that∫ b

a

f (x) dx = (b − a) · fAVG[a,b]. (4.2)

Solving Equation (4.2) for fAVG[a,b], we have the following general principle.

Average value of a function: If f is a continuous function on [a, b], then its average
value on [a, b] is given by the formula

fAVG[a,b] =
1

b − a
·

∫ b

a

f (x) dx.

Observe that Equation (4.2) tells us another way to interpret the definite integral:
the definite integral of a function f from a to b is the length of the interval (b − a)
times the average value of the function on the interval. In addition, Equation (4.2) has
a natural visual interpretation when the function f is nonnegative on [a, b]. Consider

Figure 4.28, where we see at left the shaded region whose area is
∫ b

a
f (x) dx, at center

the shaded rectangle whose dimensions are (b − a) by fAVG[a,b], and at right these two
figures superimposed. Specifically, note that in dark green we show the horizontal line
y = fAVG[a,b]. Thus, the area of the green rectangle is given by (b − a) · fAVG[a,b], which
is precisely the value of

∫ b

a
f (x) dx. Said differently, the area of the blue region in the
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a b

∫ b
a f (x)dx

y = f (x)

a

fAVG[a,b]

(b−a) · fAVG[a,b]

b

y = f (x)

a b

A1

A2

y = f (x)

Figure 4.28: A function y = f (x), the area it bounds, and its average value on [a, b].

left figure is the same as that of the green rectangle in the center figure; this can also be
seen by observing that the areas A1 and A2 in the rightmost figure appear to be equal.
Ultimately, the average value of a function enables us to construct a rectangle whose area
is the same as the value of the definite integral of the function on the interval. The java
applet8 at http://gvsu.edu/s/az provides an opportunity to explore how the average
value of the function changes as the interval changes, through an image similar to that
found in Figure 4.28.

Activity 4.9.

Suppose that v(t) = √
4 − (t − 2)2 tells us the instantaneous velocity of a moving object

on the interval 0 ≤ t ≤ 4, where t is measured in minutes and v is measured in meters
per minute.

(a) Sketch an accurate graph of y = v(t). What kind of curve is y =
√
4 − (t − 2)2?

(b) Evaluate
∫ 4

0
v(t) dt exactly.

(c) In terms of the physical problem of the moving object with velocity v(t), what
is the meaning of

∫ 4

0
v(t) dt? Include units on your answer.

(d) Determine the exact average value of v(t) on [0, 4]. Include units on your
answer.

(e) Sketch a rectangle whose base is the line segment from t = 0 to t = 4 on the

t-axis such that the rectangle’s area is equal to the value of
∫ 4

0
v(t) dt. What is

the rectangle’s exact height?

(f) How can you use the average value you found in (d) to compute the total
distance traveled by the moving object over [0, 4]?

8David Austin, http://gvsu.edu/s/5r.

http://gvsu.edu/s/az
http://gvsu.edu/s/5r
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C

Summary

In this section, we encountered the following important ideas:

• Any Riemann sum of a continuous function f on an interval [a, b] provides an estimate
of the net signed area bounded by the function and the horizontal axis on the interval.
Increasing the number of subintervals in the Riemann sum improves the accuracy of
this estimate, and letting the number of subintervals increase without bound results
in the values of the corresponding Riemann sums approaching the exact value of the
enclosed net signed area.

• When we take the just described limit of Riemann sums, we arrive at what we call

the definite integral of f over the interval [a, b]. In particular, the symbol
∫ b

a
f (x) dx

denotes the definite integral of f over [a, b], and this quantity is defined by the equation∫ b

a

f (x) dx = lim
n→∞

n∑
i=1

f (x∗i )4x,

where 4x = b−a
n , xi = a + i4x (for i = 0, . . . , n), and x∗i satisfies xi−1 ≤ x∗i ≤ xi (for

i = 1, . . . , n).

• The definite integral
∫ b

a
f (x) dx measures the exact net signed area bounded by f and

the horizontal axis on [a, b]; in addition, the value of the definite integral is related to

what we call the average value of the function on [a, b]: fAVG[a,b] = 1
b−a ·

∫ b

a
f (x) dx. In

the setting where we consider the integral of a velocity function v,
∫ b

a
v(t) dt measures

the exact change in position of the moving object on [a, b]; when v is nonnegative,∫ b

a
v(t) dt is the object’s distance traveled on [a, b].

• The definite integral is a sophisticated sum, and thus has some of the same natural
properties that finite sums have. Perhaps most important of these is how the definite
integral respects sums and constant multiples of functions, which can be summarized
by the rule ∫ b

a

[c f (x) ± kg(x)] dx = c
∫ b

a

f (x) dx ± k
∫ b

a

g(x) dx

where f and g are continuous functions on [a, b] and c and k are arbitrary constants.

Exercises

1. The velocity of an object moving along an axis is given by the piecewise linear function
v that is pictured in Figure 4.29. Assume that the object is moving to the right when its
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velocity is positive, and moving to the left when its velocity is negative. Assume that
the given velocity function is valid for t = 0 to t = 4.

1 2 3 4

-2

-1

1

2
ft/sec

sec

y = v(t)

Figure 4.29: The velocity function of a moving object.

(a) Write an expression involving definite integrals whose value is the total change
in position of the object on the interval [0, 4].

(b) Use the provided graph of v to determine the value of the total change in
position on [0, 4].

(c) Write an expression involving definite integrals whose value is the total distance
traveled by the object on [0, 4]. What is the exact value of the total distance
traveled on [0, 4]?

(d) What is the object’s exact average velocity on [0, 4]?
(e) Find an algebraic formula for the object’s position function on [0, 1.5] that

satisfies s(0) = 0.

2. Suppose that the velocity of a moving object is given by v(t) = t(t − 1)(t − 3), measured
in feet per second, and that this function is valid for 0 ≤ t ≤ 4.

(a) Write an expression involving definite integrals whose value is the total change
in position of the object on the interval [0, 4].

(b) Use appropriate technology (such as http://gvsu.edu/s/a99) to compute
Riemann sums to estimate the object’s total change in position on [0, 4]. Work
to ensure that your estimate is accurate to two decimal places, and explain how
you know this to be the case.

(c) Write an expression involving definite integrals whose value is the total distance
traveled by the object on [0, 4].

9Marc Renault, Shippensburg University.

http://gvsu.edu/s/av
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(d) Use appropriate technology to compute Riemann sums to estimate the object’s
total distance travelled on [0, 4]. Work to ensure that your estimate is accurate
to two decimal places, and explain how you know this to be the case.

(e) What is the object’s average velocity on [0, 4], accurate to two decimal places?

3. Consider the graphs of two functions f and g that are provided in Figure 4.30. Each
piece of f and g is either part of a straight line or part of a circle.

1 2 3 4

-2

-1

1

2
y = f (x)

1 2 3 4

-2

-1

1

2
y = g(x)

Figure 4.30: Two functions f and g.

(a) Determine the exact value of
∫ 1

0
[ f (x) + g(x)] dx.

(b) Determine the exact value of
∫ 4

1
[2 f (x) − 3g(x)] dx.

(c) Find the exact average value of h(x) = g(x) − f (x) on [0, 4].
(d) For what constant c does the following equation hold?∫ 4

0
c dx =

∫ 4

0
[ f (x) + g(x)] dx

4. Let f (x) = 3 − x2 and g(x) = 2x2.

(a) On the interval [−1, 1], sketch a labeled graph of y = f (x) and write a definite
integral whose value is the exact area bounded by y = f (x) on [−1, 1].

(b) On the interval [−1, 1], sketch a labeled graph of y = g(x) and write a definite
integral whose value is the exact area bounded by y = g(x) on [−1, 1].

(c) Write an expression involving a difference of definite integrals whose value is
the exact area that lies between y = f (x) and y = g(x) on [−1, 1].

(d) Explain why your expression in (c) has the same value as the single integral∫ 1

−1
[ f (x) − g(x)] dx.



4.3. THE DEFINITE INTEGRAL 249

(e) Explain why, in general, if p(x) ≥ q(x) for all x in [a, b], the exact area between
y = p(x) and y = q(x) is given by∫ b

a

[p(x) − q(x)] dx.
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4.4 The Fundamental Theorem of Calculus

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How can we find the exact value of a definite integral without taking the limit of a
Riemann sum?

• What is the statement of the Fundamental Theorem of Calculus, and how do
antiderivatives of functions play a key role in applying the theorem?

• What is the meaning of the definite integral of a rate of change in contexts other
than when the rate of change represents velocity?

Introduction

Much of our work in Chapter 4 has been motivated by the velocity-distance problem: if
we know the instantaneous velocity function, v(t), for a moving object on a given time
interval [a, b], can we determine its exact distance traveled on [a, b]? In the vast majority
of our discussion in Sections 4.1-4.3, we have focused on the fact that this distance traveled
is connected to the area bounded by y = v(t) and the t-axis on [a, b]. In particular, for
any nonnegative velocity function y = v(t) on [a, b], we know that the exact area bounded
by the velocity curve and the t-axis on the interval tells us the total distance traveled,

which is also the value of the definite integral
∫ b

a
v(t) dt. In the situation where velocity is

sometimes negative, the total area bounded by the velocity function still tells us distance
traveled, while the net signed area that the function bounds tells us the object’s change in
position. Recall, for instance, the introduction to Section 4.2, where we observed that for
the velocity function in Figure 4.31, the total distance D traveled by the moving object on
[a, b] is

D = A1 + A2 + A3,

while the total change in the object’s position on [a, b] is
s(b) − s(a) = A1 − A2 + A3.

While the areas A1, A2, and A3, which are each given by definite integrals, may be
computed through limits of Riemann sums (and in select special circumstances through
familiar geometric formulas), in the present section we turn our attention to an alternate
approach, similar to the one we encountered in Activity 4.2. To explore these ideas further,
we consider the following preview activity.

Preview Activity 4.4. A student with a third floor dormitory window 32 feet off the
ground tosses a water balloon straight up in the air with an initial velocity of 16 feet
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y = v(t)

a b

A1

A2

A3

Figure 4.31: A velocity function that is sometimes negative.

per second. It turns out that the instantaneous velocity of the water balloon is given by
the velocity function v(t) = −32t + 16, where v is measured in feet per second and t is
measured in seconds.

(a) Let s(t) represent the height of the water balloon above the ground at time t, and
note that s is an antiderivative of v. That is, v is the derivative of s: s′(t) = v(t).
Find a formula for s(t) that satisfies the initial condition that the balloon is tossed
from 32 feet above ground. In other words, make your formula for s satisfy
s(0) = 32.

(b) At what time does the water balloon reach its maximum height? At what time
does the water balloon land?

(c) Compute the three differences s(12 ) − s(0), s(2) − s(12 ), and s(2) − s(0). What do
these differences represent?

(d) What is the total vertical distance traveled by the water balloon from the time it is
tossed until the time it lands?

(e) Sketch a graph of the velocity function y = v(t) on the time interval [0, 2]. What
is the total net signed area bounded by y = v(t) and the t-axis on [0, 2]? Answer
this question in two ways: first by using your work above, and then by using a
familiar geometric formula to compute areas of certain relevant regions.

./
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The Fundamental Theorem of Calculus

Consider the setting where we know the position function s(t) of an object moving along
an axis, as well as its corresponding velocity function v(t), and for the moment let us
assume that v(t) is positive on [a, b]. Then, as shown in Figure 4.32, we know two different

a b

D =
∫ b

a v(t)dt

= s(b)− s(a)

y = v(t)

Figure 4.32: Finding distance traveled when we know an object’s velocity function v.

perspectives on the distance, D, the object travels: one is that D = s(b) − s(a), which is
the object’s change in position. The other is that the distance traveled is the area under

the velocity curve, which is given by the definite integral, so D =
∫ b

a
v(t) dt.

Of course, since both of these expressions tell us the distance traveled, it follows that
they are equal, so

s(b) − s(a) =
∫ b

a

v(t) dt. (4.3)

Furthermore, we know that Equation (4.3) holds even when velocity is sometimes negative,
since s(b) − s(a) is the object’s change in position over [a, b], which is simultaneously

measured by the total net signed area on [a, b] given by
∫ b

a
v(t) dt.

Perhaps the most powerful part of Equation (4.3) lies in the fact that we can compute
the integral’s value if we can find a formula for s. Remember, s and v are related by
the fact that v is the derivative of s, or equivalently that s is an antiderivative of v. For
example, if we have an object whose velocity is v(t) = 3t2 + 40 feet per second (which is
always nonnegative), and wish to know the distance traveled on the interval [1, 5], we have
that

D =
∫ 5

1
v(t) dt =

∫ 5

1
(3t2 + 40) dt = s(5) − s(1),

where s is an antiderivative of v. We know that the derivative of t3 is 3t2 and that the
derivative of 40t is 40, so it follows that if s(t) = t3 + 40t, then s is a function whose
derivative is v(t) = s′(t) = 3t2 + 40, and thus we have found an antiderivative of v.
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Therefore,

D =

∫ 5

1
3t2 + 40 dt = s(5) − s(1)

= (53 + 40 · 5) − (13 + 40 · 1) = 284 feet.

Note the key lesson of this example: to find the distance traveled, we needed to compute
the area under a curve, which is given by the definite integral. But to evaluate the integral,
we found an antiderivative, s, of the velocity function, and then computed the total change
in s on the interval. In particular, observe that we have found the exact area of the
region shown in Figure 4.33, and done so without a familiar formula (such as those for
the area of a triangle or circle) and without directly computing the limit of a Riemann
sum. As we proceed to thinking about contexts other than just velocity and position, it is

1 3 5

20

40

60

80

100

120

140

D =
∫ 5

1 v(t)dt

= 284

y = v(t)

Figure 4.33: The exact area of the region enclosed by v(t) = 3t2 + 40 on [1, 5].

advantageous to have a shorthand symbol for a function’s antiderivative. In the general
setting of a continuous function f , we will often denote an antiderivative of f by F, so
that the relationship between F and f is that F ′(x) = f (x) for all relevant x. Using the
notation V in place of s (so that V is an antiderivative of v) in Equation (4.3), we find it is
equivalent to write that

V (b) − V (a) =
∫ b

a

v(t) dt. (4.4)

Now, in the general setting of wanting to evaluate the definite integral
∫ b

a
f (x) dx for an

arbitrary continuous function f , we could certainly think of f as representing the velocity of
some moving object, and x as the variable that represents time. And again, Equations (4.3)
and (4.4) hold for any continuous velocity function, even when v is sometimes negative.
This leads us to see that Equation (4.4) tells us something even more important than the
change in position of a moving object: it offers a shortcut route to evaluating any definite
integral, provided that we can find an antiderivative of the integrand. The Fundamental
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Theorem of Calculus (FTC) summarizes these observations.

The Fundamental Theorem of Calculus: If f is a continuous function on [a, b],
and F is any antiderivative of f , then

∫ b

a
f (x) dx = F(b) − F(a).

A common alternate notation for F(b) − F(a) is
F(b) − F(a) = F(x)|ba ,

where we read the righthand side as “the function F evaluated from a to b.” In this
notation, the FTC says that ∫ b

a

f (x) dx = F(x)|ba .

The FTC opens the door to evaluating exactly a wide range of integrals. In particular,
if we are interested in a definite integral for which we can find an antiderivative F for the
integrand f , then we can evaluate the integral exactly. For instance since d

dx [13 x3] = x2,
the FTC tells us that ∫ 1

0
x2 dx =

1

3
x3

����
1

0

=
1

3
(1)3 − 1

3
(0)3

=
1

3
.

But finding an antiderivative can be far from simple; in fact, often finding a formula for
an antiderivative is very hard or even impossible. While we can differentiate just about
any function, even some relatively simple ones don’t have an elementary antiderivative. A
significant portion of integral calculus (which is the main focus of second semester college
calculus) is devoted to understanding the problem of finding antiderivatives.

Activity 4.10.

Use the Fundamental Theorem of Calculus to evaluate each of the following integrals
exactly. For each, sketch a graph of the integrand on the relevant interval and write
one sentence that explains the meaning of the value of the integral in terms of the (net
signed) area bounded by the curve.

(a)
∫ 4

−1
(2 − 2x) dx

(b)
∫ π

2

0
sin(x) dx

(c)
∫ 1

0
ex dx
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(d)
∫ 1

−1
x5 dx

(e)
∫ 2

0
(3x3 − 2x2 − ex) dx

C

Basic antiderivatives

The general problem of finding an antiderivative is difficult. In part, this is due to the
fact that we are trying to undo the process of differentiating, and the undoing is much
more difficult than the doing. For example, while it is evident that an antiderivative of
f (x) = sin(x) is F(x) = − cos(x) and that an antiderivative of g(x) = x2 is G(x) = 1

3 x3,
combinations of f and g can be far more complicated. Consider such functions as

5 sin(x) − 4x2, x2 sin(x), sin(x)
x2

, and sin(x2).

What is involved in trying to find an antiderivative for each? From our experience
with derivative rules, we know that while derivatives of sums and constant multiples
of basic functions are simple to execute, derivatives involving products, quotients, and
composites of familiar functions are much more complicated. Thus, it stands to reason
that antidifferentiating products, quotients, and composites of basic functions may be even
more challenging. We defer our study of all but the most elementary antiderivatives to
later in the text.

We do note that each time we have a function for which we know its derivative, we
have a function-derivative pair, which also leads us to knowing the antiderivative of a
function. For instance, since we know that

d
dx

[− cos(x)] = sin(x),

it follows that F(x) = − cos(x) is an antiderivative of f (x) = sin(x). It is equivalent to
say that f (x) = sin(x) is the derivative of F(x) = − cos(x), and thus F and f together
form the function-derivative pair. Clearly, every basic derivative rule leads us to such a
pair, and thus to a known antiderivative. In Activity 4.11, we will construct a list of most
of the basic antiderivatives we know at this time. Furthermore, those rules will enable
us to antidifferentiate sums and constant multiples of basic functions. For example, if
f (x) = 5 sin(x) − 4x2, note that since − cos(x) is an antiderivative of sin(x) and 1

3 x3 is an
antiderivative of x2, it follows that

F(x) = −5 cos(x) − 4

3
x3

is an antiderivative of f , by the sum and constant multiple rules for differentiation.
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Finally, before proceeding to build a list of common functions whose antiderivatives
we know, we revisit the fact that each function has more than one antiderivative. Because
the derivative of any constant is zero, any time we seek an arbitrary antiderivative, we
may add a constant of our choice. For instance, if we want to determine an antiderivative
of g(x) = x2, we know that G(x) = 1

3 x3 is one such function. But we could alternately
have chosen G(x) = 1

3 x3 + 7, since in this case as well, G′(x) = x2. In some contexts later
on in calculus, it is important to discuss the most general antiderivative of a function. If
g(x) = x2, we say that the general antiderivative of g is

G(x) = 1

3
x3 + C,

where C represents an arbitrary real number constant. Regardless of the formula for g,
including +C in the formula for its antiderivative G results in the most general possible
antiderivative.

Our primary current interest in antiderivatives is for use in evaluating definite integrals
by the Fundamental Theorem of Calculus. In that situation, the arbitrary constant C is
irrelevant, and thus we usually omit it. To see why, consider the definite integral∫ 1

0
x2 dx.

For the integrand g(x) = x2, suppose we find and use the general antiderivative G(x) =
1
3 x3 + C. Then, by the FTC,∫ 1

0
x2 dx =

1

3
x3 + C

����
1

0

=

(1
3
(1)3 + C

)
−

(1
3
(0)3 + C

)
=

1

3
+ C − 0 − C

=
1

3
.

Specifically, we observe that the C-values appear as opposites in the evaluation of the
integral and thus do not affect the definite integral’s value. In the same way, the potential
inclusion of +C with the antiderivative has no bearing on any definite integral, and thus
we generally choose to omit this possible constant whenever we evaluate an integral using
the Fundamental Theorem of Calculus.

In the following activity, we work to build a list of basic functions whose antiderivatives
we already know.
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given function, f (x) antiderivative, F(x)
k , (k is constant)

xn, n , −1
1
x , x > 0

sin(x)
cos(x)
sec(x) tan(x)
csc(x) cot(x)
sec2(x)
csc2(x)
ex

ax (a > 1)
1

1+x2

1√
1−x2

Table 4.1: Familiar basic functions and their antiderivatives.

Activity 4.11.

Use your knowledge of derivatives of basic functions to complete the above table of
antiderivatives. For each entry, your task is to find a function F whose derivative is the
given function f . When finished, use the FTC and the results in the table to evaluate
the three given definite integrals.

(a)
∫ 1

0

�
x3 − x − ex + 2

�
dx

(b)
∫ π/3

0
(2 sin(t) − 4 cos(t) + sec2(t) − π) dt

(c)
∫ 1

0
(√x − x2) dx

C

The total change theorem

As we use the Fundamental Theorem of Calculus to evaluate definite integrals, it is
essential that we remember and understand the meaning of the numbers we find. We
briefly summarize three key interpretations to date.
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• For a moving object with instantaneous velocity v(t), the object’s change in position

on the time interval [a, b] is given by
∫ b

a
v(t) dt, and whenever v(t) ≥ 0 on [a, b],∫ b

a
v(t) dt tells us the total distance traveled by the object on [a, b].

• For any continuous function f , its definite integral
∫ b

a
f (x) dx represents the total

net signed area bounded by y = f (x) and the x-axis on [a, b], where regions that lie
below the x-axis have a minus sign associated with their area.

• The value of a definite integral is linked to the average value of a function: for a
continuous function f on [a, b], its average value fAVG[a,b] is given by

fAVG[a,b] =
1

b − a

∫ b

a

f (x) dx.

The Fundamental Theorem of Calculus now enables us to evaluate exactly (without taking a
limit of Riemann sums) any definite integral for which we are able to find an antiderivative
of the integrand.

A slight change in notational perspective allows us to gain even more insight into
the meaning of the definite integral. To begin, recall Equation (4.4), where we wrote the
Fundamental Theorem of Calculus for a velocity function v with antiderivative V as

V (b) − V (a) =
∫ b

a

v(t) dt.

If we instead replace V with s (which represents position) and replace v with s′ (since
velocity is the derivative of position), Equation (4.4) equivalently reads

s(b) − s(a) =
∫ b

a

s′(t) dt. (4.5)

In words, this version of the FTC tells us that the total change in the object’s position
function on a particular interval is given by the definite integral of the position function’s
derivative over that interval.

Of course, this result is not limited to only the setting of position and velocity. Writing
the result in terms of a more general function f , we have the Total Change Theorem.

The Total Change Theorem: If f is a continuously differentiable function on [a, b]
with derivative f ′, then f (b) − f (a) = ∫ b

a
f ′(x) dx. That is, the definite integral of

the derivative of a function on [a, b] is the total change of the function itself on [a, b].
The Total Change Theorem tells us more about the relationship between the graph of

a function and that of its derivative. Recall Figure 1.18, which provided one of the first
times we saw that heights on the graph of the derivative function come from slopes on the
graph of the function itself. That observation occurred in the context where we knew f
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and were seeking f ′; if now instead we think about knowing f ′ and seeking information
about f , we can instead say the following:

differences in heights on f correspond to net signed areas bounded by f ′.

1 2

-4

-3

-2

-1

1

2

3

4

y = f ′(x)

3 4

3

1

1

3

1 2 3 4

-4

-3

-2

-1

1

2

3

4

y = f (x)

(0,0)

(1,3)

(2,4)

(3,3)

(4,0)

Figure 4.34: The graphs of f ′(x) = 4 − 2x (at left) and an antiderivative f (x) = 4x − x2 at
right. Differences in heights on f correspond to net signed areas bounded by f ′.

To see why this is so, say we consider the difference f (1) − f (0). Note that this value is
3, in part because f (1) = 3 and f (0) = 0, but also because the net signed area bounded

by y = f ′(x) on [0, 1] is 3. That is, f (1) − f (0) = ∫ 1

0
f ′(x) dx. A similar pattern holds

throughout, including the fact that since the total net signed area bounded by f ′ on [0, 4]
is 0,

∫ 4

0
f ′(x) dx = 0, so it must be that f (4) − f (0) = 0, so f (4) = f (0).

Beyond this general observation about area, the Total Change Theorem enables us
to consider interesting and important problems where we know the rate of change, and
answer key questions about the function whose rate of change we know.

Example 4.1. Suppose that pollutants are leaking out of an underground storage tank
at a rate of r(t) gallons/day, where t is measured in days. It is conjectured that r(t) is
given by the formula r(t) = 0.0069t3 − 0.125t2 + 11.079 over a certain 12-day period. The

graph of y = r(t) is given in Figure 4.35. What is the meaning of
∫ 10

4
r(t) dt and what is

its value? What is the average rate at which pollutants are leaving the tank on the time
interval 4 ≤ t ≤ 10?
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Figure 4.35: The rate r(t) of pollution leaking from a tank, measured in gallons per day.

We know that since r(t) ≥ 0, the value of
∫ 10

4
r(t) dt is the area under the curve on

the interval [4, 10]. If we think about this area from the perspective of a Riemann sum,
the rectangles will have heights measured in gallons per day and widths measured in days,
thus the area of each rectangle will have units of

gallons
day

· days = gallons.

Thus, the definite integral tells us the total number of gallons of pollutant that leak from
the tank from day 4 to day 10. The Total Change Theorem tells us the same thing: if we
let R(t) denote the function that measures the total number of gallons of pollutant that
have leaked from the tank up to day t, then R′(t) = r(t), and∫ 10

4
r(t) dt = R(10) − R(4),

which is the total change in the function that measures total gallons leaked over time, thus
the number of gallons that have leaked from day 4 to day 10.

To compute the exact value, we use the Fundamental Theorem of Calculus. Antidiffer-
entiating r(t) = 0.0069t3 − 0.125t2 + 11.079, we find that∫ 10

4
(0.0069t3 − 0.125t2 + 11.079) dt =

(
0.0069 ·

1

4
t4 − 0.125 ·

1

3
t3 + 11.079t

) ����
10

4

≈ 44.282.

Thus, approximately 44.282 gallons of pollutant leaked over the six day time period.

To find the average rate at which pollutant leaked from the tank over 4 ≤ t ≤ 10, we
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want to compute the average value of r on [4, 10]. Thus,

rAVG[4,10] =
1

10 − 4

∫ 10

4
r(t) dt ≈

44.282

6
= 7.380,

which has its units measured in gallons per day.

Activity 4.12.

During a 40-minute workout, a person riding an exercise machine burns calories at a
rate of c calories per minute, where the function y = c(t) is given in Figure 4.36. On the
interval 0 ≤ t ≤ 10, the formula for c is c(t) = −0.05t2 + t + 10, while on 30 ≤ t ≤ 40,
its formula is c(t) = −0.05t2 + 3t − 30.

10 20 30 40

5

10

15
cal/min

min

y = c(t)

Figure 4.36: The rate c(t) at which a person exercising burns calories, measured in calories
per minute.

(a) What is the exact total number of calories the person burns during the first 10
minutes of her workout?

(b) Let C(t) be an antiderivative of c(t). What is the meaning of C(40) − C(0) in
the context of the person exercising? Include units on your answer.

(c) Determine the exact average rate at which the person burned calories during
the 40-minute workout.

(d) At what time(s), if any, is the instantaneous rate at which the person is burning
calories equal to the average rate at which she burns calories, on the time
interval 0 ≤ t ≤ 40?

C
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Summary

In this section, we encountered the following important ideas:

• We can find the exact value of a definite integral without taking the limit of a Riemann
sum or using a familiar area formula by finding the antiderivative of the integrand, and
hence applying the Fundamental Theorem of Calculus.

• The Fundamental Theorem of Calculus says that if f is a continuous function on [a, b]
and F is an antiderivative of f , then∫ b

a

f (x) dx = F(b) − F(a).

Hence, if we can find an antiderivative for the integrand f , evaluating the definite
integral comes from simply computing the change in F on [a, b].

• A slightly different perspective on the FTC allows us to restate it as the Total Change
Theorem, which says that ∫ b

a

f ′(x) dx = f (b) − f (a),

for any continuously differentiable function f . This means that the definite integral of
the instantaneous rate of change of a function f on an interval [a, b] is equal to the
total change in the function f on [a, b].

Exercises

1. The instantaneous velocity (in meters per minute) of a moving object is given by the
function v as pictured in Figure 4.37. Assume that on the interval 0 ≤ t ≤ 4, v(t) is
given by v(t) = −1

4 t3 + 3
2 t2 + 1, and that on every other interval v is piecewise linear,

as shown.

(a) Determine the exact distance traveled by the object on the time interval
0 ≤ t ≤ 4.

(b) What is the object’s average velocity on [12, 24]?
(c) At what time is the object’s acceleration greatest?

(d) Suppose that the velocity of the object is increased by a constant value c for all
values of t. What value of c will make the object’s total distance traveled on
[12, 24] be 210 meters?
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Figure 4.37: The velocity function of a moving body.

2. A function f is given piecewise by the formula

f (x) =



−x2 + 2x + 1, if 0 ≤ x < 2
−x + 3, if 2 ≤ x < 3
x2 − 8x + 15, if 3 ≤ x ≤ 5

(a) Determine the exact value of the net signed area enclosed by f and the x-axis
on the interval [2, 5].

(b) Compute the exact average value of f on [0, 5].
(c) Find a formula for a function g on 5 ≤ x ≤ 7 so that if we extend the above

definition of f so that f (x) = g(x) if 5 ≤ x ≤ 7, it follows that
∫ 7

0
f (x) dx = 0.

3. When an aircraft attempts to climb as rapidly as possible, its climb rate (in feet per
minute) decreases as altitude increases, because the air is less dense at higher altitudes.
Given below is a table showing performance data for a certain single engine aircraft,
giving its climb rate at various altitudes, where c(h) denotes the climb rate of the
airplane at an altitude h.

h (feet) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
c (ft/min) 925 875 830 780 730 685 635 585 535 490 440

Let a new function called m(h) measure the number of minutes required for a plane at
altitude h to climb the next foot of altitude.

(a) Determine a similar table of values for m(h) and explain how it is related to
the table above. Be sure to explain the units.

(b) Give a careful interpretation of a function whose derivative is m(h). Describe
what the input is and what the output is. Also, explain in plain English what
the function tells us.
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(c) Determine a definite integral whose value tells us exactly the number of minutes
required for the airplane to ascend to 10,000 feet of altitude. Clearly explain
why the value of this integral has the required meaning.

(d) Use the Riemann sum M5 to estimate the value of the integral you found in (c).
Include units on your result.

4. In Chapter 1, we showed that for an object moving along a straight line with position
function s(t), the object’s “average velocity on the interval [a, b]” is given by

AV[a,b] =
s(b) − s(a)

b − a
.

More recently in Chapter 4, we found that for an object moving along a straight line
with velocity function v(t), the object’s “average value of its velocity function on [a, b]”
is

vAVG[a,b] =
1

b − a

∫ b

a

v(t) dt.

Are the “average velocity on the interval [a, b]” and the “average value of the velocity
function on [a, b]” the same thing? Why or why not? Explain.



Chapter 5

Finding Antiderivatives and
Evaluating Integrals

5.1 Constructing Accurate Graphs of Antiderivatives

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• Given the graph of a function’s derivative, how can we construct a completely
accurate graph of the original function?

• How many antiderivatives does a given function have? What do those antideriva-
tives all have in common?

• Given a function f , how does the rule A(x) = ∫ x

0
f (t) dt define a new function A?

Introduction

A recurring theme in our discussion of differential calculus has been the question “Given
information about the derivative of an unknown function f , how much information can we
obtain about f itself?” For instance, in Activity 1.22, we explored the situation where the
graph of y = f ′(x) was known (along with the value of f at a single point) and endeavored
to sketch a possible graph of f near the known point. In Example 3.1 – and indeed
throughout Section 3.1 – we investigated how the first derivative test enables us to use
information regarding f ′ to determine where the original function f is increasing and
decreasing, as well as where f has relative extreme values. Further, if we know a formula
or graph of f ′, by computing f ′′ we can find where the original function f is concave

265
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up and concave down. Thus, the combination of knowing f ′ and f ′′ enables us to fully
understand the shape of the graph of f .

We returned to this question in even more detail in Section 4.1; there, we considered
the situation where we knew the instantaneous velocity of a moving object and worked
from that information to determine as much information as possible about the object’s
position function. We found key connections between the net-signed area under the
velocity function and the corresponding change in position of the function; in Section 4.4,
the Total Change Theorem further illuminated these connections between f ′ and f in a
more general setting, such as the one found in Figure 4.34, showing that the total change in
the value of f over an interval [a, b] is determined by the exact net-signed area bounded
by f ′ and the x-axis on the same interval.

In what follows, we explore these issues still further, with a particular emphasis on
the situation where we possess an accurate graph of the derivative function along with a
single value of the function f . From that information, we desire to completely determine
an accurate graph of f that not only represents correctly where f is increasing, decreasing,
concave up, and concave down, but also allows us to find an accurate function value at
any point of interest to us.

Preview Activity 5.1. Suppose that the following information is known about a function
f : the graph of its derivative, y = f ′(x), is given in Figure 5.1. Further, assume that f ′ is
piecewise linear (as pictured) and that for x ≤ 0 and x ≥ 6, f ′(x) = 0. Finally, it is given
that f (0) = 1.

1 3 5

-3

-1

1

3
y = f ′(x)

1 3 5

-3

-1

1

3

Figure 5.1: At left, the graph of y = f ′(x); at right, axes for plotting y = f (x).

(a) On what interval(s) is f an increasing function? On what intervals is f decreasing?

(b) On what interval(s) is f concave up? concave down?

(c) At what point(s) does f have a relative minimum? a relative maximum?
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(d) Recall that the Total Change Theorem tells us that

f (1) − f (0) =
∫ 1

0
f ′(x) dx.

What is the exact value of f (1)?
(e) Use the given information and similar reasoning to that in (d) to determine the

exact value of f (2), f (3), f (4), f (5), and f (6).
(f) Based on your responses to all of the preceding questions, sketch a complete

and accurate graph of y = f (x) on the axes provided, being sure to indicate the
behavior of f for x < 0 and x > 6.

./

Constructing the graph of an antiderivative

Preview Activity 5.1 demonstrates that when we can find the exact area under a given graph
on any given interval, it is possible to construct an accurate graph of the given function’s
antiderivative: that is, we can find a representation of a function whose derivative is the
given one. While we have considered this question at different points throughout our study,
it is important to note here that we now can determine not only the overall shape of the
antiderivative, but also the actual height of the antiderivative at any point of interest.

Indeed, this is one key consequence of the Fundamental Theorem of Calculus: if we
know a function f and wish to know information about its antiderivative, F, provided that
we have some starting point a for which we know the value of F(a), we can determine

the value of F(b) via the definite integral. In particular, since F(b) − F(a) = ∫ b

a
f (x) dx, it

follows that

F(b) = F(a) +
∫ b

a

f (x) dx. (5.1)

Moreover, in the discussion surrounding Figure 4.34, we made the observation that
differences in heights of a function correspond to net-signed areas bounded by its derivative.
Rephrasing this in terms of a given function f and its antiderivative F, we observe that on
an interval [a, b],

differences in heights on the antiderivative (such as F(b) − F(a)) correspond
to the net-signed area bounded by the original function on the interval [a, b]
(
∫ b

a
f (x) dx).

For example, say that f (x) = x2 and that we are interested in an antiderivative of f that
satisfies F(1) = 2. Thinking of a = 1 and b = 2 in Equation (5.1), it follows from the
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Fundamental Theorem of Calculus that

F(2) = F(1) +
∫ 2

1
x2 dx

= 2 +
1

3
x3

����
2

1

= 2 +
(8
3
−
1

3

)
=

13

3
.

In this way, we see that if we are given a function f for which we can find the exact
net-signed area bounded by f on a given interval, along with one value of a corresponding
antiderivative F, we can find any other value of F that we seek, and in this way construct a
completely accurate graph of F. We have two main options for finding the exact net-signed
area: using the Fundamental Theorem of Calculus (which requires us to find an algebraic
formula for an antiderivative of the given function f ), or, in the case where f has nice
geometric properties, finding net-signed areas through the use of known area formulas.

Activity 5.1.

Suppose that the function y = f (x) is given by the graph shown in Figure 5.2, and that
the pieces of f are either portions of lines or portions of circles. In addition, let F
be an antiderivative of f and say that F(0) = −1. Finally, assume that for x ≤ 0 and
x ≥ 7, f (x) = 0.

1 2 3 4 5 6 7

-1

1
y = f (x)

Figure 5.2: At left, the graph of y = f (x).

(a) On what interval(s) is F an increasing function? On what intervals is F
decreasing?

(b) On what interval(s) is F concave up? concave down? neither?

(c) At what point(s) does F have a relative minimum? a relative maximum?

(d) Use the given information to determine the exact value of F(x) for x =
1, 2, . . . , 7. In addition, what are the values of F(−1) and F(8)?
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(e) Based on your responses to all of the preceding questions, sketch a complete
and accurate graph of y = F(x) on the axes provided, being sure to indicate
the behavior of F for x < 0 and x > 7. Clearly indicate the scale on the vertical
and horizontal axes of your graph.

(f) What happens if we change one key piece of information: in particular, say that
G is an antiderivative of f and G(0) = 0. How (if at all) would your answers to
the preceding questions change? Sketch a graph of G on the same axes as the
graph of F you constructed in (e).

C

Multiple antiderivatives of a single function

In the final question of Activity 5.1, we encountered a very important idea: a given function
f has more than one antiderivative. In addition, any antiderivative of f is determined
uniquely by identifying the value of the desired antiderivative at a single point. For
example, suppose that f is the function given at left in Figure 5.3, and we say that F is an

1 3 5

-3

-1

1

3
f

2 4

-2

2
F

G

H

Figure 5.3: At left, the graph of y = f (x). At right, three different antiderivatives of f .

antiderivative of f that satisfies F(0) = 1.

Then, using Equation 5.1, we can compute F(1) = 1.5, F(2) = 1.5, F(3) = −0.5,
F(4) = −2, F(5) = −0.5, and F(6) = 1, plus we can use the fact that F ′ = f to ascertain
where F is increasing and decreasing, concave up and concave down, and has relative
extremes and inflection points. Through work similar to what we encountered in Preview
Activity 5.1 and Activity 5.1, we ultimately find that the graph of F is the one given in blue
in Figure 5.3.

If we instead chose to consider a function G that is an antiderivative of f but has the
property that G(0) = 3, then G will have the exact same shape as F (since both share the
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derivative f ), but G will be shifted vertically away from the graph of F, as pictured in red

in Figure 5.3. Note that G(1) − G(0) = ∫ 1

0
f (x) dx = 0.5, just as F(1) − F(0) = 0.5,, but

since G(0) = 3, G(1) = G(0) + 0.5 = 3.5, whereas F(1) = F(0) + 0.5 = 1.5, since F(0) = 1.
In the same way, if we assigned a different initial value to the antiderivative, say H(0) = −1,
we would get still another antiderivative, as shown in magenta in Figure 5.3.

This example demonstrates an important fact that holds more generally:

If G and H are both antiderivatives of a function f , then the function G − H must be
constant.

To see why this result holds, observe that if G and H are both antiderivatives of f , then
G′ = f and H ′ = f . Hence, d

dx [G(x) − H(x)] = G′(x) − H ′(x) = f (x) − f (x) = 0. Since
the only way a function can have derivative zero is by being a constant function, it follows
that the function G − H must be constant.

Further, we now see that if a function has a single antiderivative, it must have infinitely
many: we can add any constant of our choice to the antiderivative and get another
antiderivative. For this reason, we sometimes refer to the general antiderivative of a
function f . For example, if f (x) = x2, its general antiderivative is F(x) = 1

3 x3 + C, where
we include the “+C” to indicate that F includes all of the possible antiderivatives of f .
To identify a particular antiderivative of f , we must be provided a single value of the
antiderivative F (this value is often called an initial condition). In the present example,
suppose that condition is F(2) = 3; substituting the value of 2 for x in F(x) = 1

3 x3 +C, we
find that

3 =
1

3
(2)3 + C,

and thus C = 3 − 8
3 =

1
3 . Therefore, the particular antiderivative in this case is F(x) =

1
3 x3 + 1

3 .

Activity 5.2.

For each of the following functions, sketch an accurate graph of the antiderivative that
satisfies the given initial condition. In addition, sketch the graph of two additional
antiderivatives of the given function, and state the corresponding initial conditions that
each of them satisfy. If possible, find an algebraic formula for the antiderivative that
satisfies the initial condition.

(a) original function: g(x) = |x | − 1;
initial condition: G(−1) = 0;
interval for sketch: [−2, 2]

(b) original function: h(x) = sin(x);
initial condition: H(0) = 1;
interval for sketch: [0, 4π]



5.1. CONSTRUCTING ACCURATE GRAPHS OF ANTIDERIVATIVES 271

(c) original function: p(x) =



x2, if 0 < x ≤ 1

−(x − 2)2, if 1 < x < 2

0 otherwise

;

initial condition: P(0) = 1;
interval for sketch: [−1, 3]

C

Functions defined by integrals

In Equation (5.1), we found an important rule that enables us to compute the value of the
antiderivative F at a point b, provided that we know F(a) and can evaluate the definite
integral from a to b of f . Again, that rule is

F(b) = F(a) +
∫ b

a

f (x) dx.

In several examples, we have used this formula to compute several different values of F(b)
and then plotted the points (b, F(b)) to assist us in generating an accurate graph of F.
That suggests that we may want to think of b, the upper limit of integration, as a variable
itself. To that end, we introduce the idea of an integral function, a function whose formula
involves a definite integral.

Given a continuous function f , we define the corresponding integral function A
according to the rule

A(x) =
∫ x

a

f (t) dt. (5.2)

Note particularly that because we are using the variable x as the independent variable
in the function A, and x determines the other endpoint of the interval over which we
integrate (starting from a), we need to use a variable other than x as the variable of
integration. A standard choice is t, but any variable other than x is acceptable.

One way to think of the function A is as the “net-signed area from a up to x” function,
where we consider the region bounded by y = f (t) on the relevant interval. For example,
in Figure 5.4, we see a given function f pictured at left, and its corresponding area function
(choosing a = 0), A(x) = ∫ x

0
f (t) dt shown at right.

Note particularly that the function A measures the net-signed area from t = 0 to t = x
bounded by the curve y = f (t); this value is then reported as the corresponding height on
the graph of y = A(x). It is even more natural to think of this relationship between f and
A dynamically. At http://gvsu.edu/s/cz, we find a java applet1 that brings the static
picture in Figure 5.4 to life. There, the user can move the red point on the function f and
see how the corresponding height changes at the light blue point on the graph of A.

1David Austin, Grand Valley State University

http://gvsu.edu/s/cz
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y = f (t)

π 2π
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3

π 2π
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A(x)

Figure 5.4: At left, the graph of the given function f . At right, the area function
A(x) = ∫ x

0
f (t) dt.

The choice of a is somewhat arbitrary. In the activity that follows, we explore how
the value of a affects the graph of the integral function, as well as some additional related
issues.

Activity 5.3.

Suppose that g is given by the graph at left in Figure 5.5 and that A is the corresponding
integral function defined by A(x) = ∫ x

1
g(t) dt.

1 3 5

-3

-1

1

3
g

1 3 5
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-1

1

3

Figure 5.5: At left, the graph of y = g(t); at right, axes for plotting y = A(x), where A is
defined by the formula A(x) = ∫ x

1
g(t) dt.

(a) On what interval(s) is A an increasing function? On what intervals is A
decreasing? Why?

(b) On what interval(s) do you think A is concave up? concave down? Why?
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(c) At what point(s) does A have a relative minimum? a relative maximum?

(d) Use the given information to determine the exact values of A(0), A(1), A(2),
A(3), A(4), A(5), and A(6).

(e) Based on your responses to all of the preceding questions, sketch a complete
and accurate graph of y = A(x) on the axes provided, being sure to indicate
the behavior of A for x < 0 and x > 6.

(f) How does the graph of B compare to A if B is instead defined by B(x) =∫ x

0
g(t) dt?

C

Summary

In this section, we encountered the following important ideas:

• Given the graph of a function f , we can construct the graph of its antiderivative F
provided that (a) we know a starting value of F, say F(a), and (b) we can evaluate

the integral
∫ b

a
f (x) dx exactly for relevant choices of a and b. For instance, if we

wish to know F(3), we can compute F(3) = F(a) + ∫ 3

a
f (x) dx. When we combine this

information about the function values of F together with our understanding of how the
behavior of F ′ = f affects the overall shape of F, we can develop a completely accurate
graph of the antiderivative F.

• Because the derivative of a constant is zero, if F is an antiderivative of f , it follows that
G(x) = F(x) + C will also be an antiderivative of f . Moreover, any two antiderivatives
of a function f differ precisely by a constant. Thus, any function with at least one
antiderivative in fact has infinitely many, and the graphs of any two antiderivatives will
differ only by a vertical translation.

• Given a function f , the rule A(x) = ∫ x

a
f (t) dt defines a new function A that measures

the net-signed area bounded by f on the interval [a, x]. We call the function A the
integral function corresponding to f .

Exercises

1. A moving particle has its velocity given by the quadratic function v pictured in
Figure 5.6. In addition, it is given that A1 =

7
6 and A2 =

8
3 , as well as that for the

corresponding position function s, s(0) = 0.5.

(a) Use the given information to determine s(1), s(3), s(5), and s(6).
(b) On what interval(s) is s increasing? On what interval(s) is s decreasing?

(c) On what interval(s) is s concave up? On what interval(s) is s concave down?
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3

v

A1

A2
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2 4 6

-3

-1

1

3

t

s

Figure 5.6: At left, the given graph of v. At right, axes for plotting s.

(d) Sketch an accurate, labeled graph of s on the axes at right in Figure 5.6.

(e) Note that v(t) = −2 + 1
2 (t − 3)2. Find a formula for s.

2. A person exercising on a treadmill experiences different levels of resistance and thus
burns calories at different rates, depending on the treadmill’s setting. In a particular
workout, the rate at which a person is burning calories is given by the piecewise
constant function c pictured in Figure 5.7. Note that the units on c are “calories per
minute.”

10 20 30

5

10

15

c

cal/min

min

10 20 30

Figure 5.7: At left, the given graph of c. At right, axes for plotting C.

(a) Let C be an antiderivative of c. What does the function C measure? What are
its units?

(b) Assume that C(0) = 0. Determine the exact value of C(t) at the values
t = 5, 10, 15, 20, 25, 30.
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(c) Sketch an accurate graph of C on the axes provided at right in Figure 5.7. Be
certain to label the scale on the vertical axis.

(d) Determine a formula for C that does not involve an integral and is valid for
5 ≤ t ≤ 10.

3. Consider the piecewise linear function f given in Figure 5.8. Let the functions A, B, and
C be defined by the rules A(x) = ∫ x

−1
f (t) dt, B(x) = ∫ x

0
f (t) dt, and C(x) = ∫ x

1
f (t) dt.

1 3 5

-3

-1

1

3

f

1 3 5

-3

-1

1

3

Figure 5.8: At left, the given graph of f . At right, axes for plotting A, B, and C.

(a) For the values x = −1, 0, 1, . . . , 6, make a table that lists corresponding values
of A(x), B(x), and C(x).

(b) On the axes provided in Figure 5.8, sketch the graphs of A, B, and C.

(c) How are the graphs of A, B, and C related?

(d) How would you best describe the relationship between the function A and the
function f ?
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5.2 The Second Fundamental Theorem of Calculus

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How does the integral function A(x) = ∫ x

1
f (t) dt define an antiderivative of f ?

• What is the statement of the Second Fundamental Theorem of Calculus?

• How do the First and Second Fundamental Theorems of Calculus enable us to
formally see how differentiation and integration are almost inverse processes?

Introduction

In Section 4.4, we learned the Fundamental Theorem of Calculus (FTC), which from here
forward will be referred to as the First Fundamental Theorem of Calculus, as in this section
we develop a corresponding result that follows it. In particular, recall that the First FTC
tells us that if f is a continuous function on [a, b] and F is any antiderivative of f (that is,
F ′ = f ), then ∫ b

a

f (x) dx = F(b) − F(a).
We have typically used this result in two settings: (1) where f is a function whose graph we
know and for which we can compute the exact area bounded by f on a certain interval
[a, b], we can compute the change in an antiderivative F over the interval; and (2) where
f is a function for which it is easy to determine an algebraic formula for an antiderivative,
we may evaluate the integral exactly and hence determine the net-signed area bounded by
the function on the interval. For the former, see Preview Activity 5.1 or Activity 5.1. For
the latter, we can easily evaluate exactly integrals such as∫ 4

1
x2 dx,

since we know that the function F(x) = 1
3 x3 is an antiderivative of f (x) = x2. Thus,∫ 4

1
x2 dx =

1

3
x3

����
4

1

=
1

3
(4)3 − 1

3
(1)3

= 21.
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Here we see that the First FTC can be viewed from at least two perspectives: first, as a
tool to find the difference F(b) − F(a) for an antiderivative F of the integrand f . In this

situation, we need to be able to determine the value of the integral
∫ b

a
f (x) dx exactly,

perhaps through known geometric formulas for area. It is possible that we may not have a
formula for F itself. From a second perspective, the First FTC provides a way to find the
exact value of a definite integral, and hence a certain net-signed area exactly, by finding
an antiderivative of the integrand and evaluating its total change over the interval. In
this latter case, we need to know a formula for the antiderivative F, as this enables us to
compute net-signed areas exactly through definite integrals, as demonstrated in Figure 5.9.

10

20

1 2 3 4

f (x) = x2

∫ 4
1 x2 dx = 21

10

20

1 2 3 4

F(x) = 1
3 x3

(1, 1
3 )

(4, 64
3 )

F(4)−F(1) = 21

Figure 5.9: At left, the graph of f (x) = x2 on the interval [1, 4] and the area it bounds. At
right, the antiderivative function F(x) = 1

3 x3, whose total change on [1, 4] is the value of
the definite integral at left.

We recall further that the value of a definite integral may have additional meaning
depending on context: change in position when the integrand is a velocity function, total
pollutant leaked from a tank when the integrand is the rate at which pollution is leaking,
or other total changes that correspond to a given rate function that is the integrand. In
addition, the value of the definite integral is always connected to the average value of a

continuous function on a given interval: fAVG[a,b] = 1
b−a

∫ b

a
f (x) dx.

Next, remember that in the last part of Section 5.1, we studied integral functions
of the form A(x) = ∫ x

c
f (t) dt. Figure 5.4 is a particularly important image to keep

in mind as we work with integral functions, and the corresponding java applet at
http://gvsu.edu/s/cz is likewise foundational to our understanding of the function
A. In what follows, we use the First FTC to gain additional understanding of the func-
tion A(x) = ∫ x

c
f (t) dt, where the integrand f is given (either through a graph or a

formula), and c is a constant. In particular, we investigate further the special nature of the
relationship between the functions A and f .

http://gvsu.edu/s/cz
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Preview Activity 5.2. Consider the function A defined by the rule

A(x) =
∫ x

1
f (t) dt,

where f (t) = 4 − 2t.

(a) Compute A(1) and A(2) exactly.
(b) Use the First Fundamental Theorem of Calculus to find an equivalent formula

for A(x) that does not involve integrals. That is, use the first FTC to evaluate∫ x

1
(4 − 2t) dt.

(c) Observe that f is a linear function; what kind of function is A?

(d) Using the formula you found in (b) that does not involve integrals, compute A′(x).
(e) While we have defined f by the rule f (t) = 4 − 2t, it is equivalent to say that f

is given by the rule f (x) = 4 − 2x. What do you observe about the relationship
between A and f ?

./

The Second Fundamental Theorem of Calculus

The result of Preview Activity 5.2 is not particular to the function f (t) = 4 − 2t, nor to the
choice of “1” as the lower bound in the integral that defines the function A. For instance,
if we let f (t) = cos(t) − t and set A(x) = ∫ x

2
f (t) dt, then we can determine a formula for

A without integrals by the First FTC. Specifically,

A(x) =
∫ x

2
(cos(t) − t) dt

= sin(t) − 1

2
t2

����
x

2

= sin(x) − 1

2
x2 − (sin(2) − 2) .

Differentiating A(x), since (sin(2) − 2) is constant, it follows that
A′(x) = cos(x) − x,

and thus we see that A′(x) = f (x). This tells us that for this particular choice of f , A
is an antiderivative of f . More specifically, since A(2) = ∫ 2

2
f (t) dt = 0, A is the only

antiderivative of f for which A(2) = 0.
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In general, if f is any continuous function, and we define the function A by the rule

A(x) =
∫ x

c

f (t) dt,

where c is an arbitrary constant, then we can show that A is an antiderivative of f . To
see why, let’s demonstrate that A′(x) = f (x) by using the limit definition of the derivative.
Doing so, we observe that

A′(x) = lim
h→0

A(x + h) − A(x)
h

= lim
h→0

∫ x+h

c
f (t) dt −

∫ x

c
f (t) dt

h

= lim
h→0

∫ x+h

x
f (t) dt

h
, (5.3)

where Equation (5.3) in the preceding chain follows from the fact that
∫ x

c
f (t) dt +∫ x+h

x
f (t) dt =

∫ x+h

c
f (t) dt. Now, observe that for small values of h,∫ x+h

x

f (t) dt ≈ f (x) · h,

by a simple left-hand approximation of the integral. Thus, as we take the limit in
Equation (5.3), it follows that

A′(x) = lim
h→0

∫ x+h

x
f (t) dt

h
= lim

h→0

f (x) · h
h

= f (x).

