
d 

  

MIND, BODY, WORLD: 
Foundations of Cognitive Science

Michael R.W. Dawson 



OPEL (open paths to enriched learning)

 Series Editor: Connor Houlihan

Open Paths to Enriched Learning (OPEL) reflects the continued commitment of Athabasca 

University to removing barriers — including the cost of course materials — that restrict access to 

university-level study. The OPEL series offers introductory texts on a broad array of topics, written 

especially with undergraduate students in mind. Although the books in the series are designed for 

course use, they also afford lifelong learners an opportunity to enrich their own knowledge. Like all 

AU Press publications, OPEL course texts are available for free download at www.aupress.ca, as well 

as for purchase in both print and digital formats.

series titles

Open Data Structures: An Introduction 

 Pat Morin

Mind, Body, World: Foundations of Cognitive Science 

 Michael R.W. Dawson 



M I N D,

B O D Y,

W O R L D

F OuNDatIONs OF COgNItIve sCIeNCe

MIChaeL R. W. DaWsON



Copyright © 2013 Michael R. W. Dawson

Published by AU Press, Athabasca University 

1200, 10011 – 109 Street, Edmonton, AB  T5J 3S8

A volume in OPEL (Open Paths to Enriched Learning)  

issn  2291-2606 (print)     2291-2614 (digital)

Cover design by Marvin Harder, marvinharder.com. 

Interior design by Sergiy Kozakov. 

Printed and bound in Canada by Marquis Book Printers.

library and archives canada cataloguing in publication

Dawson, Michael Robert William, 1959—, author 

 Mind, body, world: foundations of cognitive science / Michael R. W. Dawson.

(OPEL (Open paths to enriched learning), 2291-2606 ; 2) 

Includes bibliographical references and index. 

Issued in print and electronic formats. 

isbn 978-1-927356-17-3 (pbk.) — isbn 978-1-927356-18-0 (pdf) — isbn 978-1-927356-19-7 (epub)

1. Cognitive science.  I. Title.  II. Series: Open paths to enriched learning ; 2 

BF311.D272 2013                                    153                                C2013-902162-0 

                                                                                                        C2013-902163-9

We acknowledge the financial support of the Government of Canada through the Canada Book Fund 

(cbf) for our publishing activities.

Assistance provided by the Government of Alberta, Alberta Multimedia Development Fund.

This publication is licensed under a Creative Commons licence, Attribution-Noncommercial-No 

Derivative Works 2.5 Canada: see www.creativecommons.org. The text may be reproduced for non-

commercial purposes, provided that credit is given to the original author.

To obtain permission for uses beyond those outlined in the Creative Commons licence, please contact 

AU Press, Athabasca University, at aupress@athabascau.ca.



v

Contents

List of Figures and Tables | ix

Preface | xiii

Who Is This Book Written For? | xiv

Acknowledgements | xv

Chapter 1. The Cognitive Sciences: One or Many? | 1

1.0 Chapter Overview | 1

1.1 A Fragmented Psychology | 2

1.2 A Unified Cognitive Science | 3

1.3 Cognitive Science or the Cognitive Sciences? | 6

1.4 Cognitive Science: Pre-paradigmatic? | 13

1.5 A Plan of Action | 16

Chapter 2. Multiple Levels of Investigation | 19

2.0 Chapter Overview | 19

2.1 Machines and Minds | 20

2.2 From the Laws of Thought to Binary Logic | 23

2.3 From the Formal to the Physical | 29

2.4 Multiple Procedures and Architectures | 32

2.5 Relays and Multiple Realizations | 35

2.6 Multiple Levels of Investigation and Explanation | 38

2.7 Formal Accounts of Input-Output Mappings | 40

2.8 Behaviour by Design and by Artifact | 41

2.9 Algorithms from Artifacts | 43

2.10 Architectures against Homunculi | 46

2.11 Implementing Architectures | 48

2.12 Levelling the Field | 51

Chapter 3. Elements of Classical Cognitive Science | 55

3.0 Chapter Overview | 55

3.1 Mind, Disembodied | 56

3.2 Mechanizing the Infinite | 59

3.3 Phrase Markers and Fractals | 65

3.4 Behaviourism, Language, and Recursion | 68



vi

3.5 Underdetermination and Innateness | 72

3.6 Physical Symbol Systems | 75

3.7 Componentiality, Computability, and Cognition | 78

3.8 The Intentional Stance | 82

3.9 Structure and Process | 85

3.10 A Classical Architecture for Cognition | 89

3.11 Weak Equivalence and the Turing Test | 93

3.12 Towards Strong Equivalence | 97

3.13 The Impenetrable Architecture | 106

3.14 Modularity of Mind | 113

3.15 Reverse Engineering | 119

3.16 What is Classical Cognitive Science? | 122

Chapter 4. Elements of Connectionist Cognitive Science | 125

4.0 Chapter Overview | 125

4.1 Nurture versus Nature | 126

4.2 Associations | 133

4.3 Nonlinear Transformations | 139

4.4 The Connectionist Sandwich | 142

4.5 Connectionist Computations: An Overview | 148

4.6 Beyond the Terminal Meta-postulate | 149

4.7 What Do Output Unit Activities Represent? | 152

4.8 Connectionist Algorithms: An Overview | 158

4.9 Empiricism and Internal Representations | 159

4.10 Chord Classification by a Multilayer Perceptron | 162

4.11 Trigger Features | 172

4.12 A Parallel Distributed Production System | 177

4.13 Of Coarse Codes | 184

4.14 Architectural Connectionism: An Overview | 188

4.15 New Powers of Old Networks | 189

4.16 Connectionist Reorientation | 193

4.17 Perceptrons and Jazz Progressions | 195

4.18 What Is Connectionist Cognitive Science? | 198

Chapter 5. Elements of Embodied Cognitive Science | 205

5.0 Chapter Overview | 205

5.1 Abandoning Methodological Solipsism | 206

5.2 Societal Computing | 210

5.3 Stigmergy and Superorganisms | 212

5.4 Embodiment, Situatedness, and Feedback | 216



vii

5.5 Umwelten, Affordances, and Enactive Perception | 219

5.6 Horizontal Layers of Control | 222

5.7 Mind in Action | 224

5.8 The Extended Mind | 230

5.9 The Roots of Forward Engineering | 235

5.10 Reorientation without Representation | 239

5.11 Robotic Moments in Social Environments | 245

5.12 The Architecture of Mind Reading | 250

5.13 Levels of Embodied Cognitive Science | 255

5.14 What Is Embodied Cognitive Science? | 260

Chapter 6. Classical Music and Cognitive Science | 265

6.0 Chapter Overview | 265

6.1 The Classical Nature of Classical Music | 266

6.2 The Classical Approach to Musical Cognition | 273

6.3 Musical Romanticism and Connectionism | 280

6.4 The Connectionist Approach to Musical Cognition | 286

6.5 The Embodied Nature of Modern Music | 291

6.6 The Embodied Approach to Musical Cognition | 301

6.7 Cognitive Science and Classical Music | 307

Chapter 7. Marks of the Classical? | 315

7.0 Chapter Overview | 315

7.1 Symbols and Situations | 316

7.2 Marks of the Classical | 324

7.3 Centralized versus Decentralized Control | 326

7.4 Serial versus Parallel Processing | 334

7.5 Local versus Distributed Representations | 339

7.6 Internal Representations | 343

7.7 Explicit Rules versus Implicit Knowledge | 345

7.8 The Cognitive Vocabulary | 348

7.9 From Classical Marks to Hybrid Theories | 355

Chapter 8. Seeing and Visualizing | 359

8.0 Chapter Overview | 359

8.1 The Transparency of Visual Processing | 360

8.2 The Poverty of the Stimulus | 362

8.3 Enrichment via Unconscious Inference | 368

8.4 Natural Constraints | 371

8.5 Vision, Cognition, and Visual Cognition | 379

8.6 Indexing Objects in the World | 383



viii

8.7 Situation, Vision, and Action | 390

8.8 Scaffolding the Mental Image | 394

8.9 The Bounds of Cognition | 397

Chapter 9. Towards a Cognitive Dialectic | 399

9.0 Chapter Overview | 399

9.1 Towards a Cognitive Dialectic | 400

9.2 Psychology, Revolution, and Environment | 406

9.3 Lessons from Natural Computation | 412

9.4 A Cognitive Synthesis | 417

References | 425

Index | 485



ix

Figure 2-1. (A) An electrical switch, labelled x. (B) Switches x and y in series. (C) 

Switches x and y in parallel. | 31

Figure 2-2. A relay, in which a signal through an electromagnetic gate controls a switch 

that determines whether the current from the source will flow through the 

drain. | 35

Figure 3-1. The starting configuration for a five-disc version of the Tower of Hanoi 

problem. | 62

Figure 3-2. An intermediate state that occurs when MoveStack () is applied to a five-

disc version of the Tower of Hanoi. | 63

Figure 3-3. The root of the Sierpinski triangle is an equilateral triangle. | 64

Figure 3-4. The second step of constructing a Sierpinski triangle. | 64

Figure 3-5. The Sierpinski triangle that results when the recursive rule is applied four 

times to Figure 3-4. | 65

Figure 3-6. A phrase marker for the sentence Dogs bark. | 66

Figure 3-7. Phrase markers for three noun phrases: (A) the dog, (B) the cute dog, and (C) 

the cute brown scruffy dog. Note the recursive nature of (C). | 67

Figure 3-8. How a Turing machine processes its tape. | 69

Figure 3-9. How a finite state automaton processes the tape. Note the differences 

between Figures 3-9 and 3-8. | 70

Figure 3-10. Results of applying MDS to Table 3-1. | 88

Figure 3-11. Unique features pop out of displays, regardless of display size. | 101

Figure 3-12. Unique combinations of features do not pop out. | 102

Figure 3-13. The Müller-Lyer illusion. | 111

Figure 4-1. A distributed memory, initially described by James (1890a) but also part of 

modern connectionism. | 136

Figure 4-2. (A) Pattern space for AND; (B) Pattern space for XOR. | 143

Figure 4-3. A Rosenblatt perceptron that can compute the AND operation. | 144

Figure 4-4. A multilayer perceptron that can compute XOR. | 146

Figure 4-5. A typical multilayer perceptron has no direct connections between input 

and output units. | 147

Figure 4-6. Probability matching by perceptrons. Each line shows the perceptron 

List of Figures and Tables



x

activation when a different cue (or discriminative stimulus, DS) is presented. 

Activity levels quickly become equal to the probability that each cue was 

reinforced (Dawson et al., 2009). | 154

Figure 4-7. A small piano keyboard with numbered keys. Key 1 is C. | 162

Figure 4-8. The C major scale and some of its added note chords. | 162

Figure 4-9. The circle of fifths. | 163

Figure 4-10. The two circles of major seconds. | 167

Figure 4-11. The four circles of major thirds. | 168

Figure 4-12. The hidden unit space for the chord classification network. H1, H2, and H3 

provide the activity of hidden units 1, 2, and 3 respectively. | 171

Figure 4-13. An example of output unit partitioning of the hidden unit space for the 

chord classification network. | 172

Figure 4-14. Any input pattern (dashed lines) whose vector falls in the plane orthogonal 

to the vector of connection weights (solid line) will be a trigger feature for a 

hidden value unit. | 174

Figure 4-15. An example of banding in a jittered density plot of a hidden value unit in a 

network that was trained on a logic problem. | 175

Figure 4-16. Coordinates associated with each output note, taken from an MDS of the 

Table 4-8 correlations. Shading reflects groupings of notes as circles of 

major thirds. | 197

Figure 8-1. Underdetermination of projected movement. | 364

Figure 8-2. The aperture problem in motion perception. | 365

Figure 8-3. An example Sudoku puzzle. | 372

Figure 8-4. The “there can be only one” constraint propagating from the cell labelled 5 | 

372

Figure 8-5. The “last available label” constraint. | 373

Figure 8-6. The “naked pair constraint.” | 374

Figure 8-7. The motion correspondence problem. | 376

Figure 8-8. Pylyshyn’s theory of preattentive visual indexing provides referential links 

from object files to distal objects in the world. | 390

Figure 9-1. Word cloud generated from the text of Chapter 3 on classical cognitive 

science. | 401

 Figure 9-2. Word cloud generated from the text of Chapter 4 on connectionist cognitive 

science. | 402

Figure 9-3. Word cloud generated from the text of Chapter 4 on embodied cognitive 

science. | 402



xi

Table 2-1. Examples of the truth value system for two elementary propositions and 

some of their combinations. The possible values of p and q are given in 

the first two columns. The resulting values of different functions of these 

propositions are provided in the remaining columns. | 27

Table 2-2. Truth tables for all possible functions of pairs of propositions. Each function 

has a truth value for each possible combination of the truth values of p and 

q, given in the first four columns of the table. The Number column converts 

the first four values in a row into a binary number (Ladd, 1883). The logical 

notation for each function is taken Warren McCulloch (1988b). | 28

Table 3-1. Distances in kilometres between cities in Alberta, Canada. | 87

Table 4-1. Truth tables for the logical operations AND (p·q) and XOR (p ∧ q), where 

the truth value of each operation is given as a function of the truth of each 

of two propositions, p and q. ‘1’ indicates “true” and ‘0’ indicates “false.” The 

logical notation is taken from McCulloch (1988b). | 142

Table 4-2. Connection weights from the 12 input units to each of the three hidden 

units. Note that the first two hidden units adopt weights that assign input 

notes to the four circles of major thirds. The third hidden unit adopts 

weights that assign input notes to the two circles of major seconds. | 166

Table 4-3. The activations produced in each hidden unit by different subsets of input 

chords. | 169

Table 4-4. Dawson et al.’s (2000) step decision tree for classifying mushrooms. Decision 

points in this tree where mushrooms are classified (e.g., Rule 1 Edible) are 

given in bold. | 179

Table 4-5. Dawson et al.’s (2000) production system translation of Table 4-4. Conditions 

are given as sets of features. The Network Cluster column pertains to their 

artificial neural network trained on the mushroom problem and is described 

later in the text. | 181

Table 4-6. A progression of II-V-I progressions, descending from the key of C major. 

The chords in each row are played in sequence, and after playing one row, 

the next row is played. | 196

Table 9-1. Contrasts between the three schools of thought in cognitive science. | 404





xiii

Preface

Understanding Cognitive Science (Dawson, 1998) was an attempt to present a par-

ticular thread, Marr’s (1982) tri-level hypothesis, as a unifying theme for cognitive 

science. At that time, the 1990s, the primary texts available for survey courses in cog-

nitive science (Gleitman & Liberman, 1995; Green, 1996; Kosslyn & Osherson, 1995; 

Osherson, 1995; Posner, 1991; Smith & Osherson, 1995; Stillings, 1995) were surveys 

of research in the many different content areas of cognitive science. A typical text 

would consist of chapters reflecting different research areas (e.g., concepts and cat-

egorization, mental imagery, deductive reasoning), each chapter written by a differ-

ent specialist. Such texts provided a solid technical introduction to cognitive science 

and clearly indicated its interdisciplinary nature; over the years, I have used several 

of these texts in my own courses. However, these works did not successfully provide a 

“big picture” view of the discipline. Why was it so interdisciplinary? How was it pos-

sible for researchers from different disciplines to communicate with one another?

In my opinion, more recent introductions to cognitive science have done little 

to remedy this situation. Some continue to present a variety of chapters, each writ-

ten by specialists in different fields (Lepore & Pylyshyn, 1999). A variation of this 

approach is to produce encyclopedic overviews of the discipline, with many short 

articles on specific ideas, each written by a different expert (Bechtel, Graham, & 

Balota, 1998; Wilson & Keil, 1999). Others organize the presentation in terms of 

diverse proposals about the nature of cognitive information processing (Bermúdez, 

2010; Thagard, 2005). This latter approach implies that the breadth of cognitive 

science leads to its inevitable fragmentation, in a fashion analogous to what has 
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happened in psychology. “One accomplishment that has eluded cognitive science is 

a unified theory that explains the full range of psychological phenomena, in the way 

that evolutionary and genetic theory unify biological phenomena, and relativity and 

quantum theory unify physical phenomena” (Thagard, 2005, p. 133).

The purpose of the current book is to continue the search for unification in cog-

nitive science that was begun with Understanding Cognitive Science (Dawson, 1998). 

This search for unification is made more difficult by the advent of embodied cogni-

tive science; a school of thought that may also be composed of fragmentary trends 

(Shapiro, 2011). Because of this challenge, unification is pursued in the current work 

in a more informed and constrained manner than in Understanding Cognitive 

Science. Emphasis is placed on introducing the key ideas that serve as the founda-

tions for each school of thought in cognitive science. An attempt is made to consider 

whether differences amongst these key ideas can be used to inform conceptions of 

the cognitive architecture. The hypothesis that I consider in the current book is 

that the notion of architecture in cognitive science is currently pre-paradigmatic 

(Kuhn, 1970). One possibility to consider is that this notion can be made paradig-

matic by considering a theory of architecture that pays heed to the core ideas of each 

of the cognitive sciences.

I do not presume to describe or to propose a unified cognitive science. However, 

I believe that the search for such a science is fundamental, and this search is the 

thread that runs throughout the current book.

Who Is This Book Written For?

This book is written with a particular audience in mind: the students that I see on a 

day-to-day basis in my classes. Such students are often senior undergraduates who 

have already been exposed to one of the core disciplines related to cognitive science. 

Others are graduate students with a deeper exposure to one of these disciplines. 

One goal of writing this book is to provide a set of ideas to such students that will 

help elaborate their understanding of their core discipline and show its relationship 

to cognitive science. Another is to provide a solid introduction to the foundational 

ideas of the cognitive sciences.

I will admit from the outset that this book is much more about the ideas in 

cognitive science than it is about the experimental methodologies, the extant data, 

or the key facts in the field. This is not to say that these topics are unimportant. My 

perspective is simply that sometimes an emphasis on the empirical results from dif-

ferent content areas of cognitive science at times obscures the “bigger picture.” In 

my opinion, such results might indicate quite clearly what cognitive science is about, 

but do not reveal much about what cognitive science is. Fortunately, the student of 

cognitive science has the option of examining a growing array of introductory texts 
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to compensate for the kinds of omissions that the approach taken in the current 

book necessitates.
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1

The Cognitive Sciences: One or Many?

1.0 Chapter Overview

When experimental psychology arose in the nineteenth century, it was a unified dis-

cipline. However, as the experimental method began to be applied to a larger and 

larger range of psychological phenomena, this new discipline fragmented, causing 

what became known in the 1920s as the “crisis in psychology,” a crisis that has per-

sisted to the present day.

Cognitive science arose in the 1950s when it became apparent that a number of 

different disciplines, including psychology, computer science, linguistics and phi-

losophy, were fragmenting. Some researchers responded to this situation by view-

ing cognition as a form of information processing. In the 1950s, the only plausi-

ble notion of information processing was the kind that was performed by a recent 

invention, the digital computer. This singular notion of information processing per-

mitted cognitive science to emerge as a highly unified discipline.

A half century of research in cognitive science, though, has been informed by 

alternative conceptions of both information processing and cognition. As a result, 

the possibility has emerged that cognitive science itself is fragmenting. The pur-

pose of this first chapter is to note the existence of three main approaches within 

the discipline: classical cognitive science, connectionist cognitive science, and 

embodied cognitive science. The existence of these different approaches leads to 

obvious questions: What are the core assumptions of these three different schools 
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2  Chapter 1

of thought? What are the relationships between these different sets of core assump-

tions? Is there only one cognitive science, or are there many different cognitive sci-

ences? Chapter 1 sets the stage for asking such questions; the remainder of the book 

explores possible answers to them.

1.1 A Fragmented Psychology

Modern experimental psychology is rooted in two seminal publications from the 

second half of the nineteenth century (Schultz & Schultz, 2008), Fechner’s (1966) 

Elements of Psychophysics, originally published in 1860, and Wundt’s Principles of 

Physiological Psychology, originally published in 1873 (Wundt & Titchener, 1904). 

Of these two authors, it is Wundt who is viewed as the founder of psychology, 

because he established the first experimental psychology laboratory—his Institute 

of Experimental Psychology—in Leipzig in 1879, as well as the first journal devoted 

to experimental psychology, Philosophical Studies, in 1881 (Leahey, 1987).

Fechner’s and Wundt’s use of experimental methods to study psychological 

phenomena produced a broad, unified science.

This general significance of the experimental method is being more and more 

widely recognized in current psychological investigation; and the definition of 

experimental psychology has been correspondingly extended beyond its original 

limits. We now understand by ‘experimental psychology’ not simply those portions 

of psychology which are directly accessible to experimentation, but the whole of 

individual psychology. (Wundt & Titchner, 1904, p. 8)

However, not long after its birth, modern psychology began to fragment into com-

peting schools of thought. The Würzberg school of psychology, founded in 1896 

by Oswald Külpe, a former student of Wundt’s, challenged Wundt’s views on the 

scope of psychology (Schultz & Schultz, 2008). The writings of the functionalist 

school being established in North America were critical of Wundt’s structuralism 

(James, 1890a, 1890b). Soon, behaviourism arose as a reaction against both struc-

turalism and functionalism (Watson, 1913).

Psychology’s fragmentation soon began to be discussed in the literature, start-

ing with Bühler’s 1927 “crisis in psychology” (Stam, 2004), and continuing to the 

present day (Bower, 1993; Driver-Linn, 2003; Gilbert, 2002; Koch, 1959, 1969, 1976, 

1981, 1993; Lee, 1994; Stam, 2004; Valsiner, 2006; Walsh-Bowers, 2009). For one 

prominent critic of psychology’s claim to scientific status,

psychology is misconceived when seen as a coherent science or as any kind of 

coherent discipline devoted to the empirical study of human beings. Psychology, in 

my view, is not a single discipline but a collection of studies of varied cast, some few 

of which may qualify as science, whereas most do not. (Koch, 1993, p. 902)
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The fragmentation of psychology is only made more apparent by repeated attempts 

to find new approaches to unify the field, or by rebuttals against claims of disunity 

(Drob, 2003; Goertzen, 2008; Henriques, 2004; Katzko, 2002; Richardson, 2000; Smythe 

& McKenzie, 2010;  Teo, 2010; Valsiner, 2006; Walsh-Bowers, 2009; Watanabe, 2010; 

Zittoun, Gillespie, & Cornish, 2009).

The breadth of topics being studied by any single psychology department is 

staggering; psychology correspondingly uses an incredible diversity of methodolo-

gies. It is not surprising that Leahey (1987, p. 3) called psychology a “large, sprawl-

ing, confusing human undertaking.” Because of its diversity, it is likely that psychol-

ogy is fated to be enormously fragmented, at best existing as a pluralistic discipline 

(Teo, 2010; Watanabe, 2010).

If this is true of psychology, then what can be expected of a more recent dis-

cipline, cognitive science? Cognitive science would seem likely to be even more 

fragmented than psychology, because it involves not only psychology but also many 

other disciplines. For instance, the website of the Cognitive Science Society states 

that the Society,

brings together researchers from many fields that hold a common goal: under-

standing the nature of the human mind. The Society promotes scientific inter-

change among researchers in disciplines comprising the field of Cognitive 

Science, including Artificial Intelligence, Linguistics, Anthropology, Psychology, 

Neuroscience, Philosophy, and Education. (Cognitive Science Society, 2013)

The names of all of these disciplines are proudly placed around the perimeter of the 

Society’s logo.

When cognitive science appeared in the late 1950s, it seemed to be far more 

unified than psychology. Given that cognitive science draws from so many different 

disciplines, how is this possible?

1.2 A Unified Cognitive Science

When psychology originated, the promise of a new, unified science was fuelled by 

the view that a coherent object of enquiry (conscious experience) could be studied 

using a cohesive paradigm (the experimental method). Wundt defined psychologi-

cal inquiry as “the investigation of conscious processes in the modes of connexion 

peculiar to them” (Wundt & Titchner, 1904, p. 2). His belief was that using the exper-

imental method would “accomplish a reform in psychological investigation compa-

rable with the revolution brought about in the natural sciences.” As experimental 

psychology evolved the content areas that it studied became markedly differenti-

ated, leading to a proliferation of methodologies. The fragmentation of psychology 

was a natural consequence.
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Cognitive science arose as a discipline in the mid-twentieth century (Boden, 

2006; Gardner, 1984; Miller, 2003), and at the outset seemed more unified than psy-

chology. In spite of the diversity of talks presented at the “Special Interest Group in 

Information Theory” at MIT in 1956, cognitive psychologist George Miller,

left the symposium with a conviction, more intuitive than rational, that experimental 

psychology, theoretical linguistics, and the computer simulation of cognitive pro-

cesses were all pieces from a larger whole and that the future would see a progressive 

elaboration and coordination of their shared concerns. (Miller, 2003, p. 143)

The cohesiveness of cognitive science was, perhaps, a natural consequence of its 

intellectual antecedents. A key inspiration to cognitive science was the digital com-

puter; we see in Chapter 2 that the invention of the computer was the result of the 

unification of ideas from the diverse fields of philosophy, mathematics, and electri-

cal engineering.

Similarly, the immediate parent of cognitive science was the field known as 

cybernetics (Ashby, 1956; de Latil, 1956; Wiener, 1948). Cybernetics aimed to study 

adaptive behaviour of intelligent agents by employing the notions of feedback and 

information theory. Its pioneers were polymaths. Not only did cyberneticist William 

Grey Walter pioneer the use of EEG in neurology (Cooper, 1977), he also invented 

the world’s first autonomous robots (Bladin, 2006; Hayward, 2001; Holland, 2003a; 

Sharkey & Sharkey, 2009). Cybernetics creator Norbert Wiener organized the Macy 

Conferences (Conway & Siegelman, 2005), which were gatherings of mathemati-

cians, computer scientists, psychologists, psychiatrists, anthropologists, and neu-

roscientists, who together aimed to determine the general workings of the human 

mind. The Macy Conferences were the forerunners of the interdisciplinary sympo-

sia that inspired cognitive scientists such as George Miller.

What possible glue could unite the diversity of individuals involved first in 

cybernetics, and later in cognitive science? One answer is that cognitive scientists 

are united in sharing a key foundational assumption that cognition is information 

processing (Dawson, 1998). As a result, a critical feature of cognition involves repre-

sentation or symbolism (Craik, 1943). The early cognitive scientists,

realized that the integration of parts of several disciplines was possible and desir-

able, because each of these disciplines had research problems that could be 

addressed by designing ‘symbolisms.’ Cognitive science is the result of striving 

towards this integration. (Dawson, 1998, p. 5)

Assuming that cognition is information processing provides a unifying principle, 

but also demands methodological pluralism. Cognitive science accounts for human 

cognition by invoking an information processing explanation. However, informa-

tion processors themselves require explanatory accounts framed at very different 

levels of analysis (Marr, 1982; Pylyshyn, 1984). Each level of analysis involves asking 
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qualitatively different kinds of questions, and also involves using dramatically dif-

ferent methodologies to answer them.

Marr (1982) proposed that information processors require explanations at the 

computational, algorithmic, and implementational levels. At the computational 

level, formal proofs are used to determine what information processing problem 

is being solved. At the algorithmic level, experimental observations and computer 

simulations are used to determine the particular information processing steps that 

are being used to solve the information processing problem. At the implementa-

tional level, biological or physical methods are used to determine the mechanistic 

principles that actually instantiate the information processing steps. In addition, 

a complete explanation of an information processor requires establishing links 

between these different levels of analysis.

An approach like Marr’s is a mandatory consequence of assuming that cog-

nition is information processing (Dawson, 1998). It also makes cognitive science 

particularly alluring. This is because cognitive scientists are aware not only that a 

variety of methodologies are required to explain information processing, but also 

that researchers from a diversity of areas can be united by the goal of seeking such 

an explanation.

As a result, definitions of cognitive science usually emphasize co-operation 

across disciplines (Simon, 1980). Cognitive science is “a recognition of a funda-

mental set of common concerns shared by the disciplines of psychology, computer 

science, linguistics, economics, epistemology, and the social sciences generally” 

(Simon, 1980, p. 33). Interviews with eminent cognitive scientists reinforce this 

theme of interdisciplinary harmony and unity (Baumgartner & Payr, 1995). Indeed, 

it would appear that cognitive scientists deem it essential to acquire methodologies 

from more than one discipline.

For instance, philosopher Patricia Churchland learned about neuroscience 

at the University of Manitoba Medical School by “doing experiments and dis-

sections and observing human patients with brain damage in neurology rounds” 

(Baumgartner & Payr, 1995, p. 22). Philosopher Daniel Dennett improved his com-

puter literacy by participating in a year-long working group that included two phi-

losophers and four AI researchers. AI researcher Terry Winograd studied linguistics 

in London before he went to MIT to study computer science. Psychologist David 

Rumelhart observed that cognitive science has “a collection of methods that have 

been developed, some uniquely in cognitive science, but some in related disciplines. 

. . . It is clear that we have to learn to appreciate one another’s approaches and 

understand where our own are weak” (Baumgartner & Payr, 1995, p. 196).

At the same time, as it has matured since its birth in the late 1950s, concerns about 

cognitive science’s unity have also arisen. Philosopher John Searle stated, “I am not 

sure whether there is such a thing as cognitive science” (Baumgartner & Payr, 1995, 
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p. 203). Philosopher John Haugeland claimed that “philosophy belongs in cogni-

tive science only because the ‘cognitive sciences’ have not got their act together yet” 

(p. 103). AI pioneer Herbert Simon described cognitive science as a label “for the fact 

that there is a lot of conversation across disciplines” (p. 234). For Simon, “cognitive 

science is the place where they meet. It does not matter whether it is a discipline. It 

is not really a discipline—yet.”

In modern cognitive science there exist intense disagreements about what the 

assumption “cognition is information processing” really means. From one perspec-

tive, modern cognitive science is fragmenting into different schools of thought—clas-

sical, connectionist, embodied—that have dramatically different views about what 

the term information processing means. Classical cognitive science interprets this 

term as meaning rule-governed symbol manipulations of the same type performed 

by a digital computer. The putative fragmentation of cognitive science begins when 

this assumption is challenged. John Searle declared, “I think that cognitive science 

suffers from its obsession with the computer metaphor” (Baumgartner & Payr, 1995, 

p. 204). Philosopher Paul Churchland declared, “we need to get away from the idea 

that we are going to achieve Artificial Intelligence by writing clever programs” (p. 37).

Different interpretations of information processing produce variations of cog-

nitive science that give the strong sense of being mutually incompatible. One pur-

pose of this book is to explore the notion of information processing at the founda-

tion of each of these varieties. A second is to examine whether these notions can 

be unified.

1.3 Cognitive Science or the Cognitive Sciences?

One reason that Wilhelm Wundt is seen as the founder of psychology is because he 

established its first academic foothold at the University of Leipzig. Wundt created 

the first experimental psychology laboratory there in 1879. Psychology was officially 

part of the university calendar by 1885. Today, hundreds of psychology departments 

exist at universities around the world.

Psychology is clearly healthy as an academic discipline. However, its status as a 

science is less clear. Sigmund Koch, a noted critic of psychology (Koch, 1959, 1969, 

1976, 1981, 1993), argued in favor of replacing the term psychology with the psycho-

logical studies because of his view that it was impossible for psychology to exist as 

a coherent discipline.

Although it is much younger than psychology, cognitive science has certainly 

matured into a viable academic discipline. In the fall of 2010, the website for the 

Cognitive Science Society listed 77 universities around the world that offered cog-

nitive science as a program of study. Recent developments in cognitive science, 

though, have raised questions about its scientific coherence. To parallel Koch, 
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should we examine “cognitive science,” or is it more appropriate to inquire about 

“the cognitive sciences”? Investigating this issue is one theme of the current book.

According to psychologist George Miller (2003), cognitive science was born on 

September 11, 1956. At this early stage, the unity of cognitive science was not really 

an issue. Digital computers were a relatively recent invention (Goldstine, 1993; 

Lavington, 1980; Williams, 1997; Zuse, 1993). At the time, they presented a uni-

fied notion of information processing to be adopted by cognitive science. Digital 

computers were automatic symbol manipulators (Haugeland, 1985): they were 

machines that manipulated symbolic representations by applying well-defined 

rules; they brought symbolic logic to mechanized life. Even though some research-

ers had already noted that the brain may not work exactly like a computer, the brain 

was still assumed to be digital, because the all-or-none generation of an action 

potential was interpreted as being equivalent to assigning a truth value in a Boolean 

logic (McCulloch & Pitts, 1943; von Neumann, 1958).

Classical cognitive science, which is the topic of Chapter 3, was the first school 

of thought in cognitive science and continues to dominate the field to this day. It 

exploited the technology of the day by interpreting “information processing” as 

meaning “rule-governed manipulation of symbol” (Feigenbaum & Feldman, 1995). 

This version of the information processing hypothesis bore early fruit, producing 

major advances in the understanding of language (Chomsky, 1957, 1959b, 1965) and of 

human problem solving (Newell, Shaw, & Simon, 1958; Newell & Simon, 1961, 1972). 

Later successes with this approach led to the proliferation of “thinking artifacts”: 

computer programs called expert systems (Feigenbaum & McCorduck, 1983; 

Kurzweil, 1990). Some researchers have claimed that the classical approach is capa-

ble of providing a unified theory of thought (Anderson, 1983; Anderson et al., 2004; 

Newell, 1990).

The successes of the classical approach were in the realm of well-posed prob-

lems, such problems being those with unambiguously defined states of knowledge 

and goal states, not to mention explicitly defined operations for converting one 

state of knowledge into another. If a problem is well posed, then its solution can be 

described as a search through a problem space, and a computer can be programmed 

to perform this search (Newell & Simon, 1972). However, this emphasis led to grow-

ing criticisms of the classical approach. One general issue was whether human cog-

nition went far beyond what could be captured just in terms of solving well-posed 

problems (Dreyfus, 1992; Searle, 1980; Weizenbaum, 1976).

Indeed, the classical approach was adept at producing computer simulations 

of game playing and problem solving, but was not achieving tremendous success 

in such fields as speech recognition, language translation, or computer vision. 

“An overall pattern had begun to take shape. . . . an early, dramatic success based 

on the easy performance of simple tasks, or low-quality work on complex tasks, 
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and then diminishing returns, disenchantment, and, in some cases, pessimism” 

(Dreyfus, 1992, p. 99).

Many abilities that humans are expert at without training, such as speaking, 

seeing, and walking, seemed to be beyond the grasp of classical cognitive science. 

These abilities involve dealing with ill-posed problems. An ill-posed problem is deeply 

ambiguous, has poorly defined knowledge states and goal states, and involves poorly 

defined operations for manipulating knowledge. As a result, it is not well suited to 

classical analysis, because a problem space cannot be defined for an ill-posed prob-

lem. This suggests that the digital computer provides a poor definition of the kind of 

information processing performed by humans. “In our view people are smarter than 

today’s computers because the brain employs a basic computational architecture that 

is more suited to deal with a central aspect of the natural information processing 

tasks that people are so good at” (Rumelhart & McClelland, 1986c, p. 3).

Connectionist cognitive science reacted against classical cognitive science by 

proposing a cognitive architecture that is qualitatively different from that inspired 

by the digital computer metaphor (Bechtel & Abrahamsen, 2002; Churchland, 

Koch, & Sejnowski, 1990; Churchland & Sejnowski, 1992; Clark, 1989, 1993; Horgan 

& Tienson, 1996; Quinlan, 1991). Connectionists argued that the problem with the 

classical notion of information processing was that it ignored the fundamental prop-

erties of the brain. Connectionism cast itself as a neuronally inspired, biologically 

plausible alternative to classical cognitive science (Bechtel & Abrahamsen, 2002; 

McClelland & Rumelhart, 1986; Rumelhart & McClelland, 1986c). “No serious study 

of mind (including philosophical ones) can, I believe, be conducted in the kind 

of biological vacuum to which [classical] cognitive scientists have become accus-

tomed” (Clark, 1989, p. 61).

The architecture proposed by connectionism was the artificial neural network 

(Caudill & Butler, 1992a, 1992b; Dawson, 2004, 2005; De Wilde, 1997; Muller & 

Reinhardt, 1990; Rojas, 1996). An artificial neural network is a system of simple 

processors, analogous to neurons, which operate in parallel and send signals to one 

another via weighted connections that are analogous to synapses. Signals detected 

by input processors are converted into a response that is represented as activity in a 

set of output processors. Connection weights determine the input-output relation-

ship mediated by a network, but they are not programmed. Instead, a learning rule 

is used to modify the weights. Artificial neural networks learn from example.

Artificial neural networks negate many of the fundamental properties of the 

digital computer (von Neumann, 1958). Gone was the notion that the brain was a 

digital symbol manipulator governed by a serial central controller. In its place, the 

processes of the brain were described as subsymbolic and parallel (Smolensky, 1988); 

control of these processes was decentralized. Gone was the classical distinction 

between structure and process, in which a distinct set of explicit rules manipulated 
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discrete symbols stored in a separate memory. In its place, the brain was viewed as 

a distributed system in which problem solutions emerged from the parallel activity 

of a large number of simple processors: a network was both structure and process, 

and networks both stored and modified information at the same time (Hillis, 1985). 

Gone was the assumption that information processing was akin to doing logic 

(Oaksford & Chater, 1991). In its place, connectionists viewed the brain as a dynamic, 

statistical pattern recognizer (Churchland & Sejnowski, 1989; Grossberg, 1980; 

Smolensky, 1988).

With all such changes, though, connectionism still concerned itself with cogni-

tion as information processing—but of a different kind: “These dissimilarities do 

not imply that brains are not computers, but only that brains are not serial digital 

computers” (Churchland, Koch, & Sejnowski, 1990, p. 48, italics original).

Connectionist models of cognition have had as long a history as have classi-

cal simulations (Dawson, 2004; Medler, 1998). McCulloch and Pitts described pow-

erful neural network models in the 1940s (McCulloch, 1988a), and Rosenblatt’s 

(1958, 1962) perceptrons were simple artificial neural networks that were not pro-

grammed, but instead learned from example. Such research waned in the late 1960s 

as the result of proofs about the limitations of simple artificial neural networks 

(Minsky & Papert, 1988; Papert, 1988).

However, the limitations of early networks were overcome in the mid-1980s, by 

which time new techniques had been discovered that permitted much more power-

ful networks to learn from examples (Ackley, Hinton, & Sejnowski, 1985; Rumelhart, 

Hinton, & Williams, 1986b). Because of these new techniques, modern connec-

tionism has achieved nearly equal status to classical cognitive science. Artificial 

neural networks have been used to model a wide range of ill-posed problems, have 

generated many expert systems, and have successfully simulated domains once 

thought to be exclusive to the classical approach (Bechtel & Abrahamsen, 2002; 

Carpenter & Grossberg, 1992; Enquist & Ghirlanda, 2005; Gallant, 1993; Gluck & 

Myers, 2001; Grossberg, 1988; Kasabov, 1996; Pao, 1989; Ripley, 1996; Schmajuk, 

1997; Wechsler, 1992).

In a review of a book on neural networks, Hanson and Olson (1991, p. 332) 

claimed that “the neural network revolution has happened. We are living in the 

aftermath.” This revolution, as is the case with most, has been messy and acrimoni-

ous, markedly departing from the sense of unity that cognitive science conveyed at 

the time of its birth. A serious and angry debate about the merits of classical versus 

connectionist cognitive science rages in the literature.

On the one hand, classical cognitive scientists view the rise of connectionism 

as being a rebirth of the associationist and behaviourist psychologies that cognitiv-

ism had successfully replaced. Because connectionism eschewed rules and symbols, 

classicists argued that it was not powerful enough to account for the regularities 
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of thought and language (Fodor & McLaughlin, 1990; Fodor & Pylyshyn, 1988; 

Pinker, 2002; Pinker & Prince, 1988). “The problem with connectionist models is 

that all the reasons for thinking that they might be true are reasons for thinking that 

they couldn’t be psychology” (Fodor & Pylyshyn, 1988, p. 66). A Scientific American 

news story on a connectionist expert system included Pylyshyn’s comparison of 

connectionism to voodoo: “‘People are fascinated by the prospect of getting intel-

ligence by mysterious Frankenstein-like means—by voodoo! And there have been 

few attempts to do this as successful as neural nets” (Stix, 1994, p. 44). The difficulty 

with interpreting the internal structure of connectionist networks has been used to 

argue against their ability to provide models, theories, or even demonstrations to 

cognitive science (McCloskey, 1991).

On the other hand, and not surprisingly, connectionist researchers have 

replied in kind. Some of these responses have been arguments about problems 

that are intrinsic to the classical architecture (e.g., slow, brittle models) combined 

with claims that the connectionist architecture offers solutions to these problems 

(Feldman & Ballard, 1982; Rumelhart & McClelland, 1986c). Others have argued 

that classical models have failed to provide an adequate account of experimental 

studies of human cognition (Oaksford, Chater, & Stenning, 1990). Connectionist 

practitioners have gone as far as to claim that they have provided a paradigm shift 

for cognitive science (Schneider, 1987).

Accompanying claims for a paradigm shift is the view that connectionist cogni-

tive science is in a position to replace an old, tired, and failed classical approach. 

Searle (1992, p. 247), in a defense of connectionism, has described traditional cogni-

tivist models as being “obviously false or incoherent.” Some would claim that clas-

sical cognitive science doesn’t study the right phenomena. “The idea that human 

activity is determined by rules is not very plausible when one considers that most of 

what we do is not naturally thought of as problem solving” (Horgan & Tienson, 1996, 

p. 31). Paul Churchland noted that “good old-fashioned artificial intelligence was 

a failure. The contribution of standard architectures and standard programming 

artificial intelligence was a disappointment” (Baumgartner & Payr, 1995, p. 36). 

Churchland went on to argue that this disappointment will be reversed with the 

adoption of more brain-like architectures.

Clearly, the rise of connectionism represents a fragmentation of cognitive science. 

This fragmentation is heightened by the fact that connectionists themselves freely 

admit that there are different notions about information processing that fall under the 

connectionist umbrella (Horgan & Tienson, 1996; Rumelhart & McClelland, 1986c). 

“It is not clear that anything has appeared that could be called a, let alone the, con-

nectionist conception of cognition” (Horgan & Tienson, 1996, p. 3).

If the only division within cognitive science was between classical and connec-

tionist schools of thought, then the possibility of a unified cognitive science still exists. 
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Some researchers have attempted to show that these two approaches can be related 

(Dawson, 1998; Smolensky & Legendre, 2006), in spite of the differences that have 

been alluded to in the preceding paragraphs. However, the hope for a unified cogni-

tive science is further challenged by the realization that a third school of thought 

has emerged that represents a reaction to both classical and connectionist cognitive 

science.

This third school of thought is embodied cognitive science (Chemero, 2009; 

Clancey, 1997; Clark, 1997; Dawson, Dupuis, & Wilson, 2010; Robbins & Aydede, 

2009; Shapiro, 2011). Connectionist cognitive science arose because it felt that clas-

sical cognitive science did not pay sufficient attention to a particular part of the 

body, the brain. Embodied cognitive science critiques both classical and connec-

tionist approaches because both ignore the whole body and its interaction with 

the world. Radical versions of embodied cognitive science aim to dispense with 

mental representations completely, and argue that the mind extends outside the 

brain, into the body and the world (Agre, 1997; Chemero, 2009; Clancey, 1997; 

Clark, 2008; Clark & Chalmers, 1998; Noë, 2009; Varela, Thompson, & Rosch, 1991; 

Wilson, 2004).

A key characteristic of embodied cognitive science is that it abandons meth-

odological solipsism (Wilson, 2004). According to methodological solipsism 

(Fodor, 1980), representational states are individuated only in terms of their 

relations to other representational states. Relations of the states to the external 

world—the agent’s environment—are not considered. “Methodological solipsism 

in psychology is the view that psychological states should be construed without 

reference to anything beyond the boundary of the individual who has those states” 

(Wilson, 2004, p. 77).

Methodological solipsism is reflected in the sense-think-act cycle that charac-

terizes both classical and connectionist cognitive science (Pfeifer & Scheier, 1999). 

The sense-think-act cycle defines what is also known as the classical sandwich 

(Hurley, 2001), in which there is no direct contact between sensing and acting. 

Instead, thinking—or representations—is the “filling” of the sandwich, with the 

primary task of planning action on the basis of sensed data. Both classical and 

connectionist cognitive science adopt the sense-think-act cycle because both have 

representations standing between perceptual inputs and behavioural outputs. 

“Representation is an activity that individuals perform in extracting and deploying 

information that is used in their further actions” (Wilson, 2004, p. 183).

Embodied cognitive science replaces the sense-think-act cycle with sense-act 

processing (Brooks, 1991, 1999; Clark, 1997, 1999, 2003; Hutchins, 1995; Pfeifer & 

Scheier, 1999). According to this alternative view, there are direct links between 

sensing and acting. The purpose of the mind is not to plan action, but is instead to 

coordinate sense-act relations. “Models of the world simply get in the way. It turns 
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out to be better to use the world as its own model” (Brooks, 1991, p. 139). Embodied 

cognitive science views the brain as a controller, not as a planner. “The realization 

was that the so-called central systems of intelligence—or core AI as it has been 

referred to more recently—was perhaps an unnecessary illusion, and that all the 

power of intelligence arose from the coupling of perception and actuation systems” 

(Brooks, 1999, p. viii).

In replacing the sense-think-act cycle with the sense-act cycle, embodied cog-

nitive science distances itself from classical and connectionist cognitive science. 

This is because sense-act processing abandons planning in particular and the use of 

representations in general. Brooks (1999, p. 170) wrote: “In particular I have advo-

cated situatedness, embodiment, and highly reactive architectures with no reason-

ing systems, no manipulable representations, no symbols, and totally decentralized 

computation.” Other theorists make stronger versions of this claim: “I hereby define 

radical embodied cognitive science as the scientific study of perception, cognition, 

and action as necessarily embodied phenomena, using explanatory tools that do not 

posit mental representations” (Chemero, 2009, p. 29).

The focus on sense-act processing leads directly to the importance of embodi-

ment. Embodied cognitive science borrows a key idea from cybernetics: that agents 

are adaptively linked to their environment (Ashby, 1956; Wiener, 1948). This adap-

tive link is a source of feedback: an animal’s actions on the world can change the 

world, which in turn will affect later actions. Embodied cognitive science also leans 

heavily on Gibson’s (1966, 1979) theory of direct perception. In particular, the adap-

tive link between an animal and its world is affected by the physical form of the 

animal—its embodiment. “It is often neglected that the words animal and environ-

ment make an inseparable pair” (Gibson, 1979, p. 8). Gibson proposed that sensing 

agents “picked up” properties that indicated potential actions that could be taken 

on the world. Again, the definition of such affordances requires taking the agent’s 

form into account.

Embodied cognitive science also distances itself from both classical and 

connectionist cognitive science by proposing the extended mind hypothesis 

(Clark, 1997, 1999, 2003, 2008; Wilson, 2004, 2005). According to the extended mind 

hypothesis, the mind is not separated from the world by the skull. Instead, the 

boundary between the mind and the world is blurred, or has disappeared. A conse-

quence of the extended mind is cognitive scaffolding, where the abilities of “classi-

cal” cognition are enhanced by using the external world as support. A simple exam-

ple of this is extending memory by using external aids, such as notepads. However, 

full-blown information processing can be placed into the world if appropriate arti-

facts are used. Hutchins (1995) provided many examples of navigational tools that 

externalize computation. “It seems that much of the computation was done by the 
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tool, or by its designer. The person somehow could succeed by doing less because 

the tool did more” (p. 151).

Embodied cognitive science provides another fault line in a fragmenting cog-

nitive science. With notions like the extended mind, the emphasis on action, and 

the abandonment of representation, it is not clear at first glance whether embod-

ied cognitive science is redefining the notion of information processing or aban-

doning it altogether. “By failing to understand the source of the computational 

power in our interactions with simple ‘unintelligent’ physical devices, we position 

ourselves well to squander opportunities with so-called intelligent computers” 

(Hutchins, 1995, p. 171).

 Further fragmentation is found within the embodied cognition camp 

(Robbins & Aydede, 2009; Shapiro, 2011). Embodied cognitive scientists have strong 

disagreements amongst themselves about the degree to which each of their radical 

views is to be accepted. For instance, Clark (1997) believed there is room for repre-

sentation in embodied cognitive science, while Chemero (2009) did not.

In summary, early developments in computer science led to a unitary notion of 

information processing. When information processing was adopted as a hypothesis 

about cognition in the 1950s, the result was a unified cognitive science. However, a 

half century of developments in cognitive science has led to a growing fragmenta-

tion of the field. Disagreements about the nature of representations, and even about 

their necessity, have spawned three strong camps within cognitive science: classical, 

connectionist, and embodied. Fragmentation within each of these camps can easily 

be found. Given this situation, it might seem foolish to ask whether there exist any 

central ideas that can be used to unify cognitive science. However, the asking of that 

question is an important thread that runs through the current book.

1.4 Cognitive Science: Pre-paradigmatic?

In the short story The Library of Babel, Jorge Luis Borges (1962) envisioned the 

universe as the Library, an infinite set of hexagonal rooms linked together by a 

spiral staircase. Each room held exactly the same number of books, each book being 

exactly 410 pages long, all printed in an identical format. The librarians hypoth-

esize that the Library holds all possible books, that is, all possible arrangements of a 

finite set of orthographic symbols. They believe that “the Library is total and that its 

shelves register . . . all that is given to express, in all languages” (p. 54).

Borges’ librarians spend their lives sorting through mostly unintelligible vol-

umes, seeking those books that explain “humanity’s basic mysteries” (Borges, 1962, 

p. 55). Central to this search is the faith that there exists a language in which to 

express these answers. “It is verisimilar that these grave mysteries could be explained 
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in words: if the language of philosophers is not sufficient, the multiform Library 

will have produced the unprecedented language required, with its vocabularies and 

grammars” (p. 55).

The fictional quest of Borges’ librarians mirrors an actual search for ancient 

texts. Scholasticism was dedicated to reviving ancient wisdom. It was spawned 

in the tenth century when Greek texts preserved and translated by Islamic schol-

ars made their way to Europe and led to the creation of European universities. 

It reached its peak in the thirteenth century with Albertus Magnus’ and Thomas 

Aquinas’ works on Aristotelian philosophy. A second wave of scholasticism in the 

fifteenth century was fuelled by new discoveries of ancient texts (Debus, 1978). “The 

search for new classical texts was intense in the fifteenth century, and each new 

discovery was hailed as a major achievement” (Debus, 1978, p. 4). These discoveries 

included Ptolemy’s Geography and the only copy of Lucretius’ De rerum natura, 

which later revived interest in atomism.

Borges’ (1962) emphasis on language is also mirrored in the scholastic search 

for the wisdom of the ancients. The continued discovery of ancient texts led to the 

Greek revival in the fifteenth century (Debus, 1978), which enabled this treasure 

trove of texts to be translated into Latin. In the development of modern science, 

Borges’ “unprecedented language” was first Greek and then Latin.

The departure from Latin as the language of science was a turbulent devel-

opment during the scientific revolution. Paracelsus was attacked by the medical 

establishment for presenting medical lectures in his native Swiss German in 1527 

(Debus, 1978). Galileo published his 1612 Discourse on Bodies in Water in Italian, an 

act that enraged his fellow philosophers of the Florentine Academy (Sobel, 1999). 

For a long period, scholars who wrote in their vernacular tongue had to preface 

their writings with apologies and explanations of why this did not represent a chal-

lenge to the universities of the day (Debus, 1978).

Galileo wrote in Italian because “I must have everyone able to read it” 

(Sobel, 1999, p. 47). However, from some perspectives, writing in the vernacu-

lar actually produced a communication breakdown, because Galileo was not dis-

seminating knowledge in the scholarly lingua franca, Latin. Galileo’s writings were 

examined as part of his trial. It was concluded that “he writes in Italian, certainly 

not to extend the hand to foreigners or other learned men” (Sobel, 1999, p. 256).

A different sort of communication breakdown is a common theme in modern 

philosophy of science. It has been argued that some scientific theories are incom-

mensurable with others (Feyerabend, 1975; Kuhn, 1970). Incommensurable scien-

tific theories are theories that are impossible to compare because there is no logical 

or meaningful relation between some or all of the theories’ terms. Kuhn argued 

that this situation would occur if, within a science, different researchers operated 

under different paradigms. “Within the new paradigm, old terms, concepts, and 
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experiments fall into new relationships one with the other. The inevitable result is 

what we must call, though the term is not quite right, a misunderstanding between 

the two schools” (Kuhn, 1970, p. 149). Kuhn saw holders of different paradigms as 

being members of different language communities—even if they wrote in the same 

vernacular tongue! Differences in paradigms caused communication breakdowns.

The modern fragmentation of cognitive science might be an example of com-

munication breakdowns produced by the existence of incommensurable theo-

ries. For instance, it is not uncommon to see connectionist cognitive science 

described as a Kuhnian paradigm shift away from classical cognitive science 

(Horgan & Tienson, 1996; Schneider, 1987). When embodied cognitive science is 

discussed in Chapter 5, we see that it too might be described as a new paradigm.

To view the fragmentation of cognitive science as resulting from competing, 

incommensurable paradigms is also to assume that cognitive science is para-

digmatic. Given that cognitive science as a discipline is less than sixty years old 

(Boden, 2006; Gardner, 1984; Miller, 2003), it is not impossible that it is actually 

pre-paradigmatic. Indeed, one discipline to which cognitive science is frequently 

compared—experimental psychology—may also be pre-paradigmatic (Buss, 1978; 

Leahey, 1992).

Pre-paradigmatic sciences exist in a state of disarray and fragmentation because 

data are collected and interpreted in the absence of a unifying body of belief. “In the 

early stages of the development of any science different men confronting the same 

range of phenomena, but not usually all the same particular phenomena, describe 

and interpret them in different ways” (Kuhn, 1970, p. 17). My suspicion is that cogni-

tive science has achieved some general agreement about the kinds of phenomena 

that it believes it should be explaining. However, it is pre-paradigmatic with respect 

to the kinds of technical details that it believes are necessary to provide the desired 

explanations.

In an earlier book, I argued that the assumption that cognition is information 

processing provided a framework for a “language” of cognitive science that made 

interdisciplinary conversations possible (Dawson, 1998). I demonstrated that when 

this framework was applied, there were more similarities than differences between 

classical and connectionist cognitive science. The source of these similarities was 

the fact that both classical and connectionist cognitive science adopted the infor-

mation processing hypothesis. As a result, both schools of thought can be examined 

and compared using Marr’s (1982) different levels of analysis. It can be shown that 

classical and connectionist cognitive sciences are highly related at the computa-

tional and algorithmic levels of analysis (Dawson, 1998, 2009).

In my view, the differences between classical and cognitive science concern the 

nature of the architecture, the primitive set of abilities or processes that are avail-

able for information processing (Dawson, 2009). The notion of an architecture is 
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detailed in Chapter 2. One of the themes of the current book is that debates between 

different schools of thought in cognitive science are pre-paradigmatic discussions 

about the possible nature of the cognitive architecture.

These debates are enlivened by the modern rise of embodied cognitive science. 

One reason that classical and connectionist cognitive science can be easily com-

pared is that both are representational (Clark, 1997; Dawson, 1998, 2004). However, 

some schools of thought in embodied cognitive science are explicitly anti-represen-

tational (Brooks, 1999; Chemero, 2009; Noë, 2004). As a result, it is not clear that 

the information processing hypothesis is applicable to embodied cognitive science. 

One of the goals of the current book is to examine embodied cognitive science from 

an information processing perspective, in order to use some of its key departures 

from both classical and connectionist cognitive science to inform the debate about 

the architecture.

The search for truth in the Library of Babel had dire consequences. Its librar-

ians “disputed in the narrow corridors, proffered dark curses, strangled each other 

on the divine stairways, flung the deceptive books into the air shafts, met their 

death cast down in a similar fashion by the inhabitants of remote regions. Others 

went mad” (Borges, 1962, p. 55). The optimistic view of the current book is that a 

careful examination of the three different schools of cognitive science can provide a 

fruitful, unifying position on the nature of the cognitive architecture.

1.5 A Plan of Action

A popular title for surveys of cognitive science is What is cognitive science? 

(Lepore & Pylyshyn, 1999; von Eckardt, 1995). Because this one is taken, a different 

title is used for the current book. But steering the reader towards an answer to this 

excellent question is the primary purpose of the current manuscript.

Answering the question What is cognitive science? resulted in the current book 

being organized around two central themes. One is to introduce key ideas at the 

foundations of three different schools of thought: classical cognitive science, con-

nectionist cognitive science, and embodied cognitive science. A second is to exam-

ine these ideas to see whether these three “flavours” of cognitive science can be uni-

fied. As a result, this book is presented in two main parts.

The purpose of Part I is to examine the foundations of the three schools of 

cognitive science. It begins in Chapter 2, with an overview of the need to investigate 

cognitive agents at multiple levels. These levels are used to provide a framework 

for considering potential relationships between schools of cognitive science. Each 

of these schools is also introduced in Part I. I discuss classical cognitive science in 

Chapter 3, connectionist cognitive science in Chapter 4, and embodied cognitive 

science in Chapter 5.
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With the foundations of the three different versions of cognitive science laid 

out in Part I, in Part II, I turn to a discussion of a variety of topics within cognitive 

science. The purpose of these discussions is to seek points of either contention or 

convergence amongst the different schools of thought.

The theme of Part II is that the key area of disagreement amongst classical, 

connectionist, and embodied cognitive science is the nature of the cognitive archi-

tecture. However, this provides an opportunity to reflect on the technical details 

of the architecture as the potential for a unified cognitive science. This is because 

the properties of the architecture—regardless of the school of thought—are at best 

vaguely defined. For instance, Searle (1992, p. 15) has observed that “‘intelligence,’ 

‘intelligent behavior,’ ‘cognition’ and ‘information processing,’ for example are not 

precisely defined notions. Even more amazingly, a lot of very technically sounding 

notions are poorly defined—notions such as ‘computer,’ ‘computation,’ ‘program,’ 

and ‘symbol’” (Searle, 1992, p. 15).

In Part II, I also present a wide range of topics that permit the different schools 

of cognitive science to make contact. It is hoped that my treatment of these topics 

will show how the competing visions of the different schools of thought can be coor-

dinated in a research program that attempts to specify an architecture of cognition 

inspired by all three schools.
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Multiple Levels of Investigation

2.0 Chapter Overview

Cognitive science is an intrinsically interdisciplinary field of study. Why is this so? 

In the current chapter, I argue that the interdisciplinary nature of cognitive science 

necessarily emerges because it assumes that cognition is information processing. 

The position I take is that explanations of information processors require working 

at four different levels of investigation, with each level involving a different vocabu-

lary and being founded upon the methodologies of different disciplines.

The chapter begins with a historical treatment of logicism, the view that think-

ing is equivalent to performing mental logic, and shows how this view was converted 

into the logical analysis of relay circuits by Claude Shannon. Shannon’s work is then 

used to show that a variety of different arrangements of switches in a circuit can 

perform the same function, and that the same logical abilities can be constructed 

from different sets of core logical properties. Furthermore, any one of these sets of 

logical primitives can be brought to life in a variety of different physical realizations.

The consequence of this analysis is that information processors must be 

explained at four different levels of investigation. At the computational level, one 

asks what kinds of information processing problems can be solved by a system. At 

the algorithmic level, one asks what procedures are being used by a system to solve a 

particular problem of interest. At the architectural level, one asks what basic opera-

tions are used as the foundation for a specific algorithm. At the implementational 

2
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level, one asks what physical mechanisms are responsible for bringing a particular 

architecture to life.

My goal in this chapter is to introduce these different levels of investigation. 

Later chapters reveal that different approaches within cognitive science have dif-

fering perspectives on the relative importance, and on the particular details, of 

each level.

2.1 Machines and Minds

Animism is the assignment of lifelike properties to inanimate, but moving, objects. 

Animism characterizes the thinking of young children, who may believe that a car, 

for instance, is alive because it can move on its own (Piaget, 1929). Animism was 

also apparent in the occult tradition of the Renaissance; the influential memory 

systems of Lull and of Bruno imbued moving images with powerful, magical prop-

erties (Yates, 1966).

Animism was important to the development of scientific and mathematical 

methods in the seventeenth century: “The Renaissance conception of an animistic 

universe, operated by magic, prepared the way for a conception of a mechanical 

universe, operated by mathematics” (Yates, 1966, p. 224). Note the animism in the 

introduction to Hobbes’ (1967) Leviathan:

For seeing life is but a motion of limbs, the beginning whereof is in some principal 

part within; why may we not say, that all Automata (Engines that move themselves 

by means of springs and wheeles as doth a watch) have an artificial life? For what 

is the Heart, but a Spring; and the Nerves, but so many Springs; and the Joynts, 

but so many Wheeles, giving motion to the whole Body, such as was intended by the 

Artificer? (Hobbes, 1967, p. 3)

Such appeals to animism raised new problems. How were moving humans to be dis-

tinguished from machines and animals? Cartesian philosophy grounded humanity 

in mechanistic principles, but went on to distinguish humans-as-machines from 

animals because only the former possessed a soul, whose essence was “only to think” 

(Descartes, 1960, p. 41).

Seventeenth-century philosophy was the source of the mechanical view of 

man (Grenville, 2001; Wood, 2002). It was also the home of a reverse inquiry: was 

it possible for human artifacts, such as clockwork mechanisms, to become alive or 

intelligent?

By the eighteenth century, such philosophical ponderings were fuelled by 

“living machines” that had made their appearance to great public acclaim. Between 

1768 and 1774, Pierre and Henri-Louis Jaquet-Droz constructed elaborate clock-

work androids that wrote, sketched, or played the harpsichord (Wood, 2002). The 
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eighteenth-century automata of Jacques de Vaucanson, on display for a full cen-

tury, included a flute player and a food-digesting duck. Von Kempelen’s infamous 

chess-playing Turk first appeared in 1770; it was in and out of the public eye until its 

destruction by fire in 1854 (Standage, 2002).

Wood (2002, p. xxvii) notes that all automata are presumptions “that life can 

be simulated by art or science or magic. And embodied in each invention is a 

riddle, a fundamental challenge to our perception of what makes us human.” In the 

eighteenth century, this challenge attracted the attention of the Catholic Church. 

In 1727, Vaucanson’s workshop was ordered destroyed because his clockwork serv-

ants, who served dinner and cleared tables, were deemed profane (Wood, 2002). 

The Spanish Inquisition imprisoned both Pierre Jaquet-Droz and his writing 

automaton!

In spite of the Church’s efforts, eighteenth-century automata were popular, tap-

ping into a nascent fascination with the possibility of living machines. This fascina-

tion has persisted uninterrupted to the present day, as evidenced by the many depic-

tions of robots and cyborgs in popular fiction and films (Asimov, 2004; Caudill, 1992; 

Grenville, 2001; Ichbiah, 2005; Levin, 2002; Menzel, D’Aluisio, & Mann, 2000).

Not all modern automata were developed as vehicles of entertainment. The 

late 1940s saw the appearance of the first autonomous robots, which resembled, 

and were called, Tortoises (Grey Walter, 1963). These devices provided “mimicry of 

life” (p. 114) and were used to investigate the possibility that living organisms were 

simple devices that were governed by basic cybernetic principles. Nonetheless, Grey 

Walter worried that animism might discredit the scientific merit of his work:

We are daily reminded how readily living and even divine properties are pro-

jected into inanimate things by hopeful but bewildered men and women; and the 

scientist cannot escape the suspicion that his projections may be psychologically 

the substitutes and manifestations of his own hope and bewilderment. (Grey 

Walter, 1963, p. 115)

While Grey Walter’s Tortoises were important scientific contributions (Bladin, 2006; 

Hayward, 2001; Holland, 2003b; Sharkey & Sharkey, 2009), the twentieth century 

saw the creation of another, far more important, automaton: the digital computer. 

The computer is rooted in seventeenth-century advances in logic and mathemat-

ics. Inspired by the Cartesian notion of rational, logical, mathematical thought, the 

computer brought logicism to life.

Logicism is the idea that thinking is identical to performing logical operations 

(Boole, 2003). By the end of the seventeenth century, numerous improvements to 

Boole’s logic led to the invention of machines that automated logical operations; 

most of these devices were mechanical, but electrical logic machines had also been 

conceived (Buck & Hunka, 1999; Jevons, 1870; Marquand, 1885; Mays, 1953). If 



22  Chapter 2

thinking was logic, then thinking machines—machines that could do logic—existed 

in the late nineteenth century.

The logic machines of the nineteenth century were, in fact, quite limited in abil-

ity, as we see later in this chapter. However, they were soon replaced by much more 

powerful devices. In the first half of the twentieth century, the basic theory of a gen-

eral computing mechanism had been laid out in Alan Turing’s account of his uni-

versal machine (Hodges, 1983; Turing, 1936). The universal machine was a device 

that “could simulate the work done by any machine. . . . It would be a machine to 

do everything, which was enough to give anyone pause for thought” (Hodges, 1983, 

p. 104). The theory was converted into working universal machines—electronic 

computers—by the middle of the twentieth century (Goldstine, 1993; Reid, 2001; 

Williams, 1997).

The invention of the electronic computer made logicism practical. The com-

puter’s general ability to manipulate symbols made the attainment of machine intel-

ligence seem plausible to many, and inevitable to some (Turing, 1950). Logicism was 

validated every time a computer accomplished some new task that had been pre-

sumed to be the exclusive domain of human intelligence (Kurzweil, 1990, 1999). The 

pioneers of cognitive science made some bold claims and some aggressive predictions 

(McCorduck, 1979): in 1956, Herbert Simon announced to a mathematical model-

ling class that “Over Christmas Allen Newell and I invented a thinking machine” 

(McCorduck, 1979, p. 116). It was predicted that by the late 1960s most theories in 

psychology would be expressed as computer programs (Simon & Newell, 1958).

The means by which computers accomplished complex information process-

ing tasks inspired theories about the nature of human thought. The basic workings 

of computers became, at the very least, a metaphor for the architecture of human 

cognition. This metaphor is evident in philosophy in the early 1940s (Craik, 1943).

My hypothesis then is that thought models, or parallels, reality—that its essential 

feature is not ‘the mind,’ ‘the self,’ ‘sense data’ nor ‘propositions,’ but is symbol-

ism, and that this symbolism is largely of the same kind which is familiar to us in 

mechanical devices which aid thought and calculation. (Craik, 1943, p. 57)

Importantly, many modern cognitive scientists do not see the relationship between 

cognition and computers as being merely metaphorical (Pylyshyn, 1979a, p. 435): 

“For me, the notion of computation stands in the same relation to cognition as 

geometry does to mechanics: It is not a metaphor but part of a literal description of 

cognitive activity.”

Computers are special devices in another sense: in order to explain how they 

work, one must look at them from several different perspectives. Each perspective 

requires a radically different vocabulary to describe what computers do. When cog-

nitive science assumes that cognition is computation, it also assumes that human 

cognition must be explained using multiple vocabularies.
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In this chapter, I provide an historical view of logicism and computing to intro-

duce these multiple vocabularies, describe their differences, and explain why all 

are needed. We begin with the logicism of George Boole, which, when transformed 

into modern binary logic, defined the fundamental operations of modern digital 

computers.

2.2 From the Laws of Thought to Binary Logic

In 1854, with the publication of An Investigation of the Laws of Thought, George 

Boole (2003) invented modern mathematical logic. Boole’s goal was to move the 

study of thought from the domain of philosophy into the domain of mathematics: 

There is not only a close analogy between the operations of the mind in general 

reasoning and its operations in the particular science of Algebra, but there is to 

a considerable extent an exact agreement in the laws by which the two classes of 

operations are conducted. (Boole, 2003, p. 6)

Today we associate Boole’s name with the logic underlying digital computers 

(Mendelson, 1970). However, Boole’s algebra bears little resemblance to our modern 

interpretation of it. The purpose of this section is to trace the trajectory that takes 

us from Boole’s nineteenth-century calculus to the twentieth-century invention of 

truth tables that define logical functions over two binary inputs.

Boole did not create a binary logic; instead he developed an algebra of sets. 

Boole used symbols such as x, y, and z to represent classes of entities. He then 

defined “signs of operation, as +, –, ´, standing for those operations of the mind 

by which the conceptions of things are combined or resolved so as to form new 

conceptions involving the same elements” (Boole, 2003, p. 27). The operations of his 

algebra were those of election: they selected subsets of entities from various classes 

of interest (Lewis, 1918).

For example, consider two classes: x (e.g., “black things”) and y (e.g., “birds”). 

Boole’s expression x + y performs an “exclusive or” of the two constituent classes, 

electing the entities that were “black things,” or were “birds,” but not those that were 

“black birds.”

Elements of Boole’s algebra pointed in the direction of our more modern binary 

logic. For instance, Boole used multiplication to elect entities that shared proper-

ties defined by separate classes. So, continuing our example, the set of “black birds” 

would be elected by the expression xy. Boole also recognized that if one multiplied 

a class with itself, the result would simply be the original set again. Boole wrote his 

fundamental law of thought as xx = x, which can also be expressed as x2 = x. He 

realized that if one assigned numerical quantities to x, then this law would only be 

true for the values 0 and 1. “Thus it is a consequence of the fact that the fundamental 
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equation of thought is of the second degree, that we perform the operation of analy-

sis and classification, by division into pairs of opposites, or, as it is technically said, 

by dichotomy” (Boole, 2003, pp. 50–51). Still, this dichotomy was not to be exclu-

sively interpreted in terms of truth or falsehood, though Boole exploited this rep-

resentation in his treatment of secondary propositions. Boole typically used 0 to 

represent the empty set and 1 to represent the universal set; the expression 1 – x 

elected those entities that did not belong to x.

Boole’s operations on symbols were purely formal. That is, the actions of his 

logical rules were independent of any semantic interpretation of the logical terms 

being manipulated.

We may in fact lay aside the logical interpretation of the symbols in the given equa-

tion; convert them into quantitative symbols, susceptible only of the values 0 and 

1; perform upon them as such all the requisite processes of solution; and finally 

restore to them their logical interpretation. (Boole, 2003, p. 70)

This formal approach is evident in Boole’s analysis of his fundamental law. Beginning 

with x2 = x, Boole applied basic algebra to convert this expression into x – x2 = 0. 

He then simplified this expression to x(1 – x) = 0. Note that none of these steps 

are logical in nature; Boole would not be able to provide a logical justification for 

his derivation. However, he did triumphantly provide a logical interpretation of his 

result: 0 is the empty set, 1 the universal set, x is some set of interest, and 1 – x is the 

negation of this set. Boole’s algebraic derivation thus shows that the intersection of 

x with its negation is the empty set. Boole noted that, in terms of logic, the equation 

x(1 – x) = 0 expressed,

that it is impossible for a being to possess a quality and not to possess that quality at 

the same time. But this is identically that ‘principle of contradiction’ which Aristotle 

has described as the fundamental axiom of all philosophy. (Boole, 2003, p. 49)

It was important for Boole to link his calculus to Aristotle, because Boole not only 

held Aristotelian logic in high regard, but also hoped that his new mathematical 

methods would both support Aristotle’s key logical achievements as well as extend 

Aristotle’s work in new directions. To further link his formalism to Aristotle’s logic, 

Boole applied his methods to what he called secondary propositions. A secondary 

proposition was a statement about a proposition that could be either true or false. 

As a result, Boole’s analysis of secondary propositions provides another glimpse of 

how his work is related to our modern binary interpretation of it.

Boole applied his algebra of sets to secondary propositions by adopting a tem-

poral interpretation of election. That is, Boole considered that a secondary proposi-

tion could be true or false for some duration of interest. The expression xy would 

now be interpreted as electing a temporal period during which both propositions 

x and y are true. The symbols 0 and 1 were also given temporal interpretations, 
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meaning “no time” and “the whole of time” respectively. While this usage differs 

substantially from our modern approach, it has been viewed as the inspiration for 

modern binary logic (Post, 1921).

Boole’s work inspired subsequent work on logic in two different ways. First, 

Boole demonstrated that an algebra of symbols was possible, productive, and 

worthy of exploration: “Boole showed incontestably that it was possible, by the aid 

of a system of mathematical signs, to deduce the conclusions of all these ancient 

modes of reasoning, and an indefinite number of other conclusions” (Jevons, 1870, 

p. 499). Second, logicians noted certain idiosyncrasies of and deficiencies with 

Boole’s calculus, and worked on dealing with these problems. Jevons also wrote 

that Boole’s examples “can be followed only by highly accomplished mathemati-

cal minds; and even a mathematician would fail to find any demonstrative force 

in a calculus which fearlessly employs unmeaning and incomprehensible symbols” 

(p. 499). Attempts to simplify and correct Boole produced new logical systems that 

serve as the bridge between Boole’s nineteenth-century logic and the binary logic 

that arose in the twentieth century.

Boole’s logic is problematic because certain mathematical operations do not 

make sense within it (Jevons, 1870). For instance, because addition defined the 

“exclusive or” of two sets, the expression x + x had no interpretation in Boole’s 

system. Jevons believed that Boole’s interpretation of addition was deeply mistaken 

and corrected this by defining addition as the “inclusive or” of two sets. This pro-

duced an interpretable additive law, x + x = x, that paralleled Boole’s multiplicative 

fundamental law of thought.