Hence, A is indeed an antiderivative of f . In addition, A(c) = ∫ c

c
f (t) dt = 0. The

preceding argument demonstrates the truth of the Second Fundamental Theorem of
Calculus, which we state as follows.

Theorem. (Second FTC) If f is a continuous function and c is any constant, then f
has a unique antiderivative A that satisfies A(c) = 0, and that antiderivative is given
by the rule A(x) = ∫ x

c
f (t) dt.

Activity 5.4.

Suppose that f is the function given in Figure 5.10 and that f is a piecewise function
whose parts are either portions of lines or portions of circles, as pictured. In addition,
let A be the function defined by the rule A(x) = ∫ x

2
f (t) dt.

(a) What does the Second FTC tell us about the relationship between A and f ?

(b) Compute A(1) and A(3) exactly.
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1 2 3 4 5 6 7

-1

1
y = f (x)

Figure 5.10: At left, the graph of y = f (x). At right, axes for sketching y = A(x).

(c) Sketch a precise graph of y = A(x) on the axes at right that accurately reflects
where A is increasing and decreasing, where A is concave up and concave
down, and the exact values of A at x = 0, 1, . . . , 7.

(d) How is A similar to, but different from, the function F that you found in
Activity 5.1?

(e) With as little additional work as possible, sketch precise graphs of the functions
B(x) = ∫ x

3
f (t) dt and C(x) = ∫ x

1
f (t) dt. Justify your results with at least one

sentence of explanation.

C

Understanding Integral Functions

The Second FTC provides us with a means to construct an antiderivative of any continuous
function. In particular, if we are given a continuous function g and wish to find an
antiderivative of G, we can now say that

G(x) =
∫ x

c

g(t) dt

provides the rule for such an antiderivative, and moreover that G(c) = 0. Note especially
that we know that G′(x) = g(x). We sometimes want to write this relationship between G
and g from a different notational perspective. In particular, observe that

d
dx

[∫ x

c

g(t) dt
]
= g(x). (5.4)

This result can be particularly useful when we’re given an integral function such as G and
wish to understand properties of its graph by recognizing that G′(x) = g(x), while not
necessarily being able to exactly evaluate the definite integral

∫ x

c
g(t) dt. To see how this

is the case, we consider the following example.
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Example 5.1. Investigate the behavior of the integral function

E(x) =
∫ x

0
e−t

2
dt.

Solution. E is closely related to the well known error function2, a function that is
particularly important in probability and statistics. It turns out that the function e−t

2

does not have an elementary antiderivative that we can express without integrals. That is,
whereas a function such as f (t) = 4 − 2t has elementary antiderivative F(t) = 4t − t2, we
are unable to find a simple formula for an antiderivative of e−t

2
that does not involve a

definite integral. We will learn more about finding (complicated) algebraic formulas for
antiderivatives without definite integrals in the chapter on infinite series.

Returning our attention to the function E, while we cannot evaluate E exactly for any
value other than x = 0, we still can gain a tremendous amount of information about the
function E. To begin, applying the rule in Equation (5.4) to E, it follows that

E ′(x) = d
dx

[∫ x

0
e−t

2
dt

]
= e−x

2
,

so we know a formula for the derivative of E. Moreover, we know that E(0) = 0. This
information is precisely the type we were given in problems such as the one in Activity 3.1
and others in Section 3.1, where we were given information about the derivative of a
function, but lacked a formula for the function itself.

Here, using the first and second derivatives of E, along with the fact that E(0) = 0,
we can determine more information about the behavior of E. First, with E ′(x) = e−x

2
, we

note that for all real numbers x, e−x
2
> 0, and thus E ′(x) > 0 for all x. Thus E is an

always increasing function. Further, we note that as x → ∞, E ′(x) = e−x
2
→ 0, hence the

slope of the function E tends to zero as x → ∞ (and similarly as x → −∞). Indeed, it
turns out (due to some more sophisticated analysis) that E has horizontal asymptotes as x
increases or decreases without bound.

In addition, we can observe that E ′′(x) = −2xe−x
2
, and that E ′′(0) = 0, while

E ′′(x) < 0 for x > 0 and E ′′(x) > 0 for x < 0. This information tells us that E is concave
up for x < 0 and concave down for x > 0 with a point of inflection at x = 0.

The only thing we lack at this point is a sense of how big E can get as x increases.
If we use a midpoint Riemann sum with 10 subintervals to estimate E(2), we see that
E(2) ≈ 0.8822; a similar calculation to estimate E(3) shows little change (E(3) ≈ 0.8862),
so it appears that as x increases without bound, E approaches a value just larger than

2The error function is defined by the rule erf(x) = 2√
π

∫ x

0
e−t

2
dt and has the key property that 0 ≤

erf(x) < 1 for all x ≥ 0 and moreover that lim
x→∞

erf(x) = 1.
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0.886, which aligns with the fact that E has horizontal asymptotes. Putting all of this
information together (and using the symmetry of f (t) = e−t

2
), we see the results shown in

Figure 5.11.

-1

1

-2 2

f (t) = e−t2

-1

1

-2 2

E(x) =
∫ x

0 e−t2
dt

Figure 5.11: At left, the graph of f (t) = e−t
2
. At right, the integral function E(x) =∫ x

0
e−t

2
dt, which is the unique antiderivative of f that satisfies E(0) = 0.

Again, E is the antiderivative of f (t) = e−t
2
that satisfies E(0) = 0. Moreover, the

values on the graph of y = E(x) represent the net-signed area of the region bounded by
f (t) = e−t

2
from 0 up to x. We see that the value of E increases rapidly near zero but then

levels off as x increases since there is less and less additional accumulated area bounded
by f (t) = e−t

2
as x increases.

Activity 5.5.

Suppose that f (t) = t
1+t2

and F(x) = ∫ x

0
f (t) dt.

(a) On the axes at left in Figure 5.12, plot a graph of f (t) = t
1+t2

on the interval
−10 ≤ t ≤ 10. Clearly label the vertical axes with appropriate scale.

(b) What is the key relationship between F and f , according to the Second FTC?

(c) Use the first derivative test to determine the intervals on which F is increasing
and decreasing.

(d) Use the second derivative test to determine the intervals on which F is concave
up and concave down. Note that f ′(t) can be simplified to be written in the
form f ′(t) = 1−t2

(1+t2)2 .

(e) Using technology appropriately, estimate the values of F(5) and F(10) through
appropriate Riemann sums.
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Figure 5.12: Axes for plotting f and F.

(f) Sketch an accurate graph of y = F(x) on the righthand axes provided, and
clearly label the vertical axes with appropriate scale.

C

Differentiating an Integral Function

We have seen that the Second FTC enables us to construct an antiderivative F of any
continuous function f by defining F by the corresponding integral function F(x) =∫ x

c
f (t) dt. Said differently, if we have a function of the form F(x) = ∫ x

c
f (t) dt, then

we know that F ′(x) = d
dx

[∫ x

c
f (t) dt

]
= f (x). This shows that integral functions, while

perhaps having the most complicated formulas of any functions we have encountered, are
nonetheless particularly simple to differentiate. For instance, if

F(x) =
∫ x

π
sin(t2) dt,

then by the Second FTC, we know immediately that

F ′(x) = sin(x2).

Stating this result more generally for an arbitrary function f , we know by the Second
FTC that

d
dx

[∫ x

a

f (t) dt
]
= f (x).

In words, the last equation essentially says that “the derivative of the integral function
whose integrand is f , is f .” In this sense, we see that if we first integrate the function f
from t = a to t = x, and then differentiate with respect to x, these two processes “undo”
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one another.

Taking a different approach, say we begin with a function f (t) and differentiate with
respect to t. What happens if we follow this by integrating the result from t = a to t = x?
That is, what can we say about the quantity∫ x

a

d
dt

[ f (t)] dt?

Here, we use the First FTC and note that f (t) is an antiderivative of d
dt [ f (t)] . Applying

this result and evaluating the antiderivative function, we see that∫ x

a

d
dt

[ f (t)] dt = f (t)����
x

a

= f (x) − f (a).
Thus, we see that if we apply the processes of first differentiating f and then integrating
the result from a to x, we return to the function f , minus the constant value f (a). So in
this situation, the two processes almost undo one another, up to the constant f (a).

The observations made in the preceding two paragraphs demonstrate that differen-
tiating and integrating (where we integrate from a constant up to a variable) are almost
inverse processes. In one sense, this should not be surprising: integrating involves antidif-
ferentiating, which reverses the process of differentiating. On the other hand, we see that
there is some subtlety involved, as integrating the derivative of a function does not quite
produce the function itself. This is connected to a key fact we observed in Section 5.1,
which is that any function has an entire family of antiderivatives, and any two of those
antiderivatives differ only by a constant.

Activity 5.6.

Evaluate each of the following derivatives and definite integrals. Clearly cite whether
you use the First or Second FTC in so doing.

(a)
d
dx

[∫ x

4
et

2
dt

]

(b)
∫ x

−2

d
dt

[
t4

1 + t4

]
dt

(c)
d
dx

[∫ 1

x

cos(t3) dt
]

(d)
∫ x

3

d
dt

�
ln(1 + t2)� dt

(e)
d
dx



∫ x3

4
sin(t2) dt
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(Hint: Let F(x) = ∫ x

4
sin(t2) dt and observe that this problem is asking you to

evaluate d
dx

�
F(x3)]�.

C

Summary

In this section, we encountered the following important ideas:

• For a continuous function f , the integral function A(x) = ∫ x

1
f (t) dt defines an an-

tiderivative of f .

• The Second Fundamental Theorem of Calculus is the formal, more general statement
of the preceding fact: if f is a continuous function and c is any constant, then
A(x) = ∫ x

c
f (t) dt is the unique antiderivative of f that satisfies A(c) = 0.

• Together, the First and Second FTC enable us to formally see how differentiation and
integration are almost inverse processes through the observations that∫ x

c

d
dt

[ f (t)] dt = f (x) − f (c)

and
d
dx

[∫ x

c

f (t) dt
]
= f (x).

Exercises

1. Let g be the function pictured at left in Figure 5.13, and let F be defined by F(x) =∫ x

2
g(t) dt. Assume that the shaded areas have values A1 = 4.29, A2 = 12.75, A3 = 0.36,

and A4 = 1.79. Assume further that the portion of A2 that lies between x = 0.5 and
x = 2 is 6.06.

Sketch a carefully labeled graph of F on the axes provided, and include a written
analysis of how you know where F is zero, increasing, decreasing, CCU, and CCD.

2. The tide removes sand from the beach at a small ocean park at a rate modeled by the
function

R(t) = 2 + 5 sin
(4πt
25

)
A pumping station adds sand to the beach at rate modeled by the function

S(t) = 15t
1 + 3t

Both R(t) and S(t) are measured in cubic yards of sand per hour, t is measured in
hours, and the valid times are 0 ≤ t ≤ 6. At time t = 0, the beach holds 2500 cubic
yards of sand.
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Figure 5.13: At left, the graph of g. At right, axes for plotting F.

(a) What definite integral measures how much sand the tide will remove during
the time period 0 ≤ t ≤ 6? Why?

(b) Write an expression for Y (x), the total number of cubic yards of sand on the
beach at time x. Carefully explain your thinking and reasoning.

(c) At what instantaneous rate is the total number of cubic yards of sand on the
beach at time t = 4 changing?

(d) Over the time interval 0 ≤ t ≤ 6, at what time t is the amount of sand on the
beach least? What is this minimum value? Explain and justify your answers
fully.

3. When an aircraft attempts to climb as rapidly as possible, its climb rate (in feet per
minute) decreases as altitude increases, because the air is less dense at higher altitudes.
Given below is a table showing performance data for a certain single engine aircraft,
giving its climb rate at various altitudes, where c(h) denotes the climb rate of the
airplane at an altitude h.

h (feet) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
c (ft/min) 925 875 830 780 730 685 635 585 535 490 440

Let a new function m, that also depends on h, (say y = m(h)) measure the number of
minutes required for a plane at altitude h to climb the next foot of altitude.

a. Determine a similar table of values for m(h) and explain how it is related to the
table above. Be sure to discuss the units on m.

b. Give a careful interpretation of a function whose derivative is m(h). Describe
what the input is and what the output is. Also, explain in plain English what the
function tells us.
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c. Determine a definite integral whose value tells us exactly the number of minutes
required for the airplane to ascend to 10,000 feet of altitude. Clearly explain why
the value of this integral has the required meaning.

d. Determine a formula for a function M(h) whose value tells us the exact number
of minutes required for the airplane to ascend to h feet of altitude.

e. Estimate the values of M(6000) and M(10000) as accurately as you can. Include
units on your results.
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5.3 Integration by Substitution

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How can we begin to find algebraic formulas for antiderivatives of more compli-
cated algebraic functions?

• What is an indefinite integral and how is its notation used in discussing antideriva-
tives?

• How does the technique of u-substitution work to help us evaluate certain indefinite
integrals, and how does this process rely on identifying function-derivative pairs?

Introduction

In Section 4.4, we learned the key role that antiderivatives play in the process of evaluating
definite integrals exactly. In particular, the Fundamental Theorem of Calculus tells us that
if F is any antiderivative of f , then∫ b

a

f (x) dx = F(b) − F(a).

Furthermore, we realized that each elementary derivative rule developed in Chapter 2
leads to a corresponding elementary antiderivative, as summarized in Table 4.1. Thus, if
we wish to evaluate an integral such as∫ 1

0

�
x3 −

√
x + 5x

�
dx,

it is straightforward to do so, since we can easily antidifferentiate f (x) = x3 −
√

x + 5x . In
particular, since a function F whose derivative is f is given by F(x) = 1

4 x4− 2
3 x3/2+ 1

ln(5)5
x ,

the Fundamental Theorem of Calculus tells us that∫ 1

0

�
x3 −

√
x + 5x

�
dx =

1

4
x4 −

2

3
x3/2 +

1

ln(5)5
x

�����

1

0

=

(
1

4
(1)4 − 2

3
(1)3/2 + 1

ln(5)5
1

)
−

(
0 − 0 +

1

ln(5)5
0

)
= −

5

12
+

4

ln(5) .
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Because an algebraic formula for an antiderivative of f enables us to evaluate the definite

integral
∫ b

a
f (x) dx exactly, we see that we have a natural interest in being able to find such

algebraic antiderivatives. Note that we emphasize algebraic antiderivatives, as opposed to
any antiderivative, since we know by the Second Fundamental Theorem of Calculus that
G(x) = ∫ x

a
f (t) dt is indeed an antiderivative of the given function f , but one that still

involves a definite integral. One of our main goals in this section and the one following
is to develop understanding, in select circumstances, of how to “undo” the process of
differentiation in order to find an algebraic antiderivative for a given function.

Preview Activity 5.3. In Section 2.5, we learned the Chain Rule and how it can be
applied to find the derivative of a composite function. In particular, if u is a differentiable
function of x, and f is a differentiable function of u(x), then

d
dx

[ f (u(x))] = f ′(u(x)) · u′(x).

In words, we say that the derivative of a composite function c(x) = f (u(x)), where f is
considered the “outer” function and u the “inner” function, is “the derivative of the outer
function, evaluated at the inner function, times the derivative of the inner function.”

(a) For each of the following functions, use the Chain Rule to find the function’s
derivative. Be sure to label each derivative by name (e.g., the derivative of g(x)
should be labeled g′(x)).

i. g(x) = e3x

ii. h(x) = sin(5x + 1)
iii. p(x) = arctan(2x)
iv. q(x) = (2 − 7x)4

v. r(x) = 34−11x

(b) For each of the following functions, use your work in (a) to help you determine
the general antiderivative3 of the function. Label each antiderivative by name
(e.g., the antiderivative of m should be called M ). In addition, check your work by
computing the derivative of each proposed antiderivative.

i. m(x) = e3x

ii. n(x) = cos(5x + 1)
iii. s(x) = 1

1+4x2

3Recall that the general antiderivative of a function includes “+C” to reflect the entire family of functions
that share the same derivative.
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iv. v(x) = (2 − 7x)3

v. w(x) = 34−11x

(c) Based on your experience in parts (a) and (b), conjecture an antiderivative for each
of the following functions. Test your conjectures by computing the derivative of
each proposed antiderivative.

i. a(x) = cos(πx)

ii. b(x) = (4x + 7)11

iii. c(x) = xex
2

./

Reversing the Chain Rule: First Steps

In Preview Activity 5.3, we saw that it is usually straightforward to antidifferentiate a
function of the form

h(x) = f (u(x)),
whenever f is a familiar function whose antiderivative is known and u(x) is a linear
function. For example, if we consider

h(x) = (5x − 3)6,
in this context the outer function f is f (u) = u6, while the inner function is u(x) = 5x − 3.
Since the antiderivative of f is F(u) = 1

7u7 + C, we see that the antiderivative of h is

H(x) = 1

7
(5x − 3)7 · 1

5
+ C =

1

35
(5x − 3)7 + C.

The inclusion of the constant 1
5 is essential precisely because the derivative of the inner

function is u′(x) = 5. Indeed, if we now compute H ′(x), we find by the Chain Rule (and
Constant Multiple Rule) that

H ′(x) = 1

35
· 7(5x − 3)6 · 5 = (5x − 3)6 = h(x),

and thus H is indeed the general antiderivative of h.

Hence, in the special case where the outer function is familiar and the inner function
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is linear, we can antidifferentiate composite functions according to the following rule.

If h(x) = f (ax + b) and F is a known algebraic antiderivative of f , then the general
antiderivative of h is given by

H(x) = 1

a
F(ax + b) + C.

When discussing antiderivatives, it is often useful to have shorthand notation that
indicates the instruction to find an antiderivative. Thus, in a similar way to how the
notation

d
dx

[ f (x)]
represents the derivative of f (x) with respect to x, we use the notation of the indefinite
integral, ∫

f (x) dx

to represent the general antiderivative of f with respect to x. For instance, returning to
the earlier example with h(x) = (5x − 3)6 above, we can rephrase the relationship between
h and its antiderivative H through the notation∫

(5x − 3)6 dx =
1

35
(5x − 6)7 + C.

When we find an antiderivative, we will often say that we evaluate an indefinite integral;
said differently, the instruction to evaluate an indefinite integral means to find the general
antiderivative. Just as the notation d

dx [�] means “find the derivative with respect to x of
�,” the notation

∫
� dx means “find a function of x whose derivative is �.”

Activity 5.7.

Evaluate each of the following indefinite integrals. Check each antiderivative that you
find by differentiating.

(a)
∫
sin(8 − 3x) dx

(b)
∫
sec2(4x) dx

(c)
∫

1
11x−9 dx

(d)
∫
csc(2x + 1) cot(2x + 1) dx

(e)
∫

1√
1−16x2

dx

(f)
∫
5−x dx

C
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Reversing the Chain Rule: u-substitution

Of course, a natural question arises from our recent work: what happens when the inner
function is not a linear function? For example, can we find antiderivatives of such functions
as

g(x) = xex
2
and h(x) = ex

2
?

It is important to explicitly remember that differentiation and antidifferentiation are
essentially inverse processes; that they are not quite inverse processes is due to the +C
that arises when antidifferentiating. This close relationship enables us to take any known
derivative rule and translate it to a corresponding rule for an indefinite integral. For
example, since

d
dx

�
x5

�
= 5x4,

we can equivalently write ∫
5x4 dx = x5 + C.

Recall that the Chain Rule states that

d
dx

[ f (g(x))] = f ′(g(x)) · g′(x).

Restating this relationship in terms of an indefinite integral,∫
f ′(g(x))g′(x) dx = f (g(x)) + C. (5.5)

Hence, Equation (5.5) tells us that if we can take a given function and view its algebraic
structure as f ′(g(x))g′(x) for some appropriate choices of f and g, then we can antid-
ifferentiate the function by reversing the Chain Rule. It is especially notable that both
g(x) and g′(x) appear in the form of f ′(g(x))g′(x); we will sometimes say that we seek to
identify a function-derivative pair when trying to apply the rule in Equation (5.5).

In the situation where we can identify a function-derivative pair, we will introduce a
new variable u to represent the function g(x). Observing that with u = g(x), it follows in
Leibniz notation that du

dx = g′(x), so that in terms of differentials4, du = g′(x) dx. Now
converting the indefinite integral of interest to a new one in terms of u, we have∫

f ′(g(x))g′(x) dx =
∫

f ′(u) du.

Provided that f ′ is an elementary function whose antiderivative is known, we can now

4If we recall from the definition of the derivative that du
dx ≈

4u
4x and use the fact that du

dx = g′(x), then
we see that g′(x) ≈ 4u

4x . Solving for 4u, 4u ≈ g′(x)4x. It is this last relationship that, when expressed in
“differential” notation enables us to write du = g′(x) dx in the change of variable formula.
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easily evaluate the indefinite integral in u, and then go on to determine the desired overall
antiderivative of f ′(g(x))g′(x). We call this process u-substitution. To see u-substitution at
work, we consider the following example.

Example 5.2. Evaluate the indefinite integral∫
x3 · sin(7x4 + 3) dx

and check the result by differentiating.

Solution. We can make two key algebraic observations regarding the integrand, x3 ·
sin(7x4 + 3). First, sin(7x4 + 3) is a composite function; as such, we know we’ll need a
more sophisticated approach to antidifferentiating. Second, x3 is almost the derivative
of (7x4 + 3); the only issue is a missing constant. Thus, x3 and (7x4 + 3) are nearly
a function-derivative pair. Furthermore, we know the antiderivative of f (u) = sin(u).
The combination of these observations suggests that we can evaluate the given indefinite
integral by reversing the chain rule through u-substitution.

Letting u represent the inner function of the composite function sin(7x4 + 3), we have
u = 7x4 + 3, and thus du

dx = 28x3. In differential notation, it follows that du = 28x3 dx, and
thus x3 dx = 1

28 du. We make this last observation because the original indefinite integral
may now be written ∫

sin(7x4 + 3) · x3 dx,

and so by substituting the expressions in u for x (specifically u for 7x4 + 3 and 1
28 du for

x3 dx), it follows that ∫
sin(7x4 + 3) · x3 dx =

∫
sin(u) · 1

28
du.

Now we may evaluate the original integral by first evaluating the easier integral in u,
followed by replacing u by the expression 7x4 + 3. Doing so, we find∫

sin(7x4 + 3) · x3 dx =

∫
sin(u) · 1

28
du

=
1

28

∫
sin(u) du

=
1

28
(− cos(u)) + C

= −
1

28
cos(7x4 + 3) + C.
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To check our work, we observe by the Chain Rule that

d
dx

[
−
1

28
cos(7x4 + 3) + C

]
= −

1

28
· (−1) sin(7x4 + 3) · 28x3 = sin(7x4 + 3) · x3,

which is indeed the original integrand.

An essential observation about our work in Example 5.2 is that the u-substitution only
worked because the function multiplying sin(7x4 + 3) was x3. If instead that function
was x2 or x4, the substitution process may not (and likely would not) have worked. This
is one of the primary challenges of antidifferentiation: slight changes in the integrand
make tremendous differences. For instance, we can use u-substitution with u = x2 and
du = 2xdx to find that ∫

xex
2

dx =

∫
eu ·

1

2
du

=
1

2

∫
eu du

=
1

2
eu + C

=
1

2
ex

2
+ C.

If, however, we consider the similar indefinite integral∫
ex

2
dx,

the missing x to multiply ex
2
makes the u-substitution u = x2 no longer possible. Hence,

part of the lesson of u-substitution is just how specialized the process is: it only applies to
situations where, up to a missing constant, the integrand that is present is the result of
applying the Chain Rule to a different, related function.

Activity 5.8.

Evaluate each of the following indefinite integrals by using these steps:

• Find two functions within the integrand that form (up to a possible missing
constant) a function-derivative pair;

• Make a substitution and convert the integral to one involving u and du;

• Evaluate the new integral in u;

• Convert the resulting function of u back to a function of x by using your earlier
substitution;
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• Check your work by differentiating the function of x. You should come up with
the integrand originally given.

(a)
∫

x2

5x3 + 1
dx

(b)
∫

ex sin(ex) dx

(c)
∫

cos(√x)
√

x
dx

C

Evaluating Definite Integrals via u-substitution

We have just introduced u-substitution as a means to evaluate indefinite integrals of
functions that can be written, up to a constant multiple, in the form f (g(x))g′(x). This
same technique can be used to evaluate definite integrals involving such functions, though
we need to be careful with the corresponding limits of integration. Consider, for instance,
the definite integral ∫ 5

2
xex

2
dx.

Whenever we write a definite integral, it is implicit that the limits of integration correspond
to the variable of integration. To be more explicit, observe that∫ 5

2
xex

2
dx =

∫ x=5

x=2
xex

2
dx.

When we execute a u-substitution, we change the variable of integration; it is essential to
note that this also changes the limits of integration. For instance, with the substitution
u = x2 and du = 2x dx, it also follows that when x = 2, u = 22 = 4, and when x = 5,
u = 52 = 25. Thus, under the change of variables of u-substitution, we now have∫ x=5

x=2
xex

2
dx =

∫ u=25

u=4
eu ·

1

2
du

=
1

2
eu

����
u=25

u=4

=
1

2
e25 −

1

2
e4.

Alternatively, we could consider the related indefinite integral
∫

xex
2

dx, find the

antiderivative 1
2ex

2
through u-substitution, and then evaluate the original definite integral.
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From that perspective, we’d have∫ 5

2
xex

2
dx =

1

2
ex

2 ����
5

2

=
1

2
e25 −

1

2
e4,

which is, of course, the same result.

Activity 5.9.

Evaluate each of the following definite integrals exactly through an appropriate u-
substitution.

(a)
∫ 2

1

x
1 + 4x2

dx

(b)
∫ 1

0
e−x(2e−x + 3)9 dx

(c)
∫ 4/π

2/π

cos
�
1
x

�

x2
dx

C

Summary

In this section, we encountered the following important ideas:

• To begin to find algebraic formulas for antiderivatives of more complicated algebraic
functions, we need to think carefully about how we can reverse known differentiation
rules. To that end, it is essential that we understand and recall known derivatives of
basic functions, as well as the standard derivative rules.

• The indefinite integral provides notation for antiderivatives. When we write “
∫

f (x) dx,”
we mean “the general antiderivative of f .” In particular, if we have functions f and F
such that F ′ = f , the following two statements say the exact thing:

d
dx

[F(x)] = f (x) and
∫

f (x) dx = F(x) + C.

That is, f is the derivative of F, and F is an antiderivative of f .

• The technique of u-substitution helps us evaluate indefinite integrals of the form∫
f (g(x))g′(x) dx through the substitutions u = g(x) and du = g′(x) dx, so that∫

f (g(x))g′(x) dx =
∫

f (u) du.
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A key part of choosing the expression in x to be represented by u is the identification of
a function-derivative pair. To do so, we often look for an “inner” function g(x) that is
part of a composite function, while investigating whether g′(x) (or a constant multiple
of g′(x)) is present as a multiplying factor of the integrand.

Exercises

1. This problem centers on finding antiderivatives for the basic trigonometric functions
other than sin(x) and cos(x).

(a) Consider the indefinite integral
∫

tan(x) dx. By rewriting the integrand as

tan(x) = sin(x)
cos(x) and identifying an appropriate function-derivative pair, make a

u-substitution and hence evaluate
∫

tan(x) dx.

(b) In a similar way, evaluate
∫

cot(x) dx.

(c) Consider the indefinite integral∫
sec2(x) + sec(x) tan(x)

sec(x) + tan(x) dx.

Evaluate this integral using the substitution u = sec(x) + tan(x).
(d) Simplify the integrand in (c) by factoring the numerator. What is a far simpler

way to write the integrand?

(e) Combine your work in (c) and (d) to determine
∫
sec(x) dx.

(f) Using (c)-(e) as a guide, evaluate
∫

csc(x) dx.

2. Consider the indefinite integral
∫

x
√

x − 1 dx.

(a) At first glance, this integrand may not seem suited to substitution due to the
presence of x in separate locations in the integrand. Nonetheless, using the
composite function

√
x − 1 as a guide, let u = x − 1. Determine expressions for

both x and dx in terms of u.

(b) Convert the given integral in x to a new integral in u.

(c) Evaluate the integral in (b) by noting that
√

u = u1/2 and observing that it is
now possible to rewrite the integrand in u by expanding through multiplication.

(d) Evaluate each of the integrals
∫

x2
√

x − 1 dx and
∫

x
√

x2 − 1 dx. Write a
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paragraph to discuss the similarities among the three indefinite integrals in this
problem and the role of substitution and algebraic rearrangement in each.

3. Consider the indefinite integral
∫

sin3(x) dx.

(a) Explain why the substitution u = sin(x) will not work to help evaluate the given
integral.

(b) Recall the Fundamental Trigonometric Identity, which states that sin2(x) +
cos2(x) = 1. By observing that sin3(x) = sin(x) · sin2(x), use the Fundamental
Trigonometric Identity to rewrite the integrand as the product of sin(x) with
another function.

(c) Explain why the substitution u = cos(x) now provides a possible way to evaluate
the integral in (b).

(d) Use your work in (a)-(c) to evaluate the indefinite integral
∫

sin3(x) dx.

(e) Use a similar approach to evaluate
∫

cos3(x) dx.

4. For the town of Mathland, MI, residential power consumption has shown certain trends
over recent years. Based on data reflecting average usage, engineers at the power
company have modeled the town’s rate of energy consumption by the function

r(t) = 4 + sin(0.263t + 4.7) + cos(0.526t + 9.4).
Here, t measures time in hours after midnight on a typical weekday, and r is the rate of
consumption in megawatts5 at time t. Units are critical throughout this problem.

(a) Sketch a carefully labeled graph of r(t) on the interval [0,24] and explain its
meaning. Why is this a reasonable model of power consumption?

(b) Without calculating its value, explain the meaning of
∫ 24

0
r(t) dt. Include

appropriate units on your answer.

(c) Determine the exact amount of power Mathland consumes in a typical day.

(d) What is Mathland’s average rate of energy consumption in a given 24-hour
period? What are the units on this quantity?

5The unit megawatt is itself a rate, which measures energy consumption per unit time. A megawatt-hour is
the total amount of energy that is equivalent to a constant stream of 1 megawatt of power being sustained for
1 hour.
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5.4 Integration by Parts

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How do we evaluate indefinite integrals that involve products of basic functions
such as

∫
x sin(x) dx and

∫
xex dx?

• What is the method of integration by parts and how can we consistently apply it
to integrate products of basic functions?

• How does the algebraic structure of functions guide us in identifying u and dv in
using integration by parts?

Introduction

In Section 5.3, we learned the technique of u-substitution for evaluating indefinite in-
tegrals that involve certain composite functions. For example, the indefinite integral∫

x3 sin(x4) dx is perfectly suited to u-substitution, since not only is there a composite
function present, but also the inner function’s derivative (up to a constant) is multiplying
the composite function. Through u-substitution, we learned a general situation where
recognizing the algebraic structure of a function can enable us to find its antiderivative.

It is natural to ask similar questions to those we considered in Section 5.3 about
functions with a different elementary algebraic structure: those that are the product of
basic functions. For instance, suppose we are interested in evaluating the indefinite integral∫

x sin(x) dx.

Here, there is not a composite function present, but rather a product of the basic functions
f (x) = x and g(x) = sin(x). From our work in Section 2.3 with the Product Rule, we know
that it is relatively complicated to compute the derivative of the product of two functions,
so we should expect that antidifferentiating a product should be similarly involved. In
addition, intuitively we expect that evaluating

∫
x sin(x) dx will involve somehow reversing

the Product Rule.

To that end, in Preview Activity 5.4 we refresh our understanding of the Product Rule
and then investigate some indefinite integrals that involve products of basic functions.

Preview Activity 5.4. In Section 2.3, we developed the Product Rule and studied how it
is employed to differentiate a product of two functions. In particular, recall that if f and g
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are differentiable functions of x, then

d
dx

[ f (x) · g(x)] = f (x) · g′(x) + g(x) · f ′(x).

(a) For each of the following functions, use the Product Rule to find the function’s
derivative. Be sure to label each derivative by name (e.g., the derivative of g(x)
should be labeled g′(x)).

i. g(x) = x sin(x)
ii. h(x) = xex

iii. p(x) = x ln(x)
iv. q(x) = x2 cos(x)
v. r(x) = ex sin(x)

(b) Use your work in (a) to help you evaluate the following indefinite integrals. Use
differentiation to check your work.

i.
∫

xex + ex dx

ii.
∫

ex(sin(x) + cos(x)) dx

iii.
∫

2x cos(x) − x2 sin(x) dx

iv.
∫

x cos(x) + sin(x) dx

v.
∫

1 + ln(x) dx

(c) Observe that the examples in (b) work nicely because of the derivatives you
were asked to calculate in (a). Each integrand in (b) is precisely the result of
differentiating one of the products of basic functions found in (a). To see what
happens when an integrand is still a product but not necessarily the result of
differentiating an elementary product, we consider how to evaluate∫

x cos(x) dx.
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i. First, observe that

d
dx

[x sin(x)] = x cos(x) + sin(x).

Integrating both sides indefinitely and using the fact that the integral of a
sum is the sum of the integrals, we find that∫ (

d
dx

[x sin(x)]
)

dx =
∫

x cos(x) dx +
∫

sin(x) dx.

In this last equation, evaluate the indefinite integral on the left side as well
as the rightmost indefinite integral on the right.

ii. In the most recent equation from (i.), solve the equation for the expression∫
x cos(x) dx.

iii. For which product of basic functions have you now found the antiderivative?

./

Reversing the Product Rule: Integration by Parts

Problem (c) in Preview Activity 5.4 provides a clue for how we develop the general technique
known as Integration by Parts, which comes from reversing the Product Rule. Recall that
the Product Rule states that

d
dx

[ f (x)g(x)] = f (x)g′(x) + g(x) f ′(x).

Integrating both sides of this equation indefinitely with respect to x, it follows that∫
d
dx

[ f (x)g(x)] dx =
∫

f (x)g′(x) dx +
∫

g(x) f ′(x) dx. (5.6)

On the left in Equation (5.6), we recognize that we have the indefinite integral of the
derivative of a function which, up to an additional constant, is the original function itself.
Temporarily omitting the constant that may arise, we equivalently have

f (x)g(x) =
∫

f (x)g′(x) dx +
∫

g(x) f ′(x) dx. (5.7)

The most important thing to observe about Equation (5.7) is that it provides us with a
choice of two integrals to evaluate. That is, in a situation where we can identify two
functions f and g, if we can integrate f (x)g′(x), then we know the indefinite integral of
g(x) f ′(x), and vice versa. To that end, we choose the first indefinite integral on the left in
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Equation (5.7) and solve for it to generate the rule∫
f (x)g′(x) dx = f (x)g(x) −

∫
g(x) f ′(x) dx. (5.8)

Often we express Equation (5.8) in terms of the variables u and v, where u = f (x) and
v = g(x). Note that in differential notation, du = f ′(x) dx and dv = g′(x) dx, and thus we
can state the rule for Integration by Parts in its most common form as follows.

∫
u dv = uv −

∫
v du.

To apply Integration by Parts, we look for a product of basic functions that we can
identify as u and dv. If we can antidifferentiate dv to find v, and evaluating

∫
v du is not

more difficult than evaluating
∫

u dv, then this substitution usually proves to be fruitful.
To demonstrate, we consider the following example.

Example 5.3. Evaluate the indefinite integral∫
x cos(x) dx

using Integration by Parts.

Solution. Whenever we are trying to integrate a product of basic functions through
Integration by Parts, we are presented with a choice for u and dv. In the current problem,
we can either let u = x and dv = cos(x) dx, or let u = cos(x) and dv = x dx. While there
is not a universal rule for how to choose u and dv, a good guideline is this: do so in a way
that

∫
v du is at least as simple as the original problem

∫
u dv.

In this setting, this leads us to choose6 u = x and dv = cos(x) dx, from which it follows
that du = 1 dx and v = sin(x). With this substitution, the rule for Integration by Parts tells
us that ∫

x cos(x) dx = x sin(x) −
∫

sin(x) · 1 dx.

6Observe that if we considered the alternate choice, and let u = cos(x) and dv = x dx, then du =
− sin(x) dx and v = 1

2 x2, from which we would write∫
x cos(x) dx =

1

2
x2 cos(x) −

∫
1

2
x2(− sin(x)) dx.

Thus we have replaced the problem of integrating x cos(x) with that of integrating 1
2 x2 sin(x); the latter is

clearly more complicated, which shows that this alternate choice is not as helpful as the first choice.
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At this point, all that remains to do is evaluate the (simpler) integral
∫
sin(x) · 1 dx. Doing

so, we find ∫
x cos(x) dx = x sin(x) − (− cos(x)) + C = x sin(x) + cos(x) + C.

There are at least two additional important observations to make from Example 5.3. First,
the general technique of Integration by Parts involves trading the problem of integrating
the product of two functions for the problem of integrating the product of two related
functions. In particular, we convert the problem of evaluating

∫
u dv for that of evaluating∫

v du. This perspective clearly shapes our choice of u and v. In Example 5.3, the original
integral to evaluate was

∫
x cos(x) dx, and through the substitution provided by Integration

by Parts, we were instead able to evaluate
∫
sin(x) · 1 dx. Note that the original function

x was replaced by its derivative, while cos(x) was replaced by its antiderivative. Second,
observe that when we get to the final stage of evaluating the last remaining antiderivative,
it is at this step that we include the integration constant, +C.

Activity 5.10.

Evaluate each of the following indefinite integrals. Check each antiderivative that you
find by differentiating.

(a)
∫

te−t dt

(b)
∫
4x sin(3x) dx

(c)
∫

z sec2(z) dz

(d)
∫

x ln(x) dx

C

Some Subtleties with Integration by Parts

There are situations where Integration by Parts is not an obvious choice, but the technique
is appropriate nonetheless. One guide to understanding why is the observation that
integration by parts allows us to replace one function in a product with its derivative while
replacing the other with its antiderivative. For instance, consider the problem of evaluating∫

arctan(x) dx.

Initially, this problem seems ill-suited to Integration by Parts, since there does not appear
to be a product of functions present. But if we note that arctan(x) = arctan(x) · 1, and
realize that we know the derivative of arctan(x) as well as the antiderivative of 1, we
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see the possibility for the substitution u = arctan(x) and dv = 1 dx. We explore this
substitution further in Activity 5.11.

In a related problem, if we consider
∫

t3 sin(t2) dt, two key observations can be made
about the algebraic structure of the integrand: there is a composite function present
in sin(t2), and there is not an obvious function-derivative pair, as we have t3 present
(rather than simply t) multiplying sin(t2). This problem exemplifies the situation where
we sometimes use both u-substitution and Integration by Parts in a single problem. If we
write t3 = t · t2 and consider the indefinite integral∫

t · t2 · sin(t2) dt,

we can use a mix of the two techniques we have recently learned. First, let z = t2 so
that dz = 2t dt, and thus t dt = 1

2 dz. (We are using the variable z to perform a “z-
substitution” since u will be used subsequently in executing Integration by Parts.) Under
this z-substitution, we now have∫

t · t2 · sin(t2) dt =
∫

z · sin(z) · 1
2

dz.

The remaining integral is a standard one that can be evaluated by parts. This, too, is
explored further in Activity 5.11.

The problems briefly introduced here exemplify that we sometimes must think creatively
in choosing the variables for substitution in Integration by Parts, as well as that it is entirely
possible that we will need to use the technique of substitution for an additional change of
variables within the process of integrating by parts.

Activity 5.11.

Evaluate each of the following indefinite integrals, using the provided hints.

(a) Evaluate
∫
arctan(x) dx by using Integration by Parts with the substitution

u = arctan(x) and dv = 1 dx.

(b) Evaluate
∫
ln(z) dz. Consider a similar substitution to the one in (a).

(c) Use the substitution z = t2 to transform the integral
∫

t3 sin(t2) dt to a new
integral in the variable z, and evaluate that new integral by parts.

(d) Evaluate
∫

s5es
3

ds using an approach similar to that described in (c).

(e) Evaluate
∫

e2t cos(et ) dt. You will find it helpful to note that e2t = et · et .

C
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Using Integration by Parts Multiple Times

We have seen that the technique of Integration by Parts is well suited to integrating the
product of basic functions, and that it allows us to essentially trade a given integrand for a
new one where one function in the product is replaced by its derivative, while the other is
replaced by its antiderivative. The main goal in this trade of

∫
u dv for

∫
v du is to have

the new integral not be more challenging to evaluate than the original one. At times, it
turns out that it can be necessary to apply Integration by Parts more than once in order to
ultimately evaluate a given indefinite integral.

For example, if we consider
∫

t2et dt and let u = t2 and dv = et dt, then it follows that
du = 2t dt and v = et , thus ∫

t2et dt = t2et −
∫

2tet dt.

The integral on the righthand side is simpler to evaluate than the one on the left, but it
still requires Integration by Parts. Now letting u = 2t and dv = et dt, we have du = 2 dt
and v = et , so that ∫

t2et dt = t2et −
(
2tet −

∫
2et dt

)
.

Note the key role of the parentheses, as it is essential to distribute the minus sign to the
entire value of the integral

∫
2tet dt. The final integral on the right in the most recent

equation is a basic one; evaluating that integral and distributing the minus sign, we find∫
t2et dt = t2et − 2tet + 2et + C.

Of course, situations are possible where even more than two applications of Integration
by Parts may be necessary. For instance, in the preceding example, it is apparent that if
the integrand was t3et instead, we would have to use Integration by Parts three times.

Next, we consider the slightly different scenario presented by the definite integral∫
et cos(t) dt. Here, we can choose to let u be either et or cos(t); we pick u = cos(t), and

thus dv = et dt. With du = − sin(t) dt and v = et , Integration by Parts tells us that∫
et cos(t) dt = et cos(t) −

∫
et (− sin(t)) dt,

or equivalently that ∫
et cos(t) dt = et cos(t) +

∫
et sin(t) dt (5.9)

Observe that the integral on the right in Equation (5.9),
∫

et sin(t) dt, while not being
more complicated than the original integral we want to evaluate, it is essentially identical
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to
∫

et cos(t) dt. While the overall situation isn’t necessarily better than what we started
with, the problem hasn’t gotten worse. Thus, we proceed by integrating by parts again.
This time we let u = sin(t) and dv = et dt, so that du = cos(t) dt and v = et , which implies∫

et cos(t) dt = et cos(t) +
(
et sin(t) −

∫
et cos(t) dt

)
(5.10)

We seem to be back where we started, as two applications of Integration by Parts has led
us back to the original problem,

∫
et cos(t) dt. But if we look closely at Equation (5.10),

we see that we can use algebra to solve for the value of the desired integral. In particular,
adding

∫
et cos(t) dt to both sides of the equation, we have

2

∫
et cos(t) dt = et cos(t) + et sin(t),

and therefore ∫
et cos(t) dt =

1

2

�
et cos(t) + et sin(t)� + C.

Note that since we never actually encountered an integral we could evaluate directly, we
didn’t have the opportunity to add the integration constant C until the final step, at which
point we include it as part of the most general antiderivative that we sought from the
outset in evaluating an indefinite integral.

Activity 5.12.

Evaluate each of the following indefinite integrals.

(a)
∫

x2 sin(x) dx

(b)
∫

t3 ln(t) dt

(c)
∫

ez sin(z) dz

(d)
∫

s2e3s ds

(e)
∫

t arctan(t) dt

(Hint: At a certain point in this problem, it is very helpful to note that
t2

1+t2
= 1 − 1

1+t2
.)

C
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Evaluating Definite Integrals Using Integration by Parts

Just as we saw with u-substitution in Section 5.3, we can use the technique of Integration
by Parts to evaluate a definite integral. Say, for example, we wish to find the exact value of∫ π/2

0
t sin(t) dt.

One option is to evaluate the related indefinite integral to find that
∫

t sin(t) dt = −t cos(t)+
sin(t) + C, and then use the resulting antiderivative along with the Fundamental Theorem
of Calculus to find that∫ π/2

0
t sin(t) dt = (−t cos(t) + sin(t)) ����

π/2

0

=

(
−
π

2
cos(π

2
) + sin(π

2
)
)
− (−0 cos(0) + sin(0))

= 1.

Alternatively, we can apply Integration by Parts and work with definite integrals
throughout. In this perspective, it is essential to remember to evaluate the product uv over
the given limits of integration. To that end, using the substitution u = t and dv = sin(t) dt,
so that du = dt and v = − cos(t), we write∫ π/2

0
t sin(t) dt = −t cos(t)����

π/2

0
−

∫ π/2

0
(− cos(t)) dt

= −t cos(t)����
π/2

0
+ sin(t)����

π/2

0

=

(
−
π

2
cos(π

2
) + sin(π

2
)
)
− (−0 cos(0) + sin(0))

= 1.

As with any substitution technique, it is important to remember the overall goal of the
problem, to use notation carefully and completely, and to think about our end result to
ensure that it makes sense in the context of the question being answered.

When u-substitution and Integration by Parts Fail to Help

As we close this section, it is important to note that both integration techniques we have
discussed apply in relatively limited circumstances. In particular, it is not hard to find
examples of functions for which neither technique produces an antiderivative; indeed,
there are many, many functions that appear elementary but that do not have an elementary
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algebraic antiderivative. For instance, if we consider the indefinite integrals∫
ex

2
dx and

∫
x tan(x) dx,

neither u-substitution nor Integration by Parts proves fruitful. While there are other
integration techniques, some of which we will consider briefly, none of them enables
us to find an algebraic antiderivative for ex

2
or x tan(x). There are at least two key

observations to make: one, we do know from the Second Fundamental Theorem of
Calculus that we can construct an integral antiderivative for each function; and two,
antidifferentiation is much, much harder in general than differentiation. In particular, we
observe that F(x) = ∫ x

0
et

2
dt is an antiderivative of f (x) = ex

2
, and G(x) = ∫ x

0
t tan(t) dt

is an antiderivative of g(x) = x tan(x). But finding an elementary algebraic formula that
doesn’t involve integrals for either F or G turns out not only to be impossible through
u-substitution or Integration by Parts, but indeed impossible altogether.

Summary

In this section, we encountered the following important ideas:

• Through the method of Integration by Parts, we can evaluate indefinite integrals that
involve products of basic functions such as

∫
x sin(x) dx and

∫
x ln(x) dx through a

substitution that enables us to effectively trade one of the functions in the product for
its derivative, and the other for its antiderivative, in an effort to find a different product
of functions that is easier to integrate.

• If we are given an integral whose algebraic structure we can identify as a product of
basic functions in the form

∫
f (x)g′(x) dx, we can use the substitution u = f (x) and

dv = g′(x) dx and apply the rule∫
u dv = uv −

∫
v du

in an effort to evaluate the original integral
∫

f (x)g′(x) dx by instead evaluating∫
v du =

∫
f ′(x)g(x) dx.

• When deciding to integrate by parts, we normally have a product of functions present
in the integrand and we have to select both u and dv. That selection is guided by the
overall principal that we desire the new integral

∫
v du to not be any more difficult or

complicated than the original integral
∫

u dv. In addition, it is often helpful to recognize
if one of the functions present is much easier to differentiate than antidifferentiate (such
as ln(x)), in which case that function often is best assigned the variable u. For sure,
when choosing dv, the corresponding function must be one that we can antidifferentiate.
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Exercises

1. Let f (t) = te−2t and F(x) = ∫ x

0
f (t) dt.

(a) Determine F ′(x).
(b) Use the First FTC to find a formula for F that does not involve an integral.

(c) Is F an increasing or decreasing function for x > 0? Why?

2. Consider the indefinite integral given by
∫

e2x cos(ex) dx.

(a) Noting that e2x = ex · ex , use the substitution z = ex to determine a new,
equivalent integral in the variable z.

(b) Evaluate the integral you found in (a) using an appropriate technique.

(c) How is the problem of evaluating
∫

e2x cos(e2x) dx different from evaluating
the integral in (a)? Do so.

(d) Evaluate each of the following integrals as well, keeping in mind the approach(es)
used earlier in this problem:

•
∫

e2x sin(ex) dx
•

∫
e3x sin(e3x) dx

•
∫

xex
2
cos(ex2) sin(ex2) dx

3. For each of the following indefinite integrals, determine whether you would use u-
substitution, integration by parts, neither*, or both to evaluate the integral. In each
case, write one sentence to explain your reasoning, and include a statement of any
substitutions used. (That is, if you decide in a problem to let u = e3x , you should state
that, as well as that du = 3e3x dx.) Finally, use your chosen approach to evaluate each
integral. (* one of the following problems does not have an elementary antiderivative
and you are not expected to actually evaluate this integral; this will correspond with a
choice of “neither” among those given.)

(a)
∫

x2 cos(x3) dx

(b)
∫

x5 cos(x3) dx (Hint: x5 = x2 · x3)

(c)
∫

x ln(x2) dx

(d)
∫
sin(x4) dx

(e)
∫

x3 sin(x4) dx

(f)
∫

x7 sin(x4) dx
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5.5 Other Options for Finding Algebraic Antiderivatives

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How does the method of partial fractions enable any rational function to be
antidifferentiated?

• What role have integral tables historically played in the study of calculus and how
can a table be used to evaluate integrals such as

∫ √
a2 + u2 du?

• What role can a computer algebra system play in the process of finding antideriva-
tives?

Introduction

In the preceding sections, we have learned two very specific antidifferentiation techniques:
u-substitution and integration by parts. The former is used to reverse the chain rule,
while the latter to reverse the product rule. But we have seen that each only works
in very specialized circumstances. For example, while

∫
xex

2
dx may be evaluated by

u-substitution and
∫

xex dx by integration by parts, neither method provides a route to

evaluate
∫

ex
2

dx. That fact is not a particular shortcoming of these two antidifferentiation
techniques, as it turns out there does not exist an elementary algebraic antiderivative for
ex

2
. Said differently, no matter what antidifferentiation methods we could develop and

learn to execute, none of them will be able to provide us with a simple formula that does
not involve integrals for a function F(x) that satisfies F ′(x) = ex

2
.

In this section of the text, our main goals are to better understand some classes of
functions that can always be antidifferentiated, as well as to learn some options for so
doing. At the same time, we want to recognize that there are many functions for which an
algebraic formula for an antiderivative does not exist, and also appreciate the role that
computing technology can play in helping us find antiderivatives of other complicated
functions. Throughout, it is helpful to remember what we have learned so far: how to
reverse the chain rule through u-substitution, how to reverse the product rule through
integration by parts, and that overall, there are subtle and challenging issues to address
when trying to find antiderivatives.

Preview Activity 5.5. For each of the indefinite integrals below, the main question is to
decide whether the integral can be evaluated using u-substitution, integration by parts,
a combination of the two, or neither. For integrals for which your answer is affirmative,
state the substitution(s) you would use. It is not necessary to actually evaluate any of the
integrals completely, unless the integral can be evaluated immediately using a familiar
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basic antiderivative.

(a)
∫

x2 sin(x3) dx,
∫

x2 sin(x) dx,
∫

sin(x3) dx,
∫

x5 sin(x3) dx

(b)
∫

1

1 + x2
dx,

∫
x

1 + x2
dx,

∫
2x + 3
1 + x2

dx,
∫

ex

1 + (ex)2 dx,

(c)
∫

x ln(x) dx,
∫

ln(x)
x

dx,
∫

ln(1 + x2) dx,
∫

x ln(1 + x2) dx,

(d)
∫

x
√
1 − x2 dx,

∫
1

√
1 − x2

dx,
∫

x
√
1 − x2

dx,
∫

1

x
√
1 − x2

dx,

./

The Method of Partial Fractions

The method of partial fractions is used to integrate rational functions, and essentially
involves reversing the process of finding a common denominator. For example, suppoes
we have the function R(x) = 5x

x2−x−2
and want to evaluate∫

5x
x2 − x − 2

dx.

Thinking algebraically, if we factor the denominator, we can see how R might come from
the sum of two fractions of the form A

x−2 +
B
x+1 . In particular, suppose that

5x
(x − 2)(x + 1) =

A
x − 2

+
B

x + 1
.

Multiplying both sides of this last equation by (x − 2)(x + 1), we find that

5x = A(x + 1) + B(x − 2).
Since we want this equation to hold for every value of x, we can use insightful choices of
specific x-values to help us find A and B. Taking x = −1, we have

5(−1) = A(0) + B(−3),
and thus B = 5

3 . Choosing x = 2, it follows

5(2) = A(3) + B(0),
so A = 10

3 . Therefore, we now know that∫
5x

x2 − x − 2
dx =

∫
10/3

x − 2
+

5/3

x + 1
dx.
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This equivalent integral expression is straightforward to evaluate, and hence we find that∫
5x

x2 − x − 2
dx =

10

3
ln |x − 2| + 5

3
ln |x + 1| + C.

It turns out that for any rational function R(x) = P(x)
Q(x) where the degree of the polynomial

P is less than7 the degree of the polynomial Q, the method of partial fractions can be
used to rewrite the rational function as a sum of simpler rational functions of one of the
following forms:

A
x − c

,
A

(x − c)n , or
Ax + B
x2 + k

where A, B, and c are real numbers, and k is a positive real number. Because each of these
basic forms is one we can antidifferentiate, partial fractions enables us to antidifferentiate
any rational function.