Jevons’ (1870) revision of Boole’s algebra led to a system that was simple 

enough to permit logical inference to be mechanized. Jevons illustrated this with 

a three-class system, in which upper-case letters (e.g., A) picked out those enti-

ties that belonged to a set and lower-case letters (e.g., a) picked out those entities 

that did not belong. He then produced what he called the logical abecedarium, 

which was the set of possible combinations of the three classes. In his three-class 

example, the abecedarium consisted of eight combinations: ABC, ABc, AbC, Abc, 

aBC, aBc, abC, and abc. Note that each of these combinations is a multiplication 

of three terms in Boole’s sense, and thus elects an intersection of three different 

classes. As well, with the improved definition of logical addition, different terms of 

the abecedarium could be added together to define some set of interest. For exam-

ple Jevons (but not Boole!) could elect the class B with the following expression: 

B = ABC + ABc + aBC + aBc.

Jevons (1870) demonstrated how the abecedarium could be used as an infer-

ence engine. First, he used his set notation to define concepts of interest, such as 

in the example A = iron, B = metal, and C = element. Second, he translated propo-

sitions into intersections of sets. For instance, the premise “Iron is metal” can be 
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rewritten as “A is B,” which in Boole’s algebra becomes AB, and “metal is element” 

becomes BC. Third, given a set of premises, Jevons removed the terms that were 

inconsistent with the premises from the abecedarium: the only terms consistent 

with the premises AB and BC are ABC, aBC, abC, and abc. Fourth, Jevons inspected 

and interpreted the remaining abecedarium terms to perform valid logical infer-

ences. For instance, from the four remaining terms in Jevons’ example, we can con-

clude that “all iron is element,” because A is only paired with C in the terms that 

remain, and “there are some elements that are neither metal nor iron,” or abC. Of 

course, the complete set of entities that is elected by the premises is the logical sum 

of the terms that were not eliminated.

Jevons (1870) created a mechanical device to automate the procedure described 

above. The machine, known as the “logical piano” because of its appearance, dis-

played the 16 different combinations of the abecedarium for working with four dif-

ferent classes. Premises were entered by pressing keys; the depression of a pattern 

of keys removed inconsistent abecedarium terms from view. After all premises had 

been entered in sequence, the terms that remained on display were interpreted. 

A simpler variation of Jevons’ device, originally developed for four-class problems 

but more easily extendable to larger situations, was invented by Allan Marquand 

(Marquand, 1885). Marquand later produced plans for an electric version of his 

device that used electromagnets to control the display (Mays, 1953). Had this device 

been constructed, and had Marquand’s work come to the attention of a wider 

audience, the digital computer might have been a nineteenth-century invention 

(Buck & Hunka, 1999).

With respect to our interest in the transition from Boole’s work to our modern 

interpretation of it, note that the logical systems developed by Jevons, Marquand, 

and others were binary in two different senses. First, a set and its complement (e.g., 

A and a) never co-occurred in the same abecedarium term. Second, when premises 

were applied, an abecedarium term was either eliminated or not. These binary char-

acteristics of such systems permitted them to be simple enough to be mechanized.

The next step towards modern binary logic was to adopt the practice of assum-

ing that propositions could either be true or false, and to algebraically indicate these 

states with the values 1 and 0. We have seen that Boole started this approach, but 

that he did so by applying awkward temporal set-theoretic interpretations to these 

two symbols.

The modern use of 1 and 0 to represent true and false arises later in the nine-

teenth century. British logician Hugh McColl’s (1880) symbolic logic used this 

notation, which he borrowed from the mathematics of probability. American logi-

cian Charles Sanders Peirce (1885) also explicitly used a binary notation for truth 

in his famous paper “On the algebra of logic: A contribution to the philosophy of 

notation.” This paper is often cited as the one that introduced the modern usage 
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(Ewald, 1996). Peirce extended Boole’s work on secondary propositions by stipulat-

ing an additional algebraic law of propositions: for every element x, either x = 0 or x 

= 1, producing a system known as “the two-valued algebra” (Lewis, 1918).

The two-valued algebra led to the invention of truth tables, which are estab-

lished in the literature in the early 1920s (Post, 1921; Wittgenstein, 1922), but were 

likely in use much earlier. There is evidence that Bertrand Russell and his then stu-

dent Ludwig Wittgenstein were using truth tables as early as 1910 (Shosky, 1997). It 

has also been argued that Charles Peirce and his students probably were using truth 

tables as early as 1902 (Anellis, 2004).

Truth tables make explicit an approach in which primitive propositions (p, 

q, r, etc.) that could only adopt values of 0 or 1 are used to produce more com-

plex expressions. These expressions are produced by using logical functions to 

combine simpler terms. This approach is known as “using truth-value systems” 

(Lewis & Langford, 1959). Truth-value systems essentially use truth tables to deter-

mine the truth of functions of propositions (i.e., of logical combinations of proposi-

tions). “It is a distinctive feature of this two-valued system that when the property, 0 

or 1, of the elements p, q, etc., is given, any function of the elements which is in the 

system is thereby determined to have the property 0 or the property 1” (p. 199).

Consider Table 2-1, which provides the values of three different functions (the 

last three columns of the table) depending upon the truth value of two simple prop-

ositions (the first two columns of the table):

p q p·q p + q p·(p + q)

1 1 1 1 1

1 0 0 1 1

0 1 0 1 0

0 0 0 0 0

Table 2-1. Examples of the truth value system for two elementary propositions 

and some of their combinations. The possible values of p and q are given 

in the first two columns. The resulting values of different functions of these 

propositions are provided in the remaining columns.

Truth-value systems result in a surprising, simplified approach to defining basic or 

primitive logical functions. When the propositions p and q are interpreted as being 

only true or false, then there are only four possible combinations of these two prop-

ositions that can exist, i.e., the first two columns of Table 2-1. A primitive function 

can be defined as a function that is defined over p and q, and that takes on a truth 

value for each combination of these variables.

Given that in a truth-value system a function can only take on the value of 0 

or 1, then there are only 16 different primitive functions that can be defined for 



28  Chapter 2

combinations of the binary inputs p and q (Ladd, 1883). These primitive functions 

are provided in Table 2-2; each row of the table shows the truth values of each func-

tion for each combination of the inputs. An example logical notation for each func-

tion is provided in the last column of the table. This notation was used by Warren 

McCulloch (1988b), who attributed it to earlier work by Wittgenstein.

Not surprisingly, an historical trajectory can also be traced for the binary logic 

defined in Table 2-2. Peirce’s student Christine Ladd actually produced the first five 

columns of that table in her 1883 paper, including the conversion of the first four 

numbers in a row from a binary to a base 10 number. However, Ladd did not inter-

pret each row as defining a logical function. Instead, she viewed the columns in 

terms of set notation and each row as defining a different “universe.” The interpre-

tation of the first four columns as the truth values of various logical functions arose 

later with the popularization of truth tables (Post, 1921; Wittgenstein, 1922).

p=0

q=0

p=1

q=0

p=0

q=1

p=1

q=1

Number Notation

0 0 0 0 0 Contradiction

0 0 0 1 1 p·q

0 0 1 0 2 ~p·q

0 0 1 1 3 q

0 1 0 0 4 p·~q

0 1 0 1 5 p

0 1 1 0 6 p ∧ q

0 1 1 1 7 p ∨ q

1 0 0 0 8 ~p·~q

1 0 0 1 9 p ≡ q

1 0 1 0 10 ~p

1 0 1 1 11 p ⊃ q

1 1 0 0 12 ~q

1 1 0 1 13 q ⊃ p

1 1 1 0 14 p | q

1 1 1 1 15 Tautology

Table 2-2. Truth tables for all possible functions of pairs of propositions. Each 

function has a truth value for each possible combination of the truth values 

of p and q, given in the first four columns of the table. The Number column 

converts the first four values in a row into a binary number (Ladd, 1883). The 

logical notation for each function is taken Warren McCulloch (1988b).
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Truth tables, and the truth-value system that they support, are very powerful. They 

can be used to determine whether any complex expression, based on combinations 

of primitive propositions and primitive logical operations, is true or false (Lewis, 

1932). In the next section we see the power of the simple binary truth-value system, 

because it is the basis of the modern digital computer. We also see that bringing this 

system to life in a digital computer leads to the conclusion that one must use more 

than one vocabulary to explain logical devices.

2.3 From the Formal to the Physical

The short story The Dreams in the Witch-house by Lovecraft (1933) explored the 

link between mathematics and magic. The story explained how a student discovers 

that the act of writing out mathematical equations can alter reality. This alteration 

provided an explanation of how the accused Salem witch Keziah Mason escaped her 

seventeenth-century captors:

She had told Judge Hathorne of lines and curves that could be made to point out 

directions leading through the walls of space to other spaces and beyond. . . . Then 

she had drawn those devices on the walls of her cell and vanished. (Lovecraft, 

1933, p. 140)

This strange link between the formal and the physical was also central to another 

paper written in the same era as Lovecraft’s story. The author was Claude Shannon, 

and the paper’s title was “A symbolic analysis of relay and switching circuits” 

(Shannon, 1938). However, his was not a work of fiction. Instead, it was a brief ver-

sion what is now known as one of the most important master’s theses ever written 

(Goldstine, 1993). It detailed the link between Boolean algebra and electrical cir-

cuits, and showed how mathematical logic could be used to design, test, and sim-

plify circuits. “The paper was a landmark in that it helped to change digital circuit 

design from an art to a science” (p. 120).

Shannon had a lifelong interest in both mathematics and mechanics. While 

his most influential papers were mathematical in focus (Shannon, 1938, 1948), he 

was equally famous for his tinkering (Pierce, 1993). His mechanical adeptness led 

to the invention of a number of famous devices, including Theseus, a mechanical 

maze-solving mouse. Later in his career Shannon seemed to take more pride in the 

gadgets that he had created and collected than in his numerous impressive scientific 

awards (Horgan, 1992).

Shannon’s combined love of the mathematical and the mechanical was evi-

dent in his education: he completed a double major in mathematics and electrical 

engineering at the University of Michigan (Calderbank & Sloane, 2001). In 1936, he 

was hired as a research assistant at MIT, working with the differential analyzer of 
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Vannevar Bush. This machine was a pioneering analog computer, a complex array 

of electrical motors, gears, and shafts that filled an entire room. Its invention estab-

lished Bush as a leader in electrical engineering as well as a pioneer of computing 

(Zachary, 1997). Bush, like Shannon, was enamored of the link between the formal 

and the physical. The sight of the differential analyzer at work fascinated Bush “who 

loved nothing more than to see things work. It was only then that mathematics—his 

sheer abstractions—came to life” (Zachary, 1997, p. 51).

Because of his work with Bush’s analog computer, Shannon was prepared to 

bring another mathematical abstraction to life when the opportunity arose. The 

differential analyzer had to be physically reconfigured for each problem that was 

presented to it, which in part required configuring circuits that involved more than 

one hundred electromechanical relays, which were used as switches. In the summer 

of 1937, Shannon worked in Bell Labs and saw that engineers there were confronted 

with designing more complex systems that involved thousands of relays. At the 

time, this was labourious work that was done by hand. Shannon wondered if there 

was a more efficient approach. He discovered one when he realized that there was 

a direct mapping between switches and Boolean algebra, which Shannon had been 

exposed to in his undergraduate studies.

An Internet search will lead to many websites suggesting that Shannon recog-

nized that the opening or closing of a switch could map onto the notions of “false” 

or “true.” Actually, Shannon’s insight involved the logical properties of combinations 

of switches. In an interview that originally appeared in Omni magazine in 1987, he 

noted “It’s not so much that a thing is ‘open’ or ‘closed,’ the ‘yes’ or ‘no’ that you men-

tioned. The real point is that two things in series are described by the word ‘and’ in 

logic, so you would say this ‘and’ this, while two things in parallel are described by 

the word ‘or’” (Liversidge, 1993).

In particular, Shannon (1938) viewed a switch (Figure 2-1A) as a source of 

impedance; when the switch was closed, current could flow and the impedance 

was 0, but when the switch was open (as illustrated in the figure) the impedance 

was infinite; Shannon used the symbol 1 to represent this state. As a result, if two 

switches were connected in series (Figure 2-1B) current would only flow if both 

switches were closed. Shannon represented this as the sum x + y. In contrast, if 

switch x and switch y were connected in parallel (Figure 2-1C), then current would 

flow through the circuit if either (i.e., both) of the switches were closed. Shannon 

represented this circuit as the product xy.

Shannon’s (1938) logical representation is a variation of the two-valued logic 

that was discussed earlier. The Boolean version of this logic represented false with 

0, true with 1, or with addition, and and with multiplication. Shannon’s version 

represented false with 1, true with 0, or with multiplication, and and with addi-

tion. But because Shannon’s reversal of the traditional logic is complete, the two are 
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equivalent. Shannon noted that the basic properties of the two-valued logic were 

true of his logical interpretation of switches: “Due to this analogy any theorem of 

the calculus of propositions is also a true theorem if interpreted in terms of relay 

circuits” (p. 714).

Figure 2-1. (A) An electrical switch, labelled x. (B) Switches x and y in series. (C) 

Switches x and y in parallel.

The practical implication of Shannon’s (1938) paper was that circuit design and 

testing was no longer restricted to hands-on work in the physical domain. Instead, 

one could use pencil and paper to manipulate symbols using Boolean logic, design-

ing a circuit that could be proven to generate the desired input-output behaviour. 

Logical operations could also be used to ensure that the circuit was as simple as 

possible by eliminating unnecessary logical terms: “The circuit may then be imme-

diately drawn from the equations” (p. 713). Shannon illustrated this technique with 

examples that included a “selective circuit” that would permit current when 1, 3, or 

4—but not 0 or 2—of its relays were closed, as well as an electric combination lock 

that would only open when its 5 switches were depressed in a specific order.

Amazingly, Shannon was not the first to see that electrical circuits were log-

ical in nature (Burks, 1975)! In 1886, Charles Peirce wrote a letter to his student 

Alan Marquand suggesting how the latter’s logic machine (Marquand, 1885) could 

be improved by replacing its mechanical components with electrical ones. Peirce 

provided diagrams of a serial 3-switch circuit that represented logical conjunc-

tion (and) and a parallel 3-switch circuit that represented logical disjunction (or). 

Peirce’s nineteenth-century diagrams would not have been out of place in Shannon’s 

twentieth-century paper.

x

x y
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y
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In Lovecraft’s (1933) story, the witch Keziah “might have had excellent reasons 

for living in a room with peculiar angles; for was it not through certain angles that 

she claimed to have gone outside the boundaries of the world of space we know?” 

Shannon’s (1938) scholarly paper led to astonishing conclusions for similar reasons: 

it detailed equivalence between the formal and the physical. It proved that elec-

tric circuits could be described in two very different vocabularies: one the physical 

vocabulary of current, contacts, switches and wires; the other the abstract vocabu-

lary of logical symbols and operations.

2.4 Multiple Procedures and Architectures

According to a Chinese proverb, we all like lamb, but each has a different way to cook 

it. This proverb can be aptly applied to the circuits of switches for which Shannon 

(1938) developed a logical interpretation. Any of these circuits can be described as 

defining a logical function that maps inputs onto an output: the circuit outputs a 

current (or not) depending on the pattern of currents controlled by one or more 

switches that flow into it. However, just like lamb, there are many different ways to 

“cook” the input signals to produce the desired output. In short, many different cir-

cuits can be constructed to compute the same input-output function.

To illustrate this point, let us begin by considering Shannon’s (1938) selective 

circuit, which would be off when 0 or 2 of its 4 relays were closed, but which would 

be on when any other number of its relays was closed. In Shannon’s original formu-

lation, 20 components—an arrangement of 20 different switches—defined a circuit 

that would behave in the desired fashion. After applying logical operations to sim-

plify the design, Shannon reduced the number of required components from 20 

to 14. That is, a smaller circuit that involved an arrangement of only 14 different 

switches delivered the same input-output behaviour as did the 20-switch circuit.

Reflecting on these two different versions of the selective circuit, it’s clear that 

if one is interested in comparing them, the result of the comparison depends on the 

perspective taken. On the one hand, they are quite different: they involve different 

numbers of components, related to one another by completely different patterns of 

wiring. On the other hand, in spite of these obvious differences in details, at a more 

abstract level the two designs are identical, in the sense that both designs produce 

the same input-output mapping. That is, if one built a truth table for either circuit 

that listed the circuit’s conductivity (output) as a function of all possible combina-

tions of its 4 relays (inputs), the two truth tables would be identical. One might 

say that the two circuits use markedly different procedures (i.e., arrangements of 

internal components) to compute the same input-output function. They generate 

the same behaviour, but for different reasons.
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Comparisons between different devices are further complicated by introduc-

ing the notion of an architecture (Brooks, 1962). In computer science, the term 

architecture was originally used by Frederick P. Brooks Jr., a pioneering force in 

the creation of IBM’s early computers. As digital computers evolved, computer 

designers faced changing constraints imposed by new hardware technologies. This 

is because new technologies defined anew the basic information processing proper-

ties of a computer, which in turn determined what computers could and could not 

do. A computer’s architecture is its set of basic information processing properties 

(Blaauw & Brooks, 1997, p. 3): “The architecture of a computer system we define 

as the minimal set of properties that determine what programs will run and what 

results they will produce.”

The two different versions of Shannon’s (1938) selective circuit were both based 

on the same architecture: the architecture’s primitives (its basic components) were 

parallel and serial combinations of pairs of switches. However, other sets of primi-

tives could be used.

An alternative architecture could use a larger number of what Shannon (1938) 

called special types of relays or switches. For instance, we could take each of the 

16 logical functions listed in Table 2-2 and build a special device for each. Each 

device would take two currents as input, and would convert them into an appropri-

ate output current. For example, the XOR device would only deliver a current if 

only one of its input lines was active; it would not deliver a current if both its input 

lines were either active or inactive—behaving exactly as it is defined in Table 2-2. It 

is easy to imagine building some switching circuit that used all of these logic gates 

as primitive devices; we could call this imaginary device “circuit x.”

The reason that the notion of architecture complicates (or enriches!) the com-

parison of devices is that the same circuit can be created from different primitive 

components. Let us define one additional logic gate, the NOT gate, which does not 

appear in Table 2-2 because it has only one input signal. The NOT gate reverses or 

inverts the signal that is sent into it. If a current is sent into a NOT gate, then the 

NOT gate does not output a current. If a current is not sent into a NOT gate, then 

the gate outputs a current. The first NOT gate—the first electromechanical relay—

was invented by American physicist Joseph Henry in 1835. In a class demonstration, 

Henry used an input signal to turn off an electromagnet from a distance, startling 

his class when the large load lifted by the magnet crashed to the floor (Moyer, 1997).

The NOT gate is important, because it can be used to create any of the Table 2-2 

operations when combined with two other operators that are part of that table: AND, 

which McCulloch represented as p·q, and OR, which McCulloch represented as p ∨ q. 

To review, if the only special relays available are NOT, A,ND and OR, then one can use 

these three primitive logic blocks to create any of the other logical operations that are 
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given in Table 2-2 (Hillis, 1998). “This idea of a universal set of blocks is important: it 

means that the set is general enough to build anything” (p. 22).

To consider the implications of the universal set of logic gates to comparing cir-

cuits, let us return to our imaginary circuit x. We could have two different versions 

of this circuit, based on different architectures. In one, the behaviour of the circuit 

would depend upon wiring up some arrangement of all the various logical opera-

tions given in Table 2-2, where each operation is a primitive—that is, carried out by 

its own special relay. In the other, the arrangement of the logical operations would 

be identical, but the logical operations in Table 2-2 would not be primitive. Instead, 

we would replace each special relay from the first circuit with a circuit involving 

NOT, AND, and OR that would produce the desired behaviour.

Let us compare these two different versions of circuit x. At the most abstract 

level, they are identical, because they are generating the same input-output behav-

iour. At a more detailed level—one that describes how this behaviour is generated in 

terms of how the logical operations of Table 2-2 are combined together—the two are 

also identical. That is, the two circuits are based on the same combinations of the 

Table 2-2 operations. However, at a more detailed level, the level of the architecture, 

the two circuits are different. For the first circuit, each logical operation from Table 

2-2 would map onto a physical device, a special relay. This would not be true for the 

second circuit. For it, each logical operation from Table 2-2 could be decomposed 

into a combination of simpler logical operations—NOT, AND, OR—which in turn 

could be implemented by simple switches. The two circuits are different in the sense 

that they use different architectures, but these different architectures are used to 

create the same logical structure to compute the same input-output behaviour.

We now can see that Shannon’s (1938) discoveries have led us to a position 

where we can compare two different electrical circuits by asking three different 

questions. First, do the two circuits compute the same input-output function? 

Second, do the two circuits use the same arrangement of logical operations used to 

compute this function? Third, do the two circuits use the same architecture to bring 

these logical operations to life? Importantly, the comparison between two circuits 

can lead to affirmative answers to some of these questions, and negative answers to 

others. For instance, Shannon’s two selective circuits use different arrangements of 

logical operations, but are based on the same architecture, and compute the same 

input-output function. The two versions of our imaginary circuit x compute the 

same input-output function, and use the same arrangement of logical operations, 

but are based on different architectures.

Ultimately, all of the circuits we have considered to this point are governed by the 

same physical laws: the laws of electricity. However, we will shortly see that it is pos-

sible to have two systems that have affirmative answers to the three questions listed 

in the previous paragraph, but are governed by completely different physical laws.
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2.5 Relays and Multiple Realizations

Many of the ideas that we have been considering in this chapter have stemmed from 

Shannon’s (1938) logical interpretation of relay circuits. But what is a relay?

A relay is essentially a remote-controlled switch that involves two separate cir-

cuits (Gurevich, 2006). One of these circuits involves a source of current, which can 

be output through the relay’s drain. The second circuit controls the relay’s gate. In 

an electromechanical relay, the gate is an electromagnet (Figure 2-2). When a signal 

flows through the gate, the magnet becomes active and pulls a switch closed so that 

the source flows through the drain. When the gate’s signal is turned off, a spring 

pulls the switch open, breaking the first circuit, and preventing the source from 

flowing through the drain.

Figure 2-2. A relay, in which a signal through an electromagnetic gate controls 

a switch that determines whether the current from the source will flow 

through the drain.

The relay shown in Figure 2-2 can be easily reconfigured to convert it into a NOT 

gate. This is accomplished by having the switch between the source and the drain 

pulled open by the gate, and having it closed by a spring when the gate is not active. 

This was how, in 1835, Joseph Henry turned the power off to a large electromagnet, 

causing it to drop its load and startle his class (Moyer, 1997).

The type of relay shown in Figure 2-2 was critically important to the develop-

ment of the telegraph in the mid-nineteenth century. Telegraphs worked by sending 

electrical pulses—dots and dashes—long distances over copper wire. As the signals 

travelled, they weakened in intensity. In order to permit a message to be commu-

nicated over a long distance, the signal would have to be re-amplified at various 

points along its journey. Relays were the devices that accomplished this. The weak 

incoming signals were still strong enough to activate a relay’s magnet. When this 

happened, a stronger current—provided by the source—was sent along the tele-

graph wire, which was connected to the relay’s drain. The relay mechanism ensured 

that the pattern of pulses being sent along the drain matched the pattern of pulses 

that turned the gate on and off. That is, the periods of time during which the relay’s 

Source Drain

Gate
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switch was closed matched the durations of the dots and dashes that operated the 

relay’s magnet. The ability of a telegraph company to communicate messages over 

very long distances depended completely on the relays that were interspersed along 

the company’s network.

This dependence upon relays played a critical role in the corporate warfare 

between competing telegraph companies. In 1874, the only relay in use in the tel-

egraph industry was an electromagnetic one invented by Charles Grafton Page; the 

patent for this device was owned by Western Union. An imminent court decision 

was going to prevent the Automatic Telegraph Company from using this device in 

its own telegraph system because of infringement on the patent.

The Automatic Telegraph Company solved this problem by commissioning 

Thomas Edison to invent a completely new relay, one that avoided the Page patent by 

not using magnets (Josephson, 1961). Edison used a rotating chalk drum to replace 

the electromagnet. This is because Edison had earlier discovered that the friction 

of a wire dragging along the drum changed when current flowed through the wire. 

This change in friction was sufficient to be used as a signal that could manipulate 

the gate controlling the circuit between the source and the drain. Edison’s relay was 

called a motograph.

Edison’s motograph is of interest to us when it is compared to the Page relay. 

On the one hand, the two devices performed the identical function; indeed, Edison’s 

relay fit exactly into the place of the page relay: 

First he detached the Page sounder from the instrument, an intensely interested 

crowd watching his every movement. From one of his pockets he took a pair of 

pliers and fitted [his own motograph relay] precisely where the Page sounder had 

been previously connected, and tapped the key. The clicking—and it was a joyful 

sound—could be heard all over the room. There was a general chorus of surprise. 

‘He’s got it! He’s got it!’ (Josephson, 1961, p. 118) 

On the other hand, the physical principles governing the two relays were com-

pletely different. The key component of one was an electromagnet, while the critical 

part of the other was a rotating drum of chalk. In other words, the two relays were 

functionally identical, but physically different. As a result, if one were to describe the 

purpose, role, or function of each relay, then the Page relay and the Edison moto-

graph would be given the same account. However, if one were to describe the physical 

principles that accomplished this function, the account of the Page relay would be 

radically different from the account of the Edison motograph—so different, in fact, 

that the same patent did not apply to both. Multiple realization is the term used to 

recognize that different physical mechanisms can bring identical functions to life.

The history of advances in communications and computer technology can 

be described in terms of evolving multiple realizations of relays and switches. 

Electromagnetic relays were replaced by vacuum tubes, which could be used to 
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rapidly switch currents on and off and to amplify weak signals (Reid, 2001). Vacuum 

tubes were replaced by transistors built from semiconducting substances such as 

silicon. Ultimately, transistors were miniaturized to the point that millions could be 

etched into a single silicon chip.

One might suggest that the examples listed above are not as physically differ-

ent as intended, because all are electrical in nature. But relays can be implemented 

in many nonelectrical ways as well. For example, nanotechnology researchers 

are exploring various molecular ways in which to create logic gates (Collier et al., 

1999; Okamoto, Tanaka, & Saito, 2004). Similarly, Hillis (1998) described in detail 

a hydraulic relay, in which the source and drain involve a high-pressure water line 

and a weaker input flow controls a valve. He pointed out that his hydraulic relay is 

functionally identical to a transistor, and that it could therefore be used as the basic 

building block for a completely hydraulic computer. “For most purposes, we can 

forget about technology [physical realization]. This is wonderful, because it means 

that almost everything that we say about computers will be true even when transis-

tors and silicon chips become obsolete” (p. 19).

Multiple realization is a key concept in cognitive science, particularly in clas-

sical cognitive science, which is the topic of Chapter 3. Multiple realization is in 

essence an argument that while an architectural account of a system is critical, 

it really doesn’t matter what physical substrate is responsible for bringing the 

architecture into being. Methodologically this is important, because it means that 

computer simulation is a viable tool in cognitive science. If the physical substrate 

doesn’t matter, then it is reasonable to emulate the brain-based architecture of 

human cognition using completely different hardware—the silicon chips of the 

digital computer.

Theoretically, multiple realization is also important because it raises the pos-

sibility that non-biological systems could be intelligent and conscious. In a famous 

thought experiment (Pylyshyn, 1980), each neuron in a brain is replaced with a sili-

con chip that is functionally equivalent to the replaced neuron. Does the person 

experience any changes in consciousness because of this change in hardware? The 

logical implication of multiple realization is that no change should be experienced. 

Indeed, the assumption that intelligence results from purely biological or neuro-

logical processes in the human brain may simply be a dogmatic attempt to make 

humans special when compared to lower animals or machines (Wiener, 1964, p. 31): 

“Operative images, which perform the functions of their original, may or may not 

bear a pictorial likeness to it. Whether they do or not, they may replace the original 

in its action, and this is a much deeper similarity.”
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2.6 Multiple Levels of Investigation and Explanation

Imagine bringing several different calculating devices into a class, with the goal of 

explaining how they work. How would you explain those devices? The topics that 

have been covered in the preceding pages indicate that several different approaches 

could—and likely should—be taken.

One approach would be to explain what was going on at a physical or imple-

mentational level. For instance, if one of the devices was an old electronic calculator, 

then you would feel comfortable in taking it apart to expose its internal workings. 

You would likely see an internal integrated circuit. You might explain how such 

circuits work by talking about the properties of semiconductors and how different 

layers of a silicon semiconductor can be doped with elements like arsenic or boron 

to manipulate conductivity (Reid, 2001) in order to create components like transis-

tors and resistors.

Interestingly, the physical account of one calculator will not necessarily apply to 

another. Charles Babbage’s difference engine was an automatic calculator, but was 

built from a set of geared columns (Swade, 1993). Slide rules were the dominant 

method of calculation prior to the 1970s (Stoll, 2006) and involved aligning rulers 

that represented different number scales. The abacus is a set of moveable beads 

mounted on vertical bars and can be used by experts to perform arithmetic cal-

culations extremely quickly (Kojima, 1954). The physical accounts of each of these 

three calculating devices would be quite different from the physical account of any 

electronic calculator.

A second approach to explaining a calculating device would be to describe its 

basic architecture, which might be similar for two different calculators that have 

obvious physical differences. For example, consider two different machines man-

ufactured by Victor. One, the modern 908 pocket calculator, is a solar-powered 

device that is approximately 3" × 4" × ½" in size and uses a liquid crystal display. The 

other is the 1800 desk machine, which was introduced in 1971 with the much larger 

dimensions of 9" × 11" × 4½". One reason for the 1800’s larger size is the nature of 

its power supply and display: it plugged into a wall socket, and it had to be large 

enough to enclose two very large (inches-high!) capacitors and a transformer. It also 

used a gas discharge display panel instead of liquid crystals. In spite of such striking 

physical differences between the 1800 and the 908, the “brains” of each calcula-

tor are integrated circuits that apply arithmetic operations to numbers represented 

in binary format. As a result, it would not be surprising to find many similarities 

between the architectures of these two devices.

Of course, there can be radical differences between the architectures of differ-

ent calculators. The difference engine did not use binary numbers, instead repre-

senting values in base 10 (Swade, 1993). Claude Shannon’s THROBACK computer’s 
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input, output, and manipulation processes were all designed for quantities repre-

sented as Roman numerals (Pierce, 1993). Given that they were designed to work 

with different number systems, it would be surprising to find many architectural 

similarities between the architectures of THROBACK, the difference engine, and 

the Victor electronic machines.

A third approach to explaining various calculators would be to describe the 

procedures or algorithms that these devices use to accomplish their computations. 

For instance, what internal procedures are used by the various machines to manip-

ulate numerical quantities? Algorithmic accounts could also describe more external 

elements, such as the activities that a user must engage in to instruct a machine to 

perform an operation of interest. Different electronic calculators may require differ-

ent sequences of key presses to compute the same equation.

For example, my own experience with pocket calculators involves typing in an 

arithmetic expression by entering symbols in the same order in which they would be 

written down in a mathematical expression. For instance, to subtract 2 from 4, I would 

enter “4 – 2 =” and expect to see 2 on display as the result. However, when I tested to 

see if the Victor 1800 that I found in my lab still worked, I couldn’t type that equation 

in and get a proper response. This is because this 1971 machine was designed to be 

easily used by people who were more familiar with mechanical adding machines. To 

subtract 2 from 4, the following expression had to be entered: “4 + 2 –”. Apparently the 

“=” button is only used for multiplication and division on this machine!

More dramatic procedural differences become evident when comparing devices 

based on radically different architectures. A machine such as the Victor 1800 adds 

two numbers together by using its logic gates to combine two memory registers that 

represent digits in binary format. In contrast, Babbage’s difference engine repre-

sents numbers in decimal format, where each digit in a number is represented by a 

geared column. Calculations are carried out by setting up columns to represent the 

desired numbers, and then by turning a crank that rotates gears. The turning of the 

crank activates a set of levers and racks that raise and lower and rotate the numeri-

cal columns. Even the algorithm for processing columns proceeds in a counterin-

tuitive fashion. During addition, the difference engine first adds the odd-numbered 

columns to the even-numbered columns, and then adds the even-numbered col-

umns to the odd-numbered ones (Swade, 1993).

A fourth approach to explaining the different calculators would be to describe 

them in terms of the relation between their inputs and outputs. Consider two of 

our example calculating devices, the Victor 1800 and Babbage’s difference engine. 

We have already noted that they differ physically, architecturally, and procedurally. 

Given these differences, what would classify both of these machines as calculating 

devices? The answer is that they are both calculators in the sense that they generate 

the same input-output pairings. Indeed, all of the different devices that have been 
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mentioned in the current section are considered to be calculators for this reason. 

In spite of the many-levelled differences between the abacus, electronic calculator, 

difference engine, THROBACK, and slide rule, at a very abstract level—the level 

concerned with input-output mappings—these devices are equivalent.

To summarize the discussion to this point, how might one explain calculating 

devices? There are at least four different approaches that could be taken, and each 

approach involves answering a different question about a device. What is its physi-

cal nature? What is its architecture? What procedures does it use to calculate? What 

input-output mapping does it compute? 

Importantly, answering each question involves using very different vocabular-

ies and methods. The next few pages explore the diversity of these vocabularies. 

This diversity, in turn, accounts for the interdisciplinary nature of cognitive science.

2.7 Formal Accounts of Input-Output Mappings

For a cyberneticist, a machine was simply a device for converting some input into 

some output—and nothing more (Ashby, 1956, 1960; Wiener, 1948, 1964). A cyber-

neticist would be concerned primarily with describing a machine such as a calculat-

ing device in terms of its input-output mapping. However, underlying this simple 

definition was a great deal of complexity.

First, cybernetics was not interested in the relation between a particular input 

and output, but instead was interested in a general account of a machine’s possible 

behaviour “by asking not ‘what individual act will it produce here and now?’ but 

‘what are all the possible behaviours that it can produce?’” (Ashby, 1956, p. 3).

Second, cybernetics wanted not only to specify what possible input-outputs 

could be generated by a device, but also to specify what behaviours could not be 

generated, and why: “Cybernetics envisages a set of possibilities much wider than 

the actual, and then asks why the particular case should conform to its usual par-

ticular restriction” (Ashby, 1956, p. 3).

Third, cybernetics was particularly concerned about machines that were non-

linear, dynamic, and adaptive, which would result in very complex relations between 

input and output. The nonlinear relationships between four simple machines that 

interact with each other in a network are so complex that they are mathematically 

intractable (Ashby, 1960).

Fourth, cybernetics viewed machines in a general way that not only ignored 

their physical nature, but was not even concerned with whether a particular 

machine had been (or could be) constructed or not. “What cybernetics offers is the 

framework on which all individual machines may be ordered, related and under-

stood” (Ashby, 1956, p. 2).

How could cybernetics study machines in such a way that these four different 
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perspectives could be taken? To accomplish this, the framework of cybernetics was 

exclusively mathematical. Cyberneticists investigated the input-output mappings of 

machines by making general statements or deriving proofs that were expressed in 

some logical or mathematical formalism.

By the late 1950s, research in cybernetics proper had begun to wane (Conway 

& Siegelman, 2005); at this time cybernetics began to evolve into the modern field of 

cognitive science (Boden, 2006; Gardner, 1984; Miller, 2003). Inspired by advances 

in digital computers, cognitive science was not interested in generic “machines” as 

such, but instead focused upon particular devices that could be described as infor-

mation processors or symbol manipulators.

Given this interest in symbol manipulation, one goal of cognitive science is to 

describe a device of interest in terms of the specific information processing problem 

that it is solving. Such a description is the result of performing an analysis at the 

computational level (Dawson, 1998; Marr, 1982; Pylyshyn, 1984).

A computational analysis is strongly related to the formal investigations 

carried out by a cyberneticist. At the computational level of analysis, cognitive 

scientists use formal methods to prove what information processing problems a 

system can—and cannot—solve. The formal nature of computational analyses lend 

them particular authority: “The power of this type of analysis resides in the fact 

that the discovery of valid, sufficiently universal constraints leads to conclusions 

. . . that have the same permanence as conclusions in other branches of science” 

(Marr, 1982, p. 331).

However, computational accounts do not capture all aspects of information 

processing. A proof that a device is solving a particular information processing 

problem is only a proof concerning the device’s input-output mapping. It does not 

say what algorithm is being used to compute the mapping or what physical aspects 

of the device are responsible for bringing the algorithm to life. These missing details 

must be supplied by using very different methods and vocabularies.

2.8 Behaviour by Design and by Artifact

What vocabulary is best suited to answer questions about the how a particular input-

output mapping is calculated? To explore this question, let us consider an example 

calculating device, a Turing machine (Turing, 1936). This calculator processes symbols 

that are written on a ticker-tape memory divided into cells, where each cell can hold a 

single symbol. To use a Turing machine to add (Weizenbaum, 1976), a user would write 

a question on the tape, that is, the two numbers to be added together. They would be 

written in the format that could be understood by the machine. The Turing machine 

would answer the input question by reading and rewriting the tape. Eventually, it 

would write the sum of the two numbers on the tape—its answer—and then halt.
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How does a Turing machine generate answers to the written questions? A 

Turing machine consists of a machine head whose actions are governed by a set 

of instructions called the machine table. The machine head will also be in one of 

a set of possible physical configurations called machine states. The machine head 

reads a symbol on the tape. This symbol, in combination with the current machine 

state, determines which machine table instruction to execute next. An instruction 

might tell the machine head to write a symbol, or to move one cell to the left or 

the right along the tickertape. The instruction will also change the machine head’s 

machine state.

A Turing machine does not answer questions instantly. Instead, it takes its 

time, moving back and forth along the tape, reading and writing symbols as it 

works. A long sequence of actions might be observed and recorded, such as “First 

the machine head moves four cells to the right. Then it stops, and replaces the 1 on 

the tape with a 0. Then it moves three cells to the left.”

The record of the observed Turing machine behaviours would tell us a great 

deal about its design. Descriptions such as “When given Question A, the machine 

generated Answer X” would provide information about the input-output mapping 

that the Turing machine was designed to achieve. If we were also able to watch 

changes in machine states, more detailed observations would be possible, such as 

“If the machine head is in State 1 and reads a ‘1’ on the tape, then it moves one cell 

left and adopts State 6.” Such observations would provide information about the 

machine table that was designed for this particular device’s machine head.

Not all Turing machine behaviours occur by design; some behaviours are arti-

facts. Artifacts occur because of the device’s design but are not explicitly part of the 

design (Pylyshyn, 1980, 1984). They are unintentional consequences of the designed 

procedure.

For instance, the Turing machine takes time to add two numbers together; 

the time taken will vary from question to question. The amount of time taken to 

answer a question is a consequence of the machine table, but is not intentionally 

designed into it. The time taken is an artifact because Turing machines are designed 

to answer questions (e.g., “What is the sum of these two integers?”); they are not 

explicitly designed to answer questions in a particular amount of time.

Similarly, as the Turing machine works, the ticker tape adopts various interme-

diate states. That is, during processing the ticker tape will contain symbols that are 

neither the original question nor its eventual answer. Answering a particular ques-

tion will produce a sequence of intermediate tape states; the sequence produced 

will also vary from question to question. Again, the sequence of symbol states is an 

artifact. The Turing machine is not designed to produce a particular sequence of 

intermediate states; it is simply designed to answer a particular question.
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One might think that artifacts are not important because they are not explicit 

consequences of a design. However, in many cases artifacts are crucial sources of 

information that help us reverse engineer an information processor that is a “black 

box” because its internal mechanisms are hidden from view.

2.9 Algorithms from Artifacts

Neuroscientist Valentino Braitenberg imagined a world comprising domains of 

both water and land (Braitenberg, 1984). In either of these domains one would find 

a variety of agents who sense properties of their world, and who use this informa-

tion to guide their movements through it. Braitenberg called these agents “vehicles.” 

In Braitenberg’s world of vehicles, scientists encounter these agents and attempt to 

explain the internal mechanisms that are responsible for their diverse movements. 

Many of these scientists adopt what Braitenberg called an analytic perspective: they 

infer internal mechanisms by observing how external behaviours are altered as a 

function of specific changes in a vehicle’s environment. What Braitenberg called 

analysis is also called reverse engineering.

We saw earlier that a Turing machine generates observable behaviour as it cal-

culates the answer to a question. A description of a Turing machine’s behaviours—

be they by design or by artifact—would provide the sequence of operations that 

were performed to convert an input question into an output answer. Any sequence 

of steps which, when carried out, accomplishes a desired result is called an algo-

rithm (Berlinski, 2000). The goal, then, of reverse engineering a Turing machine or 

any other calculating device would be to determine the algorithm it was using to 

transform its input into a desired output.

Calculating devices exhibit two properties that make their reverse engineering 

difficult. First, they are often what are called black boxes. This means that we can 

observe external behaviour, but we are unable to directly observe internal proper-

ties. For instance, if a Turing machine was a black box, then we could observe its 

movements along, and changing of symbols on, the tape, but we could not observe 

the machine state of the machine head.

Second, and particularly if we are faced with a black box, another property that 

makes reverse engineering challenging is that there is a many-to-one relationship 

between algorithm and mapping. This means that, in practice, a single input-out-

put mapping can be established by one of several different algorithms. For example, 

there are so many different methods for sorting a set of items that hundreds of 

pages are required to describe the available algorithms (Knuth, 1997). In principle, 

an infinite number of different algorithms exist for computing a single input-output 

mapping of interest (Johnson-Laird, 1983).
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The problem with reverse engineering a black box is this: if there are potentially 

many different algorithms that can produce the same input-output mapping, then 

mere observations of input-output behaviour will not by themselves indicate which 

particular algorithm is used in the device’s design. However, reverse engineering a 

black box is not impossible. In addition to the behaviours that it was designed to 

produce, the black box will also produce artifacts. Artifacts can provide great deal 

of information about internal and unobservable algorithms.

Imagine that we are faced with reverse engineering an arithmetic calcula-

tor that is also a black box. Some of the artifacts of this calculator provide relative 

complexity evidence (Pylyshyn, 1984). To collect such evidence, one could conduct 

an experiment in which the problems presented to the calculator were systemati-

cally varied (e.g., by using different numbers) and measurements were made of the 

amount of time taken for the correct answer to be produced. To analyze this relative 

complexity evidence, one would explore the relationship between characteristics of 

problems and the time required to solve them.

For instance, suppose that one observed a linear increase in the time taken to 

solve the problems 9 × 1, 9 × 2, 9 × 3, et cetera. This could indicate that the device 

was performing multiplication by doing repeated addition (9, 9 + 9, 9 + 9 + 9, and so 

on) and that every “+ 9” operation required an additional constant amount of time 

to be carried out. Psychologists have used relative complexity evidence to investigate 

cognitive algorithms since Franciscus Donders invented his subtractive method in 

1869 (Posner, 1978).

Artifacts can also provide intermediate state evidence (Pylyshyn, 1984). 

Intermediate state evidence is based upon the assumption that an input-output 

mapping is not computed directly, but instead requires a number of different stages 

of processing, with each stage representing an intermediate result in a different way. 

To collect intermediate state evidence, one attempts to determine the number and 

nature of these intermediate results.

For some calculating devices, intermediate state evidence can easily be col-

lected. For instance, the intermediate states of the Turing machine›s tape, the 

abacus’ beads or the difference engine’s gears are in full view. For other devices, 

though, the intermediate states are hidden from direct observation. In this case, 

clever techniques must be developed to measure internal states as the device is 

presented with different inputs. One might measure changes in electrical activity 

in different components of an electronic calculator as it worked, in an attempt to 

acquire intermediate state evidence.

Artifacts also provide error evidence (Pylyshyn, 1984), which may also help to 

explore intermediate states. When extra demands are placed on a system’s resources, 

it may not function as designed, and its internal workings are likely to become more 

evident (Simon, 1969). This is not just because the overtaxed system makes errors 
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in general, but because these errors are often systematic, and their systematicity 

reflects the underlying algorithm.

Because we rely upon their accuracy, we would hope that error evidence would 

be difficult to collect for most calculating devices. However, error evidence should 

be easily available for calculators that might be of particular interest to us: humans 

doing mental arithmetic. We might find, for instance, that overtaxed human cal-

culators make mistakes by forgetting to carry values from one column of numbers 

to the next. This would provide evidence that mental arithmetic involved repre-

senting numbers in columnar form, and performing operations column by column 

(Newell & Simon, 1972). Very different kinds of errors would be expected if a dif-

ferent approach was taken to perform mental arithmetic, such as imagining and 

manipulating a mental abacus (Hatano, Miyake, & Binks, 1977).

In summary, discovering and describing what algorithm is being used to cal-

culate an input-output mapping involves the systematic examination of behaviour. 

That is, one makes and interprets measurements that provide relative complexity 

evidence, intermediate state evidence, and error evidence. Furthermore, the algo-

rithm that will be inferred from such measurements is in essence a sequence of 

actions or behaviours that will produce a desired result.

The discovery and description of an algorithm thus involves empirical methods 

and vocabularies, rather than the formal ones used to account for input-output reg-

ularities. Just as it would seem likely that input-output mappings would be the topic 

of interest for formal researchers such as cyberneticists, logicians, or mathemati-

cians, algorithmic accounts would be the topic of interest for empirical researchers 

such as experimental psychologists.

The fact that computational accounts and algorithmic accounts are presented in 

different vocabularies suggests that they describe very different properties of a device. 

From our discussion of black boxes, it should be clear that a computational account 

does not provide algorithmic details: knowing what input-output mapping is being 

computed is quite different from knowing how it is being computed. In a similar vein, 

algorithmic accounts are silent with respect to the computation being carried out.

For instance, in Understanding Cognitive Science, Dawson (1998) provides an 

example machine table for a Turing machine that adds pairs of integers. Dawson 

also provides examples of questions to this device (e.g., strings of blanks, 0s, and 

1s) as well as the answers that it generates. Readers of Understanding Cognitive 

Science can pretend to be the machine head by following the instructions of the 

machine table, using pencil and paper to manipulate a simulated ticker tape. In 

this fashion they can easily convert the initial question into the final answer—they 

fully understand the algorithm. However, they are unable to say what the algorithm 

accomplishes until they read further in the book.
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2.10 Architectures against Homunculi

We have described an algorithm for calculating an input-output mapping as a 

sequence of operations or behaviours. This description is misleading, though, 

because the notion of sequence gives the impression of a linear ordering of steps. 

However, we would not expect most algorithms to be linearly organized. For instance, 

connectionist cognitive scientists would argue that more than one step in an algo-

rithm can be carried out at the same time (Feldman & Ballard, 1982). As well, most 

algorithms of interest to classical cognitive scientists would likely exhibit a mark-

edly hierarchical organization (Miller, Galanter, & Pribram, 1960; Simon, 1969). In 

this section, I use the notion of hierarchical organization to motivate the need for an 

algorithm to be supported by an architecture.

What does it mean for an algorithm to be hierarchical in nature? To answer 

this question, let us again consider the situation in which behavioural measure-

ments are being used to reverse engineer a calculating black box. Initial experi-

ments could suggest that an input-output mapping is accomplished by an algo-

rithm that involves three steps (Step 1 → Step 2 → Step 3). However, later studies 

could also indicate that each of these steps might themselves be accomplished by 

sub-algorithms.

For instance, it might be found that Step 1 is accomplished by its own four-

step sub-algorithm (Step a → Step b → Step c → Step d). Even later it could be 

discovered that one of these sub-algorithms is itself the product of another sub-sub-

algorithm. Such hierarchical organization is common practice in the development 

of algorithms for digital computers, where most programs are organized systems of 

functions, subfunctions, and sub-subfunctions. It is also a common characteristic of 

cognitive theories (Cummins, 1983).

The hierarchical organization of algorithms can pose a problem, though, if an 

algorithmic account is designed to explain a calculating device. Consider our exam-

ple where Step 1 of the black box’s algorithm is explained by being hierarchically 

decomposed into the sub-algorithm “Step a → Step b → Step c → Step d.” On closer 

examination, it seems that nothing has really been explained at all. Instead, we have 

replaced Step 1 with a sequence of four new steps, each of which requires further 

explanation. If each of these further explanations is of the same type as the one to 

account for Step 1, then this will in turn produce even more steps requiring explana-

tion. There seems to be no end to this infinite proliferation of algorithmic steps that 

are appearing in our account of the calculating device.

This situation is known as Ryle’s regress. The philosopher Gilbert Ryle raised it 

as a problem with the use of mentalistic terms in explanations of intelligence: 

Must we then say that for the hero’s reflections how to act to be intelligent he must 

first reflect how best to reflect to act? The endlessness of this implied regress shows 
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that the application of the criterion of appropriateness does not entail the occur-

rence of a process of considering this criterion. (Ryle, 1949, p. 31)

Ryle’s regress occurs when we explain outer intelligence by appealing to inner 

intelligence.

Ryle’s regress is also known as the homunculus problem, where a homunculus 

is an intelligent inner agent. The homunculus problem arises when one explains 

outer intelligence by appealing to what is in essence an inner homunculus. For 

instance, Fodor noted the obvious problems with a homuncular explanation of how 

one ties their shoes: 

And indeed there would be something wrong with an explanation that said, ‘This 

is the way we tie our shoes: we notify a little man in our head who does it for 

us.’ This account invites the question: ‘How does the little man do it?’ but, ex 

hypothesis, provides no conceptual mechanisms for answering such questions. 

(Fodor, 1968a, p. 628) 

Indeed, if one proceeds to answer the invited question by appealing to another 

homunculus within the “little man,” then the result is an infinite proliferation of 

homunculi.

To solve Ryle’s regress an algorithm must be analyzed into steps that do not 

require further decomposition in order to be explained. This means when some 

function is decomposed into a set of subfunctions, it is critical that each of the sub-

functions be simpler than the overall function that they work together to produce 

(Cummins, 1983; Dennett, 1978; Fodor, 1968a). Dennett (1978, p. 123) noted that 

“homunculi are bogeymen only if they duplicate entire the talents they are rung in 

to explain.” Similarly, Fodor (1968a, p. 629) pointed out that “we refine a psychologi-

cal theory by replacing global little men by less global little men, each of whom has 

fewer unanalyzed behaviors to perform than did his predecessors.”

If the functions produced in a first pass of analysis require further decomposi-

tion in order to be themselves explained, then the subfunctions that are produced 

must again be even simpler. At some point, the functions become so simple—the 

homunculi become so stupid—that they can be replaced by machines. This is 

because at this level all they do is answer “yes” or “no” to some straightforward ques-

tion. “One discharges fancy homunculi from one’s scheme by organizing armies of 

such idiots to do the work” (Dennett, 1978, p. 124).

The set of subfunctions that exist at this final level of decomposition belongs 

to what computer scientists call the device’s architecture (Blaauw & Brooks, 1997; 

Brooks, 1962; Dasgupta, 1989). The architecture defines what basic abilities are built 

into the device. For a calculating device, the architecture would specify three differ-

ent types of components: the basic operations of the device, the objects to which these 

operations are applied, and the control scheme that decides which operation to carry 



48  Chapter 2

out at any given time (Newell, 1980; Simon, 1969). To detail the architecture is to 

specify “what operations are primitive, how memory is organized and accessed, what 

sequences are allowed, what limitations exist on the passing of arguments and on the 

capacities of various buffers, and so on” (Pylyshyn, 1984, p. 92).

What is the relationship between an algorithm and its architecture? In general, 

the architecture provides the programming language in which an algorithm is writ-

ten. “Specifying the functional architecture of a system is like providing a manual 

that defines some programming language. Indeed, defining a programming lan-

guage is equivalent to specifying the functional architecture of a virtual machine” 

(Pylyshyn, 1984, p. 92).

This means that algorithms and architectures share many properties. Foremost 

of these is that they are both described as operations, behaviours, or functions, 

and not in terms of physical makeup. An algorithm is a set of functions that work 

together to accomplish a task; an architectural component is one of the simplest 

functions—a primitive operation—from which algorithms are composed. In order 

to escape Ryle’s regress, one does not have to replace an architectural function with 

its physical account. Instead, one simply has to be sure that such a replacement is 

available if one wanted to explain how the architectural component works. It is no 

accident that Pylyshyn (1984) uses the phrase functional architecture in the quote 

given above.

Why do we insist that the architecture is functional? Why don’t we appeal 

directly to the physical mechanisms that bring an architecture into being? Both of 

these questions are answered by recognizing that multiple physical realizations are 

possible for any functional architecture. For instance, simple logic gates are clearly 

the functional architecture of modern computers. But we saw earlier that func-

tionally equivalent versions of these gates could be built out of wires and switches, 

vacuum tubes, semiconductors, or hydraulic valves.

To exit Ryle’s regress, we have to discharge an algorithm’s homunculi. We can 

do this by identifying the algorithm’s programming language—by saying what its 

architecture is. Importantly, this does not require us to say how, or from what physi-

cal stuff, the architecture is made! “Whether you build a computer out of transis-

tors, hydraulic valves, or a chemistry set, the principles on which it operates are 

much the same” (Hillis, 1998, p. 10).

2.11 Implementing Architectures

At the computational level, one uses a formal vocabulary to provide a rigorous 

description of input-output mappings. At the algorithmic level, a procedural or 

behavioural vocabulary is employed to describe the algorithm being used to calcu-

late a particular input-output mapping. The functional architecture plays a special 
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role at the algorithmic level, for it provides the primitive operations from which 

algorithms are created. Thus we would expect that the behavioural vocabulary used 

for algorithms to also be applied to the architecture.

The special nature of the architecture means that additional behavioural 

descriptions are required. A researcher must also collect behavioural evidence to 

support his or her claim that some algorithmic component is in fact an architec-

tural primitive. One example of this, which appears when the ideas that we have 

been developing in this chapter are applied to the science of human cognition, is 

to conduct behavioural experiments to determine whether a function is cognitively 

impenetrable (Pylyshyn, 1984; Wright & Dawson, 1994). We return to this kind of 

evidence in Chapter 3.

Of course, the fundamental difference between algorithm and architecture is 

that only the latter can be described in terms of physical properties. Algorithms 

are explained in terms of the architectural components in which they are written. 

Architectural components are explained by describing how they are implemented 

by some physical device. At the implementational level a researcher uses a physical 

vocabulary to explain how architectural primitives are brought to life.

An implementational account of the logic gates illustrated in Figure 2-1 would 

explain their function by appealing to the ability of metal wires to conduct electric-

ity, to the nature of electric circuits, and to the impedance of the flow of electricity 

through these circuits when switches are open (Shannon, 1938). An implementa-

tional account of how a vacuum tube creates a relay of the sort illustrated in Figure 

2-2 would appeal to what is known as the Edison effect, in which electricity can 

mysteriously flow through a vacuum and the direction of this flow can be easily 

and quickly manipulated to manipulate the gate between the source and the drain 

(Josephson, 1961; Reid, 2001).

That the architecture has dual lives, both physical and algorithmic (Haugeland, 

1985), leads to important philosophical issues. In the philosophy of science there 

is a great deal of interest in determining whether a theory phrased in one vocab-

ulary (e.g., chemistry) can be reduced to another theory laid out in a different 

vocabulary (e.g., physics). One approach to reduction is called the “new wave” 

(Churchland, 1985; Hooker, 1981). In a new wave reduction, the translation of 

one theory into another is accomplished by creating a third, intermediate theory 

that serves as a bridge between the two. The functional architecture is a bridge 

between the algorithmic and the implementational. If one firmly believed that a 

computational or algorithmic account could be reduced to an implementational 

one (Churchland, 1988), then a plausible approach to doing so would be to use the 

bridging properties of the architecture.

The dual nature of the architecture plays a role in another philosophical dis-

cussion, the famous “Chinese room argument” (Searle, 1980). In this thought 
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experiment, people write questions in Chinese symbols and pass them through a 

slot into a room. Later, answers to these questions, again written in Chinese sym-

bols, are passed back to the questioner. The philosophical import of the Chinese 

room arises when one looks into the room to see how it works.

Inside the Chinese room is a native English speaker—Searle himself—who 

knows no Chinese, and for whom Chinese writing is a set of meaningless squig-

gles. The room contains boxes of Chinese symbols, as well as a manual for how 

to put these together in strings. The English speaker is capable of following these 

instructions, which are the room’s algorithm. When a set of symbols is passed into 

the room, the person inside can use the instructions and put together a new set of 

symbols to pass back outside. This is the case even though the person inside the 

room does not understand what the symbols mean, and does not even know that the 

inputs are questions and the outputs are answers. Searle (1980) uses this example to 

challengingly ask where in this room is the knowledge of Chinese? He argues that it 

is not to be found, and then uses this point to argue against strong claims about the 

possibility of machine intelligence.

But should we expect to see such knowledge if we were to open the door to the 

Chinese room and peer inside? Given our current discussion of the architecture, it 

would perhaps be unlikely to answer this question affirmatively. This is because if 

we could look inside the “room” of a calculating device to see how it works—to see 

how its physical properties bring its calculating abilities to life—we would not see 

the input-output mapping, nor would we see a particular algorithm in its entirety. 

At best, we would see the architecture and how it is physically realized in the calcu-

lator. The architecture of a calculator (e.g., the machine table of a Turing machine) 

would look as much like the knowledge of arithmetic calculations as Searle and 

the instruction manual would look like knowledge of Chinese. However, we would 

have no problem recognizing the possibility that the architecture is responsible for 

producing calculating behaviour! 

Because the architecture is simply the primitives from which algorithms are 

constructed, it is responsible for algorithmic behaviour—but doesn’t easily reveal 

this responsibility on inspection. That the holistic behaviour of a device would not 

be easily seen in the actions of its parts was recognized in Leibniz’ mill, an early 

eighteenth-century ancestor to the Chinese room.

In his Monadology, Gottfried Leibniz wrote: 

Supposing there were a machine whose structure produced thought, sensation, 

and perception, we could conceive of it as increased in size with the same propor-

tions until one was able to enter into its interior, as he would into a mill. Now, on 

going into it he would find only pieces working upon one another, but never would 

he find anything to explain Perception. It is accordingly in the simple substance, 



 Multiple Levels of Investigation  51

and not in the composite nor in a machine that the Perception is to be sought. 

(Leibniz, 1902, p. 254)

Leibniz called these simple substances monads and argued that all complex experi-

ences were combinations of monads. Leibniz’ monads are clearly an antecedent of 

the architectural primitives that we have been discussing over the last few pages. 

Just as thoughts are composites in the sense that they can be built from their com-

ponent monads, an algorithm is a combination or sequence of primitive processing 

steps. Just as monads cannot be further decomposed, the components of an archi-

tecture are not explained by being further decomposition, but are instead explained 

by directly appealing to physical causes. Just as the Leibniz mill’s monads would 

look like working pieces, and not like the product they created, the architecture 

produces, but does not resemble, complete algorithms.

The Chinese room would be a more compelling argument against the possibility 

of machine intelligence if one were to look inside it and actually see its knowledge. 

This would mean that its homunculi were not discharged, and that intelligence was 

not the product of basic computational processes that could be implemented as 

physical devices.

2.12 Levelling the Field

The logic machines that arose late in the nineteenth century, and the twentieth-cen-

tury general-purpose computers that they evolved into, are examples of informa-

tion processing devices. It has been argued in this chapter that in order to explain 

such devices, four different vocabularies must be employed, each of which is used 

to answer a different kind of question. At the computational level, we ask what 

information processing problem is being solved by the device. At the algorithmic 

level, we ask what procedure or program is being used to solve this problem. At the 

architectural level, we ask from what primitive information capabilities is the algo-

rithm composed. At the implementational level, we ask what physical properties are 

responsible for instantiating the components of the architecture.

As we progress from the computational question through questions about 

algorithm, architecture, and implementation we are moving in a direction that 

takes us from the very abstract to the more concrete. From this perspective each of 

these questions defines a different level of analysis, where the notion of level is to 

be taken as “level of abstractness.” The main theme of this chapter, then, is that to 

fully explain an information processing device one must explain it at four different 

levels of analysis.

The theme that I’ve developed in this chapter is an elaboration of an approach 

with a long history in cognitive science that has been championed in particular 

by Pylyshyn (1984) and Marr (1982). This historical approach, called the tri-level 
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hypothesis (Dawson, 1998), is used to explain information devices by performing 

analyses at three different levels: computational, algorithmic, and implementa-

tional. The approach that has been developed in this chapter agrees with this view, 

but adds to it an additional level of analysis: the architectural. We will see through-

out this book that an information processing architecture has properties that sepa-

rate it from both algorithm and implementation, and that treating it as an inde-

pendent level is advantageous.

The view that information processing devices must be explained by multiple 

levels of analysis has important consequences for cognitive science, because the 

general view in cognitive science is that cognition is also the result of information 

processing. This implies that a full explanation of human or animal cognition also 

requires multiple levels of analysis.

Not surprisingly, it is easy to find evidence of all levels of investigation being 

explored as cognitive scientists probe a variety of phenomena. For example, consider 

how classical cognitive scientists explore the general phenomenon of human memory.

At the computational level, researchers interested in the formal charac-

terization of cognitive processes (such as those who study cognitive informatics 

[Wang, 2003, 2007]), provide abstract descriptions of what it means to memorize, 

including attempts to mathematically characterize the capacity of human memory 

(Lopez, Nunez, & Pelayo, 2007; Wang, 2009; Wang, Liu, & Wang, 2003).

At the algorithmic level of investigation, the performance of human subjects in 

a wide variety of memory experiments has been used to reverse engineer “memory” 

into an organized system of more specialized functions (Baddeley, 1990) including 

working memory (Baddeley, 1986, 2003), declarative and nondeclarative memory 

(Squire, 1992), semantic and episodic memory (Tulving, 1983), and verbal and 

imagery stores (Paivio, 1971, 1986). For instance, the behaviour of the serial position 

curve obtained in free recall experiments under different experimental conditions 

was used to pioneer cognitive psychology’s proposal of the modal memory model, 

in which memory was divided into a limited-capacity, short-term store and a much 

larger-capacity, long-term store (Waugh & Norman, 1965). The algorithmic level is 

also the focus of the art of memory (Yates, 1966), in which individuals are taught 

mnemonic techniques to improve their ability to remember (Lorayne, 1998, 2007; 

Lorayne & Lucas, 1974).

That memory can be reverse engineered into an organized system of sub-

functions leads cognitive scientists to determine the architecture of memory. For 

instance, what kinds of encodings are used in each memory system, and what 

primitive processes are used to manipulate stored information? Richard Conrad’s 

(1964a, 1964b) famous studies of confusion in short-term memory indicated that 

it represented information using an acoustic code. One of the most controversial 

topics in classical cognitive science, the “imagery debate,” concerns whether the 
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primitive form of spatial information is imagery, or whether images are constructed 

from more primitive propositional codes (Anderson, 1978; Block, 1981; Kosslyn, 

Thompson, & Ganis, 2006; Pylyshyn, 1973, 1981a, 2003b).

Even though classical cognitive science is functionalist in nature and (in the 

eyes of its critics) shies away from biology, it also appeals to implementational 

evidence in its study of memory. The memory deficits revealed in patient Henry 

Molaison after his hippocampus was surgically removed to treat his epilepsy 

(Scoville & Milner, 1957) provided pioneering biological support for the functional 

separations of short-term from long-term memory and of declarative memory 

from nondeclarative memory. Modern advances in cognitive neuroscience have 

provided firm biological foundations for elaborate functional decompositions of 

memory (Cabeza & Nyberg, 2000; Poldrack et al., 2001; Squire, 1987, 2004). Similar 

evidence has been brought to bear on the imagery debate as well (Kosslyn, 1994; 

Kosslyn et al., 1995; Kosslyn et al., 1999; Kosslyn, Thompson, & Alpert, 1997).

In the paragraphs above I have taken one tradition in cognitive science (the 

classical) and shown that its study of one phenomenon (human memory) reflects 

the use of all of the levels of investigation that have been the topic of the cur-

rent chapter. However, the position that cognitive explanations require multiple 

levels of analysis (e.g., Marr, 1982) has not gone unchallenged. Some researchers 

have suggested that this process is not completely appropriate for explaining cog-

nition or intelligence in biological agents (Churchland, Koch, & Sejnowski 1990; 

Churchland & Sejnowski, 1992).

For instance, Churchland, Koch, & Sejnowski (1990, p. 52) observed that “when 

we measure Marr’s three levels of analysis against levels of organization in the nerv-

ous system, the fit is poor and confusing.” This observation is based on the fact that 

there appear to be a great many different spatial levels of organization in the brain, 

which suggests to Churchland, Koch, & Sejnowski that there must be many differ-

ent implementational levels, which implies in turn that there must be many differ-

ent algorithmic levels.

The problem with this argument is that it confuses ontology with epistemology. 

That is, Churchland, Koch, & Sejnowski (1990) seemed to be arguing that Marr’s 

levels are accounts of the way nature is—that information processing devices are 

literally organized into the three different levels. Thus when a system appears to 

exhibit, say, multiple levels of physical organization, this brings Marr-as-ontology 

into question. However, Marr’s levels do not attempt to explain the nature of 

devices, but instead provide an epistemology—a way to inquire about the nature 

of the world. From this perspective, a system that has multiple levels of physical 

organization would not challenge Marr, because Marr and his followers would be 

comfortable applying their approach to the system at each of its levels of physical 

organization.
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Other developments in cognitive science provide deeper challenges to the mul-

tiple-levels approach. As has been outlined in this chapter, the notion of multiple 

levels of explanation in cognitive science is directly linked to two key ideas: 1) that 

information processing devices invite and require this type of explanation, and 2) 

that cognition is a prototypical example of information processing. Recent develop-

ments in cognitive science represent challenges to these key ideas. For instance, 

embodied cognitive science takes the position that cognition is not information pro-

cessing of the sort that involves the rule-governed manipulation of mentally rep-

resented worlds; it is instead the control of action on the world (Chemero, 2009; 

Clark, 1997, 1999; Noë, 2004, 2009; Robbins & Aydede, 2009). Does the multiple-

levels approach apply if the role of cognition is radically reconstrued?

Churchland, Koch, & Sejnowski. (1990, p. 52) suggested that “[‘]which really 

are the levels relevant to explanation in the nervous system[’] is an empirical, not 

an a priori, question.” One of the themes of the current book is to take this sug-

gestion to heart by seeing how well the same multiple levels of investigation can 

be applied to the three major perspectives in modern cognitive science: classical, 

connectionist, and embodied. In the next three chapters, I begin this pursuit by 

using the multiple levels introduced in Chapter 2 to investigate the nature of classi-

cal cognitive science (Chapter 3), connectionist cognitive science (Chapter 4), and 

embodied cognitive science (Chapter 5). Can the multiple levels of investigation be 

used to reveal principles that unify these three different and frequently mutually 

antagonistic approaches? Or is modern cognitive science beginning to fracture in a 

fashion similar to what has been observed in experimental psychology?
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Elements of Classical Cognitive Science

3.0 Chapter Overview

When cognitive science arose in the late 1950s, it did so in the form of what is now 

known as the classical approach. Inspired by the nature of the digital electronic 

computer, classical cognitive science adopted the core assumption that cognition 

was computation. The purpose of the current chapter is to explore the key ideas of 

classical cognitive science that provide the core elements of this assumption.

The chapter begins by showing that the philosophical roots of classical cog-

nitive science are found in the rationalist perspective of Descartes. While classi-

cal cognitive scientists agree with the Cartesian view of the infinite variety of lan-

guage, they do not use this property to endorse dualism. Instead, taking advantage 

of modern formal accounts of information processing, they adopt models that use 

recursive rules to manipulate the components of symbolic expressions. As a result, 

finite devices—physical symbol systems—permit an infinite behavioural potential. 

Some of the key properties of physical symbol systems are reviewed.

One consequence of viewing the brain as a physical substrate that brings a 

universal machine into being is that this means that cognition can be simulated 

by other universal machines, such as digital computers. As a result, the computer 

simulation of human cognition becomes a critical methodology of the classical 

approach. One issue that arises is validating such simulations. The notions of weak 

3
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and strong equivalence are reviewed, with the latter serving as the primary goal of 

classical cognitive science.

To say that two systems—such as a simulation and a human subject—are 

strongly equivalent is to say that both are solving the same information processing 

problem, using the same algorithm, based on the same architecture. Establishing 

strong equivalence requires collecting behavioural evidence of the types introduced 

in Chapter 2 (relative complexity, intermediate state, and error evidence) to reverse 

engineer a subject’s algorithm. It also requires discovering the components of a 

subject’s architecture, which involves behavioural evidence concerning cognitive 

impenetrability as well as biological evidence about information processing in the 

brain (e.g., evidence about which areas of the brain might be viewed as being infor-

mation processing modules). In general, the search for strong equivalence by classi-

cal cognitive scientists involves conducting a challenging research program that can 

be described as functional analysis or reverse engineering.

The reverse engineering in which classical cognitive scientists are engaged 

involves using a variety of research methods adopted from many different disci-

plines. This is because this research strategy explores cognition at all four levels 

of investigation (computational, algorithmic, architectural, and implementational) 

that were introduced in Chapter 2. The current chapter is organized in a fashion 

that explores computational issues first, and then proceeds through the remaining 

levels to end with some considerations about implementational issues of impor-

tance to classical cognitive science.

3.1 Mind, Disembodied

In the seventh century, nearly the entire Hellenistic world had been conquered 

by Islam. The Greek texts of philosophers such as Plato and Aristotle had already 

been translated into Syriac; the new conquerors translated these texts into Arabic 

(Kuhn, 1957). Within two centuries, these texts were widely available in educational 

institutions that ranged from Baghdad to Cordoba and Toledo. By the tenth cen-

tury, Latin translations of these Arabic texts had made their way to Europe. Islamic 

civilization “preserved and proliferated records of ancient Greek science for later 

European scholars” (Kuhn, 1957, p. 102).

The availability of the ancient Greek texts gave rise to scholasticism in Europe 

during the middle ages. Scholasticism was central to the European universities that 

arose in the twelfth century, and worked to integrate key ideas of Greek philoso-

phy into the theology of the Church. During the thirteenth century, scholasticism 

achieved its zenith with the analysis of Aristotle’s philosophy by Albertus Magnus 

and Thomas Aquinas.



 Elements of Classical Cognitive Science  57

Scholasticism, as a system of education, taught its students the wisdom of the 

ancients. The scientific revolution that took flight in the sixteenth and seventeenth 

centuries arose in reaction to this pedagogical tradition. The discoveries of such 

luminaries as Newton and Leibniz were only possible when the ancient wisdom was 

directly questioned and challenged.

The seventeenth-century philosophy of René Descartes (1996, 2006) provided 

another example of fundamental insights that arose from a reaction against scho-

lasticism. Descartes’ goal was to establish a set of incontestable truths from which a 

rigorous philosophy could be constructed, much as mathematicians used methods 

of deduction to derive complete geometries from a set of foundational axioms. “The 

only order which I could follow was that normally employed by geometers, namely 

to set out all the premises on which a desired proposition depends, before drawing 

any conclusions about it” (Descartes, 1996, p. 9).

Descartes began his search for truth by applying his own, new method of 

inquiry. This method employed extreme skepticism: any idea that could possibly be 

doubted was excluded, including the teachings of the ancients as endorsed by scho-

lasticism. Descartes, more radically, also questioned ideas supplied by the senses 

because “from time to time I have found that the senses deceive, and it is prudent 

never to trust completely those who have deceived us even once” (Descartes, 1996, 

p. 12). Clearly this approach brought a vast number of concepts into question, and 

removed them as possible foundations of knowledge.

What ideas were removed? All notions of the external world could be false, 

because knowledge of them is provided by unreliable senses. Also brought into 

question is the existence of one’s physical body, for the same reason. “I shall con-

sider myself as not having hands or eyes, or flesh, or blood or senses, but as falsely 

believing that I have all these things” (Descartes, 1996, p. 15).

Descartes initially thought that basic, self-evident truths from mathematics 

could be spared, facts such as 2 + 3 = 5. But he then realized that these facts too 

could be reasonably doubted.

How do I know that God has not brought it about that I too go wrong every time I 

add two and three or count the sides of a square, or in some even simpler matter, if 

that is imaginable? (Descartes, 1996, p. 14)

With the exclusion of the external world, the body, and formal claims from math-

ematics, what was left for Descartes to believe in? He realized that in order to doubt, 

or even to be deceived by a malicious god, he must exist as a thinking thing. “I must 

finally conclude that this proposition, I am, I exist, is necessarily true whenever it 

is put forward by me or conceived in my mind” (Descartes, 1996, p. 17). And what 

is a thinking thing? “A thing that doubts, understands, affirms, denies, is willing, is 

unwilling, and also imagines and has sensory perceptions” (p. 19).
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After establishing his own existence as incontestably true, Descartes used this 

fact to prove the existence of a perfect God who would not deceive. He then estab-

lished the existence of an external world that was imperfectly sensed.

However, a fundamental consequence of Descartes’ analysis was a profound 

division between mind and body. First, Descartes reasoned that mind and body 

must be composed of different “stuff.” This had to be the case, because one could 

imagine that the body was divisible (e.g., through losing a limb) but that the mind 

was impossible to divide.