A computer algebra system such as Maple, Mathematica, or WolframAlpha can be used to
find the partial fraction decomposition of any rational function. In WolframAlpha, entering

partial fraction 5x/(xˆ2-x-2)

results in the output
5x

x2 − x − 2
=

10

3(x − 2) +
5

3(x + 1) .
We will primarily use technology to generate partial fraction decompositions of rational
functions, and then work from there to evaluate the integrals of interest using established
methods.

Activity 5.13.

For each of the following problems, evaluate the integral by using the partial fraction
decomposition provided.

(a)
∫

1

x2 − 2x − 3
dx, given that 1

x2−2x−3
=

1/4
x−3 −

1/4
x+1

(b)
∫

x2 + 1
x3 − x2

dx, given that x2+1
x3−x2

= − 1
x −

1
x2
+ 2

x−1

(c)
∫

x − 2
x4 + x2

dx, given that x−2
x4+x2

= 1
x −

2
x2
+ −x+2

1+x2

C

7If the degree of P is greater than or equal to the degree of Q, long division may be used to write R as the
sum of a polynomial plus a rational function where the numerator’s degree is less than the denominator’s.
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Using an Integral Table

Calculus has a long history, with key ideas going back as far as Greek mathematicians in
400-300 BC. Its main foundations were first investigated and understood independently by
Isaac Newton and Gottfried Wilhelm Leibniz in the late 1600s, making the modern ideas
of calculus well over 300 years old. It is instructive to realize that until the late 1980s, the
personal computer essentially did not exist, so calculus (and other mathematics) had to be
done by hand for roughly 300 years. During the last 30 years, however, computers have
revolutionized many aspects of the world we live in, including mathematics. In this section
we take a short historical tour to precede the following discussion of the role computer
algebra systems can play in evaluating indefinite integrals. In particular, we consider a
class of integrals involving certain radical expressions that, until the advent of computer
algebra systems, were often evaluated using an integral table.

As seen in the short table of integrals found in Appendix A, there are also many forms
of integrals that involve

√
a2 ± w2 and

√
w2 − a2. These integral rules can be developed

using a technique known as trigonometric substitution that we choose to omit; instead, we
will simply accept the results presented in the table. To see how these rules are needed
and used, consider the differences among∫

1
√
1 − x2

dx,
∫

x
√
1 − x2

dx, and
∫
√
1 − x2 dx.

The first integral is a familiar basic one, and results in arcsin(x) + C. The second integral
can be evaluated using a standard u-substitution with u = 1 − x2. The third, however, is
not familiar and does not lend itself to u-substitution.

In Appendix A, we find the rule

(8)
∫
√

a2 − u2 du =
u
2

√
a2 − u2 +

a2

2
arcsin

u
a
+ C.

Using the substitutions a = 1 and u = x (so that du = dx), it follows that∫
√
1 − x2 dx =

x
2

√
1 − x2 −

1

2
arcsin x + C.

One important point to note is that whenever we are applying a rule in the table, we
are doing a u-substitution. This is especially key when the situation is more complicated
than allowing u = x as in the last example. For instance, say we wish to evaluate the
integral ∫

√
9 + 64x2 dx.

Once again, we want to use Rule (3) from the table, but now do so with a = 3 and u = 8x;
we also choose the “+” option in the rule. With this substitution, it follows that du = 8dx,
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so dx = 1
du . Applying this substitution,∫

√
9 + 64x2 dx =

∫
√
9 + u2 ·

1

8
du =

1

8

∫
√
9 + u2 du.

By Rule (3), we now find that∫
√
9 + 64x2 dx =

1

8

(u
2

√
u2 + 9 +

9

2
ln |u + √u2 + 9| + C

)
=

1

8

(8x
2

√
64x2 + 9 +

9

2
ln |8x +

√
64x2 + 9| + C

)
.

In problems such as this one, it is essential that we not forget to account for the factor of
1
8 that must be present in the evaluation.

Activity 5.14.

For each of the following integrals, evaluate the integral using u-substitution and/or an
entry from the table found in Appendix A.

(a)
∫
√

x2 + 4 dx

(b)
∫

x
√

x2 + 4
dx

(c)
∫

2
√
16 + 25x2

dx

(d)
∫

1

x2
√
49 − 36x2

dx

C

Using Computer Algebra Systems

A computer algebra system (CAS) is a computer program that is capable of executing
symbolic mathematics. For a simple example, if we ask a CAS to solve the equation
ax2 + bx + c = 0 for the variable x, where a, b, and c are arbitrary constants, the program

will return x = −b±
√
b2−4ac
2a . While research to develop the first CAS dates to the 1960s,

these programs became more common and publicly available in the early 1990s. Two
prominent early examples are the programs Maple and Mathematica, which were among
the first computer algebra systems to offer a graphical user interface. Today, Maple and
Mathematica are exceptionally powerful professional software packages that are capable of
executing an amazing array of sophisticated mathematical computations. They are also
very expensive, as each is a proprietary program. The CAS SAGE is an open-source, free
alternative to Maple and Mathematica.
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For the purposes of this text, when we need to use a CAS, we are going to turn instead
to a similar, but somewhat different computational tool, the web-based “computational
knowledge engine” called WolframAlpha. There are two features of WolframAlpha that
make it stand out from the CAS options mentioned above: (1) unlike Maple and Math-
ematica, WolframAlpha is free (provided we are willing to suffer through some pop-up
advertising); and (2) unlike any of the three, the syntax in WolframAlpha is flexible. Think
of WolframAlpha as being a little bit like doing a Google search: the program will interpret
what is input, and then provide a summary of options.

If we want to have WolframAlpha evaluate an integral for us, we can provide it syntax
such as

integrate xˆ2 dx

to which the program responds with∫
x2 dx =

x3

3
+ constant.

While there is much to be enthusiastic about regarding CAS programs such as Wolfra-
mAlpha, there are several things we should be cautious about: (1) a CAS only responds to
exactly what is input; (2) a CAS can answer using powerful functions from highly advanced
mathematics; and (3) there are problems that even a CAS cannot do without additional
human insight.

Although (1) likely goes without saying, we have to be careful with our input: if we
enter syntax that defines a function other than the problem of interest, the CAS will work
with precisely the function we define. For example, if we are interested in evaluating the
integral ∫

1

16 − 5x2
dx,

and we mistakenly enter

integrate 1/16 - 5xˆ2 dx

a CAS will (correctly) reply with
1

16
x −

5

3
x3.

It is essential that we are sufficiently well-versed in antidifferentiation to recognize that this
function cannot be the one that we seek: integrating a rational function such as 1

16−5x2
,

we expect the logarithm function to be present in the result.

Regarding (2), even for a relatively simple integral such as
∫

1
16−5x2

dx, some CASs
will invoke advanced functions rather than simple ones. For instance, if we use Maple to
execute the command
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int(1/(16-5*xˆ2), x);

the program responds with∫
1

16 − 5x2
dx =

√
5

20
arctanh(

√
5

4
x).

While this is correct (save for the missing arbitrary constant, which Maple never reports),
the inverse hyperbolic tangent function is not a common nor familiar one; a simpler way
to express this function can be found by using the partial fractions method, and happens
to be the result reported by WolframAlpha:∫

1

16 − 5x2
dx =

1

8
√
5

(
log(4√5 + 5√x) − log(4√5 − 5√x)) + constant.

Using sophisticated functions from more advanced mathematics is sometimes the way
a CAS says to the user “I don’t know how to do this problem.” For example, if we want to
evaluate ∫

e−x
2

dx,

and we ask WolframAlpha to do so, the input

integrate exp(-xˆ2) dx

results in the output ∫
e−x

2
dx =

√
π

2
erf(x) + constant.

The function “erf(x)” is the error function, which is actually defined by an integral:

erf(x) = 2
√
π

∫ x

0
e−t

2
dt.

So, in producing output involving an integral, the CAS has basically reported back to us
the very question we asked.

Finally, as remarked at (3) above, there are times that a CAS will actually fail without
some additional human insight. If we consider the integral∫

(1 + x)ex√1 + x2e2x dx

and ask WolframAlpha to evaluate

int (1+x) * exp(x) * sqrt(1+xˆ2 * exp(2x)) dx,

the program thinks for a moment and then reports
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(no result found in terms of standard mathematical functions)

But in fact this integral is not that difficult to evaluate. If we let u = xex , then du =
(1 + x)ex dx, which means that the preceding integral has form∫

(1 + x)ex√1 + x2e2x dx =
∫
√
1 + u2 du,

which is a straightforward one for any CAS to evaluate.

So, the above observations regarding computer algebra systems lead us to proceed
with some caution: while any CAS is capable of evaluating a wide range of integrals (both
definite and indefinite), there are times when the result can mislead us. We must think
carefully about the meaning of the output, whether it is consistent with what we expect,
and whether or not it makes sense to proceed.

Summary

In this section, we encountered the following important ideas:

• The method of partial fractions enables any rational function to be antidifferentiated,
because any polynomial function can be factored into a product of linear and irreducible
quadratic terms. This allows any rational function to be written as the sum of a
polynomial plus rational terms of the form A

(x−c)n (where n is a natural number) and
Bx+C
x2+k

(where k is a positive real number).

• Until the development of computing algebra systems, integral tables enabled students of
calculus to more easily evaluate integrals such as

∫ √
a2 + u2 du, where a is a positive

real number. A short table of integrals may be found in Appendix A.

• Computer algebra systems can play an important role in finding antiderivatives, though
we must be cautious to use correct input, to watch for unusual or unfamiliar advanced
functions that the CAS may cite in its result, and to consider the possibility that a CAS
may need further assistance or insight from us in order to answer a particular question.

Exercises

1. For each of the following integrals involving rational functions, (1) use a CAS to find the
partial fraction decomposition of the integrand; (2) evaluate the integral of the resulting
function without the assistance of technology; (3) use a CAS to evaluate the original
integral to test and compare your result in (2).

(a)
∫

x3 + x + 1
x4 − 1

dx

(b)
∫

x5 + x2 + 3
x3 − 6x2 + 11x − 6

dx
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(c)
∫

x2 − x − 1
(x − 3)3 dx

2. For each of the following integrals involving radical functions, (1) use an appropriate
u-substitution along with Appendix A to evaluate the integral without the assistance
of technology, and (2) use a CAS to evaluate the original integral to test and compare
your result in (1).

(a)
∫

1

x
√
9x2 + 25

dx

(b)
∫

x
√
1 + x4 dx

(c)
∫

ex
√
4 + e2x dx

(d)
∫

tan(x)√
9 − cos2(x) dx

3. Consider the indefinite integral given by

∫ √
x +
√
1 + x2

x
dx.

(a) Explain why u-substitution does not offer a way to simplify this integral by
discussing at least two different options you might try for u.

(b) Explain why integration by parts does not seem to be a reasonable way to
proceed, either, by considering one option for u and dv.

(c) Is there any line in the integral table in Appendix A that is helpful for this
integral?

(d) Evaluate the given integral using WolframAlpha. What do you observe?
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5.6 Numerical Integration

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How do we accurately evaluate a definite integral such as
∫ 1

0
e−x

2
dx when we

cannot use the First Fundamental Theorem of Calculus because the integrand
lacks an elementary algebraic antiderivative? Are there ways to generate accurate
estimates without using extremely large values of n in Riemann sums?

• What is the Trapezoid Rule, and how is it related to left, right, and middle Riemann
sums?

• How are the errors in the Trapezoid Rule and Midpoint Rule related, and how can
they be used to develop an even more accurate rule?

Introduction

When we were first exploring the problem of finding the net-signed area bounded by a
curve, we developed the concept of a Riemann sum as a helpful estimation tool and a
key step in the definition of the definite integral. In particular, as we found in Section 4.2,
recall that the left, right, and middle Riemann sums of a function f on an interval [a, b]
are denoted Ln, Rn, and Mn, with formulas

Ln = f (x0)4x + f (x1)4x + · · · + f (xn−1)4x =
n−1∑
i=0

f (xi)4x, (5.11)

Rn = f (x1)4x + f (x2)4x + · · · + f (xn)4x =
n∑
i=1

f (xi)4x, (5.12)

Mn = f (x1)4x + f (x2)4x + · · · + f (xn)4x =
n∑
i=1

f (xi)4x, (5.13)

where x0 = a, xi = a + i4x, xn = b, and 4x = b−a
n . For the middle sum, note that

xi = (xi−1 + xi)/2.
Further, recall that a Riemann sum is essentially a sum of (possibly signed) areas of

rectangles, and that the value of n determines the number of rectangles, while our choice
of left endpoints, right endpoints, or midpoints determines how we use the given function
to find the heights of the respective rectangles we choose to use. Visually, we can see the
similarities and differences among these three options in Figure 5.14, where we consider
the function f (x) = 1

20 (x − 4)3 + 7 on the interval [1, 8], and use 5 rectangles for each of
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the Riemann sums.

1 8

y = f (x)

LEFT 1 8

y = f (x)

RIGHT 1 8

y = f (x)

MID

Figure 5.14: Left, right, and middle Riemann sums for y = f (x) on [1, 8] with 5 subintervals.

While it is a good exercise to compute a few Riemann sums by hand, just to ensure that
we understand how they work and how varying the function, the number of subintervals,
and the choice of endpoints or midpoints affects the result, it is of course the case that
using computing technology is the best way to determine Ln, Rn, and Mn going forward.
Any computer algebra system will offer this capability; as we saw in Preview Activity 4.3,
a straightforward option that happens to also be freely available online is the applet8 at
http://gvsu.edu/s/a9.

Note that we can adjust the formula for f (x), the window of x- and y-values of interest,
the number of subintervals, and the method. See Preview Activity 4.3 for any needed
reminders on how the applet works.

In what follows in this section we explore several different alternatives, including left,
right, and middle Riemann sums, for estimating definite integrals. One of our main goals
in the upcoming section is to develop formulas that enable us to estimate definite integrals
accurately without having to use exceptionally large numbers of rectangles.

Preview Activity 5.6. As we begin to investigate ways to approximate definite integrals,
it will be insightful to compare results to integrals whose exact values we know. To that

end, the following sequence of questions centers on
∫ 3

0
x2 dx.

(a) Use the applet at http://gvsu.edu/s/a9 with the function f (x) = x2 on the
window of x values from 0 to 3 to compute L3, the left Riemann sum with three
subintervals.

(b) Likewise, use the applet to compute R3 and M3, the right and middle Riemann
sums with three subintervals, respectively.

8Marc Renault, Shippensburg University

http://gvsu.edu/s/a9
http://gvsu.edu/s/a9
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(c) Use the Fundamental Theorem of Calculus to compute the exact value of I =∫ 3

0
x2 dx.

(d) We define the error in an approximation of a definite integral to be the difference
between the integral’s exact value and the approximation’s value. What is the
error that results from using L3? From R3? From M3?

(e) In what follows in this section, we will learn a new approach to estimating the
value of a definite integral known as the Trapezoid Rule. The basic idea is to use
trapezoids, rather than rectangles, to estimate the area under a curve. What is the
formula for the area of a trapezoid with bases of length b1 and b2 and height h?

(f) Working by hand, estimate the area under f (x) = x2 on [0, 3] using three subinter-
vals and three corresponding trapezoids. What is the error in this approximation?
How does it compare to the errors you calculated in (d)?

./

The Trapezoid Rule

Throughout our work to date with developing and estimating definite integrals, we have
used the simplest possible quadrilaterals (that is, rectangles) to subdivide regions with
complicated shapes. It is natural, however, to wonder if other familiar shapes might serve

us even better. In particular, our goal is to be able to accurately estimate
∫ b

a
f (x) dx

without having to use extremely large values of n in Riemann sums.

To this end, we consider an alternative to Ln, Rn, and Mn, know as the Trapezoid Rule.
The fundamental idea is simple: rather than using a rectangle to estimate the (signed) area
bounded by y = f (x) on a small interval, we use a trapezoid. For example, in Figure 5.15,
we estimate the area under the pictured curve using three subintervals and the trapezoids
that result from connecting the corresponding points on the curve with straight lines.

The biggest difference between the Trapezoid Rule and a left, right, or middle Riemann
sum is that on each subinterval, the Trapezoid Rule uses two function values, rather than
one, to estimate the (signed) area bounded by the curve. For instance, to compute D1,
the area of the trapezoid generated by the curve y = f (x) in Figure 5.15 on [x0, x1], we
observe that the left base of this trapezoid has length f (x0), while the right base has length
f (x1). In addition, the height of this trapezoid is x1 − x0 = 4x = b−a

3 . Since the area of a
trapezoid is the average of the bases times the height, we have

D1 =
1

2
( f (x0) + f (x1)) · 4x.

Using similar computations for D2 and D3, we find that T3, the trapezoidal approximation
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y = f (x)

x0 x1 x2 x3

D1 D2 D3

Figure 5.15: Estimating
∫ b

a
f (x) dx using three subintervals and trapezoids, rather than

rectangles, where a = x0 and b = x3.

to
∫ b

a
f (x) dx is given by

T3 = D1 + D2 + D3

=
1

2
( f (x0) + f (x1)) · 4x +

1

2
( f (x1) + f (x2)) · 4x +

1

2
( f (x2) + f (x3)) · 4x.

Because both left and right endpoints are being used, we recognize within the trapezoidal
approximation the use of both left and right Riemann sums. In particular, rearranging the
expression for T3 by removing a factor of 1

2 , grouping the left endpoint evaluations of f ,
and grouping the right endpoint evaluations of f , we see that

T3 =
1

2
[( f (x0)4x + f (x1)4x + f (x2)4x) + ( f (x1)4x + f (x2)4x + f (x3)4x)] . (5.14)

At this point, we observe that two familiar sums have arisen. Since the left Rie-
mann sum L3 is L3 = f (x0)4x + f (x1)4x + f (x2)4x, and the right Riemann sum is
R3 = f (x1)4x + f (x2)4x + f (x3)4x, substituting L3 and R3 for the corresponding expres-
sions in Equation 5.14, it follows that T3 = 1

2 [L3 + R3] . We have thus seen the main ideas
behind a very important result: using trapezoids to estimate the (signed) area bounded by
a curve is the same as averaging the estimates generated by using left and right endpoints.

(The Trapezoid Rule) The trapezoidal approximation, Tn, of the definite integral∫ b

a
f (x) dx using n subintervals is given by the rule

Tn =
1

2
( f (x0) + f (x1))4x +

1

2
( f (x1) + f (x2))4x + · · · +

1

2
( f (xn−1) + f (xn))4x.

=

n−1∑
i=0

1

2
( f (xi) + f (xi+1))4x.

Moreover, Tn =
1
2 [Ln + Rn] .
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Activity 5.15.

In this activity, we explore the relationships among the errors generated by left, right,

midpoint, and trapezoid approximations to the definite integral
∫ 2

1
1
x2

dx

(a) Use the First FTC to evaluate
∫ 2

1
1
x2

dx exactly.

(b) Use appropriate computing technology to compute the following approxima-

tions for
∫ 2

1
1
x2

dx: T4, M4, T8, and M8.

(c) Let the error of an approximation be the difference between the exact value
of the definite integral and the resulting approximation. For instance, if we
let ET,4 represent the error that results from using the trapezoid rule with 4
subintervals to estimate the integral, we have

ET,4 =

∫ 2

1

1

x2
dx − T4.

Similarly, we compute the error of the midpoint rule approximation with 8
subintervals by the formula

EM,8 =

∫ 2

1

1

x2
dx − M8.

Based on your work in (a) and (b) above, compute ET,4, ET,8, EM,4, EM,8.

(d) Which rule consistently over-estimates the exact value of the definite integral?
Which rule consistently under-estimates the definite integral?

(e) What behavior(s) of the function f (x) = 1
x2

lead to your observations in (d)?

C

Comparing the Midpoint and Trapezoid Rules

We know from the definition of the definite integral of a continuous function f , that if
we let n be large enough, we can make the value of any of the approximations Ln, Rn,

and Mn as close as we’d like (in theory) to the exact value of
∫ b

a
f (x) dx. Thus, it may

be natural to wonder why we ever use any rule other than Ln or Rn (with a sufficiently
large n value) to estimate a definite integral. One of the primary reasons is that as n → ∞,
4x = b−a

n → 0, and thus in a Riemann sum calculation with a large n value, we end up
multiplying by a number that is very close to zero. Doing so often generates roundoff error,
as representing numbers close to zero accurately is a persistent challenge for computers.

Hence, we are exploring ways by which we can estimate definite integrals to high levels
of precision, but without having to use extremely large values of n. Paying close attention
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to patterns in errors, such as those observed in Activity 5.15, is one way to begin to see
some alternate approaches.

To begin, we make a comparison of the errors in the Midpoint and Trapezoid rules
from two different perspectives. First, consider a function of consistent concavity on a
given interval, and picture approximating the area bounded on that interval by both
the Midpoint and Trapezoid rules using a single subinterval. As seen in Figure 5.16, it

T1 M1 M1

Figure 5.16: Estimating
∫ b

a
f (x) dx using a single subinterval: at left, the trapezoid rule; in

the middle, the midpoint rule; at right, a modified way to think about the midpoint rule.

is evident that whenever the function is concave up on an interval, the Trapezoid Rule
with one subinterval, T1, will overestimate the exact value of the definite integral on that
interval. Moreover, from a careful analysis of the line that bounds the top of the rectangle
for the Midpoint Rule (shown in magenta), we see that if we rotate this line segment until
it is tangent to the curve at the point on the curve used in the Midpoint Rule (as shown at
right in Figure 5.16), the resulting trapezoid has the same area as M1, and this value is less
than the exact value of the definite integral. Hence, when the function is concave up on
the interval, M1 underestimates the integral’s true value.

These observations extend easily to the situation where the function’s concavity remains
consistent but we use higher values of n in the Midpoint and Trapezoid Rules. Hence,

whenever f is concave up on [a, b], Tn will overestimate the value of
∫ b

a
f (x) dx, while Mn

will underestimate
∫ b

a
f (x) dx. The reverse observations are true in the situation where f

is concave down.

Next, we compare the size of the errors between Mn and Tn. Again, we focus on M1

and T1 on an interval where the concavity of f is consistent. In Figure 5.17, where the
error of the Trapezoid Rule is shaded in red, while the error of the Midpoint Rule is
shaded lighter red, it is visually apparent that the error in the Trapezoid Rule is more
significant. To see how much more significant, let’s consider two examples and some
particular computations.

If we let f (x) = 1 − x2 and consider
∫ 1

0
f (x) dx, we know by the First FTC that the



5.6. NUMERICAL INTEGRATION 325

M1

Figure 5.17: Comparing the error in estimating
∫ b

a
f (x) dx using a single subinterval: in

red, the error from the Trapezoid rule; in light red, the error from the Midpoint rule.

exact value of the integral is∫ 1

0
(1 − x2) dx = x −

x3

3

����
1

0
=

2

3
.

Using appropriate technology to compute M4, M8, T4, and T8, as well as the corresponding
errors EM,4, EM,8, ET,4, and ET,8, as we did in Activity 5.15, we find the results summarized
in Table 5.1. Note that in the table, we also include the approximations and their errors for

the example
∫ 2

1
1
x2

dx from Activity 5.15.∫ 1

0
(1 − x2) dx = 0.6 error

∫ 2

1
1
x2

dx = 0.5 error

T4 0.65625 -0.0104166667 0.5089937642 0.0089937642

M4 0.671875 0.0052083333 0.4955479365 -0.0044520635

T8 0.6640625 -0.0026041667 0.5022708502 0.0022708502

M8 0.66796875 0.0013020833 0.4988674899 -0.0011325101

Table 5.1: Calculations of T4, M4, T8, and M8, along with corresponding errors, for the

definite integrals
∫ 1

0
(1 − x2) dx and

∫ 2

1
1
x2

dx.

Recall that for a given function f and interval [a, b], ET,4 =
∫ b

a
f (x) dx −T4 calculates

the difference between the exact value of the definite integral and the approximation
generated by the Trapezoid Rule with n = 4. If we look at not only ET,4, but also the
other errors generated by using Tn and Mn with n = 4 and n = 8 in the two examples
noted in Table 5.1, we see an evident pattern. Not only is the sign of the error (which
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measures whether the rule generates an over- or under-estimate) tied to the rule used and
the function’s concavity, but the magnitude of the errors generated by Tn and Mn seems
closely connected. In particular, the errors generated by the Midpoint Rule seem to be
about half the size of those generated by the Trapezoid Rule.

That is, we can observe in both examples that EM,4 ≈ −
1
2ET,4 and EM,8 ≈ −

1
2ET,8,

which demonstrates a property of the Midpoint and Trapezoid Rules that turns out to hold
in general: for a function of consistent concavity, the error in the Midpoint Rule has the
opposite sign and approximately half the magnitude of the error of the Trapezoid Rule.
Said symbolically,

EM,n ≈ −
1

2
ET,n.

This important relationship suggests a way to combine the Midpoint and Trapezoid Rules
to create an even more accurate approximation to a definite integral.

Simpson’s Rule

When we first developed the Trapezoid Rule, we observed that it can equivalently be
viewed as resulting from the average of the Left and Right Riemann sums:

Tn =
1

2
(Ln + Rn).

Whenever a function is always increasing or always decreasing on the interval [a, b],
one of Ln and Rn will over-estimate the true value of

∫ b

a
f (x) dx, while the other will

under-estimate the integral. Said differently, the errors found in Ln and Rn will have
opposite signs; thus, averaging Ln and Rn eliminates a considerable amount of the error
present in the respective approximations. In a similar way, it makes sense to think about
averaging Mn and Tn in order to generate a still more accurate approximation.

At the same time, we’ve just observed that Mn is typically about twice as accurate as
Tn. Thus, we instead choose to use the weighted average

S2n =
2Mn + Tn

3
. (5.15)

The rule for S2n giving by Equation 5.15 is usually known as Simpson’s Rule.9 Note that we
use “S2n” rather that “Sn” since the n points the Midpoint Rule uses are different from the
n points the Trapezoid Rule uses, and thus Simpson’s Rule is using 2n points at which to
evaluate the function. We build upon the results in Table 5.1 to see the approximations
generated by Simpson’s Rule. In particular, in Table 5.2, we include all of the results in

9Thomas Simpson was an 18th century mathematician; his idea was to extend the Trapezoid rule, but
rather than using straight lines to build trapezoids, to use quadratic functions to build regions whose area was
bounded by parabolas (whose areas he could find exactly). Simpson’s Rule is often developed from the more
sophisticated perspective of using interpolation by quadratic functions.
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Table 5.1, but include additional results for S8 =
2M4+T4

3 and S16 =
2M8+T8

3 .∫ 1

0
(1 − x2) dx = 0.6 error

∫ 2

1
1
x2

dx = 0.5 error

T4 0.65625 -0.0104166667 0.5089937642 0.0089937642

M4 0.671875 0.0052083333 0.4955479365 -0.0044520635

S8 0.6666666667 0 0.5000298792 0.0000298792

T8 0.6640625 -0.0026041667 0.5022708502 0.0022708502

M8 0.66796875 0.0013020833 0.4988674899 -0.0011325101

S16 0.6666666667 0 0.5000019434 0.0000019434

Table 5.2: Table 5.1 updated to include S8, S16, and the corresponding errors.

The results seen in Table 5.2 are striking. If we consider the S16 approximation of∫ 2

1
1
x2

dx, the error is only ES,16 = 0.0000019434. By contrast, L8 = 0.5491458502, so the
error of that estimate is EL,8 = −0.0491458502. Moreover, we observe that generating
the approximations for Simpson’s Rule is almost no additional work: once we have Ln,
Rn, and Mn for a given value of n, it is a simple exercise to generate Tn, and from there
to calculate S2n. Finally, note that the error in the Simpson’s Rule approximations of∫ 1

0
(1 − x2) dx is zero!10

These rules are not only useful for approximating definite integrals such as
∫ 1

0
e−x

2
dx,

for which we cannot find an elementary antiderivative of e−x
2
, but also for approximating

definite integrals in the setting where we are given a function through a table of data.

Activity 5.16.

A car traveling along a straight road is braking and its velocity is measured at several
different points in time, as given in the following table. Assume that v is continuous,
always decreasing, and always decreasing at a decreasing rate, as is suggested by the
data.

seconds, t 0 0.3 0.6 0.9 1.2 1.5 1.8
Velocity in ft/sec, v(t) 100 99 96 90 80 50 0

(a) Plot the given data on the set of axes provided in Figure 5.18 with time on the
horizontal axis and the velocity on the vertical axis.

(b) What definite integral will give you the exact distance the car traveled on
[0, 1.8]?

10Similar to how the Midpoint and Trapezoid approximations are exact for linear functions, Simpson’s Rule
approximations are exact for quadratic and cubic functions. See additional discussion on this issue later in
the section and in the exercises.
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(c) Estimate the total distance traveled on [0, 1.8] by computing L3, R3, and T3.
Which of these under-estimates the true distance traveled?

(d) Estimate the total distance traveled on [0, 1.8] by computing M3. Is this an
over- or under-estimate? Why?

(e) Using your results from (c) and (d), improve your estimate further by using
Simpson’s Rule.

(f) What is your best estimate of the average velocity of the car on [0, 1.8]? Why?
What are the units on this quantity?

0.3 0.6 0.9 1.2 1.5 1.8

v

t

Figure 5.18: Axes for plotting the data in Activity 5.16.

C

Overall observations regarding Ln, Rn, Tn, Mn, and S2n.

As we conclude our discussion of numerical approximation of definite integrals, it is
important to summarize general trends in how the various rules over- or under-estimate
the true value of a definite integral, and by how much. To revisit some past observations
and see some new ones, we consider the following activity.

Activity 5.17.

Consider the functions f (x) = 2 − x2, g(x) = 2 − x3, and h(x) = 2 − x4, all on the
interval [0, 1]. For each of the questions that require a numerical answer in what follows,
write your answer exactly in fraction form.

(a) On the three sets of axes provided in Figure 5.19, sketch a graph of each
function on the interval [0, 1], and compute L1 and R1 for each. What do you
observe?
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(b) Compute M1 for each function to approximate
∫ 1

0
f (x) dx,

∫ 1

0
g(x) dx, and∫ 1

0
h(x) dx, respectively.

(c) Compute T1 for each of the three functions, and hence compute S1 for each of
the three functions.

(d) Evaluate each of the integrals
∫ 1

0
f (x) dx,

∫ 1

0
g(x) dx, and

∫ 1

0
h(x) dx exactly

using the First FTC.

(e) For each of the three functions f , g, and h, compare the results of L1, R1,
M1, T1, and S2 to the true value of the corresponding definite integral. What
patterns do you observe?

1

2

1

2

1

2

Figure 5.19: Axes for plotting the functions in Activity 5.17.

C

The results seen in the examples in Activity 5.17 generalize nicely. For instance, for any

function f that is decreasing on [a, b], Ln will over-estimate the exact value of
∫ b

a
f (x) dx,

and for any function f that is concave down on [a, b], Mn will over-estimate the exact
value of the integral. An excellent exercise is to write a collection of scenarios of possible
function behavior, and then categorize whether each of Ln, Rn, Tn, and Mn is an over- or
under-estimate.

Finally, we make two important notes about Simpson’s Rule. When T. Simpson first
developed this rule, his idea was to replace the function f on a given interval with a
quadratic function that shared three values with the function f . In so doing, he guaranteed
that this new approximation rule would be exact for the definite integral of any quadratic
polynomial. In one of the pleasant surprises of numerical analysis, it turns out that
even though it was designed to be exact for quadratic polynomials, Simpson’s Rule
is exact for any cubic polynomial: that is, if we are interested in an integral such as∫ 5

2
(5x3−2x2+7x−4) dx, S2n will always be exact, regardless of the value of n. This is just

one more piece of evidence that shows how effective Simpson’s Rule is as an approximation
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tool for estimating definite integrals.11

Summary

In this section, we encountered the following important ideas:

• For a definite integral such as
∫ 1

0
e−x

2
dx when we cannot use the First Fundamental

Theorem of Calculus because the integrand lacks an elementary algebraic antiderivative,
we can estimate the integral’s value by using a sequence of Riemann sum approximations.
Typically, we start by computing Ln, Rn, and Mn for one or more chosen values of n.

• The Trapezoid Rule, which estimates
∫ b

a
f (x) dx by using trapezoids, rather than

rectangles, can also be viewed as the average of Left and Right Riemann sums. That is,
Tn =

1
2 (Ln + Rn).

• The Midpoint Rule is typically twice as accurate as the Trapezoid Rule, and the signs
of the respective errors of these rules are opposites. Hence, by taking the weighted

average Sn =
2Mn+Tn

3 , we can build a much more accurate approximation to
∫ b

a
f (x) dx

by using approximations we have already computed. The rule for Sn is known as
Simpson’s Rule, which can also be developed by approximating a given continuous
function with pieces of quadratic polynomials.

Exercises

1. Consider the definite integral
∫ 1

0
x tan(x) dx.

(a) Explain why this integral cannot be evaluated exactly by using either u-
substitution or by integrating by parts.

(b) Using 4 subintervals, compute L4, R4, M4, T4, and S4.

(c) Which of the approximations in (b) is an over-estimate to the true value of∫ 1

0
x tan(x) dx? Which is an under-estimate? How do you know?

2. For an unknown function f (x), the following information is known.

• f is continuous on [3, 6];
• f is either always increasing or always decreasing on [3, 6];
• f has the same concavity throughout the interval [3, 6];
• As approximations to

∫ 6

3
f (x) dx, L4 = 7.23, R4 = 6.75, and M4 = 7.05.

11One reason that Simpson’s Rule is so effective is that S2n benefits from using 2n + 1 points of data.
Because it combines Mn, which uses n midpoints, and Tn, which uses the n + 1 endpoints of the chosen
subintervals, S2n takes advantage of the maximum amount of information we have when we know function
values at the endpoints and midpoints of n subintervals.
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(a) Is f increasing or decreasing on [3, 6]? What data tells you?

(b) Is f concave up or concave down on [3, 6]? Why?

(c) Determine the best possible estimate you can for
∫ 6

3
f (x) dx, based on the

given information.

3. The rate at which water flows through Table Rock Dam on the White River in Branson,
MO, is measured in thousands of cubic feet per second (TCFS). As engineers open the
floodgates, flow rates are recorded according to the following chart.

seconds, t 0 10 20 30 40 50 60
flow in TCFS, r(t) 2000 2100 2400 3000 3900 5100 6500

(a) What definite integral measures the total volume of water to flow through the
dam in the 60 second time period provided by the table above?

(b) Use the given data to calculate Mn for the largest possible value of n to
approximate the integral you stated in (a). Do you think Mn over- or under-
estimates the exact value of the integral? Why?

(c) Approximate the integral stated in (a) by calculating Sn for the largest possible
value of n, based on the given data.

(d) Compute 1
60Sn and 2000+2100+2400+3000+3900+5100+6500

7 . What quantity do both
of these values estimate? Which is a more accurate approximation?
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Chapter 6

Using Definite Integrals

6.1 Using Definite Integrals to Find Area and Length

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How can we use definite integrals to measure the area between two curves?

• How do we decide whether to integrate with respect to x or with respect to y when
we try to find the area of a region?

• How can a definite integral be used to measure the length of a curve?

Introduction

Early on in our work with the definite integral, we learned that if we have a nonnegative
velocity function, v, for an object moving along an axis, the area under the velocity
function between a and b tells us the distance the object traveled on that time interval.
Moreover, based on the definition of the definite integral, that area is given precisely by∫ b

a
v(t) dt. Indeed, for any nonnegative function f on an interval [a, b], we know that∫ b

a
f (x) dx measures the area bounded by the curve and the x-axis between x = a and

x = b.

Through our upcoming work in the present section and chapter, we will explore how
definite integrals can be used to represent a variety of different physically important
properties. In Preview Activity 6.1, we begin this investigation by seeing how a single
definite integral may be used to represent the area between two curves.

333
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Preview Activity 6.1. Consider the functions given by f (x) = 5−(x−1)2 and g(x) = 4− x.

(a) Use algebra to find the points where the graphs of f and g intersect.

(b) Sketch an accurate graph of f and g on the axes provided, labeling the curves by
name and the intersection points with ordered pairs.

(c) Find and evaluate exactly an integral expression that represents the area between
y = f (x) and the x-axis on the interval between the intersection points of f and
g.

(d) Find and evaluate exactly an integral expression that represents the area between
y = g(x) and the x-axis on the interval between the intersection points of f and g.

(e) What is the exact area between f and g between their intersection points? Why?

1 2 3

2

4

6

Figure 6.1: Axes for plotting f and g in Preview Activity 6.1

./

The Area Between Two Curves

Through Preview Activity 6.1, we encounter a natural way to think about the area between
two curves: the area between the curves is the area beneath the upper curve minus the
area below the lower curve. For the functions f (x) = (x − 1)2 + 1 and g(x) = x + 2, shown
in Figure 6.2, we see that the upper curve is g(x) = x + 2, and that the graphs intersect at
(0, 2) and (3, 5). Note that we can find these intersection points by solving the system of
equations given by y = (x − 1)2 + 1 and y = x + 2 through substitution: substituting x + 2
for y in the first equation yields x + 2 = (x − 1)2 + 1, so x + 2 = x2 − 2x + 1 + 1, and thus

x2 − 3x = x(x − 3) = 0,
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g

Figure 6.2: The areas bounded by the functions f (x) = (x − 1)2 + 1 and g(x) = x + 2 on
the interval [0, 3].

from which it follows that x = 0 or x = 3. Using y = x + 2, we find the corresponding
y-values of the intersection points.

On the interval [0, 3], the area beneath g is∫ 3

0
(x + 2) dx =

21

2
,

while the area under f on the same interval is∫ 3

0
[(x − 1)2 + 1] dx = 6.

Thus, the area between the curves is

A =
∫ 3

0
(x + 2) dx −

∫ 3

0
[(x − 1)2 + 1] dx =

21

2
− 6 =

9

2
. (6.1)

A slightly different perspective is also helpful here: if we take the region between two
curves and slice it up into thin vertical rectangles (in the same spirit as we originally sliced
the region between a single curve and the x-axis in Section 4.2), then we see that the
height of a typical rectangle is given by the difference between the two functions. For
example, for the rectangle shown at left in Figure 6.3, we see that the rectangle’s height is
g(x) − f (x), while its width can be viewed as 4x, and thus the area of the rectangle is

Arect = (g(x) − f (x))4x.
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g

f

x

△x

g(x)− f (x)

1 2 3

2

4

6

f

g

Figure 6.3: The area bounded by the functions f (x) = (x − 1)2 + 1 and g(x) = x + 2 on
the interval [0, 3].

The area between the two curves on [0, 3] is thus approximated by the Riemann sum

A ≈
n∑
i=1

(g(xi) − f (xi))4x,

and then as we let n → ∞, it follows that the area is given by the single definite integral

A =
∫ 3

0
(g(x) − f (x)) dx. (6.2)

In many applications of the definite integral, we will find it helpful to think of a “represen-
tative slice” and how the definite integral may be used to add these slices to find the exact
value of a desired quantity. Here, the integral essentially sums the areas of thin rectangles.

Finally, whether we think of the area between two curves as the difference between the
area bounded by the individual curves (as in (6.1)) or as the limit of a Riemann sum that
adds the areas of thin rectangles between the curves (as in (6.2)), these two results are the
same, since the difference of two integrals is the integral of the difference:∫ 3

0
g(x) dx −

∫ 3

0
f (x) dx =

∫ 3

0
(g(x) − f (x)) dx.

Moreover, our work so far in this section exemplifies the following general principle.

If two curves y = g(x) and y = f (x) intersect at (a, g(a)) and (b, g(b)), and for
all x such that a ≤ x ≤ b, g(x) ≥ f (x), then the area between the curves is
A =

∫ b

a
(g(x) − f (x)) dx.
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Activity 6.1.

In each of the following problems, our goal is to determine the area of the region
described. For each region, (i) determine the intersection points of the curves, (ii) sketch
the region whose area is being found, (iii) draw and label a representative slice, and (iv)
state the area of the representative slice. Then, state a definite integral whose value is
the exact area of the region, and evaluate the integral to find the numeric value of the
region’s area.

(a) The finite region bounded by y =
√

x and y = 1
4 x.

(b) The finite region bounded by y = 12 − 2x2 and y = x2 − 8.

(c) The area bounded by the y-axis, f (x) = cos(x), and g(x) = sin(x), where we
consider the region formed by the first positive value of x for which f and g

intersect.

(d) The finite regions between the curves y = x3 − x and y = x2.

C

Finding Area with Horizontal Slices

At times, the shape of a geometric region may dictate that we need to use horizontal
rectangular slices, rather than vertical ones. For instance, consider the region bounded by
the parabola x = y2 − 1 and the line y = x − 1, pictured in Figure 6.4. First, we observe
that by solving the second equation for x and writing x = y+1, we can eliminate a variable
through substitution and find that y + 1 = y2 − 1, and hence the curves intersect where
y2 − y − 2 = 0. Thus, we find y = −1 or y = 2, so the intersection points of the two curves
are (0,−1) and (3, 2).

We see that if we attempt to use vertical rectangles to slice up the area, at certain values
of x (specifically from x = −1 to x = 0, as seen in the center graph of Figure 6.4), the curves
that govern the top and bottom of the rectangle are one and the same. This suggests, as
shown in the rightmost graph in the figure, that we try using horizontal rectangles as a way
to think about the area of the region. For such a horizontal rectangle, note that its width
depends on y, the height at which the rectangle is constructed. In particular, at a height
y between y = −1 and y = 2, the right end of a representative rectangle is determined
by the line, x = y + 1, while the left end of the rectangle is determined by the parabola,
x = y2 − 1, and the thickness of the rectangle is 4y.

Therefore, the area of the rectangle is

Arect = [(y + 1) − (y2 − 1)]4y,
from which it follows that the area between the two curves on the y-interval [−1, 2] is
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1 2 3
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x = y2 −1

y = x−1

1 2 3
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y = x−1
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x = y2 −1

x = y+1

△y

Figure 6.4: The area bounded by the functions x = y2 − 1 and y = x − 1 (at left), with the
region sliced vertically (center) and horizontally (at right).

approximated by the Riemann sum

A ≈
n∑
i=1

[(yi + 1) − (y2i − 1)]4y.

Taking the limit of the Riemann sum, it follows that the area of the region is

A =
∫ y=2

y=−1
[(y + 1) − (y2 − 1)] dy. (6.3)

We emphasize that we are integrating with respect to y; this is dictated by the fact that
we chose to use horizontal rectangles whose widths depend on y and whose thickness is
denoted 4y. It is a straightforward exercise to evaluate the integral in Equation (6.3) and
find that A = 9

2 .

Just as with the use of vertical rectangles of thickness 4x, we have a general principle
for finding the area between two curves, which we state as follows.

If two curves x = g(y) and x = f (y) intersect at (g(c), c) and (g(d), d), and for all y
such that c ≤ y ≤ d, g(y) ≥ f (y), then the area between the curves is

A =
∫ y=d

y=c

(g(y) − f (y)) dy.

Activity 6.2.

In each of the following problems, our goal is to determine the area of the region
described. For each region, (i) determine the intersection points of the curves, (ii) sketch
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the region whose area is being found, (iii) draw and label a representative slice, and (iv)
state the area of the representative slice. Then, state a definite integral whose value is
the exact area of the region, and evaluate the integral to find the numeric value of the
region’s area. Note well: At the step where you draw a representative slice, you need
to make a choice about whether to slice vertically or horizontally.

(a) The finite region bounded by x = y2 and x = 6 − 2y2.

(b) The finite region bounded by x = 1 − y2 and x = 2 − 2y2.

(c) The area bounded by the x-axis, y = x2, and y = 2 − x.

(d) The finite regions between the curves x = y2 − 2y and y = x.

C

Finding the length of a curve

In addition to being able to use definite integrals to find the areas of certain geometric
regions, we can also use the definite integral to find the length of a portion of a curve. We
use the same fundamental principle: we take a curve whose length we cannot easily find,
and slice it up into small pieces whose lengths we can easily approximate. In particular, we
take a given curve and subdivide it into small approximating line segments, as shown at
left in Figure 6.5. To see how we find such a definite integral that measures arc length on

x

y
f

x0 x1 x2 x3 △x

△y
h

Lslice

Figure 6.5: At left, a continuous function y = f (x) whose length we seek on the interval
a = x0 to b = x3. At right, a close up view of a portion of the curve.

the curve y = f (x) from x = a to x = b, we think about the portion of length, Lslice, that
lies along the curve on a small interval of length 4x, and estimate the value of Lslice using
a well-chosen triangle. In particular, if we consider the right triangle with legs parallel to
the coordinate axes and hypotenuse connecting two points on the curve, as seen at right
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in Figure 6.5, we see that the length, h, of the hypotenuse approximates the length, Lslice,
of the curve between the two selected points. Thus,

Lslice ≈ h =
√
(4x)2 + (4y)2.

By algebraically rearranging the expression for the length of the hypotenuse, we see how a
definite integral can be used to compute the length of a curve. In particular, observe that
by removing a factor of (4x)2, we find that

Lslice ≈

√
(4x)2 + (4y)2

=

√
(4x)2

(
1 +

(4y)2
(4x)2

)

=

√
1 +

(4y)2
(4x)2 · 4x.

Furthermore, as n → ∞ and 4x → 0, it follows that 4y
4x →

dy
dx = f ′(x). Thus, we can say

that

Lslice ≈
√
1 + f ′(x)24x.

Taking a Riemann sum of all of these slices and letting n → ∞, we arrive at the following
fact.

Given a differentiable function f on an interval [a, b], the total arc length, L, along
the curve y = f (x) from x = a to x = b is given by

L =
∫ b

a

√
1 + f ′(x)2 dx.

Activity 6.3.

Each of the following questions somehow involves the arc length along a curve.

(a) Use the definition and appropriate computational technology to determine the
arc length along y = x2 from x = −1 to x = 1.

(b) Find the arc length of y =
√
4 − x2 on the interval −2 ≤ x ≤ 2. Find this value

in two different ways: (a) by using a definite integral, and (b) by using a familiar
property of the curve.

(c) Determine the arc length of y = xe3x on the interval [0, 1].
(d) Will the integrals that arise calculating arc length typically be ones that we can

evaluate exactly using the First FTC, or ones that we need to approximate?
Why?
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(e) A moving particle is traveling along the curve given by y = f (x) = 0.1x2 + 1,
and does so at a constant rate of 7 cm/sec, where both x and y are measured
in cm (that is, the curve y = f (x) is the path along which the object actually
travels; the curve is not a “position function”). Find the position of the particle
when t = 4 sec, assuming that when t = 0, the particle’s location is (0, f (0)).

C

Summary

In this section, we encountered the following important ideas:

• To find the area between two curves, we think about slicing the region into thin
rectangles. If, for instance, the area of a typical rectangle on the interval x = a to x = b
is given by Arect = (g(x) − f (x))4x, then the exact area of the region is given by the
definite integral

A =
∫ b

a

(g(x) − f (x)) dx.

• The shape of the region usually dictates whether we should use vertical rectangles of
thickness 4x or horizontal rectangles of thickness 4y. We desire to have the height of
the rectangle governed by the difference between two curves: if those curves are best
thought of as functions of y, we use horizontal rectangles, whereas if those curves are
best viewed as functions of x, we use vertical rectangles.

• The arc length, L, along the curve y = f (x) from x = a to x = b is given by

L =
∫ b

a

√
1 + f ′(x)2 dx.

Exercises

1. Find the exact area of each described region.

(a) The finite region between the curves x = y(y − 2) and x = −(y − 1)(y − 3).
(b) The region between the sine and cosine functions on the interval [ π4 , 3π4 ].
(c) The finite region between x = y2 − y − 2 and y = 2x − 1.

(d) The finite region between y = mx and y = x2 − 1, where m is a positive
constant.

2. Let f (x) = 1 − x2 and g(x) = ax2 − a, where a is an unknown positive real number.
For what value(s) of a is the area between the curves f and g equal to 2?

3. Let f (x) = 2 − x2. Recall that the average value of any continuous function f on an

interval [a, b] is given by 1
b−a

∫ b

a
f (x) dx.
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(a) Find the average value of f (x) = 2 − x2 on the interval [0,√2]. Call this value
r .

(b) Sketch a graph of y = f (x) and y = r . Find their intersection point(s).

(c) Show that on the interval [0,√2], the amount of area that lies below y = f (x)
and above y = r is equal to the amount of area that lies below y = r and above
y = f (x).

(d) Will the result of (c) be true for any continuous function and its average value
on any interval? Why?
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6.2 Using Definite Integrals to Find Volume

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How can we use a definite integral to find the volume of a three-dimensional
solid of revolution that results from revolving a two-dimensional region about a
particular axis?

• In what circumstances do we integrate with respect to y instead of integrating with
respect to x?

• What adjustments do we need to make if we revolve about a line other than the x-
or y-axis?

Introduction

3x

2

x

y

∆x

Figure 6.6: A right circular cylinder.

Just as we can use definite integrals to add the areas of rectangular slices to find the
exact area that lies between two curves, we can also employ integrals to determine the
volume of certain regions that have cross-sections of a particular consistent shape. As
a very elementary example, consider a cylinder of radius 2 and height 3, as pictured in
Figure 6.6. While we know that we can compute the area of any circular cylinder by the
formula V = πr2h, if we think about slicing the cylinder into thin pieces, we see that
each is a cylinder of radius r = 2 and height (thickness) 4x. Hence, the volume of a
representative slice is

Vslice = π · 2
2 · 4x.
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Letting 4x → 0 and using a definite integral to add the volumes of the slices, we find that

V =
∫ 3

0
π · 22 dx.

Moreover, since
∫ 3

0
4π dx = 12π, we have found that the volume of the cylinder is 12π.

The principal problem of interest in our upcoming work will be to find the volume of
certain solids whose cross-sections are all thin cylinders (or washers) and to do so by
using a definite integral. To that end, we first consider another familiar shape in Preview
Activity 6.2: a circular cone.

Preview Activity 6.2. Consider a circular cone of radius 3 and height 5, which we view
horizontally as pictured in Figure 6.7. Our goal in this activity is to use a definite integral
to determine the volume of the cone.

(a) Find a formula for the linear function y = f (x) that is pictured in Figure 6.7.

(b) For the representative slice of thickness 4x that is located horizontally at a location
x (somewhere between x = 0 and x = 5), what is the radius of the representative
slice? Note that the radius depends on the value of x.

(c) What is the volume of the representative slice you found in (b)?

(d) What definite integral will sum the volumes of the thin slices across the full
horizontal span of the cone? What is the exact value of this definite integral?

(e) Compare the result of your work in (d) to the volume of the cone that comes from
using the formula Vcone = 1

3πr2h.

5x

3

x

y

∆x

Figure 6.7: The circular cone described in Preview Activity 6.2

./



6.2. USING DEFINITE INTEGRALS TO FIND VOLUME 345

The Volume of a Solid of Revolution

A solid of revolution is a three dimensional solid that can be generated by revolving one
or more curves around a fixed axis. For example, we can think of a circular cylinder as a
solid of revolution: in Figure 6.6, this could be accomplished by revolving the line segment
from (0, 2) to (3, 2) about the x-axis. Likewise, the circular cone in Figure 6.7 is the solid
of revolution generated by revolving the portion of the line y = 3− 3

5 x from x = 0 to x = 5
about the x-axis. It is particularly important to notice in any solid of revolution that if we
slice the solid perpendicular to the axis of revolution, the resulting cross-section is circular.

We consider two examples to highlight some of the natural issues that arise in
determining the volume of a solid of revolution.

Example 6.1. Find the volume of the solid of revolution generated when the region R
bounded by y = 4 − x2 and the x-axis is revolved about the x-axis.

Solution.

First, we observe that y = 4 − x2 intersects the x-axis at the points (−2, 0) and (2, 0).
When we take the region R that lies between the curve and the x-axis on this interval and
revolve it about the x-axis, we get the three-dimensional solid pictured in Figure 6.8.

x

y

∆x

y = 4− x2

Figure 6.8: The solid of revolution in Example 6.1.

Taking a representative slice of the solid located at a value x that lies between x = −2
and x = 2, we see that the thickness of such a slice is 4x (which is also the height of
the cylinder-shaped slice), and that the radius of the slice is determined by the curve
y = 4 − x2. Hence, we find that

Vslice = π(4 − x2)24x,
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since the volume of a cylinder of radius r and height h is V = πr2h.

Using a definite integral to sum the volumes of the representative slices, it follows that

V =
∫ 2

−2
π(4 − x2)2 dx.

It is straightforward to evaluate the integral and find that the volume is V = 512
15 π.

For a solid such as the one in Example 6.1, where each cross-section is a cylindrical
disk, we first find the volume of a typical cross-section (noting particularly how this volume
depends on x), and then we integrate over the range of x-values through which we slice
the solid in order to find the exact total volume. Often, we will be content with simply
finding the integral that represents the sought volume; if we desire a numeric value for the
integral, we typically use a calculator or computer algebra system to find that value.

The general principle we are using to find the volume of a solid of revolution generated
by a single curve is often called the disk method .

If y = r(x) is a nonnegative continuous function on [a, b], then the volume of the
solid of revolution generated by revolving the curve about the x-axis over this interval
is given by

V =
∫ b

a

πr(x)2 dx.

A different type of solid can emerge when two curves are involved, as we see in the
following example.

Example 6.2. Find the volume of the solid of revolution generated when the finite region
R that lies between y = 4 − x2 and y = x + 2 is revolved about the x-axis.

Solution.

First, we must determine where the curves y = 4 − x2 and y = x + 2 intersect.
Substituting the expression for y from the second equation into the first equation, we find
that x + 2 = 4 − x2. Rearranging, it follows that

x2 + x − 2 = 0,

and the solutions to this equation are x = −2 and x = 1. The curves therefore cross at
(−2, 0) and (1, 1).
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When we take the region R that lies between the curves and revolve it about the x-axis,
we get the three-dimensional solid pictured at left in Figure 6.9.

x

y

r(x)

R(x)

Figure 6.9: At left, the solid of revolution in Example 6.2. At right, a typical slice with
inner radius r(x) and outer radius R(x).

Immediately we see a major difference between the solid in this example and the one
in Example 6.1: here, the three-dimensional solid of revolution isn’t “solid” in the sense
that it has open space in its center. If we slice the solid perpendicular to the axis of
revolution, we observe that in this setting the resulting representative slice is not a solid
disk, but rather a washer, as pictured at right in Figure 6.9. Moreover, at a given location
x between x = −2 and x = 1, the small radius r(x) of the inner circle is determined by the
curve y = x + 2, so r(x) = x + 2. Similarly, the big radius R(x) comes from the function
y = 4 − x2, and thus R(x) = 4 − x2.

Thus, to find the volume of a representative slice, we compute the volume of the outer
disk and subtract the volume of the inner disk. Since

πR(x)24x − πr(x)24x = π[R(x)2 − r(x)2]4x,

it follows that the volume of a typical slice is

Vslice = π[(4 − x2)2 − (x + 2)2]4x.

Hence, using a definite integral to sum the volumes of the respective slices across the
integral, we find that

V =
∫ 1

−2
π[(4 − x2)2 − (x + 2)2] dx.

Evaluating the integral, the volume of the solid of revolution is V = 108
5 π.

The general principle we are using to find the volume of a solid of revolution generated
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by a single curve is often called the washer method .

If y = R(x) and y = r(x) are nonnegative continuous functions on [a, b] that satisfy
R(x) ≥ r(x) for all x in [a, b], then the volume of the solid of revolution generated by
revolving the region between them about the x-axis over this interval is given by

V =
∫ b

a

π[R(x)2 − r(x)2] dx.

Activity 6.4.

In each of the following questions, draw a careful, labeled sketch of the region described,
as well as the resulting solid that results from revolving the region about the stated axis.
In addition, draw a representative slice and state the volume of that slice, along with a
definite integral whose value is the volume of the entire solid. It is not necessary to
evaluate the integrals you find.

(a) The region S bounded by the x-axis, the curve y =
√

x, and the line x = 4;
revolve S about the x-axis.

(b) The region S bounded by the y-axis, the curve y =
√

x, and the line y = 2;
revolve S about the x-axis.

(c) The finite region S bounded by the curves y =
√

x and y = x3; revolve S about
the x-axis.

(d) The finite region S bounded by the curves y = 2x2 + 1 and y = x2 + 4; revolve
S about the x-axis

(e) The region S bounded by the y-axis, the curve y =
√

x, and the line y = 2;
revolve S about the y-axis. How does the problem change considerably when
we revolve about the y-axis?

C

Revolving about the y-axis

As seen in Activity 6.4, problem (e), the problem changes considerably when we revolve a
given region about the y-axis. Foremost, this is due to the fact that representative slices
now have thickness 4y, which means that it becomes necessary to integrate with respect
to y. Let’s consider a particular example to demonstrate some of the key issues.
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Example 6.3. Find the volume of the solid of revolution generated when the finite region
R that lies between y =

√
x and y = x4 is revolved about the y-axis.

Solution.

We observe that these two curves intersect when x = 1, hence at the point (1, 1). When
we take the region R that lies between the curves and revolve it about the y-axis, we get
the three-dimensional solid pictured at left in Figure 6.10. Now, it is particularly important

x

y

r(y)

R(y)

Figure 6.10: At left, the solid of revolution in Example 6.3. At right, a typical slice with
inner radius r(y) and outer radius R(y).

to note that the thickness of a representative slice is 4y, and that the slices are only
cylindrical washers in nature when taken perpendicular to the y-axis. Hence, we envision
slicing the solid horizontally, starting at y = 0 and proceeding up to y = 1. Because the
inner radius is governed by the curve y =

√
x, but from the perspective that x is a function

of y, we solve for x and get x = y2 = r(y). In the same way, we need to view the curve
y = x4 (which governs the outer radius) in the form where x is a function of y, and hence
x = 4
√
y. Therefore, we see that the volume of a typical slice is

Vslice = π[R(y)2 − r(y)2] = π[ 4
√
y
2
− (y2)2]4y.

Using a definite integral to sum the volume of all the representative slices from y = 0 to
y = 1, the total volume is

V =
∫ y=1

y=0
π

[
4
√
y
2
− (y2)2]

dy.

It is straightforward to evaluate the integral and find that V = 7
15π.
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Activity 6.5.

In each of the following questions, draw a careful, labeled sketch of the region described,
as well as the resulting solid that results from revolving the region about the stated axis.
In addition, draw a representative slice and state the volume of that slice, along with a
definite integral whose value is the volume of the entire solid. It is not necessary to
evaluate the integrals you find.

(a) The region S bounded by the y-axis, the curve y =
√

x, and the line y = 2;
revolve S about the y-axis.

(b) The region S bounded by the x-axis, the curve y =
√

x, and the line x = 4;
revolve S about the y-axis.

(c) The finite region S in the first quadrant bounded by the curves y = 2x and
y = x3; revolve S about the x-axis.

(d) The finite region S in the first quadrant bounded by the curves y = 2x and
y = x3; revolve S about the y-axis.

(e) The finite region S bounded by the curves x = (y − 1)2 and y = x − 1; revolve
S about the y-axis

C

Revolving about horizontal and vertical lines other than the coordinate axes

Just as we can revolve about one of the coordinate axes (y = 0 or x = 0), it is also possible
to revolve around any horizontal or vertical line. Doing so essentially adjusts the radii of
cylinders or washers involved by a constant value. A careful, well-labeled plot of the solid
of revolution will usually reveal how the different axis of revolution affects the definite
integral we set up. Again, an example is instructive.

Example 6.4. Find the volume of the solid of revolution generated when the finite region
S that lies between y = x2 and y = x is revolved about the line y = −1.

Solution.

Graphing the region between the two curves in the first quadrant between their points
of intersection ((0, 0) and (1, 1)) and then revolving the region about the line y = −1, we
see the solid shown in Figure 6.11. Each slice of the solid perpendicular to the axis of
revolution is a washer, and the radii of each washer are governed by the curves y = x2

and y = x. But we also see that there is one added change: the axis of revolution adds a
fixed length to each radius. In particular, the inner radius of a typical slice, r(x), is given
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x

y

Figure 6.11: The solid of revolution described in Example 6.4.

by r(x) = x2 + 1, while the outer radius is R(x) = x + 1. Therefore, the volume of a typical
slice is

Vslice = π[R(x)2 − r(x)2]4x = π
�(x + 1)2 − (x2 + 1)2�

4x.

Finally, we integrate to find the total volume, and

V =
∫ 1

0
π

�(x + 1)2 − (x2 + 1)2�
dx =

7

15
π.

Activity 6.6.

In each of the following questions, draw a careful, labeled sketch of the region described,
as well as the resulting solid that results from revolving the region about the stated
axis. In addition, draw a representative slice and state the volume of that slice, along
with a definite integral whose value is the volume of the entire solid. It is not necessary
to evaluate the integrals you find. For each prompt, use the finite region S in the first
quadrant bounded by the curves y = 2x and y = x3.

(a) Revolve S about the line y = −2.

(b) Revolve S about the line y = 4.

(c) Revolve S about the line x = −1.

(d) Revolve S about the line x = 5.

C

Summary
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In this section, we encountered the following important ideas:

• We can use a definite integral to find the volume of a three-dimensional solid of
revolution that results from revolving a two-dimensional region about a particular axis
by taking slices perpendicular to the axis of revolution which will then be circular disks
or washers.

• If we revolve about a vertical line and slice perpendicular to that line, then our slices
are horizontal and of thickness 4y. This leads us to integrate with respect to y, as
opposed to with respect to x when we slice a solid vertically.

• If we revolve about a line other than the x- or y-axis, we need to carefully account for
the shift that occurs in the radius of a typical slice. Normally, this shift involves taking a
sum or difference of the function along with the constant connected to the equation for
the horizontal or vertical line; a well-labeled diagram is usually the best way to decide
the new expression for the radius.

Exercises

1. Consider the curve f (x) = 3 cos( x34 ) and the portion of its graph that lies in the first
quadrant between the y-axis and the first positive value of x for which f (x) = 0. Let R
denote the region bounded by this portion of f , the x-axis, and the y-axis.

(a) Set up a definite integral whose value is the exact arc length of f that lies along
the upper boundary of R. Use technology appropriately to evaluate the integral
you find.

(b) Set up a definite integral whose value is the exact area of R. Use technology
appropriately to evaluate the integral you find.

(c) Suppose that the region R is revolved around the x-axis. Set up a definite
integral whose value is the exact volume of the solid of revolution that is
generated. Use technology appropriately to evaluate the integral you find.

(d) Suppose instead that R is revolved around the y-axis. If possible, set up an
integral expression whose value is the exact volume of the solid of revolution
and evaluate the integral using appropriate technology. If not possible, explain
why.

2. Consider the curves given by y = sin(x) and y = cos(x). For each of the following
problems, you should include a sketch of the region/solid being considered, as well as a
labeled representative slice.

(a) Sketch the region R bounded by the y-axis and the curves y = sin(x) and
y = cos(x) up to the first positive value of x at which they intersect. What is
the exact intersection point of the curves?
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(b) Set up a definite integral whose value is the exact area of R.

(c) Set up a definite integral whose value is the exact volume of the solid of
revolution generated by revolving R about the x-axis.

(d) Set up a definite integral whose value is the exact volume of the solid of
revolution generated by revolving R about the y-axis.

(e) Set up a definite integral whose value is the exact volume of the solid of
revolution generated by revolving R about the line y = 2.

(f) Set up a definite integral whose value is the exact volume of the solid of
revolution generated by revolving R about the x = −1.

3. Consider the finite region R that is bounded by the curves y = 1 + 1
2 (x − 2)2, y = 1

2 x2,
and x = 0.

(a) Determine a definite integral whose value is the area of the region enclosed by
the two curves.

(b) Find an expression involving one or more definite integrals whose value is the
volume of the solid of revolution generated by revolving the region R about the
line y = −1.

(c) Determine an expression involving one or more definite integrals whose value
is the volume of the solid of revolution generated by revolving the region R
about the y-axis.

(d) Find an expression involving one or more definite integrals whose value is the
perimeter of the region R.
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6.3 Density, Mass, and Center of Mass

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How are mass, density, and volume related?

• How is the mass of an object with varying density computed?

• What is the center of mass of an object, and how are definite integrals used to
compute it?

Introduction

We have seen in several different circumstances how studying the units on the integrand
and variable of integration enables us to better understand the meaning of a definite
integral. For instance, if v(t) is the velocity of an object moving along an axis, measured
in feet per second, while t measures time in seconds, then both the definite integral and
its Riemann sum approximation,∫ b

a

v(t) dt ≈
n∑
i=1

v(ti)4t,

have their overall units given by the product of the units of v(t) and t:

(feet/sec)·(sec) = feet.

Thus,
∫ b

a
v(t) dt measures the total change in position (in feet) of the moving object.

This type of unit analysis will be particularly helpful to us in what follows. To begin,
in the following preview activity we consider two different definite integrals where the
integrand is a function that measures how a particular quantity is distributed over a region
and think about how the units on the integrand and the variable of integration indicate
the meaning of the integral.

Preview Activity 6.3. In each of the following scenarios, we consider the distribution of
a quantity along an axis.

(a) Suppose that the function c(x) = 200 + 100e−0.1x models the density of traffic on
a straight road, measured in cars per mile, where x is number of miles east of a

major interchange, and consider the definite integral
∫ 2

0
(200 + 100e−0.1x) dx.

i. What are the units on the product c(x) · 4x?
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ii. What are the units on the definite integral and its Riemann sum approxima-
tion given by ∫ 2

0
c(x) dx ≈

n∑
i=1

c(xi)4x?

iii. Evaluate the definite integral
∫ 2

0
c(x) dx =

∫ 2

0
(200 + 100e−0.1x) dx and write

one sentence to explain the meaning of the value you find.

(b) On a 6 foot long shelf filled with books, the function B models the distribution
of the weight of the books, measured in pounds per inch, where x is the number
of inches from the left end of the bookshelf. Let B(x) be given by the rule
B(x) = 0.5 + 1

(x+1)2 .

i. What are the units on the product B(x) · 4x?

ii. What are the units on the definite integral and its Riemann sum approxima-
tion given by ∫ 36

12
B(x) dx ≈

n∑
i=1

B(xi)4x?

iii. Evaluate the definite integral
∫ 72

0
B(x) dx =

∫ 72

0
(0.5 + 1

(x+1)2 ) dx and write
one sentence to explain the meaning of the value you find.

./

Density

The mass of a quantity, typically measured in metric units such as grams or kilograms, is
a measure of the amount of a quantity. In a corresponding way, the density of an object
measures the distribution of mass per unit volume. For instance, if a brick has mass 3 kg
and volume 0.002 m3, then the density of the brick is

3kg
0.002m3

= 1500
kg
m3

.

As another example, the mass density of water is 1000 kg/m3. Each of these relationships
demonstrate the following general principle.

For an object of constant density d, with mass m and volume V ,

d =
m
V
, or m = d · V .

But what happens when the density is not constant?
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If we consider the formula m = d · V , it is reminiscent of two other equations that we
have used frequently in recent work: for a body moving in a fixed direction, distance =
rate · time, and, for a rectangle, its area is given by A = l · w. These formulas hold when
the principal quantities involved, such as the rate the body moves and the height of the
rectangle, are constant. When these quantities are not constant, we have turned to the
definite integral for assistance. The main idea in each situation is that by working with
small slices of the quantity that is varying, we can use a definite integral to add up the
values of small pieces on which the quantity of interest (such as the velocity of a moving
object) are approximately constant.

For example, in the setting where we have a nonnegative velocity function that is not
constant, over a short time interval 4t we know that the distance traveled is approximately
v(t)4t, since v(t) is almost constant on a small interval, and for a constant rate, distance =
rate · time. Similarly, if we are thinking about the area under a nonnegative function f
whose value is changing, on a short interval 4x the area under the curve is approximately
the area of the rectangle whose height is f (x) and whose width is 4x: f (x)4x. Both of
these principles are represented visually in Figure 6.12.

ft/sec

sec

y = v(t)

v(t)

△t

y

x

y = f (x)

f (x)

△x

Figure 6.12: At left, estimating a small amount of distance traveled, v(t)4t, and at right, a
small amount of area under the curve, f (x)4x.

In a similar way, if we consider the setting where the density of some quantity is not
constant, the definite integral enables us to still compute the overall mass of the quantity.
Throughout, we will focus on problems where the density varies in only one dimension,
say along a single axis, and think about how mass is distributed relative to location along
the axis.

Let’s consider a thin bar of length b that is situated so its left end is at the origin,
where x = 0, and assume that the bar has constant cross-sectional area of 1 cm2. We let
the function ρ(x) represent the mass density function of the bar, measured in grams per
cubic centimeter. That is, given a location x, ρ(x) tells us approximately how much mass
will be found in a one-centimeter wide slice of the bar at x.
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x

∆x

Figure 6.13: A thin bar of constant cross-sectional area 1 cm2 with density function ρ(x)
g/cm3.

If we now consider a thin slice of the bar of width 4x, as pictured in Figure 6.13, the
volume of such a slice is the cross-sectional area times 4x. Since the cross-sections each
have constant area 1 cm2, it follows that the volume of the slice is 14x cm3. Moreover,
since mass is the product of density and volume (when density is constant), we see that the
mass of this given slice is approximately

massslice ≈ ρ(x)
g

cm3
· 14x cm3 = ρ(x) · 4x g.

Hence, for the corresponding Riemann sum (and thus for the integral that it approxi-
mates),

n∑
i=1

ρ(xi)4x ≈
∫ b

0
ρ(x) dx,

we see that these quantities measure the mass of the bar between 0 and b. (The Riemann
sum is an approximation, while the integral will be the exact mass.)

At this point, we note that we will be focused primarily on situations where mass
is distributed relative to horizontal location, x, for objects whose cross-sectional area is
constant. In that setting, it makes sense to think of the density function ρ(x) with units
“mass per unit length,” such as g/cm. Thus, when we compute ρ(x) · 4x on a small slice
4x, the resulting units are g/cm · cm = g, which thus measures the mass of the slice. The
general principle follows.

For an object of constant cross-sectional area whose mass is distributed along a single
axis according to the function ρ(x) (whose units are units of mass per unit of length),
the total mass, M of the object between x = a and x = b is given by

M =
∫ b

a

ρ(x) dx.

Activity 6.7.

Consider the following situations in which mass is distributed in a non-constant manner.

(a) Suppose that a thin rod with constant cross-sectional area of 1 cm2 has its mass
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distributed according to the density function ρ(x) = 2e−0.2x , where x is the
distance in cm from the left end of the rod, and the units on ρ(x) are g/cm. If
the rod is 10 cm long, determine the exact mass of the rod.

(b) Consider the cone that has a base of radius 4 m and a height of 5 m. Picture
the cone lying horizontally with the center of its base at the origin and think of
the cone as a solid of revolution.

i. Write and evaluate a definite integral whose value is the volume of the
cone.

ii. Next, suppose that the cone has uniform density of 800 kg/m3. What is
the mass of the solid cone?

iii. Now suppose that the cone’s density is not uniform, but rather that the
cone is most dense at its base. In particular, assume that the density of the
cone is uniform across cross sections parallel to its base, but that in each
such cross section that is a distance x units from the origin, the density of
the cross section is given by the function ρ(x) = 400 + 200

1+x2
, measured in

kg/m3. Determine and evaluate a definite integral whose value is the mass
of this cone of non-uniform density. Do so by first thinking about the mass
of a given slice of the cone x units away from the base; remember that in
such a slice, the density will be essentially constant.

(c) Let a thin rod of constant cross-sectional area 1 cm2 and length 12 cm have
its mass be distributed according to the density function ρ(x) = 1

25 (x − 15)2,
measured in g/cm. Find the exact location z at which to cut the bar so that the
two pieces will each have identical mass.

C

Weighted Averages

class grade grade points credits

chemistry B+ 3.3 5
calculus A- 3.7 4
history B- 2.7 3
psychology B- 2.7 3

Table 6.1: A college student’s semester grades.

The concept of an average is a natural one, and one that we have used repeatedly as
part of our understanding of the meaning of the definite integral. If we have n values a1,
a2, . . ., an, we know that their average is given by

a1 + a2 + · · · + an

n
,
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and for a quantity being measured by a function f on an interval [a, b], the average value
of the quantity on [a, b] is

1

b − a

∫ b

a

f (x) dx.

As we continue to think about problems involving the distribution of mass, it is natural
to consider the idea of a weighted average, where certain quantities involved are counted
more in the average.

A common use of weighted averages is in the computation of a student’s GPA, where
grades are weighted according to credit hours. Let’s consider the scenario in Table 6.1.

If all of the classes were of the same weight (i.e., the same number of credits), the
student’s GPA would simply be calculated by taking the average

3.3 + 3.7 + 2.7 + 2.7

4
= 3.1.

But since the chemistry and calculus courses have higher weights (of 5 and 4 credits
respectively), we actually compute the GPA according to the weighted average

3.3 · 5 + 3.7 · 4 + 2.7 · 3 + 2.7 · 3

5 + 4 + 3 + 3
= 3.16.

The weighted average reflects the fact that chemistry and calculus, as courses with higher
credits, have a greater impact on the students’ grade point average. Note particularly that
in the weighted average, each grade gets multiplied by its weight, and we divide by the
sum of the weights.

In the following activity, we explore further how weighted averages can be used to find
the balancing point of a physical system.

Activity 6.8.

For quantities of equal weight, such as two children on a teeter-totter, the balancing
point is found by taking the average of their locations. When the weights of the
quantities differ, we use a weighted average of their respective locations to find the
balancing point.

(a) Suppose that a shelf is 6 feet long, with its left end situated at x = 0. If one
book of weight 1 lb is placed at x1 = 0, and another book of weight 1 lb is
placed at x2 = 6, what is the location of x, the point at which the shelf would
(theoretically) balance on a fulcrum?

(b) Now, say that we place four books on the shelf, each weighing 1 lb: at x1 = 0,
at x2 = 2, at x3 = 4, and at x4 = 6. Find x, the balancing point of the shelf.

(c) How does x change if we change the location of the third book? Say the
locations of the 1-lb books are x1 = 0, x2 = 2, x3 = 3, and x4 = 6.
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(d) Next, suppose that we place four books on the shelf, but of varying weights:
at x1 = 0 a 2-lb book, at x2 = 2 a 3-lb book, and x3 = 4 a 1-lb book, and
at x4 = 6 a 1-lb book. Use a weighted average of the locations to find x, the
balancing point of the shelf. How does the balancing point in this scenario
compare to that found in (b)?

(e) What happens if we change the location of one of the books? Say that we keep
everything the same in (d), except that x3 = 5. How does x change?

(f) What happens if we change the weight of one of the books? Say that we keep
everything the same in (d), except that the book at x3 = 4 now weighs 2 lbs.
How does x change?

(g) Experiment with a couple of different scenarios of your choosing where you
move the location of one of the books to the left, or you decrease the weight of
one of the books.

(h) Write a couple of sentences to explain how adjusting the location of one of the
books or the weight of one of the books affects the location of the balancing
point of the shelf. Think carefully here about how your changes should be
considered relative to the location of the balancing point x of the current
scenario.

C

Center of Mass

In Activity 6.8, we saw that the balancing point of a system of point-masses1 (such as
books on a shelf) is found by taking a weighted average of their respective locations. In
the activity, we were computing the center of mass of a system of masses distributed along
an axis, which is the balancing point of the axis on which the masses rest.

For a collection of n masses m1, . . ., mn that are distributed along a single axis at the
locations x1, . . ., xn, the center of mass is given by

x =
x1m1 + x2m2 + · · · xnmn

m1 + m2 + · · · + mn
.

What if we instead consider a thin bar over which density is distributed continuously?
If the density is constant, it is obvious that the balancing point of the bar is its midpoint.
But if density is not constant, we must compute a weighted average. Let’s say that the

1In the activity, we actually used weight rather than mass. Since weight is computed by the gravitational
constant times mass, the computations for the balancing point result in the same location regardless of whether
we use weight or mass, since the gravitational constant is present in both the numerator and denominator of
the weighted average.
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function ρ(x) tells us the density distribution along the bar, measured in g/cm. If we slice
the bar into small sections, this enables us to think of the bar as holding a collection of
adjacent point-masses. For a slice of thickness 4x at location xi , note that the mass of the
slice, mi , satisfies mi ≈ ρ(xi)4x.

Taking n slices of the bar, we can approximate its center of mass by

x ≈
x1 · ρ(x1)4x + x2 · ρ(x2)4x + · · · + xn · ρ(xn)4x

ρ(x1)4x + ρ(x2)4x + · · · + ρ(xn)4x
.

Rewriting the sums in sigma notation, it follows that

x ≈
∑n

i=1 xi · ρ(xi)4x∑n
i=1 ρ(xi)4x

. (6.4)

Moreover, it is apparent that the greater the number of slices, the more accurate our
estimate of the balancing point will be, and that the sums in Equation (6.4) can be viewed
as Riemann sums. Hence, in the limit as n → ∞, we find that the center of mass is given
by the quotient of two integrals.

For a thin rod of density ρ(x) distributed along an axis from x = a to x = b, the
center of mass of the rod is given by

x =

∫ b

a
xρ(x) dx∫ b

a
ρ(x) dx

.

Note particularly that the denominator of x is the mass of the bar, and that this
quotient of integrals is simply the continuous version of the weighted average of locations,
x, along the bar.

Activity 6.9.

Consider a thin bar of length 20 cm whose density is distributed according to the
function ρ(x) = 4 + 0.1x, where x = 0 represents the left end of the bar. Assume that ρ
is measured in g/cm and x is measured in cm.

(a) Find the total mass, M , of the bar.

(b) Without doing any calculations, do you expect the center of mass of the bar to
be equal to 10, less than 10, or greater than 10? Why?

(c) Compute x, the exact center of mass of the bar.

(d) What is the average density of the bar?

(e) Now consider a different density function, given by p(x) = 4e0.020732x , also for
a bar of length 20 cm whose left end is at x = 0. Plot both ρ(x) and p(x) on
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the same axes. Without doing any calculations, which bar do you expect to
have the greater center of mass? Why?

(f) Compute the exact center of mass of the bar described in (e) whose density
function is p(x) = 4e0.020732x . Check the result against the prediction you
made in (e).

C

Summary

In this section, we encountered the following important ideas:

• For an object of constant density D, with volume V and mass m, we know that m = D ·V .

• If an object with constant cross-sectional area (such as a thin bar) has its density
distributed along an axis according to the function ρ(x), then we can find the mass of
the object between x = a and x = b by

m =
∫ b

a

ρ(x) dx.

• For a system of point-masses distributed along an axis, say m1, . . . ,mn at locations
x1, . . . , xn, the center of mass, x, is given by the weighted average

x =
∑n

i=1 ximi∑n
i=1 mi

.

If instead we have mass continuously distributed along an axis, such as by a density
function ρ(x) for a thin bar of constant cross-sectional area, the center of mass of the
portion of the bar between x = a and x = b is given by

x =

∫ b

a
xρ(x) dx∫ b

a
ρ(x) dx

.

In each situation, x represents the balancing point of the system of masses or of the
portion of the bar.

Exercises

1. Let a thin rod of length a have density distribution function ρ(x) = 10e−0.1x , where x
is measured in cm and ρ in grams per centimeter.

(a) If the mass of the rod is 30 g, what is the value of a?
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(b) For the 30g rod, will the center of mass lie at its midpoint, to the left of the
midpoint, or to the right of the midpoint? Why?

(c) For the 30g rod, find the center of mass, and compare your prediction in (b).

(d) At what value of x should the 30g rod be cut in order to form two pieces of
equal mass?

2. Consider two thin bars of constant cross-sectional area, each of length 10 cm, with
respective mass density functions ρ(x) = 1

1+x2
and p(x) = e−0.1x .

(a) Find the mass of each bar.

(b) Find the center of mass of each bar.

(c) Now consider a new 10 cm bar whose mass density function is f (x) = ρ(x) +
p(x).

i. Explain how you can easily find the mass of this new bar with little to no
additional work.

ii. Similarly, compute
∫ 10

0
x f (x) dx as simply as possible, in light of earlier

computations.

iii. True or false: the center of mass of this new bar is the average of the
centers of mass of the two earlier bars. Write at least one sentence to say
why your conclusion makes sense.

3. Consider the curve given by y = f (x) = 2xe−1.25x + (30 − x)e−0.25(30−x).
(a) Plot this curve in the window x = 0 . . . 30, y = 0 . . . 3 (with constrained scaling

so the units on the x and y axis are equal), and use it to generate a solid of
revolution about the x-axis. Explain why this curve could generate a reasonable
model of a baseball bat.

(b) Let x and y be measured in inches. Find the total volume of the baseball bat
generated by revolving the given curve about the x-axis. Include units on your
answer

(c) Suppose that the baseball bat has constant weight density, and that the weight
density is 0.6 ounces per cubic inch. Find the total weight of the bat whose
volume you found in (b).

(d) Because the baseball bat does not have constant cross-sectional area, we see that
the amount of weight concentrated at a location x along the bat is determined
by the volume of a slice at location x. Explain why we can think about the
function ρ(x) = 0.6π f (x)2 (where f is the function given at the start of the
problem) as being the weight density function for how the weight of the baseball
bat is distributed from x = 0 to x = 30.
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(e) Compute the center of mass of the baseball bat.
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6.4 Physics Applications: Work, Force, and Pressure

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How do we measure the work accomplished by a varying force that moves an
object a certain distance?

• What is the total force exerted by water against a dam?

• How are both of the above concepts and their corresponding use of definite
integrals similar to problems we have encountered in the past involving formulas
such as “distance equals rate times time” and “mass equals density times volume”?

Introduction

y = f (x)

a b

f (x)

△x

y

t

y = v(t)

v(t)

△ta b

△x

ρ(x)

Figure 6.14: Three settings where we compute the accumulation of a varying quantity: the
area under y = f (x), the distance traveled by an object with velocity y = v(t), and the
mass of a bar with density function y = ρ(x).

In our work to date with the definite integral, we have seen several different circum-
stances where the integral enables us to measure the accumulation of a quantity that varies,
provided the quantity is approximately constant over small intervals. For instance, based
on the fact that the area of a rectangle is A = l · w, if we wish to find the area bounded by
a nonnegative curve y = f (x) and the x-axis on an interval [a, b], a representative slice
of width 4x has area Aslice = f (x)4x, and thus as we let the width of the representative
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slice tend to zero, we find that the exact area of the region is

A =
∫ b

a

f (x) dx.

In a similar way, if we know that the velocity of a moving object is given by the function
y = v(t), and we wish to know the distance the object travels on an interval [a, b] where
v(t) is nonnegative, we can use a definite integral to generalize the fact that d = r · t
when the rate, r , is constant. More specifically, on a short time interval 4t, v(t) is roughly
constant, and hence for a small slice of time, dslice = v(t)4t, and so as the width of the
time interval 4t tends to zero, the exact distance traveled is given by the definite integral

d =
∫ b

a

v(t) dt.

Finally, when we recently learned about the mass of an object of non-constant density,
we saw that since M = D · V (mass equals density times volume, provided that density is
constant), if we can consider a small slice of an object on which the density is approximately
constant, a definite integral may be used to determine the exact mass of the object. For
instance, if we have a thin rod whose cross sections have constant density, but whose
density is distributed along the x axis according to the function y = ρ(x), it follows that
for a small slice of the rod that is 4x thick, Mslice = ρ(x)4x. In the limit as 4x → 0, we
then find that the total mass is given by

M =
∫ b

a

ρ(x) dx.

Note that all three of these situations are similar in that we have a basic rule (A = l · w,
d = r · t, M = D ·V ) where one of the two quantities being multiplied is no longer constant;
in each, we consider a small interval for the other variable in the formula, calculate the
approximate value of the desired quantity (area, distance, or mass) over the small interval,
and then use a definite integral to sum the results as the length of the small intervals is
allowed to approach zero. It should be apparent that this approach will work effectively
for other situations where we have a quantity of interest that varies.

We next turn to the notion of work: from physics, a basic principal is that work is the
product of force and distance. For example, if a person exerts a force of 20 pounds to lift
a 20-pound weight 4 feet off the ground, the total work accomplished is

W = F · d = 20 · 4 = 80 foot-pounds.

If force and distance are measured in English units (pounds and feet), then the units on
work are foot-pounds. If instead we work in metric units, where forces are measured in
Newtons and distances in meters, the units on work are Newton-meters.
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Of course, the formula W = F · d only applies when the force is constant while it is
exerted over the distance d. In Preview Activity 6.4, we explore one way that we can use a
definite integral to compute the total work accomplished when the force exerted varies.

Preview Activity 6.4. A bucket is being lifted from the bottom of a 50-foot deep well;
its weight (including the water), B, in pounds at a height h feet above the water is given
by the function B(h). When the bucket leaves the water, the bucket and water together
weigh B(0) = 20 pounds, and when the bucket reaches the top of the well, B(50) = 12
pounds. Assume that the bucket loses water at a constant rate (as a function of height, h)
throughout its journey from the bottom to the top of the well.

(a) Find a formula for B(h).
(b) Compute the value of the product B(5)4h, where 4h = 2 feet. Include units on

your answer. Explain why this product represents the approximate work it took to
move the bucket of water from h = 5 to h = 7.

(c) Is the value in (b) an over- or under-estimate of the actual amount of work it took
to move the bucket from h = 5 to h = 7? Why?

(d) Compute the value of the product B(22)4h, where 4h = 0.25 feet. Include units
on your answer. What is the meaning of the value you found?

(e) More generally, what does the quantity Wslice = B(h)4h measure for a given value
of h and a small positive value of 4h?

(f) Evaluate the definite integral
∫ 50

0
B(h) dh. What is the meaning of the value you

find? Why?

./

Work

Because work is calculated by the rule W = F · d, whenever the force F is constant, it
follows that we can use a definite integral to compute the work accomplished by a varying
force. For example, suppose that in a setting similar to the problem posed in Preview
Activity 6.4, we have a bucket being lifted in a 50-foot well whose weight at height h is
given by B(h) = 12 + 8e−0.1h .

In contrast to the problem in the preview activity, this bucket is not leaking at a
constant rate; but because the weight of the bucket and water is not constant, we have
to use a definite integral to determine the total work that results from lifting the bucket.
Observe that at a height h above the water, the approximate work to move the bucket a
small distance 4h is

Wslice = B(h)4h = (12 + 8e−0.1h)4h.
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Hence, if we let 4h tend to 0 and take the sum of all of the slices of work accomplished
on these small intervals, it follows that the total work is given by

W =
∫ 50

0
B(h) dh =

∫ 50

0
(12 + 8e−0.1h) dh.

While is a straightforward exercise to evaluate this integral exactly using the First Fun-
damental Theorem of Calculus, in applied settings such as this one we will typically use
computing technology to find accurate approximations of integrals that are of interest to

us. Here, it turns out that W =
∫ 50

0
(12 + 8e−0.1h) dh ≈ 679.461 foot-pounds.

Our work in Preview Activity 6.1 and in the most recent example above employs the
following important general principle.

For an object being moved in the positive direction along an axis, x, by a force F(x),
the total work to move the object from a to b is given by

W =
∫ b

a

F(x) dx.

Activity 6.10.

Consider the following situations in which a varying force accomplishes work.

(a) Suppose that a heavy rope hangs over the side of a cliff. The rope is 200 feet
long and weighs 0.3 pounds per foot; initially the rope is fully extended. How
much work is required to haul in the entire length of the rope? (Hint: set up
a function F(h) whose value is the weight of the rope remaining over the cliff
after h feet have been hauled in.)

(b) A leaky bucket is being hauled up from a 100 foot deep well. When lifted from
the water, the bucket and water together weigh 40 pounds. As the bucket is
being hauled upward at a constant rate, the bucket leaks water at a constant
rate so that it is losing weight at a rate of 0.1 pounds per foot. What function
B(h) tells the weight of the bucket after the bucket has been lifted h feet? What
is the total amount of work accomplished in lifting the bucket to the top of the
well?

(c) Now suppose that the bucket in (b) does not leak at a constant rate, but
rather that its weight at a height h feet above the water is given by B(h) =
25+15e−0.05h . What is the total work required to lift the bucket 100 feet? What
is the average force exerted on the bucket on the interval h = 0 to h = 100?

(d) From physics, Hooke’s Law for springs states that the amount of force required
to hold a spring that is compressed (or extended) to a particular length is
proportionate to the distance the spring is compressed (or extended) from its
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natural length. That is, the force to compress (or extend) a spring x units
from its natural length is F(x) = k x for some constant k (which is called the
spring constant.) For springs, we choose to measure the force in pounds and the
distance the spring is compressed in feet.
Suppose that a force of 5 pounds extends a particular spring 4 inches (1/3 foot)
beyond its natural length.

i. Use the given fact that F(1/3) = 5 to find the spring constant k .

ii. Find the work done to extend the spring from its natural length to 1 foot
beyond its natural length.

iii. Find the work required to extend the spring from 1 foot beyond its natural
length to 1.5 feet beyond its natural length.

C

Work: Pumping Liquid from a Tank

In certain geographic locations where the water table is high, residential homes with
basements have a peculiar feature: in the basement, one finds a large hole in the floor,
and in the hole, there is water. For example, in Figure 6.15 where we see a sump crock2.

Figure 6.15: A sump crock.

Essentially, a sump crock provides an outlet for water that may build up beneath the
basement floor; of course, as that water rises, it is imperative that the water not flood the
basement. Hence, in the crock we see the presence of a floating pump that sits on the
surface of the water: this pump is activated by elevation, so when the water level reaches a
particular height, the pump turns on and pumps a certain portion of the water out of the

2Image credit to http://www.warreninspect.com/basement-moisture.

http://www.warreninspect.com/basement-moisture
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crock, hence relieving the water buildup beneath the foundation. One of the questions
we’d like to answer is: how much work does a sump pump accomplish?

To that end, let’s suppose that we have a sump crock that has the shape of a frustum
of a cone, as pictured in Figure 6.16. Assume that the crock has a diameter of 3 feet at its
surface, a diameter of 1.5 feet at its base, and a depth of 4 feet. In addition, suppose that
the sump pump is set up so that it pumps the water vertically up a pipe to a drain that is
located at ground level just outside a basement window. To accomplish this, the pump
must send the water to a location 9 feet above the surface of the sump crock.

∆x

x+

y+

(0,1.5)

(4,0.75)

Figure 6.16: A sump crock with approximately cylindrical cross-sections that is 4 feet deep,
1.5 feet in diameter at its base, and 3 feet in diameter at its top.

It turns out to be advantageous to think of the depth below the surface of the crock
as being the independent variable, so, in problems such as this one we typically let the
positive x-axis point down, and the positive y-axis to the right, as pictured in the figure.
As we think about the work that the pump does, we first realize that the pump sits on the
surface of the water, so it makes sense to think about the pump moving the water one
“slice” at a time, where it takes a thin slice from the surface, pumps it out of the tank, and
then proceeds to pump the next slice below.

For the sump crock described in this example, each slice of water is cylindrical in
shape. We see that the radius of each approximately cylindrical slice varies according to
the linear function y = f (x) that passes through the points (0, 1.5) and (4, 0.75), where x
is the depth of the particular slice in the tank; it is a straightforward exercise to find that
f (x) = 1.5 − 0.1875x. Now we are prepared to think about the overall problem in several
steps: (a) determining the volume of a typical slice; (b) finding the weight3 of a typical slice
(and thus the force that must be exerted on it); (c) deciding the distance that a typical slice
moves; and (d) computing the work to move a representative slice. Once we know the work
it takes to move one slice, we use a definite integral over an appropriate interval to find

3We assume that the weight density of water is 62.4 pounds per cubic foot.



6.4. PHYSICS APPLICATIONS: WORK, FORCE, AND PRESSURE 371

the total work.

Consider a representative cylindrical slice that sits on the surface of the water at a
depth of x feet below the top of the crock. It follows that the approximate volume of that
slice is given by

Vslice = π f (x)24x = π(1.5 − 0.1875x)24x.

Since water weighs 62.4 lb/ft3, it follows that the approximate weight of a representative
slice, which is also the approximate force the pump must exert to move the slice, is

Fslice = 62.4 · Vslice = 62.4π(1.5 − 0.1875x)24x.

Because the slice is located at a depth of x feet below the top of the crock, the slice being
moved by the pump must move x feet to get to the level of the basement floor, and then,
as stated in the problem description, be moved another 9 feet to reach the drain at ground
level outside a basement window. Hence, the total distance a representative slice travels is

dslice = x + 9.

Finally, we note that the work to move a representative slice is given by

Wslice = Fslice · dslice = 62.4π(1.5 − 0.1875x)24x · (x + 9),
since the force to move a particular slice is constant.

We sum the work required to move slices throughout the tank (from x = 0 to x = 4),
let 4x → 0, and hence

W =
∫ 4

0
62.4π(1.5 − 0.1875x)2(x + 9) dx,

which, when evaluated using appropriate technology, shows that the total work is W =
10970.5π foot-pounds.

The preceding example demonstrates the standard approach to finding the work
required to empty a tank filled with liquid. The main task in each such problem is to
determine the volume of a representative slice, followed by the force exerted on the slice,
as well as the distance such a slice moves. In the case where the units are metric, there
is one key difference: in the metric setting, rather than weight, we normally first find the
mass of a slice. For instance, if distance is measured in meters, the mass density of water
is 1000 kg/m3. In that setting, we can find the mass of a typical slice (in kg). To determine
the force required to move it, we use F = ma, where m is the object’s mass and a is the
gravitational constant 9.81 N/kg3. That is, in metric units, the weight density of water is
9810 N/m3.

Activity 6.11.

In each of the following problems, determine the total work required to accomplish the
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described task. In parts (b) and (c), a key step is to find a formula for a function that
describes the curve that forms the side boundary of the tank.

x+

y+

Figure 6.17: A trough with triangular ends, as described in Activity 6.11, part (c).

(a) Consider a vertical cylindrical tank of radius 2 meters and depth 6 meters.
Suppose the tank is filled with 4 meters of water of mass density 1000 kg/m3,
and the top 1 meter of water is pumped over the top of the tank.

(b) Consider a hemispherical tank with a radius of 10 feet. Suppose that the tank
is full to a depth of 7 feet with water of weight density 62.4 pounds/ft3, and the
top 5 feet of water are pumped out of the tank to a tanker truck whose height
is 5 feet above the top of the tank.

(c) Consider a trough with triangular ends, as pictured in Figure 6.17, where the
tank is 10 feet long, the top is 5 feet wide, and the tank is 4 feet deep. Say that
the trough is full to within 1 foot of the top with water of weight density 62.4
pounds/ft3, and a pump is used to empty the tank until the water remaining in
the tank is 1 foot deep.

C

Force due to Hydrostatic Pressure

When a dam is built, it is imperative to for engineers to understand how much force water
will exert against the face of the dam. The first thing we realize is the force exerted by
the fluid is related to the natural concept of pressure. The pressure a force exerts on a
region is measured in units of force per unit of area: for example, the air pressure in a
tire is often measured in pounds per square inch (PSI). Hence, we see that the general
relationship is given by

P =
F
A
, or F = P · A,
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where P represents pressure, F represents force, and A the area of the region being
considered. Of course, in the equation F = PA, we assume that the pressure is constant
over the entire region A.

Most people know from experience that the deeper one dives underwater while
swimming, the greater the pressure that is exerted by the water. This is due to the fact
that the deeper one dives, the more water there is right on top of the swimmer: it is the
force that “column” of water exerts that determines the pressure the swimmer experiences.
To get water pressure measured in its standard units (pounds per square foot), we say that
the total water pressure is found by computing the total weight of the column of water that
lies above a region of area 1 square foot at a fixed depth. Such a rectangular column with
a 1 × 1 base and a depth of d feet has volume V = 1 · 1 · d ft3, and thus the corresponding
weight of the water overhead is 62.4d. Since this is also the amount of force being exerted
on a 1 square foot region at a depth d feet underwater, we see that P = 62.4d (lbs/ft2) is
the pressure exerted by water at depth d.

The understanding that P = 62.4d will tell us the pressure exerted by water at a depth
of d, along with the fact that F = PA, will now enable us to compute the total force that
water exerts on a dam, as we see in the following example.

Example 6.5. Consider a trapezoid-shaped dam that is 60 feet wide at its base and 90
feet wide at its top, and assume the dam is 25 feet tall with water that rises to within 5
feet of the top of its face. Water weighs 62.4 pounds per cubic foot. How much force does
the water exert against the dam?

Solution. First, we sketch a picture of the dam, as shown in Figure 6.18. Note that, as in
problems involving the work to pump out a tank, we let the positive x-axis point down.

It is essential to use the fact that pressure is constant at a fixed depth. Hence, we
consider a slice of water at constant depth on the face, such as the one shown in the
figure. First, the approximate area of this slice is the area of the pictured rectangle. Since
the width of that rectangle depends on the variable x (which represents the how far the
slice lies from the top of the dam), we find a formula for the function y = f (x) that
determines one side of the face of the dam. Since f is linear, it is straightforward to find
that y = f (x) = 45 − 3

5 x. Hence, the approximate area of a representative slice is

Aslice = 2 f (x)4x = 2(45 − 3

5
x)4x.

At any point on this slice, the depth is approximately constant, and thus the pressure can
be considered constant. In particular, we note that since x measures the distance to the
top of the dam, and because the water rises to within 5 feet of the top of the dam, the
depth of any point on the representative slice is approximately (x − 5). Now, since pressure
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x−5

△xx

(25,30)

45

y = f (x)

x+

y+

Figure 6.18: A trapezoidal dam that is 25 feet tall, 60 feet wide at its base, 90 feet wide at
its top, with the water line 5 feet down from the top of its face.

is given by P = 62.4d, we have that at any point on the representative slice

Pslice = 62.4(x − 5).
Knowing both the pressure and area, we can find the force the water exerts on the slice.
Using F = PA, it follows that

Fslice = Pslice · Aslice = 62.4(x − 5) · 2(45 − 3

5
x)4x.

Finally, we use a definite integral to sum the forces over the appropriate range of x-values.
Since the water rises to within 5 feet of the top of the dam, we start at x = 5 and slice all
the way to the bottom of the dam, where x = 30. Hence,

F =
∫ x=30

x=5
62.4(x − 5) · 2(45 − 3

5
x) dx.

Using technology to evaluate the integral, we find F ≈ 1.248 × 106 pounds.

Activity 6.12.

In each of the following problems, determine the total force exerted by water against
the surface that is described.

(a) Consider a rectangular dam that is 100 feet wide and 50 feet tall, and suppose
that water presses against the dam all the way to the top.

(b) Consider a semicircular dam with a radius of 30 feet. Suppose that the water
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x+

y+

Figure 6.19: A trough with triangular ends, as described in Activity 6.12, part (c).

rises to within 10 feet of the top of the dam.

(c) Consider a trough with triangular ends, as pictured in Figure 6.19, where the
tank is 10 feet long, the top is 5 feet wide, and the tank is 4 feet deep. Say that
the trough is full to within 1 foot of the top with water of weight density 62.4
pounds/ft3. How much force does the water exert against one of the triangular
ends?

C

While there are many different formulas that we use in solving problems involving
work, force, and pressure, it is important to understand that the fundamental ideas behind
these problems are similar to several others that we’ve encountered in applications of the
definite integral. In particular, the basic idea is to take a difficult problem and somehow
slice it into more manageable pieces that we understand, and then use a definite integral
to add up these simpler pieces.

Summary

In this section, we encountered the following important ideas:

• To measure the work accomplished by a varying force that moves an object, we
subdivide the problem into pieces on which we can use the formula W = F · d, and
then use a definite integral to sum the work accomplished on each piece.

• To find the total force exerted by water against a dam, we use the formula F = P · A to
measure the force exerted on a slice that lies at a fixed depth, and then use a definite
integral to sum the forces across the appropriate range of depths.

• Because work is computed as the product of force and distance (provided force is
constant), and the force water exerts on a dam can be computed as the product of
pressure and area (provided pressure is constant), problems involving these concepts are



376 6.4. PHYSICS APPLICATIONS: WORK, FORCE, AND PRESSURE

similar to earlier problems we did using definite integrals to find distance (via “distance
equals rate times time”) and mass (“mass equals density times volume”).

Exercises

1. Consider the curve f (x) = 3 cos( x34 ) and the portion of its graph that lies in the first
quadrant between the y-axis and the first positive value of x for which f (x) = 0. Let R
denote the region bounded by this portion of f , the x-axis, and the y-axis. Assume
that x and y are each measured in feet.

(a) Picture the coordinate axes rotated 90 degrees clockwise so that the positive
x-axis points straight down, and the positive y-axis points to the right. Suppose
that R is rotated about the x axis to form a solid of revolution, and we consider
this solid as a storage tank. Suppose that the resulting tank is filled to a depth
of 1.5 feet with water weighing 62.4 pounds per cubic foot. Find the amount
of work required to lower the water in the tank until it is 0.5 feet deep, by
pumping the water to the top of the tank.

(b) Again picture the coordinate axes rotated 90 degrees clockwise so that the
positive x-axis points straight down, and the positive y-axis points to the right.
Suppose that R, together with its reflection across the x-axis, forms one end
of a storage tank that is 10 feet long. Suppose that the resulting tank is filled
completely with water weighing 62.4 pounds per cubic foot. Find a formula for
a function that tells the amount of work required to lower the water by h feet.

(c) Suppose that the tank described in (b) is completely filled with water. Find the
total force due to hydrostatic pressure exerted by the water on one end of the
tank.

2. A cylindrical tank, buried on its side, has radius 3 feet and length 10 feet. It is filled
completely with water whose weight density is 62.4 lbs/ft3, and the top of the tank is
two feet underground.

(a) Set up, but do not evaluate, an integral expression that represents the amount
of work required to empty the top half of the water in the tank to a truck whose
tank lies 4.5 feet above ground.

(b) With the tank now only half-full, set up, but do not evaluate an integral
expression that represents the total force due to hydrostatic pressure against
one end of the tank.
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6.5 Improper Integrals

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What are improper integrals and why are they important?

• What does it mean to say that an improper integral converges or diverges?

• What are some typical improper integrals that we can classify as convergent or
divergent?

Introduction

Another important application of the definite integral regards how the likelihood of certain
events can be measured. For example, consider a company that manufactures incandescent
light bulbs, and suppose that based on a large volume of test results, they have determined
that the fraction of light bulbs that fail between times t = a and t = b of use (where t is
measured in months) is given by ∫ b

a

0.3e−0.3t dt.

For example, the fraction of light bulbs that fail during their third month of use is given by∫ 3

2
0.3e−0.3t dt = −e−0.3t

����
3

2

= −e−0.9 + e−0.6

≈ 0.1422.

Thus about 14.22% of all lightbulbs fail between t = 2 and t = 3. Clearly we could adjust
the limits of integration to measure the fraction of light bulbs that fail during any time
period of interest.

Preview Activity 6.5. A company with a large customer base has a call center that
receives thousands of calls a day. After studying the data that represents how long callers
wait for assistance, they find that the function p(t) = 0.25e−0.25t models the time customers
wait in the following way: the fraction of customers who wait between t = a and t = b
minutes is given by ∫ b

a

p(t) dt.

Use this information to answer the following questions.
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(a) Determine the fraction of callers who wait between 5 and 10 minutes.

(b) Determine the fraction of callers who wait between 10 and 20 minutes.

(c) Next, let’s study how the fraction who wait up to a certain number of minutes:

i. What is the fraction of callers who wait between 0 and 5 minutes?

ii. What is the fraction of callers who wait between 0 and 10 minutes?

iii. Between 0 and 15 minutes? Between 0 and 20?

(d) Let F(b) represent the fraction of callers who wait between 0 and b minutes. Find
a formula for F(b) that involves a definite integral, and then use the First FTC to
find a formula for F(b) that does not involve a definite integral.

(e) What is the value of the limit lim
b→∞

F(b)? What is its meaning in the context of the

problem?

./

Improper Integrals Involving Unbounded Intervals

In light of our example with light bulbs that fail, as well as with the problem involving
customer wait time in Preview Activity 6.5, we see that it is natural to consider questions
where we desire to integrate over an interval whose upper limit grows without bound. For
example, if we are interested in the fraction of light bulbs that fail within the first b months
of use, we know that the expression ∫ b

0
0.3e−0.3t dt

measures this value. To think about the fraction of light bulbs that fail eventually, we
understand that we wish to find

lim
b→∞

∫ b

0
0.3e−0.3t dt,

for which we will also use the notation∫ ∞

0
0.3e−0.3t dt. (6.5)

Note particularly that we are studying the area of an unbounded region, as pictured in
Figure 6.20.

Anytime we are interested in an integral for which the interval of integration is
unbounded (that is, one for which at least one of the limits of integration involves ∞), we
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· · ·

Figure 6.20: At left, the area bounded by p(t) = 0.3e−0.3t on the finite interval [0, b]; at
right, the result of letting b → ∞. By “· · · ” in the righthand figure, we mean that the
region extends to the right without bound.

say that the integral is improper . For instance, the integrals∫ ∞

1

1

x2
dx,

∫ 0

−∞

1

1 + x2
dx, and

∫ ∞

−∞

e−x
2

dx

are all improper due to having limits of integration that involve ∞. We investigate the value
of any such integral by replacing the improper integral with a limit of proper integrals; for
an improper integral such as

∫ ∞
0

f (x) dx, we write∫ ∞

0
f (x) dx = lim

b→∞

∫ b

0
f (x) dx.

We can then attempt to evaluate
∫ b

0
f (x) dx using the First FTC, after which we can

evaluate the limit. An immediate and important question arises: is it even possible for the
area of such an unbounded region to be finite? The following activity explores this issue
and others in more detail.

Activity 6.13.

In this activity we explore the improper integrals
∫ ∞
1

1
x dx and

∫ ∞
1

1
x3/2

dx.

(a) First we investigate
∫ ∞
1

1
x dx.

i. Use the First FTC to determine the exact values of
∫ 10

1
1
x dx,

∫ 1000

1
1
x dx,

and
∫ 100000

1
1
x dx. Then, use your calculator to compute a decimal

approximation of each result.

ii. Use the First FTC to evaluate the definite integral
∫ b

1
1
x dx (which results
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in an expression that depends on b).

iii. Now, use your work from (ii.) to evaluate the limit given by

lim
b→∞

∫ b

1

1

x
dx.