Indeed the idea I have of the human mind, in so far as it is a thinking thing, which 

is not extended in length, breadth or height and has no other bodily characteristics, 

is much more distinct than the idea of any corporeal thing. (Descartes, 1996, p. 37)

Further to this, the mind was literally disembodied—the existence of the mind did 

not depend upon the existence of the body.

Accordingly this ‘I,’ that is to say, the Soul by which I am what I am, is entirely 

distinct from the body and is even easier to know than the body; and would not stop 

being everything it is, even if the body were not to exist. (Descartes, 2006, p. 29)

Though Descartes’ notion of mind was disembodied, he acknowledged that 

mind and body had to be linked in some way. The interaction between mind and 

brain was famously housed in the pineal gland: “The mind is not immediately 

affected by all parts of the body, but only by the brain, or perhaps just by one small 

part of the brain, namely the part which is said to contain the ‘common’ sense” 

(Descartes, 1996, p. 59). What was the purpose of this type of interaction? Descartes 

noted that the powers of the mind could be used to make decisions beneficial to the 

body, to which the mind is linked: “For the proper purpose of the sensory percep-

tions given me by nature is simply to inform the mind of what is beneficial or harm-

ful for the composite of which the mind is a part” (p. 57).

For Descartes the mind, as a thinking thing, could apply various rational oper-

ations to the information provided by the imperfect senses: sensory information 

could be doubted, understood, affirmed, or denied; it could also be elaborated via 

imagination. In short, these operations could not only inform the mind of what 

would benefit or harm the mind-body composite, but could also be used to plan a 

course of action to obtain the benefits or avoid the harm. Furthermore, the mind—

via its capacity for willing—could cause the body to perform the desired actions to 

bring this plan into fruition. In Cartesian philosophy, the disembodied mind was 

responsible for the “thinking” in a sense-think-act cycle that involved the external 

world and the body to which the mind was linked.

Descartes’ disembodiment of the mind—his claim that the mind is composed of 

different “stuff” than is the body or the physical world—is a philosophical position 

called dualism. Dualism has largely been abandoned by modern science, including 

cognitive science. The vast majority of cognitive scientists adopt a very different 
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philosophical position called materialism. According to materialism, the mind is 

caused by the brain. In spite of the fact that it has abandoned Cartesian dualism, 

most of the core ideas of classical cognitive science are rooted in the ideas that 

Descartes wrote about in the seventeenth century. Indeed, classical cognitive sci-

ence can be thought of as a synthesis between Cartesian philosophy and material-

ism. In classical cognitive science, this synthesis is best expressed as follows: cogni-

tion is the product of a physical symbol system (Newell, 1980). The physical symbol 

system hypothesis is made plausible by the existence of working examples of such 

devices: modern digital computers.

3.2 Mechanizing the Infinite

We have seen that the disembodied Cartesian mind is the thinking thing that medi-

ates the sensing of, and acting upon, the world. It does so by engaging in such activ-

ities as doubting, understanding, affirming, denying, perceiving, imagining, and 

willing. These activities were viewed by Descartes as being analogous to a geom-

eter’s use of rules to manipulate mathematical expressions. This leads us to ask, 

in what medium is thought carried out? What formal rules does it employ? What 

symbolic expressions does it manipulate?

Many other philosophers were sympathetic to the claim that mental activity 

was some sort of symbol manipulation. Thomas Hobbes is claimed as one of the 

philosophical fathers of classical cognitive science because of his writings on the 

nature of the mind:

When a man Reasoneth, hee does nothing else but conceive a summe totall, from 

Addition of parcels; or conceive a Remainder, from Substraction of one summe 

from another.” Such operations were not confined to numbers: “These operations 

are not incident to Numbers only, but to all manner of things that can be added 

together, and taken one out of another. (Hobbes, 1967, p. 32)

Hobbes noted that geometricians applied such operations to lines and figures, 

and that logicians applied these operations to words. Thus it is not surprising 

that Hobbes described thought as mental discourse—thinking, for him, was 

language-like.

Why were scholars taken by the idea that language was the medium in which 

thought was conducted? First, they agreed that thought was exceptionally powerful, 

in the sense that there were no limits to the creation of ideas. In other words, man in 

principle was capable of an infinite variety of different thoughts. “Reason is a univer-

sal instrument which can operate in all sorts of situations” (Descartes, 2006, p. 47). 

Second, language was a medium in which thought could be expressed, because it 

too was capable of infinite variety. Descartes expressed this as follows:
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For it is a very remarkable fact that there are no men so dull-witted and stupid, not 

even madmen, that they are incapable of stringing together different words, and 

composing them into utterances, through which they let their thoughts be known. 

(Descartes, 2006, p. 47)

Modern linguists describe this as the creative aspect of language (Chomsky, 1965, 

1966). “An essential property of language is that it provides the means for expressing 

indefinitely many thoughts and for reacting appropriately in an indefinite range of 

new situations” (Chomsky, 1965, p. 6).

While Descartes did not write a great deal about language specifically 

(Chomsky, 1966), it is clear that he was sympathetic to the notion that language was 

the medium for thought. This is because he used the creative aspect of language to 

argue in favor of dualism. Inspired by the automata that were appearing in Europe 

in his era, Descartes imagined the possibility of having to prove that sophisticated 

future devices were not human. He anticipated the Turing test (Turing, 1950) by 

more than three centuries by using language to separate man from machine.

For we can well conceive of a machine made in such a way that it emits words, 

and even utters them about bodily actions which bring about some correspond-

ing change in its organs . . . but it is not conceivable that it should put these words 

in different orders to correspond to the meaning of things said in its presence. 

(Descartes, 2006, p. 46)

Centuries later, similar arguments still appear in philosophy. For instance, why is a 

phonograph recording of someone’s entire life of speech an inadequate simulation 

of that speech (Fodor, 1968b)? “At the very best, phonographs do what speakers do, 

not what speakers can do” (p. 129).

Why might it be impossible for a device to do what speakers can do? For Descartes, 

language-producing machines were inconceivable because machines were physical 

and therefore finite. Their finite nature made it impossible for them to be infinitely 

variable.

Although such machines might do many things as well or even better than any of 

us, they would inevitably fail to do some others, by which we would discover that 

they did not act consciously, but only because their organs were disposed in a cer-

tain way. (Descartes, 2006, pp. 46–47)

In other words, the creativity of thought or language was only possible in the infi-

nite, nonphysical, disembodied mind.

It is this conclusion of Descartes’ that leads to a marked distinction between 

Cartesian philosophy and classical cognitive science. Classical cognitive science 

embraces the creative aspect of language. However, it views such creativity from 

a materialist, not a dualist, perspective. Developments in logic and in comput-

ing that have occurred since the seventeenth century have produced a device that 
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Descartes did not have at his disposal: the physical symbol system. And—seemingly 

magically—a physical symbol system is a finite artifact that is capable of an infinite 

variety of behaviour.

By the nineteenth century, the notion of language as a finite system that could 

be infinitely expressive was well established (Humboldt, 1999, p. 91): “For lan-

guage is quite peculiarly confronted by an unending and truly boundless domain, 

the essence of all that can be thought. It must therefore make infinite employment 

of finite means.” While Humboldt’s theory of language has been argued to pres-

age many of the key properties of modern generative grammars (Chomsky, 1966), 

it failed to provide a specific answer to the foundational question that it raised: 

how can a finite system produce the infinite? The answer to that question required 

advances in logic and mathematics that came after Humboldt, and which in turn 

were later brought to life by digital computers.

While it had been suspected for centuries that all traditional pure mathemat-

ics can be derived from the basic properties of natural numbers, confirmation of 

this suspicion was only obtained with advances that occurred in the nineteenth 

and twentieth centuries (Russell, 1993). The “arithmetisation” of mathematics 

was established in the nineteenth century, in what are called the Dedekind-Peano 

axioms (Dedekind, 1901; Peano, 1973). This mathematical theory defines three 

primitive notions: 0, number, and successor. It also defines five basic propositions: 

0 is a number; the successor of any number is a number; no two numbers have the 

same successor; 0 is not the successor of any number; and the principle of math-

ematical induction. These basic ideas were sufficient to generate the entire theory 

of natural numbers (Russell, 1993).

Of particular interest to us is the procedure that is used in this system to gener-

ate the set of natural numbers. The set begins with 0. The next number is 1, which 

can be defined as the successor of 0, as s(0). The next number is 2, which is the 

successor of 1, s(1), and is also the successor of the successor of 0, s(s(0)). In other 

words, the successor function can be used to create the entire set of natural num-

bers: 0, s(0), s(s(0)), s(s(s(0))), and so on.

The definition of natural numbers using the successor function is an example 

of simple recursion; a function is recursive when it operates by referring to itself. 

The expression s(s(0)) is recursive because the first successor function takes as 

input another version of itself. Recursion is one method by which a finite system 

(such as the Dedekind-Peano axioms) can produce infinite variety, as in the set of 

natural numbers.

Recursion is not limited to the abstract world of mathematics, nor is its only 

role to generate infinite variety. It can work in the opposite direction, transforming 

the large and complex into the small and simple. For instance, recursion can be 
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used to solve a complex problem by reducing it to a simple version of itself. This 

problem-solving approach is often called divide and conquer (Knuth, 1997).

One example of this is the famous Tower of Hanoi problem (see Figure 3-1), 

first presented to the world as a wooden puzzle by French mathematician Edouard 

Lucas in 1883. In this puzzle, there are three locations, A, B, and C. At the start 

of this problem there is a set of differently sized wooden discs stacked upon one 

another at location A. Let us number these discs 0, 1, 2, and so on, where the number 

assigned to a disc indicates its size. The goal for the problem is to move this entire 

stack to location C, under two restrictions: first, only one disc can be moved at a 

time; second, a larger disc can never be placed upon a smaller disc.

Figure 3-1. The starting configuration for a five-disc version of the Tower of Hanoi problem.

The simplest version of the Tower of Hanoi problem starts with only disc 0 at loca-

tion A. Its solution is completely straightforward: disc 0 is moved directly to loca-

tion C, and the problem is solved. The problem is only slightly more complicated if 

it starts with two discs stacked on location A. First, disc 0 is moved to location B. 

Second, disc 1 is moved to location C. Third, disc 0 is moved from A to C, stacked on 

top of disc 1, and the problem has been solved.

What about a Tower of Hanoi problem that begins with three discs? To solve 

this more complicated problem, we can first define a simpler subproblem: stack-

ing discs 0 and 1 on location B. This is accomplished by doing the actions defined 

in the preceding paragraph, with the exception that the goal location is B for the 

subproblem. Once this subtask is accomplished, disc 2 can be moved directly to the 

final goal, location C. Now, we solve the problem by moving discs 0 and 1, which are 

stacked on B, to location C, by again using a procedure like the one described in the 

preceding paragraph.

This account of solving a more complex version of the Tower of Hanoi problem 

points to the recursive nature of divide and conquer: we solve the bigger problem by 
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first solving a smaller version of the same kind of problem. To move a stack of n discs 

to location C, we first move the smaller stack of n – 1 discs to location B. “Moving the 

stack” is the same kind of procedure for the n discs and for the n – 1 discs. The whole 

approach is recursive in the sense that to move the big stack, the same procedure 

must first be used to move the smaller stack on top of the largest disc.

The recursive nature of the solution to the Tower of Hanoi is made obvious if 

we write a pseudocode algorithm for moving the disks. Let us call our procedure 

MoveStack (). It will take four arguments: the number of discs in the stack to be 

moved, the starting location, the “spare” location, and the goal location. So, if we 

had a stack of three discs at location A, and wanted to move the stack to location C 

using location B as the spare, we would execute MoveStack (3, A, B, C).

The complete definition of the procedure is as follows:

MoveStack (N, Start, Spare, Goal)

 If N = 0

 Exit

 Else

 MoveStack (N – 1, Start, Goal, Spare)

 MoveStack (1, Start, Spare, Goal)

 MoveStack (N – 1, Spare, Start, Goal)

 EndIf

Note the explicit recursion in this procedure, because MoveStack () calls itself to 

move a smaller stack of disks stacked on top of the disk that it is going to move. Note 

too that the recursive nature of this program means that it is flexible enough to work 

with any value of N. Figure 3-2 illustrates an intermediate state that occurs when 

this procedure is applied to a five-disc version of the problem.

Figure 3-2. An intermediate state that occurs when MoveStack () is applied to a 

five-disc version of the Tower of Hanoi.
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In the code given above, recursion was evident because MoveStack () called itself. There 

are other ways in which recursion can make itself evident. For instance, recursion 

can produce hierarchical, self-similar structures such as fractals (Mandelbrot, 1983), 

whose recursive nature is immediately evident through visual inspection. Consider 

the Sierpinski triangle (Mandelbrot, 1983), which begins as an equilateral triangle 

(Figure 3-3).

Figure 3-3. The root of the Sierpinski triangle is an equilateral triangle.

The next step in creating the Sierpinski triangle is to take Figure 3-3 and reduce it 

to exactly half of its original size. Three of these smaller triangles can be inscribed 

inside of the original triangle, as is illustrated in Figure 3-4.

Figure 3-4. The second step of constructing a Sierpinski triangle.

The rule used to create Figure 3-4 can be applied recursively and (in principle) infi-

nitely. One takes the smaller triangle that was used to create Figure 3-4, makes it 

exactly half of its original size, and inscribes three copies of this still smaller triangle 

into each of the three triangles that were used to create Figure 3-4. This rule can be 
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applied recursively to inscribe smaller triangles into any of the triangles that were 

added to the figure in a previous stage of drawing. Figure 3-5 shows the result when 

this rule is applied four times to Figure 3-4.

Figure 3-5. The Sierpinski triangle that results when the recursive rule is applied 

four times to Figure 3-4.

The Sierpinski triangle, and all other fractals that are created by recursion, are 

intrinsically self-similar. That is, if one were to take one of the smaller triangles 

from which Figure 3-4 is constructed and magnify it, one would see still see the 

hierarchical structure that is illustrated above. The structure of the whole is identi-

cal to the (smaller) structure of the parts. In the next section, we see that the recur-

sive nature of human language reveals itself in the same way.

3.3 Phrase Markers and Fractals

Consider a finite set of elements (e.g., words, phonemes, morphemes) that can, by 

applying certain rules, be combined to create a sentence or expression that is finite 

in length. A language can be defined as the set of all of the possible expressions that 

can generated in this way from the same set of building blocks and the same set of 

rules (Chomsky, 1957). From this perspective, one can define a grammar as a device 

that can distinguish the set of grammatical expressions from all other expressions, 

including those that are generated from the same elements but which violate the 

rules that define the language. In modern linguistics, a basic issue to investigate is 

the nature of the grammar that defines a natural human language.

Chomsky (1957) noted that one characteristic of a natural language such as 

English is that a sentence can be lengthened by inserting a clause into its midst. As 

we see in the following section, this means that the grammar of natural languages 

is complicated enough that simple machines, such as finite state automata, are not 

powerful enough to serve as grammars for them.
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The complex, clausal structure of a natural language is instead captured by a 

more powerful device—a Turing machine—that can accommodate the regularities 

of a context-free grammar (e.g., Chomsky, 1957, 1965). A context-free grammar can 

be described as a set of rewrite rules that convert one symbol into one or more other 

symbols. The application of these rewrite rules produces a hierarchically organized 

symbolic structure called a phrase marker (Radford, 1981). A phrase marker is a set 

of points or labelled nodes that are connected by branches. Nonterminal nodes rep-

resent lexical categories; at the bottom of a phrase marker are the terminal nodes 

that represent lexical categories (e.g., words). A phrase marker for the simple sen-

tence Dogs bark is illustrated in Figure 3-6.

Figure 3-6. A phrase marker for the sentence Dogs bark.

The phrase marker for a sentence can be illustrated as an upside-down tree whose 

structure is grown from the root node S (for sentence). The application of the 

rewrite rule S → NP VP produces the first layer of the Figure 3-6 phrase marker, 

showing how the nodes NP (noun phrase) and VP (verb phrase) are grown from S. 

Other rewrite rules that are invoked to create that particular phrase marker are NP 

→ , → N, N → dogs, VP → ,  → V, and V → bark. When any of these rewrite 

rules are applied, the symbol to the left of the → is rewritten as the symbol or sym-

bols to the right. In the phrase marker, this means the symbols on the right of the → 

are written as nodes below the original symbol, and are connected to the originating 

node above, as is shown in Figure 3-6.

In a modern grammar called x-bar syntax (Jackendoff, 1977), nodes like NP and 

VP in Figure 3-6 are symbols that represent phrasal categories, nodes like  and  

are symbols that represent lexical categories, and nodes like “and” are symbols that 

represent categories that are intermediates between lexical categories and phrasal 

categories. Such intermediate categories are required to capture some regularities 

in the syntax of natural human languages.

In some instances, the same symbol can be found on both sides of the → in a 

rewrite rule. For instance, one valid rewrite rule for the intermediate node of a noun 
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phrase is  → AP , where AP represents an adjective phrase. Because the same 

symbol occurs on each side of the equation, the context-free grammar is recursive. 

One can apply this rule repeatedly to insert clauses of the same type into a phrase. 

This is shown in Figure 3-7, which illustrates phrase markers for noun phrases that 

might apply to my dog Rufus. The basic noun phrase is the dog. If this recursive rule 

is applied once, it permits a more elaborate noun phrase to be created, as in the cute 

dog. Recursive application of this rule permits the noun phrase to be elaborated 

indefinitely, (e.g., the cute brown scruffy dog).

Figure 3-7. Phrase markers for three noun phrases: (A) the dog, (B) the cute dog, 

and (C) the cute brown scruffy dog. Note the recursive nature of (C).

The recursive nature of a context-free grammar is revealed in a visual inspection of a 

phrase marker like the one illustrated in Figure 3-7C. As one inspects the figure, one 

sees the same pattern recurring again and again, as was the case with the Sierpinski 

triangle. The recursive nature of a context-free grammar produces self-similarity 
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within a phrase marker. The recursion of such a grammar is also responsible for its 

ability to use finite resources (a finite number of building blocks and a finite number 

of rewrite rules) to produce a potentially infinite variety of expressions, as in the 

sentences of a language, each of which is represented by its own phrase marker.

3.4 Behaviourism, Language, and Recursion

Behaviourism viewed language as merely being observable behaviour whose devel-

opment and elicitation was controlled by external stimuli:

A speaker possesses a verbal repertoire in the sense that responses of various forms 

appear in his behavior from time to time in relation to identifiable conditions. A 

repertoire, as a collection of verbal operants, describes the potential behavior of a 

speaker. To ask where a verbal operant is when a response is not in the course of 

being emitted is like asking where one’s knee-jerk is when the physician is not tap-

ping the patellar tendon. (Skinner, 1957, p. 21)

Skinner’s (1957) treatment of language as verbal behaviour explicitly rejected the 

Cartesian notion that language expressed ideas or meanings. To Skinner, explana-

tions of language that appealed to such unobservable internal states were necessar-

ily unscientific:

It is the function of an explanatory fiction to allay curiosity and to bring inquiry 

to an end. The doctrine of ideas has had this effect by appearing to assign impor-

tant problems of verbal behavior to a psychology of ideas. The problems have then 

seemed to pass beyond the range of the techniques of the student of language, or to 

have become too obscure to make further study profitable. (Skinner, 1957, p. 7)

Modern linguistics has explicitly rejected the behaviourist approach, arguing 

that behaviourism cannot account for the rich regularities that govern language 

(Chomsky, 1959b).

The composition and production of an utterance is not strictly a matter of string-

ing together a sequence of responses under the control of outside stimulation and 

intraverbal association, and that the syntactic organization of an utterance is not 

something directly represented in any simple way in the physical structure of the 

utterance itself. (Chomsky, 1959b, p. 55)

Modern linguistics has advanced beyond behaviourist theories of verbal behaviour 

by adopting a particularly technical form of logicism. Linguists assume that verbal 

behaviour is the result of sophisticated symbol manipulation: an internal genera-

tive grammar.

By a generative grammar I mean simply a system of rules that in some explicit and 

well-defined way assigns structural descriptions to sentences. Obviously, every 
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speaker of a language has mastered and internalized a generative grammar that 

expresses his knowledge of his language. (Chomsky, 1965, p. 8)

A sentence’s structural description is represented by using a phrase marker, which is 

a hierarchically organized symbol structure that can be created by a recursive set of 

rules called a context-free grammar. In a generative grammar another kind of rule, 

called a transformation, is used to convert one phrase marker into another.

The recursive grammars that have been developed in linguistics serve two 

purposes. First, they formalize key structural aspects of human languages, such 

as the embedding of clauses within sentences. Second, they explain how finite 

resources are capable of producing an infinite variety of potential expressions. This 

latter accomplishment represents a modern rebuttal to dualism; we have seen that 

Descartes (1996) used the creative aspect of language to argue for the separate, non-

physical existence of the mind. For Descartes, machines were not capable of gener-

ating language because of their finite nature.

Interestingly, a present-day version of Descartes’ (1996) analysis of the limita-

tions of machines is available. It recognizes that a number of different information 

processing devices exists that vary in complexity, and it asks which of these devices 

are capable of accommodating modern, recursive grammars. The answer to this 

question provides additional evidence against behaviourist or associationist theo-

ries of language (Bever, Fodor, & Garrett, 1968).

Figure 3-8. How a Turing machine processes its tape.

In Chapter 2, we were introduced to one simple—but very powerful—device, the 

Turing machine (Figure 3-8). It consists of a machine head that manipulates the 

symbols on a ticker tape, where the ticker tape is divided into cells, and each cell 

is capable of holding only one symbol at a time. The machine head can move back 

and forth along the tape, one cell at a time. As it moves it can read the symbol on the 

current cell, which can cause the machine head to change its physical state. It is also 

capable of writing a new symbol on the tape. The behaviour of the machine head—its 
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new physical state, the direction it moves, the symbol that it writes—is controlled by 

a machine table that depends only upon the current symbol being read and the cur-

rent state of the device. One uses a Turing machine by writing a question on its tape, 

and setting the machine head into action. When the machine head halts, the Turing 

machine’s answer to the question has been written on the tape.

What is meant by the claim that different information processing devices are 

available? It means that systems that are different from Turing machines must 

also exist. One such alternative to a Turing machine is called a finite state automa-

ton (Minsky, 1972; Parkes, 2002), which is illustrated in Figure 3-9. Like a Turing 

machine, a finite state automaton can be described as a machine head that interacts 

with a ticker tape. There are two key differences between a finite state machine and 

a Turing machine.

Figure 3-9. How a finite state automaton processes the tape. Note the differences 

between Figures 3-9 and 3-8.

First, a finite state machine can only move in one direction along the tape, again one 

cell at a time. Second, a finite state machine can only read the symbols on the tape; 

it does not write new ones. The symbols that it encounters, in combination with the 

current physical state of the device, determine the new physical state of the device. 

Again, a question is written on the tape, and the finite state automaton is started. 

When it reaches the end of the question, the final physical state of the finite state 

automaton represents its answer to the original question on the tape.

It is obvious that a finite state automaton is a simpler device than a Turing 

machine, because it cannot change the ticker tape, and because it can only move in 

one direction along the tape. However, finite state machines are important infor-

mation processors. Many of the behaviours in behaviour-based robotics are pro-

duced using finite state machines (Brooks, 1989, 1999, 2002). It has also been argued 

that such devices are all that is required to formalize behaviourist or associationist 

accounts of behaviour (Bever, Fodor, & Garrett., 1968).
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What is meant by the claim that an information processing device can “accom-

modate” a grammar? In the formal analysis of the capabilities of information pro-

cessors (Gold, 1967), there are two answers to this question. Assume that knowledge 

of some grammar has been built into a device’s machine head. One could then ask 

whether the device is capable of accepting a grammar. In this case, the “question” on 

the tape would be an expression, and the task of the information processor would 

be to accept the string, if it is grammatical according to the device’s grammar, or to 

reject the expression, if it does not belong to the grammar. Another question to ask 

would be whether the information processor is capable of generating the grammar. 

That is, given a grammatical expression, can the device use its existing grammar to 

replicate the expression (Wexler & Culicover, 1980)?

In Chapter 2, it was argued that one level of investigation to be conducted by 

cognitive science was computational. At the computational level of analysis, one 

uses formal methods to investigate the kinds of information processing problems a 

device is solving. When one uses formal methods to determine whether some device 

is capable of accepting or generating some grammar of interest, one is conducting 

an investigation at the computational level.

One famous example of such a computational analysis was provided by Bever, 

Fodor, and Garrett (1968). They asked whether a finite state automaton was capable 

of accepting expressions that were constructed from a particular artificial grammar. 

Expressions constructed from this grammar were built from only two symbols, a 

and b. Grammatical strings in the sentence were “mirror images,” because the pat-

tern used to generate expressions was bNabN where N is the number of bs in the 

string. Valid expressions generated from this grammar include a, bbbbabbbb, and 

bbabb. Expressions that cannot be generated from the grammar include ab, babb, 

bb, and bbbabb.

While this artificial grammar is very simple, it has one important property: it 

is recursive. That is, a simple context-free grammar can be defined to generate its 

potential expressions. This context-free grammar consists of two rules, where Rule 

1 is S → a, and Rule 2 is a → bab. A string is begun by using Rule 1 to generate an a. 

Rule 2 can then be applied to generate the string bab. If Rule 2 is applied recursively 

to the central bab then longer expressions will be produced that will always be con-

sistent with the pattern bNabN.

Bever, Fodor, and Garrett (1968) proved that a finite state automaton was not 

capable of accepting strings generated from this recursive grammar. This is because 

a finite state machine can only move in one direction along the tape, and cannot 

write to the tape. If it starts at the first symbol of a string, then it is not capable 

of keeping track of the number of bs read before the a, and comparing this to the 

number of bs read after the a. Because it can’t go backwards along the tape, it can’t 

deal with recursive languages that have embedded clausal structure.
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Bever, Fodor, and Garrett (1968) used this result to conclude that association-

ism (and radical behaviourism) was not powerful enough to deal with the embed-

ded clauses of natural human language. As a result, they argued that associationism 

should be abandoned as a theory of mind. The impact of this proof is measured 

by the lengthy responses to this argument by associationist memory researchers 

(Anderson & Bower, 1973; Paivio, 1986). We return to the implications of this argu-

ment when we discuss connectionist cognitive science in Chapter 4.

While finite state automata cannot accept the recursive grammar used by 

Bever, Fodor, and Garrett (1968), Turing machines can (Révész, 1983). Their ability 

to move in both directions along the tape provides them with a memory that enables 

them to match the number of leading bs in a string with the number of trailing bs.

Modern linguistics has concluded that the structure of human language must be 

described by grammars that are recursive. Finite state automata are not powerful-

enough devices to accommodate grammars of this nature, but Turing machines are. 

This suggests that an information processing architecture that is sufficiently rich to 

explain human cognition must have the same power—must be able to answer the 

same set of questions—as do Turing machines. This is the essence of the physical 

symbol system hypothesis (Newell, 1980), which are discussed in more detail below. 

The Turing machine, as we saw in Chapter 2 and further discuss below, is a univer-

sal machine, and classical cognitive science hypothesizes that “this notion of symbol 

system will prove adequate to all of the symbolic activity this physical universe of 

ours can exhibit, and in particular all the symbolic activities of the human mind” 

(Newell, 1980, p. 155).

3.5 Underdetermination and Innateness

The ability of a device to accept or generate a grammar is central to another com-

putational level analysis of language (Gold, 1967). Gold performed a formal analy-

sis of language learning which revealed a situation that is known as Gold’s paradox 

(Pinker, 1979). One solution to this paradox is to adopt a position that is characteristic 

of classical cognitive science, and which we have seen is consistent with its Cartesian 

roots. This position is that a good deal of the architecture of cognition is innate.

Gold (1967) was interested in the problem of how a system could learn the 

grammar of a language on the basis of a finite set of example expressions. He con-

sidered two different situations in which the learning system could be presented 

with expressions. In informant learning, the learner is presented with either valid 

or invalid expressions, and is also told about their validity, i.e., told whether they 

belong to the grammar or not. In text learning, the only expressions that are pre-

sented to the learner are grammatical.
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Whether a learner is undergoing informant learning or text learning, Gold 

(1967) assumed that learning would proceed as a succession of presentations of 

expressions. After each expression was presented, the language learner would 

generate a hypothesized grammar. Gold proposed that each hypothesis could be 

described as being a Turing machine that would either accept the (hypothesized) 

grammar or generate it. In this formalization, the notion of “learning a language” 

has become “selecting a Turing machine that represents a grammar” (Osherson, 

Stob, & Weinstein, 1986).

According to Gold’s (1967) algorithm, a language learner would have a current 

hypothesized grammar. When a new expression was presented to the learner, a test 

would be conducted to see if the current grammar could deal with the new expres-

sion. If current grammar succeeded, then it remained. If the current grammar 

failed, then a new grammar—a new Turing machine—would have to be selected.

Under this formalism, when can we say that a grammar has been learned? Gold 

defined language learning as the identification of the grammar in the limit. When 

a language is identified in the limit, this means that the current grammar being 

hypothesized by the learner does not change even as new expressions are encoun-

tered. Furthermore, it is expected that this state will occur after a finite number of 

expressions have been encountered during learning.

In the previous section, we considered a computational analysis in which differ-

ent kinds of computing devices were presented with the same grammar. Gold (1967) 

adopted an alternative approach: he kept the information processing constant—

that is, he always studied the algorithm sketched above—but he varied the com-

plexity of the grammar that was being learned, and he varied the conditions under 

which the grammar was presented, i.e., informant learning versus text learning.

In computer science, a formal description of any class of languages (human or 

otherwise) relates its complexity to the complexity of a computing device that could 

generate or accept it (Hopcroft & Ullman, 1979; Révész, 1983). This has resulted in 

a classification of grammars known as the Chomsky hierarchy (Chomsky, 1959a). In 

the Chomsky hierarchy, the simplest grammars are regular, and they can be accom-

modated by finite state automata. The next most complicated are context-free gram-

mars, which can be processed by pushdown automata (a device that is a finite state 

automaton with a finite internal memory). Next are the context-sensitive gram-

mars, which are the domain of linear bounded automata (i.e., a device like a Turing 

machine, but with a ticker tape of bounded length). The most complex grammars are 

the generative grammars, which can only be dealt with by Turing machines.

Gold (1967) used formal methods to determine the conditions under which 

each class of grammars could be identified in the limit. He was able to show that 

text learning could only be used to acquire the simplest grammar. In contrast, Gold 
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found that informant learning permitted context-sensitive and context-free gram-

mars to be identified in the limit.

Gold’s (1967) research was conducted in a relatively obscure field of theoretical 

computer science. However, Steven Pinker brought it to the attention of cognitive 

science more than a decade later (Pinker, 1979), where it sparked a great deal of 

interest and research. This is because Gold’s computational analysis revealed a par-

adox of particular interest to researchers who studied how human children acquire 

language.

Gold’s (1967) proofs indicated that informant learning was powerful enough 

that a complex grammar can be identified in the limit. Such learning was not pos-

sible with text learning. Gold’s paradox emerged because research strongly suggests 

that children are text learners, not informant learners (Pinker, 1979, 1994, 1999). It 

is estimated that 99.93 percent of the language to which children are exposed is 

grammatical (Newport, Gleitman, & Gleitman, 1977). Furthermore, whenever feed-

back about language grammaticality is provided to children, it is not systematic 

enough to be used to select a grammar (Marcus, 1993).

Gold’s paradox is that while he proved that grammars complex enough to model 

human language could not be text learned, children learn such grammars—and do 

so via text learning! How is this possible?

Gold’s paradox is an example of a problem of underdetermination. In a prob-

lem of underdetermination, the information available from the environment is 

not sufficient to support a unique interpretation or inference (Dawson, 1991). For 

instance, Gold (1967) proved that a finite number of expressions presented during 

text learning were not sufficient to uniquely determine the grammar from which 

these expressions were generated, provided that the grammar was more compli-

cated than a regular grammar.

There are many approaches available for solving problems of underdetermi-

nation. One that is most characteristic of classical cognitive science is to simplify 

the learning situation by assuming that some of the to-be-learned information 

is already present because it is innate. For instance, classical cognitive scientists 

assume that much of the grammar of a human language is innately available before 

language learning begins.

The child has an innate theory of potential structural descriptions that is suffi-

ciently rich and fully developed so that he is able to determine, from a real situation 

in which a signal occurs, which structural descriptions may be appropriate to this 

signal. (Chomsky, 1965, p. 32)

If the existence of an innate, universal base grammar—a grammar used to create 

phrase markers—is assumed, then a generative grammar of the type proposed by 

Chomsky can be identified in the limit (Wexler & Culicover, 1980). This is because 

learning the language is simplified to the task of learning the set of transformations 
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that can be applied to phrase markers. More modern theories of transformational 

grammars have reduced the number of transformations to one, and have described 

language learning as the setting of a finite number of parameters that determine 

grammatical structure (Cook & Newson, 1996). Again, these grammars can be iden-

tified in the limit on the basis of very simple input expressions (Lightfoot, 1989). 

Such proofs are critical to cognitive science and to linguistics, because if a theory of 

language is to be explanatorily adequate, then it must account for how language is 

acquired (Chomsky, 1965).

Rationalist philosophers assumed that some human knowledge must be innate. 

This view was reacted against by empiricist philosophers who viewed experience as 

the only source of knowledge. For the empiricists, the mind was a tabula rasa, wait-

ing to be written upon by the world. Classical cognitive scientists are comfortable 

with the notion of innate knowledge, and have used problems of underdetermina-

tion to argue against the modern tabula rasa assumed by connectionist cognitive 

scientists (Pinker, 2002, p. 78): “The connectionists, of course, do not believe in a 

blank slate, but they do believe in the closest mechanistic equivalent, a general-

purpose learning device.” The role of innateness is an issue that separates classical 

cognitive science from connectionism, and will be encountered again when connec-

tionism is explored in Chapter 4.

3.6 Physical Symbol Systems

Special-purpose logic machines had been developed by philosophers in the late 

nineteenth century (Buck & Hunka, 1999; Jevons, 1870; Marquand, 1885). However, 

abstract descriptions of how devices could perform general-purpose symbol manip-

ulation did not arise until the 1930s (Post, 1936; Turing, 1936). The basic properties 

laid out in these mathematical theories of computation define what is now known 

as a physical symbol system (Newell, 1980; Newell & Simon, 1976). The concept 

physical symbol system defines “a broad class of systems that is capable of having 

and manipulating symbols, yet is also realizable within our physical universe” 

(Newell, 1980, p. 136).

A physical symbol system operates on a finite set of physical tokens called sym-

bols. These are components of a larger physical entity called a symbol structure or 

a symbolic expression. It also consists of a set of operators that can create, modify, 

duplicate, or destroy symbols. Some sort of control is also required to select at any 

given time some operation to apply. A physical symbol system produces, over time, 

an evolving or changing collection of expressions. These expressions represent or 

designate entities in the world (Newell, 1980; Newell & Simon, 1976). As a result, 

the symbol manipulations performed by such a device permit new meanings to be 
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derived, in the same way as new knowledge is arrived at in the proofs discovered by 

logicians and mathematicians (Davis & Hersh, 1981).

The abstract theories that describe physical symbol systems were not devel-

oped into working artifacts until nearly the midpoint of the twentieth century. “Our 

deepest insights into information processing were achieved in the thirties, before 

modern computers came into being. It is a tribute to the genius of Alan Turing” 

(Newell & Simon, 1976, p. 117). The first digital computer was the Z3, invented in 

Germany in 1941 by Konrad Zuse (1993). In the United States, the earliest com-

puters were University of Pennsylvania’s ENIAC (created 1943–1946) and EDVAC 

(created 1945–1950), Harvard’s MARK I (created 1944), and Princeton’s IAS or von 

Neumann computer (created 1946–1951) (Burks, 2002; Cohen, 1999). The earliest 

British computer was University of Manchester’s “Baby,” the small-scale experimen-

tal machine (SSEM) that was first activated in June, 1948 (Lavington, 1980).

Although specific details vary from machine to machine, all digital computers 

share three general characteristics (von Neumann, 1958). First, they have a memory 

for the storage of symbolic structures. In what is now known as the von Neumann 

architecture, this is a random access memory (RAM) in which any memory location 

can be immediately accessed—without having to scroll through other locations, as 

in a Turing machine—by using the memory’s address. Second, they have a mecha-

nism separate from memory that is responsible for the operations that manipulate 

stored symbolic structures. Third, they have a controller for determining which 

operation to perform at any given time. In the von Neumann architecture, the con-

trol mechanism imposes serial processing, because only one operation will be per-

formed at a time.

Perhaps the earliest example of serial control is the nineteenth-century 

punched cards used to govern the patterns in silk that were woven by Joseph Marie 

Jacquard’s loom (Essinger, 2004). During weaving, at each pass of the loom’s shut-

tle, holes in a card permitted some thread-controlling rods to be moved. When a rod 

moved, the thread that it controlled was raised; this caused the thread to be visible 

in that row of the pattern. A sequence of cards was created by tying cards together 

end to end. When this “chain” was advanced to the next card, the rods would be 

altered to create the appropriate appearance for the silk pattern’s next row.

The use of punched cards turned the Jacquard loom into a kind of univer-

sal machine: one changed the pattern being produced not by changing the loom, 

but simply by loading it with a different set of punched cards. Thus not only did 

Jacquard invent a new loom, but he also invented the idea of using a program to 

control the actions of a machine. Jacquard’s program was, of course, a sequence 

of punched cards. Their potential for being applied to computing devices in gen-

eral was recognized by computer pioneer Charles Babbage, who was inspired by 

Jacquard’s invention (Essinger, 2004).
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By the late 1950s, it became conventional to load the program—then known as 

the “short code” (von Neumann, 1958)—into memory. This is called memory-stored 

control; the first modern computer to use this type of control was Manchester’s 

“Baby” (Lavington, 1980). In Chapter 2 we saw an example of this type of control in 

the universal Turing machine, whose ticker tape memory holds both the data to be 

manipulated and the description of a special-purpose Turing machine that will do 

the manipulating. The universal Turing machine uses the description to permit it to 

pretend to be the specific machine that is defined on its tape (Hodges, 1983).

In a physical symbol system that employs memory-stored control, internal 

characteristics will vary over time. However, the time scale of these changes will not 

be uniform (Newell, 1990). The data that is stored in memory will likely be changed 

rapidly. However, some stored information—in particular, the short code, or what 

cognitive scientists would call the virtual machine (Pylyshyn, 1984, 1991), that con-

trols processing would be expected to be more persistent. Memory-stored control in 

turn chooses which architectural operation to invoke at any given time. In a digital 

computer, the architecture would not be expected to vary over time at all because it 

is fixed, that is, literally built into the computing device.

The different characteristics of a physical symbol system provide a direct link 

back to the multiple levels of investigation that were the topic of Chapter 2. When 

such a device operates, it is either computing some function or solving some infor-

mation processing problem. Describing this aspect of the system is the role of a 

computational analysis. The computation being carried out is controlled by an 

algorithm: the program stored in memory. Accounting for this aspect of the system 

is the aim of an algorithmic analysis. Ultimately, a stored program results in the 

device executing a primitive operation on a symbolic expression stored in memory. 

Identifying the primitive processes and symbols is the domain of an architectural 

analysis. Because the device is a physical symbol system, primitive processes and 

symbols must be physically realized. Detailing the physical nature of these compo-

nents is the goal of an implementational analysis.

The invention of the digital computer was necessary for the advent of clas-

sical cognitive science. First, computers are general symbol manipulators. Their 

existence demonstrated that finite devices could generate an infinite potential 

of symbolic behaviour, and thus supported a materialist alternative to Cartesian 

dualism. Second, the characteristics of computers, and of the abstract theories of 

computation that led to their development, in turn resulted in the general notion 

of physical symbol system, and the multiple levels of investigation that such sys-

tems require.

The final link in the chain connecting computers to classical cognitive science 

is the logicist assumption that cognition is a rule-governed symbol manipulation of 

the sort that a physical symbol system is designed to carry out. This produces the 
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physical symbol system hypothesis: “the necessary and sufficient condition for a 

physical system to exhibit general intelligent action is that it be a physical symbol 

system” (Newell, 1980, p. 170). By necessary, Newell meant that if an artifact exhib-

its general intelligence, then it must be an instance of a physical symbol system. By 

sufficient, Newell claimed that any device that is a physical symbol system can be 

configured to exhibit general intelligent action—that is, he claimed the plausibility 

of machine intelligence, a position that Descartes denied.

What did Newell (1980) mean by general intelligent action? He meant,

the same scope of intelligence seen in human action: that in real situations behav-

ior appropriate to the ends of the system and adaptive to the demands of the envi-

ronment can occur, within some physical limits. (Newell, 1980, p. 170)

In other words, human cognition must be the product of a physical symbol system. 

Thus human cognition must be explained by adopting all of the different levels of 

investigation that were described in Chapter 2.

3.7 Componentiality, Computability, and Cognition

In 1840, computer pioneer Charles Babbage displayed a portrait of loom inventor 

Joseph Marie Jacquard for the guests at the famous parties in his home (Essinger, 

2004). The small portrait was incredibly detailed. Babbage took great pleasure in 

the fact that most people who first saw the portrait mistook it to be an engraving. It 

was instead an intricate fabric woven on a loom of the type that Jacquard himself 

invented.

The amazing detail of the portrait was the result of its being composed of 24,000 

rows of weaving. In a Jacquard loom, punched cards determined which threads 

would be raised (and therefore visible) for each row in the fabric. Each thread in the 

loom was attached to a rod; a hole in the punched card permitted a rod to move, 

raising its thread. The complexity of the Jacquard portrait was produced by using 

24,000 punched cards to control the loom.

Though Jacquard’s portrait was impressively complicated, the process used to 

create it was mechanical, simple, repetitive—and local. With each pass of the loom’s 

shuttle, weaving a set of threads together into a row, the only function of a punched 

card was to manipulate rods. In other words, each punched card only controlled 

small components of the overall pattern. While the entire set of punched cards rep-

resented the total pattern to be produced, this total pattern was neither contained 

in, nor required by, an individual punched card as it manipulated the loom’s rods. 

The portrait of Jacquard was a global pattern that emerged from a long sequence of 

simple, local operations on the pattern’s components.
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In the Jacquard loom, punched cards control processes that operate on local 

components of the “expression” being weaved. The same is true of the physical 

symbol systems. Physical symbol systems are finite devices that are capable of pro-

ducing an infinite variety of potential behaviour. This is possible because the opera-

tions of a physical symbol system are recursive. However, this explanation is not 

complete. In addition, the rules of a physical symbol system are local or compo-

nential, in the sense that they act on local components of an expression, not on the 

expression as a whole.

For instance, one definition of a language is the set of all of its grammatical 

expressions (Chomsky, 1957). Given this definition, it is logically possible to treat 

each expression in the set as an unanalyzed whole to which some operation could 

be applied. This is one way to interpret a behaviourist theory of language (Skinner, 

1957): each expression in the set is a holistic verbal behaviour whose likelihood of 

being produced is a result of reinforcement and stimulus control of the expression 

as a whole.

However, physical symbol systems do not treat expressions as unanalyzed 

wholes. Instead, the recursive rules of a physical symbol system are sensitive to the 

atomic symbols from which expressions are composed. We saw this previously in 

the example of context-free grammars that were used to construct the phrase mark-

ers of Figures 3-6 and 3-7. The rules in such grammars do not process whole phrase 

markers, but instead operate on the different components (e.g., nodes like S, N, VP) 

from which a complete phrase marker is constructed.

The advantage of operating on symbolic components, and not on whole expres-

sions, is that one can use a sequence of very basic operations—writing, changing, 

erasing, or copying a symbol—to create an overall effect of far greater scope than 

might be expected. As Henry Ford said, nothing is particularly hard if you divide 

it into small jobs. We saw the importance of this in Chapter 2 when we discussed 

Leibniz’ mill (Leibniz, 1902), the Chinese room (Searle, 1980), and the discharging 

of homunculi (Dennett, 1978). In a materialist account of cognition, thought is pro-

duced by a set of apparently simple, mindless, unintelligent actions—the primitives 

that make up the architecture.

The small jobs carried out by a physical symbol system reveal that such a 

system has a dual nature (Haugeland, 1985). On the one hand, symbol manipula-

tions are purely syntactic—they depend upon identifying a symbol’s type, and not 

upon semantically interpreting what the symbol stands for. On the other hand, a 

physical symbol system’s manipulations are semantic—symbol manipulations pre-

serve meanings, and can be used to derive new, sensible interpretations.

Interpreted formal tokens lead two lives: syntactical lives, in which they are mean-

ingless markers, moved according to the rules of some self-contained game; and 
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semantic lives, in which they have meanings and symbolic relations to the outside 

world. (Haugeland, 1985, p. 100)

Let us briefly consider these two lives. First, we have noted that the rules of a physi-

cal symbol system operate on symbolic components of a whole expression. For this 

to occur, all that is required is that a rule identifies a particular physical entity as 

being a token or symbol of a particular type. If the symbol is of the right type, then 

the rule can act upon it in some prescribed way.

For example, imagine a computer program that is playing chess. For this pro-

gram, the “whole expression” is the total arrangement of game pieces on the chess 

board at any given time. The program analyzes this expression into its components: 

individual tokens on individual squares of the board. The physical characteris-

tics of each component token can then be used to identify to what symbol class it 

belongs: queen, knight, bishop, and so on. Once a token has been classified in this 

way, appropriate operations can be applied to it. If a game piece has been identified 

as being a “knight,” then only knight moves can be applied to it—the operations that 

would move the piece like a bishop cannot be applied, because the token has not 

been identified as being of the type “bishop.”

Similar syntactic operations are at the heart of a computing device like a Turing 

machine. When the machine head reads a cell on the ticker tape (another example 

of componentiality!), it uses the physical markings on the tape to determine that 

the cell holds a symbol of a particular type. This identification—in conjunction with 

the current physical state of the machine head—is sufficient to determine which 

instruction to execute.

To summarize, physical symbol systems are syntactic in the sense that their rules 

are applied to symbols that have been identified as being of a particular type on the 

basis of their physical shape or form. Because the shape or form of symbols is all that 

matters for the operations to be successfully carried out, it is natural to call such 

systems formal. Formal operations are sensitive to the shape or form of individual 

symbols, and are not sensitive to the semantic content associated with the symbols.

However, it is still the case that formal systems can produce meaningful expres-

sions. The punched cards of a Jacquard loom only manipulate the positions of 

thread-controlling rods. Yet these operations can produce an intricate woven pat-

tern such as Jacquard’s portrait. The machine head of a Turing machine reads and 

writes individual symbols on a ticker tape. Yet these operations permit this device to 

provide answers to any computable question. How is it possible for formal systems 

to preserve or create semantic content?

In order for the operations of a physical symbol system to be meaningful, 

two properties must be true. First, the symbolic structures operated on must have 

semantic content. That is, the expressions being manipulated must have some rela-

tionship to states of the external world that permits the expressions to represent 
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these states. This relationship is a basic property of a physical symbol system, and is 

called designation (Newell, 1980; Newell & Simon, 1976). “An expression designates 

an object if, given the expression, the system can either affect the object itself or 

behave in ways dependent on the object” (Newell & Simon, 1976, p. 116).

Explaining designation is a controversial issue in cognitive science and philos-

ophy. There are many different proposals for how designation, which is also called 

the problem of representation (Cummins, 1989) or the symbol grounding problem 

(Harnad, 1990), occurs. The physical symbol system hypothesis does not propose 

a solution, but necessarily assumes that such a solution exists. This assumption is 

plausible to the extent that computers serve as existence proofs that designation 

is possible.

The second semantic property of a physical symbol system is that not only are 

individual expressions meaningful (via designation), but the evolution of expres-

sions—the rule-governed transition from one expression to another—is also mean-

ingful. That is, when some operation modifies an expression, this modification is 

not only syntactically correct, but it will also make sense semantically. As rules 

modify symbolic structures, they preserve meanings in the domain that the sym-

bolic structures designate, even though the rules themselves are purely formal. The 

application of a rule should not produce an expression that is meaningless. This 

leads to what is known as the formalist’s motto: “If you take care of the syntax, then 

the semantics will take care of itself ” (Haugeland, 1985, p. 106).

The assumption that applying a physical symbol system’s rules preserves mean-

ing is a natural consequence of classical cognitive science’s commitment to logicism. 

According to logicism, thinking is analogous to using formal methods to derive a 

proof, as is done in logic or mathematics. In these formal systems, when one applies 

rules of the system to true expressions (e.g., the axioms of a system of mathematics 

which by definition are assumed to be true [Davis & Hersh, 1981]), the resulting 

expressions must also be true. An expression’s truth is a critical component of its 

semantic content.

It is necessary, then, for the operations of a formal system to be defined in 

such a way that 1) they only detect the form of component symbols, and 2) they are 

constrained in such a way that manipulations of expressions are meaningful (e.g., 

truth preserving). This results in classical cognitive science’s interest in universal 

machines.

A universal machine is a device that is maximally flexible in two senses (Newell, 

1980). First, its behaviour is responsive to its inputs; a change in inputs will be capa-

ble of producing a change in behaviour. Second, a universal machine must be able 

compute the widest variety of input-output functions that is possible. This “widest 

variety” is known as the set of computable functions.
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A device that can compute every possible input-output function does not exist. 

The Turing machine was invented and used to prove that there exist some functions 

that are not computable (Turing, 1936). However, the subset of functions that are 

computable is large and important:

It can be proved mathematically that there are infinitely more functions than 

programs. Therefore, for most functions there is no corresponding program that 

can compute them. . . . Fortunately, almost all these noncomputable functions are 

useless, and virtually all the functions we might want to compute are computable. 

(Hillis, 1998, p. 71)

A major discovery of the twentieth century was that a number of seemingly dif-

ferent symbol manipulators were all identical in the sense that they all could com-

pute the same maximal class of input-output pairings (i.e., the computable func-

tions). Because of this discovery, these different proposals are all grouped together 

into the class “universal machine,” which is sometimes called the “effectively com-

putable procedures.” This class is “a large zoo of different formulations” that includes 

“Turing machines, recursive functions, Post canonical systems, Markov algorithms, 

all varieties of general purpose digital computers, [and] most programming lan-

guages” (Newell, 1980, p. 150).

Newell (1980) proved that a generic physical symbol system was also a univer-

sal machine. This proof, coupled with the physical symbol system hypothesis, leads 

to a general assumption in classical cognitive science: cognition is computation, 

the brain implements a universal machine, and the products of human cognition 

belong to the class of computable functions.

The claim that human cognition is produced by a physical symbol system is a 

scientific hypothesis. Evaluating the validity of this hypothesis requires fleshing out 

many additional details. What is the organization of the program that defines the 

physical symbol system for cognition (Newell & Simon, 1972)? In particular, what 

kinds of symbols and expressions are being manipulated? What primitive opera-

tions are responsible for performing symbol manipulation? How are these opera-

tions controlled? Classical cognitive science is in the business of fleshing out these 

details, being guided at all times by the physical symbol system hypothesis.

3.8 The Intentional Stance

According to the formalist’s motto (Haugeland, 1985) by taking care of the syntax, 

one also takes care of the semantics. The reason for this is that, like the rules in a 

logical system, the syntactic operations of a physical symbol system are constrained 

to preserve meaning. The symbolic expressions that a physical symbol system 

evolves will have interpretable designations.
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We have seen that the structures a physical symbol system manipulates have 

two different lives, syntactic and semantic. Because of this, there is a corollary to 

the formalist’s motto, which might be called the semanticist’s motto: “If you under-

stand the semantics, then you can take the syntax for granted.” That is, if you have 

a semantic interpretation of a physical symbol system’s symbolic expressions, then 

you can use this semantic interpretation to predict the future behaviour of the 

system—the future meanings that it will generate—without having to say anything 

about the underlying physical mechanisms that work to preserve the semantics.

We have seen that one of the fundamental properties of a physical symbol system 

is designation, which is a relation between the system and the world that provides 

interpretations to its symbolic expressions (Newell, 1980; Newell & Simon, 1976). 

More generally, it could be said that symbolic expressions are intentional—they are 

about some state of affairs in the world. This notion of intentionality is rooted in 

the philosophy of Franz Brentano (Brentano, 1995). Brentano used intentionality to 

distinguish the mental from the physical: “We found that the intentional in-exist-

ence, the reference to something as an object, is a distinguishing characteristic of 

all mental phenomena. No physical phenomenon exhibits anything similar” (p. 97).

To assume that human cognition is the product of a physical symbol system is 

to also assume that mental states are intentional in Brentano’s sense. In accord with 

the semanticist’s motto, the intentionality of mental states can be used to generate a 

theory of other people, a theory that can be used to predict the behaviour of another 

person. This is accomplished by adopting what is known as the intentional stance 

(Dennett, 1987).

The intentional stance uses the presumed contents of someone’s mental states 

to predict their behaviour. It begins by assuming that another person possesses 

intentional mental states such as beliefs, desires, or goals. As a result, the inten-

tional stance involves describing other people with propositional attitudes.

A propositional attitude is a statement that relates a person to a proposition 

or statement of fact. For example, if I said to someone “Charles Ives’ music antici-

pated minimalism,” they could describe me with the propositional attitude “Dawson 

believes that Charles Ives’ music anticipated minimalism.” Propositional attitudes 

are of interest to philosophy because they raise a number of interesting logical prob-

lems. For example, the propositional attitude describing me could be true, but at the 

same time its propositional component could be false (for instance, if Ives’ music 

bore no relationship to minimalism at all!). Propositional attitudes are found every-

where in our language, suggesting that a key element of our understanding of others 

is the use of the intentional stance.

In addition to describing other people with propositional attitudes, the inten-

tional stance requires that other people are assumed to be rational. To assume that a 

person is rational is to assume that there are meaningful relationships between the 
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contents of mental states and behaviour. To actually use the contents of mental states 

to predict behaviour—assuming rationality—is to adopt the intentional stance.

For instance, given the propositional attitudes “Dawson believes that Charles 

Ives’ music anticipated minimalism” and “Dawson desires to only listen to early 

minimalist music,” and assuming that Dawson’s behaviour rationally follows from 

the contents of his intentional states, one might predict that “Dawson often listens 

to Ives’ compositions.” The assumption of rationality, “in combination with home 

truths about our needs, capacities and typical circumstances, generates both an 

intentional interpretation of us as believers and desirers and actual predictions of 

behavior in great profusion” (Dennett, 1987, p. 50).

Adopting the intentional stance is also known as employing common-

sense psychology or folk psychology. The status of folk psychology, and of 

its relation to cognitive science, provides a source of continual controversy 

(Christensen & Turner, 1993; Churchland, 1988; Fletcher, 1995; Greenwood, 1991; 

Haselager, 1997; Ratcliffe, 2007; Stich, 1983). Is folk psychology truly predictive? 

If so, should the theories of cognitive science involve lawful operations on propo-

sitional attitudes? If not, should folk psychology be expunged from cognitive sci-

ence? Positions on these issues range from eliminative materialism’s argument 

to erase folk-psychological terms from cognitive science (Churchland, 1988), to 

experimental philosophy’s position that folk concepts are valid and informative, 

and therefore should be empirically examined to supplant philosophical con-

cepts that have been developed from a purely theoretical or analytic tradition 

(French & Wettstein, 2007; Knobe & Nichols, 2008).

In form, at least, the intentional stance or folk psychology has the appearance 

of a scientific theory. The intentional stance involves using a set of general, abstract 

laws (e.g., the principle of rationality) to predict future events. This brings it into con-

tact with an important view of cognitive development known as the theory-theory 

(Gopnik & Meltzoff, 1997; Gopnik, Meltzoff, & Kuhl, 1999; Gopnik & Wellman, 1992; 

Wellman, 1990). According to the theory-theory, children come to understand the 

world by adopting and modifying theories about its regularities. That is, the child 

develops intuitive, representational theories in a fashion that is analogous to a sci-

entist using observations to construct a scientific theory. One of the theories that a 

child develops is a theory of mind that begins to emerge when a child is three years 

old (Wellman, 1990).

The scientific structure of the intentional stance should be of no surprise, 

because this is another example of the logicism that serves as one of the foundations 

of classical cognitive science. If cognition really is the product of a physical symbol 

system, if intelligence really does emerge from the manipulation of intentional 

representations according to the rules of some mental logic, then the semanticist’s 
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motto should hold. A principle of rationality, operating on propositional attitudes, 

should offer real predictive power.

However, the logicism underlying the intentional stance leads to a serious prob-

lem for classical cognitive science. This is because a wealth of experiments has shown 

that human reasoners deviate from principles of logic or rationality (Hastie, 2001; 

Tversky & Kahneman, 1974; Wason, 1966; Wason & Johnson-Laird, 1972). “A purely 

formal, or syntactic, approach to [reasoning] may suffer from severe limitations” 

(Wason & Johnson-Laird, 1972, p. 244). This offers a severe challenge to classical 

cognitive science’s adherence to logicism: if thinking is employing mental logic, 

then how is it possible for thinkers to be illogical?

It is not surprising that many attempts have been made to preserve logicism 

by providing principled accounts of deviations from rationalism. Some of these 

attempts have occurred at the computational level and have involved modifying the 

definition of rationality by adopting a different theory about the nature of mental 

logic. Such attempts include rational analysis (Chater & Oaksford, 1999) and proba-

bilistic theories (Oaksford & Chater, 1998, 2001). Other, not unrelated approaches 

involve assuming that ideal mental logics are constrained by algorithmic and 

architectural-level realities, such as limited memory and real time constraints. 

The notion of bounded rationality is a prototypical example of this notion (Chase, 

Hertwig, & Gigerenzer, 1998; Evans, 2003; Hastie, 2001; Rubinstein, 1998; Simon, 

Egidi, & Marris, 1995).

The attempts to preserve logicism reflect the importance of the intentional 

stance, and the semanticist’s motto, to cognitive science. Classical cognitive science 

is committed to the importance of a cognitive vocabulary, a vocabulary that invokes 

the contents of mental states (Pylyshyn, 1984).

3.9 Structure and Process

The physical symbol systems of classical cognitive science make a sharp distinction 

between symbols and the rules that manipulate them. This is called the structure/

process distinction. For instance, in a Turing machine the symbols reside in one 

medium (the ticker tape) that is separate from another medium (the machine head) 

that houses the operators for manipulating symbols. Whatever the specific nature of 

cognition’s universal machine, if it is a classical physical symbol system, then it will 

exhibit the structure/process distinction.

In general, what can be said about the symbols that define the structure that 

is manipulated by a physical symbol system? It has been argued that cognitive sci-

ence’s notion of symbol is ill defined (Searle, 1992). Perhaps this is because apart 

from the need that symbols be physically distinctive, so that they can be identified 
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as being tokens of a particular type, symbols do not have definitive properties. 

Symbols are arbitrary, in the sense that anything can serve as a symbol.

The arbitrary nature of symbols is another example of the property of multiple 

realization that was discussed in Chapter 2.

What we had no right to expect is the immense variety of physical ways to realize 

any fixed symbol system. What the generations of digital technology have dem-

onstrated is that an indefinitely wide array of physical phenomena can be used to 

develop a digital technology to produce a logical level of essentially identical char-

acter. (Newell, 1980, p. 174) 

This is why universal machines can be built out of gears (Swade, 1993), LEGO 

(Agulló et al., 2003), electric train sets (Stewart, 1994), hydraulic valves, or silicon 

chips (Hillis, 1998).

The arbitrariness of symbols, and the multiple realization of universal machines, 

is rooted in the relative notion of universal machine. By definition, a machine is 

universal if it can simulate any other universal machine (Newell, 1980). Indeed, 

this is the basic idea that justifies the use of computer simulations to investigate 

cognitive and neural functioning (Dutton & Starbuck, 1971; Gluck & Myers, 2001; 

Lewandowsky, 1993; Newell & Simon, 1961; O’Reilly & Munakata, 2000).

For any class of machines, defined by some way of describing its operational 

structure, a machine of that class is defined to be universal if it can behave 

like any machine of the class. This puts simulation at the center of the stage. 

(Newell, 1980, p. 149)

If a universal machine can be simulated by any other, and if cognition is the product 

of a universal machine, then why should we be concerned about the specific details 

of the information processing architecture for cognition? The reason for this con-

cern is that the internal aspects of an architecture—the relations between a particu-

lar structure-process pairing—are not arbitrary. The nature of a particular structure 

is such that it permits some, but not all, processes to be easily applied. Therefore 

some input-output functions will be easier to compute than others because of the 

relationship between structure and process. Newell and Simon (1972, p. 803) called 

these second-order effects.

Consider, for example, one kind of representation: a table of numbers, such 

as Table 3-1, which provides the distances in kilometres between pairs of cities 

in Alberta (Dawson, Boechler, & Valsangkar-Smyth, 2000). One operation that can 

easily be applied to symbols that are organized in such a fashion is table lookup. 

For instance, perhaps I was interested in knowing the distance that I would travel 

if I drove from Edmonton to Fort McMurray. Applying table lookup to Table 3-1, 

by looking for the number at the intersection between the Edmonton row and the 

Fort McMurray column, quickly informs me that the distance is 439 kilometres. 
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This is because the tabular form of this information makes distances between 

places explicit, so that they can be “read off of ” the representation in a seemingly 

effortless manner.

Other information cannot be so easily gleaned from a tabular representation. 

For instance, perhaps I am interested in determining the compass direction that 

points from Edmonton to Fort McMurray. The table does not make this informa-

tion explicit—directions between cities cannot be simply read off of Table 3-1.

BAN CAL CAM DRU EDM FMC GRA JAS LET LLO MED RED SLA

BANFF 0 128 381 263 401 840 682 287 342 626 419 253 652

CALGARY 128 0 274 138 294 733 720 412 216 519 293 145 545

CAMROSE 381 274 0 182 97 521 553 463 453 245 429 129 348

DRUMHELLER 263 138 182 0 279 703 735 547 282 416 247 165 530

EDMONTON 401 294 97 279 0 439 456 366 509 251 526 148 250

FORT MCMURRAY 840 733 521 703 439 0 752 796 948 587 931 587 436

GRANDE PRAIRIE 682 720 553 735 456 752 0 397 935 701 982 586 318

JASPER 287 412 463 547 366 796 397 0 626 613 703 413 464

LETHBRIDGE 342 216 453 282 509 948 935 626 0 605 168 360 760

LLOYDMINSTER 626 519 245 416 251 587 701 613 605 0 480 374 496

MEDICINE HAT 419 293 429 247 526 931 982 703 168 480 0 409 777

RED DEER 253 145 129 165 148 587 586 413 360 374 409 0 399

SLAVE LAKE 652 545 348 530 250 436 318 464 760 496 777 399 0

Table 3-1. Distances in kilometres between cities in Alberta, Canada.

However, this does not mean that the table does not contain information about 

direction. Distance-like data of the sort provided by Table 3-1 can be used as input 

to a form of factor analysis called multidimensional scaling (MDS) (Romney, 

Shepard, & Nerlove, 1972; Shepard, Romney, & Nerlove, 1972). This statistical anal-

ysis converts the table of distances into a map-like representation of objects that 

would produce the set of distances in the table. Dawson et al. (2000) performed 

such an analysis on the Table 3-1 data and obtained the map that is given in Figure 

3-10. This map makes the relative spatial locations of the cities obvious; it could be 

used to simply “read off” compass directions between pairs of places.
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Figure 3-10. Results of applying MDS to Table 3-1.

“Reading off” information from a representation intuitively means accessing this 

information easily—by using a small number of primitive operations. If this is not 

possible, then information might be still be accessed by applying a larger number 

of operations, but this will take more time. The ease of accessing information is a 

result of the relationship between structure and process.

The structure-process relationship, producing second-order effects, under-

scores the value of using relative complexity evidence, a notion that was introduced 

in Chapter 2. Imagine that a physical symbol system uses a tabular representation 

of distances. Then we would expect it to compute functions involving distance very 

quickly, but it would be much slower to answer questions about direction. In con-

trast, if the device uses a map-like representation, then we would expect it to answer 

questions about direction quickly, but take longer to answer questions about dis-

tance (because, for instance, measuring operations would have to be invoked).

In summary, while structures are arbitrary, structure-process relations are not. 

They produce second-order regularities that can affect such measures as relative 

complexity evidence. Using such measures to investigate structure-process rela-

tions provides key information about a system’s algorithms and architecture.
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3.10 A Classical Architecture for Cognition

The physical symbol system hypothesis defines classical cognitive science. This 

school of thought can be thought of as the modern derivative of Cartesian philoso-

phy. It views cognition as computation, where computation is the rule-governed 

manipulation of symbols. Thus thinking and reasoning are viewed as the result of 

performing something akin to logical or mathematical inference. A great deal of 

this computational apparatus must be innate.

However, classical cognitive science crucially departs from Cartesian philoso-

phy by abandoning dualism. Classical cognitive science instead adopts a material-

ist position that mechanizes the mind. The technical notion of computation is the 

application of a finite set of recursive rules to a finite set of primitives to evolve a 

set of finite symbolic structures or expressions. This technical definition of com-

putation is beyond the capabilities of some devices, such as finite state automata, 

but can be accomplished by universal machines such as Turing machines or elec-

tronic computers. The claim that cognition is the product of a device that belongs 

to the same class of artifacts such as Turing machines or digital computers is the 

essence of the physical symbol system hypothesis, and the foundation of classical 

cognitive science.

Since the invention of the digital computer, scholars have seriously considered 

the possibility that the brain was also a computer of this type. For instance, the 

all-or-none nature of a neuron’s action potential has suggested that the brain is 

also digital in nature (von Neumann, 1958). However, von Neumann went on to 

claim that the small size and slow speed of neurons, in comparison to electronic 

components, suggested that the brain would have a different architecture than an 

electronic computer. For instance, von Neumann speculated that the brain’s archi-

tecture would be far more parallel in nature.

Von Neumann’s (1958) speculations raise another key issue. While classical 

cognitive scientists are confident that brains belong to the same class as Turing 

machines and digital computers (i.e., all are physical symbol systems), they do not 

expect the brain to have the same architecture. If the brain is a physical symbol 

system, then what might its architecture be like?

Many classical cognitive scientists believe that the architecture of cognition 

is some kind of production system. The model of production system architecture 

was invented by Newell and Simon (Newell, 1973; Newell & Simon, 1961, 1972) 

and has been used to simulate many psychological phenomena (Anderson, 1983; 

Anderson et al., 2004; Anderson & Matessa, 1997; Meyer et al. 2001; Meyer & Kieras, 

1997a, 1997b; Newell, 1990; Newell & Simon, 1972). Production systems have a 

number of interesting properties, including an interesting mix of parallel and serial 

processing.
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A production system is a general-purpose symbol manipulator (Anderson, 1983; 

Newell, 1973; Newell & Simon, 1972). Like other physical symbol systems, produc-

tion systems exhibit a marked distinction between symbolic expressions and the 

rules for manipulating them. They include a working memory that is used to store 

one or more symbolic structures, where a symbolic structure is an expression that 

is created by combining a set of atomic symbols. In some production systems (e.g., 

Anderson, 1983) a long-term memory, which also stores expressions, is present as 

well. The working memory of a production system is analogous to the ticker tape 

of a Turing machine or to the random access memory of a von Neumann computer.

The process component of a production system is a finite set of symbol-manip-

ulating rules that are called productions. Each production is a single rule that pairs 

a triggering condition with a resulting action. A production works by scanning the 

expressions in working memory for a pattern that matches its condition. If such a 

match is found, then the production takes control of the memory and performs its 

action. A production’s action is some sort of symbol manipulation—adding, delet-

ing, copying, or moving symbols or expressions in the working memory.

A typical production system is a parallel processor in the sense that all of its 

productions search working memory simultaneously for their triggering patterns. 

However, it is a serial processor—like a Turing machine or a digital computer—

when actions are performed to manipulate the expressions in working memory. 

This is because in most production systems only one production is allowed to oper-

ate on memory at any given time. That is, when one production finds its triggering 

condition, it takes control for a moment, disabling all of the other productions. The 

controlling production manipulates the symbols in memory, and then releases its 

control, which causes the parallel scan of working memory to recommence.

We have briefly described two characteristics, structure and process, that make 

production systems examples of physical symbol systems. The third characteristic, 

control, reveals some additional interesting properties of production systems.

On the one hand, stigmergy is used to control a production system, that is, 

to choose which production acts at any given time. Stigmergic control occurs 

when different agents (in this case, productions) do not directly communicate 

with each other, but conduct indirect communication by modifying a shared 

environment (Theraulaz & Bonabeau, 1999). Stigmergy has been used to explain 

how a colony of social insects might coordinate their actions to create a nest 

(Downing & Jeanne, 1988; Karsai, 1999). The changing structure of the nest elicits 

different nest-building behaviours; the nest itself controls its own construction. 

When one insect adds a new piece to the nest, this will change the later behaviour of 

other insects without any direct communication occurring.

Production system control is stigmergic if the working memory is viewed 

as being analogous to the insect nest. The current state of the memory causes a 
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particular production to act. This changes the contents of the memory, which in 

turn can result in a different production being selected during the next cycle of the 

architecture.

On the other hand, production system control is usually not completely stig-

mergic. This is because the stigmergic relationship between working memory 

and productions is loose enough to produce situations in which conflicts occur. 

Examples of this type of situation include instances in which more than one pro-

duction finds its triggering pattern at the same time, or when one production finds 

its triggering condition present at more than one location in memory at the same 

time. Such situations must be dealt with by additional control mechanisms. For 

instance, priorities might be assigned to productions so that in a case where two 

or more productions were in conflict, only the production with the highest priority 

would perform its action.

Production systems have provided an architecture—particularly if that archi-

tecture is classical in nature—that has been so successful at simulating higher-order 

cognition that some researchers believe that production systems provide the foun-

dation for a unified theory of cognition (Anderson, 1983; Anderson et al., 2004; 

Newell, 1990). Production systems illustrate another feature that is also typical of 

this approach to cognitive science: the so-called classical sandwich (Hurley, 2001).

Imagine a very simple agent that was truly incapable of representation and rea-

soning. Its interactions with the world would necessarily be governed by a set of 

reflexes that would convert sensed information directly into action. These reflexes 

define a sense-act cycle (Pfeifer & Scheier, 1999).

In contrast, a more sophisticated agent could use internal representations to 

decide upon an action, by reasoning about the consequences of possible actions 

and choosing the action that was reasoned to be most beneficial (Popper, 1978, 

p. 354): “While an uncritical animal may be eliminated altogether with its dogmati-

cally held hypotheses, we may formulate our hypotheses, and criticize them. Let 

our conjectures, our theories die in our stead!” In this second scenario, thinking 

stands as an intermediary between sensation and action. Such behaviour is not 

governed by a sense-act cycle, but is instead the product of a sense-think-act cycle 

(Pfeifer & Scheier, 1999).

Hurley (2001) has argued that the sense-think-act cycle is the stereotypical form 

of a theory in classical cognitive science; she called this form the classical sandwich. 

In a typical classical theory, perception can only indirectly inform action, by sending 

information to be processed by the central representational processes, which in turn 

decide which action is to be performed.

Production systems exemplify the classical sandwich. The first production sys-

tems did not incorporate sensing or acting, in spite of a recognized need to do so. 

“One problem with psychology’s attempt at cognitive theory has been our persistence 
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in thinking about cognition without bringing in perceptual and motor processes” 

(Newell, 1990, p. 15). This was also true of the next generation of production sys-

tems, the adaptive control of thought (ACT) architecture (Anderson, 1983). ACT 

“historically was focused on higher level cognition and not perception or action” 

(Anderson et al., 2004, p. 1038).

More modern production systems, such as EPIC (executive-process interactive 

control) (Meyer & Kieras, 1997a, 1997b), have evolved to include sensing and acting. 

EPIC simulates the performance of multiple tasks and can produce the psychologi-

cal refractory period (PRP). When two tasks can be performed at the same time, the 

stimulus onset asynchrony (SOA) between the tasks is the length of time from the 

start of the first task to the start of the second task. When SOAs are long, the time 

taken by a subject to make a response is roughly the same for both tasks. However, for 

SOAs of half a second or less, it takes a longer time to perform the second task than 

it does to perform the first. This increase in response time for short SOAs is the PRP.

EPIC is an advanced production system. One of its key properties is that pro-

ductions in EPIC can act in parallel. That is, at any time cycle in EPIC process-

ing, all productions that have matched their conditions in working memory will 

act to alter working memory. This is important; when multiple tasks are modelled 

there will be two different sets of productions in action, one for each task. EPIC also 

includes sensory processors (such as virtual eyes) and motor processors, because 

actions can constrain task performance. For example, EPIC uses a single motor pro-

cessor to control two “virtual hands.” This results in interference between two tasks 

that involve making responses with different hands.

While EPIC (Meyer & Kieras, 1997a, 1997b) explicitly incorporates sensing, 

acting, and thinking, it does so in a fashion that still exemplifies the classical sand-

wich. In EPIC, sensing transduces properties of the external world into symbols 

to be added to working memory. Working memory provides symbolic expressions 

that guide the actions of motor processors. Thus working memory centralizes the 

“thinking” that maps sensations onto actions. There are no direct connections 

between sensing and acting that bypass working memory. EPIC is an example of 

sense-think-act processing.