(b) Next, we investigate
∫ ∞
1

1
x3/2

dx.

i. Use the First FTC to determine the exact values of
∫ 10

1
1

x3/2
dx,

∫ 1000

1
1

x3/2
dx,

and
∫ 100000

1
1

x3/2
dx. Then, use your calculator to compute a decimal

approximation of each result.

ii. Use the First FTC to evaluate the definite integral
∫ b

1
1

x3/2
dx (which

results in an expression that depends on b).

iii. Now, use your work from (ii.) to evaluate the limit given by

lim
b→∞

∫ b

1

1

x3/2
dx.

(c) Plot the functions y = 1
x and y = 1

x3/2
on the same coordinate axes for the

values x = 0 . . . 10. How would you compare their behavior as x increases
without bound? What is similar? What is different?

(d) How would you characterize the value of
∫ ∞
1

1
x dx? of

∫ ∞
1

1
x3/2

dx? What does
this tell us about the respective areas bounded by these two curves for x ≥ 1?

C

Convergence and Divergence

Our work so far has suggested that when we consider a nonnegative function f on an
interval [1,∞], such as f (x) = 1

x or f (x) = 1
x3/2

, there are at least two possibilities for the

value of limb→∞

∫ b

1
f (x) dx: the limit is finite or infinite. With these possibilities in mind,

we introduce the following terminology.

If f (x) is nonnegative for x ≥ a, then we say that the improper integral
∫ ∞
a

f (x) dx
converges provided that

lim
b→∞

∫ b

a

f (x) dx

exists and is finite. Otherwise, we say that
∫ ∞
a

f (x) dx diverges.

We normally restrict our interest to improper integrals for which the integrand is
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nonnegative. Further, we note that our primary interest is in functions f for which
limx→∞ f (x) = 0, for if the function f does not approach 0 as x → ∞, then it is
impossible for

∫ ∞
a

f (x) dx to converge.

Activity 6.14.

Determine whether each of the following improper integrals converges or diverges. For
each integral that converges, find its exact value.

(a)
∫ ∞

1

1

x2
dx

(b)
∫ ∞

0
e−x/4 dx

(c)
∫ ∞

2

9

(x + 5)2/3 dx

(d)
∫ ∞

4

3

(x + 2)5/4 dx

(e)
∫ ∞

0
xe−x/4 dx

(f)
∫ ∞

1

1

xp
dx, where p is a positive real number

C

Improper Integrals Involving Unbounded Integrands

It is also possible for an integral to be improper due to the integrand being unbounded on
the interval of integration. For example, if we consider∫ 1

0

1
√

x
dx,

we see that because f (x) = 1√
x
has a vertical asymptote at x = 0, f is not continuous on

[0, 1], and the integral is attempting to represent the area of the unbounded region shown
at right in Figure 6.21.

Just as we did with improper integrals involving infinite limits, we address the problem
of the integrand being unbounded by replacing such an improper integral with a limit

of proper integrals. For example, to evaluate
∫ 1

0
1√
x

dx, we replace 0 with a and let a
approach 0 from the right. Thus,∫ 1

0

1
√

x
dx = lim

a→0+

∫ 1

a

1
√

x
dx,
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y

x

f (x) = 1√
x

1a

y

x

f (x) = 1√
x

1

Figure 6.21: At left, the area bounded by f (x) = 1√
x
on the finite interval [a, 1]; at right,

the result of letting a → 0+, where we see that the shaded region will extend vertically
without bound.

and then we evaluate the proper integral
∫ 1

a
1√
x

dx, followed by taking the limit. In the
same way as with improper integrals involving unbounded regions, we will say that the
improper integral converges provided that this limit exists, and diverges otherwise. In the
present example, we observe that∫ 1

0

1
√

x
dx = lim

a→0+

∫ 1

a

1
√

x
dx

= lim
a→0+

2
√

x
�1
a

= lim
a→0+

2
√
1 − 2

√
a

= 2,

and therefore the improper integral
∫ 1

0
1√
x

dx converges (to the value 2).

We have to be particularly careful with unbounded integrands, for they may arise in
ways that may not initially be obvious. Consider, for instance, the integral∫ 3

1

1

(x − 2)2 dx.

At first glance we might think that we can simply apply the Fundamental Theorem of
Calculus by antidifferentiating 1

(x−2)2 to get − 1
x−2 and then evaluate from 1 to 3. Were

we to do so, we would be erroneously applying the FTC because f (x) = 1
(x−2)2 fails to be

continuous throughout the interval, as seen in Figure 6.22.

Such an incorrect application of the FTC leads to an impossible result (−2), which
would itself suggest that something we did must be wrong. Indeed, we must address the
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1 2 3

y

x

y = 1
(x−2)2

Figure 6.22: The function f (x) = 1
(x−2)2 on an interval including x = 2.

vertical asymptote in f (x) = 1
(x−2)2 at x = 2 by writing∫ 3

1

1

(x − 2)2 dx = lim
a→2−

∫ a

1

1

(x − 2)2 dx + lim
b→2+

∫ 3

b

1

(x − 2)2 dx

and then evaluate two separate limits of proper integrals. For instance, doing so for the
integral with a approaching 2 from the left, we find∫ 2

1

1

(x − 2)2 dx = lim
a→2−

∫ a

1

1

(x − 2)2 dx

= lim
a→2−

−
1

(x − 2)
����
a

1

= lim
a→2−

−
1

(a − 2) +
1

1 − 2
= ∞,

since 1
a−2 → −∞ as a approaches 2 from the left. Thus, the improper integral

∫ 2

1
1

(x−2)2 dx

diverges; similar work shows that
∫ 3

2
1

(x−2)2 dx also diverges. From either of these two

results, we can conclude that that the original integral,
∫ 3

1
1

(x−2)2 dx diverges, too.

Activity 6.15.

For each of the following definite integrals, decide whether the integral is improper or
not. If the integral is proper, evaluate it using the First FTC. If the integral is improper,
determine whether or not the integral converges or diverges; if the integral converges,
find its exact value.

(a)
∫ 1

0
1

x1/3
dx

(b)
∫ 2

0
e−x dx
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(c)
∫ 4

1
1√
4−x

dx

(d)
∫ 2

−2
1
x2

dx

(e)
∫ π/2

0
tan(x) dx

(f)
∫ 1

0
1√

1−x2
dx

C

Summary

In this section, we encountered the following important ideas:

• An integral
∫ b

a
f (x) dx can be improper if at least one of a or b is ±∞, making the

interval unbounded, or if f has a vertical asymptote at x = c for some value of c that
satisfies a ≤ c ≤ b. One reason that improper integrals are important is that certain
probabilities can be represented by integrals that involve infinite limits.

• When we encounter an improper integral, we work to understand it by replacing the
improper integral with a limit of proper integrals. For instance, we write∫ ∞

a

f (x) dx = lim
b→∞

∫ b

a

f (x) dx,

and then work to determine whether the limit exists and is finite. For any improper
integral, if the resulting limit of proper integrals exists and is finite, we say the improper
integral converges. Otherwise, the improper integral diverges.

• An important class of improper integrals is given by∫ ∞

1

1

xp
dx

where p is a positive real number. We can show that this improper integral converges
whenever p > 1, and diverges whenever 0 < p ≤ 1. A related class of improper integrals

is
∫ 1

0

1

xp
dx, which converges for 0 < p < 1, and diverges for p ≥ 1.

Exercises

1. Determine, with justification, whether each of the following improper integrals converges
or diverges.

(a)
∫ ∞

e

ln(x)
x

dx
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(b)
∫ ∞

e

1

x ln(x) dx

(c)
∫ ∞

e

1

x(ln(x))2 dx

(d)
∫ ∞

e

1

x(ln(x))p dx, where p is a positive real number

(e)
∫ 1

0

ln(x)
x

dx

(f)
∫ 1

0
ln(x) dx

2. Sometimes we may encounter an improper integral for which we cannot easily evaluate
the limit of the corresponding proper integrals. For instance, consider

∫ ∞
1

1
1+x3

dx.
While it is hard (or perhaps impossible) to find an antiderivative for 1

1+x3
, we can still

determine whether or not the improper integral converges or diverges by comparison
to a simpler one. Observe that for all x > 0, 1 + x3 > x3, and therefore

1

1 + x3
<

1

x3
.

It therefore follows that ∫ b

1

1

1 + x3
dx <

∫ b

1

1

x3
dx

for every b > 1. If we let b → ∞ so as to consider the two improper integrals∫ ∞
1

1
1+x3

dx and
∫ ∞
1

1
x3

dx, we know that the larger of the two improper integrals
converges. And thus, since the smaller one lies below a convergent integral, it follows
that the smaller one must converge, too. In particular,

∫ ∞
1

1
1+x3

dx must converge, even
though we never explicitly evaluated the corresponding limit of proper integrals. We
use this idea and similar ones in the exercises that follow.

(a) Explain why x2 + x + 1 > x2 for all x ≥ 1, and hence show that
∫ ∞
1

1
x2+x+1

dx
converges by comparison to

∫ ∞
1

1
x2

dx.

(b) Observe that for each x > 1, ln(x) < x. Explain why∫ b

2

1

x
dx <

∫ b

2

1

ln(x) dx

for each b > 2. Why must it be true that
∫ b

2
1

ln(x) dx diverges?

(c) Explain why
√

x4+1
x4

> 1 for all x > 1. Then, determine whether or not the
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improper integral ∫ ∞

1

1

x
·

√
x4 + 1

x4
dx

converges or diverges.



Chapter 7

Differential Equations

7.1 An Introduction to Differential Equations

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is a differential equation and what kinds of information can it tell us?

• How do differential equations arise in the world around us?

• What do we mean by a solution to a differential equation?

Introduction

In previous chapters, we have seen that a function’s derivative tells us the rate at which
the function is changing. More recently, the Fundamental Theorem of Calculus helped us
to determine the total change of a function over an interval when we know the function’s
rate of change. For instance, an object’s velocity tells us the rate of change of that object’s
position. By integrating the velocity over a time interval, we may determine by how much
the position changes over that time interval. In particular, if we know where the object is
at the beginning of that interval, then we have enough information to accurately predict
where it will be at the end of the interval.

In this chapter, we will introduce the concept of differential equations and explore this
idea in more depth. Simply said, a differential equation is an equation that provides a
description of a function’s derivative, which means that it tells us the function’s rate of
change. Using this information, we would like to learn as much as possible about the
function itself. For instance, we would ideally like to have an algebraic description of the

387
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function. As we’ll see, this may be too much to ask in some situations, but we will still be
able to make accurate approximations.

Preview Activity 7.1. The position of a moving object is given by the function s(t), where
s is measured in feet and t in seconds. We determine that the velocity is v(t) = 4t + 1 feet
per second.

(a) How much does the position change over the time interval [0, 4]?
(b) Does this give you enough information to determine s(4), the position at time

t = 4? If so, what is s(4)? If not, what additional information would you need to
know to determine s(4)?

(c) Suppose you are told that the object’s initial position s(0) = 7. Determine s(2), the
object’s position 2 seconds later.

(d) If you are told instead that the object’s initial position is s(0) = 3, what is s(2)?
(e) If we only know the velocity v(t) = 4t + 1, is it possible that the object’s position

at all times is s(t) = 2t2 + t − 4? Explain how you know.

(f) Are there other possibilities for s(t)? If so, what are they?

(g) If, in addition to knowing the velocity function is v(t) = 4t + 1, we know the initial
position s(0), how many possibilities are there for s(t)?

./

What is a differential equation?

A differential equation is an equation that describes the derivative, or derivatives, of a
function that is unknown to us. For instance, the equation

dy
dx
= x sin x

is a differential equation since it describes the derivative of a function y(x) that is unknown
to us.

As many important examples of differential equations involve quantities that change in
time, the independent variable in our discussion will frequently be time t. For instance, in
the preview activity, we considered the differential equation

ds
dt
= 4t + 1.

Knowing the velocity and the starting position of the object, we were able to find the
position at any later time.
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Because differential equations describe the derivative of a function, they give us
information about how that function changes. Our goal will be to take this information and
use it to predict the value of the function in the future; in this way, differential equations
provide us with something like a crystal ball.

Differential equations arise frequently in our every day world. For instance, you may
hear a bank advertising:

Your money will grow at a 3% annual interest rate with us.

This innocuous statement is really a differential equation. Let’s translate: A(t) will be
amount of money you have in your account at time t. On one hand, the rate at which
your money grows is the derivative dA/dt. On the other hand, we are told that this rate is
0.03A. This leads to the differential equation

dA
dt
= 0.03A.

This differential equation has a slightly different feel than the previous equation
ds
dt = 4t + 1. In the earlier example, the rate of change depends only on the independent
variable t, and we may find s(t) by integrating the velocity 4t + 1. In the banking example,
however, the rate of change depends on the dependent variable A, so we’ll need some new
techniques in order to find A(t).
Activity 7.1.

Express the following statements as differential equations. In each case, you will need
to introduce notation to describe the important quantities in the statement so be sure
to clearly state what your notation means.

(a) The population of a town grows continuously at an annual rate of 1.25%.

(b) A radioactive sample loses 5.6% of its mass every day.

(c) You have a bank account that continuously earns 4% interest every year. At the
same time, you withdraw money continually from the account at the rate of
$1000 per year.

(d) A cup of hot chocolate is sitting in a 70◦ room. The temperature of the
hot chocolate cools continuously by 10% of the difference between the hot
chocolate’s temperature and the room temperature every minute.

(e) A can of cold soda is sitting in a 70◦ room. The temperature of the soda warms
continuously at the rate of 10% of the difference between the soda’s temperature
and the room’s temperature every minute.

C
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Differential equations in the world around us

As we have noted, differential equations give a natural way to describe phenomena we see
in the real world. For instance, physical principles are frequently expressed as a description
of how a quantity changes. A good example is Newton’s Second Law, an important physcial
principle that says:

The product of an object’s mass and acceleration equals the force applied to it.

For instance, when gravity acts on an object near the earth’s surface, it exerts a force
equal to mg, the mass of the object times the gravitational constant g. We therefore have

ma = mg, or
dv
dt
= g,

where v is the velocity of the object, and g = 9.8 meters per second squared. Notice that
this physical principle does not tell us what the object’s velocity is, but rather how the
object’s velocity changes.

Activity 7.2.

Shown below are two graphs depicting the velocity of falling objects. On the left is
the velocity of a skydiver, while on the right is the velocity of a meteorite entering the
Earth’s atmosphere.
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Skydiver’s velocity Meteorite’s velocity



7.1. AN INTRODUCTION TO DIFFERENTIAL EQUATIONS 391

(a) Begin with the skydiver’s velocity and use the given graph to measure the rate
of change dv/dt when the velocity is v = 0.5, 1.0, 1.5, 2.0, and 2.5. Plot your
values on the graph below. You will want to think carefully about this: you are
plotting the derivative dv/dt as a function of velocity.

1 2 3 4 5

-1.5

-1.0

-0.5

0.5

1.0

1.5

v

dv
dt

(b) Now do the same thing with the meteorite’s velocity: use the given graph to
measure the rate of change dv/dt when the velocity is v = 3.5, 4.0, 4.5, and 5.0.
Plot your values on the graph above.

(c) You should find that all your points lie on a line. Write the equation of this line
being careful to use proper notation for the quantities on the horizontal and
vertical axes.

(d) The relationship you just found is a differential equation. Write a complete
sentence that explains its meaning.

(e) By looking at the differential equation, determine the values of the velocity for
which the velocity increases.

(f) By looking at the differential equation, determine the values of the velocity for
which the velocity decreases.

(g) By looking at the differential equation, determine the values of the velocity for
which the velocity remains constant.

C

The point of this activity is to demonstrate how differential equations model processes
in the real world. In this example, two factors are influencing the velocities: gravity and
wind resistance. The differential equation describes how these factors influence the rate of
change of the objects’ velocities.
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Solving a differential equation

We have said that a differential equation is an equation that describes the derivative, or
derivatives, of a function that is unknown to us. By a solution to a differential equation, we
mean simply a function that satisies this description.

For instance, the first differential equation we looked at is

ds
dt
= 4t + 1,

which describes an unknown function s(t). We may check that s(t) = 2t2 + t is a solution
because it satisfies this description. Notice that s(t) = 2t2 + t + 4 is also a solution.

If we have a candidate for a solution, it is straightforward to check whether it is a
solution or not. Before we demonstrate, however, let’s consider the same issue in a simpler
context. Suppose we are given the equation 2x2 − 2x = 2x + 6 and asked whether x = 3 is
a solution. To answer this question, we could rewrite the variable x in the equation with
the symbol �:

2�2 − 2� = 2� + 6.

To determine whether x = 3 is a solution, we can investigate the value of each side of the
equation separately when the value 3 is placed in � and see if indeed the two resulting
values are equal. Doing so, we observe that

2�2 − 2� = 2 · 32 − 2 · 3 = 12,

and
2� + 6 = 2 · 3 + 6 = 12.

Therefore, x = 3 is indeed a solution.

We will do the same thing with differential equations. Consider the differential equation

dv
dt
= 1.5 − 0.5v, or

d�
dt

= 1.5 − 0.5�.

Let’s ask whether v(t) = 3 − 2e−0.5t is a solution1. Using this formula for v, observe first
that

dv
dt
=

d�
dt
=

d
dt
[3 − 2e−0.5t ] = −2e−0.5t · (−0.5) = e−0.5t

and

1.5 − 0.5v = 1.5 − 0.5� = 1.5 − 0.5(3 − 2e−0.5t ) = 1.5 − 1.5 + e−0.5t = e−0.5t .

1At this time, don’t worry about why we chose this function; we will learn techniques for finding solutions
to differential equations soon enough.



7.1. AN INTRODUCTION TO DIFFERENTIAL EQUATIONS 393

Since dv
dt and 1.5 − 0.5v agree for all values of t when v = 3 − 2e−0.5t , we have indeed

found a solution to the differential equation.

Activity 7.3.

Consider the differential equation

dv
dt
= 1.5 − 0.5v.

Which of the following functions are solutions of this differential equation?

(a) v(t) = 1.5t − 0.25t2.

(b) v(t) = 3 + 2e−0.5t .

(c) v(t) = 3.

(d) v(t) = 3 + Ce−0.5t where C is any constant.

C

This activity shows us something interesting. Notice that the differential equation has
infinitely many solutions, which are parametrized by the constant C in v(t) = 3 + Ce−0.5t .
In Figure 7.1, we see the graphs of these solutions for a few values of C, as labeled.
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Figure 7.1: The family of solutions to the differential equation dv
dt = 1.5 − 0.5v.

Notice that the value of C is connected to the initial value of the velocity v(0), since
v(0) = 3 + C. In other words, while the differential equation describes how the velocity
changes as a function of the velocity itself, this is not enough information to determine the
velocity uniquely: we also need to know the initial velocity. For this reason, differential
equations will typically have infinitely many solutions, one corresponding to each initial
value. We have seen this phenomenon before, such as when given the velocity of a moving
object v(t), we were not able to uniquely determine the object’s position unless we also
know its initial position.
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If we are given a differential equation and an initial value for the unknown function,
we say that we have an initial value problem. For instance,

dv
dt
= 1.5 − 0.5v, v(0) = 0.5

is an initial value problem. In this situation, we know the value of v at one time and
we know how v is changing. Consequently, there should be exactly one function v that
satisfies the initial value problem.

This demonstrates the following important general property of initial value problems.

Initial value problems that are “well behaved” have exactly one solution, which exists
in some interval around the initial point.

We won’t worry about what “well behaved” means—it is a technical condition that will
be satisfied by all the differential equations we consider.

To close this section, we note that differential equations may be classified based on
certain characteristics they may possess. Indeed, you may see many different types of
differential equations in a later course in differential equations. For now, we would like to
introduce a few terms that are used to describe differential equations.

A first-order differential equation is one in which only the first derivative of the function
occurs. For this reason,

dv
dt
= 1.5 − 0.5v

is a first-order equation while
d2y

dt2
= −10y

is a second-order equation.

A differential equation is autonomous if the independent variable does not appear in
the description of the derivative. For instance,

dv
dt
= 1.5 − 0.5v

is autonomous because the description of the derivative dv/dt does not depend on time.
The equation

dy
dt
= 1.5t − 0.5y,

however, is not autonomous.
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Summary

In this section, we encountered the following important ideas:

• A differential equation is simply an equation that describes the derivative(s) of an
unknown function.

• Physical principles, as well as some everyday situations, often describe how a quantity
changes, which lead to differential equations.

• A solution to a differential equation is a function whose derivatives satisfy the equation’s
description. Differential equations typically have infinitely many solutions, parametrized
by the initial values.

Exercises

1. Suppose that T(t) represents the temperature of a cup of coffee set out in a room, where
T is expressed in degrees Fahrenheit and t in minutes. A physical principle known as
Newton’s Law of Cooling tells us that

dT
dt
= −

1

15
T + 5.

(a) Supposes that T(0) = 105. What does the differential equation give us for the

value of
dT
dt

|T=105? Explain in a complete sentence the meaning of these two

facts.

(b) Is T increasing or decreasing at t = 0?

(c) What is the approximate temperature at t = 1?

(d) On the graph below, make a plot of dT/dt as a function of T .
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dT
dt

(e) For which values of T does T increase? For which values of T does T decrease?
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(f) What do you think is the temperature of the room? Explain your thinking.

(g) Verify that T(t) = 75 + 30e−t/15 is the solution to the differential equation with
initial value T(0) = 105. What happens to this solution after a long time?

2. Suppose that the population of a particular species is described by the function P(t),
where P is expressed in millions. Suppose further that the population’s rate of change
is governed by the differential equation

dP
dt
= f (P)

where f (P) is the function graphed below.

1 2 3 4

P

dP
dt

(a) For which values of the population P does the population increase?

(b) For which values of the population P does the population decrease?

(c) If P(0) = 3, how will the population change in time?

(d) If the initial population satisfies 0 < P(0) < 1, what will happen to the
population after a very long time?

(e) If the initial population satisfies 1 < P(0) < 3, what will happen to the
population after a very long time?

(f) If the initial population satisfies 3 < P(0), what will happen to the population
after a very long time?

(g) This model for a population’s growth is sometimes called “growth with a
threshold.” Explain why this is an appropriate name.

3. In this problem, we test further what it means for a function to be a solution to a given
differential equation.
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(a) Consider the differential equation

dy
dt
= y − t .

Determine whether the following functions are solutions to the given differential
equation.

(i) y(t) = t + 1 + 2et

(ii) y(t) = t + 1
(iii) y(t) = t + 2

(b) When you weigh bananas in a scale at the grocery store, the height h of the
bananas is described by the differential equation

d2h
dt2
= −kh

where k is the spring constant, a constant that depends on the properties of
the spring in the scale. After you put the bananas in the scale, you (cleverly)
observe that the height of the bananas is given by h(t) = 4 sin(3t). What is the
value of the spring constant?
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7.2 Qualitative behavior of solutions to DEs

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is a slope field?

• How can we use a slope field to obtain qualitative information about the solutions
of a differential equation?

• What are stable and unstable equilibrium solutions of an autonomous differential
equation?

Introduction

In earlier work, we have used the tangent line to the graph of a function f at a point a to
approximate the values of f near a. The usefulness of this approximation is that we need
to know very little about the function; armed with only the value f (a) and the derivative
f ′(a), we may find the equation of the tangent line and the approximation

f (x) ≈ f (a) + f ′(a)(x − a).

Remember that a first-order differential equation gives us information about the
derivative of an unknown function. Since the derivative at a point tells us the slope of the
tangent line at this point, a differential equation gives us crucial information about the
tangent lines to the graph of a solution. We will use this information about the tangent
lines to create a slope field for the differential equation, which enables us to sketch solutions
to initial value problems. Our aim will be to understand the solutions qualitatively. That
is, we would like to understand the basic nature of solutions, such as their long-range
behavior, without precisely determining the value of a solution at a particular point.

Preview Activity 7.2. Let’s consider the initial value problem

dy
dt
= t − 2, y(0) = 1.

(a) Use the differential equation to find the slope of the tangent line to the solution
y(t) at t = 0. Then use the initial value to find the equation of the tangent line
at t = 0. Sketch this tangent line over the interval −0.25 ≤ t ≤ 0.25 on the axes
provided.
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(b) Also shown in the given figure are the tangent lines to the solution y(t) at the
points t = 1, 2, and 3 (we will see how to find these later). Use the graph to measure
the slope of each tangent line and verify that each agrees with the value specified
by the differential equation.

(c) Using these tangent lines as a guide, sketch a graph of the solution y(t) over the
interval 0 ≤ t ≤ 3 so that the lines are tangent to the graph of y(t).

(d) Use the Fundamental Theorem of Calculus to find y(t), the solution to this initial
value problem.

(e) Graph the solution you found in (d) on the axes provided, and compare it to the
sketch you made using the tangent lines.

./

Slope fields

Preview Activity 7.2 shows that we may sketch the solution to an initial value problem if we
know an appropriate collection of tangent lines. Because we may use a given differential
equation to determine the slope of the tangent line at any point of interest, by plotting
a useful collection of these, we can get an accurate sense of how certain solution curves
must behave.

Let’s continue looking at the differential equation
dy
dt
= t − 2. If t = 0, this equation

says that dy/dt = 0 − 2 = −2. Note that this value holds regardless of the value of y. We
will therefore sketch tangent lines for several values of y and t = 0 with a slope of −2.
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Let’s continue in the same way: if t = 1, the differential equation tells us that
dy/dt = 1 − 2 = −1, and this holds regardless of the value of y. We now sketch tangent
lines for several values of y and t = 1 with a slope of −1.
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Similarly, we see that when t = 2, dy/dt = 0 and when t = 3, dy/dt = 1. We may
therefore add to our growing collection of tangent line plots to achieve the next figure.
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In this figure, you may see the solutions to the differential equation emerge. However,
for the sake of clarity, we will add more tangent lines to provide the more complete picture
shown below.
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This most recent figure, which is called a slope field for the differential equation, allows
us to sketch solutions just as we did in the preview activity. Here, we will begin with the
initial value y(0) = 1 and start sketching the solution by following the tangent line, as
shown in the next figure.
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We then continue using this principle: whenever the solution passes through a point at
which a tangent line is drawn, that line is tangent to the solution. Doing so leads us to the
following sequence of images.
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In fact, we may draw solutions for any possible initial value, and doing this for several
different initial values for y(0) results in the graphs shown next.
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Just as we have done for the most recent example with dy
dt = t − 2, we can construct a

slope field for any differential equation of interest. The slope field provides us with visual
information about how we expect solutions to the differential equation to behave.

Activity 7.4.

Consider the autonomous differential equation

dy
dt
= −

1

2
(y − 4).

(a) Make a plot of dy
dt versus y on the axes provided. Looking at the graph, for

what values of y does y increase and for what values of y does y decrease?
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(b) Next, sketch the slope field for this differential equation on the axes provided.
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(c) Use your work in (b) to sketch the solutions that satisfy y(0) = 0, y(0) = 2,
y(0) = 4 and y(0) = 6.

(d) Verify that y(t) = 4 + 2e−t/2 is a solution to the given differential equation with
the initial value y(0) = 6. Compare its graph to the one you sketched in (c).

(e) What is special about the solution where y(0) = 4?

C

Equilibrium solutions and stability

As our work in Activity 7.4 demonstrates, first-order autonomous solutions may have
solutions that are constant. In fact, these are quite easy to detect by inspecting the
differential equation dy/dt = f (y): constant solutions necessarily have a zero derivative so
dy/dt = 0 = f (y).

For example, in Activity 7.4, we considered the equation

dy
dt
= f (y) = −1

2
(y − 4).
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Constant solutions are found by setting f (y) = −1
2 (y − 4) = 0, which we immediately see

implies that y = 4.

Values of y for which f (y) = 0 in an autonomous differential equation dy
dt = f (y) are

usually called or equilibrium solutions of the differential equation.

Activity 7.5.

Consider the autonomous differential equation

dy
dt
= −

1

2
y(y − 4).

(a) Make a plot of dy
dt versus y. Looking at the graph, for what values of y does y

increase and for what values of y does y decrease?
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(b) Identify any equilibrium solutions of the given differential equation.

(c) Now sketch the slope field for the given differential equation.
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(d) Sketch the solutions to the given differential equation that correspond to initial
values y(0) = −1, 0, 1, . . . , 5.

(e) An equilibrium solution y is called stable if nearby solutions converge to y. This
means that if the initial condition varies slightly from y, then limt→∞ y(t) = y.
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Conversely, an equilibrium solution y is called unstable if nearby solutions are
pushed away from y.
Using your work above, classify the equilibrium solutions you found in (b) as
either stable or unstable.

(f) Suppose that y(t) describes the population of a species of living organisms and
that the initial value y(0) is positive. What can you say about the eventual fate
of this population?

(g) Remember that an equilibrium solution y satisfies f (y) = 0. If we graph
dy/dt = f (y) as a function of y, for which of the following differential equations
is y a stable equilibrium and for which is y unstable? Why?

y

y

dy
dt = f (y)

y

y

dy
dt = f (y)

C

Summary

In this section, we encountered the following important ideas:

• A slope field is a plot created by graphing the tangent lines of many different solutions
to a differential equation.

• Once we have a slope field, we may sketch the graph of solutions by drawing a curve
that is always tangent to the lines in the slope field.

• Autonomous differential equations sometimes have constant solutions that we call
equilibrium solutions. These may be classified as stable or unstable, depending on the
behavior of nearby solutions.

Exercises

1. Consider the differential equation

dy
dt
= t − y.
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(a) Sketch a slope field on the plot below:
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(b) Sketch the solutions whose initial values are y(0) = −4,−3, . . . , 4.
(c) What do your sketches suggest is the solution whose initial value is y(0) = −1?

Verify that this is indeed the solution to this initial value problem.

(d) By considering the differential equation and the graphs you have sketched,
what is the relationship between t and y at a point where a solution has a local
minimum?

2. Consider the situation from problem 2 of Section 7.1: Suppose that the population of a
particular species is described by the function P(t), where P is expressed in millions.
Suppose further that the population’s rate of change is governed by the differential
equation

dP
dt
= f (P)

where f (P) is the function graphed below.

1 2 3 4

P

dP
dt

(a) Sketch a slope field for this differential equation. You do not have enough
information to determine the actual slopes, but you should have enough
information to determine where slopes are positive, negative, zero, large, or
small, and hence determine the qualitative behavior of solutions.
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(b) Sketch some solutions to this differential equation when the initial population
P(0) > 0.

(c) Identify any equilibrium solutions to the differential equation and classify them
as stable or unstable.

(d) If P(0) > 1, what is the eventual fate of the species?

(e) if P(0) < 1, what is the eventual fate of the species?

(f) Remember that we referred to this model for population growth as “growth with
a threshold.” Explain why this characterization makes sense by considering
solutions whose inital value is close to 1.

3. The population of a species of fish in a lake is P(t) where P is measured in thousands
of fish and t is measured in months. The growth of the population is described by the
differential equation

dP
dt
= f (P) = P(6 − P).

(a) Sketch a graph of f (P) = P(6 − P) and use it to determine the equilibrium
solutions and whether they are stable or unstable. Write a complete sentence
that describes the long-term behavior of the fish population.

(b) Suppose now that the owners of the lake allow fishers to remove 1000 fish
from the lake every month (remember that P(t) is measured in thousands of
fish). Modify the differential equation to take this into account. Sketch the new
graph of dP/dt versus P. Determine the new equilibrium solutions and decide
whether they are stable or unstable.

(c) Given the situation in part (b), give a description of the long-term behavior of
the fish population.

(d) Suppose that fishermen remove h thousand fish per month. How is the
differential equation modified?

(e) What is the largest number of fish that can be removed per month without
eliminating the fish population? If fish are removed at this maximum rate, what
is the eventual population of fish?

4. Let y(t) be the number of thousands of mice that live on a farm; assume time t is
measured in years.2

(a) The population of the mice grows at a yearly rate that is twenty times the
number of mice. Express this as a differential equation.

2This problem is based on an ecological analysis presented in a research paper by C.S. Hollings: The
Components of Predation as Revealed by a Study of Small Mammal Predation of the European Pine Sawfly,
Canadian Entomology 91: 283-320.
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(b) At some point, the farmer brings C cats to the farm. The number of mice that
the cats can eat in a year is

M(y) = C
y

2 + y

thousand mice per year. Explain how this modifies the differential equation
that you found in part a).

(c) Sketch a graph of the function M(y) for a single cat C = 1 and explain its
features by looking, for instance, at the behavior of M(y) when y is small and
when y is large.

(d) Suppose that C = 1. Find the equilibrium solutions and determine whether
they are stable or unstable. Use this to explain the long-term behavior of the
mice population depending on the initial population of the mice.

(e) Suppose that C = 60. Find the equilibrium solutions and determine whether
they are stable or unstable. Use this to explain the long-term behavior of the
mice population depending on the initial population of the mice.

(f) What is the smallest number of cats you would need to keep the mice population
from growing arbitrarily large?



7.3. EULER’S METHOD 409

7.3 Euler’s method

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is Euler’s method and how can we use it to approximate the solution to an
initial value problem?

• How accurate is Euler’s method?

Introduction

In Section 7.2, we saw how a slope field can be used to sketch solutions to a differential
equation. In particular, the slope field is a plot of a large collection of tangent lines to a
large number of solutions of the differential equation, and we sketch a single solution by
simply following these tangent lines. With a little more thought, we may use this same idea
to numerically approximate the solutions of a differential equation.

Preview Activity 7.3. Consider the initial value problem

dy
dt
=

1

2
(y + 1), y(0) = 0.

(a) Use the differential equation to find the slope of the tangent line to the solution
y(t) at t = 0. Then use the given initial value to find the equation of the tangent
line at t = 0.

(b) Sketch the tangent line on the axes below on the interval 0 ≤ t ≤ 2 and use it to
approximate y(2), the value of the solution at t = 2.
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(c) Assuming that your approximation for y(2) is the actual value of y(2), use the
differential equation to find the slope of the tangent line to y(t) at t = 2. Then,
write the equation of the tangent line at t = 2.

(d) Add a sketch of this tangent line to your plot on the axes above on the interval
2 ≤ t ≤ 4; use this new tangent line to approximate y(4), the value of the solution
at t = 4.

(e) Repeat the same step to find an approximation for y(6).

./

Euler’s Method

Preview Activity 7.3 demonstrates the essence of an algorithm, which is known as Euler’s
Method, that generates a numerical approximation to the solution of an initial value
problem.3 In this algorithm, we will approximate the solution by taking horizontal steps of
a fixed size that we denote by ∆t.

Before explaining the algorithm in detail, let’s remember how we compute the slope of
a line: the slope is the ratio of the vertical change to the horizontal change, as shown in
the following figure.

t

y

∆t

∆y

In other words, m = ∆y
∆t . Said differently, the vertical change is the product of the slope

and the horizontal change:
∆y = m∆t.

Suppose that we would like to solve the initial value problem

dy
dt
= t − y, y(0) = 1.

3“Euler” is pronounced “Oy-ler.” Among other things, Euler is the mathematician credited with the famous
number e; if you incorrectly pronounce his name “You-ler,” you fail to appreciate his genius and legacy.
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While there is an algorithm by which we can find an algebraic formula for the solution to
this initial value problem, and we can check that this solution is y(t) = t − 1 + 2e−t , we are
instead interested in generating an approximate solution by creating a sequence of points
(ti, yi), where yi ≈ y(ti). For this first example, we choose ∆t = 0.2.

Since we know that y(0) = 1, we will take the initial point
to be (t0, y0) = (0, 1) and move horizontally by ∆t = 0.2
to the point (t1, y1). Therefore, t1 = t0 + ∆t = 0.2. The
differential equation tells us that the slope of the tangent
line at this point is

m =
dy
dt

����(0,1)
= 0 − 1 = −1.

Therefore, if we move along the tangent line by taking
a horizontal step of size ∆t = 0.2, we must also move
vertically by

∆y = m∆t = −1 · 0.2 = −0.2.

We then have the approximation y(0.2) ≈ y1 = y0 + ∆y =

1 − 0.2 = 0.8. At this point, we have executed one step of
Euler’s method.
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Now we repeat this process: at (t1, y1) = (0.2, 0.8), the
differential equation tells us that the slope is

m =
dy
dt

����(0.2,0.8)
= 0.2 − 0.8 = −0.6.

If we move horizontally by ∆t to t2 = t1+∆ = 0.4, we must
move vertically by

∆y = −0.6 · 0.2 = −0.12.

We consequently arrive at y2 = y1+∆y = 0.8−0.12 = 0.68,
which gives y(0.2) ≈ 0.68. Now we have completed the
second step of Euler’s method.
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If we continue in this way, we may generate the points (ti, yi) shown at left in Figure 7.2.
In situations where we are able to find a formula for the actual solution y(t), we can
graph y(t) to compare it to the points generated by Euler’s method, as shown at right in
Figure 7.2.

Because we need to generate a large number of points (ti, yi), it is convenient to
organize the implementation of Euler’s method in a table as shown. We begin with the
given initial data.
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Figure 7.2: At left, the points and piecewise linear approximate solution generated by
Euler’s method; at right, the approximate solution compared to the exact solution (shown
in blue).

ti yi dy/dt ∆y

0.0000 1.0000

From here, we compute the slope of the tangent line m = dy/dt using the formula for
dy/dt from the differential equation, and then we find ∆y, the change in y, using the rule
∆y = m∆t.

ti yi dy/dt ∆y

0.0000 1.0000 -1.0000 -0.2000

Next, we increase ti by ∆t and yi by ∆y to get

ti yi dy/dt ∆y

0.0000 1.0000 -1.0000 -0.2000
0.2000 0.8000

and then we simply continue the process for however many steps we decide, eventually
generating a table like the one that follows.

ti yi dy/dt ∆y

0.0000 1.0000 -1.0000 -0.2000
0.2000 0.8000 -0.6000 -0.1200
0.4000 0.6800 -0.2800 -0.0560
0.6000 0.6240 -0.0240 -0.0048
0.8000 0.6192 0.1808 0.0362
1.0000 0.6554 0.3446 0.0689
1.2000 0.7243 0.4757 0.0951
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Activity 7.6.

Consider the initial value problem

dy
dt
= 2t − 1, y(0) = 0

(a) Use Euler’s method with ∆t = 0.2 to approximate the solution at ti =
0.2, 0.4, 0.6, 0.8, and 1.0. Record your work in the following table, and sketch
the points (ti, yi) on the following axes provided.

ti yi dy/dt ∆y

0.0000 0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

0.4 0.8 1.2

-1.0

-0.6

-0.2

0.2
ty

(b) Find the exact solution to the original initial value problem and use this
function to find the error in your approximation at each one of the points ti .

(c) Explain why the value y5 generated by Euler’s method for this initial value
problem produces the same value as a left Riemann sum for the definite integral∫ 1

0
(2t − 1) dt.

(d) How would your computations differ if the initial value was y(0) = 1? What
does this mean about different solutions to this differential equation?

C
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Activity 7.7.

Consider the differential equation dy
dt = 6y − y2.

(a) Sketch the slope field for this differential equation on the axes provided at left
below.

2 4 6 8

2

4

6

8
y

t
0.4 0.8 1.2

2

4

6

8

t

y

(b) Identify any equilibrium solutions and determine whether they are stable or
unstable.

(c) What is the long-term behavior of the solution that satisfies the initial value
y(0) = 1?

(d) Using the initial value y(0) = 1, use Euler’s method with ∆t = 0.2 to approxi-
mate the solution at ti = 0.2, 0.4, 0.6, 0.8, and 1.0. Sketch the points (ti, yi) on
the axes provided at right in (a). (Note the different horizontal scale on the two
sets of axes.)

ti yi dy/dt ∆y

0.0 1.0000

0.2

0.4

0.6

0.8

1.0

(e) What happens if we apply Euler’s method to approximate the solution with
y(0) = 6?

C
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The error in Euler’s method

Since we are approximating the solutions to an initial value problem using tangent lines,
we should expect that the error in the approximation will be less when the step size is
smaller. To explore this observation quantitatively, let’s consider the initial value problem

dy
dt
= y, y(0) = 1

whose solution we can easily find.

Consider the question posed by this initial value problem: “what function do we know
that is the same as its own derivative and has value 1 when t = 0?” It is not hard to see
that the solution is y(t) = et . We now apply Euler’s method to approximate y(1) = e using
several values of ∆t. These approximations will be denoted by E∆t , and these estimates
provide us a way to see how accurate Euler’s Method is.

To begin, we apply Euler’s method with a step size of ∆t = 0.2. In that case, we find
that y(1) ≈ E0.2 = 2.4883. The error is therefore y(1) − E0.2 = e − 2.4883 ≈ 0.2300.

Repeatedly halving ∆t gives the following results, expressed in both tabular and
graphical form.

∆t E∆t Error
0.200 2.4883 0.2300
0.100 2.5937 0.1245
0.050 2.6533 0.0650
0.025 2.6851 0.0332

0.1 0.2

0.1

0.2

Error

∆t

Notice, both numerically and graphically, that the error is roughly halved when ∆t is
halved. This example illustrates the following general principle.

If Euler’s method is to approximate the solution to an initial value problem at a point
t, then the error is proportional to ∆t. That is,

y(t) − E∆t ≈ K∆t

for some constant of proportionality K .
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Summary

In this section, we encountered the following important ideas:

• Euler’s method is an algorithm for approximating the solution to an initial value
problem by following the tangent lines while we take horizontal steps across the t-axis.

• If we wish to approximate y(t) for some fixed t by taking horizontal steps of size ∆t,
then the error in our approximation is proportional to ∆t.

Exercises

1. Newton’s Law of Cooling says that the rate at which an object, such as a cup of coffee,
cools is proportional to the difference in the object’s temperature and room temperature.
If T(t) is the object’s temperature and Tr is room temperature, this law is expressed at

dT
dt
= −k(T − Tr ),

where k is a constant of proportionality. In this problem, temperature is measured in
degrees Fahrenheit and time in minutes.

(a) Two calculus students, Alice and Bob, enter a 70◦ classroom at the same time.
Each has a cup of coffee that is 100◦. The differential equation for Alice has a
constant of proportionality k = 0.5, while the constant of proportionality for
Bob is k = 0.1.

What is the initial rate of change for Alice’s coffee? What is the initial rate of
change for Bob’s coffee?

(b) What feature of Alice’s and Bob’s cups of coffee could explain this difference?

(c) As the heating unit turns on and off in the room, the temperature in the room
is

Tr = 70 + 10 sin t .

Implement Euler’s method with a step size of ∆t = 0.1 to approximate the
temperature of Alice’s coffee over the time interval 0 ≤ t ≤ 50. This will most
easily be performed using a spreadsheet such as Excel. Graph the temperature
of her coffee and room temperature over this interval.

(d) In the same way, implement Euler’s method to approximate the temperature of
Bob’s coffee over the same time interval. Graph the temperature of his coffee
and room temperature over the interval.

(e) Explain the similarities and differences that you see in the behavior of Alice’s
and Bob’s cups of coffee.
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2. We have seen that the error in approximating the solution to an initial value problem is
proportional to ∆t. That is, if E∆t is the Euler’s method approximation to the solution
to an initial value problem at t, then

y(t) − E∆t ≈ K∆t

for some constant of proportionality K .

In this problem, we will see how to use this fact to improve our estimates, using an idea
called accelerated convergence.

(a) We will create a new approximation by assuming the error is exactly propor-
tional to ∆t, according to the formula

y(t) − E∆t = K∆t .

Using our earlier results from the initial value problem dy/dt = y and y(0) = 1
with ∆t = 0.2 and ∆t = 0.1, we have

y(1) − 2.4883 = 0.2K

y(1) − 2.5937 = 0.1K .

This is a system of two linear equations in the unknowns y(1) and K . Solve
this system to find a new approximation for y(1). (You may remember that the
exact value is y(1) = e = 2.71828 . . . .)

(b) Use the other data, E0.05 = 2.6533 and E0.025 = 2.6851 to do similar work as
in (a) to obtain another approximation. Which gives the better approximation?
Why do you think this is?

(c) Let’s now study the initial value problem

dy
dt
= t − y, y(0) = 0.

Approximate y(0.3) by applying Euler’s method to find approximations E0.1

and E0.05. Now use the idea of accelerated convergence to obtain a better
approximation. (For the sake of comparison, you want to note that the actual
value is y(0.3) = 0.0408.)

3. In this problem, we’ll modify Euler’s method to obtain better approximations to
solutions of initial value problems. This method is called the Improved Euler’s method.

In Euler’s method, we walk across an interval of width ∆t using the slope obtained from
the differential equation at the left endpoint of the interval. Of course, the slope of the
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solution will most likely change over this interval. We can improve our approximation
by trying to incorporate the change in the slope over the interval.

Let’s again consider the initial value problem dy/dt = y and y(0) = 1, which we will
approximate using steps of width ∆t = 0.2. Our first interval is therefore 0 ≤ t ≤ 0.2.
At t = 0, the differential equation tells us that the slope is 1, and the approximation we
obtain from Euler’s method is that y(0.2) ≈ y1 = 1 + 1(0.2) = 1.2.

This gives us some idea for how the slope has changed over the interval 0 ≤ t ≤ 0.2.
We know the slope at t = 0 is 1, while the slope at t = 0.2 is 1.2, trusting in the Euler’s
method approximation. We will therefore refine our estimate of the initial slope to be
the average of these two slopes; that is, we will estimate the slope to be (1+1.2)/2 = 1.1.
This gives the new approximation y(1) = y1 = 1 + 1.1(0.2) = 1.22.

The first few steps look like this:

ti yi Slope at (ti+1, yi+1) Average slope
0.0 1.0000 1.2000 1.1000
0.2 1.2200 1.4640 1.3420
0.4 1.4884 1.7861 1.6372
...

...
...

...

(a) Continue with this method to obtain an approximation for y(1) = e.

(b) Repeat this method with ∆t = 0.1 to obtain a better approximation for y(1).
(c) We saw that the error in Euler’s method is proportional to ∆t. Using your

results from parts (a) and (b), what power of ∆t appears to be proportional to
the error in the Improved Euler’s Method?
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7.4 Separable differential equations

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is a separable differential equation?

• How can we find solutions to a separable differential equation?

• Are some of the differential equations that arise in applications separable?

Introduction

In Sections 7.2 and 7.3, we have seen several ways to approximate the solution to an
initial value problem. Given the frequency with which differential equations arise in the
world around us, we would like to have some techniques for finding explicit algebraic
solutions of certain initial value problems. In this section, we focus on a particular class of
differential equations (called separable) and develop a method for finding algebraic formulas
for solutions to these equations.

A separable differential equation is a differential equation whose algebraic structure
permits the variables present to be separated in a particular way. For instance, consider
the equation

dy
dt
= ty.

We would like to separate the variables t and y so that all occurrences of t appear on the
right-hand side, and all occurrences of y appears on the left and multiply dy/dt. We may
do this in the preceding differential equation by dividing both sides by y:

1

y

dy
dt
= t .

Note particularly that when we attempt to separate the variables in a differential equation,
we require that the left-hand side be a product in which the derivative dy/dt is one term.

Not every differential equation is separable. For example, if we consider the equation

dy
dt
= t − y,

it may seem natural to separate it by writing

y +
dy
dt
= t .
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As we will see, this will not be helpful since the left-hand side is not a product of a function
of y with dy

dt .

Preview Activity 7.4. In this preview activity, we explore whether certain differential
equations are separable or not, and then revisit some key ideas from earlier work in
integral calculus.

(a) Which of the following differential equations are separable? If the equation is
separable, write the equation in the revised form g(y) dydt = h(t).

1.
dy
dt
= −3y.

2.
dy
dt
= ty − y.

3.
dy
dt
= t + 1.

4.
dy
dt
= t2 − y2.

(b) Explain why any autonomous differential equation is guaranteed to be separable.

(c) Why do we include the term “+C” in the expression∫
x dx =

x2

2
+ C?

(d) Suppose we know that a certain function f satisfies the equation∫
f ′(x) dx =

∫
x dx.

What can you conclude about f ?

./

Solving separable differential equations

Before we discuss a general approach to solving a separable differential equation, it is
instructive to consider an example.

Example 7.1. Find all functions y that are solutions to the differential equation

dy
dt
=

t
y2
.
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Solution. We begin by separating the variables and writing

y2
dy
dt
= t .

Integrating both sides of the equation with respect to the independent variable t shows
that ∫

y2
dy
dt

dt =
∫

t dt .

Next, we notice that the left-hand side allows us to change the variable of antidifferentia-
tion4 from t to y. In particular, dy = dy

dt dt, so we now have∫
y2 dy =

∫
t dt .

This most recent equation says that two families of antiderivatives are equal to one another.
Therefore, when we find representative antiderivatives of both sides, we know they must
differ by arbitrary constant C. Antidifferentiating and including the integration constant
C on the right, we find that

y3

3
=

t2

2
+ C.

Again, note that it is not necessary to include an arbitrary constant on both sides of the
equation; we know that y3/3 and t2/2 are in the same family of antiderivatives and must
therefore differ by a single constant.

Finally, we may now solve the last equation above for y as a function of t, which gives

y(t) = 3

√
3

2
t2 + 3C.

Of course, the term 3C on the right-hand side represents 3 times an unknown constant. It
is, therefore, still an unknown constant, which we will rewrite as C. We thus conclude that
the funtion

y(t) = 3

√
3

2
t2 + C

is a solution to the original differential equation for any value of C.

Notice that because this solution depends on the arbitrary constant C, we have found
an infinite family of solutions. This makes sense because we expect to find a unique
solution that corresponds to any given initial value.

For example, if we want to solve the initial value problem

dy
dt
=

t
y2
, y(0) = 2,

4This is why we required that the left-hand side be written as a product in which dy/dt is one of the terms.
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we know that the solution has the form y(t) = 3

√
3
2 t2 + C for some constant C. We

therefore must find the appropriate value for C that gives the initial value y(0) = 2. Hence,

2 = y(0) = 3

√
3

2
02 + C = 3

√
C,

which shows that C = 23 = 8. The solution to the initial value problem is then

y(t) = 3

√
3

2
t2 + 8.

The strategy of Example 7.1 may be applied to any differential equation of the form
dy
dt = g(y) · h(t), and any differential equation of this form is said to be separable. We work
to solve a separable differential equation by writing

1

g(y)
dy
dt
= h(t),

and then integrating both sides with respect to t. After integrating, we strive to solve
algebraically for y in order to write y as a function of t.

We consider one more example before doing further exploration in some activities.

Example 7.2. Solve the differential equation

dy
dt
= 3y.

Solution. Following the same strategy as in Example 7.1, we have

1

y

dy
dt
= 3.

Integrating both sides with respect to t,∫
1

y

dy
dt

dt =
∫

3 dt,

and thus ∫
1

y
dy =

∫
3 dt.

Antidifferentiating and including the integration constant, we find that

ln |y | = 3t + C.
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Finally, we need to solve for y. Here, one point deserves careful attention. By the definition
of the natural logarithm function, it follows that

|y | = e3t+C = e3teC .

Since C is an unknown constant, eC is as well, though we do know that it is positive
(because ex is positive for any x). When we remove the absolute value in order to solve for
y, however, this constant may be either positive or negative. We will denote this updated
constant (that accounts for a possible + or −) by C to obtain

y(t) = Ce3t .

There is one more slightly technical point to make. Notice that y = 0 is an equilibrium
solution to this differential equation. In solving the equation above, we begin by dividing
both sides by y, which is not allowed if y = 0. To be perfectly careful, therefore, we will
typically consider the equilibrium solutions separably. In this case, notice that the final
form of our solution captures the equilibrium solution by allowing C = 0.

Activity 7.8.

Suppose that the population of a town is growing continuously at an annual rate of 3%
per year.

(a) Let P(t) be the population of the town in year t. Write a differential equation
that describes the annual growth rate.

(b) Find the solutions of this differential equation.

(c) If you know that the town’s population in year 0 is 10,000, find the population
P(t).

(d) How long does it take for the population to double? This time is called the
doubling time.

(e) Working more generally, find the doubling time if the annual growth rate is k
times the population.

C

Activity 7.9.

Suppose that a cup of coffee is initially at a temperature of 105◦ F and is placed in a
75◦ F room. Newton’s law of cooling says that

dT
dt
= −k(T − 75),
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where k is a constant of proportionality.

(a) Suppose you measure that the coffee is cooling at one degree per minute at
the time the coffee is brought into the room. Use the differential equation to
determine the value of the constant k .

(b) Find all the solutions of this differential equation.

(c) What happens to all the solutions as t → ∞? Explain how this agrees with your
intuition.

(d) What is the temperature of the cup of coffee after 20 minutes?

(e) How long does it take for the coffee to cool to 80◦?

C

Activity 7.10.

Solve each of the following differential equations or initial value problems.

(a)
dy
dt
− (2 − t)y = 2 − t

(b)
1

t
dy
dt
= et

2−2y

(c) y′ = 2y + 2, y(0) = 2

(d) y′ = 2y2, y(−1) = 2

(e)
dy
dt
=
−2ty
t2 + 1

, y(0) = 4

C

Summary

In this section, we encountered the following important ideas:

• A separable differential equation is one that may be rewritten with all occurrences of the
dependent variable multiplying the derivative and all occurrences of the independent
variable on the other side of the equation.

• We may find the solutions to certain separable differential equations by separating
variables, integrating with respect to t, and ultimately solving the resulting algebraic
equation for y.

• This technique allows us to solve many important differential equations that arise in
the world around us. For instance, questions of growth and decay and Newton’s Law of
Cooling give rise to separable differential equations. Later, we will learn in Section 7.6
that the important logistic differential equation is also separable.
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Exercises

1. The mass of a radioactive sample decays at a rate that is proportional to its mass.

(a) Express this fact as a differential equation for the mass M(t) using k for the
constant of proportionality.

(b) If the initial mass is M0, find an expression for the mass M(t).
(c) The half-life of the sample is the amount of time required for half of the mass

to decay. Knowing that the half-life of Carbon-14 is 5730 years, find the value
of k for a sample of Carbon-14.

(d) How long does it take for a sample of Carbon-14 to be reduced to one-quarter
its original mass?

(e) Carbon-14 naturally occurs in our environment; any living organism takes in
Carbon-14 when it eats and breathes. Upon dying, however, the organism no
longer takes in Carbon-14.

Suppose that you find remnants of a pre-historic firepit. By analyzing the
charred wood in the pit, you determine that the amount of Carbon-14 is only
30% of the amount in living trees. Estimate the age of the firepit.5

2. Consider the initial value problem

dy
dt
= −

t
y
, y(0) = 8

(a) Find the solution of the initial value problem and sketch its graph.

(b) For what values of t is the solution defined?

(c) What is the value of y at the last time that the solution is defined?

(d) By looking at the differential equation, explain why we should not expect to
find solutions with the value of y you noted in (c).

3. Suppose that a cylindrical water tank with a hole in the bottom is filled with water.
The water, of course, will leak out and the height of the water will decrease. Let h(t)
denote the height of the water. A physical principle called Torricelli’s Law implies that
the height decreases at a rate proportional to the square root of the height.

(a) Express this fact using k as the constant of proportionality.

(b) Suppose you have two tanks, one with k = −1 and another with k = −10. What
physical differences would you expect to find?

5This approach is the basic idea behind radiocarbon dating.
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(c) Suppose you have a tank for which the height decreases at 20 inches per minute
when the water is filled to a depth of 100 inches. Find the value of k .

(d) Solve the initial value problem for the tank in part (c), and graph the solution
you determine.

(e) How long does it take for the water to run out of the tank?

(f) Is the solution that you found valid for all time t? If so, explain how you know
this. If not, explain why not.

4. The Gompertz equation is a model that is used to describe the growth of certain
populations. Suppose that P(t) is the population of some organism and that

dP
dt
= −P ln

(
P
3

)
= −P(ln P − ln 3).

(a) Sketch a slope field for P(t) over the range 0 ≤ P ≤ 6.

(b) Identify any equilibrium solutions and determine whether they are stable or
unstable.

(c) Find the population P(t) assuming that P(0) = 1 and sketch its graph. What
happens to P(t) after a very long time?

(d) Find the population P(t) assuming that P(0) = 6 and sketch its graph. What
happens to P(t) after a very long time?

(e) Verify that the long-term behavior of your solutions agrees with what you
predicted by looking at the slope field.
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7.5 Modeling with differential equations

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How can we use differential equations to describe phenomena in the world around
us?

• How can we use differential equations to better understand these phenomena?

Introduction

In our work to date, we have seen several ways that differential equations arise in the
natural world, from the growth of a population to the temperature of a cup of coffee. In
this section, we will look more closely at how differential equations give us a natural way to
describe various phenoma. As we’ll see, the key is to focus on understanding the different
factors that cause a quantity to change.

Preview Activity 7.5. Any time that the rate of change of a quantity is related to the
amount of a quantity, a differential equation naturally arises. In the following two problems,
we see two such scenarios; for each, we want to develop a differential equation whose
solution is the quantity of interest.

(a) Suppose you have a bank account in which money grows at an annual rate of 3%.

(i) If you have $10,000 in the account, at what rate is your money growing?

(ii) Suppose that you are also withdrawing money from the account at $1,000
per year. What is the rate of change in the amount of money in the account?
What are the units on this rate of change?

(b) Suppose that a water tank holds 100 gallons and that a salty solution, which
contains 20 grams of salt in every gallon, enters the tank at 2 gallons per minute.

(i) How much salt enters the tank each minute?

(ii) Suppose that initially there are 300 grams of salt in the tank. How much salt
is in each gallon at this point in time?

(iii) Finally, suppose that evenly mixed solution is pumped out of the tank at the
rate of 2 gallons per minute. How much salt leaves the tank each minute?

(iv) What is the total rate of change in the amount of salt in the tank?

./
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Developing a differential equation

Preview activity 7.5 demonstrates the kind of thinking we will be doing in this section. In
each of the two examples we considered, there is a quantity, such as the amount of money
in the bank account or the amount of salt in the tank, that is changing due to several
factors. The governing differential equation results from the total rate of change being the
difference between the rate of increase and the rate of decrease.

Example 7.3. In the Great Lakes region, rivers flowing into the lakes carry a great deal of
pollution in the form of small pieces of plastic averaging 1 millimeter in diameter. In order
to understand how the amount of plastic in Lake Michigan is changing, construct a model
for how this type pollution has built up in the lake.

Solution.

First, some basic facts about Lake Michigan.

• The volume of the lake is 5 · 1012 cubic meters.

• Water flows into the lake at a rate of 5 · 1010 cubic meters per year. It flows out of
the lake at the same rate.

• Each cubic meter flowing into the lake contains roughly 3 · 10−8 cubic meters of
plastic pollution.

Let’s denote the amount of pollution in the lake by P(t), where P is measured in cubic
meters of plastic and t in years. Our goal is to describe the rate of change of this function;
in other words, we want to develop a differential equation describing P(t).

First, we will measure how P(t) increases due to pollution flowing into the lake. We
know that 5 · 1010 cubic meters of water enters the lake every year and each cubic meter
of water contains 3 · 10−8 cubic meters of pollution. Therefore, pollution enters the lake at
the rate of(

5 · 1010
m3 water
year

)
·

(
3 · 10−8

m3 plastic
m3 water

)
= 1.5 · 103 cubic m of plastic per year.

Second, we will measure how P(t) decreases due to pollution flowing out of the lake.
If the total amount of pollution is P cubic meters and the volume of Lake Michigan is
5 · 1012 cubic meters, then the concentration of plastic pollution in Lake Michigan is

P
5 · 1012

cubic meters of plastic per cubic meter of water.
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Since 5 · 1010 cubic meters of water flow out each year6, then the plastic pollution leaves
the lake at the rate of(

P
5 · 1012

m3 plastic
m3 water

)
·

(
5 · 1010

m3 water
year

)
=

P
100

cubic meters of plastic per year.

The total rate of change of P is thus the difference between the rate at which pollution
enters the lake minus the rate at which pollution leaves the lake; that is,

dP
dt

= 1.5 · 103 −
P
100

=
1

100
(1.5 · 105 − P).

We have now found a differential equation that describes the rate at which the amount
of pollution is changing. To better understand the behavior of P(t), we now apply some of
the techniques we have recently developed.

Since this is an autonomous differential equation, we can sketch dP/dt as a function
of P and then construct a slope field, as shown in Figure 7.3.

P

dP/dt

1.5 ·105

t

P

Figure 7.3: Plots of dP
dt vs. P and the slope field for the differential equation dP

dt =
1

100 (1.5 · 105 − P).

These plots both show that P = 1.5 · 105 is a stable equilibrium. Therefore, we should
expect that the amount of pollution in Lake Michigan will stabilize near 1.5 · 105 cubic
meters of pollution.

Next, assuming that there is initially no pollution in the lake, we will solve the initial

6and we assume that each cubic meter of water that flows out carries with it the plastic pollution it contains
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value problem
dP
dt
=

1

100
(1.5 · 105 − P), P(0) = 0.

Separating variables, we find that

1

1.5 · 105 − P
dP
dt
=

1

100
.

Integrating with respect to t, we have∫
1

1.5 · 105 − P
dP
dt

dt =
∫

1

100
dt,

and thus changing variables on the left and antidifferentiating on both sides, we find that∫
dP

1.5 · 105 − P
=

∫
1

100
dt

− ln |1.5 · 105 − P| = 1

100
t + C

Finally, multiplying both sides by −1 and using the definition of the logarithm, we find that

1.5 · 105 − P = Ce−t/100. (7.1)

This is a good time to determine the constant C. Since P = 0 when t = 0, we have

1.5 · 105 − 0 = Ce0 = C.

In other words, C = 1.5 · 105.

Using this value of C in Equation (7.1) and solving for P, we arrive at the solution

P(t) = 1.5 · 105(1 − e−t/100).
Superimposing the graph of P on the slope field we saw in Figure 7.3, we see, as shown
in Figure 7.4 We see that, as expected, the amount of plastic pollution stabilizes around
1.5 · 105 cubic meters.

There are many important lessons to learn from Example 7.3. Foremost is how we
can develop a differential equation by thinking about the “total rate = rate in - rate out”
model. In addition, we note how we can bring together all of our available understanding
(plotting dP

dt vs. P, creating a slope field, solving the differential equation) to see how the
differential equation describes the behavior of a changing quantity.

Of course, we can also explore what happens when certain aspects of the problem
change. For instance, let’s suppose we are at a time when the plastic pollution entering
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t

P

Figure 7.4: The solution P(t) and the slope field for the differential equation dP
dt =

1
100 (1.5 · 105 − P).

Lake Michigan has stabilized at 1.5 · 105 cubic meters, and that new legislation is passed
to prevent this type of pollution entering the lake. So, there is no longer any inflow of
plastic pollution to the lake. How does the amount of plastic pollution in Lake Michigan
now change? For example, how long does it take for the amount of plastic pollution in the
lake to halve?

Restarting the problem at time t = 0, we now have the modified initial value problem

dP
dt
= −

1

100
P, P(0) = 1.5 · 105.

It is a straightforward and familiar exercise to find that the solution to this equation is
P(t) = 1.5 · 105e−t/100. The time that it takes for half of the pollution to flow out of the
lake is given by T where P(T) = 0.75 · 105. Thus, we must solve the equation

0.75 · 105 = 1.5 · 105e−T/100,

or
1

2
= e−T/100.

It follows that

T = −100 ln
(1
2

)
≈ 69.3 years.

In the upcoming activities, we explore some other natural settings in which differential
equation model changing quantities.
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Activity 7.11.

Suppose you have a bank account that grows by 5% every year. Let A(t) be the amount
of money in the account in year t.

(a) What is the rate of change of A with respect to t?

(b) Suppose that you are also withdrawing $10,000 per year. Write a differential
equation that expresses the total rate of change of A.

(c) Sketch a slope field for this differential equation, find any equilibrium solutions,
and identify them as either stable or unstable. Write a sentence or two that
describes the significance of the stability of the equilibrium solution.

(d) Suppose that you initially deposit $100,000 into the account. How long does it
take for you to deplete the account?

(e) What is the smallest amount of money you would need to have in the account
to guarantee that you never deplete the money in the account?

(f) If your initial deposit is $300,000, how much could you withdraw every year
without depleting the account?

C

Activity 7.12.

A dose of morphine is absorbed from the bloodstream of a patient at a rate proportional
to the amount in the bloodstream.

(a) Write a differential equation for M(t), the amount of morphine in the patient’s
bloodstream, using k as the constant proportionality.

(b) Assuming that the initial dose of morphine is M0, solve the initial value problem
to find M(t). Use the fact that the half-life for the absorption of morphine is
two hours to find the constant k .

(c) Suppose that a patient is given morphine intravenously at the rate of 3 mil-
ligrams per hour. Write a differential equation that combines the intravenous
administration of morphine with the body’s natural absorption.

(d) Find any equilibrium solutions and determine their stability.

(e) Assuming that there is initially no morphine in the patient’s bloodstream, solve
the initial value problem to determine M(t). What happens to M(t) after a very
long time?

(f) To what rate should a doctor reduce the intravenous rate so that there is
eventually 7 milligrams of morphine in the patient’s bloodstream?

C
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Summary

In this section, we encountered the following important ideas:

• Differential equations arise in a situation when we understand how various factors
cause a quantity to change.

• We may use the tools we have developed so far—slope fields, Euler’s methods, and
our method for solving separable equations—to understand a quantity described by a
differential equation.

Exercises

1. Congratulations, you just won the lottery! In one option presented to you, you will be
paid one million dollars a year for the next 25 years. You can deposit this money in an
account that will earn 5% each year.

(a) Set up a differential equation that describes the rate of change in the amount
of money in the account. Two factors cause the amount to grow—first, you are
depositing one millon dollars per year and second, you are earning 5% interest.

(b) If there is no amount of money in the account when you open it, how much
money will you have in the account after 25 years?

(c) The second option presented to you is to take a lump sum of 10 million dollars,
which you will deposit into a similar account. How much money will you have
in that account after 25 years?

(d) Do you prefer the first or second option? Explain your thinking.

(e) At what time does the amount of money in the account under the first option
overtake the amount of money in the account under the second option?

2. When a skydiver jumps from a plane, gravity causes her downward velocity to increase
at the rate of g ≈ 9.8 meters per second squared. At the same time, wind resistance
causes her velocity to decrease at a rate proportional to the velocity.

(a) Using k to represent the constant of proportionality, write a differential equation
that describes the rate of change of the skydiver’s velocity.

(b) Find any equilibrium solutions and decide whether they are stable or unstable.
Your result should depend on k .

(c) Suppose that the initial velocity is zero. Find the velocity v(t).
(d) A typical terminal velocity for a skydiver falling face down is 54 meters per

second. What is the value of k for this skydiver?
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(e) How long does it take to reach 50% of the terminal velocity?

3. During the first few years of life, the rate at which a baby gains weight is proportional
to the reciprocal of its weight.

(a) Express this fact as a differential equation.

(b) Suppose that a baby weighs 8 pounds at birth and 9 pounds one month later.
How much will he weigh at one year?

(c) Do you think this is a realistic model for a long time?

4. Suppose that you have a water tank that holds 100 gallons of water. A briny solution,
which contains 20 grams of salt per gallon, enters the tank at the rate of 3 gallons per
minute.

At the same time, the solution is well mixed, and water is pumped out of the tank at
the rate of 3 gallons per minute.

(a) Since 3 gallons enters the tank every minute and 3 gallons leaves every minute,
what can you conclude about the volume of water in the tank.

(b) How many grams of salt enters the tank every minute?

(c) Suppose that S(t) denotes the number of grams of salt in the tank in minute t.
How many grams are there in each gallon in minute t?

(d) Since water leaves the tank at 3 gallons per minute, how many grams of salt
leave the tank each minute?

(e) Write a differential equation that expresses the total rate of change of S.

(f) Identify any equilibrium solutions and determine whether they are stable or
unstable.

(g) Suppose that there is initially no salt in the tank. Find the amount of salt S(t)
in minute t.

(h) What happens to S(t) after a very long time? Explain how you could have
predicted this only knowing how much salt there is in each gallon of the briny
solution that enters the tank.
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7.6 Population Growth and the Logistic Equation

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• How can we use differential equations to realistically model the growth of a
population?

• How can we assess the accuracy of our models?

Introduction

The growth of the earth’s population is one of the pressing issues of our time. Will the
population continue to grow? Or will it perhaps level off at some point, and if so, when?
In this section, we will look at two ways in which we may use differential equations to help
us address questions such as these.

Before we begin, let’s consider again two important differential equations that we have
seen in earlier work this chapter.

Preview Activity 7.6. Recall that one model for population growth states that a population
grows at a rate proportional to its size.

(a) We begin with the differential equation

dP
dt
=

1

2
P.

Sketch a slope field below as well as a few typical solutions on the axes provided.

2 4

1

2

3

4

t

P
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(b) Find all equilibrium solutions of the equation dP
dt =

1
2P and classify them as stable

or unstable.

(c) If P(0) is positive, describe the long-term behavior of the solution to dP
dt =

1
2P.

(d) Let’s now consider a modified differential equation given by

dP
dt
=

1

2
P(3 − P).

As before, sketch a slope field as well as a few typical solutions on the following
axes provided.

2 4

1

2

3

4

t

P

(e) Find any equilibrium solutions and classify them as stable or unstable.

(f) If P(0) is positive, describe the long-term behavior of the solution.

./

The earth’s population

We will now begin studying the earth’s population. To get started, here are some data for
the earth’s population in recent years that we will use in our investigations.
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Year Population (in billions)
1998 5.932
1999 6.008
2000 6.084
2001 6.159
2002 6.234
2005 6.456
2006 6.531
2007 6.606
2008 6.681
2009 6.756
2010 6.831

Activity 7.13.

Our first model will be based on the following assumption:

The rate of change of the population is proportional to the population.

On the face of it, this seems pretty reasonable. When there is a relatively small number
of people, there will be fewer births and deaths so the rate of change will be small.
When there is a larger number of people, there will be more births and deaths so we
expect a larger rate of change.

If P(t) is the population t years after the year 2000, we may express this assumption as

dP
dt
= kP

where k is a constant of proportionality.

(a) Use the data in the table to estimate the derivative P′(0) using a central
difference. Assume that t = 0 corresponds to the year 2000.

(b) What is the population P(0)?
(c) Use these two facts to estimate the constant of proportionality k in the differen-

tial equation.

(d) Now that we know the value of k , we have the initial value problem

dP
dt
= kP, P(0) = 6.084.

Find the solution to this initial value problem.

(e) What does your solution predict for the population in the year 2010? Is this
close to the actual population given in the table?
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(f) When does your solution predict that the population will reach 12 billion?

(g) What does your solution predict for the population in the year 2500?

(h) Do you think this is a reasonable model for the earth’s population? Why or
why not? Explain your thinking using a couple of complete sentences.

C

Our work in Activity 7.13 shows that that the exponential model is fairly accurate for
years relatively close to 2000. However, if we go too far into the future, the model predicts
increasingly large rates of change, which causes the population to grow arbitrarily large.
This does not make much sense since it is unrealistic to expect that the earth would be
able to support such a large population.

The constant k in the differential equation has an important interpretation. Let’s
rewrite the differential equation dP

dt = kP by solving for k , so that we have

k =
dP/dt

P
.

Viewed in this light, k is the ratio of the rate of change to the population; in other words,
it is the contribution to the rate of change from a single person. We call this the per capita
growth rate.

In the exponential model we introduced in Activity 7.13, the per capita growth rate is
constant. In particular, we are assuming that when the population is large, the per capita
growth rate is the same as when the population is small. It is natural to think that the per
capita growth rate should decrease when the population becomes large, since there will
not be enough resources to support so many people. In other words, we expect that a
more realistic model would hold if we assume that the per capita growth rate depends on
the population P.

In the previous activity, we computed the per capita growth rate in a single year by
computing k, the quotient of dP

dt and P (which we did for t = 0). If we return data and
compute the per capita growth rate over a range of years, we generate the data shown in
Figure 7.5, which shows how the per capita growth rate is a function of the population,
P. From the data, we see that the per capita growth rate appears to decrease as the
population increases. In fact, the points seem to lie very close to a line, which is shown at
two different scales in Figure 7.6. Looking at this line carefully, we can find its equation to
be

dP/dt
P
= 0.025 − 0.002P.

If we multiply both sides by P, we arrive at the differential equation

dP
dt
= P(0.025 − 0.002P).
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0.015
per capita growth rate

Figure 7.5: A plot of per capita growth rate vs. population P.

Graphing the dependence of dP/dt on the population P, we see that this differential
equation demonstrates a quadratic relationship between dP

dt and P, as shown in Figure 7.7.
The equation dP

dt = P(0.025 − 0.002P) is an example of the logistic equation, and is the
second model for population growth that we will consider. We have reason to believe that
it will be more realistic since the per capita growth rate is a decreasing function of the
population.

Indeed, the graph in Figure 7.7 shows that there are two equilibrium solutions, P = 0,
which is unstable, and P = 12.5, which is a stable equilibrium. The graph shows that any
solution with P(0) > 0 will eventually stabilize around 12.5. In other words, our model
predicts the world’s population will eventually stabilize around 12.5 billion.

A prediction for the long-term behavior of the population is a valuable conclusion to
draw from our differential equation. We would, however, like to answer some quantitative
questions. For instance, how long will it take to reach a population of 10 billion? To
determine this, we need to find an explicit solution of the equation.

Solving the logistic differential equation

Since we would like to apply the logistic model in more general situations, we state the
logistic equation in its more general form,

dP
dt
= kP(N − P). (7.2)

The equilibrium solutions here are when P = 0 and 1 − P
N = 0, which shows that P = N .

The equilibrium at P = N is called the carrying capacity of the population for it represents
the stable population that can be sustained by the environment.
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Figure 7.6: The line that approximates per capita growth as a function of population, P.

We now solve the logistic equation (7.2). The equation is separable, so we separate the
variables

1

P(N − P)
dP
dt
= k,

and integrate to find that ∫
1

P(N − P) dP =
∫

k dt .

To find the antiderivative on the left, we use the partial fraction decomposition

1

P(N − P) =
1

N

[ 1
P
+

1

N − P

]
.

Now we are ready to integrate, with∫
1

N

[ 1
P
+

1

N − P

]
dP =

∫
k dt .
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P
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Figure 7.7: A plot of dP
dt vs. P for the differential equation dP

dt = P(0.025 − 0.002P).

On the left, observe that N is constant, so we can remove the factor of 1
N and antidifferen-

tiate to find that
1

N
(ln |P| − ln |N − P|) = kt + C.

Multiplying both sides of this last equation by N and using an important rule of logarithms,
we next find that

ln
�����

P
N − P

�����
= k Nt + C.

From the definition of the logarithm, replacing eC with C, and letting C absorb the
absolute value signs, we now know that

P
N − P

= CekNt .

At this point, all that remains is to determine C and solve algebraically for P.

If the initial population is P(0) = P0, then it follows that C = P0

N−P0
, so

P
N − P

=
P0

N − P0
ekNt .

We will solve this most recent equation for P by multiplying both sides by (N − P)(N − P0)
to obtain

P(N − P0) = P0(N − P)ekNt

= P0NekNt − P0PekNt .
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Swapping the left and right sides, expanding, and factoring, it follows that

P0NekNt = P(N − P0) + P0PekNt

= P(N − P0 + P0ekNt ).
Dividing to solve for P, we see that

P =
P0NekNt

N − P0 + P0ekNt
.

Finally, we choose to multiply the numerator and denominator by 1
P0

e−kNt to obtain

P(t) = N(
N−P0

P0

)
e−kNt + 1

.

While that was a lot of algebra, notice the result: we have found an explicit solution to
the initial value problem

dP
dt
= kP(N − P), P(0) = P0,

and that solution is

P(t) = N(
N−P0

P0

)
e−kNt + 1

. (7.3)

For the logistic equation describing the earth’s population that we worked with earlier
in this section, we have

k = 0.002, N = 12.5, and P0 = 6.084.

This gives the solution

P(t) = 12.5

1.0546e−0.025t + 1
,

whose graph is shown in Figure 7.8 Notice that the graph shows the population leveling
off at 12.5 billion, as we expected, and that the population will be around 10 billion in
the year 2050. These results, which we have found using a relatively simple mathematical
model, agree fairly well with predictions made using a much more sophisticated model
developed by the United Nations.

The logistic equation is useful in other situations, too, as it is good for modeling any
situation in which limited growth is possible. For instance, it could model the spread of
a flu virus through a population contained on a cruise ship, the rate at which a rumor
spreads within a small town, or the behavior of an animal population on an island. Again,
it is important to realize that through our work in this section, we have completely solved
the logistic equation, regardless of the values of the constants N , k, and P0. Anytime we
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Figure 7.8: The solution to the logistic equation modeling the earth’s population.

encounter a logistic equation, we can apply the formula we found in Equation (7.3).

Activity 7.14.

Consider the logistic equation

dP
dt
= kP(N − P)

with the graph of dP
dt vs. P shown below.

P

dP
dt

N

N/2

(a) At what value of P is the rate of change greatest?

(b) Consider the model for the earth’s population that we created. At what value
of P is the rate of change greatest? How does that compare to the population
in recent years?

(c) According to the model we developed, what will the population be in the year
2100?
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(d) According to the model we developed, when will the population reach 9 billion?

(e) Now consider the general solution to the general logistic initial value problem
that we found, given by

P(t) = N(
N−P0

P0

)
e−kNt + 1

.

Verify algebraically that P(0) = P0 and that limt→∞ P(t) = N .

C

Summary

In this section, we encountered the following important ideas:

• If we assume that the rate of growth of a population is proportional to the population,
we are led to a model in which the population grows without bound and at a rate that
grows without bound.

• By assuming that the per capita growth rate decreases as the population grows, we are
led to the logistic model of population growth, which predicts that the population will
eventually stabilize at the carrying capacity.

Exercises

1. The logistic equation may be used to model how a rumor spreads through a group of
people. Suppose that p(t) is the fraction of people that have heard the rumor on day t.
The equation

dp
dt
= 0.2p(1 − p)

describes how p changes. Suppose initially that one-tenth of the people have heard the
rumor; that is, p(0) = 0.1.

(a) What happens to p(t) after a very long time?

(b) Determine a formula for the function p(t).
(c) At what time is p changing most rapidly?

(d) How long does it take before 80% of the people have heard the rumor?

2. Suppose that b(t) measures the number of bacteria living in a colony in a Petri dish,
where b is measured in thousands and t is measured in days. One day, you measure
that there are 6,000 bacteria and the per capita growth rate is 3. A few days later, you
measure that there are 9,000 bacteria and the per capita growth rate is 2.
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(a) Assume that the per capita growth rate db/dt
b is a linear function of b. Use the

measurements to find this function and write a logistic equation to describe db
dt .

(b) What is the carrying capacity for the bacteria?

(c) At what population is the number of bacteria increasing most rapidly?

(d) If there are initially 1,000 bacteria, how long will it take to reach 80% of the
carrying capacity?

3. Suppose that the population of a species of fish is controlled by the logistic equation

dP
dt
= 0.1P(10 − P),

where P is measured in thousands of fish and t is measured in years.

(a) What is the carrying capacity of this population?

(b) Suppose that a long time has passed and that the fish population is stable at
the carrying capacity. At this time, humans begin harvesting 20% of the fish
every year. Modify the differential equation by adding a term to incorporate
the harvesting of fish.

(c) What is the new carrying capacity?

(d) What will the fish population be one year after the harvesting begins?

(e) How long will it take for the population to be within 10% of the carrying
capacity?
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Chapter 8

Sequences and Series

8.1 Sequences

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is a sequence?

• What does it mean for a sequence to converge?

• What does it mean for a sequence to diverge?

Introduction

We encounter sequences every day. Your monthly rent payments, the annual interest you
earn on investments, a list of your car’s miles per gallon every time you fill up; all are
examples of sequences. Other sequences with which you may be familiar include the
Fibonacci sequence

1, 1, 2, 3, 5, 8, . . .

in which each entry is the sum of the two preceding entries and the triangular numbers

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, . . .

which are numbers that correspond to the number of vertices seen in the triangles in
Figure 8.1. Sequences of integers are of such interest to mathematicians and others that

447
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Figure 8.1: Triangular numbers

they have a journal1 devoted to them and an on-line encyclopedia2 that catalogs a huge
number of integer sequences and their connections. Sequences are also used in digital
recordings and digital images.

To this point, most of our studies in calculus have dealt with continuous information
(e.g., continuous functions). The major difference we will see now is that sequences model
discrete instead of continuous information. We will study ways to represent and work with
discrete information in this chapter as we investigate sequences and series, and ultimately
see key connections between the discrete and continuous.

Preview Activity 8.1. Suppose you receive $5000 through an inheritance. You decide
to invest this money into a fund that pays 8% annually, compounded monthly. That
means that each month your investment earns 0.08

12 · P additional dollars, where P is your
principal balance at the start of the month. So in the first month your investment earns

5000
(0.08
12

)
or $33.33. If you reinvest this money, you will then have $5033.33 in your account at the
end of the first month. From this point on, assume that you reinvest all of the interest you
earn.

(a) How much interest will you earn in the second month? How much money will you
have in your account at the end of the second month?

(b) Complete Table 8.1 to determine the interest earned and total amount of money
in this investment each month for one year.

(c) As we will see later, the amount of money Pn in the account after month n is given
by

Pn = 5000
(
1 +

0.08

12

)n
.

Use this formula to check your calculations in Table 8.1. Then find the amount of
money in the account after 5 years.

1The Journal of Integer Sequences at http://www.cs.uwaterloo.ca/journals/JIS/
2The On-Line Encyclopedia of Integer Sequences at http://oeis.org/

http://www.cs.uwaterloo.ca/journals/JIS/
http://oeis.org/


8.1. SEQUENCES 449

Month Interest earned Total amount of money in the account

0 $0 $5000.00

1 $33.33 $5033.33

2

3

4

5

6

7

8

9

10

11

12

Table 8.1: Interest

(d) How many years will it be before the account has doubled in value to $10000?

./

Sequences

As our discussion in the introduction and Preview Activity 8.1 illustrate, many discrete
phenomena can be represented as lists of numbers (like the amount of money in an account
over a period of months). We call these any such list a sequence. In other words, a sequence
is nothing more than list of terms in some order. To be able to refer to a sequence in a
general sense, we often list the entries of the sequence with subscripts,

s1, s2, . . . , sn . . . ,

where the subscript denotes the position of the entry in the sequence. More formally,

Definition 8.1. A sequence is a list of terms s1, s2, s3, . . . in a specified order.

As an alternative to Definition 8.1, we can also consider a sequence to be a function f
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whose domain is the set of positive integers. In this context, the sequence s1, s2, s3, . . .
would correspond to the function f satisfying f (n) = sn for each positive integer n. This
alternative view will be be useful in many situations.

We will often write the sequence

s1, s2, s3, . . .

using the shorthand notation {sn}. The value sn (alternatively s(n)) is called the nth term
in the sequence. If the terms are all 0 after some fixed value of n, we say the sequence
is finite. Otherwise the sequence is infinite. We will work with both finite and infinite
sequences, but focus more on the infinite sequences. With infinite sequences, we are often
interested in their end behavior and the idea of convergent sequences.

Activity 8.1.
(a) Let sn be the nth term in the sequence 1, 2, 3, . . ..

Find a formula for sn and use appropriate technological tools to draw a graph
of entries in this sequence by plotting points of the form (n, sn) for some values
of n. Most graphing calculators can plot sequences; directions follow for the
TI-84.

• In the MODE menu, highlight SEQ in the FUNC line and press ENTER.

• In the Y= menu, you will now see lines to enter sequences. Enter a value
for nMin (where the sequence starts), a function for u(n) (the nth term in
the sequence), and the value of unMin.

• Set your window coordinates (this involves choosing limits for n as well as
the window coordinates XMin, XMax, YMin, and YMax.

• The GRAPH key will draw a plot of your sequence.

Using your knowledge of limits of continuous functions as x → ∞, decide if
this sequence {sn} has a limit as n → ∞. Explain your reasoning.

(b) Let sn be the nth term in the sequence 1, 12,
1
3, . . .. Find a formula for sn. Draw

a graph of some points in this sequence. Using your knowledge of limits of
continuous functions as x → ∞, decide if this sequence {sn} has a limit as
n → ∞. Explain your reasoning.

(c) Let sn be the nth term in the sequence 2, 32,
4
3,

5
4, . . .. Find a formula for sn.

Using your knowledge of limits of continuous functions as x → ∞, decide if
this sequence {sn} has a limit as n → ∞. Explain your reasoning.

C

Next we formalize the ideas from Activity 8.1.
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Activity 8.2.
(a) Recall our earlier work with limits involving infinity in Section 2.8. State clearly

what it means for a continuous function f to have a limit L as x → ∞.

(b) Given that an infinite sequence of real numbers is a function from the integers
to the real numbers, apply the idea from part (a) to explain what you think it
means for a sequence {sn} to have a limit as n → ∞.

(c) Based on your response to (b), decide if the sequence
�
1+n
2+n

	
has a limit as

n → ∞. If so, what is the limit? If not, why not?

C

In Activities 8.1 and 8.2 we investigated the notion of a sequence {sn} having a limit
as n goes to infinity. If a sequence {sn} has a limit as n goes to infinity, we say that the
sequence converges or is a convergent sequence. If the limit of a convergent sequence is the
number L, we use the same notation as we did for continuous functions and write

lim
n→∞

sn = L.

If a sequence {sn} does not converge then we say that the sequence {sn} diverges.
Convergence of sequences is a major idea in this section and we describe it more formally
as follows.

A sequence {sn} of real numbers converges to a number L if we can make all values
of sk for k ≥ n as close to L as we want by choosing n to be sufficiently large.

Remember, the idea of sequence having a limit as n → ∞ is the same as the idea of
a continuous function having a limit as x → ∞. The only new wrinkle here is that our
sequences are discrete instead of continuous.

We conclude this section with a few more examples in the following activity.

Activity 8.3.

Use graphical and/or algebraic methods to determine whether each of the following
sequences converges or diverges.

(a)
�
1+2n
3n−2

	

(b)
{

5+3n

10+2n

}

(c)
{
10n

n!

}
(where ! is the factorial symbol and n! = n(n − 1)(n − 2) · · · (2)(1) for any

positive integer n (as convention we define 0! to be 1)).

C
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Summary

In this section, we encountered the following important ideas:

• A sequence is a list of objects in a specified order. We will typically work with sequences
of real numbers and can also think of a sequence as a function from the positive
integers to the set of real numbers.

• A sequence {sn} of real numbers converges to a number L if we can make every value
of sk for k ≥ n as close as we want to L by choosing n sufficiently large.

• A sequence diverges if it does not converge.

Exercises

1. Finding limits of convergent sequences can be a challenge. However, there is a useful
tool we can adapt from our study of limits of continuous functions at infinity to use to
find limits of sequences. We illustrate in this exercise with the example of the sequence

ln(n)
n

.

(a) Calculate the first 10 terms of this sequence. Based on these calculations, do
you think the sequence converges or diverges? Why?

(b) For this sequence, there is a corresponding continuous function f defined by

f (x) = ln(x)
x

.

Draw the graph of f (x) on the interval [0, 10] and then plot the entries of the
sequence on the graph. What conclusion do you think we can draw about the
sequence

{
ln(n)
n

}
if limx→∞ f (x) = L? Explain.

(c) Note that f (x) has the indeterminate form ∞
∞

as x goes to infinity. What idea
from differential calculus can we use to calculate limx→∞ f (x)? Use this method
to find limx→∞ f (x). What, then, is limn→∞

ln(n)
n ?

2. We return to the example begun in Preview Activity 8.1 to see how to derive the formula
for the amount of money in an account at a given time. We do this in a general setting.
Suppose you invest P dollars (called the principal) in an account paying r% interest
compounded monthly. In the first month you will receive r

12 (here r is in decimal form;
e.g., if we have 8% interest, we write 0.08

12 ) of the principal P in interest, so you earn

P
( r
12

)
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dollars in interest. Assume that you reinvest all interest. Then at the end of the first
month your account will contain the original principal P plus the interest, or a total of

P1 = P + P
( r
12

)
= P

(
1 +

r
12

)
dollars.

(a) Given that your principal is now P1 dollars, how much interest will you earn in
the second month? If P2 is the total amount of money in your account at the
end of the second month, explain why

P2 = P1

(
1 +

r
12

)
= P

(
1 +

r
12

)2
.

(b) Find a formula for P3, the total amount of money in the account at the end of
the third month in terms of the original investment P.

(c) There is a pattern to these calculations. Let Pn the total amount of money in
the account at the end of the third month in terms of the original investment
P. Find a formula for Pn.

3. Sequences have many applications in mathematics and the sciences. In a recent paper3

the authors write

The incretin hormone glucagon-like peptide-1 (GLP-1) is capable of ameliorat-
ing glucose-dependent insulin secretion in subjects with diabetes. However,
its very short half-life (1.5-5 min) in plasma represents a major limitation for
its use in the clinical setting.

The half-life of GLP-1 is the time it takes for half of the hormone to decay in its medium.
For this exercise, assume the half-life of GLP-1 is 5 minutes. So if A is the amount of
GLP-1 in plasma at some time t, then only A

2 of the hormone will be present after t + 5
minutes. Suppose A0 = 100 grams of the hormone are initially present in plasma.

(a) Let A1 be the amount of GLP-1 present after 5 minutes. Find the value of A1.

(b) Let A2 be the amount of GLP-1 present after 10 minutes. Find the value of A2.

(c) Let A3 be the amount of GLP-1 present after 15 minutes. Find the value of A3.

(d) Let A4 be the amount of GLP-1 present after 20 minutes. Find the value of A4.

(e) Let An be the amount of GLP-1 present after 5n minutes. Find a formula for
An.

(f) Does the sequence {An} converge or diverge? If the sequence converges, find
its limit and explain why this value makes sense in the context of this problem.

3Hui H, Farilla L, Merkel P, Perfetti R. The short half-life of glucagon-like peptide-1 in plasma does not
reflect its long-lasting beneficial effects, Eur J Endocrinol 2002 Jun;146(6):863-9.
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(g) Determine the number of minutes it takes until the amount of GLP-1 in plasma
is 1 gram.

4. Continuous data is the basis for analog information, like music stored on old cassette
tapes or vinyl records. A digital signal like on a CD or MP3 file is obtained by sampling
an analog signal at some regular time interval and storing that information. For
example, the sampling rate of a compact disk is 44,100 samples per second. So a
digital recording is only an approximation of the actual analog information. Digital
information can be manipulated in many useful ways that allow for, among other things,
noisy signals to be cleaned up and large collections of information to be compressed
and stored in much smaller space. While we won’t investigate these techniques in this
chapter, this exercise is intended to give an idea of the importance of discrete (digital)
techniques.

Let f be the continuous function defined by f (x) = sin(4x) on the interval [0, 10].
A graph of f is shown in Figure 8.2. We approximate f by sampling, that is by

2 4 6 8 10

-1.0

-0.5

0.5

1.0

x

Figure 8.2: The graph of f (x) = sin(4x) on the interval [0, 10]

partitioning the interval [0, 10] into uniform subintervals and recording the values of f
at the endpoints.

(a) Ineffective sampling can lead to several problems in reproducing the original
signal. As an example, partition the interval [0, 10] into 8 equal length
subintervals and create a list of points (the sample) using the endpoints of each
subinterval. Plot your sample on graph of f in Figure Figure 8.2. What can you
say about the period of your sample as compared to the period of the original
function?

(b) The sampling rate is the number of samples of a signal taken per second. As
part (a) illustrates, sampling at too small a rate can cause serious problems with
reproducing the original signal (this problem of inefficient sampling leading to
an inaccurate approximation is called aliasing ). There is an elegant theorem
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called the Nyquist-Shannon Sampling Theorem that says that human perception
is limited, which allows that replacement of a continuous signal with a digital
one without any perceived loss of information. This theorem also provides the
lowest rate at which a signal can be sampled (called the Nyquist rate) without
such a loss of information. The theorem states that we should sample at double
the maximum desired frequency so that every cycle of the original signal will
be sampled at at least two points.

Recall that the frequency of a sinusoidal function is the reciprocal of the period.
Identify the frequency of the function f and determine the number of partitions
of the interval [0, 10] that give us the Nyquist rate.

(c) Humans cannot typically pick up signals above 20 kHz. Explain why, then, that
information on a compact disk is sampled at 44,100 Hz.
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8.2 Geometric Series

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is a geometric series?

• What is a partial sum of a geometric series? What is a simplified form of the nth
partial sum of a geometric series?

• Under what conditions does a geometric series converge? What is the sum of a
convergent geometric series?

Introduction

Many important sequences are generated through the process of addition. In Preview
Activity 8.2, we see a particular example of a special type of sequence that is connected to
a sum.

Preview Activity 8.2. Warfarin is an anticoagulant that prevents blood clotting; often it
is prescribed to stroke victims in order to help ensure blood flow. The level of warfarin
has to reach a certain concentration in the blood in order to be effective.

Suppose warfarin is taken by a particular patient in a 5 mg dose each day. The drug is
absorbed by the body and some is excreted from the system between doses. Assume that at
the end of a 24 hour period, 8% of the drug remains in the body. Let Q(n) be the amount
(in mg) of warfarin in the body before the (n + 1)st dose of the drug is administered.

(a) Explain why Q(1) = 5 × 0.08 mg.

(b) Explain why Q(2) = (5 +Q(1)) × 0.08 mg. Then show that

Q(2) = (5 × 0.08) (1 + 0.08) mg.

(c) Explain why Q(3) = (5 +Q(2)) × 0.08 mg. Then show that

Q(3) = (5 × 0.08) �
1 + 0.08 + 0.082

�
mg.

(d) Explain why Q(4) = (5 +Q(3)) × 0.08 mg. Then show that

Q(4) = (5 × 0.08) �
1 + 0.08 + 0.082 + 0.083

�
mg.

(e) There is a pattern that you should see emerging. Use this pattern to find a formula
for Q(n), where n is an arbitrary positive integer.
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(f) Complete Table 8.2 with values of Q(n) for the provided n-values (reporting Q(n)
to 10 decimal places). What appears to be happening to the sequence Q(n) as n
increases?

Q(1) 0.40

Q(2)
Q(3)
Q(4)
Q(5)
Q(6)
Q(7)
Q(8)
Q(9)
Q(10)

Table 8.2: Values of Q(n) for selected values of n

./

Geometric Sums

In Preview Activity 8.2 we encountered the sum

(5 × 0.08) �
1 + 0.08 + 0.082 + 0.083 + · · · + 0.08n−1

�
.

In order to evaluate the long-term level of Warfarin in the patient’s system, we will want to
fully understand the sum in this expression. This sum has the form

a + ar + ar2 + · · · + arn−1 (8.1)

where a = 5 × 0.08 and r = 0.08. Such a sum is called a geometric sum with ratio r . We
will analyze this sum in more detail in the next activity.

Activity 8.4.

Let a and r be real numbers (with r , 1) and let

Sn = a + ar + ar2 + · · · + arn−1.
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In this activity we will find a shortcut formula for Sn that does not involve a sum of n
terms.

(a) Multiply Sn by r . What does the resulting sum look like?

(b) Subtract rSn from Sn and explain why

Sn − rSn = a − arn. (8.2)

(c) Solve equation (8.2) for Sn to find a simple formula for Sn that does not involve
adding n terms.

C

We can summarize the result of Activity 8.4 in the following way.

A geometric sum Sn is a sum of the form

Sn = a + ar + ar2 + · · · + arn−1, (8.3)

where a and r are real numbers such that r , 1. The geometric sum Sn can be written
more simply as

Sn = a + ar + ar2 + · · · + arn−1 =
a(1 − rn)
1 − r

. (8.4)

We now apply equation (8.4) to the example involving warfarin from Preview Activ-
ity 8.2. Recall that

Q(n) = (5 × 0.08) �
1 + 0.08 + 0.082 + 0.083 + · · · + 0.08n−1

�
mg,

so Q(n) is a geometric sum with a = 5 × 0.08 = 0.4 and r = 0.08. Thus,

Q(n) = 0.4

(
1 − 0.08n

1 − 0.08

)
=

1

2.3
(1 − 0.08n) .

Notice that as n goes to infinity, the value of 0.08n goes to 0. So,

lim
n→∞

Q(n) = lim
n→∞

1

2.3
(1 − 0.08n) = 1

2.3
≈ 0.435.

Therefore, the long-term level of Warfarin in the blood under these conditions is 1
2.3 , which

is approximately 0.435 mg.

To determine the long-term effect of Warfarin, we considered a geometric sum of n
terms, and then considered what happened as n was allowed to grow without bound. In
this sense, we were actually interested in an infinite geometric sum (the result of letting n
go to infinity in the finite sum). We call such an infinite geometric sum a geometric series.
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Definition 8.2. A geometric series is an infinite sum of the form

a + ar + ar2 + · · · =
∞∑
n=0

arn. (8.5)

The value of r in the geometric series (8.5) is called the common ratio of the series
because the ratio of the (n + 1)st term arn to the nth term arn−1 is always r .

Geometric series are very common in mathematics and arise naturally in many different
situations. As a familiar example, suppose we want to write the number with repeating
decimal expansion

N = 0.121212

as a rational number. Observe that

N = 0.12 + 0.0012 + 0.000012 + · · ·

=

( 12

100

)
+

( 12

100

) ( 1

100

)
+

( 12

100

) ( 1

100

)2
+ · · · ,

which is an infinite geometric series with a = 12
100 and r = 1

100 . In the same way that we
were able to find a shortcut formula for the value of a (finite) geometric sum, we would like
to develop a formula for the value of a (infinite) geometric series. We explore this idea in
the following activity.

Activity 8.5.

Let r , 1 and a be real numbers and let

S = a + ar + ar2 + · · · arn−1 + · · ·

be an infinite geometric series. For each positive integer n, let

Sn = a + ar + ar2 + · · · + arn−1.

Recall that

Sn = a
1 − rn

1 − r
.

(a) What should we allow n to approach in order to have Sn approach S?

(b) What is the value of lim
n→∞

rn for

• |r | > 1?

• |r | < 1?

Explain.

(c) If |r | < 1, use the formula for Sn and your observations in (a) and (b) to explain
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why S is finite and find a resulting formula for S.

C

From our work in Activity 8.5, we can now find the value of the geometric series
N =

�
12
100

�
+

�
12
100

� �
1

100

�
+

�
12
100

� �
1

100

�2
+ · · · . In particular, using a = 12

100 and r = 1
100 , we

see that

N =
12

100
*
,

1

1 − 1
100

+
-
=

12

100

(100
99

)
=

4

33
.

It is important to notice that a geometric sum is simply the sum of a finite number of
terms of a geometric series. In other words, the geometric sum Sn for the geometric series

∞∑
k=0

ark

is

Sn = a + ar + ar2 + · · · + arn−1 =
n−1∑
k=0

ark .

We also call this sum Sn the nth partial sum of the geometric series. We summarize our
recent work with geometric series as follows.

• A geometric series is an infinite sum of the form

a + ar + ar2 + · · · =
∞∑
n=0

arn, (8.6)

where a and r are real numbers such that r , 0.

• The nth partial sum Sn of the geometric series is

Sn = a + ar + ar2 + · · · + arn−1.

• If |r | < 1, then using the fact that Sn = a 1−rn

1−r , it follows that the sum S of the
geometric series (8.6) is

S = lim
n→∞

Sn = lim
n→∞

a
1 − rn

1 − r
=

a
1 − r

Activity 8.6.

The formulas we have derived for the geometric series and its partial sum so far have
assumed we begin indexing our sums at n = 0. If instead we have a sum that does not
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begin at n = 0, we can factor out common terms and use our established formulas.
This process is illustrated in the examples in this activity.

(a) Consider the sum

∞∑
k=1

(2)
(1
3

)k
= (2)

(1
3

)
+ (2)

(1
3

)2
+ (2)

(1
3

)3
+ · · · .

Remove the common factor of (2) �
1
3

�
from each term and hence find the sum

of the series.

(b) Next let a and r be real numbers with −1 < r < 1. Consider the sum

∞∑
k=3

ark = ar3 + ar4 + ar5 + · · · .

Remove the common factor of ar3 from each term and find the sum of the
series.

(c) Finally, we consider the most general case. Let a and r be real numbers with
−1 < r < 1, let n be a positive integer, and consider the sum

∞∑
k=n

ark = arn + arn+1 + arn+2 + · · · .

Remove the common factor of arn from each term to find the sum of the series.

C

Summary

In this section, we encountered the following important ideas:

• A geometric series is an infinite sum of the form

∞∑
k=0

ark

where a and r are real numbers and r , 0.

• For the geometric series
∞∑
k=0

ark , its nth partial sum is

Sn =
n−1∑
k=0

ark .
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An alternate formula for the nth partial sum is

Sn = a
1 − rn

1 − r
.

Whenever |r | < 1, the infinite geometric series
∑∞

k=0 ark has the finite sum a
1−r .

Exercises

1. There is an old question that is often used to introduce the power of geometric growth.
Here is one version. Suppose you are hired for a one month (30 days, working every
day) job and are given two options to be paid.

Option 1. You can be paid $500 per day or

Option 2. You can be paid 1 cent the first day, 2 cents the second day, 4 cents the third
day, 8 cents the fourth day, and so on, doubling the amount you are paid each
day.

(a) How much will you be paid for the job in total under Option 1?

(b) Complete Table 8.3 to determine the pay you will receive under Option 2 for
the first 10 days.

Day Pay on this day Total amount paid to date

1 $0.01 $0.01

2 $0.02 $0.03

3

4

5

6

7

8

9

10

Table 8.3: Option 2 payments
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(c) Find a formula for the amount paid on day n, as well as for the total amount
paid by day n. Use this formula to determine which option (1 or 2) you should
take.

2. Suppose you drop a golf ball onto a hard surface from a height h. The collision with
the ground causes the ball to lose energy and so it will not bounce back to its original
height. The ball will then fall again to the ground, bounce back up, and continue.
Assume that at each bounce the ball rises back to a height 3

4 of the height from which
it dropped. Let hn be the height of the ball on the nth bounce, with h0 = h. In this
exercise we will determine the distance traveled by the ball and the time it takes to
travel that distance.

(a) Determine a formula for h1 in terms of h.

(b) Determine a formula for h2 in terms of h.

(c) Determine a formula for h3 in terms of h.

(d) Determine a formula for hn in terms of h.

(e) Write an infinite series that represents the total distance traveled by the ball.
Then determine the sum of this series.

(f) Next, let’s determine the total amount of time the ball is in the air.

(i) When the ball is dropped from a height H , if we assume the only force
acting on it is the acceleration due to gravity, then the height of the ball at
time t is given by

H −
1

2
gt2.

Use this formula to determine the time it takes for the ball to hit the
ground after being dropped from height H .

(ii) Use your work in the preceding item, along with that in (a)-(e) above to
determine the total amount of time the ball is in the air.

3. Suppose you play a game with a friend that involves rolling a standard six-sided die.
Before a player can participate in the game, he or she must roll a six with the die.
Assume that you roll first and that you and your friend take alternate rolls. In this
exercise we will determine the probability that you roll the first six.

(a) Explain why the probability of rolling a six on any single roll (including your
first turn) is 1

6 .

(b) If you don’t roll a six on your first turn, then in order for you to roll the first
six on your second turn, both you and your friend had to fail to roll a six on
your first turns, and then you had to succeed in rolling a six on your second
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turn. Explain why the probability of this event is(5
6

) (5
6

) (1
6

)
=

(5
6

)2 (1
6

)
.

(c) Now suppose you fail to roll the first six on your second turn. Explain why the
probability is (5

6

) (5
6

) (5
6

) (5
6

) (1
6

)
=

(5
6

)4 (1
6

)
that you to roll the first six on your third turn.

(d) The probability of you rolling the first six is the probability that you roll the
first six on your first turn plus the probability that you roll the first six on your
second turn plus the probability that your roll the first six on your third turn,
and so on. Explain why this probability is

1

6
+

(5
6

)2 (1
6

)
+

(5
6

)4 (1
6

)
+ · · · .

Find the sum of this series and determine the probability that you roll the first
six.

4. The goal of a federal government stimulus package is to positively affect the economy.
Economists and politicians quote numbers like “k million jobs and a net stimulus to
the economy of n billion of dollars.” Where do they get these numbers? Let’s consider
one aspect of a stimulus package: tax cuts. Economists understand that tax cuts or
rebates can result in long-term spending that is many times the amount of the rebate.
For example, assume that for a typical person, 75% of her entire income is spent (that
is, put back into the economy). Further, assume the government provides a tax cut or
rebate that totals P dollars for each person.

(a) The tax cut of P dollars is income for its recipient. How much of this tax cut
will be spent?

(b) In this simple model, we will say that the spent portion of the tax cut/rebate
from part (a) then becomes income for another person who, in turn, spends
75% of this income. After this “second round" of spent income, how many
total dollars have been added to the economy as a result of the original tax
cut/rebate?

(c) This second round of spending becomes income for another group who spend
75% of this income, and so on. In economics this is called the multiplier effect.
Explain why an original tax cut/rebate of P dollars will result in multiplied
spending of

0.75P(1 + 0.75 + 0.752 + · · · ).
dollars.
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(d) Based on these assumptions, how much stimulus will a 200 billion dollar tax
cut/rebate to consumers add to the economy, assuming consumer spending
remains consistent forever.

5. Like stimulus packages, home mortgages and foreclosures also impact the economy. A
problem for many borrowers is the adjustable rate mortgage, in which the interest rate
can change (and usually increases) over the duration of the loan, causing the monthly
payments to increase beyond the ability of the borrower to pay. Most financial analysts
recommend fixed rate loans, ones for which the monthly payments remain constant
throughout the term of the loan. In this exercise we will analyze fixed rate loans.

When most people buy a large ticket item like car or a house, they have to take out
a loan to make the purchase. The loan is paid back in monthly installments until
the entire amount of the loan, plus interest, is paid. With a loan, we borrow money,
say P dollars (called the principal), and pay off the loan at an interest rate of r%. To
pay back the loan we make regular monthly payments, some of which goes to pay off
the principal and some of which is charged as interest. In most cases, the interest is
computed based on the amount of principal that remains at the beginning of the month.
We assume a fixed rate loan, that is one in which we make a constant monthly payment
M on our loan, beginning in the original month of the loan.