Radical embodied cognitive science, which is discussed in Chapter 5, argues 

that intelligence is the result of situated action; it claims that sense-think-act pro-

cessing can be replaced by sense-act cycles, and that the rule-governed manipula-

tion of expressions is unnecessary (Chemero, 2009). In contrast, classical research-

ers claim that production systems that include sensing and acting are sufficient to 

explain human intelligence and action, and that embodied theories are not neces-

sary (Vera & Simon, 1993).

It follows that there is no need, contrary to what followers of SA [situated action] 

seem sometimes to claim, for cognitive psychology to adopt a whole new language 
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and research agenda, breaking completely from traditional (symbolic) cognitive 

theories. SA is not a new approach to cognition, much less a new school of cognitive 

psychology. (Vera & Simon, 1993, p. 46)

We see later in this book that production systems provide an interesting medium 

that can be used to explore the relationship between classical, connectionist, and 

embodied cognitive science.

3.11 Weak Equivalence and the Turing Test

There are two fundamentals that follow from accepting the physical symbol system 

hypothesis (Newell, 1980; Newell & Simon, 1976). First, general human intelligence 

is the product of rule-governed symbol manipulation. Second, because they are uni-

versal machines, any particular physical symbol system can be configured to simu-

late the behaviour of another physical symbol system.

A consequence of these fundamentals is that digital computers, which are one 

type of physical symbol system, can simulate another putative member of the same 

class, human cognition (Newell & Simon, 1961, 1972; Simon, 1969). More than fifty 

years ago it was predicted “that within ten years most theories in psychology will 

take the form of computer programs, or of qualitative statements about the char-

acteristics of computer programs” (Simon & Newell, 1958, pp. 7–8). One possible 

measure of cognitive science’s success is that a leading critic of artificial intel-

ligence has conceded that this particular prediction has been partially fulfilled 

(Dreyfus, 1992).

There are a number of advantages to using computer simulations to study cog-

nition (Dawson, 2004; Lewandowsky, 1993). The difficulties in converting a theory 

into a working simulation can identify assumptions that the theory hides. The 

formal nature of a computer program provides new tools for studying simulated 

concepts (e.g., proofs of convergence). Programming a theory forces a researcher 

to provide rigorous definitions of the theory’s components. “Programming is, again 

like any form of writing, more often than not experimental. One programs, just 

as one writes, not because one understands, but in order to come to understand.” 

(Weizenbaum, 1976, p. 108).

However, computer simulation research provides great challenges as well. Chief 

among these is validating the model, particularly because one universal machine 

can simulate any other. A common criticism of simulation research is that it is pos-

sible to model anything, because modelling is unconstrained:

Just as we may wonder how much the characters in a novel are drawn from real 

life and how much is artifice, we might ask the same of a model: How much is 

based on observation and measurement of accessible phenomena, how much is 
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based on informed judgment, and how much is convenience? (Oreskes, Shrader-

Frechette, & Belitz, 1994, p. 644)

Because of similar concerns, mathematical psychologists have argued that computer 

simulations are impossible to validate in the same way as mathematical models of 

behaviour (Estes, 1975; Luce, 1989, 1999). Evolutionary biologist John Maynard 

Smith called simulation research “fact free science” (Mackenzie, 2002).

Computer simulation researchers are generally puzzled by such criticisms, 

because their simulations of cognitive phenomena must conform to a variety of 

challenging constraints (Newell, 1980, 1990; Pylyshyn, 1984). For instance, Newell’s 

(1980, 1990) production system models aim to meet a number of constraints that 

range from behavioural (flexible responses to environment, goal-oriented, operate 

in real time) to biological (realizable as a neural system, develop via embryological 

growth processes, arise through evolution).

In validating a computer simulation, classical cognitive science becomes an 

intrinsically comparative discipline. Model validation requires that theoretical 

analyses and empirical observations are used to evaluate both the relationship 

between a simulation and the subject being simulated. In adopting the physi-

cal symbol system hypothesis, classical cognitive scientists are further commit-

ted to the assumption that this relation is complex, because it can be established 

(as argued in Chapter 2) at many different levels (Dawson, 1998; Marr, 1982; 

Pylyshyn, 1984). Pylyshyn has argued that model validation can take advantage of 

this and proceed by imposing severe empirical constraints. These empirical con-

straints involve establishing that a model provides an appropriate account of its 

subject at the computational, algorithmic, and architectural levels of analysis. Let 

us examine this position in more detail.

First, consider a relationship between model and subject that is not listed 

above—a relationship at the implementational level of analysis. Classical cognitive 

science’s use of computer simulation methodology is a tacit assumption that the 

physical structure of its models does not need to match the physical structure of the 

subject being modelled.

The basis for this assumption is the multiple realization argument that we have 

already encountered. Cognitive scientists describe basic information processes in 

terms of their functional nature and ignore their underlying physicality. This is 

because the same function can be realized in radically different physical media. For 

instance, AND-gates can be created using hydraulic channels, electronic compo-

nents, or neural circuits (Hillis, 1998). If hardware or technology were relevant—if 

the multiple realization argument was false—then computer simulations of cogni-

tion would be absurd. Classical cognitive science ignores the physical when models 

are validated. Let us now turn to the relationships between models and subjects 

that classical cognitive science cannot and does not ignore.
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In the most abstract sense, both a model and a modelled agent can be viewed as 

opaque devices, black boxes whose inner workings are invisible. From this perspec-

tive, both are machines that convert inputs or stimuli into outputs or responses; 

their behaviour computes an input-output function (Ashby, 1956, 1960). Thus the 

most basic point of contact between a model and its subject is that the input-out-

put mappings produced by one must be identical to those produced by the other. 

Establishing this fact is establishing a relationship between model and subject at 

the computational level.

To say that a model and subject are computing the same input-output function 

is to say that they are weakly equivalent. It is a weak equivalence because it is estab-

lished by ignoring the internal workings of both model and subject. There are an 

infinite number of different algorithms for computing the same input-output func-

tion (Johnson-Laird, 1983). This means that weak equivalence can be established 

between two different systems that use completely different algorithms. Weak 

equivalence is not concerned with the possibility that two systems can produce the 

right behaviours but do so for the wrong reasons.

Weak equivalence is also sometimes known as Turing equivalence. This is 

because weak equivalence is at the heart of a criterion proposed by computer pio-

neer Alan Turing, to determine whether a computer program had achieved intel-

ligence (Turing, 1950). This criterion is called the Turing test.

Turing (1950) believed that a device’s ability to participate in a meaningful con-

versation was the strongest test of its general intelligence. His test involved a human 

judge conducting, via teletype, a conversation with an agent. In one instance, the 

agent was another human. In another, the agent was a computer program. Turing 

argued that if the judge could not correctly determine which agent was human then 

the computer program must be deemed to be intelligent. A similiar logic was sub-

scribed to by Descartes (2006). Turing and Descartes both believed in the power 

of language to reveal intelligence; however, Turing believed that machines could 

attain linguistic power, while Descartes did not.

A famous example of the application of the Turing test is provided by a model of 

paranoid schizophrenia, PARRY (Kosslyn, Ball, & Reiser, 1978). This program inter-

acted with a user by carrying on a conversation—it was a natural language com-

munication program much like the earlier ELIZA program (Weizenbaum, 1966). 

However, in addition to processing the structure of input sentences, PARRY 

also computed variables related to paranoia: fear, anger, and mistrust. PARRY’s 

responses were thus affected not only by the user’s input, by also by its evolving 

affective states. PARRY’s contributions to a conversation became more paranoid as 

the interaction was extended over time.

A version of the Turing test was used to evaluate PARRY’s performance (Colby 

et al., 1972). Psychiatrists used teletypes to interview PARRY as well as human 
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paranoids. Forty practising psychiatrists read transcripts of these interviews in order 

to distinguish the human paranoids from the simulated ones. They were only able to 

do this at chance levels. PARRY had passed the Turing test: “We can conclude that 

psychiatrists using teletyped data do not distinguish real patients from our simula-

tion of a paranoid patient” (p. 220).

The problem with the Turing test, though, is that in some respects it is too 

easy to pass. This was one of the points of the pioneering conversation-making 

program, ELIZA (Weizenbaum, 1966), which was developed to engage in natural 

language conversations. Its most famous version, DOCTOR, modelled the con-

versational style of an interview with a humanistic psychotherapist. ELIZA’s con-

versations were extremely compelling. “ELIZA created the most remarkable illu-

sion of having understood the minds of the many people who conversed with it” 

(Weizenbaum, 1976, p. 189). Weizenbaum was intrigued by the fact that “some sub-

jects have been very hard to convince that ELIZA is not human. This is a striking 

form of Turing’s test” (Weizenbaum, 1966, p. 42).

However, ELIZA’s conversations were not the product of natural language 

understanding. It merely parsed incoming sentences, and then put fragments of 

these sentences into templates that were output as responses. Templates were 

ranked on the basis of keywords that ELIZA was programmed to seek during a 

conversation; this permitted ELIZA to generate responses rated as being highly 

appropriate. “A large part of whatever elegance may be credited to ELIZA lies in the 

fact that ELIZA maintains the illusion of understanding with so little machinery” 

(Weizenbaum, 1966, p. 43).

Indeed, much of the apparent intelligence of ELIZA is a contribution of the 

human participant in the conversation, who assumes that ELIZA understands its 

inputs and that even strange comments made by ELIZA are made for an intelligent 

reason.

The ‘sense’ and the continuity the person conversing with ELIZA perceives is 

supplied largely by the person himself. He assigns meanings and interpreta-

tions to what ELIZA ‘says’ that confirm his initial hypothesis that the system 

does understand, just as he might do with what a fortune-teller says to him. 

(Weizenbaum, 1976, p. 190)

Weizenbaum believed that natural language understanding was beyond the capa-

bility of computers, and also believed that ELIZA illustrated this belief. However, 

ELIZA was received in a fashion that Weizenbaum did not anticipate, and which 

was opposite to his intent. He was so dismayed that he wrote a book that served as 

a scathing critique of artificial intelligence research (Weizenbaum, 1976, p. 2): “My 

own shock was administered not by any important political figure in establishing 

his philosophy of science, but by some people who insisted on misinterpreting a 

piece of work I had done.”
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The ease with which ELIZA was misinterpreted—that is, the ease with which it 

passed a striking form of Turing’s test—caused Weizenbaum (1976) to question most 

research on the computer simulation of intelligence. Much of Weizenbaum’s con-

cern was rooted in AI’s adoption of Turing’s (1950) test as a measure of intelligence.

An entirely too simplistic notion of intelligence has dominated both popular and 

scientific thought, and this notion is, in part, responsible for permitting artificial 

intelligence’s perverse grand fantasy to grow. (Weizenbaum, 1976, p. 203)

However, perhaps a more reasoned response would be to adopt a stricter means 

of evaluating cognitive simulations. While the Turing test has had more than fifty 

years of extreme influence, researchers are aware of its limitations and have pro-

posed a number of ways to make it more sensitive (French, 2000).

For instance, the Total Turing Test (French, 2000) removes the teletype and 

requires that a simulation of cognition be not only conversationally indistinguish-

able from a human, but also physically indistinguishable. Only a humanoid robot 

could pass such a test, and only do so by not only speaking but also behaving (in 

very great detail) in ways indistinguishable from a human. A fictional version of 

the Total Turing Test is the Voight-Kampff scale described in Dick’s (1968) novel Do 

Androids Dream of Electric Sheep? This scale used behavioural measures of empa-

thy, including pupil dilation, to distinguish humans from androids.

3.12 Towards Strong Equivalence

The Turing test has had a long, influential history (French, 2000). However, many 

would agree that it is flawed, perhaps because it is too easily passed. As a con-

sequence, some have argued that artificial intelligence research is very limited 

(Weizenbaum, 1976). Others have argued for more stringent versions of the Turing 

test, such as the Total Turing Test.

Classical cognitive science recognizes that the Turing test provides a necessary, 

but not a sufficient, measure of a model’s validity. This is because it really only estab-

lishes weak equivalence, by collecting evidence that two systems are computation-

ally equivalent. It accomplishes this by only examining the two devices at the level 

of the input-output relationship. This can only establish weak equivalence, because 

systems that use very different algorithms and architectures can still compute the 

same function.

Classical cognitive science has the goal of going beyond weak equivalence. It 

attempts to do so by establishing additional relationships between models and sub-

jects, identities between both algorithms and architectures. This is an attempt to 

establish what is known as strong equivalence (Pylyshyn, 1984). Two systems are 

said to be strongly equivalent if they compute the same input-output function (i.e., 
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if they are weakly equivalent), accomplish this with the same algorithm, and bring 

this algorithm to life with the same architecture. Cognitive scientists are in the busi-

ness of making observations that establish the strong equivalence of their models 

to human thinkers.

Classical cognitive science collects these observations by measuring particular 

behaviours that are unintended consequences of information processing, and which 

can therefore reveal the nature of the algorithm that is being employed. Newell 

and Simon (1972) named these behaviours second-order effects; in Chapter 2 these 

behaviours were called artifacts, to distinguish them from the primary or intended 

responses of an information processor. In Chapter 2, I discussed three general 

classes of evidence related to artifactual behaviour: intermediate state evidence, 

relative complexity evidence, and error evidence.

Note that although similar in spirit, the use of these three different types of 

evidence to determine the relationship between the algorithms used by model and 

subject is not the same as something like the Total Turing Test. Classical cogni-

tive science does not require physical correspondence between model and subject. 

However, algorithmic correspondences established by examining behavioural arti-

facts put much stronger constraints on theory validation than simply looking for 

stimulus-response correspondences. To illustrate this, let us consider some exam-

ples of how intermediate state evidence, relative complexity evidence, and error evi-

dence can be used to validate models.

One important source of information that can be used to validate a model is 

intermediate state evidence (Pylyshyn, 1984). Intermediate state evidence involves 

determining the intermediate steps that a symbol manipulator takes to solve a prob-

lem, and then collecting evidence to determine whether a modelled subject goes 

through the same intermediate steps. Intermediate state evidence is notoriously dif-

ficult to collect, because human information processors are black boxes—we cannot 

directly observe internal cognitive processing. However, clever experimental para-

digms can be developed to permit intermediate states to be inferred.

A famous example of evaluating a model using intermediate state evidence 

is found in some classic and pioneering research on human problem solving 

(Newell & Simon, 1972). Newell and Simon collected data from human subjects as 

they solved problems; their method of data collection is known as protocol analysis 

(Ericsson & Simon, 1984). In protocol analysis, subjects are trained to think out loud 

as they work. A recording of what is said by the subject becomes the primary data 

of interest.

The logic of collecting verbal protocols is that the thought processes involved in 

active problem solving are likely to be stored in a person’s short-term memory (STM), 

or working memory. Cognitive psychologists have established that items stored in 

such a memory are stored as an articulatory code that permits verbalization to 
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maintain the items in memory (Baddeley, 1986, 1990; Conrad, 1964a, 1964b; Waugh 

& Norman, 1965). As a result, asking subjects to verbalize their thinking steps is 

presumed to provide accurate access to current cognitive processing, and to do so 

with minimal disruption. “Verbalization will not interfere with ongoing processes 

if the information stored in STM is encoded orally, so that an articulatory code can 

readily be activated” ” (Ericsson & Simon, 1984, p. 68).

In order to study problem solving, Newell and Simon (1972) collected verbal 

protocols for problems that were difficult enough to engage subjects and gener-

ate interesting behaviour, but simple enough to be solved. For instance, when a 

subject was asked to decode the cryptarithmetic problem DONALD + GERALD = 

ROBERT after being told that D = 5, they solved the problem in twenty minutes and 

produced a protocol that was 2,186 words in length.

The next step in the study was to create a problem behaviour graph from a sub-

ject’s protocol. A problem behaviour graph is a network of linked nodes. Each node 

represents a state of knowledge. For instance, in the cryptarithmetic problem such 

a state might be the observation that “R is odd.” A horizontal link from a node to a 

node on its right represents the application of an operation that changed the state 

of knowledge. An example operation might be “Find a column that contains a letter 

of interest and process that column.” A vertical link from a node to a node below 

represents backtracking. In many instances, a subject would reach a dead end in 

a line of thought and return to a previous state of knowledge in order to explore a 

different approach. The 2,186-word protocol produced a problem behaviour graph 

that consisted of 238 different nodes.

The initial node in a problem behaviour graph represents a subject’s starting 

state of knowledge when given a problem. A node near the end of the problem behav-

iour graph represents the state of knowledge when a solution has been achieved. 

All of the other nodes represent intermediate states of knowledge. Furthermore, 

in Newell and Simon’s (1972) research, these intermediate states represent very 

detailed elements of knowledge about the problem as it is being solved.

The goal of the simulation component of Newell and Simon’s (1972) research 

was to create a computer model that would generate its own problem behaviour 

graph. The model was intended to produce a very detailed mimicry of the subject’s 

behaviour—it was validated by examining the degree to which the simulation’s 

problem behaviour graph matched the graph created for the subject. The meticu-

lous nature of such intermediate state evidence provided additional confidence for 

the use of verbal protocols as scientific data. “For the more information conveyed in 

their responses, the more difficult it becomes to construct a model that will produce 

precisely those responses adventitiously—hence the more confidence we can place 

in a model that does predict them” (Ericsson & Simon, 1984, p. 7).
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Newell and Simon (1972) created a computer simulation by examining a sub-

ject’s problem behaviour graph, identifying the basic processes that it revealed in 

its links between nodes, and coding each of these processes as a production in a 

production system. Their model developed from the protocol for the DONALD + 

GERALD = ROBERT problem consisted of only 14 productions. The behaviour of 

this fairly small program was able to account for 75 to 80 percent of the human sub-

ject’s problem behaviour graph. “All of this analysis shows how a verbal thinking-

aloud protocol can be used as the raw material for generating and testing a theory 

of problem solving behavior” (Newell & Simon, 1972, p. 227).

The contribution of Newell and Simon’s (1972) research to classical cognitive 

science is impossible to overstate. One of their central contributions was to dem-

onstrate that human problem solving could be characterized as searching through 

a problem space. A problem space consists of a set of knowledge states—start-

ing state, one or more goal states, and a potentially large number of intermediate 

states—that each represent current knowledge about a problem. A link between 

two knowledge states shows how the application of a single rule can transform the 

first state into the second. A problem behaviour graph is an example of a problem 

space. Searching the problem space involves finding a route—a sequence of opera-

tions—that will transform the initial state into a goal state. From this perspective, 

problem solving becomes the domain of control: finding as efficiently as possi-

ble an acceptable sequence of problem-solving operations. An enormous number 

of different search strategies exist (Knuth, 1997; Nilsson, 1980); establishing the 

strong equivalence of a problem-solving model requires collecting evidence (e.g., 

using protocol analysis) to ensure that the same search or control strategy is used 

by both model and agent.

A second kind of evidence that is used to investigate the validity of a model is 

relative complexity evidence (Pylyshyn, 1984). Relative complexity evidence gener-

ally involves examining the relative difficulty of problems, to see whether the prob-

lems that are hard (or easy) for a model are the same problems that are hard (or 

easy) for a modelled subject. The most common kind of relative complexity evi-

dence collected by cognitive scientists is response latency (Luce, 1986; Posner, 1978). 

It is assumed that the time taken for a system to generate a response is an artifac-

tual behaviour that can reveal properties of an underlying algorithm and be used to 

examine the algorithmic relationship between model and subject.

One domain in which measures of response latency have played an impor-

tant role is the study of visual cognition (Kosslyn & Osherson, 1995; Pinker, 1985). 

Visual cognition involves solving information processing problems that involve 

spatial relationships or the spatial layout of information. It is a rich domain of 

study because it seems to involve qualitatively different kinds of information pro-

cessing: the data-driven or preattentive detection of visual features (Marr, 1976; 



 Elements of Classical Cognitive Science  101

Richards, 1988; Treisman, 1985), top-down or high-level cognition to link combina-

tions of visual features to semantic interpretations or labels (Jackendoff, 1983, 1987; 

Treisman, 1986, 1988), and processing involving visual attention or visual routines 

that include both data-driven and top-down characteristics, and which serve as an 

intermediary between feature detection and object recognition (Cooper & Shepard, 

1973a, 1973b; Ullman, 1984; Wright, 1998).

Visual search tasks are frequently used to study visual cognition. In such a task, 

a subject is usually presented with a visual display consisting of a number of objects. 

In the odd-man-out version of this task, in one half of the trials one of the objects 

(the target) is different from all of the other objects (the distracters). In the other 

half of the trials, the only objects present are distracters. Subjects have to decide as 

quickly and accurately as possible whether a target is present in each display. The 

dependent measures in such tasks are search latency functions, which represent the 

time required to detect the presence or absence of a target as a function of the total 

number of display elements.

Pioneering work on visual search discovered the so-called pop-out effect: the 

time required to detect the presence of a target that is characterized by one of a 

small number of unique features (e.g., colour, orientation, contrast, motion) is 

largely independent of the number of distractor elements in a display, producing 

a search latency function that is essentially flat (Treisman & Gelade, 1980). This is 

because, regardless of the number of elements in the display, when the target is 

present it seems to pop out of the display, bringing itself immediately to attention. 

Notice how the target pops out of the display illustrated in Figure 3-11.

Figure 3-11. Unique features pop out of displays, regardless of display size.

In contrast, the time to detect a target defined by a unique combination of features 

generally increases with the number of distractor items, producing search latency 

functions with positive slopes. Figure 3-12 illustrates visual search in objects that 

are either connected or unconnected (Dawson & Thibodeau, 1998); connectedness 
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is a property that is not local, but is only defined by relations between multiple fea-

tures (Minsky & Papert, 1988). The larger the number of display items, the longer it 

takes to find the target when it is present in the display. Is there a target in Figure 

3-12? If so, is it harder to find than the one that was present in Figure 3-11?

Figure 3-12. Unique combinations of features do not pop out.

Search latency results as those described above, which revealed that some objects 

pop out but others do not, formed the basis for feature integration theory (Treisman, 

1985, 1986, 1988; Treisman & Gelade, 1980; Treisman & Gormican, 1988; Treisman, 

Sykes, & Gelade, 1977). Feature integration theory is a multistage account of visual 

cognition. In the first state, preattentive processors register the locations of a small 

set of primitive visual features on independent feature maps. These maps repre-

sent a small number of properties (e.g., orientation, colour, contrast movement) 

that also appear to be transduced by early neural visual detectors (Livingstone 

& Hubel, 1988). If such a feature is unique to a display, then it will be the only active 

location in its feature map. This permits pop out to occur, because the location of 

the unique, primitive feature is preattentively available.

Unique combinations of features do not produce unique activity in a single fea-

ture map and therefore cannot pop out. Instead, they require additional process-

ing in order to be detected. First, attentional resources must be used to bring the 

various independent feature maps into register with respect to a master map of 

locations. This master map of locations will indicate what combinations of features 

coexist at each location in the map. Second, a “spotlight” of attention is used to 

scan the master map of locations in search of a unique object. Because this atten-

tional spotlight can only process a portion of the master map at any given time, and 

because it must be scanned from location to location on the master map, it takes 

longer for unique combinations of features to be found. Furthermore, the search 

of the master map will become longer and longer as more of its locations are filled, 
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explaining why the latency to detect unique feature combinations is affected by the 

number of distractors present.

Relative complexity evidence can also be used to explore some of the compo-

nents of feature integration theory. For example, several researchers have proposed 

models of the how the attentional spotlight is shifted to detect targets in a visual search 

task (Fukushima, 1986; Gerrissen, 1991; Grossberg, 1980; Koch & Ullman, 1985; 

LaBerge, Carter, & Brown, 1992; Sandon, 1992). While the specific details of these 

models differ, their general structure is quite similar. First, these models represent 

the display being searched as an array of processors whose activities encode the 

visual distinctiveness of the location that each processor represents (i.e., how differ-

ent it is in appearance relative to its neighbours). Second, these processors engage 

in a winner-take-all (WTA) competition (Feldman & Ballard, 1982) to identify the 

most distinctive location. This competition is defined by lateral inhibition: each 

processor uses its activity as an inhibitory signal in an attempt to reduce the activity 

of its neighbours. Third, the display element at the winning location is examined to 

see whether or not it is the target. If it is, the search stops. If it is not, activity at this 

location either decays or is inhibited (Klein, 1988), and a new WTA competition is 

used to find the next most distinctive location in the display.

This type of model provides a straightforward account of search latency func-

tions obtained for targets defined by unique conjunctions of features. They also 

lead to a unique prediction: if inhibitory processes are responsible for directing the 

shift of the attentional spotlight, then search latency functions should be affected 

by the overall adapting luminance of the display. This is because there is a greater 

degree of inhibition during the processing of bright visual displays than there is 

for dimmer displays (Barlow, Fitzhugh, & Kuffler, 1957; Derrington & Lennie, 1982; 

Ransom-Hogg & Spillmann, 1980; Rohaly & Buchsbaum, 1989).

A visual search study was conducted to test this prediction (Dawson & 

Thibodeau, 1998). Modifying a paradigm used to study the effect of adaptive lumi-

nance on motion perception (Dawson & Di Lollo, 1990), Dawson and Thibodeau 

(1998) had subjects perform a visual search task while viewing the displays through 

neutral density filters that modified display luminance while not affecting the rela-

tive contrast of elements. There were two major findings that supported the kinds 

of models of attentional shift described above. First, when targets pop out, the 

response latency of subjects was not affected by adaptive luminance. This is consist-

ent with feature integration theory, in the sense that a shifting attentional spotlight 

is not required for pop out to occur. Second, for targets that did not pop out, search 

latency functions were affected by the level of adaptive luminance. For darker dis-

plays, both the intercept and the slope of the search latency functions increased sig-

nificantly. This is consistent with the hypothesis that this manipulation interferes 

with the inhibitory processes that guide shifts of attention.
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A third approach to validating a model involves the use of error evidence. This 

approach assumes that errors are artifacts, in the sense that they are a natural con-

sequence of an agent’s information processing, and that they are not a deliberate or 

intended product of this processing.

One source of artifactual errors is the way information processing can be 

constrained by limits on internal resources (memory or attention) or by external 

demands (the need for real time responses). These restrictions on processing pro-

duce bounded rationality (Simon, 1982). Another reason for artifactual errors lies 

in the restrictions imposed by the particular structure-process pairing employed 

by an information processor. “A tool too gains its power from the fact that it per-

mits certain actions and not others. For example, a hammer has to be rigid. It can 

therefore not be used as a rope” (Weizenbaum, 1976, p. 37). Like a tool, a particular 

structure-process pairing may not be suited for some tasks and therefore produces 

errors when faced with them.

One example of the importance of error evidence is found in the large literature 

on human, animal, and robot navigation (Cheng, 2005; Cheng & Newcombe, 2005; 

Healy, 1998; Jonsson, 2002; Milford, 2008). How do organisms find their place in 

the world? One approach to answering this question is to set up small, manageable 

indoor environments. These “arenas” can provide a variety of cues to animals that 

learn to navigate within them. If an agent is reinforced for visiting a particular loca-

tion, what cues does it use to return to this place?

One paradigm for addressing this question is the reorientation task invented 

by Ken Cheng (1986). In the reorientation task, an agent is typically placed within 

a rectangular arena. Reinforcement is typically provided at one of the corner loca-

tions in the arena. That is, the agent is free to explore the arena, and eventually finds 

a reward at a location of interest—it learns that this is the “goal location.” The agent 

is then removed from the arena, disoriented, and returned to an (often different) 

arena, with the task of using the available cues to relocate the goal. Of particular 

interest are experimental conditions in which the arena has been altered from the 

one in which the agent was originally trained.

An arena that is used in the reorientation task can provide two different 

kinds of navigational information: geometric cues and feature cues (Cheng & 

Newcombe, 2005). Geometric cues are relational, while feature cues are not.

A geometric property of a surface, line, or point is a property it possesses by virtue 

of its position relative to other surfaces, lines, and points within the same space. A 

non-geometric property is any property that cannot be described by relative posi-

tion alone. (Gallistel, 1990, p. 212)

In a rectangular arena, metric properties (e.g., wall lengths, angles between walls) 

combined with an agent’s distinction between left and right (e.g., the long wall is 

to the left of the short wall) provide geometric cues. Non-geometric cues or feature 
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cues can be added as well. For instance, one arena wall can have a different colour 

than the others (Cheng, 1986), or different coloured patterns can be placed at each 

corner of the arena (Kelly, Spetch, & Heth, 1998).

One question of interest concerns the relative contributions of these different 

cues for reorientation. This is studied by seeing how the agent reorients after it has 

been returned to an arena in which cues have been altered. For example, the feature 

cues might have been moved to new locations. This places feature cues in conflict with 

geometric cues. Will the agent move to a location defined by geometric information, 

or will it move to a different location indicated by feature information? Extensive use 

of the reorientation task has revealed some striking regularities.

Some of the most interesting regularities found in the reorientation task pertain 

to a particular error in reorientation. In an arena with no unique feature cues (no 

unique wall colour, no unique pattern at each corner), geometric cues are the only 

information available for reorienting. However, geometric cues cannot uniquely 

specify a goal location in a rectangular arena. This is because the geometric cues at 

the goal location (e.g., 90° angle, shorter wall to the left and longer wall to the right) 

are identical to the geometric cues present at the diagonally opposite corner (often 

called the rotational location). Under these conditions, the agent will produce rota-

tional error (Cheng, 1986, 2005). When rotational error occurs, the trained agent 

goes to the goal location at above-chance levels; however, the animal goes to the 

rotational location equally often. Rotational error is usually taken as evidence that 

the agent is relying upon the geometric properties of the environment.

When feature cues are present in a rectangular arena, a goal location can be 

uniquely specified. In fact, when cues are present, an agent should not even need 

to pay attention to geometric cues, because these cues are not relevant. However, 

evidence suggests that geometric cues still influence behaviour even when such cues 

are not required to solve the task.

First, in some cases subjects continue to make some rotational errors even 

when feature cues specify the goal location (Cheng, 1986; Hermer & Spelke, 1994). 

Second, when feature cues present during training are removed from the arena in 

which reorientation occurs, subjects typically revert to generating rotational error 

(Kelly, Spetch, and Heth, 1998; Sovrano, Bisazza, & Vallortigara, 2003). Third, in 

studies in which local features are moved to new locations in the new arena, there 

is a conflict between geometric and feature cues. In this case, reorientation appears 

to be affected by both types of cues. The animals will not only increase their ten-

dency to visit the corner marked by the feature cues that previously signaled the 

goal, but also produce rotational error for two other locations in the arena (Brown, 

Spetch, & Hurd, 2007; Kelly, Spetch, and Heth, 1998).

Rotational error is an important phenomenon in the reorientation literature, 

and it is affected by a complex interaction between geometric and feature cues. A 
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growing variety of models of reorientation are appearing in the literature, including 

models consistent with the symbol-manipulating fundamental of classical cognitive 

science (Cheng, 1986; Gallistel, 1990), neural network models that are part of con-

nectionist cognitive science (Dawson et al., 2010), and behaviour-based robots that 

are the domain of embodied cognitive science (Dawson, Dupuis, & Wilson, 2010; 

Nolfi, 2002). All of these models have two things in common. First, they can produce 

rotational error and many of its nuances. Second, this error is produced as a natural 

byproduct of a reorientation algorithm; the errors produced by the models are used 

in aid of their validation.

3.13 The Impenetrable Architecture

Classical cognitive scientists often develop theories in the form of working com-

puter simulations. These models are validated by collecting evidence that shows 

they are strongly equivalent to the subjects or phenomena being modelled. This 

begins by first demonstrating weak equivalence, that both model and subject are 

computing the same input-output function. The quest for strong equivalence is fur-

thered by using intermediate state evidence, relative complexity evidence, and error 

evidence to demonstrate, in striking detail, that both model and subject are employ-

ing the same algorithm.

However, strong equivalence can only be established by demonstrating an addi-

tional relationship between model and subject. Not only must model and subject be 

employing the same algorithm, but both must also be employing the same primitive 

processes. Strong equivalence requires architectural equivalence.

The primitives of a computer simulation are readily identifiable. A computer 

simulation should be a collection of primitives that are designed to generate a 

behaviour of interest (Dawson, 2004). In order to create a model of cognition, one 

must define the basic properties of a symbolic structure, the nature of the processes 

that can manipulate these expressions, and the control system that chooses when to 

apply a particular rule, operation, or process. A model makes these primitive char-

acteristics explicit. When the model is run, its behaviour shows what these primi-

tives can produce.

While identifying a model’s primitives should be straightforward, determining 

the architecture employed by a modelled subject is far from easy. To illustrate this, 

let us consider research on mental imagery.

Mental imagery is a cognitive phenomenon in which we experience or imag-

ine mental pictures. Mental imagery is often involved in solving spatial problems 

(Kosslyn, 1980). For instance, imagine being asked how many windows there are on 

the front wall of the building in which you live. A common approach to answering 

this question would be to imagine the image of this wall and to inspect the image, 
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mentally counting the number of windows that are displayed in it. Mental imagery 

is also crucially important for human memory (Paivio, 1969, 1971, 1986; Yates, 1966): 

we are better at remembering items if we can create a mental image of them. Indeed, 

the construction of bizarre mental images, or of images that link two or more items 

together, is a standard tool of the mnemonic trade (Lorayne, 1985, 1998, 2007; 

Lorayne & Lucas, 1974).

An early achievement of the cognitive revolution in psychology (Miller, 2003; 

Vauclair & Perret, 2003) was a rekindled interest in studying mental imagery, an 

area that had been neglected during the reign of behaviourism (Paivio, 1971, 1986). 

In the early stages of renewed imagery research, traditional paradigms were modi-

fied to solidly establish that concept imageability was a key predictor of verbal 

behaviour and associative learning (Paivio, 1969). In later stages, new paradigms 

were invented to permit researchers to investigate the underlying nature of mental 

images (Kosslyn, 1980; Shepard & Cooper, 1982).

For example, consider the relative complexity evidence obtained using the 

mental rotation task (Cooper & Shepard, 1973a, 1973b; Shepard & Metzler, 1971). 

In this task, subjects are presented with a pair of images. In some instances, the 

two images are of the same object. In other instances, the two images are different 

(e.g., one is a mirror image of the other). The orientation of the images can also be 

varied—for instance, they can be rotated to different degrees in the plane of view. 

The angular disparity between the two images is the key independent variable. A 

subject’s task is to judge whether the images are the same or not; the key dependent 

measure is the amount of time required to respond.

In order to perform the mental rotation task, subjects first construct a mental 

image of one of the objects, and then imagine rotating it to the correct orientation 

to enable them to judge whether it is the same as the other object. The standard 

finding in this task is that there is a linear relationship between response latency 

and the amount of mental rotation that is required. From these results it has been 

concluded that “the process of mental rotation is an analog one in that intermediate 

states in the process have a one-to-one correspondence with intermediate stages in 

the external rotation of an object” (Shepard & Cooper, 1982, p. 185). That is, mental 

processes rotate mental images in a holistic fashion, through intermediate orienta-

tions, just as physical processes can rotate real objects.

Another source of relative complexity evidence concerning mental imagery is 

the image scanning task (Kosslyn, 1980; Kosslyn, Ball, & Reisler, 1978). In the most 

famous version of this task, subjects are first trained to create an accurate mental 

image of an island map on which seven different locations are marked. Then sub-

jects are asked to construct this mental image, focusing their attention at one of 

the locations. They are then provided with a name, which may or may not be one 

of the other map locations. If the name is of another map location, then subjects 
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are instructed to scan across the image to it, pressing a button when they arrive 

at the second location.

In the map-scanning version of the image-scanning task, the dependent vari-

able was the amount of time from the naming of the second location to a subject’s 

button press, and the independent variable was the distance on the map between 

the first and second locations. The key finding was that there was nearly a perfectly 

linear relationship between latency and distance (Kosslyn Ball, & Reisler, 1978): an 

increased distance led to an increased response latency, suggesting that the image 

had spatial extent, and that it was scanned at a constant rate.

The scanning experiments support the claim that portions of images depict corre-

sponding portions of the represented objects, and that the spatial relations between 

portions of the image index the spatial relations between the corresponding por-

tions of the imaged objects. (Kosslyn, 1980, p. 51)

The relative complexity evidence obtained from tasks like mental rotation and image 

scanning provided the basis for a prominent account of mental imagery known as 

the depictive theory (Kosslyn, 1980, 1994; Kosslyn, Thompson, & Ganis, 2006). This 

theory is based on the claim that mental images are not merely internal represen-

tations that describe visuospatial information (as would be the case with words or 

with logical propositions), but instead depict this information because the format of 

an image is quasi-pictorial. That is, while a mental image is not claimed to literally 

be a picture in the head, it nevertheless represents content by resemblance.

There is a correspondence between parts and spatial relations of the representation 

and those of the object; this structural mapping, which confers a type of resem-

blance, underlies the way images convey specific content. In this respect images are 

like pictures. Unlike words and symbols, depictions are not arbitrarily paired with 

what they represent. (Kosslyn, Thompson, & Ganis, 2006, p. 44)

The depictive theory specifies primitive properties of mental images, which have 

sometimes been called privileged properties (Kosslyn, 1980). What are these primi-

tives? One is that images occur in a spatial medium that is functionally equivalent 

to a coordinate space. A second is that images are patterns that are produced by 

activating local regions of this space to produce an “abstract spatial isomorphism” 

(Kosslyn, 1980, p. 33) between the image and what it represents. This isomorphism 

is a correspondence between an image and a represented object in terms of their 

parts as well as spatial relations amongst these parts. A third is that images not only 

depict spatial extent, they also depict properties of visible surfaces such as colour 

and texture.

These privileged properties are characteristic of the format mental images—the 

structure of images as symbolic expressions. When such a structure is paired with 

particular primitive processes, certain types of questions are easily answered. These 
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processes are visual in nature: for instance, mental images can be scanned, inspected 

at different apparent sizes, or rotated. The coupling of such processes with the depic-

tive structure of images is well-suited to solving visuospatial problems. Other struc-

ture-process pairings—in particular, logical operations on propositional expressions 

that describe spatial properties (Pylyshyn, 1973)—do not make spatial information 

explicit and arguably will not be as adept at solving visuospatial problems. Kosslyn 

(1980, p. 35) called the structural properties of images privileged because their pos-

session “[distinguishes] an image from other forms of representation.”

That the depictive theory makes claims about the primitive properties of mental 

images indicates quite clearly that it is an account of cognitive architecture. That it 

is a theory about architecture is further supported by the fact that the latest phase of 

imagery research has involved the supplementing behavioural data with evidence 

concerning the cognitive neuroscience of imagery (Kosslyn, 1994; Kosslyn et al., 

1995; Kosslyn et al., 1999; Kosslyn, Thompson, & Alpert, 1997; Kosslyn, Thompson, 

& Ganis, 2006). This research has attempted to ground the architectural properties 

of images into topographically organized regions of the cortex.

Computer simulation has proven to be a key medium for evaluating the depic-

tive theory of mental imagery. Beginning with work in the late 1970s (Kosslyn & 

Shwartz, 1977), the privileged properties of mental images have been converted into 

a working computer model (Kosslyn, 1980, 1987, 1994; Kosslyn et al., 1984; Kosslyn 

et al., 1985). In general terms, over time these models represent an elaboration of 

a general theoretical structure: long-term memory uses propositional structures to 

store spatial information. Image construction processes convert this propositional 

information into depictive representations on a spatial medium that enforces the 

primitive structural properties of images. Separate from this medium are primitive 

processes that operate on the depicted information (e.g., scan, inspect, interpret). 

This form of model has shown that the privileged properties of images that define 

the depictive theory are sufficient for simulating a wide variety of the regularities 

that govern mental imagery.

The last few paragraphs have introduced Kosslyn’s (e.g., 1980) depictive theory, 

its proposals about the privileged properties of mental images, and the success that 

computer simulations derived from this theory have had at modelling behavioural 

results. All of these topics concern statements about primitives in the domain of a 

theory or model about mental imagery. Let us now turn to one issue that has not 

yet been addressed: the nature of the primitives employed by the modelled subject, 

the human imager.

The status of privileged properties espoused by the depictive theory has been 

the subject of a decades-long imagery debate (Block, 1981; Tye, 1991). At the heart 

of the imagery debate is a basic question: are the privileged properties parts of the 

architecture or not? The imagery debate began with the publication of a seminal 
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paper (Pylyshyn, 1973), which proposed that the primitive properties of images were 

not depictive, but were instead descriptive properties based on a logical or proposi-

tional representation. This position represents the basic claim of the propositional 

theory, which stands as a critical alternative to the depictive theory. The imagery 

debate continues to the present day; propositional theory’s criticism of the depictive 

position has been prolific and influential (Pylyshyn, 1981a, 1981b, 1984, 2003a, 2003b, 

2003c, 2007).

The imagery debate has been contentious, has involved a number of different 

subtle theoretical arguments about the relationship between theory and data, and has 

shown no signs of being clearly resolved. Indeed, some have argued that it is a debate 

that is cannot be resolved, because it is impossible to identify data that is appropriate 

to differentiate the depictive and propositional theories (Anderson, 1978). In this sec-

tion, the overall status of the imagery debate is not of concern. We are instead inter-

ested in a particular type of evidence that has played an important role in the debate: 

evidence concerning cognitive penetrability (Pylyshyn, 1980, 1984, 1999).

Recall from the earlier discussion of algorithms and architecture that Newell 

(1990) proposed that the rate of change of various parts of a physical symbol system 

would differ radically depending upon which component was being examined. 

Newell observed that data should change rapidly, stored programs should be more 

enduring, and the architecture that interprets stored programs should be even more 

stable. This is because the architecture is wired in. It may change slowly (e.g., in 

human cognition because of biological development), but it should be the most 

stable information processing component. When someone claims that they have 

changed their mind, we interpret this as meaning that they have updated their facts, 

or that they have used a new approach or strategy to arrive at a conclusion. We don’t 

interpret this as a claim that they have altered their basic mental machinery—when 

we change our mind, we don’t change our cognitive architecture!

The cognitive penetrability criterion (Pylyshyn, 1980, 1984, 1999) is an experi-

mental paradigm that takes advantage of the persistent “wired in” nature of the 

architecture. If some function is part of the architecture, then it should not be 

affected by changes in cognitive content—changing beliefs should not result in a 

changing architecture. The architecture is cognitively impenetrable. In contrast, if 

some function changes because of a change in content that is semantically related to 

the function, then this is evidence that it is not part of the architecture.

If a system is cognitively penetrable then the function it computes is sensitive, 

in a semantically coherent way, to the organism’s goals and beliefs, that is, it can 

be altered in a way that bears some logical relation to what the person knows. 

(Pylyshyn, 1999, p. 343)

The architecture is not cognitively penetrable.
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Cognitive penetrability provides a paradigm for testing whether a function of 

interest is part of the architecture or not. First, some function is measured as part of 

a pre-test. For example, consider Figure 3-13, which presents the Müller-Lyer illu-

sion, which was discovered in 1889 (Gregory, 1978). In a pre-test, it would be deter-

mined whether you experience this illusion. Some measurement would be made 

to determine whether you judge the horizontal line segment of the top arrow to be 

longer than the horizontal line segment of the bottom arrow.

Second, a strong manipulation of a belief related to the function that produces 

the Müller-Lyer illusion would be performed. You, as a subject, might be told that 

the two horizontal line segments were equal in length. You might be given a ruler, 

and asked to measure the two line segments, in order to convince yourself that your 

experience was incorrect and that the two lines were of the same length.

Figure 3-13. The Müller-Lyer illusion.

Third, a post-test would determine whether you still experienced the illusion. Do 

the line segments still appear to be of different length, even though you are armed 

with the knowledge that this appearance is false? This illusion has had such a long 

history because its appearance is not affected by such cognitive content. The mecha-

nism that is responsible for the Müller-Lyer illusion is cognitively impenetrable.

This paradigm has been applied to some of the standard mental imagery tasks 

in order to show that some of the privileged properties of images are cognitively 

penetrable and therefore cannot be part of the architecture. For instance, in his 1981 

dissertation, Liam Bannon examined the map scanning task for cognitive penetra-

bility (for methodological details, see Pylyshyn, 1981a). Bannon reasoned that the 

instructions given to subjects in the standard map scanning study (Kosslyn, Ball, 

& Reiser, 1978) instilled a belief that image scanning was like scanning a picture. 

Bannon was able to replicate the Kosslyn, Ball, & Reiser results in one condition. 

However, in other conditions the instructions were changed so that the images had 

to be scanned to answer a question, but no beliefs about scanning were instilled. In 

one study, Bannon had subjects shift attention from the first map location to the 

second (named) location, and then judge the compass direction from the second 
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location to the first. In this condition, the linearly increasing relationship between 

distance and time disappeared. Image scanning appears to be cognitively penetra-

ble, challenging some of the architectural claims of depictive theory. “Images can 

be examined without the putative constraints of the surface display postulated by 

Kosslyn and others” (Pylyshyn, 1981a, p. 40).

The cognitive penetrability paradigm has also been applied to the mental rota-

tion task (Pylyshyn, 1979b). Pylyshyn reasoned that if mental rotation is accom-

plished by primitive mechanisms, then it must be cognitively impenetrable. One 

prediction that follows from this reasoning is that the rate of mental rotation should 

be independent of the content being rotated—an image depicting simple content 

should, by virtue of its putative architectural nature, be rotated at the same rate as 

a different image depicting more complex content.

Pylyshyn (1979b) tested this hypothesis in two experiments and found evidence 

of cognitive penetration. The rate of mental rotation was affected by practice, by the 

content of the image being rotated, and by the nature of the comparison task that 

subjects were asked to perform. As was the case with image scanning, it would seem 

that the “analog” rotation of images is not primitive, but is instead based on simpler 

processes that do belong to the architecture.

The more carefully we examine phenomena, such as the mental rotation findings, 

the more we find that the informally appealing holistic image-manipulation views 

must be replaced by finer grained piecemeal procedures that operate upon an ana-

lyzed and structured stimulus using largely serial, resource-limited mechanisms. 

(Pylyshyn, 1979b, p. 27)

Cognitive penetrability has played an important role in domains other than mental 

imagery. For instance, in the literature concerned with social perception and pre-

diction, there is debate between a classical theory called theory-theory (Gopnik & 

Meltzoff, 1997; Gopnik & Wellman, 1992) and a newer approach called simula-

tion theory (Gordon, 1986, 2005b), which is nicely situated in the embodied cog-

nitive science that is the topic of Chapter 5. There is a growing discussion about 

whether cognitive penetrability can be used to discriminate between these two theo-

ries (Greenwood, 1999; Heal, 1996; Kuhberger et al., 2006; Perner et al., 1999; Stich 

& Nichols, 1997). Cognitive penetrability has also been applied to various topics in 

visual perception (Raftopoulos, 2001), including face perception (Bentin & Golland, 

2002) and the perception of illusory motion (Dawson, 1991; Dawson & Wright, 1989; 

Wright & Dawson, 1994).

While cognitive penetrability is an important tool when faced with the chal-

lenge of examining the architectural equivalence between model and subject, it is 

not without its problems. For instance, in spite of it being applied to the study of 

mental imagery, the imager debate rages on, suggesting that penetrability evidence 
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is not as compelling or powerful as its proponents might hope. Perhaps one reason 

for this is that it seeks a null result—the absence of an effect of cognitive content on 

cognitive function. While cognitive penetrability can provide architectural evidence 

for strong equivalence, other sources of evidence are likely required. One source of 

such additional evidence is cognitive neuroscience.

3.14 Modularity of Mind

Classical cognitive science assumes that cognition is computation, and endorses 

the physical symbol system hypothesis. As a result, it merges two theoretical posi-

tions that in the seventeenth century were thought to be in conflict. The first is 

Cartesian rationalism, the notion that the products of thought were rational conclu-

sions drawn from the rule-governed manipulation of pre-existing ideas. The second 

is anti-Cartesian materialism, the notion that the processes of thought are carried 

out by physical mechanisms.

The merging of rationalism and materialism has resulted in the modification of 

a third idea, innateness, which is central to both Cartesian philosophy and classical 

cognitive science. According to Descartes, the contents of some mental states were 

innate, and served as mental axioms that permitted the derivation of new content 

(Descartes, 1996, 2006). Variations of this claim can be found in classical cognitive 

science (Fodor, 1975). However, it is much more typical for classical cognitive sci-

ence to claim innateness for the mechanisms that manipulate content, instead of 

claiming it for the content itself. According to classical cognitive science, it is the 

architecture that is innate.

Innateness is but one property that can serve to constrain theories about the 

nature of the architecture (Newell, 1990). It is a powerful assumption that leads 

to particular predictions. If the architecture is innate, then it should be universal 

(i.e., shared by all humans), and it should develop in a systematic pattern that can 

be linked to biological development. These implications have guided a tremendous 

amount of research in linguistics over the last several decades (Jackendoff, 2002). 

However, innateness is but one constraint, and many radically different architec-

tural proposals might all be consistent with it. What other constraints might be 

applied to narrow the field of potential architectures?

Another constraining property is modularity (Fodor, 1983). Modularity is the 

claim that an information processor is not just one homogeneous system used to 

handle every information processing problem, but is instead a collection of special-

purpose processors, each of which is especially suited to deal with a narrower range 

of more specific problems. Modularity offers a general solution to what is known as 

the packing problem (Ballard, 1986).
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The packing problem is concerned with maximizing the computational power 

of a physical device with limited resources, such as a brain with a finite number of 

neurons and synapses. How does one pack the maximal computing power into a 

finite brain? Ballard (1986) argued that many different subsystems, each designed 

to deal with a limited range of computations, will be easier to fit into a finite pack-

age than will be a single general-purpose device that serves the same purpose as all 

of the subsystems.

Of course, in order to enable a resource-limited system to solve the same class 

of problems as a universal machine, a compromise solution to the packing problem 

may be required. This is exactly the stance adopted by Fodor in his influential 1983 

monograph The Modularity of Mind. Fodor imagined an information processor 

that used general central processing, which he called isotropic processes, operating 

on representations delivered by a set of special-purpose input systems that are now 

known as modules.

If, therefore, we are to start with anything like Turing machines as models in cog-

nitive psychology, we must think of them as embedded in a matrix of subsidiary 

systems which affect their computations in ways that are responsive to the flow of 

environmental events. The function of these subsidiary systems is to provide the 

central machine with information about the world. (Fodor, 1983, p. 39)

According to Fodor (1983), a module is a neural substrate that is specialized for 

solving a particular information processing problem. It takes input from transduc-

ers, preprocesses this input in a particular way (e.g., computing three-dimensional 

structure from transduced motion signals [Hildreth, 1983; Ullman, 1979]), and 

passes the result of this preprocessing on to central processes. Because modules 

are specialized processors, they are domain specific. Because the task of modules is 

to inform central processing about the dynamic world, modules operate in a fast, 

mandatory fashion. In order for modules to be fast, domain-specific, and manda-

tory devices, they will be “wired in,” meaning that a module will be associated with 

fixed neural architecture. A further consequence of this is that a module will exhibit 

characteristic breakdown patterns when its specialized neural circuitry fails. All of 

these properties entail that a module will exhibit informational encapsulation: it 

will be unaffected by other models or by higher-level results of isotropic processes. 

In other words, modules are cognitively impenetrable (Pylyshyn, 1984). Clearly any 

function that can be shown to be modular in Fodor’s sense must be a component of 

the architecture.

Fodor (1983) argued that modules should exist for all perceptual modalities, 

and that there should also be modular processing for language. There is a great deal 

of evidence in support of this position.

For example, consider visual perception. Evidence from anatomy, physiol-

ogy, and clinical neuroscience has led many researchers to suggest that there exist 
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two distinct pathways in the human visual system (Livingstone & Hubel, 1988; 

Maunsell & Newsome, 1987; Ungerleider & Mishkin, 1982). One is specialised for pro-

cessing visual form, i.e., detecting an object’s appearance: the “what pathway.” The 

other is specialised for processing visual motion, i.e., detecting an object’s changing 

location: the “where pathway.” This evidence suggests that object appearance and 

object motion are processed by distinct modules. Furthermore, these modules are 

likely hierarchical, comprising systems of smaller modules. More than 30 distinct 

visual processing modules, each responsible for processing a very specific kind of 

information, have been identified (van Essen, Anderson, & Felleman, 1992).

A similar case can be made for the modularity of language. Indeed, the first 

biological evidence for the localization of brain function was Paul Broca’s pres-

entation of the aphasic patient Tan’s brain to the Paris Société d’Anthropologie 

in 1861 (Gross, 1998). This patient had profound agrammatism; his brain exhib-

ited clear abnormalities in a region of the frontal lobe now known as Broca’s area. 

The Chomskyan tradition in linguistics has long argued for the distinct biologi-

cal existence of a language faculty (Chomsky, 1957, 1965, 1966). The hierarchical 

nature of this faculty—the notion that it is a system of independent submodules—

has been a fruitful avenue of research (Garfield, 1987); the biological nature of this 

system, and theories about how it evolved, are receiving considerable contempo-

rary attention (Fitch, Hauser, & Chomsky, 2005; Hauser, Chomsky, & Fitch, 2002). 

Current accounts of neural processing of auditory signals suggest that there are 

two pathways analogous to the what-where streams in vision, although the dis-

tinction between the two is more complex because both are sensitive to speech 

(Rauschecker & Scott, 2009).

From both Fodor’s (1983) definition of modularity and the vision and language 

examples briefly mentioned above, it is clear that neuroscience is a key source 

of evidence about modularity. “The intimate association of modular systems with 

neural hardwiring is pretty much what you would expect given the assumption 

that the key to modularity is informational encapsulation” (p. 98). This is why 

modularity is an important complement to architectural equivalence: it is sup-

ported by seeking data from cognitive neuroscience that complements the cogni-

tive penetrability criterion.

The relation between modular processing and evidence from cognitive neurosci-

ence leads us to a controversy that has arisen from Fodor’s (1983) version of modu-

larity. We have listed a number of properties that Fodor argues are true of modules. 

However, Fodor also argues that these same properties cannot be true of central 

or isotropic processing. Isotropic processes are not informationally encapsulated, 

domain specific, fast, mandatory, associated with fixed neural architecture, or cogni-

tively impenetrable. Fodor proceeds to conclude that because isotropic processes do 

not have these properties, cognitive science will not be able to explain them.
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I should like to propose a generalization; one which I fondly hope will someday 

come to be known as ‘Fodor’s First Law of the Nonexistence of Cognitive Science.’ 

It goes like this: the more global (e.g., the more isotropic) a cognitive process is, the 

less anybody understands it. (Fodor, 1983, p. 107)

Fodor’s (1983) position that explanations of isotropic processes are impossible 

poses a strong challenge to a different field of study, called evolutionary psychol-

ogy (Barkow, Cosmides, & Tooby, 1992), which is controversial in its own right 

(Stanovich, 2004). Evolutionary psychology attempts to explain how psychological 

processes arose via evolution. This requires the assumption that these processes pro-

vide some survival advantage and are associated with a biological substrate, so that 

they are subject to natural selection. However, many of the processes of particular 

interest to evolutionary psychologists involve reasoning, and so would be classified 

by Fodor as being isotropic. If they are isotropic, and if Fodor’s first law of the non-

existence of cognitive science is true, then evolutionary psychology is not possible.

Evolutionary psychologists have responded to this situation by proposing the 

massive modularity hypothesis (Carruthers, 2006; Pinker, 1994, 1997), an alterna-

tive to Fodor (1983). According to the massive modularity hypothesis, most cogni-

tive processes—including high-level reasoning—are modular. For instance, Pinker 

(1994, p. 420) has proposed that modular processing underlies intuitive mechanics, 

intuitive biology, intuitive psychology, and the self-concept. The mind is “a collec-

tion of instincts adapted for solving evolutionarily significant problems—the mind 

as a Swiss Army knife” (p. 420). The massive modularity hypothesis proposes to 

eliminate isotropic processing from cognition, spawning modern discussions about 

how modules should be defined and about what kinds of processing are modular or 

not (Barrett & Kurzban, 2006; Bennett, 1990; Fodor, 2000; Samuels, 1998).

The modern debate about massive modularity indicates that the concept of 

module is firmly entrenched in cognitive science. The issue in the debate is not the 

existence of modularity, but is rather modularity’s extent. With this in mind, let us 

return to the methodological issue at hand, investigating the nature of the archi-

tecture. To briefly introduce the types of evidence that can be employed to support 

claims about modularity, let us consider another topic made controversial by propo-

nents of massive modularity: the modularity of musical cognition.

As we have seen, massive modularity theorists see a pervasive degree of spe-

cialization and localization in the cognitive architecture. However, one content area 

that these theorists have resisted to classify as modular is musical cognition. One 

reason for this is that evolutionary psychologists are hard pressed to explain how 

music benefits survival. “As far as biological cause and effect are concerned, music 

is useless. It shows no signs of design for attaining a goal such as long life, grand-

children, or accurate perception and prediction of the world” (Pinker, 1997, p. 528). 

As a result, musical processing is instead portrayed as a tangential, nonmodular 
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function that is inconsequentially related to other modular processes. “Music is 

auditory cheesecake, an exquisite confection crafted to tickle the sensitive spots of 

at least six of our mental faculties” (p. 534).

Not surprisingly, researchers interested in studying music have reacted strongly 

against this position. There is currently a growing literature that provides support 

for the notion that musical processing—in particular the perception of rhythm and 

of tonal profile—is indeed modular (Alossa & Castelli, 2009; Peretz, 2009; Peretz 

& Coltheart, 2003; Peretz & Hyde, 2003; Peretz & Zatorre, 2003, 2005). The types of 

evidence reported in this literature are good examples of the ways in which cogni-

tive neuroscience can defend claims about modularity.

One class of evidence concerns dissociations that are observed in patients who 

have had some type of brain injury. In a dissociation, an injury to one region of 

the brain disrupts one kind of processing but leaves another unaffected, suggest-

ing that the two kinds of processing are separate and are associated with differ-

ent brain areas. Those who do not believe in the modularity of music tend to see 

music as being strongly related to language. However, musical processing and lan-

guage processing have been shown to be dissociated. Vascular damage to the left 

hemisphere of the Russian composer Shebalin produced severe language deficits 

but did not affect his ability to continue composing some of his best works (Luria, 

Tsvetkova, & Futer, 1965). Reciprocal evidence indicates that there is in fact a double 

dissociation between language and music: bilateral damage to the brain of another 

patient produced severe problems in music memory and perception but did not 

affect her language (Peretz et al., 1994).

Another class of evidence is to seek dissociations involving music that are related 

to congenital brain disorders. Musical savants demonstrate such a dissociation: 

they exhibit low general intelligence but at the same time demonstrate exceptional 

musical abilities (Miller, 1989; Pring, Woolf, & Tadic, 2008). Again, the dissociation 

is double. Approximately 4 percent of the population is tone deaf, suffering from 

what is called congenital amusia (Ayotte, Peretz, & Hyde, 2002; Peretz et al., 2002). 

Congenital amusics are musically impaired, but they are of normal intelligence 

and have normal language abilities. For instance, they have normal spatial abilities 

(Tillmann et al., 2010), and while they have short-term memory problems for musi-

cal stimuli, they have normal short-term memory for verbal materials (Tillmann, 

Schulze, & Foxton, 2009). Finally, there is evidence that congenital amusia is geneti-

cally inherited, which would be a plausible consequence of the modularity of musi-

cal processing (Peretz, Cummings, & Dube, 2007).

A third class of evidence that cognitive neuroscience can provide about mod-

ularity comes from a variety of techniques that noninvasively measure regional 

brain activity as information processing occurs (Cabeza & Kingstone, 2006; 

Gazzaniga, 2000). Brain imaging data can be used to seek dissociations and 
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attempt to localize function. For instance, by seeing which regions of the brain are 

active during musical processing but not active when a nonmusical control task is 

performed, a researcher can attempt to associate musical functions with particular 

areas of the brain.

Brain imaging techniques have been employed by cognitive neuroscientists 

interested in studying musical processing (Peretz & Zatorre, 2003). Surprisingly, 

given the other extensive evidence concerning the dissociation of music, this kind 

of evidence has not provided as compelling a case for the localization of musical 

processing in the human brain (Warren, 2008). Instead, it appears to reveal that 

musical processing invokes activity in many different areas throughout the brain 

(Schuppert et al., 2000). “The evidence of brain imaging studies has demonstrated 

that music shares basic brain circuitry with other types of complex sound, and no 

single brain area can be regarded as exclusively dedicated to music” (Warren, 2008, 

p. 34). This is perhaps to be expected, under the assumption that “musical cogni-

tion” is itself a fairly broad notion, and that it is likely accomplished by a variety of 

subprocesses, many of which are plausibly modular. Advances in imaging studies of 

musical cognition may require considering finer distinctions between musical and 

nonmusical processing, such as studying the areas of the brain involved with sing-

ing versus those involved with speech (Peretz, 2009).

Disparities between behavioural evidence concerning dissociations and evidence 

from brain imaging studies do not necessarily bring the issue of modularity into ques-

tion. These disparities might simply reveal the complicated relationship between 

the functional and the implementational nature of an architectural component. For 

instance, imagine that the cognitive architecture is indeed a production system. An 

individual production, functionally speaking, is ultra-modular. However, it is possi-

ble to create systems in which the modular functions of different productions do not 

map onto localized physical components, but are instead defined as a constellation 

of physical properties distributed over many components (Dawson et al., 2000). We 

consider this issue in a later chapter where the relationship between production sys-

tems and connectionist networks is investigated in more detail.

Nevertheless, the importance of using evidence from neuroscience to support 

claims about modularity cannot be understated. In the absence of such evidence, 

arguments that some function is modular can be easily undermined.

For instance, Gallistel (1990) has argued that the processing of geometric cues 

by animals facing the reorientation task is modular in Fodor’s (1983) sense. This is 

because the processing of geometric cues is mandatory (as evidenced by the perva-

siveness of rotational error) and not influenced by “information about surfaces other 

than their relative positions” (Gallistel, 1990, p. 208). However, a variety of theories 

that are explicitly nonmodular are capable of generating appropriate rotational error 

in a variety of conditions (Dawson, Dupuis, & Wilson, 2010; Dawson et al., 2010; 
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Miller, 2009; Miller & Shettleworth, 2007, 2008; Nolfi, 2002). As a result, the modu-

larity of geometric cue processing is being seriously re-evaluated (Cheng, 2008).

In summary, many researchers agree that the architecture of cognition is 

modular. A variety of different kinds of evidence can be marshaled to support the 

claim that some function is modular and therefore part of the architecture. This 

evidence is different from, and can complement, evidence about cognitive penetra-

bility. Establishing the nature of the architecture is nonetheless challenging and 

requires combining varieties of evidence from behavioural and cognitive neurosci-

entific studies.

3.15 Reverse Engineering

Methodologically speaking, what is classical cognitive science? The goal of clas-

sical cognitive science is to explain an agent’s cognitive abilities. Given an intact, 

fully functioning cognitive agent, the classical cognitive scientist must construct a 

theory of the agent’s internal processes. The working hypothesis is that this theory 

will take the form of a physical symbol system. Fleshing this hypothesis out will 

involve proposing a theory, and hopefully a working computer simulation, that will 

make explicit proposals about the agent’s symbol structures, primitive processes, 

and system of control.

Given this scenario, a classical cognitive scientist will almost inevitably engage 

in some form of reverse engineering.

In reverse engineering, one figures out what a machine was designed to do. Reverse 

engineering is what the boffins at Sony do when a new product is announced by 

Panasonic, or vice versa. They buy one, bring it back to the lab, take a screwdriver 

to it, and try to figure out what all the parts are for and how they combine to make 

the device work. (Pinker, 1997, p. 21)

The reverse engineering conducted by a classical cognitive science is complicated by 

the fact that one can’t simply take cognitive agents apart with a screwdriver to learn 

about their design. However, the assumption that the agent is a physical symbol 

system provides solid guidance and an effective methodology.

The methodology employed by classical cognitive science is called functional 

analysis (Cummins, 1975, 1983). Functional analysis is a top-down form of reverse 

engineering that maps nicely onto the multiple levels of investigation that were 

introduced in Chapter 2.

Functional analysis begins by choosing and defining a function of interest to 

explain. Defining a function of interest entails an investigation at the computa-

tional level. What problem is being solved? Why do we say this problem is being 

solved and not some other? What constraining properties can be assumed to aid the 
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solution to the problem? For instance, we saw earlier that a computational theory 

of language learning (identifying a grammar in the limit) might be used to motivate 

possible properties that must be true of a language or a language learner.

The next step in a functional analysis is to decompose the function of interest 

into a set of subcomponents that has three key properties. First, each subcompo-

nent is defined functionally, not physically. Second, each subcomponent is simpler 

than the original function. Third, the organization of the subcomponents—the flow 

of information from one component to another—is capable of producing the input-

output behaviour of the original function of interest. “Functional analysis consists in 

analyzing a disposition into a number of less problematic dispositions such that the 

programmed manifestation of these analyzing dispositions amounts to a manifes-

tation of the analyzed disposition” (Cummins, 1983, p. 28). These properties permit 

the functional analysis to proceed in such a way that Ryle’s regress will be avoided, 

and that eventually the homunculi produced by the analysis (i.e., the functional 

subcomponents) can be discharged, as was discussed in Chapter 2.

The analytic stage of a functional analysis belongs to the algorithmic level of 

analysis. This is because the organized system of subfunctions produced at this 

stage is identical to a program or algorithm for producing the overall input-output 

behaviour of the agent. However, the internal cognitive processes employed by the 

agent cannot be directly observed. What methods can be used to carve up the agent’s 

behaviour into an organized set of functions? In other words, how can observations 

of behaviour support decisions about functional decomposition?

The answer to this question reveals why the analytic stage belongs to the algo-

rithmic level of analysis. It is because the empirical methods of cognitive psychology 

are designed to motivate and validate functional decompositions.

For example, consider the invention that has become known as the modal model 

of memory (Baddeley, 1986), which was one of the triumphs of cognitivism in the 

1960s (Shiffrin & Atkinson, 1969; Waugh & Norman, 1965). According to this model, 

to-be-remembered information is initially kept in primary memory, which has a 

small capacity and short duration, and codes items acoustically. Without additional 

processing, items will quickly decay from primary memory. However, maintenance 

rehearsal, in which an item from memory is spoken aloud and thus fed back to the 

memory in renewed form, will prevent this decay. With additional processing like 

maintenance rehearsal, some of the items in primary memory pass into secondary 

memory, which has large capacity and long duration, and employs a semantic code.

The modal memory model was inspired and supported by experimental data. 

In a standard free-recall experiment, subjects are asked to remember the items from 

a presented list (Glanzer & Cunitz, 1966; Postman & Phillips, 1965). The first few 

items presented are better remembered than the items presented in the middle—

the primacy effect. Also, the last few items presented are better remembered than 
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the middle items—the recency effect. Further experiments demonstrated a func-

tional dissociation between the primacy and recency effects: variables that influ-

enced one effect left the other unaffected. For example, introducing a delay before 

subjects recalled the list eliminated the recency effect but not the primacy effect 

(Glanzer & Cunitz, 1966). If a list was presented very quickly, or was constructed 

from low-frequency words, the primacy effect—but not the recency effect—van-

ished (Glanzer, 1972). To explain such functional dissociation, researchers assumed 

an organized system of submemories (the modal model), each with different 

properties.

The analytic stage of a functional analysis is iterative. That is, one can take 

any of the subfunctions that have resulted from one stage of analysis and decom-

pose it into an organized system of even simpler sub-subfunctions. For instance, 

as experimental techniques were refined, the 1960s notion of primary memory has 

been decomposed into an organized set of subfunctions that together produce what 

is called working memory (Baddeley, 1986, 1990). Working memory is decomposed 

into three basic subfunctions. The central executive is responsible for operating on 

symbols stored in buffers, as well as for determining how attention will be allocated 

across simultaneously ongoing tasks. The visuospatial buffer stores visual informa-

tion. The phonological loop is used to store verbal (or speech-like) information. The 

phonological loop has been further decomposed into subfunctions. One is a pho-

nological store that acts as a memory by holding symbols. The other is a rehearsal 

process that preserves items in the phonological store.

We saw in Chapter 2 that functional decomposition cannot proceed indefinitely 

if the analysis is to serve as a scientific explanation. Some principles must be applied 

to stop the decomposition in order to exit Ryle’s regress. For Cummins’ (1983) func-

tional analysis, this occurs with a final stage—causal subsumption. To causally 

subsume a function is to explain how physical mechanisms bring the function into 

being. “A functional analysis is complete when the program specifying it is explica-

ble via instantiation—i.e., when we can show how the program is executed by the 

system whose capacities are being explained” (p. 35). Cummins called seeking such 

explanations of functions the subsumption strategy. Clearly the subsumption strat-

egy is part of an architectural level of investigation, employing evidence involving 

cognitive impenetrability and modularity. It also leans heavily on evidence gathered 

from an implementational investigation (i.e., neuroscience).

From a methodological perspective, classical cognitive science performs reverse 

engineering, in the form of functional analysis, to develop a theory (and likely a sim-

ulation) of cognitive processing. This enterprise involves both formal and empirical 

methods as well as the multiple levels of investigation described in Chapter 2. At 

the same time, classical cognitive science will also be involved in collecting data to 

establish the strong equivalence between the theory and the agent by establishing 
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links between the two at the different levels of analysis, as we have been discussing 

in the preceding pages of the current chapter.

3.16 What is Classical Cognitive Science?

The purpose of the current chapter was to introduce the foundations of classical 

cognitive science—the “flavour” of cognitive science that first emerged in the late 

1950s—and the school of thought that still dominates modern cognitive science. 

The central claim of classical cognitive science is that “cognition is computation.” 

This short slogan has been unpacked in this chapter to reveal a number of philo-

sophical assumptions, which guide a variety of methodological practices.

The claim that cognition is computation, put in its modern form, is identical to 

the claim that cognition is information processing. Furthermore, classical cognitive 

science views such information processing in a particular way: it is processing that 

is identical to that carried out by a physical symbol system, a device like a modern 

digital computer. As a result, classical cognitive science adopts the representational 

theory of mind. It assumes that the mind contains internal representations (i.e., 

symbolic expressions) that are in turn manipulated by rules or processes that are 

part of a mental logic or a (programming) language of thought. Further to this, a 

control mechanism must be proposed to explain how the cognitive system chooses 

what operation to carry out at any given time.

The classical view of cognition can be described as the merging of two dis-

tinct traditions. First, many of its core ideas—appeals to rationalism, computation, 

innateness—are rooted in Cartesian philosophy. Second, it rejects Cartesian dualism 

by attempting to provide materialist explanations of representational processing. 

The merging of rationality and materialism is exemplified by the physical symbol 

system hypothesis. A consequence of this is that the theories of classical cognitive 

science are frequently presented in the form of working computer simulations.

In Chapter 2, we saw that the basic properties of information processing sys-

tems required that they be explained at multiple levels. Not surprisingly, classical 

cognitive scientists conduct their business at multiple levels of analysis, using formal 

methods to answer computational questions, using simulation and behavioural 

methods to answer algorithmic questions, and using a variety of behavioural and 

biological methods to answer questions about architecture and implementation.

The multidisciplinary nature of classical cognitive science is revealed in its most 

typical methodology, a version of reverse engineering called functional analysis. We 

have seen that the different stages of this type of analysis are strongly related to the 

multiple levels of investigations that were discussed in Chapter 2. The same rela-

tionship to these levels is revealed in the comparative nature of classical cognitive 
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science as it attempts to establish the strong equivalence between a model and a 

modelled agent.

The success of classical cognitive science is revealed by its development of 

successful, powerful theories and models that have been applied to an incredibly 

broad range of phenomena, from language to problem solving to perception. This 

chapter has emphasized some of the foundational ideas of classical cognitive sci-

ence at the expense of detailing its many empirical successes. Fortunately, a variety 

of excellent surveys exist to provide a more balanced account of classical cogni-

tive science’s practical success (Bechtel, Graham, & Balota, 1998; Bermúdez, 2010; 

Boden, 2006; Gleitman & Liberman, 1995; Green, 1996; Kosslyn & Osherson, 1995; 

Lepore & Pylyshyn, 1999; Posner, 1991; Smith & Osherson, 1995; Stillings, 1995; Stillings 

et al., 1987; Thagard, 1996; Wilson & Keil, 1999).

Nevertheless, classical cognitive science is but one perspective, and it is not 

without its criticisms and alternatives. Some cognitive scientists have reacted 

against its avoidance of the implementational (because of multiple realization), its 

reliance on the structure/process distinction, its hypothesis that cognitive informa-

tion processing is analogous to that of a digital computer, its requirement of internal 

representations, and its dependence on the sense-think-act cycle. Chapter 4 turns to 

the foundations of a different “flavour” of cognitive science that is a reaction against 

the classical approach: connectionist cognitive science.
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Elements of Connectionist Cognitive Science

4.0 Chapter Overview

The previous chapter introduced the elements of classical cognitive science, the 

school of thought that dominated cognitive science when it arose in the 1950s 

and which still dominates the discipline today. However, as cognitive science has 

matured, some researchers have questioned the classical approach. The reason for 

this is that in the 1950s, the only plausible definition of information processing was 

that provided by a relatively new invention, the electronic digital computer. Since 

the 1950s, alternative notions of information processing have arisen, and these new 

notions have formed the basis for alternative approaches to cognition.

The purpose of the current chapter is to present the core elements of one of 

these alternatives, connectionist cognitive science. The chapter begins with several 

sections (4.1 through 4.4) in which are described the core properties of connection-

ism and of the artificial neural networks that connectionists use to model cognitive 

phenomena. These elements are presented as a reaction against the foundational 

assumptions of classical cognitive science. Many of these elements are inspired by 

issues related to the implementational level of investigation. That is, connectionists 

aim to develop biologically plausible or neuronally inspired models of information 

processing.

The chapter then proceeds with an examination of connectionism at the remain-

ing three levels of investigation. The computational level of analysis is the focus of 

4
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Sections 4.5 through 4.7. These sections investigate the kinds of tasks that artificial 

neural networks can accomplish and relate them to those that can be accomplished 

by the devices that have inspired the classical approach. The general theme of these 

sections is that artificial neural networks belong to the class of universal machines.

Sections 4.8 through 4.13 focus on the algorithmic level of investigation of 

connectionist theories. Modern artificial neural networks employ several layers of 

processing units that create interesting representations which are used to mediate 

input-output relationships. At the algorithmic level, one must explore the internal 

structure of these representations in an attempt to inform cognitive theory. These 

sections illustrate a number of different techniques for this investigation.

Architectural issues are the topics of Sections 4.14 through 4.17. In particular, 

these sections show that researchers must seek the simplest possible networks for 

solving tasks of interest, and they point out that some interesting cognitive phe-

nomena can be captured by extremely simple networks.

The chapter ends with an examination of the properties of connectionist cogni-

tive science, contrasting the various topics introduced in the current chapter with 

those that were explored in Chapter 3 on classical cognitive science.

4.1 Nurture versus Nature

The second chapter of John Locke’s (1977) An Essay Concerning Human Under-

standing, originally published in 1706, begins as follows: 

It is an established opinion among some men that there are in the understanding 

certain innate principles; some primary notions, characters, as it were, stamped 

upon the mind of man, which the soul receives in its very first being, and brings 

into the world with it. (Locke, 1977, p. 17) 

Locke’s most famous work was a reaction against this view; of the “some men” being 

referred to, the most prominent was Descartes himself (Thilly, 1900).

Locke’s Essay criticized Cartesian philosophy, questioning its fundamental 

teachings, its core principles and their necessary implications, and its arguments 

for innate ideas, not to mention all scholars who maintained the existence of innate 

ideas (Thilly, 1900). Locke’s goal was to replace Cartesian rationalism with empiri-

cism, the view that the source of ideas was experience. Locke (1977) aimed to show 

“how men, barely by the use of their natural faculties, may attain to all of the knowl-

edge they have without the help of any innate impressions” (p. 17). Locke argued for 

experience over innateness, for nurture over nature.

The empiricism of Locke and his descendants provided a viable and popular 

alternative to Cartesian philosophy (Aune, 1970). It was also a primary influence on 

some of the psychological theories that appeared in the late nineteenth and early 
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twentieth centuries (Warren, 1921). Thus it should be no surprise that empiricism is 

reflected in a different form of cognitive science, connectionism. Furthermore, just as 

empiricism challenged most of the key ideas of rationalism, connectionist cognitive 

science can be seen as challenging many of the elements of classical cognitive science.

Surprisingly, the primary concern of connectionist cognitive science is not 

classical cognitive science’s nativism. It is instead the classical approach’s exces-

sive functionalism, due largely to its acceptance of the multiple realization argu-

ment. Logic gates, the core element of digital computers, are hardware independent 

because different physical mechanisms could be used to bring the two-valued logic 

into being (Hillis, 1998). The notion of a universal machine is an abstract, logical 

one (Newell, 1980), which is why physical symbol systems, computers, or univer-

sal machines can be physically realized using LEGO (Agulló et al., 2003), electric 

train sets (Stewart, 1994), gears (Swade, 1993), hydraulic valves (Hillis, 1998) or sili-

con chips (Reid, 2001). Physical constraints on computation do not seem to play an 

important role in classical cognitive science.

To connectionist cognitive science, the multiple realization argument is 

flawed because connectionists believe that the information processing responsi-

ble for human cognition depends critically on the properties of particular hard-

ware, the brain. The characteristics of the brain place constraints on the kinds of 

computations that it can perform and on the manner in which they are performed 

(Bechtel & Abrahamsen, 2002; Churchland, Koch, & Sejnowski, 1990; Churchland 

& Sejnowski, 1992; Clark, 1989, 1993; Feldman & Ballard, 1982).

Brains have long been viewed as being different kinds of information pro-

cessors than electronic computers because of differences in componentry (von 

Neumann, 1958). While electronic computers use a small number of fast compo-

nents, the brain consists of a large number of very slow components, that is, neu-

rons. As a result, the brain must be a parallel processing device that “will tend to 

pick up as many logical (or informational) items as possible simultaneously, and 

process them simultaneously” (von Neumann, 1958, p. 51).

Von Neumann (1958) argued that neural information processing would be far 

less precise, in terms of decimal point precision, than electronic information pro-

cessing. However, this low level of neural precision would be complemented by a 

comparatively high level of reliability, where noise or missing information would 

have far less effect than it would for electronic computers. Given that the basic 

architecture of the brain involves many connections amongst many elementary 

components, and that these connections serve as a memory, the brain’s memory 

capacity should also far exceed that of digital computers.

The differences between electronic and brain-like information processing are 

at the root of connectionist cognitive science’s reaction against classic cognitive 

science. The classical approach has a long history of grand futuristic predictions 
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that fail to materialize (Dreyfus, 1992, p. 85): “Despite predictions, press releases, 

films, and warnings, artificial intelligence is a promise and not an accomplished 

fact.” Connectionist cognitive science argues that this pattern of failure is due to the 

fundamental assumptions of the classical approach that fail to capture the basic 

principles of human cognition.

Connectionists propose a very different theory of information processing—

a potential paradigm shift (Schneider, 1987)—to remedy this situation. Even 

staunch critics of artificial intelligence research have indicated a certain sympathy 

with the connectionist view of information processing (Dreyfus & Dreyfus, 1988; 

Searle, 1992). “The fan club includes the most unlikely collection of people. . . . 

Almost everyone who is discontent with contemporary cognitive psychology and 

current ‘information processing’ models of the mind has rushed to embrace the 

‘connectionist alternative’” (Fodor & Pylyshyn, 1988, p. 4).

What are the key problems that connectionists see in classical models? Classical 

models invoke serial processes, which make them far too slow to run on sluggish 

componentry (Feldman & Ballard, 1982). They involve explicit, local, and digital 

representations of both rules and symbols, making these models too brittle. “If in a 

digital system of notations a single pulse is missing, absolute perversion of meaning, 

i.e., nonsense, may result” (von Neumann, 1958, p. 78). Because of this brittleness, 

the behaviour of classical models does not degrade gracefully when presented with 

noisy inputs, and such models are not damage resistant. All of these issues arise 

from one underlying theme: classical algorithms reflect the kind of information 

processing carried out by electronic computers, not the kind that characterizes the 

brain. In short, classical theories are not biologically plausible.

Connectionist cognitive science “offers a radically different conception of the 

basic processing system of the mind-brain, one inspired by our knowledge of the 

nervous system” (Bechtel & Abrahamsen, 2002, p. 2). The basic medium of con-

nectionism is a type of model called an artificial neural network, or a parallel dis-

tributed processing (PDP) network (McClelland & Rumelhart, 1986; Rumelhart 

& McClelland, 1986c). Artificial neural networks consist of a number of simple pro-

cessors that perform basic calculations and communicate the results to other pro-

cessors by sending signals through weighted connections. The processors operate 

in parallel, permitting fast computing even when slow componentry is involved. 

They exploit implicit, distributed, and redundant representations, making these 

networks not brittle. Because networks are not brittle, their behaviour degrades 

gracefully when presented with noisy inputs, and such models are damage resist-

ant. These advantages accrue because artificial neural networks are intentionally 

biologically plausible or neuronally inspired.

Classical cognitive science develops models that are purely symbolic and 

which can be described as asserting propositions or performing logic. In contrast, 
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connectionist cognitive science develops models that are subsymbolic (Smolensky, 

1988) and which can be described as statistical pattern recognizers. Networks use 

representations (Dawson, 2004; Horgan & Tienson, 1996), but these representations 

do not have the syntactic structure of those found in classical models (Waskan & 

Bechtel, 1997). Let us take a moment to describe in a bit more detail the basic prop-

erties of artificial neural networks.

An artificial neural network is a computer simulation of a “brain-like” system 

of interconnected processing units (see Figures 4-1 and 4-5 later in this chapter). In 

general, such a network can be viewed as a multiple-layer system that generates a 

desired response to an input stimulus. That is, like the devices described by cyber-

netics (Ashby, 1956, 1960), an artificial neural network is a machine that computes a 

mapping between inputs and outputs.

A network’s stimulus or input pattern is provided by the environment and is 

encoded as a pattern of activity (i.e., a vector of numbers) in a set of input units. 

The response of the system, its output pattern, is represented as a pattern of activ-

ity in the network›s output units. In modern connectionism—sometimes called 

New Connectionism—there will be one or more intervening layers of processors 

in the network, called hidden units. Hidden units detect higher-order features in 

the input pattern, allowing the network to make a correct or appropriate response.

The behaviour of a processor in an artificial neural network, which is analogous 

to a neuron, can be characterized as follows. First, the processor computes the total 

signal (its net input) being sent to it by other processors in the network. Second, the 

unit uses an activation function to convert its net input into internal activity (usu-

ally a continuous number between 0 and 1) on the basis of this computed signal. 

Third, the unit converts its internal activity into an output signal, and sends this 

signal on to other processors. A network uses parallel processing because many, if 

not all, of its units will perform their operations simultaneously.

The signal sent by one processor to another is a number that is transmitted 

through a weighted connection, which is analogous to a synapse. The connection 

serves as a communication channel that amplifies or attenuates signals being sent 

through it, because these signals are multiplied by the weight associated with the 

connection. The weight is a number that defines the nature and strength of the con-

nection. For example, inhibitory connections have negative weights, and excitatory 

connections have positive weights. Strong connections have strong weights (i.e., the 

absolute value of the weight is large), while weak connections have near-zero weights.

The pattern of connectivity in a PDP network (i.e., the network’s entire set of 

connection weights) defines how signals flow between the processors. As a result, 

a network’s connection weights are analogous to a program in a conventional com-

puter (Smolensky, 1988). However, a network’s “program” is not of the same type 

that defines a classical model. A network’s program does not reflect the classical 
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structure/process distinction, because networks do not employ either explicit sym-

bols or rules. Instead, a network’s program is a set of causal or associative links 

from signaling processors to receiving processors. The activity that is produced in 

the receiving units is literally caused by having an input pattern of activity modu-

lated by an array of connection weights between units. In this sense, connectionist 

models seem markedly associationist in nature (Bechtel, 1985); they can be com-

fortably related to the old associationist psychology (Warren, 1921).

Artificial neural networks are not necessarily embodiments of empiricist phi-

losophy. Indeed, the earliest artificial neural networks did not learn from experi-

ence; they were nativist in the sense that they had to have their connection weights 

“hand wired” by a designer (McCulloch & Pitts, 1943). However, their association-

ist characteristics resulted in a natural tendency for artificial neural networks to 

become the face of modern empiricism. This is because associationism has always 

been strongly linked to empiricism; empiricist philosophers invoked various 

laws of association to explain how complex ideas could be constructed from the 

knowledge provided by experience (Warren, 1921). By the late 1950s, when com-

puters were being used to bring networks to life, networks were explicitly linked 

to empiricism (Rosenblatt, 1958). Rosenblatt’s artificial neural networks were not 

hand wired. Instead, they learned from experience to set the values of their con-

nection weights.

What does it mean to say that artificial neural networks are empiricist? A famous 

passage from Locke (1977, p. 54) highlights two key elements: “Let us then suppose 

the mind to be, as we say, white paper, void of all characters, without any idea, how 

comes it to be furnished? . . . To this I answer, in one word, from experience.”

The first element in the above quote is the “white paper,” often described as 

the tabula rasa, or the blank slate: the notion of a mind being blank in the absence 

of experience. Modern connectionist networks can be described as endorsing the 

notion of the blank slate (Pinker, 2002). This is because prior to learning, the pat-

tern of connections in modern networks has no pre-existing structure. The net-

works either start literally as blank slates, with all connection weights being equal to 

zero (Anderson et al., 1977; Eich, 1982; Hinton & Anderson, 1981), or they start with 

all connection weights being assigned small, randomly selected values (Rumelhart, 

Hinton, & Williams, 1986a, 1986b).

The second element in Locke’s quote is that the source of ideas or knowledge or 

structure is experience. Connectionist learning rules provide a modern embodiment 

of this notion. Artificial neural networks are exposed to environmental stimulation—

activation of their input units—which results in changes to connection weights. 

These changes furnish a network’s blank slate, resulting in a pattern of connectivity 

that represents knowledge and implements a particular input-output mapping.

In some systems, called self-organizing networks, experience shapes connectivity 
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via unsupervised learning (Carpenter & Grossberg, 1992; Grossberg, 1980, 1987, 1988; 

Kohonen, 1977, 1984). When learning is unsupervised, networks are only provided 

with input patterns. They are not presented with desired outputs that are paired with 

each input pattern. In unsupervised learning, each presented pattern causes activity 

in output units; this activity is often further refined by a winner-take-all competition 

in which one output unit wins the competition to be paired with the current input 

pattern. Once the output unit is selected via internal network dynamics, its connec-

tion weights, and possibly the weights of neighbouring output units, are updated via 

a learning rule.

Networks whose connection weights are modified via unsupervised learning 

develop sensitivity to statistical regularities in the inputs and organize their output 

units to reflect these regularities. For instance, in a famous kind of self-organizing 

network called a Kohonen network (Kohonen, 1984), output units are arranged in 

a two-dimensional grid. Unsupervised learning causes the grid to organize itself 

into a map that reveals the discovered structure of the inputs, where related pat-

terns produce neighbouring activity in the output map. For example, when such 

networks are presented with musical inputs, they often produce output maps 

that are organized according to the musical circle of fifths (Griffith & Todd, 1999; 

Todd & Loy, 1991).

In cognitive science, most networks reported in the literature are not self-

organizing and are not structured via unsupervised learning. Instead, they are 

networks that are instructed to mediate a desired input-output mapping. This is 

accomplished via supervised learning. In supervised learning, it is assumed that the 

network has an external teacher. The network is presented with an input pattern 

and produces a response to it. The teacher compares the response generated by the 

network to the desired response, usually by calculating the amount of error associ-

ated with each output unit. The teacher then provides the error as feedback to the 

network. A learning rule uses feedback about error to modify weights in such a way 

that the next time this pattern is presented to the network, the amount of error that 

it produces will be smaller.

A variety of learning rules, including the delta rule (Rosenblatt, 1958, 1962; 

Stone, 1986; Widrow, 1962; Widrow & Hoff, 1960) and the generalized delta rule 

(Rumelhart, Hinton, & Williams, 1986b), are supervised learning rules that work by 

correcting network errors. (The generalized delta rule is perhaps the most popular 

learning rule in modern connectionism, and is discussed in more detail in Section 

4.9.) This kind of learning involves the repeated presentation of a number of input-

output pattern pairs, called a training set. Ideally, with enough presentations of a 

training set, the amount of error produced to each member of the training set will 

be negligible, and it can be said that the network has learned the desired input-

output mapping. Because these techniques require many presentations of a set of 
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patterns for learning to be completed, they have sometimes been criticized as being 

examples of “slow learning” (Carpenter, 1989).

Connectionism’s empiricist and associationist nature cast it close to the very 

position that classical cognitivism reacted against: psychological behaviourism 

(Miller, 2003). Modern classical arguments against connectionist cognitive science 

(Fodor & Pylyshyn, 1988) cover much of the same ground as arguments against 

behaviourist and associationist accounts of language (Bever, Fodor, & Garrett, 1968; 

Chomsky, 1957, 1959a, 1959b, 1965). That is, classical cognitive scientists argue that 

artificial neural networks, like their associationist cousins, do not have the computa-

tional power to capture the kind of regularities modelled with recursive rule systems.

However, these arguments against connectionism are flawed. We see in later 

sections that computational analyses of artificial neural networks have proven that 

they too belong to the class “universal machine.” As a result, the kinds of input-

output mappings that have been realized in artificial neural networks are both vast 

and diverse. One can find connectionist models in every research domain that has 

also been explored by classical cognitive scientists. Even critics of connectionism 

admit that “the study of connectionist machines has led to a number of striking and 

unanticipated findings; it’s surprising how much computing can be done with a 

uniform network of simple interconnected elements” (Fodor & Pylyshyn, 1988, p. 6).

That connectionist models can produce unanticipated results is a direct 

result of their empiricist nature. Unlike their classical counterparts, connectionist 

researchers do not require a fully specified theory of how a task is accomplished 

before modelling begins (Hillis, 1988). Instead, they can let a learning rule discover 

how to mediate a desired input-output mapping. Connectionist learning rules serve 

as powerful methods for developing new algorithms of interest to cognitive science. 

Hillis (1988, p. 176) has noted that artificial neural networks allow “for the possibil-

ity of constructing intelligence without first understanding it.”

One problem with connectionist cognitive science is that the algorithms that 

learning rules discover are extremely difficult to retrieve from a trained network 

(Dawson, 1998, 2004, 2009; Dawson & Shamanski, 1994; McCloskey, 1991; Mozer & 

Smolensky, 1989; Seidenberg, 1993). This is because these algorithms involve distrib-

uted, parallel interactions amongst highly nonlinear elements. “One thing that con-

nectionist networks have in common with brains is that if you open them up and peer 

inside, all you can see is a big pile of goo” (Mozer & Smolensky, 1989, p. 3).

In the early days of modern connectionist cognitive science, this was not a 

concern. This was a period of what has been called “gee whiz” connectionism 

(Dawson, 2009), in which connectionists modelled phenomena that were typi-

cally described in terms of rule-governed symbol manipulation. In the mid-1980s 

it was sufficiently interesting to show that such phenomena might be accounted 

for by parallel distributed processing systems that did not propose explicit rules or 
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symbols. However, as connectionism matured, it was necessary for its researchers 

to spell out the details of the alternative algorithms embodied in their networks 

(Dawson, 2004). If these algorithms could not be extracted from networks, then 

“connectionist networks should not be viewed as theories of human cognitive func-

tions, or as simulations of theories, or even as demonstrations of specific theoretical 

points” (McCloskey, 1991, p. 387). In response to such criticisms, connectionist cog-

nitive scientists have developed a number of techniques for recovering algorithms 

from their networks (Berkeley et al., 1995; Dawson, 2004, 2005; Gallant, 1993; Hanson 

& Burr, 1990; Hinton, 1986; Moorhead, Haig, & Clement, 1989; Omlin & Giles, 1996).

 What are the elements of connectionism, and how do they relate to cognitive 

science in general and to classical cognitive science in particular? The purpose of 

the remainder of this chapter is to explore the ideas of connectionist cognitive sci-

ence in more detail.

4.2 Associations

Classical cognitive science has been profoundly influenced by seventeenth-century 

Cartesian philosophy (Descartes, 1996, 2006). The Cartesian view that thinking is 

equivalent to performing mental logic—that it is a mental discourse of computation 

or calculation (Hobbes, 1967)—has inspired the logicism that serves as the founda-

tion of the classical approach. Fundamental classical notions, such as the assump-

tion that cognition is the result of rule-governed symbol manipulation (Craik, 1943) 

or that innate knowledge is required to solve problems of underdetermination 

(Chomsky, 1965, 1966), have resulted in the classical being viewed as a newer variant 

of Cartesian rationalism (Paivio, 1986). One key classical departure from Descartes 

is its rejection of dualism. Classical cognitive science has appealed to recursive rules 

to permit finite devices to generate an infinite variety of potential behaviour.

Classical cognitive science is the modern rationalism, and one of the key ideas 

that it employs is recursion. Connectionist cognitive science has very different 

philosophical roots. Connectionism is the modern form of empiricist philosophy 

(Berkeley, 1710; Hume, 1952; Locke, 1977), where knowledge is not innate, but is 

instead provided by sensing the world. “No man’s knowledge here can go beyond 

his experience” (Locke, 1977, p. 83). If recursion is fundamental to the classical 

approach’s rationalism, then what notion is fundamental to connectionism’s empir-

icism? The key idea is association: different ideas can be linked together, so that if 

one arises, then the association between them causes the other to arise as well.

For centuries, philosophers and psychologists have studied associations empir-

ically, through introspection (Warren, 1921). These introspections have revealed 

the existence of sequences of thought that occur during thinking. Associationism 

attempted to determine the laws that would account for these sequences of thought.
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The earliest detailed introspective account of such sequences of thought can 

be found in the 350 BC writings of Aristotle (Sorabji, 2006, p. 54): “Acts of recollec-

tion happen because one change is of a nature to occur after another.” For Aristotle, 

ideas were images (Cummins, 1989). He argued that a particular sequence of 

images occurs either because this sequence is a natural consequence of the images, 

or because the sequence has been learned by habit. Recall of a particular memory, 

then, is achieved by cuing that memory with the appropriate prior images, which 

initiate the desired sequence of images. “Whenever we recollect, then, we undergo 

one of the earlier changes, until we undergo the one after which the change in ques-

tion habitually occurs” (Sorabji, 2006, p. 54).

Aristotle’s analysis of sequences of thought is central to modern mnemonic 

techniques for remembering ordered lists (Lorayne, 2007; Lorayne & Lucas, 1974). 

Aristotle noted that recollection via initiating a sequence of mental images could be 

a deliberate and systematic process. This was because the first image in the sequence 

could be selected so that it would be recollected fairly easily. Recall of the sequence, 

or of the target image at the end of the sequence, was then dictated by lawful rela-

tionships between adjacent ideas. Thus Aristotle invented laws of association.

Aristotle considered three different kinds of relationships between the starting 

image and its successor: similarity, opposition, and (temporal) contiguity: 

And this is exactly why we hunt for the successor, starting in our thoughts from the 

present or from something else, and from something similar, or opposite, or neigh-

bouring. By this means recollection occurs. (Sorabji, 2006, p. 54) 

In more modern associationist theories, Aristotle’s laws would be called the law of 

similarity, the law of contrast, and the law of contiguity or the law of habit.

Aristotle’s theory of memory was essentially ignored for many centuries 

(Warren, 1921). Instead, pre-Renaissance and Renaissance Europe were more inter-

ested in the artificial memory—mnemonics—that was the foundation of Greek ora-

tory. These techniques were rediscovered during the Middle Ages in the form of Ad 

Herennium, a circa 86 BC text on rhetoric that included a section on enhancing the 

artificial memory (Yates, 1966). Ad Herennium described the mnemonic techniques 

invented by Simonides circa 500 BC. While the practice of mnemonics flourished 

during the Middle Ages, it was not until the seventeenth century that advances in 

associationist theories of memory and thought began to flourish.

The rise of modern associationism begins with Thomas Hobbes (Warren, 1921). 

Hobbes’ (1967) notion of thought as mental discourse was based on his observa-

tion that thinking involved an orderly sequence of ideas. Hobbes was interested in 

explaining how such sequences occurred. While Hobbes’ own work was very pre-

liminary, it inspired more detailed analyses carried out by the British empiricists 

who followed him.
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Empiricist philosopher John Locke coined the phrase association of ideas, 

which first appeared as a chapter title in the fourth edition of An Essay Concerning 

Human Understanding (Locke, 1977). Locke’s work was an explicit reaction against 

Cartesian philosophy (Thilly, 1900); his goal was to establish experience as the foun-

dation of all thought. He noted that connections between simple ideas might not 

reflect a natural order. Locke explained this by appealing to experience: 

Ideas that in themselves are not at all of kin, come to be so united in some men’s 

minds that it is very hard to separate them, they always keep in company, and the 

one no sooner at any time comes into the understanding but its associate appears 

with it. (Locke, 1977, p. 122)

Eighteenth-century British empiricists expanded Locke’s approach by explor-

ing and debating possible laws of association. George Berkeley (1710) reiterated 

Aristotle’s law of contiguity and extended it to account for associations involving 

different modes of sensation. David Hume (1852) proposed three different laws of 

association: resemblance, contiguity in time or place, and cause or effect. David 

Hartley, one of the first philosophers to link associative laws to brain function, saw 

contiguity as the primary source of associations and ignored Hume’s law of resem-

blance (Warren, 1921).

 Debates about the laws of association continued into the nineteenth century. 

James Mill (1829) only endorsed the law of contiguity, and explicitly denied Hume’s 

laws of cause and effect or resemblance. Mill’s ideas were challenged and modified by 

his son, John Stuart Mill. In his revised version of his father’s book (Mill & Mill, 1869), 

Mill posited a completely different set of associative laws, which included a reintro-

duction of Hume’s law of similarity. He also replaced his father’s linear, mechanistic 

account of complex ideas with a “mental chemistry” that endorsed nonlinear emer-

gence. This is because in this mental chemistry, when complex ideas were created via 

association, the resulting whole was more than just the sum of its parts. Alexander 

Bain (1855) refined the associationism of John Stuart Mill, proposing four different 

laws of association and attempting to reduce all intellectual processes to these laws. 

Two of these were the familiar laws of contiguity and of similarity.

Bain was the bridge between philosophical and psychological associationism 

(Boring, 1950). He stood, 

exactly at a corner in the development of psychology, with philosophical psy-

chology stretching out behind, and experimental physiological psychology lying 

ahead, in a new direction. The psychologists of the twentieth century can read 

much of Bain with hearty approval; perhaps John Locke could have done the 

same. (Boring, 1950, p. 240)

One psychologist who approved of Bain was William James; he frequently cited 

Bain in his Principles of Psychology (James, 1890a). Chapter 14 of this work provided 
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James’ own treatment of associationism. James criticized philosophical association-

ism’s emphasis on associations between mental contents. James proposed a mecha-

nistic, biological theory of associationism instead, claiming that associations were 

made between brain states: 

We ought to talk of the association of objects, not of the association of ideas. And so 

far as association stands for a cause, it is between processes in the brain—it is these 

which, by being associated in certain ways, determine what successive objects shall 

be thought. (James, 1890a, p. 554, original italics)

James (1890a) attempted to reduce other laws of association to the law of contiguity, 

which he called the law of habit and expressed as follows: “When two elementary 

brain-processes have been active together or in immediate succession, one of them, 

on reoccurring, tends to propagate its excitement into the other” (p. 566). He illus-

trated the action of this law with a figure (James, 1890a, p. 570, Figure 40), a version 

of which is presented as Figure 4-1.

Figure 4-1. A distributed memory, initially described by James (1890a) but also 

part of modern connectionism.

Figure 4-1 illustrates two ideas, A and B, each represented as a pattern of activity in 

its own set of neurons. A is represented by activity in neurons a, b, c, d, and e; B is 

represented by activity in neurons l, m, n, o, and p. The assumption is that A repre-

sents an experience that occurred immediately before B. When B occurs, activating 

its neurons, residual activity in the neurons representing A permits the two patterns 

to be associated by the law of habit. That is, the “tracts” connecting the neurons (the 

“modifiable connections” in Figure 4-1) have their strengths modified.
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The ability of A’s later activity to reproduce B is due to these modified connec-

tions between the two sets of neurons.

The thought of A must awaken that of B, because a, b, c, d, e, will each and all 

discharge into l through the paths by which their original discharge took place. 

Similarly they will discharge into m, n, o, and p; and these latter tracts will also 

each reinforce the other’s action because, in the experience B, they have already 

vibrated in unison. (James, 1890a, p. 569)

James’ (1890a) biological account of association reveals three properties that are 

common to modern connectionist networks. First, his system is parallel: more than 

one neuron can be operating at the same time. Second, his system is convergent: 

the activity of one of the output neurons depends upon receiving or summing the 

signals sent by multiple input neurons. Third, his system is distributed: the associa-

tion between A and B is the set of states of the many “tracts” illustrated in Figure 4-1; 

there is not just a single associative link.

James’s (1890a) law of habit was central to the basic mechanism proposed by 

neuroscientist Donald Hebb (1949) for the development of cell assemblies. Hebb 

provided a famous modern statement of James’ law of habit: 

When an axon of cell A is near enough to excite a cell B and repeatedly or persis-

tently takes part in firing it, some growth process or metabolic change takes place 

in one or both cells such that A’s efficiency, as one of the cells firing B, is increased. 

(Hebb, 1949, p. 62) 

This makes explicit the modern connectionist idea that learning is modifying the 

strength of connections between processors. Hebb’s theory inspired the earli-

est computer simulations of memory systems akin to the one proposed by James 

(Milner, 1957; Rochester et al., 1956). These simulations revealed a critical role for 

inhibition that led Hebb (1959) to revise his theory. Modern neuroscience has dis-

covered a phenomenon called long-term potentiation that is often cited as a biologi-

cally plausible instantiation of Hebb’s theory (Brown, 1990; Gerstner & Kistler, 2002; 

Martinez & Derrick, 1996; van Hemmen & Senn, 2002).

The journey from James through Hebb to the first simulations of memory 

(Milner, 1957; Rochester et al., 1956) produced a modern associative memory sys-

tem called the standard pattern associator (McClelland, 1986). The standard pat-

tern associator, which is structurally identical to Figure 4-1, is a memory capable of 

learning associations between pairs of input patterns (Steinbuch, 1961; Taylor, 1956) 

or learning to associate an input pattern with a categorizing response (Rosenblatt, 

1962; Selfridge, 1956; Widrow & Hoff, 1960).

The standard pattern associator is empiricist in the sense that its knowledge 

is acquired by experience. Usually the memory begins as a blank slate: all of the 

connections between processors start with weights equal to zero. During a learning 
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phase, pairs of to-be-associated patterns simultaneously activate the input and 

output units in Figure 4-1. With each presented pair, all of the connection weights—

the strength of each connection between an input and an output processor—are 

modified by adding a value to them. This value is determined in accordance with 

some version of Hebb’s (1949) learning rule. Usually, the value added to a weight is 

equal to the activity of the processor at the input end of the connection, multiplied 

by the activity of the processor at the output end of the connection, and multiplied 

by some fractional value called a learning rate. The mathematical details of such 

learning are provided in Chapter 9 of Dawson (2004).

The standard pattern associator is called a distributed memory because its 

knowledge is stored throughout all the connections in the network, and because 

this one set of connections can store several different associations. During a recall 

phase, a cue pattern is used to activate the input units. This causes signals to be sent 

through the connections in the network. These signals are equal to the activation 

value of an input unit multiplied by the weight of the connection through which the 

activity is being transmitted. Signals received by the output processors are used to 

compute net input, which is simply the sum of all of the incoming signals. In the 

standard pattern associator, an output unit’s activity is equal to its net input. If the 

memory is functioning properly, then the pattern of activation in the output units 

will be the pattern that was originally associated with the cue pattern.

The standard pattern associator is the cornerstone of many models of memory 

created after the cognitive revolution (Anderson, 1972; Anderson et al., 1977; Eich, 

1982; Hinton & Anderson, 1981; Murdock, 1982; Pike, 1984; Steinbuch, 1961; Taylor, 

1956). These models are important, because they use a simple principle—James’ 

(1890a, 1890b) law of habit—to model many subtle regularities of human memory, 

including errors in recall. In other words, the standard pattern associator is a kind 

of memory that has been evaluated with the different kinds of evidence cited in 

Chapters 2 and 3, in an attempt to establish strong equivalence.

The standard pattern associator also demonstrates another property crucial 

to modern connectionism, graceful degradation. How does this distributed model 

behave if it is presented with a noisy cue, or with some other cue that was never 

tested during training? It generates a response that has the same degree of noise as 

its input (Dawson, 1998, Table 3-1). That is, there is a match between the quality of 

the memory’s input and the quality of its output.

The graceful degradation of the standard pattern associator reveals that it is 

sensitive to the similarity of noisy cues to other cues that were presented during 

training. Thus modern pattern associators provide some evidence for James’ (1890a) 

attempt to reduce other associative laws, such as the law of similarity, to the basic 

law of habit or contiguity.
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In spite of the popularity and success of distributed associative memories as 

models of human learning and recall (Hinton & Anderson, 1981), they are extremely 

limited in power. When networks learn via the Hebb rule, they produce errors when 

they are overtrained, are easily confused by correlated training patterns, and do not 

learn from their errors (Dawson, 2004). An error-correcting rule called the delta 

rule (Dawson, 2004; Rosenblatt, 1962; Stone, 1986; Widrow & Hoff, 1960) can alle-

viate some of these problems, but it does not eliminate them. While association 

is a fundamental notion in connectionist models, other notions are required by 

modern connectionist cognitive science. One of these additional ideas is nonlinear 

processing.

4.3 Nonlinear Transformations

John Stuart Mill modified his father’s theory of associationism (Mill & Mill, 1869; 

Mill, 1848) in many ways, including proposing a mental chemistry “in which it is 

proper to say that the simple ideas generate, rather than . . . compose, the complex 

ones” (Mill, 1848, p. 533). Mill’s mental chemistry is an early example of emergence, 

where the properties of a whole (i.e., a complex idea) are more than the sum of the 

properties of the parts (i.e., a set of associated simple ideas).

The generation of one class of mental phenomena from another, whenever it can 

be made out, is a highly interesting fact in mental chemistry; but it no more super-

sedes the necessity of an experimental study of the generated phenomenon than a 

knowledge of the properties of oxygen and sulphur enables us to deduce those of 

sulphuric acid without specific observation and experiment. (Mill, 1848, p. 534)

Mathematically, emergence results from nonlinearity (Luce, 1999). If a system is 

linear, then its whole behaviour is exactly equal to the sum of the behaviours of its 

parts. The standard pattern associator that was illustrated in Figure 4-1 is an exam-

ple of such a system. Each output unit in the standard pattern associator computes 

a net input, which is the sum of all of the individual signals that it receives from the 

input units. Output unit activity is exactly equal to net input. In other words, output 

activity is exactly equal to the sum of input signals in the standard pattern associa-

tor. In order to increase the power of this type of pattern associator—in order to 

facilitate emergence—a nonlinear relationship between input and output must be 

introduced.

Neurons demonstrate one powerful type of nonlinear processing. The inputs to 

a neuron are weak electrical signals, called graded potentials, which stimulate and 

travel through the dendrites of the receiving neuron. If enough of these weak graded 

potentials arrive at the neuron’s soma at roughly the same time, then their cumu-

lative effect disrupts the neuron’s resting electrical state. This results in a massive 
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depolarization of the membrane of the neuron’s axon, called an action potential, 

which is a signal of constant intensity that travels along the axon to eventually stim-

ulate some other neuron.

A crucial property of the action potential is that it is an all-or-none phenom-

enon, representing a nonlinear transformation of the summed graded potentials. 

The neuron converts continuously varying inputs into a response that is either on 

(action potential generated) or off (action potential not generated). This has been 

called the all-or-none law (Levitan & Kaczmarek, 1991, p. 43): “The all-or-none law 

guarantees that once an action potential is generated it is always full size, mini-

mizing the possibility that information will be lost along the way.” The all-or-none 

output of neurons is a nonlinear transformation of summed, continuously varying 

input, and it is the reason that the brain can be described as digital in nature (von 

Neumann, 1958).

The all-or-none behaviour of a neuron makes it logically equivalent to the 

relays or switches that were discussed in Chapter 2. This logical interpretation was 

exploited in an early mathematical account of the neural information processing 

(McCulloch & Pitts, 1943). McCulloch and Pitts used the all-or-none law to justify 

describing neurons very abstractly as devices that made true or false logical asser-

tions about input information: 

The all-or-none law of nervous activity is sufficient to insure that the activity of any 

neuron may be represented as a proposition. Physiological relations existing among 

nervous activities correspond, of course, to relations among the propositions; and 

the utility of the representation depends upon the identity of these relations with 

those of the logical propositions. To each reaction of any neuron there is a corre-

sponding assertion of a simple proposition. (McCulloch & Pitts, 1943, p. 117)

McCulloch and Pitts (1943) invented a connectionist processor, now known as the 

McCulloch-Pitts neuron (Quinlan, 1991), that used the all-or-none law. Like the 

output units in the standard pattern associator (Figure 4-1), a McCulloch-Pitts 

neuron first computes its net input by summing all of its incoming signals. However, 

it then uses a nonlinear activation function to transform net input into internal 

activity. The activation function used by McCulloch and Pitts was the Heaviside 

step function, named after nineteenth-century electrical engineer Oliver Heaviside. 

This function compares the net input to a threshold. If the net input is less than the 

threshold, the unit’s activity is equal to 0. Otherwise, the unit’s activity is equal to 

1. (In other artificial neural networks [Rosenblatt, 1958, 1962], below-threshold net 

inputs produced activity of –1.)

The output units in the standard pattern associator (Figure 4-1) can be 

described as using the linear identity function to convert net input into activity, 

because output unit activity is equal to net input. If one replaced the identity func-

tion with the Heaviside step function in the standard pattern associator, it would 



 Elements of Connectionist Cognitive Science  141

then become a different kind of network, called a perceptron (Dawson, 2004), which 

was invented by Frank Rosenblatt during the era in which cognitive science was 

born (Rosenblatt, 1958, 1962).

Perceptrons (Rosenblatt, 1958, 1962) were artificial neural networks that could 

be trained to be pattern classifiers: given an input pattern, they would use their non-

linear outputs to decide whether or not the pattern belonged to a particular class. In 

other words, the nonlinear activation function used by perceptrons allowed them to 

assign perceptual predicates; standard pattern associators do not have this ability. 

The nature of the perceptual predicates that a perceptron could learn to assign was 

a central issue in an early debate between classical and connectionist cognitive sci-

ence (Minsky & Papert, 1969; Papert, 1988).

The Heaviside step function is nonlinear, but it is also discontinuous. This 

was problematic when modern researchers sought methods to train more complex 

networks. Both the standard pattern associator and the perceptron are one-layer 

networks, meaning that they have only one layer of connections, the direct connec-

tions between input and output units (Figure 4-1). More powerful networks arise 

if intermediate processors, called hidden units, are used to preprocess input sig-

nals before sending them on to the output layer. However, it was not until the mid-

1980s that learning rules capable of training such networks were invented (Ackley, 

Hinton, & Sejnowski, 1985; Rumelhart, Hinton, & Williams, 1986b). The use of cal-

culus to derive these new learning rules became possible when the discontinuous 

Heaviside step function was replaced by a continuous approximation of the all-or-

none law (Rumelhart, Hinton, & Williams, 1986b).

One continuous approximation of the Heaviside step function is the sigmoid-

shaped logistic function. It asymptotes to a value of 0 as its net input approaches 

negative infinity, and asymptotes to a value of 1 as its net input approaches positive 

infinity. When the net input is equal to the threshold (or bias) of the logistic, activity 

is equal to 0.5. Because the logistic function is continuous, its derivative can be cal-

culated, and calculus can be used as a tool to derive new learning rules (Rumelhart, 

Hinton, & Williams, 1986b). However, it is still nonlinear, so logistic activities can 

still be interpreted as truth values assigned to propositions.

Modern connectionist networks employ many different nonlinear activation 

functions. Processing units that employ the logistic activation function have been 

called integration devices (Ballard, 1986) because they convert a sum (net input) 

and “squash” it into the range between 0 and 1. Other processing units might be 

tuned to generate maximum responses to a narrow range of net inputs. Ballard 

(1986) called such processors value units. A different nonlinear continuous func-

tion, the Gaussian equation, can be used to mathematically define a value unit, and 

calculus can be used to derive a learning rule for this type of artificial neural net-

work (Dawson, 1998, 2004; Dawson & Schopflocher, 1992b).
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Many other activation functions exist. One review paper has identified 640 dif-

ferent activation functions employed in connectionist networks (Duch & Jankowski, 

1999). One characteristic of the vast majority of all of these activation functions is 

their nonlinearity. Connectionist cognitive science is associationist, but it is also 

nonlinear.

4.4 The Connectionist Sandwich

Both the McCulloch-Pitts neuron (McCulloch & Pitts, 1943) and the perceptron 

(Rosenblatt, 1958, 1962) used the Heaviside step function to implement the all-or-

none law. As a result, both of these architectures generated a “true” or “false” judg-

ment about each input pattern. Thus both of these architectures are digital, and 

their basic function is pattern recognition or pattern classification.

The two-valued logic that was introduced in Chapter 2 can be cast in the context 

of such digital pattern recognition. In the two-valued logic, functions are computed 

over two input propositions, p and q, which themselves can either be true or false. As 

a result, there are only four possible combinations of p and q, which are given in the 

first two columns of Table 4-1. Logical functions in the two-valued logic are them-

selves judgments of true or false that depend on combinations of the truth values of 

the input propositions p and q. As a result, there are 16 different logical operations 

that can be defined in the two-valued logic; these were provided in Table 2-2.

The truth tables for two of the sixteen possible operations in the two-valued 

logic are provided in the last two columns of Table 4-1. One is the AND operation 

(p·q), which is only true when both propositions are true. The other is the XOR 

operation (p∧q), which is only true when one or the other of the propositions is true.

p q p·q p ∧ q

1 1 1 0

1 0 0 1

0 1 0 1

0 0 0 0

Table 4-1. Truth tables for the logical operations AND (p·q) and XOR (p ∧ q), where 

the truth value of each operation is given as a function of the truth of each 

of two propositions, p and q. ‘1’ indicates “true” and ‘0’ indicates “false.” The 

logical notation is taken from McCulloch (1988b).

That AND or XOR are examples of digital pattern recognition can be made more 

explicit by representing their truth tables graphically as pattern spaces. In a pattern 
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space, an entire row of a truth table is represented as a point on a graph. The coor-

dinates of a point in a pattern space are determined by the truth values of the input 

propositions. The colour of the point represents the truth value of the operation 

computed over the inputs.

Figure 4-2A illustrates the pattern space for the AND operation of Table 4-1. 

Note that it has four graphed points, one for each row of the truth table. The coordi-

nates of each graphed point—(1,1), (1,0), (0,1), and (0,0)—indicate the truth values 

of the propositions p and q. The AND operation is only true when both of these 

propositions are true. This is represented by colouring the point at coordinate (1,1) 

black. The other three points are coloured white, indicating that the logical operator 

returns a “false” value for each of them.

Figure 4-2. (A) Pattern space for AND; (B) Pattern space for XOR.

Pattern spaces are used for digital pattern recognition by carving them into decision 

regions. If a point that represents a pattern falls in one decision region, then it is 

classified in one way. If that point falls in a different decision region, then it is clas-

sified in a different way. Learning how to classify a set of patterns involves learning 

how to correctly carve the pattern space up into the desired decision regions.

The AND problem is an example of a linearly separable problem. This is 

because a single straight cut through the pattern space divides it into two decision 

regions that generate the correct pattern classifications. The dashed line in Figure 

4-2A indicates the location of this straight cut for the AND problem. Note that the 

one “true” pattern falls on one side of this cut, and that the three “false” patterns fall 

on the other side of this cut.

Not all problems are linearly separable. A linearly nonseparable problem is one 

in which a single straight cut is not sufficient to separate all of the patterns of one 

type from all of the patterns of another type. An example of a linearly nonseparable 

problem is the XOR problem, whose pattern space is illustrated in Figure 4-2B. 

Note that the positions of the four patterns in Figure 4-2B are identical to the posi-

tions in Figure 4-2A, because both pattern spaces involve the same propositions. 
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The only difference is the colouring of the points, indicating that XOR involves 

making a different judgment than AND. However, this difference between graphs is 

important, because now it is impossible to separate all of the black points from all of 

the white points with a single straight cut. Instead, two different cuts are required, 

as shown by the two dashed lines in Figure 4-2B. This means that XOR is not lin-

early separable.

Linear separability defines the limits of what can be computed by a Rosenblatt 

perceptron (Rosenblatt, 1958, 1962) or by a McCulloch-Pitts neuron (McCulloch 

& Pitts, 1943). That is, if some pattern recognition problem is linearly separable, 

then either of these architectures is capable of representing a solution to that prob-

lem. For instance, because AND is linearly separable, it can be computed by a per-

ceptron, such as the one illustrated in Figure 4-3. 

Figure 4-3. A Rosenblatt perceptron that can compute the AND operation.

This perceptron consists of two input units whose activities respectively represent 

the state (i.e., either 0 or 1) of the propositions p and q. Each of these input units 

sends a signal through a connection to an output unit; the figure indicates that the 

weight of each connection is 1. The output unit performs two operations. First, it 

computes its net input by summing the two signals that it receives (the S compo-

nent of the output unit). Second, it transforms the net input into activity by apply-

ing the Heaviside step function. The figure indicates in the second component of 

the output unit that the threshold for this activation function (q) is 1.5. This means 

that output unit activity will only be 1 if net input is greater than or equal to 1.5; 

otherwise, output unit activity will be equal to 0.

If one considers the four different combinations of input unit activities that 

would be presented to this device—(1,1), (1,0), (0,1), and (0,0)—then it is clear that 

θ = 1.5

Σ
1 1

p q
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the only time that output unit activity will equal 1 is when both input units are acti-

vated with 1 (i.e., when p and q are both true). This is because this situation will pro-

duce a net input of 2, which exceeds the threshold. In all other cases, the net input 

will either be 1 or 0, which will be less than the threshold, and which will therefore 

produce output unit activity of 0.

The ability of the Figure 4-3 perceptron to compute AND can be described 

in terms of the pattern space in Figure 4-2A. The threshold and the connection 

weights of the perceptron provide the location and orientation of the single straight 

cut that carves the pattern space into decision regions (the dashed line in Figure 

4-2A). Activating the input units with some pattern presents a pattern space loca-

tion to the perceptron. The perceptron examines this location to decide on which 

side of the cut the location lies, and responds accordingly.

This pattern space account of the Figure 4-3 perceptron also points to a limita-

tion. When the Heaviside step function is used as an activation function, the per-

ceptron only defines a single straight cut through the pattern space and therefore 

can only deal with linearly separable problems. A perceptron akin to the one illus-

trated in Figure 4-3 would not be able to compute XOR (Figure 4-2B) because the 

output unit is incapable of making the two required cuts in the pattern space.

How does one extend computational power beyond the perceptron? One 

approach is to add additional processing units, called hidden units, which are inter-

mediaries between input and output units. Hidden units can detect additional fea-

tures that transform the problem by increasing the dimensionality of the pattern 

space. As a result, the use of hidden units can convert a linearly nonseparable prob-

lem into a linearly separable one, permitting a single binary output unit to generate 

the correct responses.

Figure 4-4 shows how the AND circuit illustrated in Figure 4-3 can be added 

as a hidden unit to create a multilayer perceptron that can compute the linearly 

nonseparable XOR operation (Rumelhart, Hinton, & Williams, 1986a). This per-

ceptron also has two input units whose activities respectively represent the state of 

the propositions p and q. Each of these input units sends a signal through a connec-

tion to an output unit; the figure indicates that the weight of each connection is 1. 

The threshold of the output’s activation function (q) is 0.5. If we were to ignore the 

hidden unit in this network, the output unit would be computing OR, turning on 

when one or both of the input propositions are true.

However, this network does not compute OR, because the input units are also 

connected to a hidden unit, which in turn sends a third signal to be added into the 

output unit’s net input. The hidden unit is identical to the AND circuit from Figure 

4-3. The signal that it sends to the output unit is strongly inhibitory; the weight of 

the connection between the two units is –2.
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Figure 4-4. A multilayer perceptron that can compute XOR.

The action of the hidden unit is crucial to the behaviour of the system. When neither 

or only one of the input units activates, the hidden unit does not respond, so it sends 

a signal of 0 to the output unit. As a result, in these three situations the output unit 

turns on when either of the inputs is on (because the net input is over the threshold) 

and turns off when neither input unit is on. When both input units are on, they send 

an excitatory signal to the output unit. However, they also send a signal that turns 

on the hidden unit, causing it to send inhibition to the output unit. In this situation, 

the net input of the output unit is 1 + 1 – 2 = 0 which is below threshold, producing 

zero output unit activity. The entire circuit therefore performs the XOR operation.

The behaviour of the Figure 4-4 multilayer perceptron can also be related to the 

pattern space of Figure 4-2B. The lower cut in that pattern space is provided by the 

output unit. The upper cut in that pattern space is provided by the hidden unit. The 

coordination of the two units permits the circuit to solve this linearly nonseparable 

problem.

Interpreting networks in terms of the manner in which they carve a pattern 

space into decision regions suggests that learning can be described as determining 

where cuts in a pattern space should be made. Any hidden or output unit that uses 

a nonlinear, monotonic function like the Heaviside or the logistic can be viewed 

as making a single cut in a space. The position and orientation of this cut is deter-

mined by the weights of the connections feeding into the unit, as well as the thresh-

old or bias (q) of the unit. A learning rule modifies all of these components. (The 

bias of a unit can be trained as if it were just another connection weight by assuming 

that it is the signal coming from a special, extra input unit that is always turned on 

[Dawson, 2004, 2005].)
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The multilayer network illustrated in Figure 4-4 is atypical because it directly 

connects input and output units. Most modern networks eliminate such direct con-

nections by using at least one layer of hidden units to isolate the input units from 

the output units, as shown in Figure 4-5. In such a network, the hidden units can 

still be described as carving a pattern space, with point coordinates provided by the 

input units, into a decision region. However, because the output units do not have 

direct access to input signals, they do not carve the pattern space. Instead, they 

divide an alternate space, the hidden unit space, into decision regions. The hidden 

unit space is similar to the pattern space, with the exception that the coordinates of 

the points that are placed within it are provided by hidden unit activities.

Figure 4-5. A typical multilayer perceptron has no direct connections between 

input and output units.

When there are no direct connections between input and output units, the hidden 

units provide output units with an internal representation of input unit activity. 

Thus it is proper to describe a network like the one illustrated in Figure 4-5 as being 

just as representational (Horgan & Tienson, 1996) as a classical model. That connec-

tionist representations can be described as a nonlinear transformation of the input 

unit representation, permitting higher-order nonlinear features to be detected, is 

why a network like the one in Figure 4-5 is far more powerful than one in which no 

hidden units appear (e.g., Figure 4-3).

When there are no direct connections between input and output units, the repre-

sentations held by hidden units conform to the classical sandwich that characterized 
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classical models (Hurley, 2001)—a connectionist sandwich (Calvo & Gomila, 2008, 

p. 5): “Cognitive sandwiches need not be Fodorian. A feed forward connectionist 

network conforms equally to the sandwich metaphor. The input layer is identified 

with a perception module, the output layer with an action one, and hidden space 

serves to identify metrically, in terms of the distance relations among patterns of 

activation, the structural relations that obtain among concepts. The hidden layer 

this time contains the meat of the connectionist sandwich.”

A difference between classical and connectionist cognitive science is not that 

the former is representational and the latter is not. Both are representational, but 

they disagree about the nature of mental representations. “The major lesson of 

neural network research, I believe, has been to thus expand our vision of the ways 

a physical system like the brain might encode and exploit information and knowl-

edge” (Clark, 1997, p. 58).

4.5 Connectionist Computations: An Overview

In the preceding sections some of the basic characteristics of connectionist networks 

were presented. These elements of connectionist cognitive science have emerged as 

a reaction against key assumptions of classical cognitive science. Connectionist cog-

nitive scientists replace rationalism with empiricism, and recursion with chains of 

associations.

Although connectionism reacts against many of the elements of classical cogni-

tive science, there are many similarities between the two. In particular, the multiple 

levels of analysis described in Chapter 2 apply to connectionist cognitive science 

just as well as they do to classical cognitive science (Dawson, 1998). The next two 

sections of this chapter focus on connectionist research in terms of one of these, the 

computational level of investigation.

Connectionism’s emphasis on both empiricism and associationism has raised 

the spectre, at least in the eyes of many classical cognitive scientists, of a return to 

the behaviourism that cognitivism itself revolted against. When cognitivism arose, 

some of its early successes involved formal proofs that behaviourist and association-

ist theories were incapable of accounting for fundamental properties of human lan-

guages (Bever, Fodor, & Garrett, 1968; Chomsky, 1957, 1959b, 1965, 1966). With the 

rise of modern connectionism, similar computational arguments have been made 

against artificial neural networks, essentially claiming that they are not sophisti-

cated enough to belong to the class of universal machines (Fodor & Pylyshyn, 1988).

In Section 4.6, “Beyond the Terminal Meta-postulate,” we consider the in-prin-

ciple power of connectionist networks, beginning with two different types of tasks 

that networks can be used to accomplish. One is pattern classification: assigning an 
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input pattern in an all-or-none fashion to a particular category. A second is function 

approximation: generating a continuous response to a set of input values.

Section 4.6 then proceeds to computational analyses of how capable networks 

are of accomplishing these tasks. These analyses prove that networks are as power-

ful as need be, provided that they include hidden units. They can serve as arbitrary 

pattern classifiers, meaning that they can solve any pattern classification problem 

with which they are faced. They can also serve as universal function approxima-

tors, meaning that they can fit any continuous function to an arbitrary degree of 

precision. This computational power suggests that artificial neural networks belong 

to the class of universal machines. The section ends with a brief review of compu-

tational analyses, which conclude that connectionist networks indeed can serve as 

universal Turing machines and are therefore computationally sophisticated enough 

to serve as plausible models for cognitive science.

Computational analyses need not limit themselves to considering the general 

power of artificial neural networks. Computational analyses can be used to explore 

more specific questions about networks. This is illustrated in Section 4.7, “What 

Do Output Unit Activities Represent?” in which we use formal methods to answer 

the question that serves as the section’s title. The section begins with a general dis-

cussion of theories that view biological agents as intuitive statisticians who infer 

the probability that certain events may occur in the world (Peterson & Beach, 1967; 

Rescorla, 1967, 1968). An empirical result is reviewed that suggests artificial neural 

networks are also intuitive statisticians, in the sense that the activity of an output 

unit matches the probability that a network will be “rewarded” (i.e., trained to turn 

on) when presented with a particular set of cues (Dawson et al., 2009).

The section then ends by providing an example computational analysis: a formal 

proof that output unit activity can indeed literally be interpreted as a conditional 

probability. This proof takes advantage of known formal relations between neural net-

works and the Rescorla-Wagner learning rule (Dawson, 2008; Gluck & Bower, 1988; 

Sutton & Barto, 1981), as well as known formal relations between the Rescorla-

Wagner learning rule and contingency theory (Chapman & Robbins, 1990).

4.6 Beyond the Terminal Meta-postulate

Connectionist networks are associationist devices that map inputs to outputs, sys-

tems that convert stimuli into responses. However, we saw in Chapter 3 that clas-

sical cognitive scientists had established that the stimulus-response theories of 

behaviourist psychology could not adequately deal with the recursive structure of 

natural language (Chomsky, 1957, 1959b, 1965, 1966). In the terminal meta-postulate 

argument (Bever, Fodor, and Garrett, 1968), it was noted that the rules of associative 

theory defined a “terminal vocabulary of a theory, i.e., over the vocabulary in which 
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behavior is described” (p. 583). Bever, Fodor, and Garrett then proceeded to prove 

that the terminal vocabulary of associationism is not powerful enough to accept or 

reject languages that have recursive clausal structure.

If connectionist cognitive science is another instance of associative or behav-

iourist theory, then it stands to reason that it too is subject to these same problems 

and therefore lacks the computational power required of cognitive theory. One of 

the most influential criticisms of connectionism has essentially made this point, 

arguing against the computational power of artificial neural networks because they 

lack the componentiality and systematicity associated with recursive rules that 

operate on components of symbolic expressions (Fodor & Pylyshyn, 1988). If arti-

ficial neural networks do not belong to the class of universal machines, then they 

cannot compete against the physical symbol systems that define classical cognitive 

science (Newell, 1980; Newell & Simon, 1976).

What tasks can artificial neural networks perform, and how well can they per-

form them? To begin, let us consider the most frequent kind of problem that artifi-

cial neural networks are used to solve: pattern recognition (Pao, 1989; Ripley, 1996). 

Pattern recognition is a process by which varying input patterns, defined by sets of 

features which may have continuous values, are assigned to discrete categories in 

an all-or-none fashion (Harnad, 1987). In other words, it requires that a system per-

form a mapping from continuous inputs to discrete outputs. Artificial neural net-

works are clearly capable of performing this kind of mapping, provided either that 

their output units use a binary activation function like the Heaviside, or that their 

continuous output is extreme enough to be given a binary interpretation. In this 

context, the pattern of “on” and “off” responses in a set of output units represents 

the digital name of the class to which an input pattern has been assigned.

We saw earlier that pattern recognition problems can be represented using pat-

tern spaces (Figure 4-2). To classify patterns, a system carves a pattern space into 

decision regions that separate all of the patterns belonging to one class from the 

patterns that belong to others. An arbitrary pattern classifier would be a system that 

could, in principle, solve any pattern recognition problem with which it was faced. 

In order to have such ability, such a system must have complete flexibility in carving 

a pattern space into decision regions: it must be able to slice the space into regions 

of any required shape or number.

Artificial neural networks can categorize patterns. How well can they do so? It 

has been shown that a multilayer perceptron with three layers of connections—two 

layers of hidden units intervening between the input and output layers—is indeed 

an arbitrary pattern classifier (Lippmann, 1987, 1989). This is because the two layers 

of hidden units provided the required flexibility in carving pattern spaces into 

decision regions, assuming that the hidden units use a sigmoid-shaped activation 
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function such as the logistic. “No more than three layers are required in perceptron-

like feed-forward nets” (Lippmann, 1987, p. 16).

When output unit activity is interpreted digitally—as delivering “true” or “false” 

judgments—artificial neural networks can be interpreted as performing one kind of 

task, pattern classification. However, modern networks use continuous activation 

functions that do not need to be interpreted digitally. If one applies an analog inter-

pretation to output unit activity, then networks can be interpreted as performing a 

second kind of input-output mapping task, function approximation.

In function approximation, an input is a set of numbers that represents the 

values of variables passed into a function, i.e., the values of the set x1, x2, x3, . . . xN. The 

output is a single value y that is the result of computing some function of those vari-

ables, i.e., y = f(x1, x2, x3, . . . xN). Many artificial neural networks have been trained to 

approximate functions (Girosi & Poggio, 1990; Hartman, Keeler, & Kowalski, 1989; 

Moody & Darken, 1989; Poggio & Girosi, 1990; Renals, 1989). In these networks, the 

value of each input variable is represented by the activity of an input unit, and the 

continuous value of an output unit’s activity represents the computed value of the 

function of those input variables.

A system that is most powerful at approximating functions is called a universal 

function approximator. Consider taking any continuous function and examining a 

region of this function from a particular starting point (e.g., one set of input values) 

to a particular ending point (e.g., a different set of input values). A universal func-

tion approximator is capable of approximating the shape of the function between 

these bounds to an arbitrary degree of accuracy.

Artificial neural networks can approximate functions. How well can they 

do so? A number of proofs have shown that a multilayer perceptron with two 

layers of connections—in other words, a single layer of hidden units intervening 

between the input and output layers—is capable of universal function approxima-

tion (Cotter, 1990; Cybenko, 1989; Funahashi, 1989; Hartman, Keeler, & Kowalski, 

1989; Hornik, Stinchcombe, & White, 1989). “If we have the right connections from 

the input units to a large enough set of hidden units, we can always find a rep-

resentation that will perform any mapping from input to output” (Rumelhart, 

Hinton, & Williams, 1986a, p. 319).

That multilayered networks have the in-principle power to be arbitrary pat-

tern classifiers or universal function approximators suggests that they belong to the 

class “universal machine,” the same class to which physical symbol systems belong 

(Newell, 1980). Newell (1980) proved that physical symbol systems belonged to this 

class by showing how a universal Turing machine could be simulated by a physical 

symbol system. Similar proofs exist for artificial neural networks, firmly establish-

ing their computational power.
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The Turing equivalence of connectionist networks has long been established. 

McCulloch and Pitts (1943) proved that a network of McCulloch-Pitts neurons 

could be used to build the machine head of a universal Turing machine; universal 

power was then achieved by providing this system with an external memory. “To 

psychology, however defined, specification of the net would contribute all that could 

be achieved in that field” (p. 131). More modern results have used the analog nature 

of modern processors to internalize the memory, indicating that an artificial neural 

network can simulate the entire Turing machine (Siegelmann, 1999; Siegelmann & 

Sontag, 1991, 1995).

Modern associationist psychologists have been concerned about the impli-

cations of the terminal meta-postulate and have argued against it in an attempt 

to free their theories from its computational shackles (Anderson & Bower, 1973; 

Paivio, 1986). The hidden units of modern artificial neural networks break these 

shackles by capturing higher-order associations—associations between associa-

tions—that are not defined in a vocabulary restricted to input and output activities. 

The presence of hidden units provides enough power to modern networks to firmly 

plant them in the class “universal machine” and to make them viable alternatives to 

classical simulations.

4.7 What Do Output Unit Activities Represent?

When McCulloch and Pitts (1943) formalized the information processing of neu-

rons, they did so by exploiting the all-or-none law. As a result, whether a neuron 

responded could be interpreted as assigning a “true” or “false” value to some propo-

sition computed over the neuron’s outputs. McCulloch and Pitts were able to design 

artificial neurons capable of acting as 14 of the 16 possible primitive functions on 

the two-valued logic that was described in Chapter 2.

McCulloch and Pitts (1943) formalized the all-or-none law by using the Heaviside 

step equation as the activation function for their artificial neurons. Modern activa-

tion functions such as the logistic equation provide a continuous approximation of 

the step function. It is also quite common to interpret the logistic function in digital, 

step function terms. This is done by interpreting a modern unit as being “on” or “off” 

if its activity is sufficiently extreme. For instance, in simulations conducted with my 

laboratory software (Dawson, 2005) it is typical to view a unit as being “on” if its activ-

ity is 0.9 or higher, or “off” if its activity is 0.1 or lower.

Digital activation functions, or digital interpretations of continuous activation 

functions, mean that pattern recognition is a primary task for artificial neural net-

works (Pao, 1989; Ripley, 1996). When a network performs pattern recognition, it 

is trained to generate a digital or binary response to an input pattern, where this 
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response is interpreted as representing a class to which the input pattern is unam-

biguously assigned.

What does the activity of a unit in a connectionist network mean? Under the 

strict digital interpretation described above, activity is interpreted as the truth value 

of some proposition represented by the unit. However, modern activation functions 

such as the logistic or Gaussian equations have continuous values, which permit 

more flexible kinds of interpretation. Continuous activity might model the fre-

quency with which a real unit (i.e., a neuron) generates action potentials. It could 

represent a degree of confidence in asserting that a detected feature is present, or 

it could represent the amount of a feature that is present (Waskan & Bechtel, 1997).

In this section, a computational-level analysis is used to prove that, in the con-

text of modern learning theory, continuous unit activity can be unambiguously 

interpreted as a candidate measure of degree of confidence with conditional prob-

ability (Waskan & Bechtel, 1997).

In experimental psychology, some learning theories are motivated by the 

ambiguous or noisy nature of the world. Cues in the real world do not signal out-

comes with complete certainty (Dewey, 1929). It has been argued that adaptive sys-

tems deal with worldly uncertainty by becoming “intuitive statisticians,” whether 

these systems are humans (Peterson & Beach, 1967) or animals (Gallistel, 1990; 

Shanks, 1995). An agent that behaves like an intuitive statistician detects contin-

gency in the world, because cues signal the likelihood (and not the certainty) that 

certain events (such as being rewarded) will occur (Rescorla, 1967, 1968).

Evidence indicates that a variety of organisms are intuitive statisticians. For 

example, the matching law is a mathematical formalism that was originally used 

to explain variations in response frequency. It states that the rate of a response 

reflects the rate of its obtained reinforcement. For instance, if response A is rein-

forced twice as frequently as response B, then A will appear twice as frequently 

as B (Herrnstein, 1961). The matching law also predicts how response strength 

varies with reinforcement frequency (de Villiers & Herrnstein, 1976). Many results 

show that the matching law governs numerous tasks in psychology and economics 

(Davison & McCarthy, 1988; de Villiers, 1977; Herrnstein, 1997).

Another phenomenon that is formally related (Herrnstein & Loveland, 1975) to 

the matching law is probability matching, which concerns choices made by agents 

faced with competing alternatives. Under probability matching, the likelihood that 

an agent makes a choice amongst different alternatives mirrors the probability asso-

ciated with the outcome or reward of that choice (Vulkan, 2000). Probability match-

ing has been demonstrated in a variety of organisms, including insects (Fischer, 

Couvillon, & Bitterman, 1993; Keasar et al., 2002; Longo, 1964; Niv et al., 2002), fish 

(Behrend & Bitterman, 1961), turtles (Kirk & Bitterman, 1965), pigeons (Graf, Bullock, 

& Bitterman, 1964), and humans (Estes & Straughan, 1954).
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Perceptrons, too, can match probabilities (Dawson et al., 2009). Dawson et al. 

used four different cues, or discriminative stimuli (DSs), but did not “reward” them 

100 percent of the time. Instead, they rewarded one DS 20 percent of the time, 

another 40 percent, a third 60 percent, and a fourth 80 percent. After 300 epochs, 

where each epoch involved presenting each cue alone 10 different times in random 

order, these contingencies were inverted (i.e., subtracted from 100). The dependent 

measure was perceptron activity when a cue was presented; the activation function 

employed was the logistic. Some results of this experiment are presented in Figure 

4-6. It shows that after a small number of epochs, the output unit activity becomes 

equal to the probability that a presented cue was rewarded. It also shows that per-

ceptron responses quickly readjust when contingencies are suddenly modified, as 

shown by the change in Figure 4-6 around epoch 300. In short, perceptrons are 

capable of probability matching.

Figure 4-6. Probability matching by perceptrons. Each line shows the perceptron 

activation when a different cue (or discriminative stimulus, DS) is presented. 

Activity levels quickly become equal to the probability that each cue was 

reinforced (Dawson et al., 2009).

That perceptrons match probabilities relates them to contingency theory. Formal 

statements of this theory formalize contingency as a contrast between conditional 

probabilities (Allan, 1980; Cheng, 1997; Cheng & Holyoak, 1995; Cheng & Novick, 

1990, 1992; Rescorla, 1967, 1968).

For instance, consider the simple situation in which a cue can either be pre-

sented, C, or not, ~C. Associated with either of these states is an outcome (e.g., a 

reward) that can either occur, O, or not, ~O. In this simple situation, involving a 

single cue and a single outcome, the contingency between the cue and the outcome 

is formally defined as the difference in conditional probabilities, ΔP, where ΔP = 

P(O|C) – P(O|~C) (Allan, 1980). More sophisticated models, such as the probabilistic 

contrast model (e.g., Cheng & Novick, 1990) or the power PC theory (Cheng, 1997), 
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define more complex probabilistic contrasts that are possible when multiple cues 

occur and can be affected by the context in which they are presented.

Empirically, the probability matching of perceptrons, illustrated in Figure 4-6, 

suggests that their behaviour can represent ΔP. When a cue is presented, activity 

is equal to the probability that the cue signals reinforcement—that is, P(O|C). This 

implies that the difference between a perceptron’s activity when a cue is presented 

and its activity when a cue is absent must be equal to ΔP. Let us now turn to a com-

putational analysis to prove this claim.

What is the formal relationship between formal contingency theories and 

theories of associative learning (Shanks, 2007)? Researchers have compared the 

predictions of an influential account of associative learning, the Rescorla-Wagner 

model (Rescorla & Wagner, 1972), to formal theories of contingency (Chapman & 

Robbins, 1990; Cheng, 1997; Cheng & Holyoak, 1995). It has been shown that while 

in some instances the Rescorla-Wagner model predicts the conditional contrasts 

defined by a formal contingency theory, in other situations it fails to generate these 

predictions (Cheng, 1997).

Comparisons between contingency learning and Rescorla-Wagner learning 

typically involve determining equilibria of the Rescorla-Wagner model. An equilib-

rium of the Rescorla-Wagner model is a set of associative strengths defined by the 

model, at the point where the asymptote of changes in error defined by Rescorla-

Wagner learning approaches zero (Danks, 2003). In the simple case described ear-

lier, involving a single cue and a single outcome, the Rescorla-Wagner model is iden-

tical to contingency theory. This is because at equilibrium, the associative strength 

between cue and outcome is exactly equal to ΔP (Chapman & Robbins, 1990).

There is also an established formal relationship between the Rescorla-Wagner 

model and the delta rule learning of a perceptron (Dawson, 2008; Gluck & Bower, 

1988; Sutton & Barto, 1981). Thus by examining the equilibrium state of a percep-

tron facing a simple contingency problem, we can formally relate this kind of net-

work to contingency theory and arrive at a formal understanding of what output 

unit activity represents.

When a continuous activation function is used in a perceptron, calculus can be 

used to determine the equilibrium of the perceptron. Let us do so for a single cue 

situation in which some cue, C, when presented, is rewarded a frequency of a times, 

and is not rewarded a frequency of b times. Similarly, when the cue is not presented, 

the perceptron is rewarded a frequency of c times and is not rewarded a frequency 

of d times. Note that to reward a perceptron is to train it to generate a desired 

response of 1, and that to not reward a perceptron is to train it to generate a desired 

response of 0, because the desired response indicates the presence or absence of the 

unconditioned stimulus (Dawson, 2008).
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Assume that when the cue is present, the logistic activation function computes 

an activation value that we designate as oc, and that when the cue is absent it returns 

the activation value designated as o~c. We can now define the total error of respond-

ing for the perceptron, that is, its total error for the (a + b + c + d) number of patterns 

that represent a single epoch, in which each instance of the contingency problem is 

presented once. For instance, on a trial in which C is presented and the perceptron 

is reinforced, the perceptron’s error for that trial is the squared difference between 

the reward, 1, and oc. As there are a of these trials, the total contribution of this type 

of trial to overall error is a(1 – oc)
2. Applying this logic to the other three pairings of 

cue and outcome, total error E can be defined as follows:

For a perceptron to be at equilibrium, it must have reached a state in which total 

error has been optimized, so that the error can no longer be decreased by using the 

delta rule to alter the perceptron’s weight. To determine the equilibrium of the per-

ceptron for the single cue contingency problem, we begin by taking the derivative 

of the error equation with respect to the activity of the perceptron when the cue is 

present, oc:

One condition of the perceptron at equilibrium is that oc is a value that causes this 

derivative to be equal to 0. The equation below sets the derivative to 0 and solves for 

oc. The result is a/(a + b), which is equal to the conditional probability P(O|C) if the 

single cue experiment is represented with a traditional contingency table:

Similarly, we can take the derivative of the error equation with respect to the activity 

of the perceptron when the cue is not present, o~c:
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A second condition of the perceptron at equilibrium is that o~c is a value that causes 

the derivative above to be equal to 0. As before, we can set the derivative to 0 and 

solve for the value of o~c. This time the result is c/(c + d), which in a traditional con-

tingency table is equal to the conditional probability P(O|~C):

The main implication of the above equations is that they show that perceptron 

activity is literally a conditional probability. This provides a computational proof for 

the empirical hypothesis about perceptron activity that was generated from exam-

ining Figure 4-6.

A second implication of the proof is that when faced with the same contingency 

problem, a perceptron’s equilibrium is not the same as that for the Rescorla-Wagner 

model. At equilibrium, the associative strength for the cue C that is determined by 

Rescorla-Wagner training is literally ΔP (Chapman & Robbins, 1990). This is not the 

case for the perceptron. For the perceptron, ΔP must be computed by taking the 

difference between its output when the cue is present and its output when the cue 

is absent. That is, ΔP is not directly represented as a connection weight, but instead 

is the difference between perceptron behaviours under different cue situations—

that is, the difference between the conditional probability output by the percep-

tron when a cue is present and the conditional probability output by the perceptron 

when the cue is absent.

Importantly, even though the perceptron and the Rescorla-Wagner model 

achieve different equilibria for the same problem, it is clear that both are sensitive to 

contingency when it is formally defined as ΔP. Differences between the two reflect 

an issue that was raised in Chapter 2, that there exist many different possible algo-

rithms for computing the same function. Key differences between the perceptron 

and the Rescorla-Wagner model—in particular, the fact that the former performs a 

nonlinear transformation on internal signals, while the latter does not—cause them 

to adopt very different structures, as indicated by different equilibria. Nonetheless, 

these very different systems are equally sensitive to exactly the same contingency.

This last observation has implications for the debate between contingency theory 

and associative learning (Cheng, 1997; Cheng & Holyoak, 1995; Shanks, 2007). In 
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the current phase of this debate, modern contingency theories have been proposed 

as alternatives to Rescorla-Wagner learning. While in some instances equilibria for 

the Rescorla-Wagner model predict the conditional contrasts defined by a formal 

contingency theory like the power PC model, in other situations this is not the case 

(Cheng, 1997). However, the result above indicates that differences in equilibria do 

not necessarily reflect differences in system abilities. Clearly equilibrium differ-

ences cannot be used as the sole measure when different theories of contingency 

are compared.

4.8 Connectionist Algorithms: An Overview

In the last several sections we have explored connectionist cognitive science at the 

computational level of analysis. Claims about linear separability, the in-principle 

power of multilayer networks, and the interpretation of output unit activity have all 

been established using formal analyses.