Suppose you want to buy a house. You have a certain amount of money saved to make
a down payment, and you will borrow the rest to pay for the house. Of course, for the
privilege of loaning you the money, the bank will charge you interest on this loan, so
the amount you pay back to the bank is more than the amount you borrow. In fact, the
amount you ultimately pay depends on three things: the amount you borrow (called the
principal), the interest rate, and the length of time you have to pay off the loan plus
interest (called the duration of the loan). For this example, we assume that the interest
rate is fixed at r%.

To pay off the loan, each month you make a payment of the same amount (called
installments). Suppose we borrow P dollars (our principal) and pay off the loan at
an interest rate of r% with regular monthly installment payments of M dollars. So in
month 1 of the loan, before we make any payments, our principal is P dollars. Our
goal in this exercise is to find a formula that relates these three parameters to the time
duration of the loan.

We are charged interest every month at an annual rate of r%, so each month we pay
r
12% interest on the principal that remains. Given that the original principal is P dollars,
we will pay

�
0.0r
12

�
P dollars in interest on our first payment. Since we paid M dollars

in total for our first payment, the remainder of the payment (M −
�
r
12

�
P) goes to pay

down the principal. So the principal remaining after the first payment (let’s call it P1) is
the original principal minus what we paid on the principal, or

P1 = P −
(
M −

( r
12

)
P
)
=

(
1 +

r
12

)
P − M .
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As long as P1 is positive, we still have to keep making payments to pay off the loan.

(a) Recall that the amount of interest we pay each time depends on the principal
that remains. How much interest, in terms of P1 and r , do we pay in the second
installment?

(b) How much of our second monthly installment goes to pay off the principal?
What is the principal P2, or the balance of the loan, that we still have to pay
off after making the second installment of the loan? Write your response in the
form P2 = ( )P1 − ( )M , where you fill in the parentheses.

(c) Show that P2 =
�
1 + r

12

�2 P −
�
1 +

�
1 + r

12

��
M .

(d) Let P3 be the amount of principal that remains after the third installment.
Show that

P3 =

(
1 +

r
12

)3
P −

[
1 +

(
1 +

r
12

)
+

(
1 +

r
12

)2]
M .

(e) If we continue in the manner described in the problems above, then the
remaining principal of our loan after n installments is

Pn =

(
1 +

r
12

)n
P −



n−1∑
k=0

(
1 +

r
12

)k
M . (8.7)

This is a rather complicated formula and one that is difficult to use. However,
we can simplify the sum if we recognize part of it as a partial sum of a geometric
series. Find a formula for the sum

n−1∑
k=0

(
1 +

r
12

)k
. (8.8)

and then a general formula for Pn that does not involve a sum.

(f) It is usually more convenient to write our formula for Pn in terms of years
rather than months. Show that P(t), the principal remaining after t years, can
be written as

P(t) =
(
P −

12M
r

) (
1 +

r
12

)12t
+
12M

r
. (8.9)

(g) Now that we have analyzed the general loan situation, we apply formula (8.9) to
an actual loan. Suppose we charge $1,000 on a credit card for holiday expenses.
If our credit card charges 20% interest and we pay only the minimum payment
of $25 each month, how long will it take us to pay off the $1,000 charge? How
much in total will we have paid on this $1,000 charge? How much total interest
will we pay on this loan?
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(h) Now we consider larger loans, e.g. automobile loans or mortgages, in which we
borrow a specified amount of money over a specified period of time. In this
situation, we need to determine the amount of the monthly payment we need to
make to pay off the loan in the specified amount of time. In this situation, we
need to find the monthly payment M that will take our outstanding principal
to 0 in the specified amount of time. To do so, we want to know the value of
M that makes P(t) = 0 in formula (8.9). If we set P(t) = 0 and solve for M , it
follows that

M =
rP

�
1 + r

12

�12t

12
(�
1 + r

12

�12t
− 1

) .
(i) Suppose we want to borrow $15,000 to buy a car. We take out a 5 year

loan at 6.25%. What will our monthly payments be? How much in total
will we have paid for this $15,000 car? How much total interest will we pay
on this loan?

(ii) Suppose you charge your books for winter semester on your credit card.
The total charge comes to $525. If your credit card has an interest rate of
18% and you pay $20 per month on the card, how long will it take before
you pay off this debt? How much total interest will you pay?

(iii) Say you need to borrow $100,000 to buy a house. You have several options
on the loan:

– 30 years at 6.5%

– 25 years at 7.5%

– 15 years at 8.25%.

(a) What are the monthly payments for each loan?

(b) Which mortgage is ultimately the best deal (assuming you can afford
the monthly payments)? In other words, for which loan do you pay the
least amount of total interest?
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8.3 Series of Real Numbers

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is an infinite series?

• What is the nth partial sum of an infinite series?

• How do we add up an infinite number of numbers? In other words, what does it
mean for an infinite series of real numbers to converge?

• What does it mean for an infinite series of real numbers to diverge?

Introduction

In Section 8.2, we encountered several situations where we naturally considered an infinite
sum of numbers called a geometric series. For example, by writing

N = 0.1212121212 · · · =
12

100
+

12

100
·

1

100
+

12

100
·

1

1002
+ · · ·

as a geometric series, we found a way to write the repeating decimal expansion of N
as a single fraction: N = 4

33 . There are many other situations in mathematics where
infinite sums of numbers arise, but often these are not geometric. In this section, we begin
exploring these other types of infinite sums. Preview Activity 8.3 provides a context in
which we see how one such sum is related to the famous number e.

Preview Activity 8.3. Have you ever wondered how your calculator can produce a
numeric approximation for complicated numbers like e, π or ln(2)? After all, the only
operations a calculator can really perform are addition, subtraction, multiplication, and
division, the operations that make up polynomials. This activity provides the first steps in
understanding how this process works. Throughout the activity, let f (x) = ex .

(a) Find the tangent line to f at x = 0 and use this linearization to approximate
e. That is, find a formula L(x) for the tangent line, and compute L(1), since
L(1) ≈ f (1) = e.

(b) The linearization of ex does not provide a good approximation to e since 1 is
not very close to 0. To obtain a better approximation, we alter our approach
a bit. Instead of using a straight line to approximate e, we put an appropriate
bend in our estimating function to make it better fit the graph of ex for x close
to 0. With the linearization, we had both f (x) and f ′(x) share the same value
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as the linearization at x = 0. We will now use a quadratic approximation P2(x)
to f (x) = ex centered at x = 0 which has the property that P2(0) = f (0),
P′2(0) = f ′(0), and P′′2 (0) = f ′′(0).

(i) Let P2(x) = 1 + x + x2

2 . Show that P2(0) = f (0), P′2(0) = f ′(0), and P′′2 (0) =
f ′′(0). Then, use P2(x) to approximate e by observing that P2(1) ≈ f (1).

(ii) We can continue approximating e with polynomials of larger degree whose
higher derivatives agree with those of f at 0. This turns out to make the
polynomials fit the graph of f better for more values of x around 0. For
example, let P3(x) = 1 + x + x2

2 +
x3

6 . Show that P3(0) = f (0), P′3(0) = f ′(0),
P′′3 (0) = f ′′(0), and P′′′3 (0) = f ′′′(0). Use P3(x) to approximate e in a way
similar to how you did so with P2(x) above.

./

Preview Activity 8.3 shows that an approximation to e using a linear polynomial is 2,
an approximation to e using a quadratic polynomial is 2.5, and an approximation using a
cubic polynomial is 2.6667. As we will see later, if we continue this process we can obtain
approximations from quartic (degree 4), quintic (degree 5), and higher degree polynomials
giving us the following approximations to e:

linear 1 + 1 2

quadratic 1 + 1 + 1
2 2.5

cubic 1 + 1 + 1
2 +

1
6 2.6

quartic 1 + 1 + 1
2 +

1
6 +

1
24 2.7083

quintic 1 + 1 + 1
2 +

1
6 +

1
24 +

1
120 2.716

We see an interesting pattern here. The number e is being approximated by the sum

1 + 1 +
1

2
+
1

6
+

1

24
+

1

120
+ · · · +

1

n!
(8.11)

for increasing values of n. And just as we did with Riemann sums, we can use the
summation notation as a shorthand4 for writing the sum in Equation (8.11) so that

e ≈ 1 + 1 +
1

2
+
1

6
+

1

24
+

1

120
+ · · · +

1

n!
=

n∑
k=0

1

k!
. (8.12)

We can calculate this sum using as large an n as we want, and the larger n is the more
accurate the approximation (8.12) is. Ultimately, this argument shows that we can write the

4Note that 0! appears in Equation (8.12). By definition, 0! = 1.
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number e as the infinite sum

e =
∞∑
k=0

1

k!
. (8.13)

This sum is an example of a series (or an infinite series). Note that the series (8.13) is the
sum of the terms of the (infinite) sequence

�
1
n!

	
. In general, we use the following notation

and terminology.

Definition 8.3. An infinite series of real numbers is the sum of the entries in an infinite
sequence of real numbers. In other words, an infinite series is sum of the form

a1 + a2 + · · · + an + · · · =

∞∑
k=1

ak,

where a1, a2, . . ., are real numbers.

We will normally use summation notation to identify a series. If the series adds the
entries of a sequence {an}n≥1, then we will write the series as∑

k≥1

ak

or
∞∑
k=1

ak .

Note well: each of these notations is simply shorthand for the infinite sum a1 + a2 + · · · +
an + · · · .

Is it even possible to sum an infinite list of numbers? This question is one whose
answer shouldn’t come as a surprise. After all, we have used the definite integral to add up
continuous (infinite) collections of numbers, so summing the entries of a sequence might
be even easier. Moreover, we have already examined the special case of geometric series
in the previous section. The next activity provides some more insight into how we make
sense of the process of summing an infinite list of numbers.

Activity 8.7.

Consider the series
∞∑
k=1

1

k2
.

While it is physically impossible to add an infinite collection of numbers, we can,
of course, add any finite collection of them. In what follows, we investigate how
understanding how to find the nth partial sum (that is, the sum of the first n terms)
enables us to make sense of the infinite sum.
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(a) Sum the first two numbers in this series. That is, find a numeric value for

2∑
k=1

1

k2

(b) Next, add the first three numbers in the series.

(c) Continue adding terms in this series to complete Table 8.4. Carry each sum to
at least 8 decimal places.

1∑
k=1

1

k2
= 1

6∑
k=1

1

k2
=

2∑
k=1

1

k2
=

7∑
k=1

1

k2
=

3∑
k=1

1

k2
=

8∑
k=1

1

k2
=

4∑
k=1

1

k2
=

9∑
k=1

1

k2
=

5∑
k=1

1

k2
=

10∑
k=1

1

k2
=

Table 8.4: Sums of some of the first terms of the series
∑∞

k=1
1
k2

(d) The sums in the table in (c) form a sequence whose nth term is Sn =
∑n

k=1
1
k2
.

Based on your calculations in the table, do you think the sequence {Sn}
converges or diverges? Explain. How do you think this sequence {Sn} is related
to the series

∑∞
k=1

1
k2
?

C

The example in Activity 8.7 illustrates how we define the sum of an infinite series. We
can add up the first n terms of the series to obtain a new sequence of numbers (called
the sequence of partial sums). Provided that sequence converges, the corresponding infinite
series is said to converge, and we say that we can find the sum of the series.

Definition 8.4. The nth partial sum of the series
∑∞

k=1 ak is the finite sum Sn =
∑n

k=1 ak .

In other words, the nth partial sum Sn of a series is the sum of the first n terms in the
series, or

Sn = a1 + a2 + · · · + an.
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We then investigate the behavior of a given series by examining the sequence

S1, S2, . . . , Sn, . . .

of its partial sums. If the sequence of partial sums converges to some finite number, then
we say that the corresponding series converges. Otherwise, we say the series diverges. From
our work in Activity 8.7, the series

∞∑
k=1

1

k2

appears to converge to some number near 1.54977. We formalize the concept of convergence
and divergence of an infinite series in the following definition.

Definition 8.5. The infinite series
∞∑
k=1

ak

converges (or is convergent) if the sequence {Sn} of partial sums converges, where

Sn =
n∑

k=1

ak .

If limn→∞ Sn = S, then we call S the sum of the series
∑∞

k=1 ak . That is,

∞∑
k=1

ak = lim
n→∞

Sn = S.

If the sequence of partial sums does not converge, then the series

∞∑
k=1

ak

diverges (or is divergent).

The early terms in a series do not contribute to whether or not the series converges or
diverges. Rather, the convergence or divergence of a series

∞∑
k=1

ak

is determined by what happens to the terms ak for very large values of k . To see why,
suppose that m is some constant larger than 1. Then

∞∑
k=1

ak = (a1 + a2 + · · · + am) +
∞∑

k=m+1

ak .
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Since a1 + a2 + · · · + am is a finite number, the series
∑∞

k=1 ak will converge if and only
if the series

∑∞
k=m+1 ak converges. Because the starting index of the series doesn’t affect

whether the series converges or diverges, we will often just write∑
ak

when we are interested in questions of convergence/divergence and not necessarily the
exact sum of a series.

In Section 8.2 we encountered the special family of infinite geometric series whose
convergence or divergence we completely determined. Recall that a geometric series is a
special series of the form

∑∞
k=0 ark where a and r are real numbers (and r , 1). We found

that the nth partial sum Sn of a geometric series is given by the convenient formula

Sn =
1 − rn

1 − r
,

and thus a geometric series converges if |r | < 1. Geometric series diverge for all other
values of r . While we have completely determined the convergence or divergence of
geometric series, it is generally a difficult question to determine if a given nongeometric
series converges or diverges. There are several tests we can use that we will consider in
the following sections.

The Divergence Test

The first question we ask about any infinite series is usually “Does the series converge or
diverge?” There is a straightforward way to check that certain series diverge; we explore
this test in the next activity.

Activity 8.8.

If the series
∑

ak converges, then an important result necessarily follows regarding the
sequence {an}. This activity explores this result.

Assume that the series
∑∞

k=1 ak converges and has sum equal to L.

(a) What is the nth partial sum Sn of the series
∑∞

k=1 ak?

(b) What is the (n − 1)st partial sum Sn−1 of the series
∑∞

k=1 ak?

(c) What is the difference between the nth partial sum and the (n − 1)st partial
sum of the series

∑∞
k=1 ak?

(d) Since we are assuming that
∑∞

k=1 ak = L, what does that tell us about
limn→∞ Sn? Why? What does that tell us about limn→∞ Sn−1? Why?

(e) Combine the results of the previous two parts of this activity to determine
limn→∞ an = limn→∞(Sn − Sn−1).
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C

The result of Activity 8.8 is the following important conditional statement:

If the series
∞∑
k=1

ak converges, then the sequence {ak} of kth terms converges

to 0.

It is logically equivalent to say that if the sequence {ak} of n terms does not converge to
0, then the series

∑∞
k=1 ak cannot converge. This statement is called the Divergence Test.

The Divergence Test. If limk→∞ ak , 0, then the series
∑

ak diverges.

Activity 8.9.

Determine if the Divergence Test applies to the following series. If the test does not
apply, explain why. If the test does apply, what does it tell us about the series?

(a)
∑ k

k+1

(b)
∑(−1)k

(c)
∑ 1

k

C

Note well: be very careful with the Divergence Test. This test only tells us what
happens to a series if the terms of the corresponding sequence do not converge to 0. If
the sequence of the terms of the series does converge to 0, the Divergence Test does not
apply: indeed, as we will soon see, a series whose terms go to zero may either converge or
diverge.

The Integral Test

The Divergence Test settles the questions of divergence or convergence of series
∑

ak
in which limk→∞ ak , 0. Determining the convergence or divergence of series

∑
ak in

which limk→∞ ak = 0 turns out to be more complicated. Often, we have to investigate the
sequence of partial sums or apply some other technique.

As an example, consider the harmonic series5

∞∑
k=1

1

k
.

5This series is called harmonic because each term in the series after the first is the harmonic mean of
the term before it and the term after it. The harmonic mean of two numbers a and b is 2ab

a+b . See “What’s
Harmonic about the Harmonic Series", by David E. Kullman (in the College Mathematics Journal, Vol. 32, No.
3 (May, 2001), 201-203) for an interesting discussion of the harmonic mean.
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Table 8.3 shows some partial sums of this series. This information doesn’t seem to

1∑
k=1

1

k
1

6∑
k=1

1

k
2.450000000

2∑
k=1

1

k
1.5

7∑
k=1

1

k
2.592857143

3∑
k=1

1

k
1.833333333

8∑
k=1

1

k
2.717857143

4∑
k=1

1

k
2.083333333

9∑
k=1

1

k
2.828968254

5∑
k=1

1

k
2.283333333

10∑
k=1

1

k
2.928968254

Table 8.5: Sums of some of the first terms of the sequence
∑∞

k=1
1
k .

be enough to tell us if the series
∑∞

k=1
1
k converges or diverges. The partial sums could

eventually level off to some fixed number or continue to grow without bound. Even if we
look at larger partial sums, such as

∑1000
n=1

1
k ≈ 7.485470861, the result doesn’t particularly

sway us one way or another. The Integral Test is one way to determine whether or not the
harmonic series converges, and we explore this further in the next activity.

Activity 8.10.

Consider the harmonic series
∑∞

k=1
1
k . Recall that the harmonic series will converge

provided that its sequence of partial sums converges. The nth partial sum Sn of the
series

∑∞
k=1

1
k is

Sn =

n∑
k=1

1

k

= 1 +
1

2
+
1

3
+ · · · +

1

n

= 1(1) + (1)
(1
2

)
+ (1)

(1
3

)
+ · · · + (1)

(1
n

)
.

Through this last expression for Sn, we can visualize this partial sum as a sum of areas
of rectangles with heights 1

m and bases of length 1, as shown in Figure 8.3, which uses
the 9th partial sum. The graph of the continuous function f defined by f (x) = 1

x is
overlaid on this plot.

(a) Explain how this picture represents a particular Riemann sum.

(b) What is the definite integral that corresponds to the Riemann sum you consid-
ered in (a)?
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Figure 8.3: A picture of the 9th partial sum of the harmonic series as a sum of areas of
rectangles.

(c) Which is larger, the definite integral in (b), or the corresponding partial sum S9
of the series? Why?

(d) If instead of considering the 9th partial sum, we consider the nth partial sum,
and we let n go to infinity, we can then compare the series

∑∞
k=1

1
k to the

improper integral
∫ ∞
1

1
x dx. Which of these quantities is larger? Why?

(e) Does the improper integral
∫ ∞
1

1
x dx converge or diverge? What does that

result, together with your work in (d), tell us about the series
∑∞

k=1
1
k ?

C

The ideas from Activity 8.10 hold more generally. Suppose that f is a continuous
decreasing function and that ak = f (k) for each value of k . Consider the corresponding
series

∑∞
k=1 ak . The partial sum

Sn =
n∑

k=1

ak

can always be viewed as a left hand Riemann sum of f (x) using rectangles with heights
given by the values ak and bases of length 1. A representative picture is shown at left in
Figure 8.4. Since f is a decreasing function, we have that

Sn >
∫ n

1
f (x) dx.

Taking limits as n goes to infinity shows that

∞∑
k=1

ak >
∫ ∞

1
f (x) dx.



8.3. SERIES OF REAL NUMBERS 477

Therefore, if the improper integral
∫ ∞
1

f (x) dx diverges, so does the series
∑∞

k=1 ak .
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k

ak
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k

ak

Figure 8.4: Comparing an improper integral to a series

What’s more, if we look at the right hand Riemann sums of f on [1, n] as shown at
right in Figure 8.4, we see that ∫ ∞

1
f (x) dx >

∞∑
k=2

ak .

So if
∫ ∞
1

f (x) dx converges, then so does
∑∞

k=2 ak , which also means that the series∑∞
k=1 ak converges. Our preceding discussion has demonstrated the truth of the Integral

Test.

The Integral Test. Let f be a real valued function and assume f is decreasing and
positive for all x larger than some number c. Let ak = f (k) for each positive integer
k .

1. If the improper integral
∫ ∞
c

f (x) dx converges, then the series
∑∞

k=1 ak con-
verges.

2. If the improper integral
∫ ∞
c

f (x) dx diverges, then the series
∑∞

k=1 ak diverges.

Note that the Integral Test compares a given infinite series to a natural, corresponding
improper integral and basically says that the infinite series and corresponding improper
integral both have the same convergence status. In the next activity, we apply the Integral
Test to determine the convergence or divergence of a class of important series.
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Activity 8.11.

The series
∑ 1

kp are special series called p-series. We have already seen that the p-series
with p = 1 (the harmonic series) diverges. We investigate the behavior of other p-series
in this activity.

(a) Evaluate the improper integral
∫ ∞
1

1
x2

dx. Does the series
∑∞

k=1
1
k2

converge or
diverge? Explain.

(b) Evaluate the improper integral
∫ ∞
1

1
xp dx where p > 1. For which values of p

can we conclude that the series
∑∞

k=1
1
kp converges?

(c) Evaluate the improper integral
∫ ∞
1

1
xp dx where p < 1. What does this tell us

about the corresponding p-series
∑∞

k=1
1
kp ?

(d) Summarize your work in this activity by completing the following statement.

The p-series
∑∞

k=1
1
kp converges if and only if .

C

The Limit Comparison Test

The Integral Test allows us to determine the convergence of an entire family of series: the
p-series. However, we have seen that it is, in general, difficult to integrate functions, so the
Integral Test is not one that we can use all of the time. In fact, even for a relatively simple
series like

∑ k2+1
k4+2k+2

, the Integral Test is not an option. In this section we will develop a
test that we can use to apply to series of rational functions like this by comparing their
behavior to the behavior of p-series.

Activity 8.12.

Consider the series
∑ k+1

k3+2
. Since the convergence or divergence of a series only

depends on the behavior of the series for large values of k , we might examine the terms
of this series more closely as k gets large.

(a) By computing the value of k+1
k3+2

for k = 100 and k = 1000, explain why the
terms k+1

k3+2
are essentially k

k3
when k is large.

(b) Let’s formalize our observations in (a) a bit more. Let ak = k+1
k3+2

and bk = k
k3
.

Calculate
lim
k→∞

ak
bk
.

What does the value of the limit tell you about ak and bk for large values of k?
Compare your response from part (a).

(c) Does the series
∑ k

k3
converge or diverge? Why? What do you think that tells

us about the convergence or divergence of the series
∑ k+1

k3+2
? Explain.
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C

Activity 8.12 illustrates how we can compare one series with positive terms to another
whose behavior (that is, whether the series converges or diverges) we know. More generally,
suppose we have two series

∑
ak and

∑
bk with positive terms and we know the behavior

of the series
∑

ak . Recall that the convergence or divergence of a series depends only on
what happens to the terms of the series for large values of k , so if we know that ak and bk
are essentially proportional to each other for large k, then the two series

∑
ak and

∑
bk

should behave the same way. In other words, if there is a positive finite constant c such
that

lim
k→∞

bk
ak
= c,

then bk ≈ cak for large values of k . So∑
bk ≈

∑
cak = c

∑
ak .

Since multiplying by a nonzero constant does not affect the convergence or divergence of
a series, it follows that the series

∑
ak and

∑
bk either both converge or both diverge. The

formal statement of this fact is called the Limit Comparison Test.

The Limit Comparison Test. Let
∑

ak and
∑

bk be series with positive terms. If

lim
k→∞

bk
ak
= c

for some positive (finite) constant c, then
∑

ak and
∑

bk either both converge or both
diverge.

In essence, the Limit Comparison Test shows that if we have a series
∑ p(k)

q(k) of rational
functions where p(k) is a polynomial of degree m and q(k) a polynomial of degree l, then
the series

∑ p(k)
q(k) will behave like the series

∑ km

k l
. So this test allows us to quickly and

easily determine the convergence or divergence of series whose summands are rational
functions.

Activity 8.13.

Use the Limit Comparison Test to determine the convergence or divergence of the
series ∑ 3k2 + 1

5k4 + 2k + 2
.

by comparing it to the series
∑ 1

k2
.

C
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The Ratio Test

The Limit Comparison Test works well if we can find a series with known behavior to
compare. But such series are not always easy to find. In this section we will examine a test
that allows us to examine the behavior of a series by comparing it to a geometric series,
without knowing in advance which geometric series we need.

Activity 8.14.

Consider the series defined by
∞∑
k=1

2k

3k − k
. (8.14)

This series is not a geometric series, but this activity will illustrate how we might
compare this series to a geometric one. Recall that a series

∑
ak is geometric if the

ratio ak+1

ak
is always the same. For the series in (8.14), note that ak = 2k

3k−k
.

(a) To see if
∑ 2k

3k−k
is comparable to a geometric series, we analyze the ratios of

successive terms in the series. Complete Table 8.6, listing your calculations to
at least 8 decimal places.

k ak+1

ak

5

10

20

21

22

23

24

25

Table 8.6: Ratios of successive terms in the series
∑ 2k

3k−k

(b) Based on your calculations in Table 8.6, what can we say about the ratio ak+1

ak

if k is large?

(c) Do you agree or disagree with the statement: “the series
∑ 2k

3k−k
is approxi-

mately geometric when k is large”? If not, why not? If so, do you think the
series

∑ 2k

3k−k
converges or diverges? Explain.
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C

We can generalize the argument in Activity 8.14 in the following way. Consider the
series

∑
ak . If ak+1

ak
≈ r

for large values of k , then ak+1 ≈ rak for large k and the series
∑

ak is approximately the
geometric series

∑
ark for large k . Since the geometric series with ratio r converges only

for −1 < r < 1, we see that the series
∑

ak will converge if

lim
k→∞

ak+1
ak
= r

for a value of r such that |r | < 1. This result is known as the Ratio Test.

The Ratio Test. Let
∑

ak be an infinite series. Suppose

lim
k→∞

|ak+1 |
|ak | = r .

1. If 0 ≤ r < 1, then the series
∑

ak converges.

2. If 1 < r , then the series
∑

ak diverges.

3. If r = 1, then the test is inconclusive.

Note well: The Ratio Test takes a given series and looks at the limit of the ratio of
consecutive terms; in so doing, the test is essentially asking, “is this series approximately
geometric?” If the series can be thought of as essentially geometric, the test use the limiting
common ratio to determine if the given series converges.

We have now encountered several tests for determining convergence or divergence of
series. The Divergence Test can be used to show that a series diverges, but never to prove
that a series converges. We used the Integral Test to determine the convergence status of
an entire class of series, the p-series. The Limit Comparison Test works well for series that
involve rational functions and which can therefore by compared to p-series. Finally, the
Ratio Test allows us to compare our series to a geometric series; it is particularly useful
for series that involve nth powers and factorials. Two other tests, the Direct Comparison
Test and the Root Test, are discussed in the exercises. Now it is time for some practice.

Activity 8.15.

Determine whether each of the following series converges or diverges. Explicitly state
which test you use.

(a)
∑ k

2k
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(b)
∑ k3 + 2

k2 + 1

(c)
∑ 10k

k!

(d)
∑ k3 − 2k2 + 1

k6 + 4
C

Summary

In this section, we encountered the following important ideas:

• An infinite series is a sum of the elements in an infinite sequence. In other words, an
infinite series is a sum of the form

a1 + a2 + · · · + an + · · · =

∞∑
k=1

ak

where ak is a real number for each positive integer k .

• The nth partial sum Sn of the series
∑∞

k=1 ak is the sum of the first n terms of the series.
That is,

Sn = a1 + a2 + · · · + an =

n∑
k=1

ak .

• The sequence {Sn} of partial sums of a series
∑∞

k=1 ak tells us about the convergence
or divergence of the series. In particular

- The series
∑∞

k=1 ak converges if the sequence {Sn} of partial sums converges. In
this case we say that the series is the limit of the sequence of partial sums and
write

∞∑
k=1

ak = lim
n→∞

Sn.

- The series
∑∞

k=1 ak diverges if the sequence {Sn} of partial sums diverges.

Exercises

1. In this exercise we investigate the sequence
{
bn

n!

}
for any constant b.

(a) Use the Ratio Test to determine if the series
∑ 10k

k! converges or diverges.

(b) Now apply the Ratio Test to determine if the series
∑ bk

k! converges for any
constant b.
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(c) Use your result from (b) to decide whether the sequence
{
bn

n!

}
converges or

diverges. If the sequence
{
bn

n!

}
converges, to what does it converge? Explain

your reasoning.

2. There is a test for convergence similar to the Ratio Test called the Root Test. Suppose
we have a series

∑
ak of positive terms so that an → 0 as n → ∞.

(a) Assume
n
√

an → r

as n goes to infinity. Explain why this tells us that an ≈ rn for large values of n.

(b) Using the result of part (a), explain why
∑

ak looks like a geometric series when
n is big. What is the ratio of the geometric series to which

∑
ak is comparable?

(c) Use what we know about geometric series to determine that values of r so that∑
ak converges if n

√
an → r as n → ∞.

3. The associative and distributive laws of addition allow us to add finite sums in any
order we want. That is, if

∑n
k=0 ak and

∑n
k=0 bk are finite sums of real numbers, then

n∑
k=0

ak +
n∑

k=0

bk =
n∑

k=0

(ak + bk).

However, we do need to be careful extending rules like this to infinite series.

(a) Let an = 1 + 1
2n and bn = −1 for each nonnegative integer n.

(i) Explain why the series
∑∞

k=0 ak and
∑∞

k=0 bk both diverge.

(ii) Explain why the series
∑∞

k=0(ak + bk) converges.
(iii) Explain why

∞∑
k=0

ak +
∞∑
k=0

bk ,
∞∑
k=0

(ak + bk).

This shows that it is possible to have to two divergent series
∑∞

k=0 ak and∑∞
k=0 bk but yet have the series

∑∞
k=0(ak + bk) converge.

(b) While part (a) shows that we cannot add series term by term in general, we
can under reasonable conditions. The problem in part (a) is that we tried to
add divergent series. In this exercise we will show that if

∑
ak and

∑
bk are

convergent series, then
∑(ak + bk) is a convergent series and∑

(ak + bk) =
∑

ak +
∑

bk .

(i) Let An and Bn be the nth partial sums of the series
∑∞

k=1 ak and
∑∞

k=1 bk ,
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respectively. Explain why

An + Bn =

n∑
k=1

(ak + bk).

(ii) Use the previous result and properties of limits to show that

∞∑
k=1

(ak + bk) =
∞∑
k=1

ak +
∞∑
k=1

bk .

(Note that the starting point of the sum is irrelevant in this problem, so it
doesn’t matter where we begin the sum.)

(c) Use the prior result to find the sum of the series
∑∞

k=0
2k+3k

5k
.

4. In the Limit Comparison Test we compared the behavior of a series to one whose
behavior we know. In that test we use the limit of the ratio of corresponding terms of
the series to determine if the comparison is valid. In this exercise we see how we can
compare two series directly, term by term, without using a limit of sequence. First we
consider an example.

(a) Consider the series∑ 1

k2
and

∑ 1

k2 + k
.

We know that the series
∑ 1

k2
is a p-series with p = 2 > 1 and so

∑ 1
k2

converges. In this part of the exercise we will see how to use information about∑ 1
k2

to determine information about
∑ 1

k2+k
. Let ak = 1

k2
and bk = 1

k2+k
.

(i) Let Sn be the nth partial sum of
∑ 1

k2
and Tn the nth partial sum of

∑ 1
k2+k

.
Which is larger, S1 or T1? Why?

(ii) Recall that

S2 = S1 + a2 and T2 = T1 + b2.

Which is larger, a2 or b2? Based on that answer, which is larger, S2 or T2?
(iii) Recall that

S3 = S2 + a3 and T3 = T2 + b3.

Which is larger, a3 or b3? Based on that answer, which is larger, S3 or T3?
(iv) Which is larger, an or bn? Explain. Based on that answer, which is larger,

Sn or Tn?

(v) Based on your response to the previous part of this exercise, what relation-
ship do you expect there to be between

∑ 1
k2

and
∑ 1

k2+k
? Do you expect
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∑ 1
k2+k

to converge or diverge? Why?

(b) The example in the previous part of this exercise illustrates a more general
result. Explain why the Direct Comparison Test, stated here, works.

The Direct Comparison Test. If

0 ≤ bk ≤ ak

for every k , then we must have

0 ≤
∑

bk ≤
∑

ak

1. If
∑

ak converges, then
∑

bk converges.

2. If
∑

bk diverges, then
∑

ak diverges.

Important Note: This comparison test applies only to series with nonnegative
terms.

(i) Use the Direct Comparison Test to determine the convergence or diver-
gence of the series

∑ 1
k−1 . Hint: Compare to the harmonic series.

(ii) Use the Direct Comparison Test to determine the convergence or diver-
gence of the series

∑ k
k3+1

.
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8.4 Alternating Series

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is an alternating series?

• What does it mean for an alternating series to converge?

• Under what conditions does an alternating series converge? Why?

• How well does the nth partial sum of a convergent alternating series approximate
the actual sum of the series? Why?

• What is the difference between absolute convergence and conditional convergence?

Introduction

In our study of series so far, almost every series that we’ve considered has exclusively
nonnegative terms. Of course, it is possible to consider series that have some negative
terms. For instance, if we consider the geometric series

2 −
4

3
+
8

9
− · · · + 2

(
−2

3

)n
+ · · · ,

which has a = 2 and r = −2
3 , we see that not only does every other term alternate in sign,

but also that this series converges to

S =
a

1 − r
=

2

1 −
�
−2

3

� = 6

5
.

In Preview Activity 8.4 and our following discussion, we investigate the behavior of similar
series where consecutive terms have opposite signs.

Preview Activity 8.4. Preview Activity 8.3 showed how we can approximate the number
e with linear, quadratic, and other polynomial approximations. We use a similar approach
in this activity to obtain linear and quadratic approximations to ln(2). Along the way,
we encounter a type of series that is different than most of the ones we have seen so far.
Throughout this activity, let f (x) = ln(1 + x).

(a) Find the tangent line to f at x = 0 and use this linearization to approximate ln(2).
That is, find L(x), the tangent line approximation to f (x), and use the fact that
L(1) ≈ f (1) to estimate ln(2).
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(b) The linearization of ln(1 + x) does not provide a very good approximation to
ln(2) since 1 is not that close to 0. To obtain a better approximation, we alter
our approach; instead of using a straight line to approximate ln(2), we use a
quadratic function to account for the concavity of ln(1 + x) for x close to 0. With
the linearization, both the function’s value and slope agree with the linearization’s
value and slope at x = 0. We will now make a quadratic approximation P2(x)
to f (x) = ln(1 + x) centered at x = 0 with the property that P2(0) = f (0),
P′2(0) = f ′(0), and P′′2 (0) = f ′′(0).
(i) Let P2(x) = x − x2

2 . Show that P2(0) = f (0), P′2(0) = f ′(0), and P′′2 (0) =
f ′′(0). Use P2(x) to approximate ln(2) by using the fact that P2(1) ≈ f (1).

(ii) We can continue approximating ln(2) with polynomials of larger degree
whose derivatives agree with those of f at 0. This makes the polynomials
fit the graph of f better for more values of x around 0. For example, let
P3(x) = x − x2

2 +
x3

3 . Show that P3(0) = f (0), P′3(0) = f ′(0), P′′3 (0) = f ′′(0),
and P′′′3 (0) = f ′′′(0). Taking a similar approach to preceding questions, use
P3(x) to approximate ln(2).

(iii) If we used a degree 4 or degree 5 polynomial to approximate ln(1 + x),
what approximations of ln(2) do you think would result? Use the preceding
questions to conjecture a pattern that holds, and state the degree 4 and
degree 5 approximation.

./

Preview Activity 8.4 gives us several approximations to ln(2), the linear approximation
is 1 and the quadratic approximation is 1 − 1

2 =
1
2 . If we continue this process we will

obtain approximations from cubic, quartic (degree 4), quintic (degree 5), and higher degree
polynomials giving us the following approximations to ln(2):

linear 1 1

quadratic 1 − 1
2 0.5

cubic 1 − 1
2 +

1
3 0.83

quartic 1 − 1
2 +

1
3 −

1
4 0.583

quintic 1 − 1
2 +

1
3 −

1
4 +

1
5 0.783

The pattern here shows the fact that the number ln(2) can be approximated by the partial
sums of the infinite series

∞∑
k=1

(−1)k+1 1
k

(8.15)

where the alternating signs are determined by the factor (−1)k+1.
Using computational technology, we find that 0.6881721793 is the sum of the first

100 terms in this series. As a comparison, ln(2) ≈ 0.6931471806. This shows that even
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though the series (8.15) converges to ln(2), it must do so quite slowly, since the sum of
the first 100 terms isn’t particularly close to ln(2). We will investigate the issue of how
quickly an alternating series converges later in this section. Again, note particularly that
the series (8.15) is different from the series we have consider earlier in that some of the
terms are negative. We call such a series an alternating series.

Definition 8.6. An alternating series is a series of the form

∞∑
k=0

(−1)kak,

where ak ≥ 0 for each k .

We have some flexibility in how we write an alternating series; for example, the series

∞∑
k=1

(−1)k+1ak,

whose index starts at k = 1, is also alternating. As we will soon see, there are several very
nice results that hold about alternating series, while alternating series can also demonstrate
some unusual behaivior.

It is important to remember that most of the series tests we have seen in previous
sections apply only to series with nonnegative terms. Thus, alternating series require a
different test. To investigate this idea, we return to the example in Preview Activity 8.4.

Activity 8.16.

Remember that, by definition, a series converges if and only if its corresponding
sequence of partial sums converges.

(a) Complete Table 8.7 by calculating the first few partial sums (to 10 decimal
places) of the alternating series

∞∑
k=1

(−1)k+1 1
k
.

(b) Plot the sequence of partial sums from part (a) in the plane. What do you
notice about this sequence?

C

Activity 8.16 exemplifies the general behavior that any convergent alternating series
will demonstrate. In this example, we see that the partial sums of the alternating harmonic
series oscillate around a fixed number that turns out to be the sum of the series.
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1∑
k=1

(−1)k+1 1
k

=
6∑

k=1

(−1)k+1 1
k

=

2∑
k=1

(−1)k+1 1
k

=
7∑

k=1

(−1)k+1 1
k

=

3∑
k=1

(−1)k+1 1
k

=
8∑

k=1

(−1)k+1 1
k

=

4∑
k=1

(−1)k+1 1
k

=
9∑

k=1

(−1)k+1 1
k

=

5∑
k=1

(−1)k+1 1
k

=
10∑
k=1

(−1)k+1 1
k

=

Table 8.7: Partial sums of the alternating series
∑∞

k=1(−1)k+1 1
k

Recall that if limk→∞ ak , 0, then the series
∑

ak diverges by the Divergence Test.
From this point forward, we will thus only consider alternating series

∞∑
k=1

(−1)k+1ak

in which the sequence ak consists of positive numbers that decrease to 0. For such a series,
the nth partial sum Sn satisfies

Sn =
n∑

k=1

(−1)k+1ak .

Notice that

• S1 = a1

• S2 = a1 − a2, and since a1 > a2 we have

0 < S2 < S1.

• S3 = S2 + a3 and so S2 < S3. But a3 < a2, so S3 < S1. Thus,

0 < S2 < S3 < S1.
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• S4 = S3 − a4 and so S4 < S3. But a4 < a3, so S2 < S4. Thus,

0 < S2 < S4 < S3 < S1.

• S5 = S4 + a5 and so S4 < S5. But a5 < a4, so S5 < S3. Thus,

0 < S2 < S4 < S5 < S3 < S1.

This pattern continues as illustrated in Figure 8.5 (with n odd) so that each partial sum
lies between the previous two partial sums. Note further that the absolute value of the
difference between the (n − 1)st partial sum Sn−1 and the nth partial sum Sn is

|Sn − Sn−1 | = an.

Since the sequence {an} converges to 0, the distance between successive partial sums
becomes as close to zero as we’d like, and thus the sequence of partial sums converges (even
though we don’t know the exact value to which the sequence of partial sums converges).

The preceding discussion has demonstrated the truth of the Alternating Series Test.

an

S1S2 S3S4 S5S6 . . . Sn−1 Sn

Figure 8.5: Partial sums of an alternating series

The Alternating Series Test. Given an alternating series∑
(−1)kak,

if the sequence {ak} of positive terms decreases to 0 as k → ∞, then the alternating
series converges.

Note particularly that if the limit of the sequence {ak} is not 0, then the alternating
series diverges.

Activity 8.17.

Which series converge and which diverge? Justify your answers.

(a)
∞∑
k=1

(−1)k
k2 + 2

(b)
∞∑
k=1

(−1)k+12k
k + 5
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(c)
∞∑
k=2

(−1)k
ln(k)

C

The argument for the Alternating Series Test also provides us with a method to
determine how close the nth partial sum Sn is to the actual sum of a convergent alternating
series. To see how this works, let S be the sum of a convergent alternating series, so

S =
∞∑
k=1

(−1)kak .

Recall that the sequence of partial sums oscillates around the sum S so that

|S − Sn | < |Sn+1 − Sn | = an+1.

Therefore, the value of the term an+1 provides an error estimate for how well the partial
sum Sn approximates the actual sum S. We summarize this fact in the statement of the
Alternating Series Estimation Theorem.

Alternating Series Estimation Theorem. If the alternating series

∞∑
k=1

(−1)k+1ak

converges and has sum S, and

Sn =
n∑

k=1

(−1)k+1ak

is the nth partial sum of the alternating series, then

������

∞∑
k=1

(−1)k+1ak − Sn
������
≤ an+1.

Example 8.1. Let’s determine how well the 100th partial sum S100 of

∞∑
k=1

(−1)k+1
k

approximates the sum of the series.

Solution.
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If we let S be the sum of the series
∑∞

k=1
(−1)k+1

k , then we know that

|S100 − S| < a101.

Now

a101 =
1

101
≈ 0.0099,

so the 100th partial sum is within 0.0099 of the sum of the series. We have discussed the
fact (and will later verify) that

S =
∞∑
k=1

(−1)k+1
k

= ln(2),

and so S ≈ 0.693147 while

S100 =
100∑
k=1

(−1)k+1
k

≈ 0.6881721793.

We see that the actual difference between S and S100 is approximately 0.0049750013,
which is indeed less than 0.0099.

Activity 8.18.

Determine the number of terms it takes to approximate the sum of the convergent
alternating series

∞∑
k=1

(−1)k+1
k4

to within 0.0001.

C

Absolute and Conditional Convergence

A series such as

1 −
1

4
−
1

9
+

1

16
+

1

25
+

1

36
−

1

49
−

1

64
−

1

81
−

1

100
+ · · · (8.16)

whose terms are neither all nonnegative nor alternating is different from any series that we
have considered to date. The behavior of these series can be rather complicated, but there
is an important connection between these arbitrary series that have some negative terms
and series with all nonnegative terms that we illustrate with the next activity.

Activity 8.19.
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(a) Explain why the series

1 −
1

4
−
1

9
+

1

16
+

1

25
+

1

36
−

1

49
−

1

64
−

1

81
−

1

100
+ · · ·

must have a sum that is less than the series

∞∑
k=1

1

k2
.

(b) Explain why the series

1 −
1

4
−
1

9
+

1

16
+

1

25
+

1

36
−

1

49
−

1

64
−

1

81
−

1

100
+ · · ·

must have a sum that is greater than the series

∞∑
k=1

−
1

k2
.

(c) Given that the terms in the series

1 −
1

4
−
1

9
+

1

16
+

1

25
+

1

36
−

1

49
−

1

64
−

1

81
−

1

100
+ · · ·

converge to 0, what do you think the previous two results tell us about the
convergence status of this series?

C

As the example in Activity 8.19 suggests, if we have a series
∑

ak, (some of whose
terms may be negative) such that

∑ |ak | converges, it turns out to always be the case that
the original series,

∑
ak , must also converge. That is, if

∑ |ak | converges, then so must∑
ak .

As we just observed, this is the case for the series (8.16), since the corresponding
series of the absolute values of its terms is the convergent p-series

∑ 1
k2
. At the same

time, there are series like the alternating harmonic series
∑(−1)k+1 1

k that converge, while
the corresponding series of absolute values,

∑ 1
k , diverges. We distinguish between these

behaviors by introducing the following language.

Definition 8.7. Consider a series
∑

ak .

1. The series
∑

ak converges absolutely (or is absolutely convergent) provided that
∑ |ak |

converges.

2. The series
∑

ak converges conditionally (or is conditionally convergent) provided that∑ |ak | diverges and ∑
ak converges.
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In this terminology, the series (8.16) converges absolutely while the alternating harmonic
series is conditionally convergent.

Activity 8.20.

(a) Consider the series
∑

(−1)k ln(k)
k

.

(i) Does this series converge? Explain.

(ii) Does this series converge absolutely? Explain what test you use to deter-
mine your answer.

(b) Consider the series
∑

(−1)k ln(k)
k2

.

(i) Does this series converge? Explain.

(ii) Does this series converge absolutely? Hint: Use the fact that ln(k) < √k
for large values of k and then compare to an appropriate p-series.

C

Conditionally convergent series turn out to be very interesting. If the sequence {an}
decreases to 0, but the series

∑
ak diverges, the conditionally convergent series

∑(−1)kak
is right on the borderline of being a divergent series. As a result, any conditionally
convergent series converges very slowly. Furthermore, some very strange things can
happen with conditionally convergent series, as illustrated in some of the exercises.

Summary of Tests for Convergence of Series

We have discussed several tests for convergence/divergence of series in our sections and
in exercises. We close this section of the text with a summary of all the tests we have
encountered, followed by an activity that challenges you to decide which convergence test
to apply to several different series.

Geometric
Series

The geometric series
∑

ark with ratio r converges
for −1 < r < 1 and diverges for |r | ≥ 1.

The sum of the convergent ge-

ometric series
∞∑
k=0

ark is a
1−r .

Divergence
Test

If the sequence an does not converge to 0, then
the series

∑
ak diverges.

This is the first test to ap-
ply because the conclusion
is simple. However, if
limn→∞ an = 0, no conclu-
sion can be drawn.
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Integral Test
Let f be a positive, decreasing function on an
interval [c,∞) and let ak = f (k) for each positive
integer k ≥ c.

• If
∫ ∞
c

f (t) dt converges, then
∑

ak con-
verges.

• If
∫ ∞
c

f (t) dt diverges, then
∑

ak diverges.

Use this test when f (x) is easy
to integrate.

Direct Com-
parision Test
(see Ex 4 in
Section 8.3)

Let 0 ≤ ak ≤ bk for each positive integer k .

• If
∑

bk converges, then
∑

ak converges.

• If
∑

ak diverges, then
∑

bk diverges.

Use this test when you have
a series with known behavior
that you can compare to – this
test can be difficult to apply.

Limit Com-
parison Test

Let an and bn be sequences of positive terms. If

lim
k→∞

ak
bk
= L

for some positive finite number L, then the two
series

∑
ak and

∑
bk either both converge or both

diverge.

Easier to apply in general
than the comparison test, but
you must have a series with
known behavior to compare.
Useful to apply to series of ra-
tional functions.

Ratio Test
Let ak , 0 for each k and suppose

lim
k→∞

|ak+1 |
|ak | = r .

• If r < 1, then the series
∑

ak converges
absolutely.

• If r > 1, then the series
∑

ak diverges.

• If r = 1, then test is inconclusive.

This test is useful when a
series involves factorials and
powers.

Root Test (see
Exercise 2 in
Section 8.3)

Let ak ≥ 0 for each k and suppose

lim
k→∞

k
√

ak = r .

• If r < 1, then the series
∑

ak converges.

• If r > 1, then the series
∑

ak diverges.

• If r = 1, then test is inconclusive.

In general, the Ratio Test can
usually be used in place of the
Root Test. However, the Root
Test can be quick to use when
ak involves kth powers.

Alternating
Series Test

If an is a positive, decreasing sequence so
that lim

n→∞
an = 0, then the alternating series∑(−1)k+1ak converges.

This test applies only to alter-
nating series – we assume that
the terms an are all positive
and that the sequence {an} is
decreasing.

Alternating
Series Es-
timation
Theorem

Let Sn =
n∑

k=1

(−1)k+1ak be the nth partial sum

of the alternating series
∞∑
k=1

(−1)k+1ak . Assume

an > 0 for each positive integer n, the sequence
an decreases to 0 and lim

n→∞
Sn = S. Then it

follows that |S − Sn | < an+1.

This bound can be used to de-
termine the accuracy of the
partial sum Sn as an approx-
imation of the sum of a con-
vergent alternating series.
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Activity 8.21.

For (a)-(j), use appropriate tests to determine the convergence or divergence of the
following series. Throughout, if a series is a convergent geometric series, find its sum.

(a)
∞∑
k=3

2
√

k − 2

(b)
∞∑
k=1

k
1 + 2k

(c)
∞∑
k=0

2k2 + 1
k3 + k + 1

(d)
∞∑
k=0

100k

k!

(e)
∞∑
k=1

2k

5k

(f)
∞∑
k=1

k3 − 1
k5 + 1

(g)
∞∑
k=2

3k−1

7k

(h)
∞∑
k=2

1

kk

(i)
∞∑
k=1

(−1)k+1
√

k + 1

(j)
∞∑
k=2

1

k ln(k)
(k) Determine a value of n so that the nth partial sum Sn of the alternating series

∞∑
n=2

(−1)n
ln(n) approximates the sum to within 0.001.

C
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Summary

In this section, we encountered the following important ideas:

• An alternating series is a series whose terms alternate in sign. In other words, an
alternating series is a series of the form∑

(−1)kak

where ak is a positive real number for each k .

• An alternating series
∑∞

k=1(−1)kak converges if and only if its sequence {Sn} of partial
sums converges, where

Sn =
n∑

k=1

(−1)kak .

• The sequence of partial sums of a convergent alternating series oscillates around and
converge to the sum of the series if the sequence of nth terms converges to 0. That is
why the Alternating Series Test shows that the alternating series

∑∞
k=1(−1)kak converges

whenever the sequence {an} of nth terms decreases to 0.

• The difference between the n − 1st partial sum Sn−1 and the nth partial sum Sn of a
convergent alternating series

∑∞
k=1(−1)kak is |Sn − Sn−1 | = an. Since the partial sums

oscillate around the sum S of the series, it follows that

|S − Sn | < an.

So the nth partial sum of a convergent alternating series
∑∞

k=1(−1)kak approximates
the actual sum of the series to within an.

Exercises

1. Conditionally convergent series converge very slowly. As an example, consider the
famous formula6

π

4
= 1 −

1

3
+
1

5
−
1

7
+ · · · =

∞∑
k=0

(−1)k 1

2k + 1
. (8.17)

In theory, the partial sums of this series could be used to approximate π.

(a) Show that the series in (8.17) converges conditionally.

(b) Let Sn be the nth partial sum of the series in (8.17). Calculate the error in

6We will derive this formula in upcoming work.
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approximating π
4 with S100 and explain why this is not a very good approxima-

tion.

(c) Determine the number of terms it would take in the series (8.17) to approximate
π
4 to 10 decimal places. (The fact that it takes such a large number of terms
to obtain even a modest degree of accuracy is why we say that conditionally
convergent series converge very slowly.)

2. We have shown that if
∑(−1)k+1ak is a convergent alternating series, then the sum S

of the series lies between any two consecutive partial sums Sn. This suggests that the
average Sn+Sn+1

2 is a better approximation to S than is Sn.

(a) Show that Sn+Sn+1

2 = Sn + 1
2 (−1)n+2an+1.

(b) Use this revised approximation in (a) with n = 20 to approximate ln(2) given
that

ln(2) =
∞∑
k=1

(−1)k+1 1
k
.

Compare this to the approximation using just S20. For your convenience,
S20 = 155685007

232792560 .

3. In this exercise, we examine one of the conditions of the Alternating Series Test.
Consider the alternating series

1 − 1 +
1

2
−
1

4
+
1

3
−
1

9
+
1

4
−

1

16
+ · · · ,

where the terms are selected alternately from the sequences
�
1
n

	
and

{
− 1

n2

}
.

(a) Explain why the nth term of the given series converges to 0 as n goes to infinity.

(b) Rewrite the given series by grouping terms in the following manner:

(1 − 1) +
(1
2
−
1

4

)
+

(1
3
−
1

9

)
+

(1
4
−

1

16

)
+ · · · .

Use this regrouping to determine if the series converges or diverges.

(c) Explain why the condition that the sequence {an} decreases to a limit of 0 is
included in the Alternating Series Test.

4. Conditionally convergent series exhibit interesting and unexpected behavior. In this ex-

ercise we examine the conditionally convergent alternating harmonic series
∞∑
k=1

(−1)k+1
k

and discover that addition is not commutative for conditionally convergent series. We
will also encounter Riemann’s Theorem concerning rearrangements of conditionally
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convergent series. Before we begin, we remind ourselves that

∞∑
k=1

(−1)k+1
k

= ln(2),

a fact which will be verified in a later section.

(a) First we make a quick analysis of the positive and negative terms of the
alternating harmonic series.

(i) Show that the series
∞∑
k=1

1

2k
diverges.

(ii) Show that the series
∞∑
k=1

1

2k + 1
diverges.

(iii) Based on the results of the previous parts of this exercise, what can we

say about the sums
∞∑

k=C

1

2k
and

∞∑
k=C

1

2k + 1
for any positive integer C? Be

specific in your explanation.