In the next few sections we consider connectionist cognitive science from 

another perspective that it shares with classical cognitive science: the use of algo-

rithmic-level investigations. The sections that follow explore how modern net-

works, which develop internal representations with hidden units, are trained, and 

also describe how one might interpret the internal representations of a network 

after it has learned to accomplish a task of interest. Such interpretations answer the 

question How does a network convert an input pattern into an output response? —

and thus provide information about network algorithms.

The need for algorithmic-level investigations is introduced by noting in Section 

4.9 that most modern connectionist networks are multilayered, meaning that they 

have at least one layer of hidden units lying between the input units and the output 

units. This section introduces a general technique for training such networks, called 

the generalized delta rule. This rule extends empiricism to systems that can have 

powerful internal representations.

Section 4.10 provides one example of how the internal representations created 

by the generalized delta rule can be interpreted. It describes the analysis of a mul-

tilayered network that has learned to classify different types of musical chords. An 

examination of the connection weights between the input units and the hidden units 

reveals a number of interesting ways in which this network represents musical regu-

larities. An examination of the network’s hidden unit space shows how these musical 

regularities permit the network to rearrange different types of chord types so that 

they may then be carved into appropriate decision regions by the output units.

In section 4.11 a biologically inspired approach to discovering network algo-

rithms is introduced. This approach involves wiretapping the responses of hidden 

units when the network is presented with various stimuli, and then using these 
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responses to determine the trigger features that the hidden units detect. It is also 

shown that changing the activation function of a hidden unit can lead to interest-

ing complexities in defining the notion of a trigger feature, because some kinds of 

hidden units capture families of trigger features that require further analysis.

In Section 4.12 we describe how interpreting the internal structure of a network 

begins to shed light on the relationship between algorithms and architectures. Also 

described is a network that, as a result of training, translates a classical model of a 

task into a connectionist one. This illustrates an intertheoretic reduction between 

classical and connectionist theories, raising the possibility that both types of theo-

ries can be described in the same architecture.

4.9 Empiricism and Internal Representations

The ability of hidden units to increase the computational power of artificial neural 

networks was well known to Old Connectionism (McCulloch & Pitts, 1943). Its prob-

lem was that while a learning rule could be used to train networks with no hidden 

units (Rosenblatt, 1958, 1962), no such rule existed for multilayered networks. The 

reason that a learning rule did not exist for multilayered networks was because 

learning was defined in terms of minimizing the error of unit responses. While it 

was straightforward to define output unit error, no parallel definition existed for 

hidden unit error. A hidden unit’s error could not be defined because it was not 

related to any directly observable outcome (e.g., external behaviour). If a hidden 

unit’s error could not be defined, then Old Connectionist rules could not be used to 

modify its connections.

The need to define and compute hidden unit error is an example of the credit 

assignment problem: 

In playing a complex game such as chess or checkers, or in writing a computer 

program, one has a definite success criterion—the game is won or lost. But in the 

course of play, each ultimate success (or failure) is associated with a vast number of 

internal decisions. If the run is successful, how can we assign credit for the success 

among the multitude of decisions? (Minsky, 1963, p. 432)

The credit assignment problem that faced Old Connectionism was the inability 

to assign the appropriate credit—or more to the point, the appropriate blame—

to each hidden unit for its contribution to output unit error. Failure to solve this 

problem prevented Old Connectionism from discovering methods to make their 

most powerful networks belong to the domain of empiricism and led to its demise 

(Papert, 1988).

The rebirth of connectionist cognitive science in the 1980s (McClelland & 

Rumelhart, 1986; Rumelhart & McClelland, 1986c) was caused by the discovery 
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of a solution to Old Connectionism’s credit assignment problem. By employing a 

nonlinear but continuous activation function, calculus could be used to explore 

changes in network behaviour (Rumelhart, Hinton, & Williams, 1986b). In par-

ticular, calculus could reveal how an overall network error was altered, by chang-

ing a component deep within the network, such as a single connection between an 

input unit and a hidden unit. This led to the discovery of the “backpropagation of 

error” learning rule, sometimes known as the generalized delta rule (Rumelhart 

Hinton, & Williams, 1986b). The calculus underlying the generalized delta rule 

revealed that hidden unit error could be defined as the sum of weighted errors being 

sent backwards through the network from output units to hidden units.

The generalized delta rule is an error-correcting method for training multi-

layered networks that shares many characteristics with the original delta rule for 

perceptrons (Rosenblatt, 1958, 1962; Widrow, 1962; Widrow & Hoff, 1960). A more 

detailed mathematical treatment of this rule, and its relationship to other connec-

tionist learning rules, is provided by Dawson (2004). A less technical account of the 

rule is given below.

The generalized delta rule is used to train a multilayer perceptron to medi-

ate a desired input-output mapping. It is a form of supervised learning, in which 

a finite set of input-output pairs is presented iteratively, in random order, during 

training. Prior to training, a network is a “pretty blank” slate; all of its connection 

weights, and all of the biases of its activation functions, are initialized as small, 

random numbers. The generalized delta rule involves repeatedly presenting input-

output pairs and then modifying weights. The purpose of weight modification is to 

reduce overall network error.

A single presentation of an input-output pair proceeds as follows. First, the 

input pattern is presented, which causes signals to be sent to hidden units, which 

in turn activate and send signals to the output units, which finally activate to repre-

sent the network’s response to the input pattern. Second, the output unit responses 

are compared to the desired responses, and an error term is computed for each 

output unit. Third, an output unit’s error is used to modify the weights of its connec-

tions. This is accomplished by adding a weight change to the existing weight. The 

weight change is computed by multiplying four different numbers together: a learn-

ing rate, the derivative of the unit’s activation function, the output unit’s error, and 

the current activity at the input end of the connection. Up to this point, learning 

is functionally the same as performing gradient descent training on a perceptron 

(Dawson, 2004).

The fourth step differentiates the generalized delta rule from older rules: each 

hidden unit computes its error. This is done by treating an output unit’s error as if it 

were activity and sending it backwards as a signal through a connection to a hidden 

unit. As this signal is sent, it is multiplied by the weight of the connection. Each 
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hidden unit computes its error by summing together all of the error signals that it 

receives from the output units to which it is connected. Fifth, once the hidden unit 

error has been computed, the weights of the hidden units can be modified using the 

same equation that was used to alter the weights of each of the output units.

This procedure can be repeated iteratively if there is more than one layer of 

hidden units. That is, the error of each hidden unit in one layer can be propagated 

backwards to an adjacent layer as an error signal once the hidden unit weights have 

been modified. Learning about this pattern stops once all of the connections have 

been modified. Then the next training pattern can be presented to the input units, 

and the learning process occurs again.

There are a variety of different ways in which the generic algorithm given above 

can be realized. For instance, in stochastic training, connection weights are updated 

after each pattern is presented (Dawson, 2004). This approach is called stochas-

tic because each pattern is presented once per epoch of training, but the order of 

presentation is randomized for each epoch. Another approach, batch training, is to 

accumulate error over an epoch and to only update weights once at the end of the 

epoch, using accumulated error (Rumelhart, Hinton, & Williams, 1986a). As well, 

variations of the algorithm exist for different continuous activation functions. For 

instance, an elaborated error term is required to train units that have Gaussian acti-

vation functions, but when this is done, the underlying mathematics are essentially 

the same as in the original generalized delta rule (Dawson & Schopflocher, 1992b).

New Connectionism was born when the generalized delta rule was invented. 

Interestingly, the precise date of its birth and the names of its parents are not com-

pletely established. The algorithm was independently discovered more than once. 

Rumelhart, Hinton, and Williams (1986a, 1986b) are its most famous discoverers 

and popularizers. It was also discovered by David Parker in 1985 and by Yann LeCun 

in 1986 (Anderson, 1995). More than a decade earlier, the algorithm was reported 

in Paul Werbos’ (1974) doctoral thesis. The mathematical foundations of the gen-

eralized delta rule can be traced to an earlier decade, in a publication by Shun-Ichi 

Amari (1967).

In an interview (Anderson & Rosenfeld, 1998), neural network pioneer Stephen 

Grossberg stated that “Paul Werbos, David Parker, and Shun-Ichi Amari should 

have gotten credit for the backpropagation model, instead of Rumelhart, Hinton, 

and Williams” (pp. 179–180). Regardless of the credit assignment problem associ-

ated with the scientific history of this algorithm, it transformed cognitive science in 

the mid-1980s, demonstrating “how the lowly concepts of feedback and derivatives 

are the essential building blocks needed to understand and replicate higher-order 

phenomena like learning, emotion and intelligence at all levels of the human mind” 

(Werbos, 1994, p. 1).
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4.10 Chord Classification by a Multilayer Perceptron

Artificial neural networks provide a medium in which to explore empiricism, for 

they acquire knowledge via experience. This knowledge is used to mediate an 

input-output mapping and usually takes the form of a distributed representation. 

Distributed representations provide some of the putative connectionist advantages 

over classical cognitive science: damage resistance, graceful degradation, and so on. 

Unfortunately, distributed representations are also tricky to interpret, making it 

difficult for them to provide new theories for cognitive science.

However, interpreting the internal structures of multilayered networks, though 

difficult, is not impossible. To illustrate this, let us consider a multilayer perceptron 

trained to classify different types of musical chords. The purpose of this section is to 

discuss the role of hidden units, to demonstrate that networks that use hidden units 

can also be interpreted, and to introduce a decidedly connectionist notion called 

the coarse code.

Chords are combinations of notes that are related to musical scales, where a 

scale is a sequence of notes that is subject to certain constraints. A chromatic scale 

is one in which every note played is one semitone higher than the previous note. If 

one were to play the first thirteen numbered piano keys of Figure 4-7 in order, then 

the result would be a chromatic scale that begins on a low C and ends on another C 

an octave higher.

Figure 4-7. A small piano keyboard with numbered keys. Key 1 is C.

A major scale results by constraining a chromatic scale such that some of its notes 

are not played. For instance, the C major scale is produced if only the white keys 

numbered from 1 to 13 in Figure 4-7 are played in sequence (i.e., if the black keys 

numbered 2, 4, 7, 9, and 11 are not played).

Figure 4-8. The C major scale and some of its added note chords.

1 3 5 6 8 10 12 13 15 17 18 20 22 24 25 27 29 30 32 34 36 37

2 4 7 9 11 14 16 19 21 23 26 28 31 33 35
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The musical notation for the C major scale is provided in the sequence of notes 

illustrated in the first part of Figure 4-8. The Greeks defined a variety of modes for 

each scale; different modes were used to provoke different aesthetic experiences 

(Hanslick, 1957). The C major scale in the first staff of Figure 4-8 is in the Ionian 

mode because it begins on the note C, which is the root note, designated I, for the 

C major key.

 One can define various musical chords in the context of C major in two dif-

ferent senses. First, the key signature of each chord is the same as C major (i.e., no 

sharps or flats). Second, each of these chords is built on the root of the C major scale 

(the note C). For instance, one basic chord is the major triad. In the key of C major, 

the root of this chord—the chord’s lowest note—is C (e.g., piano key #1 in Figure 

4-7). The major triad for this key is completed by adding two other notes to this 

root. The second note in the triad is 4 semitones higher than C, which is the note 

E (the third note in the major scale in Figure 4-8). The third note in the triad is 3 

semitones higher than the second note, which in this case is G (the fifth note in the 

major scale in Figure 4-8). Thus the notes C-E-G define the major triad for the key 

of C; this is the first chord illustrated in Figure 4-8.

A fourth note can added on to any major triad to create an “added note” tet-

rachord (Baker, 1982). The type of added note chord that is created depends upon 

the relationship between the added note and the third note of the major triad. If 

the added note is 4 semitones higher than the third note, the result is a major 7th 

chord, such as the Cmaj7 illustrated in Figure 4-8. If the added note is 3 semitones 

higher than the third note, the result is a dominant 7th chord such as the C7 chord 

presented in Figure 4-8. If the added note is 2 semitones higher than the third note, 

then the result is a 6th chord, such as the C6 chord illustrated in Figure 4-8.

The preceding paragraphs described the major triad and some added note 

chords for the key of C major. In Western music, C major is one of twelve possi-

ble major keys. The set of all possible major keys is provided in Figure 4-9, which 

organizes them in an important cyclic structure, called the circle of fifths. 

Figure 4-9. The circle of fifths.
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The circle of fifths includes all 12 notes in a chromatic scale, but arranges them 

so that adjacent notes in the circle are a musical interval of a perfect fifth (i.e., 7 

semitones) apart. The circle of fifths is a standard topic for music students, and it 

is foundational to many concepts in music theory. It is provided here, though, to be 

contrasted later with “strange circles” that are revealed in the internal structure of a 

network trained to identify musical chords.

Any one of the notes in the circle of fifths can be used to define a musical key 

and therefore can serve as the root note of a major scale. Similarly, any one of these 

notes can be the root of a major triad created using the pattern of root + 4 semi-

tones + 3 semitones that was described earlier for the key of C major (Baker, 1982). 

Furthermore, the rules described earlier can also be applied to produce added note 

chords for any of the 12 major key signatures. These possible major triads and added 

note chords were used as inputs for training a network to correctly classify different 

types of chords, ignoring musical key.

A training set of 48 chords was created by building the major triad, as well as 

the major 7th, dominant 7th, and 6th chord for each of the 12 possible major key sig-

natures (i.e., using each of the notes in Figure 4-9 as a root). When presented with 

a chord, the network was trained to classify it into one of the four types of interest: 

major triad, major 7th, dominant 7th, or 6th. To do so, the network had 4 output units, 

one for each type of chord. For any input, the network learned to turn the correct 

output unit on and to turn the other three output units off.

The input chords were encoded with a pitch class representation (Laden 

& Keefe, 1989; Yaremchuk & Dawson, 2008). In a pitch class representation, only 

12 input units are employed, one for each of the 12 different notes that can appear 

in a scale. Different versions of the same note (i.e., the same note played at differ-

ent octaves) are all mapped onto the same input representation. For instance, notes 

1, 13, 25, and 37 in Figure 4-7 all correspond to different pitches but belong to the 

same pitch class—they are all C notes, played at different octaves of the keyboard. In 

a pitch class representation, the playing of any of these input notes would be encoded 

by turning on a single input unit—the one unit used to represent the pitch class of C.

A pitch class representation of chords was used for two reasons. First, it requires 

a very small number of input units to represent all of the possible stimuli. Second, it 

is a fairly abstract representation that makes the chord classification task difficult, 

which in turn requires using hidden units in a network faced with this task.

Why chord classification might be difficult for a network when pitch class 

encoding is employed becomes evident by thinking about how we might approach 

the problem if faced with it ourselves. Classifying the major chords is simple: they 

are the only input stimuli that activate three input units instead of four. However, 

classifying the other chord types is very challenging. One first has to determine what 

key the stimulus is in, identify which three notes define its major chord component, 
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and then determine the relationship between the third note of the major chord 

component and the fourth “added” note. This is particularly difficult because of the 

pitch class representation, which throws away note-order information that might 

be useful in identifying chord type.

It was decided that the network that would be trained on the chord classifica-

tion task would be a network of value units (Dawson & Schopflocher, 1992b). The 

hidden units and output units in a network of value units use a Gaussian activa-

tion function, which means that they behave as if they carve two parallel planes 

through a pattern space. Such networks can be trained with a variation of the gener-

alized delta rule. This type of network was chosen for this problem for two reasons. 

First, networks of value units have emergent properties that make them easier to 

interpret than other types of networks trained on similar problems (Dawson, 2004; 

Dawson et al., 1994). One reason for this is because value units behave as if they 

are “tuned” to respond to very particular input signals. Second, previous research 

on different versions of chord classification problems had produced networks that 

revealed elegant internal structure (Yaremchuk & Dawson, 2005, 2008).

The simplest network of value units that could learn to solve the chord clas-

sification problem required three hidden units. At the start of training, the value 

of m for each unit was initialized as 0. (The value of m for a value unit is analo-

gous to a threshold in other types of units [Dawson, Kremer, & Gannon, 1994; 

Dawson & Schopflocher, 1992b]; if a value unit’s net input is equal to m then the unit 

generates a maximum activity of 1.00.) All connection weights were set to values ran-

domly selected from the range between –0.1 and 0.1. The network was trained with 

a learning rate of 0.01 until it produced a “hit” for every output unit on every pattern. 

Because of the continuous nature of the activation function, a hit was defined as fol-

lows: a value of 0.9 or higher when the desired output was 1, and a value of 0.1 or lower 

when the desired output was 0. The network that is interpreted below learned the 

chord classification task after 299 presentations of the training set.

What is the role of a layer of hidden units? In a perceptron, which has no 

hidden units, input patterns can only be represented in a pattern space. Recall 

from the discussion of Figure 4-2 that a pattern space represents each pattern as 

a point in space. The dimensionality of this space is equal to the number of input 

units. The coordinates of each pattern’s point in this space are given by the activi-

ties of the input units. For some networks, the positioning of the points in the 

pattern space prevents some patterns from being correctly classified, because the 

output units are unable to adequately carve the pattern space into the appropriate 

decision regions.

In a multilayer perceptron, the hidden units serve to solve this problem. They 

do so by transforming the pattern space into a hidden unit space (Dawson, 2004). 

The dimensionality of a hidden unit space is equal to the number of hidden units 
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in the layer. Patterns are again represented as points in this space; however, in this 

space their coordinates are determined by the activities they produce in each hidden 

unit. The hidden unit space is a transformation of the pattern space that involves 

detecting higher-order features. This usually produces a change in dimensional-

ity—the hidden unit space often has a different number of dimensions than does 

the pattern space—and a repositioning of the points in the new space. As a result, 

the output units are able to carve the hidden unit space into a set of decision regions 

that permit all of the patterns, repositioned in the hidden unit space, to be correctly 

classified.

This account of the role of hidden units indicates that the interpretation of the 

internal structure of a multilayer perceptron involves answering two different ques-

tions. First, what kinds of features are the hidden units detecting in order to map pat-

terns from the pattern space into the hidden unit space? Second, how do the output 

units process the hidden unit space to solve the problem of interest? The chord clas-

sification network can be used to illustrate how both questions can be addressed.

First, when mapping the input patterns into the hidden unit space, the hidden 

units must be detecting some sorts of musical regularities. One clue as to what these 

regularities may be is provided by simply examining the connection weights that 

feed into them, provided in Table 4-2.

Input 
Note

Hidden 1 Hidden 1  
Class

Hidden 2 Hidden 2  
Class

Hidden 3 Hidden 3 
Class

B 0.53
Circle of Major 

Thirds 1

0.12
Circle of Major 

Thirds 1

0.75

Circle of 

Major 

Seconds 1

D# 0.53 0.12 0.75

G 0.53 0.12 0.75

A –0.53
Circle of Major 

Thirds 2

–0.12
Circle of Major 

Thirds 2

0.75

C# –0.53 –0.12 0.75

F –0.53 –0.12 0.75

C 0.12
Circle of Major 

Thirds 3

–0.53
Circle of Major 

Thirds 3

–0.77

Circle of 

Major 

Seconds 2

G# 0.12 –0.53 –0.77

E 0.12 –0.53 –0.77

F# –0.12
Circle of Major 

Thirds 4

0.53
Circle of Major 

Thirds 4

–0.77

A# –0.12 0.53 –0.77

D –0.12 0.53 –0.77

Table 4-2. Connection weights from the 12 input units to each of the three 

hidden units. Note that the first two hidden units adopt weights that assign 

input notes to the four circles of major thirds. The third hidden unit adopts 

weights that assign input notes to the two circles of major seconds.
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In the pitch class representation used for this network, each input unit stands for a 

distinct musical note. As far as the hidden units are concerned, the “name” of each 

note is provided by the connection weight between the input unit and the hidden 

unit. Interestingly, Table 4-2 reveals that all three hidden units take input notes that 

we would take as being different (because they have different names, as in the circle 

of fifths in Figure 4-9) and treat them as being identical. That is, the hidden units 

assign the same “name,” or connection weight, to input notes that we would give 

different names to.

Furthermore, assigning the same “name” to different notes by the hidden units 

is not done randomly. Notes are assigned according to strange circles, that is, circles 

of major thirds and circles of major seconds. Let us briefly describe these circles, 

and then return to an analysis of Table 4-2.

The circle of fifths (Figure 4-9) is not the only way in which notes can be 

arranged geometrically. One can produce other circular arrangements by exploiting 

other musical intervals. These are strange circles in the sense that they would very 

rarely be taught to music students as part of a music theory curriculum. However, 

these strange circles are formal devices that can be as easily defined as can be the 

circle of fifths.

For instance, if one starts with the note C and moves up a major second (2 

semitones) then one arrives at the note D. From here, moving up another major 

second arrives at the note E. This can continue until one circles back to C but an 

octave higher than the original, which is a major second higher than A#. This circle 

of major seconds captures half of the notes in the chromatic scale, as is shown in the 

top part of Figure 4-10. A complementary circle of major seconds can also be con-

structed (bottom circle of Figure 4-10); this circle contains all the remaining notes 

that are not part of the first circle.

Figure 4-10. The two circles of major seconds.

An alternative set of musical circles can be defined by exploiting a different musical 

interval. In each circle depicted in Figure 4-11, adjacent notes are a major third (4 

semitones) apart. As shown in Figure 4-11 four such circles are possible.
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Figure 4-11. The four circles of major thirds.

What do these strange circles have to do with the internal structure of the net-

work trained to classify the different types of chords? A close examination of Table 

4-2 indicates that these strange circles are reflected in the connection weights that 

feed into the network’s hidden units. For Hidden Units 1 and 2, if notes belong 

to the same circle of major thirds (Figure 4-11), then they are assigned the same 

connection weight. For Hidden Unit 3, if notes belong to the same circle of major 

seconds (Figure 4-10), then they are assigned the same connection weight. In short, 

each of the hidden units replaces the 12 possible different note names with a much 

smaller set, which equates notes that belong to the same circle of intervals and dif-

ferentiates notes that belong to different circles.

Further inspection of Table 4-2 reveals additional regularities of interest. 

Qualitatively, both Hidden Units 1 and 2 assign input notes to equivalence classes 

based on circles of major thirds. They do so by using the same note “names”: 

0.53, 0.12, –0.12, and –0.53. However, the two hidden units have an important dif-

ference: they assign the same names to different sets of input notes. That is, notes 

that are assigned one connection weight by Hidden Unit 1 are assigned a different 

connection weight by Hidden Unit 2.

The reason that the difference in weight assignment between the two hidden 

units is important is that the behaviour of each hidden unit is not governed by a 

single incoming signal, but is instead governed by a combination of three or four 
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input signals coming from all of the units. The connection weights used by the 

hidden units place meaningful constraints on how these signals are combined.

Let us consider the role of the particular connection weights used by the hidden 

units. Given the binary nature of the input encoding, the net input of any hidden 

unit is simply the sum of the weights associated with each of the activated input 

units. For a value unit, if the net input is equal to the value of the unit’s m then the 

output generates a maximum value of 1.00. As the net input moves away from m in 

either a positive or negative direction, activity quickly decreases. At the end of train-

ing, the values of m for the three hidden units were 0.00, 0.00, and –0.03 for Hidden 

Units 1, 2, and 3, respectively. Thus for each hidden unit, if the incoming signals are 

essentially zero—that is if all the incoming signals cancel each other out—then high 

activity will be produced.

Why then do Hidden Units 1 and 2 use the same set of four connection weights 

but assign these weights to different sets of input notes? The answer is that these 

hidden units capture similar chord relationships but do so using notes from differ-

ent strange circles.

This is shown by examining the responses of each hidden unit to each input 

chord after training. Table 4-3 summarizes these responses, and shows that each 

hidden unit generated identical responses to different subsets of input chords.

Input Chord Activation

Chord Chord Root Hid1 Hid2 Hid3

Major
C, D, A, F#, G#, A# 0.16 0.06 0.16

C#, D#, F, G, A, B 0.06 0.16 0.16

Major7
C, D, A, F#, G#, A# 0.01 0.12 1.00

C#, D#, F, G, A, B 0.12 0.01 1.00

Dom7
C, D, A, F#, G#, A# 0.27 0.59 0.00

C#, D#, F, G, A, B 0.59 0.27 0.00

6th
C, D, A, F#, G#, A# 0.84 0.03 1.00

C#, D#, F, G, A, B 0.03 0.84 1.00

Table 4-3. The activations produced in each hidden unit by different subsets of 

input chords.

From Table 4-3, one can see that the activity of Hidden Unit 3 is simplest to describe: 

when presented with a dominant 7th chord, it produces an activation of 0 and a weak 

activation to a major triad. When presented with either a major 7th or a 6th chord, it 

produces maximum activity. This pattern of activation is easily explained by consid-

ering the weights that feed into Hidden Unit 3 (Table 4-2). Any major 7th or 6th chord 

is created out of two notes from one circle of major seconds and two notes from the 
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other circle. The sums of pairs of weights from different circles cancel each other out, 

producing near-zero net input and causing maximum activation.

In contrast, the dominant 7th chords use three notes from one circle of major 

seconds and only one from the other circle. As a result, the signals do not cancel out 

completely, given the weights in Table 4-2. Instead, a strong non-zero net input is 

produced, and the result is zero activity.

Finally, any major triad involves only three notes: two from one circle of major 

seconds and one from the other. Because of the odd number of input signals, cancel-

lation to zero is not possible. However, the weights have been selected so that the 

net input produced by a major triad is close enough to m to produce weak activity.

The activation patterns for Hidden Units 1 and 2 are more complex. It is possi-

ble to explain all of them in terms of balancing (or failing to balance) signals associ-

ated with different circles of major thirds. However, it is more enlightening to con-

sider these two units at a more general level, focusing on the relationship between 

their activations.

In general terms, Hidden Units 1 and 2 generate activations of different intensi-

ties to different classes of chords. In general, they produce the highest activity to 6th 

chords and the lowest activity to major 7th chords. Importantly, they do not generate 

the same activity to all chords of the same type. For instance, for the 12 possible 6th 

chords, Hidden Unit 1 generates activity of 0.84 to 6 of them but activity of only 

0.03 to the other 6 chords. An inspection of Table 4-3 indicates that for every chord 

type, both Hidden Units 1 and 2 generate one level of activity with half of them, but 

produce another level of activity with the other half.

The varied responses of these two hidden units to different chords of the same 

type are related to the circle of major seconds (Figure 4-10). For example, Hidden 

Unit 1 generates a response of 0.84 to 6th chords whose root note belongs to the top 

circle of Figure 4-10, and a response of 0.03 to 6th chords whose root note belongs 

to the bottom circle of Figure 4-10. Indeed, for all of the chord types, both of these 

hidden units generate one response if the root note belongs to one circle of major 

seconds and a different response if the root note belongs to the other circle.

Furthermore, the responses of Hidden Units 1 and 2 complement one another: 

for any chord type, those chords that produce low activity in Hidden Unit 1 produce 

higher activity in Hidden Unit 2. As well, those chords that produce low activity 

in Hidden Unit 2 produce higher activity in Hidden Unit 1. This complementing 

is again related to the circles of major seconds: Hidden Unit 1 generates higher 

responses to chords whose root belongs to one circle, while Hidden Unit 2 gener-

ates higher responses to chords whose roots belong to the other. Which circle is 

“preferred” by a hidden unit depends on chord type.

Clearly each of the three hidden units is sensitive to musical properties. 

However, it is not clear how these properties support the network’s ability to classify 
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chords. For instance, none of the hidden units by themselves pick out a set of prop-

erties that uniquely define a particular type of chord. Instead, hidden units generate 

some activity to different chord types, suggesting the existence of a coarse code.

In order to see how the activities of the hidden units serve as a distributed 

representation that mediates chord classification, we must examine the hidden unit 

space. The hidden unit space plots each input pattern as a point in a space whose 

dimensionality is determined by the number of hidden units. The coordinates of 

the point in the hidden unit space are the activities produced by an input pattern in 

each hidden unit. The three-dimensional hidden unit space for the chord classifica-

tion network is illustrated in Figure 4-12. 

Figure 4-12. The hidden unit space for the chord classification network. H1, H2, 

and H3 provide the activity of hidden units 1, 2, and 3 respectively.

Because the hidden units generate identical responses to many of the chords, 

instead of 48 different visible points in this graph (one for each input pattern), there 

are only 8. Each point represents 6 different chords that fall in exactly the same 

location in the hidden unit space.

The hidden unit space reveals that each chord type is represented by two dif-

ferent points. That these points capture the same class is represented in Figure 4-12 

by joining a chord type’s points with a dashed line. Two points are involved in defin-

ing a chord class in this space because, as already discussed, each hidden unit is 

sensitive to the organization of notes according to the two circles of major seconds. 

For each chord type, chords whose root belongs to one of these circles are mapped 
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to one point, and chords whose root belongs to the other are mapped to the other 

point. Interestingly, there is no systematic relationship in the graph that maps onto 

the two circles. For instance, it is not the case that the four points toward the back 

of the Figure 4-12 cube all map onto the same circle of major seconds.

Figure 4-13. An example of output unit partitioning of the hidden unit space for 

the chord classification network.

Figure 4-13 illustrates how the output units can partition the points in the hidden 

unit space in order to classify chords. Each output unit in this network is a value 

unit, which carves two parallel hyperplanes through a pattern space. To solve the 

chord classification problem, the connection weights and the bias of each output 

unit must take on values that permit these two planes to isolate the two points asso-

ciated with one chord type from all of the other points in the space. Figure 4-13 

shows how this would be accomplished by the output unit that signals that a 6th 

chord has been detected.

4.11 Trigger Features

For more than half a century, neuroscientists have studied vision by mapping the 

receptive fields of individual neurons (Hubel & Wiesel, 1959; Lettvin, Maturana, 

McCulloch,  & Pitts, 1959). To do this, they use a method called microelectrode 
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recording or wiretapping (Calvin & Ojemann, 1994), in which the responses of single 

neurons are measured while stimuli are being presented to an animal. With this 

technique, it is possible to describe a neuron as being sensitive to a trigger feature, a 

specific pattern that when detected produces maximum activity in the cell.

That individual neurons may be described as detecting trigger features has led 

some to endorse a neuron doctrine for perceptual psychology. This doctrine has the 

goal of discovering the trigger features for all neurons (Barlow, 1972, 1995). This is 

because, 

a description of that activity of a single nerve cell which is transmitted to and influ-

ences other nerve cells, and of a nerve cell’s response to such influences from other 

cells, is a complete enough description for functional understanding of the nervous 

system. (Barlow, 1972, p. 380)

The validity of the neuron doctrine is a controversial issue (Bowers, 2009; 

Gross, 2002). Regardless, there is a possibility that identifying trigger features can 

help to interpret the internal workings of artificial neural networks.

For some types of hidden units, trigger features can be identified analyti-

cally, without requiring any wiretapping of hidden unit activities (Dawson, 2004). 

For instance, the activation function for an integration device (e.g., the logistic 

equation) is monotonic, which means that increases in net input always produce 

increases in activity. As a result, if one knows the maximum and minimum pos-

sible values for input signals, then one can define an integration device’s trigger 

feature simply by inspecting the connection weights that feed into it (Dawson, 

Kremer, & Gannon, 1994). The trigger feature is that pattern which sends the mini-

mum signal through every inhibitory connection and the maximum signal through 

every excitatory connection. The monotonicity of an integration device’s activation 

function ensures that it will have only one trigger feature.

The notion of a trigger feature for other kinds of hidden units is more complex. 

Consider a value unit whose bias, m, in its Gaussian activation function is equal 

to 0. The trigger feature for this unit will be the feature that causes it to produce 

maximum activation. For this value unit, this will occur when the net input to the 

unit is equal to 0 (i.e., equal to the value of m) (Dawson & Schopflocher, 1992b). The 

net input of a value unit is defined by a particular linear algebra operation, called 

the inner product, between a vector that represents a stimulus and a vector that 

represents the connection weights that fan into the unit (Dawson, 2004). So, when 

net input equals 0, this means that the inner product is equal to 0.

However, when an inner product is equal to 0, this indicates that the two vec-

tors being combined are orthogonal to one another (that is, there is an angle of 90° 

between the two vectors). Geometrically speaking, then, the trigger feature for a 

value unit is an input pattern represented by a vector of activities that is at a right 

angle to the vector of connection weights.
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This geometric observation raises complications, because it implies that a 

hidden value unit will not have a single trigger feature. This is because there are 

many input patterns that are orthogonal to a vector of connection weights. Any 

input vector that lies in the hyperplane that is perpendicular to the vector of connec-

tion weights will serve as a trigger feature for the hidden value unit (Dawson, 2004); 

this is illustrated in Figure 4-14.

Another consequence of the geometric account provided above is that there 

should be families of other input patterns that share the property of producing the 

same hidden unit activity, but one that is lower than the maximum activity pro-

duced by one of the trigger features. These will be patterns that all fall into the 

same hyperplane, but this hyperplane is not orthogonal to the vector of connection 

weights.

Figure 4-14. Any input pattern (dashed lines) whose vector falls in the plane 

orthogonal to the vector of connection weights (solid line) will be a trigger 

feature for a hidden value unit.

The upshot of all of this is that if one trains a network of value units and then wire-

taps its hidden units, the resulting hidden unit activities should be highly organ-

ized. Instead of having a rectangular distribution of activation values, there should 

be regular groups of activations, where each group is related to a different family 

of input patterns (i.e., families related to different hyperplanes of input patterns).

Empirical support for this analysis was provided by the discovery of activity 
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banding when a hidden unit’s activities were plotted using a jittered density plot 

(Berkeley et al., 1995). A jittered density plot is a two-dimensional scatterplot of 

points; one such plot can be created for each hidden unit in a network. Each plotted 

point represents one of the patterns presented to the hidden unit during wiretap-

ping. The x-value of the point’s position in the graph is the activity produced in that 

hidden unit by the pattern. The y-value of the point’s position in the scatterplot is a 

random value that is assigned to reduce overlap between points.

An example of a jittered density plot for a hidden value unit is provided in 

Figure 4-15. Note that the points in this plot are organized into distinct bands, 

which is consistent with the geometric analysis. This particular unit belongs to a 

network of value units trained on a logic problem discussed in slightly more detail 

below (Bechtel & Abrahamsen, 1991), and was part of a study that examined some of 

the implications of activity banding (Dawson & Piercey, 2001).

Figure 4-15. An example of banding in a jittered density plot of a hidden value 

unit in a network that was trained on a logic problem.

Bands in jittered density plots of hidden value units can be used to reveal the kinds 

of features that are being detected by these units. For instance, Berkeley et al. (1995) 

reported that all of the patterns that fell into the same band on a single jittered 

density plot in the networks did so because they shared certain local properties or 

features, which are called definite features.

 There are two types of definite features. The first is called a definite unary 

feature. When a definite unary feature exists, it means that a single feature has the 

same value for every pattern in the band. The second is called a definite binary fea-

ture. With this kind of definite feature, an individual feature is not constant within 
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a band. However, its relationship to some other feature is constant—variations in 

one feature are perfectly correlated with variations in another. Berkeley et al. (1995) 

showed how definite features could be both objectively defined and easily discov-

ered using simple descriptive statistics (see also Dawson, 2005).

Definite features are always expressed in terms of the values of input unit activ-

ities. As a result, they can be assigned meanings using knowledge of a network’s 

input unit encoding scheme.

One example of using this approach was presented in Berkeley et al.’s (1995) 

analysis of a network on the Bechtel and Abrahamsen (1991) logic task. This task 

consists of a set of 576 logical syllogisms, each of which can be expressed as a pat-

tern of binary activities using 14 input units. Each problem is represented as a first 

sentence that uses two variables, a connective or a second sentence that states a 

variable, and a conclusion that states a variable. Four different problem types were 

created in this format: modus ponens, modus tollens, disjunctive syllogism, and 

alternative syllogism. Each problem type was created using one of three different 

connectives and four different variables: the connectives were If…then, Or, or Not 

Both… And; the variables were A, B, C, and D. An example of a valid modus ponens 

argument in this format is “Sentence 1: ‘If A then B’; Sentence 2: ‘A’; Conclusion: ‘B’.”

For this problem, a network’s task is to classify an input problem into one of 

the four types and to classify it as being either a valid or an invalid example of that 

problem type. Berkeley et al. (1995) successfully trained a network of value units 

that employed 10 hidden units. After training, each of these units were wiretapped 

using the entire training set as stimulus patterns, and a jittered density plot was 

produced for each hidden unit. All but one of these plots revealed distinct banding. 

Berkeley et al. were able to provide a very detailed set of definite features for each 

of the bands.

After assigning definite features, Berkeley et al. (1995) used them to explore 

how the internal structure of the network was responsible for making the correct 

logical judgments. They expressed input logic problems in terms of which band of 

activity they belonged to for each jittered density plot. They then described each 

pattern as the combination of definite features from each of these bands, and they 

found that the internal structure of the network represented rules that were very 

classical in nature.

For example, Berkeley et al. (1995) found that every valid modus ponens prob-

lem was represented as the following features: having the connective If…then, 

having the first variable in Sentence 1 identical to Sentence 2, and having the second 

variable in Sentence 1 identical to the Conclusion. This is essentially the rule for 

valid modus ponens that could be taught in an introductory logic class (Bergmann, 

Moor, & Nelson, 1990). Berkeley et al. found several such rules; they also found 

a number that were not so traditional, but which could still be expressed in a 
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classical form. This result suggests that artificial neural networks might be more 

symbolic in nature than connectionist cognitive scientists care to admit (Dawson, 

Medler, & Berkeley, 1997).

Importantly, the Berkeley et al. (1995) analysis was successful because the defi-

nite features that they identified were local. That is, by examining a single band in 

a single jittered density plot, one could determine a semantically interpretable set 

of features. However, activity bands are not always local. In some instances hidden 

value units produce nicely banded jittered density plots that possess definite features, 

but these features are difficult to interpret semantically (Dawson & Piercey, 2001). 

This occurs when the semantic interpretation is itself distributed across different 

bands for different hidden units; an interpretation of such a network requires defi-

nite features from multiple bands to be considered in concert.

While the geometric argument provided earlier motivated a search for the 

existence of bands in the hidden units of value unit networks, banding has been 

observed in networks of integration devices as well (Berkeley & Gunay, 2004). That 

being said, banding is not seen in every value unit network either. The existence of 

banding is likely an interaction between network architecture and problem repre-

sentation; banding is useful when discovered, but it is only one tool available for 

network interpretation.

The important point is that practical tools exist for interpreting the internal 

structure of connectionist networks. Many of the technical issues concerning the 

relationship between classical and connectionist cognitive science may hinge upon 

network interpretations: “In our view, questions like ‘What is a classical rule?’ and 

‘Can connectionist networks be classical in nature?’ are also hopelessly uncon-

strained. Detailed analyses of the internal structure of particular connectionist 

networks provide a specific framework in which these questions can be fruitfully 

pursued” (Dawson, Medler, & Berkeley, 1997, p. 39).

4.12 A Parallel Distributed Production System

One of the prototypical architectures for classical cognitive science is the production 

system (Anderson, 1983; Kieras & Meyer, 1997; Meyer et al., 2001; Meyer & Kieras, 

1997a, 1997b; Newell, 1973, 1990; Newell & Simon, 1972). A production system is a 

set of condition-action pairs. Each production works in parallel, scanning working 

memory for a pattern that matches its condition. If a production finds such a match, 

then it takes control, momentarily disabling the other productions, and performs 

its action, which typically involves adding, deleting, copying, or moving symbols in 

the working memory.

Production systems have been proposed as a lingua franca for cognitive science, 

capable of describing any connectionist or embodied cognitive science theory and 
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therefore of subsuming such theories under the umbrella of classical cognitive sci-

ence (Vera & Simon, 1993). This is because Vera and Simon (1993) argued that any 

situation-action pairing can be represented either as a single production in a pro-

duction system or, for complicated situations, as a set of productions. “Productions 

provide an essentially neutral language for describing the linkages between infor-

mation and action at any desired (sufficiently high) level of aggregation” (p. 42). 

Other philosophers of cognitive science have endorsed similar positions. For 

instance, von Eckardt (1995) suggested that if one considers distributed represen-

tations in artificial neural networks as being “higher-level” representations, then 

connectionist networks can be viewed as being analogous to classical architectures. 

This is because when examined at this level, connectionist networks have the capac-

ity to input and output represented information, to store represented information, 

and to manipulate represented information. In other words, the symbolic proper-

ties of classical architectures may emerge from what are known as the subsymbolic 

properties of networks (Smolensky, 1988).

However, the view that artificial neural networks are classical in general or 

examples of production systems in particular is not accepted by all connectionists. 

It has been claimed that connectionism represents a Kuhnian paradigm shift away 

from classical cognitive science (Schneider, 1987). With respect to Vera and Simon’s 

(1993) particular analysis, their definition of symbol has been deemed too liberal 

by some neural network researchers (Touretzky & Pomerleau, 1994). Touretzky and 

Pomerlau (1994) claimed of a particular neural network discussed by Vera and 

Simon, ALVINN (Pomerleau, 1991), that its hidden unit “patterns are not arbitrar-

ily shaped symbols, and they are not combinatorial. Its hidden unit feature detec-

tors are tuned filters” (Touretzky & Pomerleau, 1994, p. 348). Others have viewed 

ALVINN from a position of compromise, noting that “some of the processes are 

symbolic and some are not” (Greeno & Moore, 1993, p. 54).

Are artificial neural networks equivalent to production systems? In the phi-

losophy of science, if two apparently different theories are in fact identical, then 

one theory can be translated into the other. This is called intertheoretic reduction 

(Churchland, 1985, 1988; Hooker, 1979, 1981). The widely accepted view that classical 

and connectionist cognitive science are fundamentally different (Schneider, 1987) 

amounts to the claim that intertheoretic reduction between a symbolic model and 

a connectionist network is impossible. One research project (Dawson et al., 2000) 

directly examined this issue by investigating whether a production system model 

could be translated into an artificial neural network.

Dawson et al. (2000) investigated intertheoretic reduction using a benchmark 

problem in the machine learning literature, classifying a very large number (8,124) 

of mushrooms as being either edible or poisonous on the basis of 21 different fea-

tures (Schlimmer, 1987). Dawson et al. (2000) used a standard machine learning 
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technique, the ID3 algorithm (Quinlan, 1986) to induce a decision tree for the 

mushroom problem. A decision tree is a set of tests that are performed in sequence 

to classify patterns. After performing a test, one either reaches a terminal branch of 

the tree, at which point the pattern being tested can be classified, or a node of the 

decision tree, which is to say another test that must be performed. The decision tree 

is complete for a pattern set if every pattern eventually leads the user to a terminal 

branch. Dawson et al. (2000) discovered that a decision tree consisting of only five 

different tests could solve the Schlimmer mushroom classification task. Their deci-

sion tree is provided in Table 4-4.

Step Tests and Decision Points

1

What is the mushroom’s odour?

If it is almond or anise then it is edible. (Rule 1 Edible)

If it is creosote or fishy or foul or musty or pungent or spicy then it is poisonous. 

(Rule 1 Poisonous)

If it has no odour then proceed to Step 2.

2

Obtain the spore print of the mushroom.

If the spore print is black or brown or buff or chocolate or orange or yellow then 

it is edible. (Rule 2 Edible)

If the spore print is green or purple then it is poisonous. (Rule 2 Poisonous)

If the spore print is white then proceed to Step 3.

3

Examine the gill size of the mushroom.

If the gill size is broad, then it is edible. (Rule 3 Edible)

If the gill size is narrow, then proceed to Step 4.

4

Examine the stalk surface above the mushroom’s ring.

If the surface is fibrous then it is edible. (Rule 4 Edible)

If the surface is silky or scaly then it is poisonous. (Rule 4 Poisonous)

If the surface is smooth then proceed to Step 5.

5

Examine the mushroom for bruises.

If it has no bruises then it is edible. (Rule 5 Edible)

If it has bruises then it is poisonous. (Rule 5 Poisonous)

Table 4-4. Dawson et al.’s (2000) step decision tree for classifying mushrooms. 

Decision points in this tree where mushrooms are classified (e.g., Rule 1 Edible) 

are given in bold.
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The decision tree provided in Table 4-4 is a classical theory of how mushrooms can 

be classified. It is not surprising, then, that one can translate this decision tree into 

the lingua franca: Dawson et al. (2000) rewrote the decision tree as an equivalent 

set of production rules. They did so by using the features of mushrooms that must 

be true at each terminal branch of the decision tree as the conditions for a produc-

tion. The action of this production is to classify the mushroom (i.e., to assert that a 

mushroom is either edible or poisonous). For instance, at the Rule 1 Edible decision 

point in Table 4-4, one could create the following production rule: “If the odour is 

anise or almond, then the mushroom is edible.” Similar productions can be created 

for later decision points in the algorithm; these productions will involve a longer list 

of mushroom features. The complete set of productions that were created for the 

decision tree algorithm is provided in Table 4-5. 

Dawson et al. (2000) trained a network of value units to solve the mushroom 

classification problem and to determine whether a classical model (such as the deci-

sion tree from Table 4-4 or the production system from Table 4-5) could be trans-

lated into a network. To encode mushroom features, their network used 21 input 

units, 5 hidden value units, and 10 output value units. One output unit encoded the 

edible/poisonous classification—if a mushroom was edible, this unit was trained to 

turn on; otherwise this unit was trained to turn off.

Decision Point
From Table 4-4

Equivalent Production Network
Cluster

Rule 1 Edible P1: if (odor = anise) ∨ (odor = almond) → edible 2 or 3

Rule 1 Poisonous
P2: if (odor ≠ anise) ∧ (odor ≠ almond) ∧ (odor ≠ none) 

→ not edible
1

Rule 2 Edible

P3: if (odor = none) ∧ (spore print colour ≠ green) ∧ 

(spore print colour ≠ purple) ∧ (spore print colour ¹ 

white) → edible

9

Rule 2 Poisonous
P4: if (odor = none) ∧ ((spore print colour = green) ∨ 

(spore print colour = purple)) → not edible
6

Rule 3 Edible
P5: if (odor = none) ∧ (spore print colour = white) ∧ (gill 

size = broad) → edible
4

Rule 4 Edible

P6: if (odor = none) ∧ (spore print colour = white) ∧ (gill 

size = narrow) ∧ (stalk surface above ring = fibrous) → 

edible

7 or 11
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Decision Point
From Table 4-4

Equivalent Production Network
Cluster

Rule 4 Poisonous

P7: if (odor = none) ∧ (spore print colour = white) ∧ (gill 

size = narrow) ∧ ((stalk surface above ring = silky) ∨ 

(stalk surface above ring = scaly)) → not edible

5

Rule 5 Edible

P8: if (odor = none) ∧ (spore print colour = white) ∧ (gill 

size = narrow) ∧ (stalk surface above ring = smooth) ∧ 

(bruises = no) → edible

8 or 12

Rule 5 Poisonous

P9: if (odor = none) ∧ (spore print colour = white) ∧ (gill 

size = narrow) ∧ (stalk surface above ring = smooth) ∧ 

(bruises = yes) → not edible

10

Table 4-5. Dawson et al.’s (2000) production system translation of Table 4-4. 

Conditions are given as sets of features. The Network Cluster column pertains 

to their artificial neural network trained on the mushroom problem and is 

described later in the text.

The other nine output units were used to provide extra output learning, which was 

the technique employed to insert a classical theory into the network. Normally, a 

pattern classification system is only provided with information about what cor-

rect pattern labels to assign. For instance, in the mushroom problem, the system 

would typically only be taught to generate the label edible or the label poisonous. 

However, more information about the pattern classification task is frequently avail-

able. In particular, it is often known why an input pattern belongs to one class 

or another. It is possible to incorporate this information to the pattern classifica-

tion problem by teaching the system not only to assign a pattern to a class (e.g., 

“edible”, “poisonous”) but to also generate a reason for making this classification 

(e.g., “passed Rule 1”, “failed Rule 4”). Elaborating a classification task along such 

lines is called the injection of hints or extra output learning (Abu-Mostafa, 1990; 

Suddarth & Kergosien, 1990).

Dawson et al. (2000) hypothesized that extra output learning could be used 

to insert the decision tree from Table 4-4 into a network. Table 4-4 provides nine 

different terminal branches of the decision tree at which mushrooms are assigned 

to categories (“Rule 1 edible”, “Rule 1 poisonous”, “Rule 2 edible”, etc.). The network 

learned to “explain” why it classified an input pattern in a particular way by turning 

on one of the nine extra output units to indicate which terminal branch of the deci-

sion tree was involved. In other words, the network (which required 8,699 epochs 

of training on the 8,124 different input patterns!) classified networks “for the same 
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reasons” as would the decision tree. This is why Dawson et al. hoped that this clas-

sical theory would literally be translated into the network.

Apart from the output unit behaviour, how could one support the claim that 

a classical theory had been translated into a connectionist network? Dawson et 

al. (2000) interpreted the internal structure of the network in an attempt to see 

whether such a network analysis would reveal an internal representation of the 

classical algorithm. If this were the case, then standard training practices would 

have succeeded in translating the classical algorithm into a PDP network.

One method that Dawson et al. (2000) used to interpret the trained network 

was a multivariate analysis of the network’s hidden unit space. They represented 

each mushroom as the vector of five hidden unit activation values that it produced 

when presented to the network. They then performed a k-means clustering of this 

data. The k-means clustering is an iterative procedure that assigns data points to k 

different clusters in such a way that each member of a cluster is closer to the cen-

troid of that cluster than to the centroid of any other cluster to which other data 

points have been assigned.

However, whenever cluster analysis is performed, one question that must be 

answered is How many clusters should be used?—in other words, what should the 

value of k be?. An answer to this question is called a stopping rule. Unfortunately, 

no single stopping rule has been agreed upon (Aldenderfer & Blashfield, 1984; 

Everitt, 1980). As a result, there exist many different types of methods for determin-

ing k (Milligan & Cooper, 1985).

While no general method exists for determining the optimal number of clus-

ters, one can take advantage of heuristic information concerning the domain being 

clustered in order to come up with a satisfactory stopping rule for this domain. 

Dawson et al. (2000) argued that when the hidden unit activities of a trained net-

work are being clustered, there must be a correct mapping from these activities 

to output responses, because one trained network itself has discovered one such 

mapping. They used this position to create the following stopping rule: “Extract the 

smallest number of clusters such that every hidden unit activity vector assigned to 

the same cluster produces the same output response in the network.” They used this 

rule to determine that the k-means analysis of the network’s hidden unit activity 

patterns required the use of 12 different clusters.

Dawson et al. (2000) then proceeded to examine the mushroom patterns that 

belonged to each cluster in order to determine what they had in common. For each 

cluster, they determined the set of descriptive features that each mushroom shared. 

They realized that each set of shared features they identified could be thought of as 

a condition, represented internally by the network as a vector of hidden unit activi-

ties, which results in the network producing a particular action, in particular, the 

edible/poisonous judgement represented by the first output unit.
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For example, mushrooms that were assigned to Cluster 2 had an odour that 

was either almond or anise, which is represented by the network’s five hidden units 

adopting a particular vector of activities. These activities serve as a condition that 

causes the network to assert that the mushroom is edible.

By interpreting a hidden unit vector in terms of condition features that are 

prerequisites to network responses, Dawson et al. (2000) discovered an amazing 

relationship between the clusters and the set of productions in Table 4-5. They 

determined that each distinct class of hidden unit activities (i.e., each cluster) cor-

responded to one, and only one, of the productions listed in the table. This mapping 

is provided in the last column of Table 4-5. In other words, when one describes the 

network as generating a response because its hidden units are in one state of activ-

ity, one can translate this into the claim that the network is executing a particular 

production. This shows that the extra output learning translated the classical algo-

rithm into a network model.

The translation of a network into a production system, or vice versa, is an 

example of new wave reductionism (Bickle, 1996; Endicott, 1998). In new wave 

reductionism, one does not reduce a secondary theory directly to a primary theory. 

Instead, one takes the primary theory and constructs from it a structure that is 

analogous to the secondary theory, but which is created in the vocabulary of the 

primary theory. Theory reduction involves constructing a mapping between the 

secondary theory and its image constructed from the primary theory. “The older 

theory, accordingly, is never deduced; it is just the target of a relevantly adequate 

mimicry” (Churchland, 1985, p. 10).

Dawson et al.’s (2000) interpretation is a new wave intertheoretic reduction 

because the production system of Table 4-5 represents the intermediate structure 

that is analogous to the decision tree of Table 4-4. “Adequate mimicry” was estab-

lished by mapping different classes of hidden unit states to the execution of particu-

lar productions. In turn, there is a direct mapping from any of the productions back 

to the decision tree algorithm. Dawson et al. concluded that they had provided an 

exact translation of a classical algorithm into a network of value units.

The relationship between hidden unit activities and productions in Dawson 

et al.’s (2000) mushroom network is in essence an example of equivalence between 

symbolic and subsymbolic accounts. This implies that one cannot assume that clas-

sical models and connectionist networks are fundamentally different at the algo-

rithmic level, because one type of model can be translated into the other. It is pos-

sible to have a classical model that is exactly equivalent to a PDP network.

This result provides very strong support for the position proposed by Vera and 

Simon (1993). The detailed analysis provided by Dawson et al. (2000) permitted 

them to make claims of the type “Network State x is equivalent to Production y.” 

Of course, this one result cannot by itself validate Vera and Simon’s argument. For 
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instance, can any classical theory be translated into a network? This is one type of 

algorithmic-level issue that requires a great deal of additional research. As well, the 

translation works both ways: perhaps artificial neural networks provide a biologi-

cally plausible lingua franca for classical architectures!

4.13 Of Coarse Codes

The notion of representation in classical cognitive science is tightly linked to the 

structure/process distinction that is itself inspired by the digital computer. An 

explicit set of rules is proposed to operate on a set of symbols that permits its com-

ponents to be identified, digitally, as tokens that belong to particular symbol types.

In contrast, artificial neural networks dispense (at first glance) with the sharp 

distinction between structure and process that characterizes classical cognitive sci-

ence. Instead, networks themselves take the form of dynamic symbols that represent 

information at the same time as they transform it. The dynamic, distributed nature 

of artificial neural networks appears to make them more likely to be explained using 

statistical mechanics than using propositional logic.

One of the putative advantages of connectionist cognitive science is that it can 

inspire alternative notions of representation. The blurring of the structure/process 

distinction, the seemingly amorphous nature of the internal structure that charac-

terizes many multilayer networks, leads to one such proposal, called coarse coding.

A coarse code is one in which an individual unit is very broadly tuned, sensitive 

to either a wide range of features or at least to a wide range of values for an individual 

feature (Churchland & Sejnowski, 1992; Hinton, McClelland, & Rumelhart, 1986). 

In other words, individual processors are themselves very inaccurate devices for 

measuring or detecting a feature. The accurate representation of a feature can 

become possible, though, by pooling or combining the responses of many such inac-

curate detectors, particularly if their perspectives are slightly different (e.g., if they 

are sensitive to different ranges of features, or if they detect features from different 

input locations).

A familiar example of coarse coding is provided by the nineteenth trichromatic 

theory of colour perception (Helmholtz, 1968; Wasserman, 1978). According to this 

theory, colour perception is mediated by three types of retinal cone receptors. One is 

maximally sensitive to short (blue) wavelengths of light, another is maximally sen-

sitive to medium (green) wavelengths, and the third is maximally sensitive to long 

(red) wavelengths. Thus none of these types of receptors are capable of represent-

ing, by themselves, the rich rainbow of perceptible hues.

However, these receptors are broadly tuned and have overlapping sensitivities. As 

a result, most light will activate all three channels simultaneously, but to differ-

ent degrees. Actual colored light does not produce sensations of absolutely pure 
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color; that red, for instance, even when completely freed from all admixture of 

white light, still does not excite those nervous fibers which alone are sensitive 

to impressions of red, but also, to a very slight degree, those which are sensitive 

to green, and perhaps to a still smaller extent those which are sensitive to violet 

rays. (Helmholtz, 1968, p. 97) 

The pooling of different activities of the three channels permits a much greater vari-

ety of colours to be represented and perceived.

We have already seen examples of coarse coding in some of the network ana-

lyses that were presented earlier in this chapter. For instance, consider the chord 

recognition network. It was shown in Table 4-3 that none of its hidden units were 

accurate chord detectors. Hidden Units 1 and 2 did not achieve maximum activity 

when presented with any chord. When Hidden Unit 3 achieved maximum activity, 

this did not distinguish a 6th chord from a major 7th chord. However, when patterns 

were represented as points in a three-dimensional space, where the coordinates of 

each point were defined by a pattern’s activity in each of the three hidden units 

(Figures 4-12 and 4-13), perfect chord classification was possible.

Other connectionist examples of coarse coding are found in studies of networks 

trained to accomplish navigational tasks, such as making judgments about the 

distance or direction between pairs of cities on a map (Dawson & Boechler, 2007; 

Dawson, Boechler, & Orsten, 2005; Dawson, Boechler, & Valsangkar-Smyth, 2000). 

For instance, Dawson and Boechler (2007) trained a network to judge the head-

ing from one city on a map of Alberta to another. Seven hidden value units were 

required to accomplish this task. Each of these hidden units could be described as 

being sensitive to heading. However, this sensitivity was extremely coarse—some 

hidden units could resolve directions only to the nearest 180°. Nevertheless, a linear 

combination of the activities of all seven hidden units represented the desired direc-

tion between cities with a high degree of accuracy.

Similarly, Dawson, Boechler, and Valsangkar-Smyth (2000) trained a network 

of value units to make distance judgments between all possible pairs of 13 Albertan 

cities. This network required six hidden units to accomplish this task. Again, these 

units provided a coarse coding solution to the problem. Each hidden unit could be 

described as occupying a location on the map of Alberta through which a line was 

drawn at a particular orientation. This oriented line provided a one-dimensional 

map of the cities: connection weights encoded the projections of the cities from 

the two-dimensional map onto each hidden unit’s one-dimensional representation. 

However, because the hidden units provided maps of reduced dimensionality, they 

were wildly inaccurate. Depending on the position of the oriented line, two cities 

that were far apart in the actual map could lie close together on a hidden unit’s 

representation. Fortunately, because each of these inaccurate hidden unit maps 

encoded projections from different perspectives, the combination of their activities 
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was able to represent the actual distance between all city pairs with a high degree 

of accuracy.

The discovery of coarse coding in navigational networks has important theo-

retical implications. Since the discovery of place cells in the hippocampus (O’Keefe 

& Dostrovsky, 1971), it has been thought that one function of the hippocampus is to 

instantiate a cognitive map (O’Keefe & Nadel, 1978). One analogy used to explain 

cognitive maps is that they are like graphical maps (Kitchin, 1994). From this, one 

might predict that the cognitive map is a metric, topographically organized, two-

dimensional array in which each location in the map (i.e., each place in the external 

world) is associated with the firing of a particular place cell, and neighbouring place 

cells represent neighbouring places in the external world.

However, this prediction is not supported by anatomical evidence. First, place 

cells do not appear to be topographically organized (Burgess, Recce, & O’Keefe, 1995; 

McNaughton et al., 1996). Second, the receptive fields of place cells are at best 

locally metric, because one cannot measure the distance between points that are 

more than about a dozen body lengths apart because of a lack of receptive field 

overlap (Touretzky, Wan, & Redish, 1994). Some researchers now propose that the 

cognitive map doesn’t really exit, but that map-like properties emerge when place 

cells are coordinated with other types of cells, such as head direction cells, which fire 

when an animal’s head is pointed in a particular direction, regardless of the animal’s 

location in space (McNaughton et al., 1996; Redish, 1999; Redish & Touretzky, 1999; 

Touretzky, Wan, & Redish, 1994).

Dawson et al. (2000) observed that their navigational network is also subject to 

the same criticisms that have been levelled against the notion of a topographically 

organized cognitive map. The hidden units did not exhibit topographic organiza-

tion, and their inaccurate responses suggest that they are at best locally metric.

Nevertheless, the behaviour of the Dawson et al. (2000) network indicated that 

it represented information about a metric space. That such behaviour can be sup-

ported by the type of coarse coding discovered in this network suggests that metric, 

spatial information can be encoded in a representational scheme that is not iso-

morphic to a graphical map. This raises the possibility that place cells represent 

spatial information using a coarse code which, when its individual components are 

inspected, is not very map-like at all. O’Keefe and Nadel (1978, p. 78) were explicitly 

aware of this kind of possibility: “The cognitive map is not a picture or image which 

‘looks like’ what it represents; rather, it is an information structure from which 

map-like images can be reconstructed and from which behaviour dependent upon 

place information can be generated.”

What are the implications of the ability to interpret the internal structure of 

artificial neural networks to the practice of connectionist cognitive science?
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When New Connectionism arose in the 1980s, interest in it was fuelled by two 

complementary perspectives (Medler, 1998). First, there was growing dissatisfac-

tion with the progress being made in classical cognitive science and symbolic arti-

ficial intelligence (Dreyfus, 1992; Dreyfus & Dreyfus, 1988). Second, seminal intro-

ductions to artificial neural networks (McClelland & Rumelhart, 1986; Rumelhart 

& McClelland, 1986c) gave the sense that the connectionist architecture was a radi-

cal alternative to its classical counterpart (Schneider, 1987).

The apparent differences between artificial neural networks and classical models 

led to an early period of research in which networks were trained to accomplish tasks 

that had typically been viewed as prototypical examples of classical cognitive science 

(Bechtel, 1994; Rumelhart & McClelland, 1986a; Seidenberg & McClelland, 1989; 

Sejnowski & Rosenberg, 1988). These networks were then used as “existence proofs” 

to support the claim that non-classical models of classical phenomena are possible. 

However, detailed analyses of these networks were not provided, which meant that, 

apart from intuitions that connectionism is not classical, there was no evidence to 

support claims about the non-classical nature of the networks’ solutions to the clas-

sical problems. Because of this, this research perspective has been called gee whiz 

connectionism (Dawson, 2004, 2009).

Of course, at around the same time, prominent classical researchers were criti-

cizing the computational power of connectionist networks (Fodor & Pylyshyn, 1988), 

arguing that connectionism was a throwback to less powerful notions of associa-

tionism that classical cognitive science had already vanquished (Bever, Fodor, & 

Garrett, 1968; Chomsky, 1957, 1959b, 1965). Thus gee whiz connectionism served an 

important purpose: providing empirical demonstrations that connectionism might 

be a plausible medium in which cognitive science can be fruitfully pursued.

However, it was noted earlier that there exists a great deal of research on the 

computational power of artificial neural networks (Girosi & Poggio, 1990; Hartman, 

Keeler, & Kowalski, 1989; Lippmann, 1989; McCulloch & Pitts, 1943; Moody & Darken, 

1989; Poggio & Girosi, 1990; Renals, 1989; Siegelmann, 1999; Siegelmann & Sontag, 

1991); the conclusion from this research is that multilayered networks have the 

same in-principle power as any universal machine. This leads, though, to the demise 

of gee whiz connectionism, because if connectionist systems belong to the class of 

universal machines, “it is neither interesting nor surprising to demonstrate that a 

network can learn a task of interest” (Dawson, 2004, p. 118). If a network’s ability to 

learn to perform a task is not of interest, then what is? 

It can be extremely interesting, surprising, and informative to determine what regu-

larities the network exploits. What kinds of regularities in the input patterns has the 

network discovered? How does it represent these regularities? How are these regu-

larities combined to govern the response of the network? (Dawson, 2004, p. 118) 
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By uncovering the properties of representations that networks have discovered for 

mediating an input-output relationship, connectionist cognitive scientists can dis-

cover new properties of cognitive phenomena.

4.14 Architectural Connectionism: An Overview

In the last several sections, we have been concerned with interpreting the internal 

structure of multilayered artificial neural networks. While some have claimed that 

all that can be found within brains and networks is goo (Mozer & Smolensky, 1989), 

the preceding examples have shown that detailed interpretations of internal net-

work structure are both possible and informative. These interpretations reveal algo-

rithmic-level details about how artificial neural networks use their hidden units to 

mediate mappings from inputs to outputs.

If the goal of connectionist cognitive science is to make new representational 

discoveries, then this suggests that it be practised as a form of synthetic psychology 

(Braitenberg, 1984; Dawson, 2004) that incorporates both synthesis and analysis, 

and that involves both forward engineering and reverse engineering.

The analytic aspect of connectionist cognitive science involves peering inside 

a network in order to determine how its internal structure represents solutions to 

problems. The preceding pages of this chapter have provided several examples of 

this approach, which seems identical to the reverse engineering practised by classi-

cal cognitive scientists.

The reverse engineering phase of connectionist cognitive science is also linked 

to classical cognitive science, in the sense that the results of these analyses are likely 

to provide the questions that drive algorithmic-level investigations. Once a novel 

representational format is discovered in a network, a key issue is to determine 

whether it also characterizes human or animal cognition. One would expect that 

when connectionist cognitive scientists evaluate their representational discoveries, 

they should do so by gathering the same kind of relative complexity, intermedi-

ate state, and error evidence that classical cognitive scientists gather when seeking 

strong equivalence.

Before one can reverse engineer a network, one must create it. And if the goal of 

such a network is to discover surprising representational regularities, then it should 

be created by minimizing representational assumptions as much as possible. One 

takes the building blocks available in a particular connectionist architecture, cre-

ates a network from them, encodes a problem for this network in some way, and 

attempts to train the network to map inputs to outputs.

This synthetic phase of research involves exploring different network struc-

tures (e.g., different design decisions about numbers of hidden units, or types of 

activation functions) and different approaches to encoding inputs and outputs. The 
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idea is to give the network as many degrees of freedom as possible to discover repre-

sentational regularities that have not been imposed or predicted by the researcher. 

These decisions all involve the architectural level of investigation.

One issue, though, is that networks are greedy, in the sense that they will exploit 

whatever resources are available to them. As a result, fairly idiosyncratic and spe-

cialized detectors are likely to be found if too many hidden units are provided to the 

network, and the network’s performance may not transfer well when presented with 

novel stimuli. To deal with this, one must impose constraints by looking for the sim-

plest network that will reliably learn the mapping of interest. The idea here is that 

such a network might be the one most likely to discover a representation general 

enough to transfer the network’s ability to new patterns.

Importantly, sometimes when one makes architectural decisions to seek the 

simplest network capable of solving a problem, one discovers that the required net-

work is merely a perceptron that does not employ any hidden units. In the remain-

ing sections of this chapter I provide some examples of simple networks that are 

capable of performing interesting tasks. In section 4.15 the relevance of perceptrons 

to modern theories of associative learning is described. In section 4.16 I present a 

perceptron model of the reorientation task. In section 4.17 an interpretation is given 

for the structure of a perceptron that learns a seemingly complicated progression 

of musical chords.

4.15 New Powers of Old Networks

The history of artificial neural networks can be divided into two periods, Old 

Connectionism and New Connectionism (Medler, 1998). New Connectionism 

studies powerful networks consisting of multiple layers of units, and connections 

are trained to perform complex tasks. Old Connectionism studied networks that 

belonged to one of two classes. One was powerful multilayer networks that were 

hand wired, not trained (McCulloch & Pitts, 1943). The other was less powerful 

networks that did not have hidden units but were trained (Rosenblatt, 1958, 1962; 

Widrow, 1962; Widrow & Hoff, 1960).

Perceptrons (Rosenblatt, 1958, 1962) belong to Old Connectionism. A percep-

tron is a standard pattern associator whose output units employ a nonlinear activa-

tion function. Rosenblatt’s perceptrons used the Heaviside step function to convert 

net input into output unit activity. Modern perceptrons use continuous nonlinear 

activation functions, such as the logistic or the Gaussian (Dawson, 2004, 2005, 2008; 

Dawson et al., 2009; Dawson et al., 2010).

Perceptrons are trained using an error-correcting variant of Hebb-style learn-

ing (Dawson, 2004). Perceptron training associates input activity with output unit 

error as follows. First, a pattern is presented to the input units, producing output 
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unit activity via the existing connection weights. Second, output unit error is com-

puted by taking the difference between actual output unit activity and desired 

output unit activity for each output unit in the network. This kind of training is 

called supervised learning, because it requires an external trainer to provide the 

desired output unit activities. Third, Hebb-style learning is used to associate input 

unit activity with output unit error: weight change is equal to a learning rate times 

input unit activity times output unit error. (In modern perceptrons, this triple prod-

uct can also be multiplied by the derivative of the output unit’s activation function, 

resulting in gradient descent learning [Dawson, 2004]).

The supervised learning of a perceptron is designed to reduce output unit 

errors as training proceeds. Weight changes are proportional to the amount of gen-

erated error. If no errors occur, then weights are not changed. If a task’s solution can 

be represented by a perceptron, then repeated training using pairs of input-output 

stimuli is guaranteed to eventually produce zero error, as proven in Rosenblatt’s 

perceptron convergence theorem (Rosenblatt, 1962).

Being a product of Old Connectionism, there are limits to the range of input-out-

put mappings that can be mediated by perceptrons. In their famous computational 

analyses of what perceptrons could and could not learn to compute, Minsky and 

Papert (1969) demonstrated that perceptrons could not learn to distinguish some 

basic topological properties easily discriminated by humans, such as the difference 

between connected and unconnected figures. As a result, interest in and funding for 

Old Connectionist research decreased dramatically (Medler, 1998; Papert, 1988).

However, perceptrons are still capable of providing new insights into phenom-

ena of interest to cognitive science. The remainder of this section illustrates this by 

exploring the relationship between perceptron learning and classical conditioning.

The primary reason that connectionist cognitive science is related to empiri-

cism is that the knowledge of an artificial neural network is typically acquired via 

experience. For instance, in supervised learning a network is presented with pairs 

of patterns that define an input-output mapping of interest, and a learning rule is 

used to adjust connection weights until the network generates the desired response 

to a given input pattern.

In the twentieth century, prior to the birth of artificial neural networks 

(McCulloch & Pitts, 1943), empiricism was the province of experimental psychol-

ogy. A detailed study of classical conditioning (Pavlov, 1927) explored the subtle 

regularities of the law of contiguity. Pavlovian, or classical, conditioning begins with 

an unconditioned stimulus (US) that is capable, without training, of producing an 

unconditioned response (UR). Also of interest is a conditioned stimulus (CS) that 

when presented will not produce the UR. In classical conditioning, the CS is paired 

with the US for a number of trials. As a result of this pairing, which places the CS 
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in contiguity with the UR, the CS becomes capable of eliciting the UR on its own. 

When this occurs, the UR is then known as the conditioned response (CR).

Classical conditioning is a very basic kind of learning, but experiments revealed 

that the mechanisms underlying it were more complex than the simple law of con-

tiguity. For example, one phenomenon found in classical conditioning is blocking 

(Kamin, 1968). Blocking involves two conditioned stimuli, CSA and CSB. Either 

stimulus is capable of being conditioned to produce the CR. However, if training 

begins with a phase in which only CSA is paired with the US and is then followed by 

a phase in which both CSA and CSB are paired with the US, then CSB fails to produce 

the CR. The prior conditioning involving CSA blocks the conditioning of CSB, even 

though in the second phase of training CSB is contiguous with the UR.

The explanation of phenomena such as blocking required a new model of asso-

ciative learning. Such a model was proposed in the early 1970s by Robert Rescorla 

and Allen Wagner (Rescorla & Wagner, 1972). This mathematical model of learning 

has been described as being cognitive, because it defines associative learning in 

terms of expectation. Its basic idea is that a CS is a signal about the likelihood that 

a US will soon occur. Thus the CS sets up expectations of future events. If these 

expectations are met, then no learning will occur. However, if these expectations 

are not met, then associations between stimuli and responses will be modified. 

“Certain expectations are built up about the events following a stimulus complex; 

expectations initiated by that complex and its component stimuli are then only 

modified when consequent events disagree with the composite expectation” (p. 75).

The expectation-driven learning that was formalized in the Rescorla-Wagner 

model explained phenomena such as blocking. In the second phase of learning in the 

blocking paradigm, the coming US was already signaled by CSA. Because there was 

no surprise, no conditioning of CSB occurred. The Rescorla-Wagner model has had 

many other successes; though it is far from perfect (Miller, Barnet, & Grahame, 1995; 

Walkenbach & Haddad, 1980), it remains an extremely influential, if not the most 

influential, mathematical model of learning.

The Rescorla-Wagner proposal that learning depends on the amount of sur-

prise parallels the notion in supervised training of networks that learning depends 

on the amount of error. What is the relationship between Rescorla-Wagner learning 

and perceptron learning?

Proofs of the equivalence between the mathematics of Rescorla-Wagner 

learning and the mathematics of perceptron learning have a long history. Early 

proofs demonstrated that one learning rule could be translated into the other 

(Gluck & Bower, 1988; Sutton & Barto, 1981). However, these proofs assumed that 

the networks had linear activation functions. Recently, it has been proven that if 

when it is more properly assumed that networks employ a nonlinear activation 
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function, one can still translate Rescorla-Wagner learning into perceptron learning, 

and vice versa (Dawson, 2008).

One would imagine that the existence of proofs of the computational equiva-

lence between Rescorla-Wagner learning and perceptron learning would mean that 

perceptrons would not be able to provide any new insights into classical condition-

ing. However, this is not correct. Dawson (2008) has shown that if one puts aside 

the formal comparison of the two types of learning and uses perceptrons to simu-

late a wide variety of different classical conditioning paradigms, then some puz-

zling results occur. On the one hand, perceptrons generate the same results as the 

Rescorla-Wagner model for many different paradigms. Given the formal equiva-

lence between the two types of learning, this is not surprising. On the other hand, 

for some paradigms, perceptrons generate different results than those predicted 

from the Rescorla-Wagner model (Dawson, 2008, Chapter 7). Furthermore, in 

many cases these differences represent improvements over Rescorla-Wagner learn-

ing. If the two types of learning are formally equivalent, then how is it possible for 

such differences to occur?

Dawson (2008) used this perceptron paradox to motivate a more detailed com-

parison between Rescorla-Wagner learning and perceptron learning. He found that 

while these two models of learning were equivalent at the computational level of 

investigation, there were crucial differences between them at the algorithmic level. 

In order to train a perceptron, the network must first behave (i.e., respond to an 

input pattern) in order for error to be computed to determine weight changes. In 

contrast, Dawson showed that the Rescorla-Wagner model defines learning in such 

a way that behaviour is not required! 

Dawson’s (2008) algorithmic analysis of Rescorla-Wagner learning is consistent 

with Rescorla and Wagner’s (1972) own understanding of their model: “Independent 

assumptions will necessarily have to be made about the mapping of associative 

strengths into responding in any particular situation” (p. 75). Later, they make this 

same point much more explicitly: 

We need to provide some mapping of [associative] values into behavior. We are 

not prepared to make detailed assumptions in this instance. In fact, we would 

assume that any such mapping would necessarily be peculiar to each experi-

mental situation, and depend upon a large number of ‘performance’ variables. 

(Rescorla & Wagner, 1972, p. 77)

Some knowledge is tacit: we can know more than we can tell (Polanyi, 1966). Dawson 

(2008) noted that the Rescorla-Wagner model presents an interesting variant of this 

theme, where if there is no explicit need for a behavioural theory, then there is no 

need to specify it explicitly. Instead, researchers can ignore Rescorla and Wagner’s 

(1972) call for explicit models to convert associative strengths into behaviour 

and instead assume unstated, tacit theories such as “strong associations produce 
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stronger, or more intense, or faster behavior.” Researchers evaluate the Rescorla-

Wagner model (Miller, Barnet, & Grahame, 1995; Walkenbach & Haddad, 1980) by 

agreeing that associations will eventually lead to behaviour, without actually stating 

how this is done. In the Rescorla-Wagner model, learning comes first and behaviour 

comes later—maybe.

Using perceptrons to study classical conditioning paradigms contributes to the 

psychological understanding of such learning in three ways. First, at the computa-

tional level, it demonstrates equivalences between independent work on learning 

conducted in computer science, electrical engineering, and psychology (Dawson, 

2008; Gluck & Bower, 1988; Sutton & Barto, 1981).

Second, the results of training perceptrons in these paradigms raise issues that 

lead to a more sophisticated understanding of learning theories. For instance, the 

perceptron paradox led to the realization that when the Rescorla-Wagner model is 

typically used, accounts of converting associations into behaviour are unspecified. 

Recall that one of the advantages of computer simulation research is exposing tacit 

assumptions (Lewandowsky, 1993).

Third, the activation functions that are a required property of a perceptron 

serve as explicit theories of behaviour to be incorporated into the Rescorla-Wagner 

model. More precisely, changes in activation function result in changes to how the 

perceptron responds to stimuli, indicating the importance of choosing a particular 

architecture (Dawson & Spetch, 2005). The wide variety of activation functions that 

are available for artificial neural networks (Duch & Jankowski, 1999) offers a great 

opportunity to explore how changing theories of behaviour—or altering architec-

tures—affect the nature of associative learning.

The preceding paragraphs have shown how the perceptron can be used to 

inform theories of a very old psychological phenomenon, classical conditioning. 

We now consider how perceptrons can play a role in exploring a more modern 

topic, reorientation, which was described from a classical perspective in Chapter 3 

(Section 3.12).

4.16 Connectionist Reorientation

In the reorientation task, an agent learns that a particular place—usually a corner 

of a rectangular arena—is a goal location. The agent is then removed from the 

arena, disoriented, and returned to an arena. Its task is to use the available cues 

to relocate the goal. Theories of reorientation assume that there are two types of 

cues available for reorienting: local feature cues and relational geometric cues. 

Studies indicate that both types of cues are used for reorienting, even in cases 

where geometric cues are irrelevant (Cheng & Newcombe, 2005). As a result, some 
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theories have proposed that a geometric module guides reorienting behaviour 

(Cheng, 1986; Gallistel, 1990).

The existence of a geometric module has been proposed because different kinds 

of results indicate that the processing of geometric cues is mandatory. First, in some 

cases agents continue to make rotational errors (i.e., the agent does not go to the 

goal location, but goes instead to an incorrect location that is geometrically iden-

tical to the goal location) even when a feature disambiguates the correct corner 

(Cheng, 1986; Hermer & Spelke, 1994). Second, when features are removed follow-

ing training, agents typically revert to choosing both of the geometrically correct 

locations (Kelly et al., 1998; Sovrano et al., 2003). Third, when features are moved, 

agents generate behaviours that indicate that both types of cues were processed 

(Brown, Spetch, & Hurd, 2007; Kelly, Spetch, & Heth, 1998).

Recently, some researchers have begun to question the existence of geomet-

ric modules. One reason for this is that the most compelling evidence for claims 

of modularity comes from neuroscience (Dawson, 1998; Fodor, 1983), but such 

evidence about the modularity of geometry in the reorientation task is admit-

tedly sparse (Cheng & Newcombe, 2005). This has led some researchers to propose 

alternative notions of modularity when explaining reorientation task regularities 

(Cheng, 2005, 2008; Cheng & Newcombe, 2005).

Still other researchers have explored how to abandon the notion of the geomet-

ric module altogether. They have proceeded by creating models that produce the 

main findings from the reorientation task, but they do so without using a geometric 

module. A modern perceptron that uses the logistic activation function has been 

shown to provide just such a model (Dawson et al., 2010).

The perceptrons used by Dawson et al. (2010) used a single output unit that, 

when the perceptron was “placed” in the original arena, was trained to turn on to 

the goal location and turn off to all of the other locations. A set of input units was 

used to represent the various cues—featural and geometric—available at each loca-

tion. Both feature cues and geometric cues were treated in an identical fashion by 

the network; no geometric module was built into it.

After training, the perceptron was “placed” into a new arena; this approach 

was used to simulate the standard variations of the reorientation task in which geo-

metric cues and feature cues could be placed in conflict. In the new arena, the per-

ceptron was “shown” all of the possible goal locations by activating its input units 

with the features available at each location. The resulting output unit activity was 

interpreted as representing the likelihood that there was a reward at any of the loca-

tions in the new arena.

The results of the Dawson et al. (2010) simulations replicated the standard reor-

ientation task findings that have been used to argue for the existence of a geomet-

ric module. However, this was accomplished without using such a module. These 
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simulations also revealed new phenomena that have typically not been explored in 

the reorientation task that relate to the difference between excitatory cues, which 

indicate the presence of a reward, and inhibitory cues, which indicate the absence of 

a reward. In short, perceptrons have been used to create an associative, nonmodular 

theory of reorientation.

4.17 Perceptrons and Jazz Progressions

We have seen that a particular type of network from Old Connectionism, the per-

ceptron, can be usefully applied in the studies of classical conditioning and reori-

entation. In the current section we see that it can also be used to explore musical 

regularities. Also illustrated is the interpretation of the internal structure of such a 

network, which demonstrates that even simple networks can reveal some interest-

ing algorithmic properties.

Jazz progressions are sequences of chords. Consider the C major scale pre-

sented earlier, in Figure 4-8. If one takes the first note of the scale, C, as the root 

and adds every second note in the scale—E, G, and B)—the result is a four-note 

chord—a tetrachord—called the C major 7th chord (Cmaj7). Because the root of this 

chord is the first note of the scale, this is identified as the I chord for C major. Other 

tetrachords can also be built for this key. Starting with the second note in the scale, 

D, and adding the notes F, A, and C produces D minor 7th (Dm7). Because its root is 

the second note of the scale, this is identified as the II chord for the key of C major. 

Using G as the root and adding the notes B, D, and F creates the G dominant 7th 

chord (G7). It is the V chord of the key of C major because its root is the fifth note 

of the C major scale.

 The I, II, and V chords are the three most commonly played jazz chords, and in 

jazz they often appear in the context of the II-V-I progression (Levine, 1989). This 

chord progression involves playing these chords in a sequence that begins with the 

II chord, moves to the V chord, and ends on the I chord. The II-V-I progression is 

important for several reasons.

First, chord progressions are used to establish tonality, that is, to specify to the 

listener the musical key in which a piece is being played. They do so by setting up 

expectancies about what is to be played next. For any major key, the most stable 

tones are notes I, IV, and V (Krumhansl, 1990), and the most stable chords are the 

ones built on those three notes.

Second, in the perception of chord sequences there are definite preferences for 

the IV chord to resolve into the V chord and for the V chord to resolve into the I chord, 

producing the IV-V-I progression that is common in cadences in classical music 

(Bharucha, 1984; Jarvinen, 1995; Katz, 1995; Krumhansl, Bharucha, & Kessler, 1982; 

Rosner & Narmour, 1992). There is a similar relationship between the IV chord and 
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the II chord if the latter is minor (Steedman, 1984). Thus the II-V-I progression is a 

powerful tool for establishing the tonality of a musical piece.

Third, the II-V-I progression lends itself to a further set of chord progressions 

that move from key to key, providing variety but also establishing tonality. After 

playing the Cmaj7 chord to end the II-V-I progression for C major, one can change 

two notes to transform Cmaj7 into Cm7, which is the II chord of a different musical 

key, A# major. As a result, one can move from performing the II-V-I progression 

in C major to performing the same progression in a major key one tone lower. This 

process can be repeated; the full set of chord changes is provided in Table 4-6. Note 

that this progression eventually returns to the starting key of C major, providing 

another powerful cue of tonality.

Chord Progression For Key

Key II V I

C Dm7 G7 Cmaj7

A# Cm7 F7 A#maj7

G# A#m7 D#7 G#maj7

F# G#m7 C#7 F#maj7

E F#m7 B7 Emaj7

D Em7 A7 Dmaj7

C Dm7 G7 Cmaj7

Table 4-6. A progression of II-V-I progressions, descending from the key of C 

major. The chords in each row are played in sequence, and after playing one 

row, the next row is played.

A connectionist network can be taught the II-V-I chord progression. During train-

ing, one presents, in pitch class format, a chord belonging to the progression. The 

network learns to output the next chord to be played in the progression, again using 

pitch class format. Surprisingly, this problem is very simple: it is linearly separable 

and can be solved by a perceptron! 

How does a perceptron represent this jazz progression? Because a perceptron 

has no hidden units, its representation must be stored in the set of connection 

weights between the input and output units. However, this matrix of connection 

weights is too complex to reveal its musical representations simply by inspecting it. 

Instead, multivariate statistics must be used.

First, one can convert the raw connection weights into a correlation matrix. 

That is, one can compute the similarity of each pair of output units by computing 
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the correlation between the connection weights that feed into them. Once the 

weights have been converted into correlations, further analyses are then available 

to interpret network representations. Multidimensional scaling (MDS) can sum-

marize the relationships within a correlation matrix made visible by creating a 

map (Kruskal & Wish, 1978; Romney, Shepard, & Nerlove, 1972; Shepard, Romney, 

& Nerlove, 1972). Items are positioned in the map in such a way that the more simi-

lar items are, the closer together they are in the map.

The MDS of the jazz progression network’s correlations produced a one-dimen-

sional map that provided a striking representation of musical relationships amongst 

the notes. In a one-dimensional MDS solution, each data point is assigned a single 

number, which is its coordinate on the single axis that is the map. The coordinate 

for each note is presented in a bar chart in Figure 4-16.

Figure 4-16. Coordinates associated with each output note, taken from an MDS of 

the Table 4-8 correlations. Shading reflects groupings of notes as circles of 

major thirds.

The first regularity evident from Figure 4-16 is that half of the notes have nega-

tive coordinates, while the other half have positive coordinates. That is, the percep-

tron’s connection weights separate musical notes into two equal-sized classes. These 

classes reflect a basic property of the chord progressions learned by the network: all 

of the notes that have positive coordinates were also used as major keys in which the 

II-V-I progression was defined, while none of the notes with negative coordinates 

were used in this fashion.
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Another way to view the two classes of notes revealed by this analysis is in terms 

of the two circles of major seconds that were presented in Figure 4-10. The first 

circle of major seconds contains only those notes that have positive coordinates in 

Figure 4-16. The other circle of major seconds captures the set of notes that have 

negative coordinates in Figure 4-16. In other words, the jazz progression network 

acts as if it has classified notes in terms of the circles of major seconds!

The order in which the notes are arranged in the one-dimensional map is also 

related to the four circles of major thirds that were presented in Figure 4-11. The 

bars in Figure 4-16 have been coloured to reveal four sets of three notes each. Each 

of these sets of notes defines a circle of major thirds. The MDS map places notes in 

such a way that the notes of one such circle are listed in order, followed by the notes 

of another circle of major thirds.

To summarize, one musical formalism is the II-V-I jazz progression. Interestingly, 

this formalism can be learned by a network from Old Connectionism, the percep-

tron. Even though this network is simple, interpreting its representations is not 

straightforward and requires the use of multivariate statistics. However, when such 

analysis is performed, it appears that the network captures the regularities of this 

jazz progression using the strange circles that were encountered in the earlier sec-

tion on chord classification. That is, the connection weights of the perceptron reveal 

circles of major seconds and circles of major thirds.

4.18 What Is Connectionist Cognitive Science?

The purpose of the current chapter was to introduce the elements of connection-

ist cognitive science, the “flavour” of cognitive science that was seen first as Old 

Connectionism in the 1940s (McCulloch & Pitts, 1943) and which peaked by the late 

1950s (Rosenblatt, 1958, 1962; Widrow, 1962; Widrow & Hoff, 1960). Criticisms con-

cerning the limitations of such networks (Minsky & Papert, 1969) caused connec-

tionist research to almost completely disappear until the mid-1980s (Papert, 1988), 

when New Connectionism arose in the form of techniques capable of training 

powerful multilayered networks (McClelland & Rumelhart, 1986; Rumelhart & 

McClelland, 1986c).

Connectionism is now well established as part of mainstream cognitive science, 

although its relationship to classical cognitive science is far from clear. Artificial 

neural networks have been used to model a dizzying variety of phenomena includ-

ing animal learning (Enquist & Ghirlanda, 2005; Schmajuk, 1997), cognitive devel-

opment (Elman et al., 1996), expert systems (Gallant, 1993), language (Mammone, 

1993; Sharkey, 1992), pattern recognition and perception (Pao, 1989; Ripley, 1996; 

Wechsler, 1992), and musical cognition (Griffith & Todd, 1999; Todd & Loy, 1991).
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Given the breadth of connectionist cognitive science, only a selection of 

its elements have been introduced in this chapter; capturing all of the impor-

tant contributions of connectionism in a single chapter is not possible. A proper 

treatment of connectionism requires a great deal of further reading; fortu-

nately connectionism is described in a rich and growing literature (Amit, 1989; 

Anderson, 1995; Anderson & Rosenfeld, 1998; Bechtel & Abrahamsen, 2002; Car-

penter & Grossberg, 1992; Caudill & Butler, 1992a, 1992b; Churchland, 1986; Chur-

chland & Sejnowski, 1992; Clark, 1989, 1993; Dawson, 2004, 2005; Grossberg, 1988; 

Horgan & Tienson, 1996; Quinlan, 1991; Ramsey, Stich, & Rumelhart, 1991; Ripley, 

1996; Rojas, 1996).

Connectionist cognitive science is frequently described as a reaction against 

the foundational assumptions of classical cognitive science. The roots of classical 

cognitive science draw inspiration from the rationalist philosophy of Descartes, 

with an emphasis on nativism and logicism (Chomsky, 1966; Devlin, 1996). In con-

trast, the foundations of connectionist cognitive science are the empiricist philoso-

phy of Locke and the associationist psychology that can be traced from the early 

British empiricists to the more modern American behaviourists. Connectionist 

networks acquire structure or knowledge via experience; they often begin as blank 

slates (Pinker, 2002) and acquire structure as they learn about their environments 

(Bechtel, 1985; Clark, 1989, 1993; Hillis, 1988).

Classical cognitive science departed from Cartesian philosophy by seeking 

materialist accounts of mentality. This view was inspired by the digital computer 

and the fact that electronic switches could be assigned abstract logical interpreta-

tions (Shannon, 1938).

Connectionism is materialist as well, but arguably in a more restricted sense 

than classical cognitive science. The classical approach appeals to the multiple real-

ization argument when it notes that under the proper interpretation, almost any 

physical substrate could instantiate information processing or symbol manipula-

tion (Hillis, 1998). In contrast, connectionism views the digital computer metaphor 

as mistaken. Connectionists claim that the operations of such a device—regardless 

of its material nature—are too slow, brittle, and inflexible to be appropriate for mod-

elling cognition. Connectionism posits instead that the brain is the only appropri-

ate material for realizing the mind and researchers attempt to frame its theories in 

terms of information processing that is biologically plausible or neuronally inspired 

(Amit, 1989; Burnod, 1990; Gluck & Myers, 2001).

In adopting the digital computer metaphor and the accompanying logicist 

view that cognition is the result of rule-governed symbol manipulation, classical 

cognitive science is characterized by a marked structure/process distinction. That 

is, classical models—typified by Turing machines (Turing, 1936) or production sys-

tems (Newell & Simon, 1972)—distinguish between the symbols being manipulated 
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and the explicit rules doing the manipulating. This distinction is usually marked in 

models by having separate locations for structure and process, such as a memory 

that holds symbols and a central controller that holds the processes.

In abandoning the digital computer metaphor and adopting a notion of 

information processing that is biologically inspired, connectionist cognitive sci-

ence abandons or blurs the structure/process distinction. Neural networks can be 

viewed as both structure and process; they have been called active data structures 

(Hillis, 1985). This has led to an extensive debate about whether theories of cogni-

tion require explicit rules (Ramsey, Stich, & Rumelhart, 1991).

The digital computer metaphor adopted by classical cognitive science leads it 

to also adopt a particular notion of control. In particular, classical models invoke a 

notion of serial control in which representations can only be manipulated one rule 

at a time. When classical problem solvers search a problem space in order to solve 

a problem (Newell & Simon, 1972), they do so to discover a sequence of operations 

to perform.

In contrast, when connectionist cognitive science abandons the digital com-

puter metaphor, it abandons with it the assumption of centralized serial control. 

It does so because it views this as a fatal flaw in classical models, generating a “von 

Neumann bottleneck” that makes classical theories too slow to be useful in real 

time (Feldman & Ballard, 1982; Hillis, 1985). In the stead of centralized serial con-

trol, connectionists propose decentralized control in which many simple processes 

can be operating in parallel (see Dawson & Schopflocher, 1992a).

Clearly, from one perspective, there are obvious and important differences 

between connectionist and classical cognitive science. However, a shift in perspec-

tive can reveal a view in which striking similarities between these two approaches 

are evident. We saw earlier that classical cognitive science is performed at multiple 

levels of analysis, using formal methods to explore the computational level, behav-

ioural methods to investigate the algorithmic level, and a variety of behavioural and 

biological techniques to elaborate the architectural and implementational levels. 

It is when connectionist cognitive science is examined from this same multiple-

levels viewpoint that its relationship to classical cognitive science is made apparent 

(Dawson, 1998).

Analyses at the computational level involve using some formal language to 

make proofs about cognitive systems. Usually these proofs concern statements 

about what kind of computation is being performed or what the general capabilities 

of a system are. Computational-level analyses have had a long and important his-

tory in connectionist cognitive science, and they have been responsible, for example, 

for proofs that particular learning rules will converge to desired least-energy or low-

error states (Ackley, Hinton, & Sejnowski, 1985; Hopfield, 1982; Rosenblatt, 1962; 

Rumelhart, Hinton, & Williams, 1986b). Other examples of computational analyses 
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were provided earlier in this chapter, in the discussion of carving pattern spaces into 

decision regions and the determination that output unit activities could be inter-

preted as being conditional probabilities.

That computational analysis is possible for both connectionist and classi-

cal cognitive science highlights one similarity between these two approaches. The 

results of some computational analyses, though, reveal a more striking similar-

ity. One debate in the literature has concerned whether the associationist nature 

of artificial neural networks limits their computational power, to the extent that 

they are not appropriate for cognitive science. For instance, there has been con-

siderable debate about whether PDP networks demonstrate appropriate systema-

ticity and componentiality (Fodor & McLaughlin, 1990; Fodor & Pylyshyn, 1988; 

Hadley, 1994a, 1994b, 1997; Hadley & Hayward, 1997), two characteristics important 

for the use of recursion in classical models. However, beginning with the math-

ematical analyses of Warren McCulloch (McCulloch & Pitts, 1943) and continuing 

with modern computational analyses (Girosi & Poggio, 1990; Hartman, Keeler, & 

Kowalski, 1989; Lippmann, 1989; McCulloch & Pitts, 1943; Moody & Darken, 1989; 

Poggio & Girosi, 1990; Renals, 1989; Siegelmann, 1999; Siegelmann & Sontag, 1991), 

we have seen that artificial neural networks belong to the class of universal machines. 

Classical and connectionist cognitive science are not distinguishable at the compu-

tational level of analysis (Dawson, 1998, 2009).

Let us now turn to the next level of analysis, the algorithmic level. For classical 

cognitive science, the algorithmic level involves detailing the specific information 

processing steps that are involved in solving a problem. In general, this almost always 

involves analyzing behaving systems in order to determine how representations are 

being manipulated, an approach typified by examining human problem solving 

with the use of protocol analysis (Ericsson & Simon, 1984; Newell & Simon, 1972). 

Algorithmic-level analyses for connectionists also involve analyzing the internal 

structure of intact systems—trained networks—in order to determine how they 

mediate stimulus-response regularities. We have seen examples of a variety of tech-

niques that can and have been used to uncover the representations that are hidden 

within network structures, and which permit networks to perform desired input-

output mappings. Some of these representations, such as coarse codes, look like 

alternatives to classical representations. Thus one of classical cognitive science’s 

contributions may be to permit new kinds of representations to be discovered and 

explored.

Nevertheless, algorithmic-level analyses also reveal further similarities between 

connectionist and classical cognitive science. While these two approaches may pro-

pose different kinds of representations, they still are both representational. There 

is no principled difference between the classical sandwich and the connectionist 

sandwich (Calvo & Gomila, 2008). Furthermore, it is not even guaranteed that the 
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contents of these two types of sandwiches will differ. One can peer inside an artifi-

cial neural network and find classical rules for logic (Berkeley et al., 1995) or even 

an entire production system (Dawson et al., 2000).

At the architectural level of analysis, stronger differences between connectionist 

and classical cognitive science can be established. Indeed, the debate between these 

two approaches is in essence a debate about architecture. This is because many of 

the dichotomies introduced earlier—rationalism vs. empiricism, digital computer 

vs. analog brain, structure/process vs. dynamic data, serialism vs. parallelism—are 

differences in opinion about cognitive architecture.

In spite of these differences, and in spite of connectionism’s search for biologi-

cally plausible information processing, there is a key similarity at the architectural 

level between connectionist and classical cognitive science: at this level, both pro-

pose architectures that are functional, not physical. The connectionist architecture 

consists of a set of building blocks: units and their activation functions, modifiable 

connections, learning rules. But these building blocks are functional accounts of 

the information processing properties of neurons; other brain-like properties are 

ignored. Consider one response (Churchland & Churchland, 1990) to the claim that 

the mind is the product of the causal powers of the brain (Searle, 1990): 

We presume that Searle is not claiming that a successful artificial mind must have 

all the causal powers of the brain, such as the power to smell bad when rotting, to 

harbor slow viruses such as kuru, to stain yellow with horseradish peroxidase and 

so forth. Requiring perfect parity would be like requiring that an artificial flying 

device lay eggs. (Churchland & Churchland, 1990, p. 37) 

It is the functional nature of the connectionist architecture that enables it to be 

almost always studied by simulating it—on a digital computer!

The functional nature of the connectionist architecture raises some complica-

tions when the implementational level of analysis is considered. On the one hand, 

many researchers view connectionism as providing implementational-level theories 

of cognitive phenomena. At this level, one finds researchers exploring relationships 

between biological receptive fields and patterns of connectivity and similar proper-

ties of artificial networks (Ballard, 1986; Bankes & Margoliash, 1993; Bowers, 2009; 

Guzik, Eaton, & Mathis, 1999; Keith, Blohm, & Crawford, 2010; Moorhead, Haig, & 

Clement, 1989; Poggio, Torre, & Koch, 1985; Zipser & Andersen, 1988). One also 

encounters researchers finding biological mechanisms that map onto architectural 

properties such as learning rules. For example, there is a great deal of interest in 

relating the actions of certain neurotransmitters to Hebb learning (Brown, 1990; 

Gerstner & Kistler, 2002; van Hemmen & Senn, 2002). Similarly, it has been argued 

that connectionist networks provide an implementational account of associative 

learning (Shanks, 1995), a position that ignores its potential contributions at other 

levels of analysis (Dawson, 2008).
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On the other hand, the functional nature of the connectionist architecture 

has resulted in its biological status being questioned or challenged. There are 

many important differences between biological and artificial neural networks 

(Crick & Asanuma, 1986; Douglas & Martin, 1991; McCloskey, 1991). There is very 

little biological evidence in support of important connectionist learning rules such 

as backpropagation of error (Mazzoni, Andersen, & Jordan, 1991; O’Reilly, 1996; 

Shimansky, 2009). Douglas and Martin (1991, p. 292) dismissed artificial neural net-

works as merely being “stick and ball models.” Thus whether connectionist cognitive 

science is a biologically plausible alternative to classical cognitive science remains 

an open issue.

That connectionist cognitive science has established itself as a reaction against 

classical cognitive science cannot be denied. However, as we have seen in this sec-

tion, it is not completely clear that connectionism represents a radical alternative 

to the classical approach (Schneider, 1987), or that it is rather much more closely 

related to classical cognitive science than a brief glance at some of the literature 

might suggest (Dawson, 1998). It is certainly the case that connectionist cognitive 

science has provided important criticisms of the classical approach and has there-

fore been an important contributor to theory of mind.

Interestingly, many of the criticisms that have been highlighted by connection-

ist cognitive science—slowness, brittleness, biological implausibility, overemphasis 

of logicism and disembodiment—have been echoed by a third school, embodied 

cognitive science. Furthermore, related criticisms have been applied by embodied 

cognitive scientists against connectionist cognitive science. Not surprisingly, then, 

embodied cognitive science has generated a very different approach to deal with 

these issues than has connectionist cognitive science.

In Chapter 5 we turn to the elements of this third “flavour” of cognitive sci-

ence. As has been noted in this final section of Chapter 4, there appears to be ample 

room for finding relationships between connectionism and classicism such that 

the umbrella cognitive science can be aptly applied to both. We see that embodied 

cognitive science poses some interesting and radical challenges, and that its exist-

ence calls many of the core features shared by connectionism and classicism into 

question.
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Elements of Embodied Cognitive Science

5.0 Chapter Overview

One of the key reactions against classical cognitive science was connectionism. A 

second reaction against the classical approach has also emerged. This second reac-

tion is called embodied cognitive science, and the purpose of this chapter is to intro-

duce its key elements.

Embodied cognitive science explicitly abandons the disembodied mind that 

serves as the core of classical cognitive science. It views the purpose of cognition not 

as building representations of the world, but instead as directing actions upon the 

world. As a result, the structure of an agent’s body and how this body can sense and 

act upon the world become core elements. Embodied cognitive science emphasizes 

the embodiment and situatedness of agents.

Embodied cognitive science’s emphasis on embodiment, situatedness, and 

action upon the world is detailed in the early sections of the chapter. This emphasis 

leads to a number of related elements: feedback between agents and environments, 

stigmergic control of behaviour, affordances and enactive perception, and cogni-

tive scaffolding. In the first half of this chapter these notions are explained, show-

ing how they too can be traced back to some of the fundamental assumptions of 

cybernetics. Also illustrated is how such ideas are radical departures from the ideas 

emphasized by classical cognitive scientists.

5
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Not surprisingly, such differences in fundamental ideas lead to embodied cogni-

tive science adopting methodologies that are atypical of classical cognitive science. 

Reverse engineering is replaced with forward engineering, as typified by behaviour-

based robotics. These methodologies use an agent’s environment to increase or lev-

erage its abilities, and in turn they have led to novel accounts of complex human 

activities. For instance, embodied cognitive science can construe social interactions 

either as sense-act cycles in a social environment or as mediated by simulations that 

use our own brains or bodies as physical stand-ins for other agents.

In spite of such differences, it is still the case that there are structural similari-

ties between embodied cognitive science and the other two approaches that have 

been introduced in the preceding chapters. The current chapter ends with a con-

sideration of embodied cognitive science in light of Chapter 2’s multiple levels of 

investigation, which were earlier used as a context in which to consider the research 

of both classical and of connectionist cognitive science.

5.1 Abandoning Methodological Solipsism

The goal of Cartesian philosophy was to provide a core of incontestable truths to 

serve as an anchor for knowledge (Descartes, 1960, 1996). Descartes believed that he 

had achieved this goal. However, the cost of this accomplishment was a fundamen-

tal separation between mind and body. Cartesian dualism disembodied the mind, 

because Descartes held that the mind’s existence was independent of the existence 

of the body.

I am not that structure of limbs which is called a human body, I am not even some 

thin vapor which permeates the limbs—a wind, fire, air, breath, or whatever I 

depict in my imagination, for these are things which I have supposed to be nothing. 

(Descartes, 1996, p. 18)

Cartesian dualism permeates a great deal of theorizing about the nature of mind 

and self, particularly in our current age of information technology. One such theory 

is posthumanism (Dewdney, 1998; Hayles, 1999). Posthumanism results when the 

content of information is more important than the physical medium in which it 

is represented, when consciousness is considered to be epiphenomenal, and when 

the human body is simply a prosthetic. Posthumanism is rooted in the pioneer-

ing work of cybernetics (Ashby, 1956, 1960; MacKay, 1969; Wiener, 1948), and is 

sympathetic to such futuristic views as uploading our minds into silicon bodies 

(Kurzweil, 1999, 2005; Moravec, 1988, 1999), because, in this view, the nature of the 

body is irrelevant to the nature of the mind. Hayles uncomfortably notes that a 

major implication of posthumanism is its “systematic devaluation of materiality 

and embodiment” (Hayles, 1999, p. 48); “because we are essentially information, we 
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can do away with the body” (Hayles, 1999, p. 12).

Some would argue that similar ideas pervade classical cognitive science. 

American psychologist Sylvia Scribner wrote that cognitive science “is haunted by a 

metaphysical spectre. The spectre goes by the familiar name of Cartesian dualism, 

which, in spite of its age, continues to cast a shadow over inquiries into the nature 

of human nature” (Scribner & Tobach, 1997, p. 308).

In Chapter 3 we observed that classical cognitive science departed from the 

Cartesian approach by seeking materialist explanations of cognition. Why then 

should it be haunted by dualism?

To answer this question, we examine how classical cognitive science explains, 

for instance, how a single agent produces different behaviours. Because classical 

cognitive science appeals to the representational theory of mind (Pylyshyn, 1984), it 

must claim that different behaviours must ultimately be rooted in different mental 

representations.

If different behaviours are caused by differences between representations, then 

classical cognitive science must be able to distinguish or individuate representa-

tional states. How is this done? The typical position adopted by classical cognitive 

science is called methodological solipsism (Fodor, 1980). Methodological solipsism 

individuates representational states only in terms of their relations to other repre-

sentational states. Relations of the states to the external world—the agent’s environ-

ment—are not considered. “Methodological solipsism in psychology is the view that 

psychological states should be construed without reference to anything beyond the 

boundary of the individual who has those states” (Wilson, 2004, p. 77).

The methodological solipsism that accompanies the representational theory of 

mind is an example of the classical sandwich (Hurley, 2001). The classical sandwich 

is the view that links between a cognitive agent’s perceptions and a cognitive agent’s 

actions must be mediated by internal thinking or planning. In the classical sand-

wich, models of cognition take the form of sense-think-act cycles (Brooks, 1999; 

Clark, 1997; Pfeifer & Scheier, 1999). Furthermore, these theories tend to place a 

strong emphasis on the purely mental part of cognition—the thinking—and at the 

same time strongly de-emphasize the physical—the action. In the classical sand-

wich, perception, thinking, and action are separate and unequal.

On this traditional view, the mind passively receives sensory input from its environ-

ment, structures that input in cognition, and then marries the products of cogni-

tion to action in a peculiar sort of shotgun wedding. Action is a by-product of genu-

inely mental activity. (Hurley, 2001, p. 11)

Although connectionist cognitive science is a reaction against classical cognitiv-

ism, this reaction does not include a rejection of the separation of perception and 

action via internal representation. Artificial neural networks typically have unde-

veloped models of perception (i.e., input unit encodings) and action (i.e., output 
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unit encodings), and in modern networks communication between the two must be 

moderated by representational layers of hidden units.

Highly artificial choices of input and output representations and poor choices of 

problem domains have, I believe, robbed the neural network revolution of some of 

its initial momentum. . . . The worry is, in essence, that a good deal of the research 

on artificial neural networks leaned too heavily on a rather classical conception of 

the nature of the problems. (Clark, 1997, p. 58)

The purpose of this chapter is to introduce embodied cognitive science, a fairly 

modern reaction against classical cognitive science. This approach is an explicit 

rejection of methodological solipsism. Embodied cognitive scientists argue that a 

cognitive theory must include an agent’s environment as well as the agent’s expe-

rience of that environment (Agre, 1997; Chemero, 2009; Clancey, 1997; Clark, 1997; 

Dawson, Dupuis, & Wilson, 2010; Dourish, 2001; Gibbs, 2006; Johnson, 2007; Menary, 

2008; Pfeifer & Scheier, 1999; Shapiro, 2011; Varela, Thompson, & Rosch, 1991). They 

recognize that this experience depends on how the environment is sensed, which 

is situation; that an agent’s situation depends upon its physical nature, which is 

embodiment; and that an embodied agent can act upon and change its environment 

(Webb & Consi, 2001). The embodied approach replaces the notion that cognition 

is representation with the notion that cognition is the control of actions upon the 

environment. As such, it can also be viewed as a reaction against a great deal of con-

nectionist cognitive science.

In embodied cognitive science, the environment contributes in such a signifi-

cant way to cognitive processing that some would argue that an agent’s mind has 

leaked into the world (Clark, 1997; Hutchins, 1995; Menary, 2008, 2010; Noë, 2009; 

Wilson, 2004). For example, research in behaviour-based robotics eliminates 

resource-consuming representations of the world by letting the world serve as its 

own representation, one that can be accessed by a situated agent (Brooks, 1999). This 

robotics tradition has also shown that nonlinear interactions between an embodied 

agent and its environment can produce surprisingly complex behaviour, even when 

the internal components of an agent are exceedingly simple (Braitenberg, 1984; 

Grey Walter, 1950a, 1950b, 1951, 1963; Webb & Consi, 2001).

In short, embodied cognitive scientists argue that classical cognitive science’s 

reliance on methodological solipsism—its Cartesian view of the disembodied 

mind—is a deep-seated error. “Classical rule-and-symbol-based AI may have made 

a fundamental error, mistaking the cognitive profile of the agent plus the environ-

ment for the cognitive profile of the naked brain” (Clark, 1997, p. 61).

In reacting against classical cognitive science, the embodied approach takes 

seriously the idea that Simon’s (1969) parable of the ant might also be applicable to 

human cognition: “A man, viewed as a behaving system, is quite simple. The appar-

ent complexity of his behavior over time is largely a reflection of the complexity 
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of the environment in which he finds himself ” (p. 25). However, when it comes to 

specifics about applying such insight, embodied cognitive science is frustratingly 

fractured. “Embodied cognition, at this stage in its very brief history, is better con-

sidered a research program than a well-defined theory” (Shapiro, 2011, p. 2). Shapiro 

(2011) went on to note that this is because embodied cognitive science “exhibits 

much greater latitude in its subject matter, ontological commitment, and method-

ology than does standard cognitive science” (p. 2).

Shapiro (2011) distinguished three key themes that are present, often to differ-

ing degrees, in a variety of theories that belong to embodied cognitive science. The 

first of Shapiro’s themes is conceptualization. According to this theme, the concepts 

that an agent requires to interact with its environment depend on the form of the 

agent’s body. If different agents have different bodies, then their understanding or 

engagement with the world will differ as well. We explore the theme of concep-

tualization later in this chapter, in the discussion of concepts such as umwelten, 

affordances, and enactive perception.

Shapiro’s (2011) second theme of embodied cognitive science is replacement: 

“An organism’s body in interaction with its environment replaces the need for rep-

resentational processes thought to have been at the core of cognition” (p. 4). The 

theme of replacement is central to the idea of cognitive scaffolding, in which agents 

exploit environmental resources for problem representation and solution.

The biological brain takes all the help it can get. This help includes the use of exter-

nal physical structures (both natural and artifactual), the use of language and cul-

tural institutions, and the extensive use of other agents. (Clark, 1997, p. 80)

Shapiro’s (2011) third theme of embodied cognitive science is constitution. According 

to this theme, the body or the world has more than a causal role in cognition—they 

are literally constituents of cognitive processing. The constitution hypothesis leads 

to one of the more interesting and radical proposals from embodied cognitive sci-

ence, the extended mind. According to this hypothesis, which flies in the face of the 

Cartesian mind, the boundary of the mind is not the skin or the skull (Clark, 1997, 

p. 53): “Mind is a leaky organ, forever escaping its ‘natural’ confines and mingling 

shamelessly with body and with world.” 

One reason that Shapiro (2011) argued that embodied cognitive science is not a 

well-defined theory, but is instead a more ambiguous research program, is because 

these different themes are endorsed to different degrees by different embodied 

cognitive scientists. For example, consider the replacement hypothesis. On the 

one hand, some researchers, such as behaviour-based roboticists (Brooks, 1999) 

or radical embodied cognitive scientists (Chemero, 2009), are strongly anti-rep-

resentational; their aim is to use embodied insights to expunge representational 

issues from cognitive science. On the other hand, some other researchers, such 

as philosopher Andy Clark (1997), have a more moderate view in which both 
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representational and non-representational forms of cognition might be present in 

the same agent.

Shapiro’s (2011) three themes of conceptualization, replacement, and con-

stitution characterize important principles that are the concern of the embodied 

approach. These principles also have important effects on the practice of embod-

ied cognitive science. Because of their concern with environmental contributions to 

behavioural complexity, embodied cognitive scientists are much more likely to prac-

tise forward engineering or synthetic psychology (Braitenberg, 1984; Dawson, 2004; 

Dawson, Dupuis, & Wilson, 2010; Pfeifer & Scheier, 1999). In this approach, devices 

are first constructed and placed in an environment, to examine what complicated or 

surprising behaviours might emerge. Thus while in reverse engineering behavioural 

observations are the source of models, in forward engineering models are the source 

of behaviour to observe. Because of their concern about how engagement with the 

world is dependent upon the physical nature and abilities of agents, embodied cog-

nitive scientists actively explore the role that embodiment plays in cognition. For 

instance, their growing interest in humanoid robots is motivated by the realization 

that human intelligence and development require human form (Breazeal, 2002; 

Brooks et al., 1999).

In the current chapter we introduce some of the key elements that character-

ize embodied cognitive science. These ideas are presented in the context of reac-

tions against classical cognitive science in order to highlight their innovative nature. 

However, it is important to keep potential similarities between embodied cognitive 

science and the other two approaches in mind; while they are not emphasized here, 

the possibility of such similarities is a central theme of Part II of this book.

5.2 Societal Computing

The travelling salesman problem is a vital optimization problem (Gutin & 

Punnen, 2002; Lawler, 1985). It involves determining the order in which a salesman 

should visit a sequence of cities, stopping at each city only once, such that the short-

est total distance is travelled. The problem is tremendously important: a modern 

bibliography cites 500 studies on how to solve it (Laporte & Osman, 1995).

One reason for the tremendous amount of research on the travelling sales-

man problem is that its solution can be applied to a dizzying array of real-world 

problems and situations (Punnen, 2002), including scheduling tasks, minimizing 

interference amongst a network of transmitters, data analysis in psychology, X-ray 

crystallography, overhauling gas turbine engines, warehouse order-picking prob-

lems, and wallpaper cutting. It has also attracted so much attention because it is 

difficult. The travelling salesman problem is an NP-complete problem (Kirkpatrick, 

Gelatt, & Vecchi, 1983), which means that as the number of cities involved in the 
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salesman’s tour increases linearly, the computational effort for finding the shortest 

route increases exponentially.

Because of its importance and difficulty, a number of different approaches 

to solving the travelling salesman problem have been explored. These include a 

variety of numerical optimization algorithms (Bellmore & Nemhauser, 1968). Some 

other algorithms, such as simulated annealing, are derived from physical meta-

phors (Kirkpatrick, Gelatt, & Vecchi, 1983). Still other approaches are biologically 

inspired and include neural networks (Hopfield & Tank, 1985; Siqueira, Steiner, 

& Scheer, 2007), genetic algorithms (Braun, 1991; Fogel, 1988), and molecular com-

puters built using DNA molecules (Lee et al., 2004).

Given the difficulty of the travelling salesman problem, it might seem foolish 

to suppose that cognitively simple agents are capable of solving it. However, evi-

dence shows that a colony of ants is capable of solving a version of this problem, 

which has inspired new algorithms for solving the travelling salesman problem 

(Dorigo & Gambardella, 1997)!

One study of the Argentine ant Iridomyrmex humilis used a system of bridges 

to link the colony’s nest to a food supply (Goss et al., 1989). The ants had to choose 

between two different routes at two different locations in the network of bridges; 

some of these routes were shorter than others. When food was initially discovered, 

ants traversed all of the routes with equal likelihood. However, shortly afterwards, a 

strong preference emerged: almost all of the ants chose the path that produced the 

shortest journey between the nest and the food.

The ants’ solution to the travelling salesmen problem involved an interaction 

between the world and a basic behaviour: as Iridomyrmex humilis moves, it depos-

its a pheromone trail; the potency of this trail fades over time. An ant that by chance 

chooses the shortest path will add to the pheromone trail at the decision points 

sooner than will an ant that has taken a longer route. This means that as other ants 

arrive at a decision point they will find a stronger pheromone trail in the shorter 

direction, they will be more likely to choose this direction, and they will also add to 

the pheromone signal.

Each ant that passes the choice point modifies the following ant’s probability of 

choosing left or right by adding to the pheromone on the chosen path. This posi-

tive feedback system, after initial fluctuation, rapidly leads to one branch being 

‘selected.’ (Goss et al., 1989, p. 581)

The ability of ants to choose shortest routes does not require a great deal of individ-

ual computational power. The solution to the travelling salesman problem emerges 

from the actions of the ant colony as a whole.

The selection of the shortest branch is not the result of individual ants comparing 

the different lengths of each branch, but is instead a collective and self-organizing 
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process, resulting from the interactions between the ants marking in both direc-

tions. (Goss et al., 1989, p. 581)

5.3 Stigmergy and Superorganisms

To compute solutions to the travelling salesman problem, ants from a colony interact 

with and alter their environment in a fairly minimal way: they deposit a pheromone 

trail that can be later detected by other colony members. However, impressive exam-

ples of richer interactions between social insects and their world are easily found.

For example, wasps are social insects that house their colonies in nests of intricate 

structure that exhibit, across species, tremendous variability in size, shape, and loca-

tion (Downing & Jeanne, 1986). The size of nests ranges from a mere dozen to nearly 

a million cells or combs (Theraulaz, Bonabeau, & Deneubourg, 1998). The construc-

tion of some nests requires that specialized labour be coordinated (Jeanne, 1996, 

p. 473): “In the complexity and regularity of their nests and the diversity of their con-

struction techniques, wasps equal or surpass many of the ants and bees.” 

More impressive nests are constructed by other kinds of insect colonies, such 

as termites, whose vast mounds are built over many years by millions of individual 

insects. A typical termite mound has a height of 2 metres, while some as high as 7 

metres have been observed (von Frisch, 1974). Termite mounds adopt a variety of 

structural innovations to control their internal temperature, including ventilation 

shafts or shape and orientation to minimize the effects of sun or rain. Such nests, 

seem [to be] evidence of a master plan which controls the activities of the build-

ers and is based on the requirements of the community. How this can come to pass 

within the enormous complex of millions of blind workers is something we do not 

know. (von Frisch, 1974, p. 150)

How do colonies of simple insects, such as wasps or termites, coordinate the actions 

of individuals to create their impressive, intricate nests? “One of the challenges of 

insect sociobiology is to explain how such colony-level behavior emerges from the 

individual decisions of members of the colony” (Jeanne, 1996, p. 473).

One theoretical approach to this problem is found in the pioneering work of 

entomologist William Morton Wheeler, who argued that biology had to explain how 

organisms cope with complex and unstable environments. With respect to social 

insects, Wheeler (1911) proposed that a colony of ants, considered as a whole, is actu-

ally an organism, calling the colony-as-organism the superorganism: “The animal 

colony is a true organism and not merely the analogue of the person” (p. 310).

Wheeler (1926) agreed that the characteristics of a superorganism must emerge 

from the actions of its parts, that is, its individual colony members. However, 

Wheeler also argued that higher-order properties could not be reduced to properties 
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of the superorganism’s components. He endorsed ideas that were later popularized 

by Gestalt psychology, such as the notion that the whole is not merely the sum of its 

parts (Koffka, 1935; Köhler, 1947).

The unique qualitative character of organic wholes is due to the peculiar non-

additive relations or interactions among their parts. In other words, the whole is 

not merely a sum, or resultant, but also an emergent novelty, or creative synthesis. 

(Wheeler, 1926, p. 433)

Wheeler’s theory is an example of holism (Sawyer, 2002), in which the regulari-

ties governing a whole system cannot be easily reduced to a theory that appeals to 

the properties of the system’s parts. Holistic theories have often been criticized as 

being nonscientific (Wilson & Lumsden, 1991). The problem with these theories is 

that in many instances they resist traditional, reductionist approaches to defining 

the laws responsible for emerging regularities. “Holism is an idea that has haunted 

biology and philosophy for nearly a century, without coming into clear focus” 

(Wilson & Lumsden, 1991, p. 401).

Theorists who rejected Wheeler’s proposal of the superorganism proposed alter-

native theories that reduced colonial intelligence to the actions of individual colony 

members. A pioneer of this alternative was a contemporary of Wheeler, French 

biologist Etienne Rabaud. “His entire work on insect societies was an attempt to 

demonstrate that each individual insect in a society behaves as if it were alone” 

(Theraulaz & Bonabeau, 1999). Wilson and Lumsden adopted a similar position: 

It is tempting to postulate some very complex force distinct from individual rep-

ertories and operating at the level of the colony. But a closer look shows that the 

superorganismic order is actually a straightforward summation of often surpris-

ingly simple individual responses. (Wilson & Lumsden, 1991, p. 402) 

Of interest to embodied cognitive science are theories which propose that dynamic 

environmental control guides the construction of the elaborate nests.

The first concern of such a theory is the general account that it provides of 

the behaviour of each individual. For example, consider one influential theory of 

wasp behaviour (Evans, 1966; Evans & West-Eberhard, 1970), in which a hierarchy 

of internal drives serves to release behaviours. For instance, high-level drives might 

include mating, feeding, and brood-rearing. Such drives set in motion lower-level 

sequences of behaviour, which in turn might activate even lower-level behavioural 

sequences. In short, Evans views wasp behaviour as being rooted in innate programs, 

where a program is a set of behaviours that are produced in a particular sequence, 

and where the sequence is dictated by the control of a hierarchical arrangement of 

drives. For example, a brood-rearing drive might activate a drive for capturing prey, 

which in turn activates a set of behaviours that produces a hunting flight.
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Critically, though, Evans’ programs are also controlled by releasing stimuli that 

are external to the wasp. In particular, one behaviour in the sequence is presumed 

to produce an environmental signal that serves to initiate the next behaviour in 

the sequence. For instance, in Evans’ (1966) model of the construction of a burrow 

by a solitary digger wasp, the digging behaviour of a wasp produces loosened soil, 

which serves as a signal for the wasp to initiate scraping behaviour. This behav-

iour in turn causes the burrow to be clogged, which serves as a signal for clear-

ing behaviour. Having a sequence of behaviours under the control of both internal 

drives and external releasers provides a balance between rigidity and flexibility; the 

internal drives serve to provide a general behavioural goal, while variations in exter-

nal releasers can produce variations in behaviours: e.g., resulting in an atypical nest 

structure when nest damage elicits a varied behavioural sequence. “Each element 

in the ‘reaction chain’ is dependent upon that preceding it as well as upon certain 

factors in the environment (often gestalts), and each act is capable a certain latitude 

of execution” (p. 144).

If an individual’s behaviour is a program whose actions are under some envi-

ronmental control (Evans, 1966; Evans & West-Eberhard, 1970), then it is a small 

step to imagine how the actions of one member of a colony can affect the later 

actions of other members, even in the extreme case where there is absolutely no 

direct communication amongst colony members; an individual in the colony simply 

changes the environment in such a way that new behaviours are triggered by other 

colony members.

 This kind of theorizing is prominent in modern accounts of nest construction 

by social paper wasps (Theraulaz & Bonabeau, 1999). A nest for such wasps consists 

of a lattice of cells, where each cell is essentially a comb created from a hexagonal 

arrangement of walls. When a large nest is under construction, where will new cells 

be added? 

Theraulaz and Bonabeau (1999) answered this question by assuming that the 

addition of new cells was under environmental control. They hypothesized that an 

individual wasp’s decision about where to build a new cell wall was driven by its per-

ception of existing walls. Their theory consisted of two simple rules. First, if there 

is a location on the nest in which three walls of a cell already existed, then this was 

proposed as a stimulus to cause a wasp to add another wall here with high probabil-

ity. Second, if only two walls already existed as part of a cell, this was also a stimulus 

to add a wall, but this stimulus produced this action with a much lower probability.

The crucial characteristic of this approach is that behaviour is controlled, and 

the activities of the members of a colony are coordinated, by a dynamic environ-

ment. That is, when an individual is triggered to add a cell wall to the nest, then the 

nest structure changes. Such changes in nest appearance in turn affect the behav-

iour of other wasps, affecting choices about the locations where walls will be added 
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next. Theraulaz and Bonabeau (1999) created a nest building simulation that only 

used these two rules, and demonstrated that it created simulated nests that were 

very similar in structure to real wasp nests.

In addition to adding cells laterally to the nest, wasps must also lengthen exist-

ing walls to accommodate the growth of larvae that live inside the cells. Karsai 

(1999) proposed another environmentally controlled model of this aspect of nest 

building. His theory is that wasps perceive the relative difference between the long-

est and the shortest wall of a cell. If this difference was below a threshold value, then 

the cell was untouched. However, if this difference exceeded a certain threshold, 

then this would cause a wasp to lengthen the shortest wall. Karsai used a computer 

simulation to demonstrate that this simple model provided an accurate account of 

the three-dimensional growth of a wasp nest over time.

The externalization of control illustrated in theories of wasp nest construction 

is called stigmergy (Grasse, 1959). The term comes from the Greek stigma, mean-

ing “sting,” and ergon, meaning “work,” capturing the notion that the environment 

is a stimulus that causes particular work, or behaviour, to occur. It was first used 

in theories of termite mound construction proposed by French zoologist Pierre-

Paul Grassé (Theraulaz & Bonabeau, 1999). Grassé demonstrated that the termites 

themselves do not coordinate or regulate their building behaviour, but that this is 

instead controlled by the mound structure itself.

Stigmergy is appealing because it can explain how very simple agents create 

extremely complex products, particularly in the case where the final prod-

uct, such as a termite mound, is extended in space and time far beyond the life 

expectancy of the organisms that create it. As well, it accounts for the building of 

large, sophisticated nests without the need for a complete blueprint and without 

the need for direct communication amongst colony members (Bonabeau et al., 

1998; Downing & Jeanne, 1988; Grasse, 1959; Karsai, 1999; Karsai & Penzes, 1998; 

Karsai & Wenzel, 2000; Theraulaz & Bonabeau, 1995).

Stigmergy places an emphasis on the importance of the environment that is 

typically absent in the classical sandwich that characterizes theories in both clas-

sical and connectionist cognitive science. However, early classical theories were 

sympathetic to the role of stigmergy (Simon, 1969). In Simon’s famous parable of 

the ant, observers recorded the path travelled by an ant along a beach. How might 

we account for the complicated twists and turns of the ant’s route? Cognitive scien-

tists tend to explain complex behaviours by invoking complicated representational 

mechanisms (Braitenberg, 1984). In contrast, Simon (1969) noted that the path 

might result from simple internal processes reacting to complex external forces—

the various obstacles along the natural terrain of the beach: “Viewed as a geometric 

figure, the ant’s path is irregular, complex, hard to describe. But its complexity is 

really a complexity in the surface of the beach, not a complexity in the ant” (p. 24).
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Similarly, Braitenberg (1984) argued that when researchers explain behaviour 

by appealing to internal processes, they ignore the environment: “When we ana-

lyze a mechanism, we tend to overestimate its complexity” (p. 20). He suggested an 

alternative approach, synthetic psychology, in which simple agents (such as robots) 

are built and then observed in environments of varying complexity. This approach 

can provide cognitive science with more powerful, and much simpler, theories by 

taking advantage of the fact that not all of the intelligence must be placed inside an 

agent.

Embodied cognitive scientists recognize that the external world can be used 

to scaffold cognition and that working memory—and other components of a clas-

sical architecture—have leaked into the world (Brooks, 1999; Chemero, 2009; 

Clark, 1997, 2003; Hutchins, 1995; Pfeifer & Scheier, 1999). In many respect, embod-

ied cognitive science is primarily a reaction against the overemphasis of internal 

processing that is imposed by the classical sandwich.

5.4 Embodiment, Situatedness, and Feedback

Theories that incorporate stigmergy demonstrate the plausibility of removing cen-

tral cognitive control; perhaps embodied cognitive science could replace the classi-

cal sandwich’s sense-think-act cycle with sense-act reflexes.

The realization was that the so-called central systems of intelligence—or core AI 

as it has been referred to more recently—was perhaps an unnecessary illusion, and 

that all the power of intelligence arose from the coupling of perception and actua-

tion systems. (Brooks, 1999, p. viii)

For a stigmergic theory to have any power at all, agents must exhibit two critical 

abilities. First, they must be able to sense their world. Second, they must be able to 

physically act upon the world. For instance, stigmergic control of nest construction 

would be impossible if wasps could neither sense local attributes of nest structure 

nor act upon the nest to change its appearance.

In embodied cognitive science, an agent’s ability to sense its world is called situ-

atedness. For the time being, we will simply equate situatedness with the ability to 

sense. However, situatedness is more complicated than this, because it depends criti-

cally upon the physical nature of an agent, including its sensory apparatus and its 

bodily structure. These issues will be considered in more detail in the next section.

In embodied cognitive science, an agent’s ability to act upon and alter its world 

depends upon its embodiment. In the most general sense, to say that an agent is 

embodied is to say that it is an artifact, that it has physical existence. Thus while 

neither a thought experiment (Braitenberg, 1984) nor a computer simulation 

(Wilhelms & Skinner, 1990) for exploring a Braitenberg vehicle are embodied, a 
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physical robot that acts like a Braitenberg vehicle (Dawson, Dupuis, & Wilson, 2010) 

is embodied. The physical structure of the robot itself is important in the sense 

that it is a source of behavioural complexity. Computer simulations of Braitenberg 

vehicles are idealizations in which all motors and sensors work perfectly. This is 

impossible in a physically realized robot. In an embodied agent, one motor will be 

less powerful than another, or one sensor may be less effective than another. Such 

differences will alter robot behaviour. These imperfections are another important 

source of behavioural complexity, but are absent when such vehicles are created in 

simulated and idealized worlds.

However, embodiment is more complicated than mere physical existence. 

Physically existing agents can be embodied to different degrees (Fong, Nourbakh

sh, & Dautenhahn, 2003). This is because some definitions of embodiment relate 

to the extent to which an agent can alter its environment. For instance, Fong, 

Nourbakhsh, & Dautenhahn (2003, p. 149) argued that “embodiment is grounded in 

the relationship between a system and its environment. The more a robot can per-

turb an environment, and be perturbed by it, the more it is embodied.” As a result, 

not all robots are equally embodied (Dawson, Dupuis, & Wilson, 2010). A robot that 

is more strongly embodied than another is a robot that is more capable of affecting, 

and being affected by, its environment.

The power of embodied cognitive science emerges from agents that are both 

situated and embodied. This is because these two characteristics provide a critical 

source of nonlinearity called feedback (Ashby, 1956; Wiener, 1948). Feedback occurs 

when information about an action’s effect on the world is used to inform the pro-

gress of that action. As Ashby (1956, p. 53) noted, “‘feedback’ exists between two 

parts when each affects the other,” when “circularity of action exists between the 

parts of a dynamic system.”

 Wiener (1948) realized that feedback was central to a core of problems involv-

ing communication, control, and statistical mechanics, and that it was crucial to 

both biological agents and artificial systems. He provided a mathematical frame-

work for studying communication and control, defining the discipline that he called 

cybernetics. The term cybernetics was derived from the Greek word for “steersman” 

or “governor.” “In choosing this term, we wish to recognize that the first significant 

paper on feedback mechanisms is an article on governors, which was published by 

Clerk Maxwell in 1868” (Wiener, 1948, p. 11). Interestingly, engine governors make 

frequent appearances in formal discussions of the embodied approach (Clark, 1997; 

Port & van Gelder, 1995b; Shapiro, 2011).

The problem with the nonlinearity produced by feedback is that it makes com-

putational analyses extraordinarily difficult. This is because the mathematics of 

feedback relationships between even small numbers of components is essentially 
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intractable. For instance, Ashby (1956) realized that feedback amongst a machine 

that only consisted of four simple components could not analyzed: 

When there are only two parts joined so that each affects the other, the properties 

of the feedback give important and useful information about the properties of the 

whole. But when the parts rise to even as few as four, if everyone affects the other 

three, then twenty circuits can be traced through them; and knowing the proper-

ties of all the twenty circuits does not give complete information about the system. 

(Ashby, 1956, p. 54)

For this reason, embodied cognitive science is often practised using forward engi-

neering, which is a kind of synthetic methodology (Braitenberg, 1984; Dawson, 2004; 

Pfeifer & Scheier, 1999). That is, researchers do not take a complete agent and 

reverse engineer it into its components. Instead, they take a small number of simple 

components, compose them into an intact system, set the components in motion in 

an environment of interest, and observe the resulting behaviours.

For instance, Ashby (1960) investigated the complexities of his four-compo-

nent machine not by dealing with intractable mathematics, but by building and 

observing a working device, the Homeostat. It comprised four identical machines 

(electrical input-output devices), incorporated mutual feedback, and permitted 

him to observe the behaviour, which was the movement of indicators for each 

machine. Ashby discovered that the Homeostat could learn; he reinforced its 

responses by physically manipulating the dial of one component to “punish” an 

incorrect response (e.g., for moving one of its needles in the incorrect direction). 

Ashby also found that the Homeostat could adapt to two different environments 

that were alternated from trial to trial. This knowledge was unattainable from 

mathematical analyses. “A better demonstration can be given by a machine, built 

so that we know its nature exactly and on which we can observe what will happen 

in various conditions” (p. 99).

Braitenberg (1984) has argued that an advantage of forward engineering is that 

it will produce theories that are simpler than those that will be attained by reverse 

engineering. This is because when complex or surprising behaviours emerge, pre-

existing knowledge of the components—which were constructed by the researcher—

can be used to generate simpler explanations of the behaviour.

Analysis is more difficult than invention in the sense in which, generally, induc-

tion takes more time to perform than deduction: in induction one has to 

search for the way, whereas in deduction one follows a straightforward path. 

(Braitenberg, 1984, p. 20)

Braitenberg called this the law of uphill analysis and downhill synthesis.

Another way in which to consider the law of uphill analysis and downhill syn-

thesis is to apply Simon’s (1969) parable of the ant. If the environment is taken 
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seriously as a contributor to the complexity of the behaviour of a situated and 

embodied agent, then one can take advantage of the agent’s world and propose less 

complex internal mechanisms that still produce the desired intricate results. This 

idea is central to the replacement hypothesis that Shapiro (2011) has argued is a 

fundamental characteristic of embodied cognitive science.

5.5 Umwelten, Affordances, and Enactive Perception

The situatedness of an agent is not merely perception; the nature of an agent’s per-

ceptual apparatus is a critical component of situatedness. Clearly agents can only 

experience the world in particular ways because of limits, or specializations, in their 

sensory apparatus (Uexküll, 2001). Ethologist Jakob von Uexküll coined the term 

umwelt to denote the “island of the senses” produced by the unique way in which 

an organism is perceptually engaged with its world. Uexküll realized that because 

different organisms experience the world in different ways, they can live in the same 

world but at the same time exist in different umwelten. Similarly, the ecological 

theory of perception (Gibson, 1966, 1979) recognized that one could not separate 

the characteristics of an organism from the characteristics of its environment. “It is 

often neglected that the words animal and environment make an inseparable pair” 

(Gibson, 1979, p. 8).

The inseparability of animal and environment can at times even be rooted in 

the structure of an agent’s body. For instance, bats provide a prototypical example 

of an active-sensing system (MacIver, 2008) because they emit a high-frequency 

sound and detect the location of targets by processing the echo. The horizontal posi-

tion of a target (e.g., a prey insect) is uniquely determined by the difference in time 

between the echo’s arrival to the left and right ears. However, this information is not 

sufficient to specify the vertical position of the target. The physical nature of bat ears 

solves this problem. The visible external structure (the pinna and the tragus) of the 

bat’s ear has an extremely intricate shape. As a result, returning echoes strike the ear 

at different angles of entry. This provides additional auditory cues that vary system-

atically with the vertical position of the target (Wotton, Haresign, & Simmons, 1995; 

Wotton & Simmons, 2000). In other words, the bat’s body—in particular, the shape 

of its ears—is critical to its umwelt.

Passive and active characteristics of an agent’s body are central to theo-

ries of perception that are most consistent with embodied cognitive science 

(Gibson, 1966, 1979; Noë, 2004). This is because embodied cognitive science has 

arisen as part of a reaction against the Cartesian view of mind that inspired classi-

cal cognitive science. In particular, classical cognitive science inherited Descartes’ 

notion (Descartes, 1960, 1996) of the disembodied mind that had descended from 

Descartes’ claim of Cogito ergo sum. Embodied cognitive scientists have been 
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strongly influenced by philosophical positions which arose as reactions against 

Descartes, such as Martin Heidegger’s Being and Time (Heidegger, 1962), originally 

published in 1927. Heidegger criticized Descartes for adopting many of the terms 

of older philosophies but failing to recognize a critical element, their interactive 

relationship to the world: “The ancient way of interpreting the Being of entities is 

oriented towards the ‘world’ or ‘Nature’ in the widest sense” (Heidegger, 1962, p. 47). 

Heidegger argued instead for Being-in-the-world as a primary mode of existence. 

Being-in-the-world is not just being spatially located in an environment, but is a 

mode of existence in which an agent is actively engaged with entities in the world.

Dawson, Dupuis, and Wilson (2010) used a passive dynamic walker to illus-

trate this inseparability of agent and environment. A passive dynamic walker 

is an agent that walks without requiring active control: its walking gait is com-

pletely due to gravity and inertia (McGeer, 1990). Their simplicity and low energy 

requirements have made them very important models for the development of 

walking robots (Alexander, 2005; Collins et al., 2005; Kurz et al., 2008; Ohta, 

Yamakita, & Furuta, 2001; Safa, Saadat, & Naraghi, 2007; Wisse, Schwab, & van 

der Helm, 2004). Dawson, Dupuis, and Wilson constructed a version of McGeer’s 

(1990) original walker from LEGO. The walker itself was essentially a straight-leg-

ged hinge that would walk down an inclined ramp. However, the ramp had to be of 

a particular slope and had to have properly spaced platforms with gaps in between 

to permit the agent’s legs to swing. Thus the LEGO hinge that Dawson, Dupuis, 

and Wilson (2010) built had the disposition to walk, but it required a specialized 

environment to have this disposition realized. The LEGO passive dynamic walker 

is only a walker when it interacts with the special properties of its ramp. Passive 

dynamic walking is not a characteristic of a device, but is instead a characteristic of 

a device being in a particular world.

Being-in-the-world is related to the concept of affordances developed by psy-

chologist James J. Gibson (Gibson, 1979). In general terms, the affordances of an 

object are the possibilities for action that a particular object permits a particular 

agent. “The affordances of the environment are what it offers the animal, what it pro-

vides or furnishes, either for good or ill” (p. 127). Again, affordances emerge from an 

integral relationship between an object’s properties and an agent’s abilities to act.

Note that the four properties listed—horizontal, flat, extended, and rigid—would be 

physical properties of a surface if they were measured with the scales and standard 

units used in physics. As an affordance of support for a species of animal, however, 

they have to be measured relative to the animal. They are unique for that animal. 

They are not just abstract physical properties. (p. 127) 

Given that affordances are defined in terms of an organism’s potential actions, it 

is not surprising that action is central to Gibson’s (1966, 1979) ecological approach 
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to perception. Gibson (1966, p. 49) noted that “when the ‘senses’ are considered as 

active systems they are classified by modes of activity not by modes of conscious 

quality.” Gibson’s emphasis on action and the world caused his theory to be criticized 

by classical cognitive science (Fodor & Pylyshyn, 1981). Perhaps it is not surprising 

that the embodied reaction to classical cognitive science has been accompanied by 

a modern theory of perception that has descended from Gibson’s work: the enactive 

approach to perception (Noë, 2004).

Enactive perception reacts against the traditional view that perception is con-

structing internal representations of the external world. Enactive perception argues 

instead that the role of perception is to access information in the world when it is 

needed. That is, perception is not a representational process, but is instead a senso-

rimotor skill (Noë, 2004). “Perceiving is a way of acting. Perception is not something 

that happens to us, or in us. It is something we do” (p. 1).

Action plays multiple central roles in the theory of enactive perception 

(Noë, 2004). First, the purpose of perception is not viewed as building internal rep-

resentations of the world, but instead as controlling action on the world. Second, 

and related to the importance of controlling action, our perceptual understanding 

of objects is sensorimotor, much like Gibson’s (1979) notion of affordance. That is, 

we obtain an understanding of the external world that is related to its changes in 

appearance that would result by changing our position—by acting on an object, 

or by moving to a new position. Third, perception is to be an intrinsically explora-

tory process. As a result, we do not construct complete visual representations of the 

world. Instead, perceptual objects are virtual—we have access to properties in the 

world when needed, and only through action.

Our sense of the perceptual presence of the cat as a whole now does not require 

us to be committed to the idea that we represent the whole cat in consciousness at 

once. What it requires, rather, is that we take ourselves to have access, now, to the 

whole cat. The cat, the tomato, the bottle, the detailed scene, all are present percep-

tually in the sense that they are perceptually accessible to us. (Noë, 2004, p. 63)

Empirical support for the virtual presence of objects is provided by the phenom-

enon of change blindness. Change blindness occurs when a visual change occurs in 

plain sight of a viewer, but the viewer does not notice the change. For instance, in 

one experiment (O’Regan et al., 2000), subjects inspect an image of a Paris street 

scene. During this inspection, the colour of a car in the foreground of the image 

changes, but a subject does not notice this change! Change blindness supports the 

view that representations of the world are not constructed. “The upshot of this is 

that all detail is present in experience not as represented, but rather as accessi-

ble” (Noë, 2004, p. 193). Accessibility depends on action, and action also depends on 

embodiment. “To perceive like us, it follows, you must have a body like ours” (p. 25).
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5.6 Horizontal Layers of Control

Classical cognitive science usually assumes that the primary purpose of cognition is 

planning (Anderson, 1983; Newell, 1990); this planning is used to mediate percep-

tion and action. As a result, classical theories take the form of the sense-think-act 

cycle (Pfeifer & Scheier, 1999). Furthermore, the “thinking” component of this cycle 

is emphasized far more than either the “sensing” or the “acting.” “One problem with 

psychology’s attempt at cognitive theory has been our persistence in thinking about 

cognition without bringing in perceptual and motor processes” (Newell, 1990, p. 15).

Embodied cognitive science (Agre, 1997; Brooks, 1999, 2002; Chemero, 2009; 

Clancey, 1997; Clark, 1997, 2003, 2008; Pfeifer & Scheier, 1999; Robbins & Aydede, 2009; 

Shapiro, 2011; Varela, Thompson, & Rosch, 1991) recognizes the importance of sensing 

and acting, and reacts against central cognitive control. Its more radical proponents 

strive to completely replace the sense-think-act cycle with sense-act mechanisms.

This reaction is consistent with several themes in the current chapter: the 

importance of the environment, degrees of embodiment, feedback between the 

world and the agent, and the integral relationship between an agent’s body and its 

umwelt. Given these themes, it becomes quite plausible to reject the proposal that 

cognition is used to plan, and to posit instead that the purpose of cognition is to 

guide action: 

The brain should not be seen as primarily a locus of inner descriptions of external 

states of affairs; rather, it should be seen as a locus of internal structures that act as 

operators upon the world via their role in determining actions. (Clark, 1997, 47)

Importantly, these structures do not stand between sensing and acting, but instead 

provide direct links between them.

The action-based reaction against classical cognitivism is typified by pioneer-

ing work in behaviour-based robotics (Brooks, 1989, 1991, 1999, 2002; Brooks & 

Flynn, 1989). Roboticist Rodney Brooks construes the classical sandwich as a set 

of vertical processing layers that separate perception and action. His alternative 

is a hierarchical arrangement of horizontal processing layers that directly connect 

perception and action.

Brooks’ action-based approach to behaviour is called the subsumption archi-

tecture (Brooks, 1999). The subsumption architecture is a set of modules. However, 

these modules are somewhat different in nature than those that were discussed in 

Chapter 3 (see also Fodor, 1983). This is because each module in the subsumption 

architecture can be described as a sense-act mechanism. That is, every module can 

have access to sensed information, as well as to actuators. This means that modules 

in the subsumption architecture do not separate perception from action. Instead, 

each module is used to control some action on the basis of sensed information.

The subsumption architecture arranges modules hierarchically. Lower-level 
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modules provide basic, general-purpose, sense-act functions. Higher-level mod-

ules provide more complex and more specific sense-act functions that can exploit 

the operations of lower-level operations. For instance, in an autonomous robot the 

lowest-level module might simply activate motors to move a robot forward (e.g., 

Dawson, Dupuis. & Wilson, 2010, Chapter 7). The next level might activate a steer-

ing mechanism. This second level causes the robot to wander by taking advantage 

of the movement provided by the lower level. If the lower level were not operating, 

then wandering would not occur: because although the steering mechanism was 

operating, the vehicle would not be moving forward.

Vertical sense-act modules, which are the foundation of the subsumption archi-

tecture, also appear to exist in the human brain (Goodale, 1988, 1990, 1995; Goodale 

& Humphrey, 1998; Goodale, Milner, Jakobson, & Carey, 1991; Jakobson et al., 1991).

There is a long-established view that two distinct physiological pathways exist in 

the human visual system (Livingstone & Hubel, 1988; Maunsell & Newsome, 1987; 

Ungerleider & Mishkin, 1982): one, the ventral stream, for processing the appear-

ance of objects; the other, the dorsal stream, for processing their locations. In 

short, in object perception the ventral stream delivers the “what,” while the dorsal 

stream delivers the “where.” This view is supported by double dissociation evidence 

observed in clinical patients: brain injuries can cause severe problems in seeing 

motion but leave form perception unaffected, or vice versa (Botez, 1975; Hess, 

Baker, & Zihl, 1989; Zihl, von Cramon, & Mai, 1983).

There has been a more recent reconceptualization of this classic distinction: the 

duplex approach to vision (Goodale & Humphrey, 1998), which maintains the physi-

ological distinction between the ventral and dorsal streams but reinterprets their 

functions. In the duplex theory, the ventral stream creates perceptual representa-

tions, while the dorsal stream mediates the visual control of action.

The functional distinction is not between ‘what’ and ‘where,’ but between the way 

in which the visual information about a broad range of object parameters are trans-

formed either for perceptual purposes or for the control of goal-directed actions. 