(b) Recall addition of real numbers is commutative; that is

a + b = b + a

for any real numbers a and b. This property is valid for any sum of finitely
many terms, but does this property extend when we add infinitely many terms
together?

The answer is no, and something even more odd happens. Riemann’s The-
orem (after the nineteenth-century mathematician Georg Friedrich Bernhard
Riemann) states that a conditionally convergent series can be rearranged to
converge to any prescribed sum. More specifically, this means that if we choose
any real number S, we can rearrange the terms of the alternating harmonic

series
∞∑
k=1

(−1)k+1
k

so that the sum is S. To understand how Riemann’s The-

orem works, let’s assume for the moment that the number S we want our
rearrangement to converge to is positive. Our job is to find a way to order the
sum of terms of the alternating harmonic series to converge to S.

(i) Explain how we know that, regardless of the value of S, we can find a
partial sum P1

P1 =

n1∑
k=1

1

2k + 1
= 1 +

1

3
+
1

5
+ · · · +

1

2n1 + 1

of the positive terms of the alternating harmonic series that equals or
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exceeds S. Let
S1 = P1.

(ii) Explain how we know that, regardless of the value of S1, we can find a
partial sum N1

N1 = −

m1∑
k=1

1

2k
= −

1

2
−
1

4
−
1

6
− · · · −

1

2m1

so that
S2 = S1 + N1 ≤ S.

(iii) Explain how we know that, regardless of the value of S2, we can find a
partial sum P2

P2 =

n2∑
k=n1+1

1

2k + 1
=

1

2(n1 + 1) + 1 +
1

2(n1 + 2) + 1 + · · · +
1

2n2 + 1

of the remaining positive terms of the alternating harmonic series so that

S3 = S2 + P2 ≥ S.

(iv) Explain how we know that, regardless of the value of S3, we can find a
partial sum

N2 = −

m2∑
k=m1+1

1

2k
= −

1

2(m1 + 1) −
1

2(m1 + 2) − · · · −
1

2m2

of the remaining negative terms of the alternating harmonic series so that

S4 = S3 + N2 ≤ S.

(v) Explain why we can continue this process indefinitely and find a sequence
{Sn} whose terms are partial sums of a rearrangement of the terms in the
alternating harmonic series so that lim

n→∞
Sn = S.



8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 501

8.5 Taylor Polynomials and Taylor Series

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is a Taylor polynomial? For what purposes are Taylor polynomials used?

• What is a Taylor series?

• How are Taylor polynomials and Taylor series different? How are they related?

• How do we determine the accuracy when we use a Taylor polynomial to approxi-
mate a function?

Introduction

In our work to date in Chapter 8, essentially every sum we have considered has been a
sum of numbers. In particular, each infinite series that we have discussed has been a series
of real numbers, such as

1 +
1

2
+
1

4
+ · · · +

1

2k
+ · · · =

∞∑
k=0

1

2k
. (8.18)

In the remainder of this chapter, we will expand our notion of series to include series that
involve a variable, say x. For instance, if in the geometric series in Equation (8.18) we
replace the ratio r = 1

2 with the variable x, then we have the infinite (still geometric) series

1 + x + x2 + · · · + xk + · · · =
∞∑
k=0

xk . (8.19)

Here we see something very interesting: since a geometric series converges whenever its
ratio r satisfies |r | < 1, and the sum of a convergent geometric series is a

1−r , we can say
that for |x | < 1,

1 + x + x2 + · · · + xk + · · · =
1

1 − x
. (8.20)

Note well what Equation (8.20) states: the non-polynomial function 1
1−x on the right is

equal to the infinite polynomial expresssion on the left. Moreover, it appears natural to
truncate the infinite sum on the left (whose terms get very small as k gets large) and say,
for example, that

1 + x + x2 + x3 ≈
1

1 − x
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for small values of x. This shows one way that a polynomial function can be used to
approximate a non-polynomial function; such approximations are one of the main themes
in this section and the next.

In Preview Activity 8.5, we begin our explorations of approximating non-polynomial
functions with polynomials, from which we will also develop ideas regarding infinite series
that involve a variable, x.

Preview Activity 8.5. Preview Activity 8.3 showed how we can approximate the number
e using linear, quadratic, and other polynomial functions; we then used similar ideas
in Preview Activity 8.4 to approximate ln(2). In this activity, we review and extend the
process to find the “best" quadratic approximation to the exponential function ex around
the origin. Let f (x) = ex throughout this activity.

(a) Find a formula for P1(x), the linearization of f (x) at x = 0. (We label this
linearization P1 because it is a first degree polynomial approximation.) Recall that
P1(x) is a good approximation to f (x) for values of x close to 0. Plot f and P1

near x = 0 to illustrate this fact.

(b) Since f (x) = ex is not linear, the linear approximation eventually is not a very
good one. To obtain better approximations, we want to develop a different
approximation that “bends” to make it more closely fit the graph of f near x = 0.
To do so, we add a quadratic term to P1(x). In other words, we let

P2(x) = P1(x) + c2x2

for some real number c2. We need to determine the value of c2 that makes the
graph of P2(x) best fit the graph of f (x) near x = 0.

Remember that P1(x) was a good linear approximation to f (x) near 0; this is
because P1(0) = f (0) and P′1(0) = f ′(0). It is therefore reasonable to seek a value
of c2 so that

P2(0) = f (0),
P′2(0) = f ′(0), and
P′′2 (0) = f ′′(0).

Remember, we are letting P2(x) = P1(x) + c2x2.

(i) Calculate P2(0) to show that P2(0) = f (0).
(ii) Calculate P′2(0) to show that P′2(0) = f ′(0).
(iii) Calculate P′′2 (x). Then find a value for c2 so that P′′2 (0) = f ′′(0).
(iv) Explain why the condition P′′2 (0) = f ′′(0) will put an appropriate “bend" in

the graph of P2 to make P2 fit the graph of f around x = 0.

./
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Taylor Polynomials

Preview Activity 8.5 illustrates the first steps in the process of approximating compli-
cated functions with polynomials. Using this process we can approximate trigonometric,
exponential, logarithmic, and other nonpolynomial functions as closely as we like (for
certain values of x) with polynomials. This is extraordinarily useful in that it allows us to
calculate values of these functions to whatever precision we like using only the operations
of addition, subtraction, multiplication, and division, which are operations that can be
easily programmed in a computer.

We next extend the approach in Preview Activity 8.5 to arbitrary functions at arbitrary
points. Let f be a function that has as many derivatives at a point x = a as we need.
Since first learning it in Section 1.8, we have regularly used the linear approximation P1(x)
to f at x = a, which in one sense is the best linear approximation to f near a. Recall that
P1(x) is the tangent line to f at (a, f (a)) and is given by the formula

P1(x) = f (a) + f ′(a)(x − a).
If we proceed as in Preview Activity 8.5, we then want to find the best quadratic approxi-
mation

P2(x) = P1(x) + c2(x − a)2
so that P2(x) more closely models f (x) near x = a. Consider the following calculations of
the values and derivatives of P2(x):

P2(x) = P1(x) + c2(x − a)2
P′2(x) = P′1(x) + 2c2(x − a)
P′′2 (x) = 2c2

P2(a) = P1(a) = f (a)
P′2(a) = P′1(a) = f ′(a)
P′′2 (a) = 2c2.

To make P2(x) fit f (x) better than P1(x), we want P2(x) and f (x) to have the same
concavity at x = a. That is, we want to have

P′′2 (a) = f ′′(a).
This implies that

2c2 = f ′′(a)
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and thus

c2 =
f ′′(a)
2

.

Therefore, the quadratic approximation P2(x) to f centered at x = 0 is

P2(x) = f (a) + f ′(a)(x − a) + f ′′(a)
2!

(x − a)2.

This approach extends naturally to polynomials of higher degree. In this situation, we
define polynomials

P3(x) = P2(x) + c3(x − a)3,
P4(x) = P3(x) + c4(x − a)4,
P5(x) = P4(x) + c5(x − a)5,

and so on, with the general one being

Pn(x) = Pn−1(x) + cn(x − a)n.
The defining property of these polynomials is that for each n, Pn(x) must have its value
and all its first n derivatives agree with those of f at x = a. In other words we require that

P(k)
n (a) = f (k)(a)

for all k from 0 to n.

To see the conditions under which this happens, suppose

Pn(x) = c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)n.
Then

P(0)
n (a) = c0

P(1)
n (a) = c1

P(2)
n (a) = 2c2

P(3)
n (a) = (2)(3)c3

P(4)
n (a) = (2)(3)(4)c4

P(5)
n (a) = (2)(3)(4)(5)c5

and, in general,
P(k)
n (a) = (2)(3)(4) · · · (k − 1)(k)ck = k!ck .
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So having
P(k)
n (a) = f (k)(a)

means that
k!ck = f (k)(a)

and therefore

ck =
f (k)(a)

k!
for each value of k . In this expression for ck , we have found the formula for the degree n
polynomial approximation of f that we seek.

The nth order Taylor polynomial of f centered at x = a is given by

Pn(x) = f (a) + f ′(a)(x − a) + f ′′(a)
2!

(x − a)2 + · · · + f (n)(a)
n!

(x − a)n

=

n∑
k=0

f (k)(a)
k!

(x − a)k .

This degree n polynomial approximates f (x) near x = a and has the property that
P(k)
n (a) = f (k)(a) for k = 0 . . . n.

Example 8.2. Determine the third order Taylor polynomial for f (x) = ex , as well as the
general nth order Taylor polynomial for f centered at x = 0.

Solution. We know that f ′(x) = ex and so f ′′(x) = ex and f ′′′(x) = ex . Thus,

f (0) = f ′(0) = f ′′(0) = f ′′′(0) = 1.

So the third order Taylor polynomial of f (x) = ex centered at x = 0 is

P3(x) = f (0) + f ′(0)(x − 0) + f ′′(0)
2!

(x − 0)2 + f ′′′(0)
3!

(x − 0)3 = 1 + x +
x2

2
+

x3

6
.

In general, for the exponential function f we have f (k)(x) = ex for every positive integer
k . Thus, the kth term in the nth order Taylor polynomial for f (x) centered at x = 0 is

f (k)(0)
k!

(x − 0)k = 1

k!
xk .

Therefore, the nth order Taylor polynomial for f (x) = ex centered at x = 0 is

Pn(x) = 1 + x +
x2

2!
+ · · · +

1

n!
xn =

n∑
k=0

xk

k!
.
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Activity 8.22.

We have just seen that the nth order Taylor polynomial centered at a = 0 for the
exponential function ex is

n∑
k=0

xk

k!
.

In this activity, we determine small order Taylor polynomials for several other famil-
iar functions, and look for general patterns that will help us find the Taylor series
expansions a bit later.

(a) Let f (x) = 1
1−x .

(i) Calculate the first four derivatives of f (x) at x = 0. Then find the fourth
order Taylor polynomial P4(x) for 1

1−x centered at 0.
(ii) Based on your results from part (i), determine a general formula for f (k)(0).

(b) Let f (x) = cos(x).
(i) Calculate the first four derivatives of f (x) at x = 0. Then find the fourth

order Taylor polynomial P4(x) for cos(x) centered at 0.
(ii) Based on your results from part (i), find a general formula for f (k)(0).

(Think about how k being even or odd affects the value of the kth deriva-
tive.)

(c) Let f (x) = sin(x).
(i) Calculate the first four derivatives of f (x) at x = 0. Then find the fourth

order Taylor polynomial P4(x) for sin(x) centered at 0.
(ii) Based on your results from part (i), find a general formula for f (k)(0).

(Think about how k being even or odd affects the value of the kth deriva-
tive.)

C

It is possible that an nth order Taylor polynomial is not a polynomial of degree n;
that is, the order of the approximation can be different from the degree of the polynomial.
For example, in Activity 8.22 we found that the second order Taylor polynomial P2(x)
centered at 0 for sin(x) is P2(x) = x. In this case, the second order Taylor polynomial is a
degree 1 polynomial.

Taylor Series

In Activity 8.22 we saw that the fourth order Taylor polynomial P4(x) for sin(x) centered
at 0 is

P4(x) = x −
x3

3!
.
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The pattern we found for the derivatives f (k)(0) describe the higher-order Taylor polyno-
mials, e.g.,

P5(x) = x −
x3

3!
+

x(5)

5!
, P7(x) = x −

x3

3!
+

x(5)

5!
−

x(7)

7!
, P9(x) = x −

x3

3!
+

x(5)

5!
−

x(7)

7!
+

x(9)

9!
,

and so on. It is instructive to consider the graphical behavior of these functions; Figure 8.6
shows the graphs of a few of the Taylor polynomials centered at 0 for the sine function.

-4 -2 2 4

-3

-2

-1

1

2

3

x

y

-4 -2 2 4

-3

-2

-1

1

2

3

x

y

-4 -2 2 4

-3

-2

-1

1

2

3

x

y

-4 -2 2 4

-3

-2

-1

1

2

3

x

y

Figure 8.6: The order 1, 5, 7, and 9 Taylor polynomials centered at x = 0 for f (x) = sin(x).

Notice that P1(x) is close to the sine function only for values of x that are close to 0,
but as we increase the degree of the Taylor polynomial the Taylor polynomials provide
a better fit to the graph of the sine function over larger intervals. This illustrates the
general behavior of Taylor polynomials: for any sufficiently well-behaved function, the
sequence {Pn(x)} of Taylor polynomials converges to the function f on larger and larger
intervals (though those intervals may not necessarily increase without bound). If the Taylor
polynomials ultimately converge to f on its entire domain, we write

f (x) =
∞∑
k=0

f (k)(a)
k!

(x − a)k .

Definition 8.8. Let f be a function all of whose derivatives exist at x = a. The Taylor
series for f centered at x = a is the series Tf (x) defined by

Tf (x) =
∞∑
k=0

f (k)(a)
k!

(x − a)k .

In the special case where a = 0 in Definition 8.8, the Taylor series is also called the
Maclaurin series for f . From Example 8.2 we know the nth order Taylor polynomial
centered at 0 for the exponential function ex ; thus, the Maclaurin series for ex is

∞∑
k=0

xk

k!
.
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Activity 8.23.

In Activity 8.22 we determined small order Taylor polynomials for a few familiar
functions, and also found general patterns in the derivatives evaluated at 0. Use that
information to write the Taylor series centered at 0 for the following functions.

(a) f (x) = 1
1−x

(b) f (x) = cos(x) (You will need to carefully consider how to indicate that many of
the coefficients are 0. Think about a general way to represent an even integer.)

(c) f (x) = sin(x) (You will need to carefully consider how to indicate that many of
the coefficients are 0. Think about a general way to represent an odd integer.)

C

The next activity further considers the important issue of the x-values for which the
Taylor series of a function converges to the function itself.

Activity 8.24.
(a) Plot the graphs of several of the Taylor polynomials centered at 0 (of order at

least 5) for ex and convince yourself that these Taylor polynomials converge to
ex for every value of x.

(b) Draw the graphs of several of the Taylor polynomials centered at 0 (of order at
least 6) for cos(x) and convince yourself that these Taylor polynomials converge
to cos(x) for every value of x. Write the Taylor series centered at 0 for cos(x).

(c) Draw the graphs of several of the Taylor polynomials centered at 0 for 1
1−x .

Based on your graphs, for what values of x do these Taylor polynomials appear
to converge to 1

1−x ? How is this situation different from what we observe with
ex and cos(x)? In addition, write the Taylor series centered at 0 for 1

1−x .

C

The Maclaurin series for ex , sin(x), cos(x), and 1
1−x will be used frequently, so we

should be certain to know and recognize them well.

The Interval of Convergence of a Taylor Series

In the previous section (in Figure 8.6 and Activity 8.24) we observed that the Taylor
polynomials centered at 0 for ex , cos(x), and sin(x) converged to these functions for
all values of x in their domain, but that the Taylor polynomials centered at 0 for 1

1−x
converged to 1

1−x for only some values of x. In fact, the Taylor polynomials centered at 0
for 1

1−x converge to 1
1−x on the interval (−1, 1) and diverge for all other values of x. So

the Taylor series for a function f (x) does not need to converge for all values of x in the
domain of f .

Our observations to date suggest two natural questions: can we determine the values
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of x for which a given Taylor series converges? Moreover, given the Taylor series for a
function f , does it actually converge to f (x) for those values of x for which the Taylor
series converges?

Example 8.3. Graphical evidence suggests that the Taylor series centered at 0 for ex

converges for all values of x. To verify this, use the Ratio Test to determine all values of x
for which the Taylor series

∞∑
k=0

xk

k!
(8.21)

converges absolutely.

Solution. In previous work, we used the Ratio Test on series of numbers that did not
involve a variable; recall, too, that the Ratio Test only applies to series of nonnegative
terms. In this example, we have to address the presence of the variable x. Because we are
interested in absolute convergence, we apply the Ratio Test to the series

∞∑
k=0

�����
xk

k!

�����
=

∞∑
k=0

|x |k
k!

.

Now, observe that

lim
k→∞

ak+1
ak
= lim

k→∞

|x |k+1
(k+1)!
|x |k
k

= lim
k→∞

|x |k+1k!
|x |k(k + 1)!

= lim
k→∞

|x |
k + 1

= 0

for any value of x. So the Taylor series (8.21) converges absolutely for every value of x,
and thus converges for every value of x.

One key question remains: while the Taylor series for ex converges for all x, what we
have done does not tell us that this Taylor series actually converges to ex for each x. We’ll
return to this question when we consider the error in a Taylor approximation near the end
of this section.
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We can apply the main idea from Example 8.3 in general. To determine the values of
x for which a Taylor series

∞∑
k=0

ck(x − a)k,

centered at x = a will converge, we apply the Ratio Test with ak = |ck(x − a)k | and recall
that the series to which the Ratio Test is applied converges if limk→∞

ak+1

ak
< 1.

Observe that
ak+1
ak
= |x − a| |ck+1 ||ck | ,

so when we apply the Ratio Test, we get that

lim
k→∞

ak+1
ak
= lim

k→∞
|x − a| ck+1

ck
.

Note further that ck =
f (k)(a)
k! , and say that

lim
k→∞

ck+1
ck
= L.

Thus, we have found that
lim
k→∞

ak+1
ak
= |x − a| · L.

There are three important possibilities for L: L can be 0, a finite positive value, or infinite.
Based on this value of L, we can therefore determine for which values of x the original
Taylor series converges.

• If L = 0, then the Taylor series converges on (−∞,∞).
• If L is infinite, then the Taylor series converges only at x = a.

• If L is finite and nonzero, then the Taylor series converges absolutely for all x that
satisfy

|x − a| · L < 1.

In other words, the series converges absolutely for all x such that

|x − a| < 1

L
,

which is also the interval (
a −

1

L
, a +

1

L

)
.

Because the Ratio Test is inconclusive when the |x − a| · L = 1, the endpoints a ± 1
L

have to be checked separately.

It is important to notice that the set of x values at which a Taylor series converges
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is always an interval centered at x = a. For this reason, the set on which a Taylor series
converges is called the interval of convergence. Half the length of the interval of convergence
is called the radius of convergence. If the interval of convergence of a Taylor series is infinite,
then we say that the radius of convergence is infinite.

Activity 8.25.
(a) Use the Ratio Test to explicitly determine the interval of convergence of the

Taylor series for f (x) = 1
1−x centered at x = 0.

(b) Use the Ratio Test to explicitly determine the interval of convergence of the
Taylor series for f (x) = cos(x) centered at x = 0.

(c) Use the Ratio Test to explicitly determine the interval of convergence of the
Taylor series for f (x) = sin(x) centered at x = 0.

C

The Ratio Test tells us how we can determine the set of x values for which a Taylor
series converges absolutely. However, just because a Taylor series for a function f
converges, we cannot be certain that the Taylor series actually converges to f (x) on its
interval of convergence. To show why and where a Taylor series does in fact converge to
the function f , we next consider the error that is present in Taylor polynomials.

Error Approximations for Taylor Polynomials

We now know how to find Taylor polynomials for functions such as sin(x), as well as
how to determine the interval of convergence of the corresponding Taylor series. We
next develop an error bound that will tell us how well an nth order Taylor polynomial
Pn(x) approximates its generating function f (x). This error bound will also allow us
to determine whether a Taylor series on its interval of convergence actually equals the
function f from which the Taylor series is derived. Finally, we will be able to use the error
bound to determine the order of the Taylor polynomial Pn(x) for a function f that we
need to ensure that Pn(x) approximates f (x) to any desired degree of accuracy.

In all of this, we need to compare Pn(x) to f (x). For this argument, we assume through-
out that we center our approximations at 0 (a similar argument holds for approximations
centered at a). We define the exact error, En(x), that results from approximating f (x) with
Pn(x) by

En(x) = f (x) − Pn(x).
We are particularly interested in |En(x)|, the distance between Pn and f . Note that since

P(k)
n (0) = f (k)(0)

for 0 ≤ k ≤ n, we know that
E(k)
n (0) = 0
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for 0 ≤ k ≤ n. Furthermore, since Pn(x) is a polynomial of degree less than or equal to n,
we know that

P(n+1)
n (x) = 0.

Thus, since E(n+1)
n (x) = f (n+1)(x) − P(n+1)

n (x), it follows that
E(n+1)
n (x) = f (n+1)(x)

for all x.

Suppose that we want to approximate f (x) at a number c close to 0 using Pn(c). If we
assume | f (n+1)(t)| is bounded by some number M on [0, c], so that

��� f (n+1)(t)��� ≤ M

for all 0 ≤ t ≤ c, then we can say that

���E
(n+1)
n (t)��� =

��� f (n+1)(t)��� ≤ M

for all t between 0 and c. Equivalently,

− M ≤ E(n+1)
n (t) ≤ M (8.22)

on [0, c]. Next, we integrate the three terms in the inequality (8.22) from t = 0 to t = x,
and thus find that ∫ x

0
−M dt ≤

∫ x

0
E(n+1)
n (t) dt ≤

∫ x

0
M dt

for every value of x in [0, c]. Since E(n)
n (0) = 0, the First FTC tells us that

−M x ≤ E(n)
n (x) ≤ M x

for every x in [0, c].
Integrating the most recent inequality, we obtain∫ x

0
−Mt dt ≤

∫ x

0
E(n)
n (t) dt ≤

∫ x

0
Mt dt

and thus

−M
x2

2
≤ E(n−1)

n (x) ≤ M
x2

2

for all x in [0, c].
Integrating n times, we arrive at

−M
xn+1

(n + 1)! ≤ En(x) ≤ M
xn+1

(n + 1)!
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for all x in [0, c]. This enables us to conclude that

|En(x)| ≤ M
|x |n+1
(n + 1)!

for all x in [0, c], which shows an important bound on the approximation’s error, En.

Our work above was based on the approximation centered at a = 0; the argument may
be generalized to hold for any value of a, which results in the following theorem.

The Lagrange Error Bound for Pn(x). Let f be a continuous function with n +
1 continuous derivatives. Suppose that M is a positive real number such that�
f (n+1)(x)� ≤ M on the interval [a, c]. If Pn(x) is the nth order Taylor polynomial for
f (x) centered at x = a, then

|Pn(c) − f (c)| ≤ M
|c − a|n+1
(n + 1)! .

This error bound may now be used to tell us important information about Taylor
polynomials and Taylor series, as we see in the following examples and activities.

Example 8.4. Determine how well the 10th order Taylor polynomial P10(x) for sin(x),
centered at 0, approximates sin(2).

Solution. To answer this question we use f (x) = sin(x), c = 2, a = 0, and n = 10 in the
Lagrange error bound formula. To use the bound, we also need to find an appropriate
value for M . Note that the derivatives of f (x) = sin(x) are all equal to ± sin(x) or ± cos(x).
Thus,

��� f (n+1)(x)��� ≤ 1

for any n and x. Therefore, we can choose M to be 1. Then

|P10(2) − f (2)| ≤ (1) |2 − 0|
11

(11)! =
211

(11)! ≈ 0.00005130671797.

So P10(2) approximates sin(2) to within at most 0.00005130671797. A computer algebra
system tells us that

P10(2) ≈ 0.9093474427 and sin(2) ≈ 0.9092974268

with an actual difference of about 0.0000500159.
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Activity 8.26.

Let Pn(x) be the nth order Taylor polynomial for sin(x) centered at x = 0. Determine
how large we need to choose n so that Pn(2) approximates sin(2) to 20 decimal places.

C

Example 8.5. Show that the Taylor series for sin(x) actually converges to sin(x) for all x.

Solution. Recall from the previous example that since f (x) = sin(x), we know

��� f (n+1)(x)��� ≤ 1

for any n and x. This allows us to choose M = 1 in the Lagrange error bound formula.
Thus,

|Pn(x) − sin(x)| ≤ |x |n+1
(n + 1)! (8.23)

for every x.

We showed in earlier work with the Taylor series
∞∑
k=0

xk

k!
converges for every value of x.

Since the terms of any convergent series must approach zero, it follows that

lim
n→∞

xn+1

(n + 1)! = 0

for every value of x. Thus, taking the limit as n → ∞ in the inequality (8.23), it follows
that

lim
n→∞

|Pn(x) − sin(x)| = 0.

As a result, we can now write

sin(x) =
∞∑
n=0

(−1)nx2n+1

(2n + 1)!

for every real number x.

Activity 8.27.
(a) Show that the Taylor series centered at 0 for cos(x) converges to cos(x) for

every real number x.

(b) Next we consider the Taylor series for ex .
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(i) Show that the Taylor series centered at 0 for ex converges to ex for every
nonnegative value of x.

(ii) Show that the Taylor series centered at 0 for ex converges to ex for every
negative value of x.

(iii) Explain why the Taylor series centered at 0 for ex converges to ex for
every real number x. Recall that we earlier showed that the Taylor series
centered at 0 for ex converges for all x, and we have now completed the
argument that the Taylor series for ex actually converges to ex for all x.

(c) Let Pn(x) be the nth order Taylor polynomial for ex centered at 0. Find a value
of n so that Pn(5) approximates e5 correct to 8 decimal places.

C

Summary

In this section, we encountered the following important ideas:

• We can use Taylor polynomials to approximate complicated functions. This allows
us to approximate values of complicated functions using only addition, subtraction,
multiplication, and division of real numbers. The nth order Taylor polynomial centered
at x = a of a function f is

Pn(x) = f (a) + f ′(a)(x − a) + f ′′(a)
2!

(x − a)2 + · · · + f (n)(a)
n!

(x − a)n

=

n∑
k=0

f (k)(a)
k!

(x − a)k .

• The Taylor series centered at x = a for a function f is

∞∑
k=0

f (k)(a)
k!

(x − a)k .

• The nth order Taylor polynomial centered at a for f is the nth partial sum of its
Taylor series centered at a. So the nth order Taylor polynomial for a function f is an
approximation to f on the interval where the Taylor series converges; for the values of
x for which the Taylor series converges to f we write

f (x) =
∞∑
k=0

f (k)(a)
k!

(x − a)k .

• The Lagrange Error Bound shows us how to determine the accuracy in using a Taylor
polynomial to approximate a function. More specifically, if Pn(x) is the nth order Taylor
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polynomial for f centered at x = a and if M is an upper bound for
�
f (n+1)(x)� on the

interval [a, c], then
|Pn(c) − f (c)| ≤ M

|c − a|n+1
(n + 1)! .

Exercises

1. In this exercise we investigation the Taylor series of polynomial functions.

(a) Find the 3rd order Taylor polynomial centered at a = 0 for f (x) = x3 − 2x2 +
3x − 1. Does your answer surprise you? Explain.

(b) Without doing any additional computation, find the 4th, 12th, and 100th order
Taylor polynomials (centered at a = 0) for f (x) = x3 − 2x2 + 3x − 1. Why
should you expect this?

(c) Now suppose f (x) is a degree m polynomial. Completely describe the nth
order Taylor polynomial (centered at a = 0) for each n.

2. The examples we have considered in this section have all been for Taylor polynomials
and series centered at 0, but Taylor polynomials and series can be centered at any
value of a. We look at examples of such Taylor polynomials in this exercise.

(a) Let f (x) = sin(x). Find the Taylor polynomials up through order four of f
centered at x = π

2 . Then find the Taylor series for f (x) centered at x = π
2 . Why

should you have expected the result?

(b) Let f (x) = ln(x). Find the Taylor polynomials up through order four of f
centered at x = 1. Then find the Taylor series for f (x) centered at x = 1.

(c) Use your result from (b) to determine which Taylor polynomial will approximate
ln(2) to two decimal places. Explain in detail how you know you have the
desired accuracy.

3. We can use known Taylor series to obtain other Taylor series, and we explore that idea
in this exercise, as a preview of work in the following section.

(a) Calculate the first four derivatives of sin(x2) and hence find the fourth order
Taylor polynomial for sin(x2) centered at a = 0.

(b) Part (a) demonstrates the brute force approach to computing Taylor polynomials
and series. Now we find an easier method that utilizes a known Taylor series.
Recall that the Taylor series centered at 0 for f (x) = sin(x) is

∞∑
k=0

(−1)k x2k+1

(2k + 1)! . (8.24)
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(i) Substitute x2 for x in the Taylor series (8.24). Write out the first several
terms and compare to your work in part (a). Explain why the substitution
in this problem should give the Taylor series for sin(x2) centered at 0.

(ii) What should we expect the interval of convergence of the series for sin(x2)
to be? Explain in detail.

4. Based on the examples we have seen, we might expect that the Taylor series for a
function f always converges to the values f (x) on its interval of convergence. We

explore that idea in more detail in this exercise. Let f (x) =



e−1/x
2

if x , 0,

0 if x = 0.

(a) Show, using the definition of the derivative, that f ′(0) = 0.

(b) It can be shown that f (n)(0) = 0 for all n ≥ 2. Assuming that this is true, find
the Taylor series for f centered at 0.

(c) What is the interval of convergence of the Taylor series centered at 0 for f ?
Explain. For which values of x the interval of convergence of the Taylor series
does the Taylor series converge to f (x)?
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8.6 Power Series

Motivating Questions

In this section, we strive to understand the ideas generated by the following important
questions:

• What is a power series?

• What are some important uses of power series?

• What is the connection between power series and Taylor series?

Introduction

We have noted at several points in our work with Taylor polynomials and Taylor series that
polynomial functions are the simplest possible functions in mathematics, in part because
they essentially only require addition and multiplication to evaluate. Moreover, from the
point of view of calculus, polynomials are especially nice: we can easily differentiate or
integrate any polynomial. In light of our work in Section 8.5, we now know that several
important non-polynomials have polynomial-like expansions. For example, for any real
number x,

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · +

xn

n!
+ · · · .

As we continue our study of infinite series, there are two settings where other series like
the one for ex arise: one is where we are simply given an expression like

1 + 2x + 3x2 + 4x3 + · · ·

and we seek the values of x for which the expression makes sense, while another is where
we are trying to find an unknown function f , and we think about the possibility that the
function has expression

f (x) = a0 + a1x + a2x2 + · · · + ak xk + · · · ,

and we try to determine the values of the constants a0, a1, . . .. The latter situation is
explored in Preview Activity 8.6.

Preview Activity 8.6. In Chapter 7, we learned some of the many important applications
of differential equations, and learned some approaches to solve or analyze them. Here, we
consider an important approach that will allow us to solve a wider variety of differential
equations.

Let’s consider the familiar differential equation from exponential population growth
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given by
y′ = ky, (8.25)

where k is the constant of proportionality. While we can solve this differential equation
using methods we have already learned, we take a different approach now that can be
applied to a much larger set of differential equations. For the rest of this activity, let’s
assume that k = 1. We will use our knowledge of Taylor series to find a solution to the
differential equation (8.25).

To do so, we assume that we have a solution y = f (x) and that f (x) has a Taylor series
that can be written in the form

y = f (x) =
∞∑
k=0

ak xk,

where the coefficients ak are undetermined. Our task is to find the coefficients.

(a) Assume that we can differentiate a power series term by term. By taking the
derivative of f (x) with respect to x and substituting the result into the differential
equation (8.25), show that the equation

∞∑
k=1

kak xk−1 =
∞∑
k=0

ak xk

must be satisfied in order for f (x) = ∑∞
k=0 ak xk to be a solution of the DE.

(b) Two series are equal if and only if they have the same coefficients on like power
terms. Use this fact to find a relationship between a1 and a0.

(c) Now write a2 in terms of a1. Then write a2 in terms of a0.

(d) Write a3 in terms of a2. Then write a3 in terms of a0.

(e) Write a4 in terms of a3. Then write a4 in terms of a0.

(f) Observe that there is a pattern in (b)-(e). Find a general formula for ak in terms of
a0.

(g) Write the series expansion for y using only the unknown coefficient a0. From this,
determine what familiar functions satisfy the differential equation (8.25). (Hint:
Compare to a familiar Taylor series.)

./
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Power Series

As Preview Activity 8.6 shows, it can be useful to treat an unknown function as if it has
a Taylor series, and then determine the coefficients from other information. In other
words, we define a function as an infinite series of powers of x and then determine the
coefficients based on something besides a formula for the function. This method of using
series illustrated in Preview Activity 8.6 to solve differential equations is a powerful and
important one that allows us to approximate solutions to many different types of differential
equations even if we cannot explicitly solve them. This approach is different from defining
a Taylor series based on a given function, and these functions we define with arbitrary
coefficients are given a special name.

Definition 8.9. A power series centered at x = a is a function of the form

∞∑
k=0

ck(x − a)k (8.26)

where {ck} is a sequence of real numbers and x is an independent variable.

We can substitute different values for x and test whether the resulting series converges
or diverges. Thus, a power series defines a function f whose domain is the set of x values
for which the power series converges. We therefore write

f (x) =
∞∑
k=0

ck(x − a)k .

It turns out that7, on its interval of convergence, a power series is the Taylor series of
the function that is the sum of the power series, so all of the techniques we developed in
the previous section can be applied to power series as well.

Example 8.6. Consider the power series defined by

f (x) =
∞∑
k=0

xk

2k
.

What are f (1) and f
�
3
2

�
? Find a general formula for f (x) and determine the values for

which this power series converges.

7See Exercise 2 in this section.
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Solution. If we evaluate f at x = 1 we obtain the series

∞∑
k=0

1

2k

which is a geometric series with ratio 1
2 . So we can sum this series and find that

f (1) = 1

1 − 1
2

= 2.

Similarly,

f (3/2) =
∞∑
k=0

(3
4

)k
=

1

1 − 3
4

= 4.

In general, f (x) is a geometric series with ratio x
2 and

f (x) =
∞∑
k=0

( x
2

)k
=

1

1 − x
2

=
2

2 − x

provided that −1 < x
2 < 1 (so that the ratio is less than 1 in absolute value). Thus, the

power series that defines f converges for −2 < x < 2.

As with Taylor series, we define the interval of convergence of a power series (8.26)
to be the set of values of x for which the series converges. In the same way as we did
with Taylor series, we typically use the Ratio Test to find the values of x for which the
power series converges absolutely, and then check the endpoints separately if the radius of
convergence is finite.

Example 8.7. Let f (x) =
∞∑
k=1

xk

k2
. Determine the interval of convergence of this power

series.

Solution. First we will draw graphs of some of the partial sums of this power series to get
an idea of the interval of convergence. Let

Sn(x) =
n∑

k=1

xk

k2

for each n ≥ 1. Figure 8.7 shows plots of S10(x) (in red), S25(x) (in blue), and S50(x) (in
green). The behavior of S50 particularly highlights that it appears to be converging to
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Figure 8.7: Graphs of partial sums of the power series
∑∞

k=1
xk

k2

a particular curve on the interval (−1, 1), while growing without bound outside of that
interval. This suggests that the interval of convergence might be −1 < x < 1. To more
fully understand this power series, we apply the Ratio Test to determine the values of x
for which the power series converges absolutely. For the given series, we have

ak =
xk

k2
,

so

lim
k→∞

|ak+1 |
|ak | = lim

k→∞

|x |k+1
(k+1)2
|x |k
k2

= lim
k→∞

|x |
(

k
k + 1

)2
= |x | lim

k→∞

(
k

k + 1

)2
= |x |.

Therefore, the Ratio Test tells us that the given power series f (x) converges absolutely
when |x | < 1 and diverges when |x | > 1. Since the Ratio Test is inconclusive when |x | = 1,
we need to check x = 1 and x = −1 individually.

When x = 1, observe that

f (1) =
∞∑
k=1

1

k2
.
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This is a p-series with p > 1, which we know converges. When x = −1, we have

f (−1) =
∞∑
k=1

(−1)k
k2

.

This is an alternating series, and since the sequence
{

1
n2

}
decreases to 0, the power series

converges when x = −1 by the Alternating Series Test. Thus, the interval of convergence
of this power series is −1 ≤ x ≤ 1.

Activity 8.28.

Determine the interval of convergence of each power series.

(a)
∞∑
k=1

(x − 1)k
3k

(b)
∞∑
k=1

k xk

(c)
∞∑
k=1

k2(x + 1)k
4k

(d)
∞∑
k=1

xk

(2k)!

(e)
∞∑
k=1

k!xk

C

Manipulating Power Series

Recall that we know several power series expressions for important functions such as
sin(x) and ex . Often, we can take a known power series expression for such a function
and use that series expansion to find a power series for a different, but related, function.
The next activity demonstrates one way to do this.

Activity 8.29.

Our goal in this activity is to find a power series expansion for f (x) = 1

1 + x2
centered

at x = 0.
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While we could use the methods of Section 8.5 and differentiate f (x) = 1

1 + x2
several

times to look for patterns and find the Taylor series for f (x), we seek an alternate
approach because of how complicated the derivatives of f (x) quickly become.

(a) What is the Taylor series expansion for g(x) = 1
1−x ? What is the interval of

convergence of this series?

(b) How is g(−x2) related to f (x)? Explain, and hence substitute −x2 for x in the
power series expansion for g(x). Given the relationship between g(−x2) and
f (x), how is the resulting series related to f (x)?

(c) For which values of x will this power series expansion for f (x) be valid? Why?

C

In a previous section we determined several important Maclaurin series and their
intervals of convergence. Here, we list these key functions and remind ourselves of their
corresponding expansions.

sin(x) =
∞∑
k=0

(−1)k x2k+1

(2k + 1)! for −∞ < x < ∞

cos(x) =
∞∑
k=0

(−1)k x2k

(2k)! for −∞ < x < ∞

ex =
∞∑
k=0

xk

k!
for −∞ < x < ∞

1

1 − x
=

∞∑
k=0

xk for −1 < x < 1

As we saw in Activity 8.29, we can use these known series to find other power series
expansions for related functions such as sin(x2), e5x

3
, and cos(x5). Another important

way that we can manipulate power series is illustrated in the next activity.

Activity 8.30.

Let f be the function given by the power series expansion

f (x) =
∞∑
k=0

(−1)k x2k

(2k)! .

(a) Assume that we can differentiate a power series term by term, just like we can
differentiate a (finite) polynomial. Use the fact that

f (x) = 1 −
x2

2!
+

x4

4!
−

x6

6!
+ · · · + (−1)k x2k

(2k)! + · · ·
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to find a power series expansion for f ′(x).
(b) Observe that f (x) and f ′(x) have familiar Taylor series. What familiar functions

are these? What known relationship does our work demonstrate?

(c) What is the series expansion for f ′′(x)? What familiar function is f ′′(x)?

C

It turns out that our work in Activity 8.29 holds more generally. The corresponding
theorem, which we will not prove, states that we can differentiate a power series for a
function f term by term and obtain the series expansion for f ′, and similarly we can
integrate a series expansion for a function f term by term and obtain the series expansion

for
∫

f (x) dx. For both, the radius of convergence of the resulting series is the same

as the original, though it is possible that the convergence status of the resulting series
may differ at the endpoints. The formal statement of the Power Series Differentiation and
Integration Theorem follows.

Power Series Differentiation and Integration Theorem. Suppose f (x) has a
power series expansion

f (x) =
∞∑
k=0

ck xk

so that the series converges absolutely to f (x) on the interval −r < x < r . Then, the

power series
∞∑
k=1

kck xk−1 obtained by differentiating the power series for f (x) term
by term converges absolutely to f ′(x) on the interval −r < x < r . That is,

f ′(x) =
∞∑
k=1

kck xk−1, for |x | < r .

Similarly, the power series
∞∑
k=0

ck
xk+1

k + 1
obtained by integrating the power series for

f (x) term by term converges absolutely on the interval −r < x < r , and∫
f (x) dx =

∞∑
k=0

ck
xk+1

k + 1
+ C, for |x | < r .

This theorem validates the steps we took in Activity 8.30. It is important to note
that this result about differentiating and integrating power series tells us that we can
differentiate and integrate term by term on the interior of the interval of convergence, but
it does not tell us what happens at the endpoints of this interval. We always need to check
what happens at the endpoints separately. More importantly, we can use use the approach
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of differentiating or integrating a series term by term to find new series.

Example 8.8. Find a series expansion centered at x = 0 for arctan(x), as well as its
interval of convergence.

Solution. While we could differentiate arctan(x) repeatedly and look for patterns in the
derivative values at x = 0 in an attempt to find the Maclaurin series for arctan(x) from
the definition, it turns out to be far easier to use a known series in an insightful way. In
Activity 8.29, we found that

1

1 + x2
=

∞∑
k=0

(−1)k x2k

for −1 < x < 1. Recall that
d
dx

[arctan(x)] = 1

1 + x2
,

and therefore ∫
1

1 + x2
dx = arctan(x) + C.

It follows that we can integrate the series for
1

1 + x2
term by term to obtain the power

series expansion for arctan(x). Doing so, we find that

arctan(x) =
∫

*
,

∞∑
k=0

(−1)k x2k+
-

dx

=

∞∑
k=0

(∫
(−1)k x2k dx

)

= *
,

∞∑
k=0

(−1)k x2k+1

2k + 1
+
-
+ C.

The Power Series Differentiation and Integration Theorem tells us that this equality is
valid for at least −1 < x < 1.

To find the value of the constant C, we can use the fact that arctan(0) = 0. So

0 = arctan(0) = *
,

∞∑
k=0

(−1)k 02k+1

2k + 1
+
-
+ C = C,

and we must have C = 0. Therefore,

arctan(x) =
∞∑
k=0

(−1)k x2k+1

2k + 1
(8.27)
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for at least −1 < x < 1.

It is a straightforward exercise to check that the power series

∞∑
k=0

(−1)k x2k+1

2k + 1

converges both when x = −1 and when x = 1; in each case, we have an alternating series
with terms 1

2k+1 that decrease to 0, and thus the interval of convergence for the series
expansion for arctan(x) in Equation (8.27) is −1 ≤ x ≤ 1.

Activity 8.31.

Find a power series expansion for ln(1+ x) centered at x = 0 and determine its interval

of convergence. (Hint: Use the Taylor series expansion for
1

1 + x
centered at x = 0.)

C

Summary

In this section, we encountered the following important ideas:

• A power series is a series of the form

∞∑
k=0

ak xk .

• We can often assume a solution to a given problem can be written as a power series,
then use the information in the problem to determine the coefficients in the power series.
This method allows us to approximate solutions to certain problems using partial sums
of the power series; that is, we can find approximate solutions that are polynomials.

• The connection between power series and Taylor series is that they are essentially the
same thing: on its interval of convergence a power series is the Taylor series of its sum.
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Exercises

1. We can use power series to approximate definite integrals to which known techniques of
integration do not apply. We will illustrate this in this exercise with the definite integral∫ 1

0
sin(x2) ds.

(a) Use the Taylor series for sin(x) to find the Taylor series for sin(x2). What is
the interval of convergence for the Taylor series for sin(x2)? Explain.

(b) Integrate the Taylor series for sin(x2) term by term to obtain a power series
expansion for

∫
sin(x2) dx.

(c) Use the result from part (b) to explain how to evaluate
∫ 1

0
sin(x2) dx. Determine

the number of terms you will need to approximate
∫ 1

0
sin(x2) dx to 3 decimal

places.

2. There is an important connection between power series and Taylor series. Suppose f
is defined by a power series centered at 0 so that

f (x) =
∞∑
k=0

ak xk .

(a) Determine the first 4 derivatives of f evaluated at 0 in terms of the coefficients
ak .

(b) Show that f (n)(0) = n!an for each positive integer n.

(c) Explain how the result of (b) tells us the following:

On its interval of convergence, a power series is the Taylor series of its sum.

3. In this exercise we will begin with a strange power series and then find its sum. The
Fibonacci sequence { fn} is a famous sequence whose first few terms are

f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13, · · · ,

where each term in the sequence after the first two is the sum of the preceding two
terms. That is, f0 = 0, f1 = 1 and for n ≥ 2 we have

fn = fn−1 + fn−2.

Now consider the power series

F(x) =
∞∑
k=0

fk xk .
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We will determine the sum of this power series in this exercise.

(a) Explain why each of the following is true.

(i) xF(x) =
∞∑
k=1

fk−1xk

(ii) x2F(x) =
∞∑
k=2

fk−2xk

(b) Show that
F(x) − xF(x) − x2F(x) = x.

(c) Now use the equation

F(x) − xF(x) − x2F(x) = x

to find a simple form for F(x) that doesn’t involve a sum.

(d) Use a computer algebra system or some other method to calculate the first 8
derivatives of x

1−x−x2
evaluated at 0. Why shouldn’t the results surprise you?

4. Airy’s equation8

y′′ − xy = 0, (8.28)

can be used to model an undamped vibrating spring with spring constant x (note that
y is an unknown function of x). So the solution to this differential equation will tell
us the behavior of a spring-mass system as the spring ages (like an automobile shock
absorber). Assume that a solution y = f (x) has a Taylor series that can be written in
the form

y =

∞∑
k=0

ak xk,

where the coefficients are undetermined. Our job is to find the coefficients.

(a) Differentiate the series for y term by term to find the series for y′. Then repeat
to find the series for y′′.

(b) Substitute your results from part (a) into the Airy equation and show that we
can write Equation (8.28) in the form

∞∑
k=2

(k − 1)kak xk−2 −
∞∑
k=0

ak xk+1 = 0. (8.29)

(c) At this point, it would be convenient if we could combine the series on the left
in (8.29), but one written with terms of the form xk−2 and the other with terms

8The general differential equations of the form y′′ ± k2xy = 0 is called Airy’s equation. These equations
arise in many problems, such as the study of diffraction of light, diffraction of radio waves around an object,
aerodynamics, and the buckling of a uniform column under its own weight.



530 8.6. POWER SERIES

in the form xk+1. Explain why

∞∑
k=2

(k − 1)kak xk−2 =
∞∑
k=0

(k + 1)(k + 2)ak+2xk . (8.30)

(d) Now show that
∞∑
k=0

ak xk+1 =
∞∑
k=1

ak−1xk . (8.31)

(e) We can now substitute (8.30) and (8.31) into (8.29) to obtain

∞∑
n=0

(n + 1)(n + 2)an+2xn −
∞∑
n=1

an−1xn = 0. (8.32)

Combine the like powers of x in the two series to show that our solution must
satisfy

2a2 +
∞∑
k=1

[(k + 1)(k + 2)ak+2 − ak−1] xk = 0. (8.33)

(f) Use equation (8.33) to show the following:

(i) a3k+2 = 0 for every positive integer k ,
(ii) a3k = 1

(2)(3)(5)(6)· · ·(3k−1)(3k)a0 for k ≥ 1,

(iii) a3k+1 = 1
(3)(4)(6)(7)· · ·(3k)(3k+1)a1 for k ≥ 1.

(g) Use the previous part to conclude that the general solution to the Airy equation
(8.28) is

y = a0 *
,
1 +

∞∑
k=1

x3k

(2)(3)(5)(6) · · · (3k − 1)(3k)
+
-

+a1 *
,

x +
∞∑
k=1

x3k+1

(3)(4)(6)(7) · · · (3k)(3k + 1)
+
-
.

Any values for a0 and a1 then determine a specific solution that we can
approximate as closely as we like using this series solution.



Appendix A

A Short Table of Integrals

(1)
∫

du
a2 + u2

=
1

a
arctan

u
a
+ C

(2)
∫

du
√

u2 ± a2
= ln |u + √u2 ± a2 | + C

(3)
∫
√

u2 ± a2 du =
u
2

√
u2 ± a2 ±

a2

2
ln |u + √u2 ± a2 | + C

(4)
∫

u2du
√

u2 ± a2
=

u
2

√
u2 ± a2 ∓

a2

2
ln |u + √u2 ± a2 | + C

(5)
∫

du

u
√

u2 + a2
= −

1

a
ln

������

a +
√

u2 + a2

u

������
+ C

(6)
∫

du

u
√

u2 − a2
=

1

a
sec−1

u
a
+ C

(7)
∫

du
√

a2 − u2
= arcsin

u
a
+ C

(8)
∫
√

a2 − u2 du =
u
2

√
a2 − u2 +

a2

2
arcsin

u
a
+ C

(9)
∫

u2
√

a2 − u2
du = −

u
2

√
a2 − u2 +

a2

2
arcsin

u
a
+ C
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(10)
∫

du

u
√

a2 − u2
= −

1

a
ln

������

a +
√

a2 − u2

u

������
+ C

(11)
∫

du

u2
√

a2 − u2
= −

√
a2 − u2

a2u
+ C
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u-substitution, 292

absolute convergence, 492
acceleration, 59
alternating series, 488
alternating series estimation theorem, 491
alternating series test, 490
antiderivative, 213

general, 256, 270
graph, 267

antidifferentiation, 212
arc length, 339, 340
arcsine, 133
area, 334

under velocity function, 209
asymptote, 155

horizontal, 155
vertical, 155

autonomous, 394
average rate of change, 23
average value of a function, 243
average velocity, 2

backward difference, 46

carrying capacity, 439
central difference, 46
chain rule, 122
codomain, 130
composition, 120
concave down, 58
concave up, 58
concavity, 58
conditional convergence, 492
constant multiple rule, 91
continuous, 69

continuous at x = a, 70
converge

sequence, 451
convergence

absolute, 492
conditional, 492

convergent sequence, 451
cosecant, 114
cotangent, 114
critical number, 164
critical point, 164
critical value, 164
cusp, 72

decreasing, 53
definite integral

constant multiple rule, 242
definition, 236
sum rule, 243

density, 355
derivative, 24

arcsine, 135
constant function, 89
cosine, 99
cotangent, 115
definition, 24, 36
exponential function, 90
logarithm, 132
power function, 89
sine, 99
tangent, 115

difference quotient, 45
differentiable, 24, 71
differential equation, 388

autonomous, 394
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first order, 394
solution, 392

disk method, 346
distance traveled, 212
diverge

sequence, 451
Divergence Test, 474
domain, 130

equilibrium solution, 404
stable, 404
unstable, 405

error, 323
error functin, 281
error function, 316
Euler’s Method, 410

error, 415
extreme value, 162
extreme value theorem, 184

Fibonacci sequence, 447
first derivative test, 164
foot-pound, 366
forward difference, 46
FTC, 254
function, 130
function-derivative pair, 292
Fundamental Theorem of Calculus

First, 276
Second, 278

fundamental theorem of calculus, 252

geometric series, 458
common ratio, 459

geometric sum, 457

harmonic series, 474
Hooke’s Law, 368

implicit function, 142
improper integral, 378

converges, 380
diverges, 380
unbounded integrand, 381

unbounded region of integration, 379
increasing, 53
indefinite integral, 291

evaluate, 291
indeterminate, 15
infinite series, 470
infinity, 154
inflection point, 169
initial condition, 270
instantaneous rate of change, 24, 44
instantaneous velocity, 4, 17
integral function, 271
integral sign, 237
integral test, 474, 477
integrand, 237
integration by parts, 301
interval of convergence, 508

L’Hopital’s rule, 151, 157
Lagrange error bound, 513
left limit, 66
lemniscate, 141
limit

definition, 13
one-sided, 66

limit comparison test, 478
limits of integration, 237
local linearization, 79
locally linear, 72
logistic, 439
logistic equation, 439

solution, 442

Maclaurin series, 507
mass, 355
maximum

absolute, 162
global, 162
local, 162
relative, 162

midpoint rule
error, 323

minimum



INDEX 535

absolute, 162
global, 162
local, 162
relative, 162

net signed area, 229
Newton’s Law of Cooling, 395
Newton-meter, 366

one-to-one, 130
onto, 130

partial fractions, 311
partial sum, 460, 471
per capita growth rate, 438
position, 2
power series, 520
product rule, 105

quotient rule, 106

ratio test, 480
related rates, 198
Riemann sum, 225

left, 225
middle, 227
right, 227

right limit, 66

secant, 114
secant line, 25
second derivative, 55, 56
second derivative test, 167
separable, 419, 420
sequence, 449

term, 450
sequence of partial sums, 471
series, 470

converges, 472
diverges, 472
geometric, 458

sigma notation, 223
Simpson’s rule, 326
slope field, 399, 401

solid of revolution, 345
stable, 404
sum rule, 91

tangent, 114
tangent line, 25

equation, 78
slope, 26

Taylor polynomial
error, 511

Taylor polynomials, 503
Taylor series, 506, 507

interval of convergence, 508
radius of convergence, 511

total change theorem, 257, 258
trapezoid rule, 321

error, 323
triangular numbers, 447
trigonometry, 113

fundamental trigonometric identity, 113

unstable, 405

washer method, 348
weighted average, 326, 359
work, 366, 367
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