(Goodale & Humphrey, 1998, p. 187) 

The duplex theory can be seen as representational theory that is elaborated in such 

a way that fundamental characteristics of the subsumption architecture are pre-

sent. These results can be used to argue that the human brain is not completely 

structured as a “classical sandwich.” On the one hand, in the duplex theory the 

purpose of the ventral stream is to create a representation of the perceived world 

(Goodale & Humphrey, 1998). On the other hand, in the duplex theory the purpose 

of the dorsal stream is the control of action, because it functions to convert visual 

information directly into motor commands. In the duplex theory, the ventral stream 

is strikingly similar to the vertical layers of the subsumption architecture.
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Double dissociation evidence from cognitive neuroscience has been used to 

support the duplex theory. The study of one brain-injured subject (Goodale et al., 

1991) revealed normal basic sensation. However, the patient could not describe 

the orientation or shape of any visual contour, no matter what visual information 

was used to create it. While this information could not be consciously reported, it 

was available, and could control actions. The patient could grasp objects, or insert 

objects through oriented slots, in a fashion indistinguishable from control subjects, 

even to the fine details that are observed when such actions are initiated and then 

carried out. This pattern of evidence suggests that the patient’s ventral stream was 

damaged, but that the dorsal stream was unaffected and controlled visual actions. 

“At some level in normal brains the visual processing underlying ‘conscious’ per-

ceptual judgments must operate separately from that underlying the ‘automatic’ 

visuomotor guidance of skilled actions of the hand and limb” (p. 155).

Other kinds of brain injuries produce a very different pattern of abnormalities, 

establishing the double dissociation that supports the duplex theory. For instance, 

damage to the posterior parietal cortex—part of the dorsal stream—can cause optic 

ataxia, in which visual information cannot be used to control actions towards objects 

presented in the part of the visual field affected by the brain injury (Jakobson et al., 

1991). Optic ataxia, however, does not impair the ability to perceive the orientation 

and shapes of visual contours.

Healthy subjects can also provide support for the duplex theory. For instance, in 

one study subjects reached toward an object whose position changed during a sac-

cadic eye movement (Pelisson et al., 1986). As a result, subjects were not conscious 

of the target’s change in location. Nevertheless, they compensated to the object’s 

new position when they reached towards it. “No perceptual change occurred, 

while the hand pointing response was shifted systematically, showing that differ-

ent mechanisms were involved in visual perception and in the control of the motor 

response” (p. 309). This supports the existence of “horizontal” sense-act modules in 

the human brain.

5.7 Mind in Action

Shakey was a 1960s robot that used a variety of sensors and motors to navigate 

through a controlled indoor environment (Nilsson, 1984). It did so by uploading 

its sensor readings to a central computer that stored, updated, and manipulated a 

model of Shakey’s world. This representation was used to develop plans of action 

to be put into effect, providing the important filling for Shakey’s classical sandwich.

Shakey impressed in its ability to navigate around obstacles and move objects 

to desired locations. However, it also demonstrated some key limitations of the clas-

sical sandwich. In particular, Shakey was extremely slow. Shakey typically required 
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several hours to complete a task (Moravec, 1999), because the internal model of its 

world was computationally expensive to create and update. The problem with the 

sense-think-act cycle in robots like Shakey is that by the time the (slow) thinking is 

finished, the resulting plan may fail because the world has changed in the meantime.

The subsumption architecture of behaviour-based robotics (Brooks, 1999, 2002) 

attempted to solve such problems by removing the classical sandwich; it was explic-

itly anti-representational. The logic of this radical move was that the world was its 

own best representation (Clark, 1997).

Behaviour-based robotics took advantage of Simon’s (1969) parable of the 

ant, reducing costly and complex internal representations by recognizing that the 

external world is a critical contributor to behaviour. Why expend computational 

resources on the creation and maintenance of an internal model of the world, when 

externally the world was already present, open to being sensed and to being acted 

upon? Classical cognitive science’s emphasis on internal representations and plan-

ning was a failure to take this parable to heart.

Interestingly, action was more important to earlier cognitive theories. Take, for 

example, Piaget’s theory of cognitive development (Inhelder & Piaget, 1958, 1964; 

Piaget, 1970a, 1970b, 1972; Piaget & Inhelder, 1969). According to this theory, in 

their early teens children achieve the stage of formal operations. Formal opera-

tions describe adult-level cognitive abilities that are classical in the sense that 

they involve logical operations on symbolic representations. Formal operations 

involve completely abstract thinking, where relationships between propositions are 

considered.

However, Piagetian theory departs from classical cognitive science by includ-

ing actions in the world. The development of formal operations begins with the 

sensorimotor stage, which involves direct interactions with objects in the world. 

In the next preoperational stage these objects are internalized as symbols. The 

preoperational stage is followed by concrete operations. When the child is in the 

stage of concrete operations, symbols are manipulated, but not in the abstract: 

concrete operations are applied to “manipulable objects (effective or immediately 

imaginable manipulations), in contrast to operations bearing on propositions or 

simple verbal statements (logic of propositions)” (Piaget, 1972, p. 56). In short, 

Piaget rooted fully representational or symbolic thought (i.e., formal operations) 

in the child’s physical manipulation of his or her world. “The starting-point for the 

understanding, even of verbal concepts, is still the actions and operations of the 

subject” (Inhelder & Piaget, 1964, p. 284).

For example, classification and seriation (i.e., grouping and ordering entities) 

are operations that can be formally specified using logic or mathematics. One goal of 

Piagetian theory is to explain the development of such abstract competence. It does 

so by appealing to basic actions on the world experienced prior to the stage of formal 
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operations, “actions which are quite elementary: putting things in piles, separating 

piles into lots, making alignments, and so on” (Inhelder & Piaget, 1964, p. 291).

Other theories of cognitive development share the Piagetian emphasis on the 

role of the world, but elaborate the notion of what aspects of the world are involved 

(Vygotsky, 1986). Vygotsky (1986), for example, highlighted the role of social sys-

tems—a different conceptualization of the external world—in assisting cognitive 

development. Vygotsky used the term zone of proximal development to define the 

difference between a child’s ability to solve problems without aid and their ability 

to solve problems when provided support or assistance. Vygotsky was strongly criti-

cal of instructional approaches that did not provide help to children as they solved 

problems.

Vygotsky (1986) recognized that sources of support for development were not 

limited to the physical world. He expanded the notion of worldly support to include 

social and cultural factors: “The true direction of the development of thinking is not 

from the individual to the social, but from the social to the individual” (p. 36). For 

example, to Vygotsky language was a tool for supporting cognition: 

Real concepts are impossible without words, and thinking in concepts does not 

exist beyond verbal thinking. That is why the central moment in concept for-

mation, and its generative cause, is a specific use of words as functional ‘tools.’ 

(Vygotsky, 1986, p. 107) 

Clark (1997, p. 45) wrote: “We may often solve problems by ‘piggy-backing’ on relia-

ble environmental properties. This exploitation of external structure is what I mean 

by the term scaffolding.” Cognitive scaffolding—the use of the world to support or 

extend thinking—is characteristic of theories in embodied cognitive science. Clark 

views scaffolding in the broad sense of a world or structure that descends from 

Vygotsky’s theory: 

Advanced cognition depends crucially on our abilities to dissipate reasoning: to 

diffuse knowledge and practical wisdom through complex social structures, and to 

reduce the loads on individual brains by locating those brains in complex webs of 

linguistic, social, political, and institutional constraints. (Clark, 1997, p. 180)

While the developmental theories of Piaget and Vygotsky are departures from typi-

cal classical cognitive science in their emphasis on action and scaffolding, they are 

very traditional in other respects. American psychologist Sylvia Scribner pointed 

out that these two theorists, along with Newell and Simon, shared Aristotle’s “pre-

occupation with modes of thought central to theoretical inquiry—with logical oper-

ations, scientific concepts, and problem solving in symbolic domains,” maintaining 

“Aristotle’s high esteem for theoretical thought and disregard for the practical” 

(Scribner & Tobach, 1997, p. 338).
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Scribner’s own work (Scribner & Tobach, 1997) was inspired by Vygotskian 

theory but aimed to extend its scope by examining practical cognition. Scribner 

described her research as the study of mind in action, because she viewed cognitive 

processes as being embedded with human action in the world. Scribner’s studies 

analyzed “the characteristics of memory and thought as they function in the larger, 

purposive activities which cultures organize and in which individuals engage” 

(p. 384). In other words, the everyday cognition studied by Scribner and her col-

leagues provided ample evidence of cognitive scaffolding: “Practical problem solv-

ing is an open system that includes components lying outside the formal problem—

objects and information in the environment and goals and interests of the problem 

solver” (pp. 334–335).

One example of Scribner’s work on mind in action was the observation of 

problem-solving strategies exhibited by different types of workers at a dairy 

(Scribner & Tobach, 1997). It was discovered that a reliable difference between 

expert and novice dairy workers was that the former were more versatile in find-

ing solutions to problems, largely because expert workers were much more able 

to exploit environmental resources. “The physical environment did not determine 

the problem-solving process but . . . was drawn into the process through worker 

initiative” (p. 377).

For example, one necessary job in the dairy was assembling orders. This 

involved using a computer printout of a wholesale truck driver’s order for prod-

ucts to deliver the next day, to fetch from different areas in the dairy the required 

number of cases and partial cases of various products to be loaded onto the driver’s 

truck. However, while the driver’s order was placed in terms of individual units (e.g., 

particular numbers of quarts of skim milk, of half-pints of chocolate milk, and so 

on), the computer printout converted these individual units into “case equivalents.” 

For example, one driver might require 20 quarts of skim milk. However, one case 

contains only 16 quarts. The computer printout for this part of the order would be 1 

+ 4, indicating one full case plus 4 additional units.

Scribner found differences between novice and expert product assemblers in 

the way in which these mixed numbers from the computer printout were con-

verted into gathered products. Novice workers would take a purely mental arith-

metic approach. As an example, consider the following protocol obtained from a 

novice worker: 

It was one case minus six, so there’s two, four, six, eight, ten, sixteen (determines 

how many in a case, points finger as she counts). So there should be ten in here. 

Two, four, six, ten (counts units as she moves them from full to empty). One case 

minus six would be ten. (Scribner & Tobach, 1997, p. 302)
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In contrast, expert workers were much more likely to scaffold this problem solving 

by working directly from the visual appearance of cases, as illustrated in a very dif-

ferent protocol: 

I walked over and I visualized. I knew the case I was looking at had ten out of it, and I 

only wanted eight, so I just added two to it. I don’t never count when I’m making the 

order, I do it visual, a visual thing you know. (Scribner & Tobach, 1997, p. 303) 

It was also found that expert workers flexibly alternated the distribution of scaf-

folded and mental arithmetic, but did so in a systematic way: when more mental 

arithmetic was employed, it was done to decrease the amount of physical exertion 

required to complete the order. This led to Scribner postulating a law of mental 

effort: “In product assembly, mental work will be expended to save physical work” 

(Scribner & Tobach, 1997, p. 348).

The law of mental effort was the result of Scribner’s observation that expert 

workers in the dairy demonstrated marked diversity and flexibility in their solu-

tions to work-related problems. Intelligent agents may be flexible in the manner in 

which they allocate resources between sense-act and sense-think-act processing. 

Both types of processes may be in play simultaneously, but they may be applied in 

different amounts when the same problem is encountered at different times and 

under different task demands (Hutchins, 1995).

Such flexible information processing is an example of bricolage (Lévi-Strauss, 

1966). A bricoleur is an “odd job man” in France.

The ‘bricoleur’ is adept at performing a large number of diverse tasks; but, unlike 

the engineer, he does not subordinate each of them to the availability of raw materi-

als and tools conceived and procured for the purpose of the project. His universe of 

instruments is closed and the rules of his game are always to make do with ‘what-

ever is at hand.’ (Lévi-Strauss, 1966, p. 17)

Bricolage seems well suited to account for the flexible thinking of the sort described 

by Scribner. Lévi-Strauss (1966) proposed bricolage as an alternative to formal, the-

oretical thinking, but cast it in a negative light: “The ‘bricoleur’ is still someone who 

works with his hands and uses devious means compared to those of a craftsman” 

(pp. 16–17). Devious means are required because the bricoleur is limited to using 

only those components or tools that are at hand. “The engineer is always trying to 

make his way out of and go beyond the constraints imposed by a particular state of 

civilization while the ‘bricoleur’ by inclination or necessity always remains within 

them” (p. 19).

Recently, researchers have renewed interest in bricolage and presented it in 

a more positive light than did Lévi-Strauss (Papert, 1980; Turkle, 1995). To Turkle 

(1995), bricolage was a sort of intuition, a mental tinkering, a dialogue mediated by 
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a virtual interface that was increasingly important with the visual GUIs of modern 

computing devices.

As the computer culture’s center of gravity has shifted from programming to deal-

ing with screen simulations, the intellectual values of bricolage have become far 

more important. . . . Playing with simulation encourages people to develop the skills 

of the more informal soft mastery because it is so easy to run ‘What if?’ scenarios 

and tinker with the outcome. (Turkle, 1995, p. 52) 

Papert (1980) argued that bricolage demands greater respect because it may serve as 

“a model for how scientifically legitimate theories are built” (p. 173).

The bricolage observed by Scribner and her colleagues when studying mind in 

action at the dairy revealed that practical cognition is flexibly and creatively scaffolded 

by an agent’s environment. However, many of the examples reported by Scribner sug-

gest that this scaffolding involves using the environment as an external representa-

tion or memory of a problem. That the environment can be used in this fashion, as 

an externalized extension of memory, is not surprising. Our entire print culture—the 

use of handwritten notes, the writing of books—has arisen from a technology that 

serves as an extension of memory (McLuhan, 1994, p. 189): “Print provided a vast 

new memory for past writings that made a personal memory inadequate.”

However, the environment can also provide a more intricate kind of scaffolding. 

In addition to serving as an external store of information, it can also be exploited 

to manipulate its data. For instance, consider a naval navigation task in which a 

ship’s speed is to be computed by measuring of how far the ship has travelled over 

a recent interval of time (Hutchins, 1995). An internal, representational approach 

to performing this computation would be to calculate speed based on internalized 

knowledge of algebra, arithmetic, and conversions between yards and nautical 

miles. However, an easier external solution is possible. A navigator is much more 

likely to draw a line on a three-scale representation called a nomogram. The top 

scale of this tool indicates duration, the middle scale indicates distance, and the 

bottom scale indicates speed. The user marks the measured time and distance on 

the first two scales, joins them with a straight line, and reads the speed from the 

intersection of this line with the bottom scale. Thus the answer to the problem isn’t 

as much computed as it is inspected. “Much of the computation was done by the 

tool, or by its designer. The person somehow could succeed by doing less because 

the tool did more” (Hutchins, 1995, p. 151).

Classical cognitive science, in its championing of the representational theory 

of mind, demonstrates a modern persistence of the Cartesian distinction between 

mind and body. Its reliance on mental representation occurs at the expense of 

ignoring potential contributions of both an agent’s body and world. Early represen-

tational theories were strongly criticized because of their immaterial nature.
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For example, consider the work of Edward Tolman (1932, 1948). Tolman 

appealed to representational concepts to explain behaviour, such as his proposal 

that rats navigate and locate reinforcers by creating and manipulating a cognitive 

map. The mentalistic nature of Tolman’s theories was a source of harsh criticism: 

Signs, in Tolman’s theory, occasion in the rat realization, or cognition, or judg-

ment, or hypotheses, or abstraction, but they do not occasion action. In his concern 

with what goes on in the rat’s mind, Tolman has neglected to predict what the 

rat will do. So far as the theory is concerned the rat is left buried in thought; if he 

gets to the food-box at the end that is his concern, not the concern of the theory. 

(Guthrie, 1935, p. 172)

The later successes, and current dominance, of cognitive theory make such criti-

cisms appear quaint. But classical theories are nonetheless being rigorously refor-

mulated by embodied cognitive science.

Embodied cognitive scientists argue that classical cognitive science, with its 

emphasis on the disembodied mind, has failed to capture important aspects of 

thinking. For example, Hutchins (1995, p. 171) noted that “by failing to understand 

the source of the computational power in our interactions with simple ‘unintelli-

gent’ physical devices, we position ourselves well to squander opportunities with 

so-called intelligent computers.” Embodied cognitive science proposes that the 

modern form of dualism exhibited by classical cognitive science is a mistake. For 

instance, Scribner hoped that her studies of mind in action conveyed “a conception 

of mind which is not hostage to the traditional cleavage between the mind and the 

hand, the mental and the manual” (Scribner & Tobach, 1997, p. 307).

5.8 The Extended Mind

In preceding pages of this chapter, a number of interrelated topics that are cen-

tral to embodied cognitive science have been introduced: situation and embodi-

ment, feedback between agents and environments, stigmergic control of behaviour, 

affordances and enactive perception, and cognitive scaffolding. These topics show 

that embodied cognitive science places much more emphasis on body and world, 

and on sense and action, than do other “flavours” of cognitive science.

This change in emphasis can have profound effects on our definitions of mind 

or self (Bateson, 1972). For example, consider this famous passage from anthropolo-

gist Gregory Bateson: 

But what about ‘me’? Suppose I am a blind man, and I use a stick. I go tap, tap, 

tap. Where do I start? Is my mental system bounded at the handle of the stick? Is it 

bounded by my skin? (Bateson, 1972, p. 465)
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The embodied approach’s emphasis on agents embedded in their environments 

leads to a radical and controversial answer to Bateson’s questions, in the form of 

the extended mind (Clark, 1997, 1999, 2003, 2008; Clark & Chalmers, 1998; Menary, 

2008, 2010; Noë, 2009; Rupert, 2009; Wilson, 2004, 2005). According to the extended 

mind hypothesis, the mind and its information processing are not separated from 

the world by the skull. Instead, the mind interacts with the world in such a way that 

information processing is both part of the brain and part of the world—the bound-

ary between the mind and the world is blurred, or has disappeared.

Where is the mind located? The traditional view—typified by the classical 

approach introduced in Chapter 3—is that thinking is inside the individual, and 

that sensing and acting involve the world outside. However, if cognition is scaf-

folded, then some thinking has moved from inside the head to outside in the world. 

“It is the human brain plus these chunks of external scaffolding that finally consti-

tutes the smart, rational inference engine we call mind” (Clark, 1997, p. 180). As a 

result, Clark (1997) described the mind as a leaky organ, because it has spread from 

inside our head to include whatever is used as external scaffolding.

The extended mind hypothesis has enormous implications for the cognitive sci-

ences. The debate between classical and connectionist cognitive science does not 

turn on this issue, because both approaches are essentially representational. That 

is, both approaches tacitly endorse the classical sandwich; while they have strong 

disagreements about the nature of representational processes in the filling of the 

sandwich, neither of these approaches views the mind as being extended. Embodied 

cognitive scientists who endorse the extended mind hypothesis thus appear to be 

moving in a direction that strongly separates the embodied approach from the other 

two. It is small comfort to know that all cognitive scientists might agree that they 

are in the business of studying the mind, when they can’t agree upon what minds 

are.

For this reason, the extended mind hypothesis has increasingly been a source of 

intense philosophical analysis and criticism (Adams & Aizawa, 2008; Menary, 2010; 

Robbins & Aydede, 2009). Adams and Aizawa (2008) are strongly critical of the 

extended mind hypothesis because they believe that it makes no serious attempt to 

define the “mark of the cognitive,” that is, the principled differences between cogni-

tive and non-cognitive processing: 

If just any sort of information processing is cognitive processing, then it is not 

hard to find cognitive processing in notebooks, computers and other tools. The 

problem is that this theory of the cognitive is wildly implausible and evidently not 

what cognitive psychologists intend. A wristwatch is an information processor, 

but not a cognitive agent. What the advocates of extended cognition need, but, we 

argue, do not have, is a plausible theory of the difference between the cognitive and 
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the non-cognitive that does justice to the subject matter of cognitive psychology. 

(Adams & Aizawa, 2008, p. 11)

A variety of other critiques can be found in various contributions to Robbins and 

Aydede’s (2009) Cambridge Handbook of Situated Cognition. Prinz made a pointed 

argument that the extended mind has nothing to contribute to the study of con-

sciousness. Rupert noted how the notion of innateness poses numerous problems 

for the extended mind. Warneken and Tomasello examined cultural scaffolding, but 

they eventually adopted a position where these cultural tools have been internalized 

by agents. Finally, Bechtel presented a coherent argument from the philosophy of 

biology that there is good reason for the skull to serve as the boundary between the 

world and the mind. Clearly, the degree to which extendedness is adopted by situ-

ated researchers is far from universal.

In spite of the currently unresolved debate about the plausibility of the 

extended mind, the extended mind hypothesis is an idea that is growing in popular-

ity in embodied cognitive science. Let us briefly turn to another implication that 

this hypothesis has for the practice of cognitive science.

The extended mind hypothesis is frequently applied to single cognitive agents. 

However, this hypothesis also opens the door to co-operative or public cognition in 

which a group of agents are embedded in a shared environment (Hutchins, 1995). 

In this situation, more than one cognitive agent can manipulate the world that is 

being used to support the information processing of other group members.

Hutchins (1995) provided one example of public cognition in his description 

of how a team of individuals is responsible for navigating a ship. He argued that 

“organized groups may have cognitive properties that differ from those of the indi-

viduals who constitute the group” (p. 228). For instance, in many cases it is very dif-

ficult to translate the heuristics used by a solo navigator into a procedure that can 

be implemented by a navigation team.

Collective intelligence—also called swarm intelligence or co-operative com-

puting—is also of growing importance in robotics. Entomologists used the concept 

of the superorganism (Wheeler, 1911) to explain how entire colonies could pro-

duce more complex results (such as elaborate nests) than one would predict from 

knowing the capabilities of individual colony members. Swarm intelligence is an 

interesting evolution of the idea of the superorganism; it involves a collective of 

agents operating in a shared environment. Importantly, a swarm’s components are 

only involved in local interactions with each other, resulting in many advantages 

(Balch & Parker, 2002; Sharkey, 2006).

For instance, a computing swarm is scalable—it may comprise varying num-

bers of agents, because the same control structure (i.e., local interactions) is used 

regardless of how many agents are in the swarm. For the same reason, a comput-

ing swarm is flexible: agents can be added or removed from the swarm without 
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reorganizing the entire system. The scalability and flexibility of a swarm make it 

robust, as it can continue to compute when some of its component agents no longer 

function properly. Notice how these advantages of a swarm of agents are analogous 

to the advantages of connectionist networks over classical models, as discussed in 

Chapter 4.

Nonlinearity is also a key ingredient of swarm intelligence. For a swarm to be 

considered intelligent, the whole must be greater than the sum of its parts. This 

idea has been used to identify the presence of swarm intelligence by relating the 

amount of work done by a collective to the number of agents in the collection 

(Beni & Wang, 1991). If the relationship between work accomplished and number 

of agents is linear, then the swarm is not considered to be intelligent. However, if 

the relationship is nonlinear—for instance, exponentially increasing—then swarm 

intelligence is present. The nonlinear relationship between work and numbers may 

itself be mediated by other nonlinear relationships. For example, Dawson, Dupuis, 

and Wilson (2010) found that in collections of simple LEGO robots, the presence 

of additional robots influenced robot paths in an arena in such a way that a sorting 

task was accomplished far more efficiently.

While early studies of robot collectives concerned small groups of homogenous 

robots (Gerkey & Mataric, 2004), researchers are now more interested in complex 

collectives consisting of different types of machines for performing diverse tasks 

at varying locations or times (Balch & Parker, 2002; Schultz & Parker, 2002). This 

leads to the problem of coordinating the varying actions of diverse collective mem-

bers (Gerkey & Mataric, 2002, 2004; Mataric, 1998). One general approach to solv-

ing this coordination problem is intentional co-operation (Balch & Parker, 2002; 

Parker, 1998, 2001), which uses direct communication amongst robots to prevent 

unnecessary duplication (or competition) between robot actions. However, inten-

tional co-operation comes with its own set of problems. For instance, communica-

tion between robots is costly, particularly as more robots are added to a communi-

cating team (Kube & Zhang, 1994). As well, as communication makes the functions 

carried out by individual team members more specialized, the robustness of the 

robot collective is jeopardized (Kube & Bonabeau, 2000). Is it possible for a robot 

collective to coordinate its component activities, and solve interesting problems, in 

the absence of direction communication?

The embodied approach has generated a plausible answer to this question via 

stigmergy (Kube & Bonabeau, 2000). Kube and Bonabeau (2000) demonstrated that 

the actions of a large collective of robots could be stigmergically coordinated so that 

the collective could push a box to a goal location in an arena. Robots used a variety 

of sensors to detect (and avoid) other robots, locate the box, and locate the goal 

location. A subsumption architecture was employed to instantiate a fairly simple 

set of sense-act reflexes. For instance, if a robot detected that is was in contact with 
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the box and could see the goal, then box-pushing behaviour was initiated. If it was 

in contact with the box but could not see the goal, then other movements were trig-

gered, resulting in the robot finding contact with the box at a different position.

This subsumption architecture caused robots to seek the box, push it towards 

the goal, and do so co-operatively by avoiding other robots. Furthermore, when 

robot activities altered the environment, this produced corresponding changes in 

behaviour of other robots. For instance, a robot pushing the box might lose sight 

of the goal because of box movement, and it would therefore leave the box and use 

its other exploratory behaviours to come back to the box and push it from a dif-

ferent location. “Cooperation in some tasks is possible without direct communica-

tion” (Kube & Bonabeau, 2000, p. 100). Importantly, the solution to the box-pushing 

problem required such co-operation, because the box being manipulated was too 

heavy to be moved by a small number of robots!

The box-pushing research of Kube and Bonabeau (2000) is an example of 

stigmergic processing that occurs when two or more individuals collaborate on a 

task using a shared environment. Hutchins (1995) brought attention to less obvi-

ous examples of public cognition that exploit specialized environmental tools. Such 

scaffolding devices cannot be dissociated from culture or history. For example, 

Hutchins noted that navigation depends upon centuries-old mathematics of chart 

projections, not to mention millennia-old number systems.

These observations caused Hutchins (1995) to propose an extension of Simon’s 

(1969) parable of the ant. Hutchins argued that rather than watching an individual 

ant on the beach, we should arrive at a beach after a storm and watch generations of 

ants at work. As the ant colony matures, the ants will appear smarter, because their 

behaviours are more efficient. But this is because, 

the environment is not the same. Generations of ants have left their marks 

on the beach, and now a dumb ant has been made to appear smart through 

its simple interaction with the residua of the history of its ancestor’s actions. 

(Hutchins, 1995, p. 169)

Hutchins’ (1995) suggestion mirrored concerns raised by Scribner’s studies of mind 

in action. She observed that the diversity of problem solutions generated by dairy 

workers, for example, was due in part to social scaffolding.

We need a greater understanding of the ways in which the institutional setting, 

norms and values of the work group and, more broadly, cultural understandings 

of labor contribute to the reorganization of work tasks in a given community. 

(Scribner & Tobach, 1997, p. 373) 

Furthermore, Scribner pointed out that the traditional methods used by clas-

sical researchers to study cognition were not suited for increasing this kind of 
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understanding. The extended mind hypothesis leads not only to questions about the 

nature of mind, but also to the questions about the methods used to study mentality.

5.9 The Roots of Forward Engineering

The most typical methodology to be found in classical cognitive science is reverse 

engineering. Reverse engineering involves observing the behaviour of an intact 

system in order to infer the nature and organization of the system’s internal pro-

cesses. Most cognitive theories are produced by using a methodology called func-

tional analysis (Cummins, 1975, 1983), which uses experimental results to iteratively 

carve a system into a hierarchy of functional components until a basic level of sub-

functions, the cognitive architecture, is reached.

A practical problem with functional analysis or reverse engineering is the frame 

of reference problem (Pfeifer & Scheier, 1999). This problem arises during the dis-

tribution of responsibility for the complexity of behaviour between the internal pro-

cesses of an agent and the external influences of its environment. Classical cognitive 

science, a major practitioner of functional analysis, endorses the classical sandwich; 

its functional analyses tend to attribute behavioural complexity to the internal pro-

cesses of an agent, while at the same time ignoring potential contributions of the 

environment. In other words, the frame of reference problem is to ignore Simon’s 

(1969) parable of the ant.

Embodied cognitive scientists frequently adopt a different methodology, for-

ward engineering. In forward engineering, a system is constructed from a set of 

primitive functions of interest. The system is then observed to determine whether 

it generates surprising or complicated behaviour. “Only about 1 in 20 ‘gets it’—that 

is, the idea of thinking about psychological problems by inventing mechanisms 

for them and then trying to see what they can and cannot do” (Minsky, personal 

communication, 1995). This approach has also been called synthetic psychology 

(Braitenberg, 1984). Reverse engineers collect data to create their models; in con-

trast, forward engineers build their models first and use them as primary sources of 

data (Dawson, 2004).

We noted in Chapter 3 that classical cognitive science has descended from the 

seventeenth-century rationalist philosophy of René Descartes (1960, 1996). It was 

observed in Chapter 4 that connectionist cognitive science descended from the early 

eighteenth-century empiricism of John Locke (1977), which was itself a reaction 

against Cartesian rationalism. The synthetic approach seeks “understanding by 

building” (Pfeifer & Scheier, 1999), and as such permits us to link embodied cogni-

tive science to another eighteenth-century reaction against Descartes, the philoso-

phy of Giambattista Vico (Vico, 1990, 1988, 2002).
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Vico based his philosophy on the analysis of word meanings. He argued that the 

Latin term for truth, verum, had the same meaning as the Latin term factum, and 

therefore concluded that “it is reasonable to assume that the ancient sages of Italy 

entertained the following beliefs about the true: ‘the true is precisely what is made’” 

(Vico, 1988, p. 46). This conclusion led Vico to his argument that humans could only 

understand the things that they made, which is why he studied societal artifacts, 

such as the law.

Vico’s work provides an early motivation for forward engineering: “To know 

(scire) is to put together the elements of things” (Vico, 1988, p. 46). Vico’s account 

of the mind was a radical departure from Cartesian disembodiment. To Vico, the 

Latins “thought every work of the mind was sense; that is, whatever the mind does 

or undergoes derives from contact with bodies” (p. 95). Indeed, Vico’s verum-factum 

principle is based upon embodied mentality. Because the mind is “immersed and 

buried in the body, it naturally inclines to take notice of bodily things” (p. 97).

While the philosophical roots of forward engineering can be traced to Vico’s 

eighteenth-century philosophy, its actual practice—as far as cognitive science is 

concerned—did not emerge until cybernetics arose in the 1940s. One of the earli-

est examples of synthetic psychology was the Homeostat (Ashby, 1956, 1960), which 

was built by cyberneticist William Ross Ashby in 1948. The Homeostat was a system 

that changed its internal states to maximize stability amongst the interactions 

between its internal components and the environment. William Grey Walter (1963, 

p. 123) noted that it was “like a fireside cat or dog which only stirs when disturbed, 

and then methodically finds a comfortable position and goes to sleep again.”

Ashby’s (1956, 1960) Homeostat illustrated the promise of synthetic psychology. 

The feedback that Ashby was interested in could not be analyzed mathematically; 

it was successfully studied synthetically with Ashby’s device. Remember, too, that 

when the Homeostat was created, computer simulations of feedback were still in 

the future.

 As well, it was easier to produce interesting behaviour in the Homeostat than 

it was to analyze it. This is because the secret to its success was a large number of 

potential internal states, which provided many degrees of freedom for producing 

stability. At the same time, this internal variability was an obstacle to traditional 

analysis. “Although the machine is man-made, the experimenter cannot tell at any 

moment exactly what the machine’s circuit is without ‘killing’ it and dissecting out 

the ‘nervous system’” (Grey Walter, 1963, p. 124).

Concerns about this characteristic of the Homeostat inspired the study 

of the first autonomous robots, created by cyberneticist William Grey Walter 

(1950a, 1950b, 1951, 1963). The first two of these machines were constructed in 1948 

(de Latil, 1956); comprising surplus war materials, their creation was clearly an 

act of bricolage. “The first model of this species was furnished with pinions from 
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old clocks and gas meters” (Grey Walter, 1963, p. 244). By 1951, these two had been 

replaced by six improved machines (Holland, 2003a), two of which are currently 

displayed in museums.

The robots came to be called Tortoises because of their appearance: they seemed 

to be toy tractors surrounded by a tortoise-like shell. Grey Walter viewed them as 

an artificial life form that he classified as Machina speculatrix. Machina specula-

trix was a reaction against the internal variability in Ashby’s Homeostat. The goal of 

Grey Walter’s robotics research was to explore the degree to which one could produce 

complex behaviour from such very simple devices (Boden, 2006). When Grey Walter 

modelled behaviour he “was determined to wield Occam’s razor. That is, he aimed 

to posit as simple a mechanism as possible to explain apparently complex behav-

iour. And simple, here, meant simple” (Boden, 2006, p. 224). Grey Walter restricted 

a Tortoise’s internal components to “two functional elements: two miniature radio 

tubes, two sense organs, one for light and the other for touch, and two effectors or 

motors, one for crawling and the other for steering” (Grey Walter, 1950b, p. 43).

The interesting behaviour of the Tortoises was a product of simple reflexes that 

used detected light (via a light sensor mounted on the robot’s steering column) and 

obstacles (via movement of the robot’s shell) to control the actions of the robot’s two 

motors. Light controlled motor activity as follows. In dim light, the Tortoise’s drive 

motor would move the robot forward, while the steering motor slowly turned the 

front wheel. Thus in dim light the Tortoise “explored.” In moderate light, the drive 

motor continued to run, but the steering motor stopped. Thus in moderate light 

the Tortoise “approached.” In bright light, the drive motor continued to run, but the 

steering motor ran at twice the normal speed, causing marked oscillatory move-

ments. Thus in bright light the Tortoise “avoided.”

The motors were affected by the shell’s sense of touch as follows. When the 

Tortoise’s shell was moved by an obstacle, an oscillating signal was generated that 

first caused the robot to drive fast while slowly turning, and then to drive slowly 

while quickly turning. The alternation of these behaviours permitted the Tortoise to 

escape from obstacles. Interestingly, when movement of the Tortoise shell triggered 

such behaviour, signals from the photoelectric cell were rendered inoperative for a 

few moments. Thus Grey Walter employed a simple version of what later would be 

known as Brooks’ (1999) subsumption architecture: a higher layer of touch process-

ing could inhibit a lower layer of light processing.

In accordance with forward engineering, after Grey Walter constructed his 

robots, he observed their behaviour by recording the paths that they took in a number 

of simple environments. He preserved a visual record of their movement by using 

time-lapse photography; because of lights mounted on the robots, their paths were 

literally traced on each photograph (Holland, 2003b). Like the paths on the beach 
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traced in Simon’s (1969) parable of the ant, the photographs recorded Tortoise behav-

iour that was “remarkably unpredictable” (Grey Walter, 1950b, p. 44).

Grey Walter observed the behaviours of his robots in a number of different 

environments. For example, in one study the robot was placed in a room where a 

light was hidden from view by an obstacle. The Tortoise began to explore the room, 

bumped into the obstacle, and engaged in its avoidance behaviour. This in turn per-

mitted the robot to detect the light, which it approached. However, it didn’t collide 

with the light. Instead the robot circled it cautiously, veering away when it came 

too close. “Thus the machine can avoid the fate of the moth in the candle” (Grey 

Walter, 1963, p. 128).

When the environment became more complicated, so too did the behaviours 

produced by the Tortoise. If the robot was confronted with two stimulus lights 

instead of one, it would first be attracted to one, which it circled, only to move 

away and circle the other, demonstrating an ability to choose: it solved the prob-

lem “of Buridan’s ass, which starved to death, as some animals acting trophically 

in fact do, because two exactly equal piles of hay were precisely the same distance 

away” (Grey Walter, 1963, p. 128). If a mirror was placed in its environment, the 

mirror served as an obstacle, but it reflected the light mounted on the robot, which 

was an attractant. The resulting dynamics produced the so-called “mirror dance” 

in which the robot, 

lingers before a mirror, flickering, twittering and jigging like a clumsy Narcissus. 

The behaviour of a creature thus engaged with its own reflection is quite specific, 

and on a purely empirical basis, if it were observed in an animal, might be accepted 

as evidence of some degree of self-awareness. (Grey Walter, 1963, pp. 128–129)

In less controlled or open-ended environments, the behaviour that was produced 

was lifelike in its complexity. The Tortoises produced “the exploratory, specula-

tive behaviour that is so characteristic of most animals” (Grey Walter, 1950b, p. 43). 

Examples of such behaviour were recounted by cyberneticist Pierre de Latil (1956): 

Elsie moved to and fro just like a real animal. A kind of head at the end of a long 

neck towered over the shell, like a lighthouse on a promontory and, like a light-

house; it veered round and round continuously. (de Latil, 1956, p. 209)

The Daily Mail reported that,

the toys possess the senses of sight, hunger, touch, and memory. They can walk 

about the room avoiding obstacles, stroll round the garden, climb stairs, and feed 

themselves by automatically recharging six-volt accumulators from the light in the 

room. And they can dance a jig, go to sleep when tired, and give an electric shock if 

disturbed when they are not playful. (Holland, 2003a, p. 2090)

Grey Walter released the Tortoises to mingle with the audience at a 1955 meeting of 
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the British Association (Hayward, 2001): “The tortoises, with their in-built attrac-

tion towards light, moved towards the pale stockings of the female delegates whilst 

avoiding the darker legs of the betrousered males” (p. 624).

Grey Walter was masterfully able to promote his work to the general public 

(Hayward, 2001; Holland, 2003a). However, he worried that public reception of his 

machines would decrease their scientific importance. History has put such concerns 

to rest; Grey Walter’s pioneering research has influenced many modern researchers 

(Reeve & Webb, 2003). Grey Walter’s,

ingenious devices were seriously intended as working models for understanding 

biology: a ‘mirror for the brain’ that could both generally enrich our understand-

ing of principles of behavior (such as the complex outcome of combining simple 

tropisms) and be used to test specific hypotheses (such as Hebbian learning). 

(Reeve & Webb, 2003, p. 2245)

5.10 Reorientation without Representation

The robotics work of Grey Walter has been accurately described as an inspiration 

to modern studies of autonomous systems (Reeve & Webb, 2003). Indeed, the kind 

of research conducted by Grey Walter seems remarkably similar to the “new wave” 

of behaviour-based or biologically inspired robotics (Arkin, 1998; Breazeal, 2002; 

Sharkey, 1997; Webb & Consi, 2001).

In many respects, this represents an important renaissance of Grey Walter’s 

search for “mimicry of life” (Grey Walter, 1963, p. 114). Although the Tortoises were 

described in his very popular 1963 book The Living Brain, they essentially disap-

peared from the scientific picture for about a quarter of a century. Grey Walter was 

involved in a 1970 motorcycle accident that ended his career; after this accident, the 

whereabouts of most of the Tortoises was lost. One remained in the possession of 

his son after Grey Walter’s death in 1977; it was located in 1995 after an extensive 

search by Owen Holland. This discovery renewed interest in Grey Walter’s work 

(Hayward, 2001; Holland, 2003a, 2003b), and has re-established its important place 

in modern research.

The purpose of the current section is to briefly introduce one small segment 

of robotics research that has descended from Grey Walter’s pioneering work. In 

Chapter 3, we introduced the reorientation task that is frequently used to study 

how geometric and feature cues are used by an agent to navigate through its 

world. We also described a classical theory, the geometric module (Cheng, 1986; 

Gallistel, 1990), which has been used to explain some of the basic findings con-

cerning this task. In Chapter 4, we noted that the reorientation task has also been 

approached from the perspective of connectionist cognitive science. A simple 
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artificial neural network, the perceptron, has been offered as a viable alternative 

to classical theory (Dawson et al., 2010). In this section we briefly describe a third 

approach to the reorientation task, because embodied cognitive science has studied 

it in the context of behaviour-based robotics.

Classical and connectionist cognitive science provide very different accounts 

of the co-operative and competitive interactions between geometric and featural 

cues when an agent attempts to relocate the target location in a reorientation 

arena. However, these different accounts are both representational. One of the 

themes pervading embodied cognitive science is a reaction against representa-

tional explanations of intelligent behaviour (Shapiro, 2011). One field that has been 

a test bed for abandoning internal representations is known as new wave robotics 

(Sharkey, 1997).

New wave roboticists strive to replace representation with reaction (Brooks, 

1999), to use sense-act cycles in the place of representational sense-think-act pro-

cessing. This is because “embodied and situated systems can solve rather complicated 

tasks without requiring internal states or internal representations” (Nolfi & Floreano, 

2000, p. 93). One skill that has been successfully demonstrated in new wave robotics 

is navigation in the context of the reorientation task (Lund & Miglino, 1998).

The Khepera robot (Bellmore & Nemhauser, 1968; Boogaarts, 2007) is a stand-

ard platform for the practice of new wave robotics. It has the appearance of a motor-

ized hockey puck, uses two motor-driven wheels to move about, and has eight sen-

sors distributed around its chassis that allow it to detect the proximity of obstacles. 

Roboticists have the goal of combining the proximity detector signals to control motor 

speed in order to produce desired dynamic behaviour. One approach to achieving 

this goal is to employ evolutionary robotics (Nolfi & Floreano, 2000). Evolutionary 

robotics involves using a genetic algorithm (Holland, 1992; Mitchell, 1996) to find a 

set of weights between each proximity detector and each motor.

In general, evolutionary robotics proceeds as follows (Nolfi & Floreano, 2000). 

First, a fitness function is defined, to evaluate the quality of robot performance. 

Evolution begins with an initial population of different control systems, such as dif-

ferent sets of sensor-to-motor weights. The fitness function is used to assess each 

of these control systems, and those that produce higher fitness values “survive.” 

Survivors are used to create the next generation of control systems via prescribed 

methods of “mutation.” The whole process of evaluate-survive-mutate is iterated; 

average fitness is expected to improve with each new generation. The evolutionary 

process ends when improvements in fitness stabilize. When evolution stops, the 

result is a control system that should be quite capable of performing the task that 

was evaluated by the fitness function.

Lund and Miglino (1998) used this procedure to evolve a control system that 

enabled Khepera robots to perform the reorientation task in a rectangular arena 
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without feature cues. Their goal was to see whether a standard result—rotational 

error—could be produced in an agent that did not employ the geometric module, 

and indeed which did not represent arena properties at all. Lund and Miglino’s fit-

ness function simply measured a robot’s closeness to the goal location. After 30 gen-

erations of evolution, they produced a system that would navigate a robot to the goal 

location from any of 8 different starting locations with a 41 percent success rate. 

Their robots also produced rotational error, for they incorrectly navigated to the 

corner 180° from the goal in another 41 percent of the test trials. These results were 

strikingly similar to those observed when rats perform reorientation in featureless 

rectangular arenas (e.g., Gallistel, 1990).

Importantly, the control system that was evolved by Lund and Miglino (1998) 

was simply a set of weighted connections between proximity detectors and motors, 

and not an encoding of arena shape.

The geometrical properties of the environment can be assimilated in the sensory-

motor schema of the robot behavior without any explicit representation. In general, 

our work, in contrast with traditional cognitive models, shows how environmental 

knowledge can be reached without any form of direct representation. (Lund and 

Miglino, 1998, p. 198)

If arena shape is not explicitly represented, then how does the control system devel-

oped by Lund and Miglino (1998) produce reorientation task behaviour? When the 

robot is far enough from the arena walls that none of the sensors are detecting an 

obstacle, the controller weights are such that the robot moves in a gentle curve to 

the left. As a result, it never encounters a short wall when it leaves from any of its 

eight starting locations! When a long wall is (inevitably) encountered, the robot 

turns left and follows the wall until it stops in a corner. The result is that the robot 

will be at either the target location or its rotational equivalent.

The control system evolved by Lund and Miglino (1998) is restricted to rectan-

gular arenas of a set size. If one of their robots is placed in an arena of even a slightly 

different size, its performance suffers (Nolfi, 2002). Nolfi used a much longer evolu-

tionary process (500 generations), and also placed robots in different sized arenas, 

to successfully produce devices that would generate typical results not only in a fea-

tureless rectangular arena, but also in arenas of different dimensions. Again, these 

robots did so without representing arena shape or geometry.

Nolfi’s (2002) more general control system worked as follows. His robots would 

begin by moving forwards and avoiding walls, which would eventually lead them into 

a corner. When facing a corner, signals from the corner’s two walls caused the robot 

to first turn to orient itself at an angle of 45° from one of the corner’s walls. Then the 

robot would make an additional turn that was either clockwise or counterclockwise, 

depending upon whether the sensed wall was to the robot’s left or the right.
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The final turn away from the corner necessarily pointed the robot in a direction 

that would cause it to follow a long wall, because sensing a wall at 45° is an indirect 

measurement of wall length: 

If the robot finds a wall at about 45° on its left side and it previously left a corner, it 

means that the actual wall is one of the two longer walls. Conversely, if it encoun-

ters a wall at 45° on its right side, the actual wall is necessarily one of the two 

shorter walls. What is interesting is that the robot “measures” the relative length 

of the walls through action (i.e., by exploiting sensory–motor coordination) and it 

does not need any internal state to do so. (Nolfi, 2002, p. 141) 

As a result, the robot sensed the long wall in a rectangular arena without represent-

ing wall length. It followed the long wall, which necessarily led the robot to either 

the goal corner or the corner that results in a rotational error, regardless of the 

actual dimensions of the rectangular arena.

Robots simpler than the Khepera can also perform the reorientation task, 

and they can at the same time generate some of its core results. The subsumption 

architecture has been used to design a simple LEGO robot, antiSLAM (Dawson, 

Dupuis, & Wilson, 2010), that demonstrates rotational error and illustrates how a 

new wave robot can combine geometric and featural cues, an ability not included in 

the evolved robots that have been discussed above.

The ability of autonomous robots to navigate is fundamental to their success. 

In contrast to the robots described in the preceding paragraphs, one of the major 

approaches to providing such navigation is called SLAM, which is an acronym 

for a representational approach named “simultaneous localization and mapping” 

(Jefferies & Yeap, 2008). Representationalists assumed that agents navigate their 

environment by sensing their current location and referencing it on some internal 

map. How is such navigation to proceed if an agent is placed in a novel environment 

for which no such map exists? SLAM is an attempt to answer this question. It pro-

poses methods that enable an agent to build a new map of a novel environment and 

at the same time use this map to determine the agent’s current location.

The representational assumptions that underlie approaches such as SLAM 

have recently raised concerns in some researchers who study animal navigation 

(Alerstam, 2006). To what extent might a completely reactive, sense-act robot be 

capable of demonstrating interesting navigational behaviour? The purpose of anti-

SLAM (Dawson, Dupuis, & Wilson, 2010) was to explore this question in an incred-

ibly simple platform—the robot’s name provides some sense of the motivation for 

its construction.

AntiSLAM is an example of a Braitenberg Vehicle 3 (Braitenberg, 1984), 

because it uses six different sensors, each of which contributes to the speed of two 

motors that propel and steer it. Two are ultrasonic sensors that are used as sonar 

to detect obstacles, two are rotation detectors that are used to determine when the 
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robot has stopped moving, and two are light sensors that are used to attract the 

robot to locations of bright illumination. The sense-act reflexes of antiSLAM were 

not evolved but were instead created using the subsumption architecture.

The lowest level of processing in antiSLAM is “drive,” which essentially uses the 

outputs of the ultrasonic sensors to control motor speed. The closer to an obstacle a 

sensor gets, the slower is the speed of the one motor that the sensor helps to control. 

The next level is “escape.” When both rotation sensors are signaling that the robot is 

stationary (i.e., stopped by an obstacle detected by both sensors), the robot executes 

a turn to point itself in a different direction. The next level up is “wall following”: 

motor speed is manipulated in such a way that the robot has a strong bias to keep 

closer to a wall on the right than to a wall on the left. The highest level is “feature,” 

which uses two light sensors to contribute to motor speed in such a way that it 

approaches areas of brighter light.

AntiSLAM performs complex, lifelike exploratory behaviour when placed 

in general environments. It follows walls, steers itself around obstacles, explores 

regions of brighter light, and turns around and escapes when it finds itself stopped 

in a corner or in front of a large obstacle.

When placed in a reorientation task arena, antiSLAM generates behaviours 

that give it the illusion of representing geometric and feature cues (Dawson, 

Dupuis, & Wilson, 2010). It follows walls in a rectangular arena, slowing to a halt 

when enters a corner. It then initiates a turning routine to exit the corner and 

continue exploring. Its light sensors permit it to reliably find a target location 

that is associated with particular geometric and local features. When local fea-

tures are removed, it navigates the arena using geometric cues only, and it pro-

duces rotational errors. When local features are moved (i.e., an incorrect corner 

is illuminated), its choice of locations from a variety of starting points mimics the 

same combination of geometric and feature cues demonstrated in experiments 

with animals. In short, it produces some of the key features of the reorientation 

task—however, it does so without creating a cognitive map, and even without 

representing a goal. Furthermore, observations of antiSLAM’s reorientation task 

behaviour indicated that a crucial behavioural measure, the path taken by an agent 

as it moves through the arena, is critical. Such paths are rarely reported in studies 

of reorientation.

The reorienting robots discussed above are fairly recent descendants of Grey 

Walter’s (1963) Tortoises, but their more ancient ancestors are the eighteenth-

century life-mimicking, clockwork automata (Wood, 2002). These devices brought 

into sharp focus the philosophical issues concerning the comparison of man and 

machine that was central to Cartesian philosophy (Grenville, 2001; Wood, 2002). 

Religious tensions concerning the mechanistic nature of man, and the spiritual 

nature of clockwork automata, were soothed by dualism: automata and animals 
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were machines. Men too were machines, but unlike automata, they also had souls. 

It was the appearance of clockwork automata that led to their popularity, as well as 

to their conflicts with the church. “Until the scientific era, what seemed most alive 

to people was what most looked like a living being. The vitality accorded to an object 

was a function primarily of its form” (Grey Walter, 1963, p. 115).

In contrast, Grey Walter’s Tortoises were not attempts to reproduce appear-

ances, but were instead simulations of more general and more abstract abilities cen-

tral to biological agents,

exploration, curiosity, free-will in the sense of unpredictability, goal-seeking, self-

regulation, avoidance of dilemmas, foresight, memory, learning, forgetting, associa-

tion of ideas, form recognition, and the elements of social accommodation. Such is 

life. (Grey Walter, 1963, p. 120) 

By situating and embodying his machines, Grey Walter invented a new kind of 

scientific tool that produced behaviours that were creative and unpredictable, 

governed by nonlinear relationships between internal mechanisms and the sur-

rounding, dynamic world.

Modern machines that mimic lifelike behaviour still raise serious questions 

about what it is to be human. To Wood (2002, p. xxvii) all automata were presump-

tions “that life can be simulated by art or science or magic. And embodied in each 

invention is a riddle, a fundamental challenge to our perception of what makes us 

human.” The challenge is that if the lifelike behaviours of the Tortoises and their 

descendants are merely feedback loops between simple mechanisms and their envi-

ronments, then might the same be true of human intelligence?

This challenge is reflected in some of roboticist Rodney Brooks’ remarks in 

Errol Morris’ 1997 documentary Fast, Cheap & Out of Control. Brooks begins by 

describing one of his early robots: “To an observer it appears that the robot has 

intentions and it has goals and it is following people and chasing prey. But it’s just 

the interaction of lots and lots of much simpler processes.” Brooks then considers 

extending this view to human cognition: “Maybe that’s all there is. Maybe a lot of 

what humans are doing could be explained this way.”

But as the segment in the documentary proceeds, Brooks, the pioneer of behav-

iour-based robotics, is reluctant to believe that humans are similar types of devices: 

When I think about it, I can almost see myself as being made up of thousands and 

thousands of little agents doing stuff almost independently. But at the same time I 

fall back into believing the things about humans that we all believe about humans 

and living life that way. Otherwise I analyze it too much; life becomes almost mean-

ingless. (Morris, 1997)

Conflicts like those voiced by Brooks are brought to the forefront when embodied 
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cognitive science ventures to study humanoid robots that are designed to exploit 

social environments and interactions (Breazeal, 2002; Turkle, 2011).

5.11 Robotic Moments in Social Environments

The embodied approach has long recognized that an agent’s environment is much 

more that a static array of stimuli (Gibson, 1979; Neisser, 1976; Scribner & Tobach, 

1997; Vygotsky, 1986). “The richest and most elaborate affordances of the environ-

ment are provided by other animals and, for us, other people” (Gibson, 1979, p. 135). 

A social environment is a rich source of complexity and ranges from dynamic inter-

actions with other agents to cognitive scaffolding provided by cultural conventions. 

“All higher mental processes are primarily social phenomena, made possible by cog-

nitive tools and characteristic situations that have evolved in the course of history” 

(Neisser, 1976, p. 134).

In the most basic sense of social, multiple agents in a shared world produce a 

particularly complex source of feedback between each other’s actions. “What the 

other animal affords the observer is not only behaviour but also social interaction. 

As one moves so does the other, the one sequence of action being suited to the other 

in a kind of behavioral loop” (Gibson, 1979, p. 42).

Grey Walter (1963) explored such behavioural loops when he placed two 

Tortoises in the same room. Mounted lights provided particularly complex stim-

uli in this case, because robot movements would change the position of the two 

lights, which in turn altered subsequent robot behaviours. In describing a photo-

graphic record of one such interaction, Grey Walter called the social dynamics of 

his machines,

the formation of a cooperative and a competitive society. . . . When the two crea-

tures are released at the same time in the dark, each is attracted by the other’s 

headlight but each in being attracted extinguishes the source of attraction to the 

other. The result is a stately circulating movement of minuet-like character; when-

ever the creatures touch they become obstacles and withdraw but are attracted 

again in rhythmic fashion. (Holland, 2003a, p. 2104)

Similar behavioural loops have been exploited to explain the behaviour of larger col-

lections of interdependent agents, such as flocks of flying birds or schools of swim-

ming fish (Nathan & Barbosa, 2008; Reynolds, 1987). Such an aggregate presents 

itself as another example of a superorganism, because the synchronized movements 

of flock members give “the strong impression of intentional, centralized control” 

(Reynolds, 1987, p. 25). However, this impression may be the result of local, stigmer-

gic interactions in which an environment chiefly consists of other flock members in 

an agent’s immediate vicinity.
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In his pioneering work on simulating the flight of a flock of artificial birds, 

called boids, Reynolds (1987) created lifelike flocking behaviour by having each 

independently flying boid adapt its trajectory according to three simple rules: avoid 

collision with nearby flock mates, match the velocity of nearby flock mates, and 

stay close to nearby flock mates. A related model (Couzin et al., 2005) has been suc-

cessfully used to predict movement of human crowds (Dyer et al., 2008; Dyer et al., 

2009; Faria et al., 2010).

However, many human social interactions are likely more involved than the 

simple behavioural loops that defined the social interactions amongst Grey Walter’s 

(1963) Tortoises or the flocking behaviour of Reynolds’ (1987) boids. These interac-

tions are possibly still behavioural loops, but they may be loops that involve process-

ing special aspects of the social environment. This is because it appears that the 

human brain has a great deal of neural circuitry devoted to processing specific kinds 

of social information.

Social cognition is fundamentally involved with how we understand others 

(Lieberman, 2007). One key avenue to such understanding is our ability to use and 

interpret facial expressions (Cole, 1998; Etcoff & Magee, 1992). There is a long his-

tory of evidence that indicates that our brains have specialized circuitry for process-

ing faces. Throughout the eighteenth and nineteenth centuries, there were many 

reports of patients whose brain injuries produced an inability to recognize faces 

but did not alter the patients’ ability to identify other visual objects. This condition 

was called prosopagnosia, for “face blindness,” by German neuroscientist Joachim 

Bodamer in a famous 1947 manuscript (Ellis & Florence, 1990). In the 1980s, record-

ings from single neurons in the monkey brain revealed cells that appeared to be tai-

lored to respond to specific views of monkey faces (Perrett, Mistlin, & Chitty, 1987; 

Perrett, Rolls, & Caan, 1982). At that time, though, it was unclear whether analogous 

neurons for face processing were present in the human brain.

Modern brain imaging techniques now suggest that the human brain has 

an elaborate hierarchy of co-operating neural systems for processing faces and 

their expressions (Haxby, Hoffman, & Gobbini, 2000, 2002). Haxby, Hoffman, and 

Gobbini (2000, 2002) argue for the existence of multiple, bilateral brain regions 

involved in different face perception functions. Some of these are core systems that 

are responsible for processing facial invariants, such as relative positions of the eyes, 

nose, and mouth, which are required for recognizing faces. Others are extended 

systems that process dynamic aspects of faces in order to interpret, for instance, 

the meanings of facial expressions. These include subsystems that co-operatively 

account for lip reading, following gaze direction, and assigning affect to dynamic 

changes in expression.

Facial expressions are not the only source of social information. Gestures and 

actions, too, are critical social stimuli. Evidence also suggests that mirror neurons in 
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the human brain (Gallese et al., 1996; Iacoboni, 2008; Rizzolatti & Craighero, 2004; 

Rizzolatti, Fogassi, & Gallese, 2006) are specialized for both the generation and 

interpretation of gestures and actions.

Mirror neurons were serendipitously discovered in experiments in which motor 

neurons in region F5 were recorded when monkeys performed various reaching 

actions (Di Pellegrino et al., 1992). By accident, it was discovered that many of the 

neurons that were active when a monkey performed an action also responded when 

similar actions were observed being performed by another: 

After the initial recording experiments, we incidentally observed that some experi-

menter’s actions, such as picking up the food or placing it inside the testing box, 

activated a relatively large proportion of F5 neurons in the absence of any overt 

movement of the monkey. (Di Pellegrino et al., 1992, p. 176)

The chance discovery of mirror neurons has led to an explosion of research into 

their behaviour (Iacoboni, 2008). It has been discovered that when the neurons fire, 

they do so for the entire duration of the observed action, not just at its onset. They 

are grasp specific: some respond to actions involving precision grips, while others 

respond to actions involving larger objects. Some are broadly tuned, in the sense 

that they will be triggered when a variety of actions are observed, while others are 

narrowly tuned to specific actions. All seem to be tuned to object-oriented action: 

a mirror neuron will respond to a particular action on an object, but it will fail to 

respond to the identical action if no object is present.

While most of the results described above were obtained from studies of the 

monkey brain, there is a steadily growing literature indicating that the human brain 

also has a mirror system (Buccino et al., 2001; Iacoboni, 2008).

Mirror neurons are not solely concerned with hand and arm movements. For 

instance, some monkey mirror neurons respond to mouth movements, such as lip 

smacking (Ferrari et al., 2003). Similarly, the human brain has a mirror system 

for the act of touching (Keysers et al., 2004). Likewise, another part of the human 

brain, the insula, may be a mirror system for emotion (Wicker et al., 2003). For 

example, it generates activity when a subject experiences disgust, and also when a 

subject observes the facial expressions of someone else having a similar experience.

Two decades after its discovery, extensive research on the mirror neuron 

system has led some researchers to claim that it provides the neural substrate 

for social cognition and imitative learning (Gallese & Goldman, 1998; Gallese, 

Keysers, & Rizzolatti, 2004; Iacoboni, 2008), and that disruptions of this system may 

be responsible for autism (Williams et al., 2001). The growing understanding of the 

mirror system and advances in knowledge about the neuroscience of face percep-

tion have heralded a new interdisciplinary research program, called social cogni-

tive neuroscience (Blakemore, Winston, & Frith, 2004; Lieberman, 2007; Ochsner & 

Lieberman, 2001).
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It may once have seemed foolhardy to work out connections between fundamental 

neurophysiological mechanisms and highly complex social behaviour, let alone 

to decide whether the mechanisms are specific to social processes. However . . . 

neuroimaging studies have provided some encouraging examples. (Blakemore, 

Winston, & Frith, 2004, p. 216)

The existence of social cognitive neuroscience is a consequence of humans evolving, 

embodied and situated, in a social environment that includes other humans and 

their facial expressions, gestures, and actions. The modern field of sociable robotics 

(Breazeal, 2002) attempts to develop humanoid robots that are also socially embod-

ied and situated. One purpose of such robots is to provide a medium for studying 

human social cognition via forward engineering.

A second, applied purpose of sociable robotics is to design robots to work 

co-operatively with humans by taking advantage of a shared social environment. 

Breazeal (2002) argued that because the human brain has evolved to be expert in 

social interaction, “if a technology behaves in a socially competent manner, we 

evoke our evolved social machinery to interact with it” (p. 15). This is particu-

larly true if a robot’s socially competent behaviour is mediated by its humanoid 

embodiment, permitting it to gesture or to generate facial expressions. “When a 

robot holds our gaze, the hardwiring of evolution makes us think that the robot is 

interested in us. When that happens, we feel a possibility for deeper connection” 

(Turkle, 2011, p. 110). Sociable robotics exploits the human mechanisms that offer 

this deeper connection so that humans won’t require expert training in interacting 

with sociable robots.

A third purpose of sociable robotics is to explore cognitive scaffolding, which 

in this literature is often called leverage, in order to extend the capabilities of 

robots. For instance, many of the famous platforms of sociable robotics—includ-

ing Cog (Brooks et al., 1999; Scassellati, 2002), Kismet (Breazeal, 2002, 2003, 2004), 

Domo (Edsinger-Gonzales & Weber, 2004), and Leanardo (Breazeal, Gray, & Berlin, 

2009)—are humanoid in form and are social learners—their capabilities advance 

through imitation and through interacting with human partners. Furthermore, the 

success of the robot’s contribution to the shared social environment leans heavily on 

the contributions of the human partner. “Edsinger thinks of it as getting Domo to 

do more ‘by leveraging the people.’ Domo needs the help. It understands very little 

about any task as a whole” (Turkle, 2011, p. 157).

The leverage exploited by a sociable robot takes advantage of behavioural loops 

mediated by the expressions and gestures of both robot and human partner. For 

example, consider the robot Kismet (Breazeal, 2002). Kismet is a sociable robotic 

“infant,” a dynamic, mechanized head that participates in social interactions. 

Kismet has auditory and visual perceptual systems that are designed to perceive 

social cues provided by a human “caregiver.” Kismet can also deliver such social cues 
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by changing its facial expression, directing its gaze to a location in a shared environ-

ment, changing its posture, and vocalizing.

When Kismet is communicating with a human, it uses the interaction to fulfill 

internal drives or needs (Breazeal, 2002). Kismet has three drives: a social drive to 

be in the presence of and stimulated by people, a stimulation drive to be stimu-

lated by the environment in general (e.g., by colourful toys), and a fatigue drive that 

causes the robot to “sleep.” Kismet sends social signals to satisfy these drives. It can 

manipulate its facial expression, vocalization, and posture to communicate six basic 

emotions: anger, disgust, fear, joy, sorrow, and surprise. These expressions work 

to meet the drives by manipulating the social environment in such a way that the 

environment changes to satisfy Kismet’s needs.

For example, an unfulfilled social drive causes Kismet to express sadness, which 

initiates social responses from a caregiver. When Kismet perceives the caregiver’s 

face, it wiggles its ears in greeting, and initiates a playful dialog to engage the car-

egiver. Kismet will eventually habituate to these interactions and then seek to fulfill 

a stimulation drive by coaxing the caregiver to present a colourful toy. However, if 

this presentation is too stimulating—if the toy is presented too closely or moved 

too quickly—the fatigue drive will produce changes in Kismet’s behaviour that 

attempt to decrease this stimulation. If the world does not change in the desired 

way, Kismet will end the interaction by “sleeping.” “But even at its worst, Kismet 

gives the appearance of trying to relate. At its best, Kismet appears to be in continu-

ous, expressive conversation” (Turkle, 2011, p. 118).

Kismet’s behaviour leads to lengthy, dynamic interactions that are realisti-

cally social. A young girl interacting with Kismet “becomes increasingly happy and 

relaxed. Watching girl and robot together, it is easy to see Kismet as increasingly 

happy and relaxed as well. Child and robot are a happy couple” (Turkle, 2011, p. 121). 

Similar results occur when adults converse with Kismet. “One moment, Rich plays 

at a conversation with Kismet, and the next, he is swept up in something that starts 

to feel real” (p. 154).

Even the designer of a humanoid robot can be “swept up” by their interactions 

with it. Domo (Edsinger-Gonzales & Weber, 2004) is a limbed humanoid robot that 

is intended to be a physical helper, by performing such actions as placing objects 

on shelves. It learns to behave by physically interacting with a human teacher. 

These physical interactions give even sophisticated users—including its designer, 

Edsinger—a strong sense that Domo is a social creature. Edsinger finds himself 

vacillating back and forth between viewing Domo as a creature or as being merely a 

device that he has designed.

For Edsinger, this sequence—experiencing Domo as having desires and then 

talking himself out of the idea—becomes familiar. For even though he is 

Domo’s programmer, the robot’s behaviour has not become dull or predictable. 
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Working together, Edsigner and Domo appear to be learning from each other. 

(Turkle, 2011, p. 156)

That sociable robots can generate such strong reactions within humans is poten-

tially concerning. The feeling of the uncanny occurs when the familiar is presented 

in unfamiliar form (Freud, 1976). The uncanny results when standard categories 

used to classify the world disappear (Turkle, 2011). Turkle (2011) called one such 

instance, when a sociable robot is uncritically accepted as a creature, the robotic 

moment. Edsinger’s reactions to Domo illustrated its occurrence: “And this is where 

we are in the robotic moment. One of the world’s most sophisticated robot ‘users’ 

cannot resist the idea that pressure from a robot’s hand implies caring” (p. 160).

At issue in the robotic moment is a radical recasting of the posthu-

man (Hayles, 1999). “The boundaries between people and things are shifting” 

(Turkle, 2011, p. 162). The designers of sociable robots scaffold their creations by 

taking advantage of the expert social abilities of humans. The robotic moment, 

though, implies a dramatic rethinking of what such human abilities entail. Might 

human social interactions be reduced to mere sense-act cycles of the sort employed 

in devices like Kismet? “To the objection that a robot can only seem to care or 

understand, it has become commonplace to get the reply that people, too, may only 

seem to care or understand” (p. 151).

In Hayles’ (1999) definition of posthumanism, the body is dispensable, because 

the essence of humanity is information. But this is an extremely classical view. An 

alternative, embodied posthumanism is one in which the mind is dispensed with, 

because what is fundamental to humanity is the body and its engagement with 

reality. “From its very beginnings, artificial intelligence has worked in this space 

between a mechanical view of people and a psychological, even spiritual, view of 

machines” (Turkle, 2011, p. 109). The robotic moment leads Turkle to ask “What will 

love be? And what will it mean to achieve ever-greater intimacy with our machines? 

Are we ready to see ourselves in the mirror of the machine and to see love as our 

performances of love?” (p. 165).

5.12 The Architecture of Mind Reading

Social interactions involve coordinating the activities of two or more agents. 

Even something as basic as a conversation between two people is highly coordi-

nated, with voices, gestures, and facial expressions used to orchestrate joint actions 

(Clark, 1996). Fundamental to coordinating such social interactions is our ability to 

predict the actions, interest, and emotions of others. Generically, the study of the 

ability to make such predictions is called the study of theory of mind, because many 

theorists argue that these predictions are rooted in our assumption that others, like 

us, have minds or mental states. As a result, researchers call our ability to foretell 
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others’ actions mind reading or mentalizing (Goldman, 2006). “Having a mental 

state and representing another individual as having such a state are entirely dif-

ferent matters. The latter activity, mentalizing or mind reading, is a second-order 

activity: It is mind thinking about minds” (p. 3).

There are three general, competing theories about how humans perform 

mind reading (Goldman, 2006). The first is rationality theory, a version of which 

was introduced in Chapter 3 in the form of the intentional stance (Dennett, 1987). 

According to rationality theory, mind reading is accomplished via the ascription of 

contents to the putative mental states of others. In addition, we assume that other 

agents are rational. As a result, future behaviours are predicted by inferring what 

future behaviours follow rationally from the ascribed contents. For instance, if we 

ascribe to someone the belief that piano playing can only be improved by practising 

daily, and we also ascribe to them the desire to improve at piano, then according to 

rationality theory it would be natural to predict that they would practise piano daily.

A second account of mentalizing is called theory-theory (Goldman, 2006). 

Theory-theory emerged from studies of the development of theory of mind 

(Gopnik & Wellman, 1992; Wellman, 1990) as well as from research on cognitive 

development in general (Gopnik & Meltzoff, 1997; Gopnik, Meltzoff, & Kuhl, 1999). 

Theory-theory is the position that our understanding of the world, including our 

understanding of other people in it, is guided by naïve theories (Goldman, 2006). 

These theories are similar in form to the theories employed by scientists, because 

a naïve theory of the world will—eventually—be revised in light of conflicting 

evidence.

Babies and scientists share the same basic cognitive machinery. They have similar 

programs, and they reprogram themselves in the same way. They formulate theo-

ries, make and test predictions, seek explanations, do experiments, and revise what 

they know in the light of new evidence. (Gopnik, Meltzoff, & Kuhl, 1999, p. 161)

There is no special role for a principle of rationality in theory-theory, which distin-

guishes it from rationality theory (Goldman, 2006). However, it is clear that both of 

these approaches to mentalizing are strikingly classical in nature. This is because 

both rely on representations. One senses the social environment, then thinks (by 

applying rationality or by using a naïve theory), and then finally predicts future 

actions of others. A third theory of mind reading, simulation theory, has emerged 

as a rival to theory-theory, and some of its versions posit an embodied account of 

mentalizing.

Simulation theory is the view that people mind read by replicating or emulating 

the states of others (Goldman, 2006). In simulation theory, “mindreading includes 

a crucial role for putting oneself in others’ shoes. It may even be part of the brain’s 

design to generate mental states that match, or resonate with, states of people one 

is observing” (p. 4).
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The modern origins of simulation theory rest in two philosophical papers from 

the 1980s, one by Gordon (1986) and one by Heal (1986). Gordon (1986) noted that 

the starting point for explaining how we predict the behaviour of others should be 

investigating our ability to predict our own actions. We can do so with exceedingly 

high accuracy because “our declarations of immediate intention are causally tied to 

some actual precursor of behavior: perhaps tapping into the brain’s updated behav-

ioral ‘plans’ or into ‘executive commands’ that are about to guide the relevant motor 

sequences” (p. 159).

For Gordon (1986), our ability to accurately predict our own behaviour was a 

kind of practical reasoning. He proceeded to argue that such reasoning could also 

be used in attempts to predict others. We could predict others, or predict our own 

future behaviour in hypothetical situations, by simulating practical reasoning.

To simulate the appropriate practical reasoning I can engage in a kind of pretend-

play: pretend that the indicated conditions actually obtain, with all other condi-

tions remaining (so far as is logically possible and physically probable) as they pres-

ently stand; then continuing the make-believe try to ’make up my mind’ what to do 

given these (modified) conditions. (Gordon, 1986, p. 160) 

A key element of such “pretend play” is that behavioural output is taken offline.

Gordon’s proposal causes simulation theory to depart from the other two the-

ories of mind reading by reducing its reliance on ascribed mental contents. For 

Gordon (1986, p. 162), when someone simulates practical reasoning to make predic-

tions about someone else, “they are ‘putting themselves in the other’s shoes’ in one 

sense of that expression: that is, they project themselves into the other’s situation, 

but without any attempt to project themselves into, as we say, the other’s ‘mind.’” 

Heal (1986) proposed a similar approach, which she called replication.

A number of different variations of simulation theory have emerged (Davies 

& Stone, 1995a, 1995b), making a definitive statement of its fundamental charac-

teristics problematic (Heal, 1996). Some versions of simulation theory remain very 

classical in nature. For instance, simulation could proceed by setting the values of 

a number of variables to define a situation of interest. These values could then be 

provided to a classical reasoning system, which would use these represented values 

to make plausible predictions.

Suppose I am interested in predicting someone’s action. . . . I place myself in what 

I take to be his initial state by imagining the world as it would appear from his 

point of view and I then deliberate, reason and reflect to see what decision emerges. 

(Heal, 1996, p. 137)

Some critics of simulation theory argue that it is just as Cartesian as other mind 

reading theories (Gallagher, 2005). For instance, Heal’s (1986) notion of replication 

exploits shared mental abilities. For her, mind reading requires only the assumption 
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that others “are like me in being thinkers, that they possess the same fundamental 

cognitive capacities and propensities that I do” (p. 137).

However, other versions of simulation theory are far less Cartesian or classical 

in nature. Gordon (1986, pp. 17–18) illustrated such a theory with an example from 

Edgar Allen Poe’s The Purloined Letter: 

When I wish to find out how wise, or how stupid, or how good, or how wicked is 

any one, or what are his thoughts at the moment, I fashion the expression of my 

face, as accurately as possible, in accordance with the expression of his, and then 

wait to see what thoughts or sentiments arise in my mind or heart, as if to match or 

correspond with the expression. (Gordon, 1986, pp. 17–18)

In Poe’s example, mind reading occurs not by using our reasoning mechanisms 

to take another’s place, but instead by exploiting the fact that we share similar 

bodies. Songwriter David Byrne (1980) takes a related position in Seen and Not 

Seen, in which he envisions the implications of people being able to mould their 

appearance according to some ideal: “they imagined that their personality would 

be forced to change to fit the new appearance. . . .This is why first impressions 

are often correct.” Social cognitive neuroscience transforms such views from art 

into scientific theory.

Ultimately, subjective experience is a biological data format, a highly specific mode 

of presenting about the world, and the Ego is merely a complex physical event—an 

activation pattern in your central nervous system. (Metzinger, 208, p. 208)

Philosopher Robert Gordon’s version of simulation theory (Gordon, 1986, 1992, 

1995, 1999, 2005a, 2005b, 2007, 2008) provides an example of a radically embodied 

theory of mind reading. Gordon (2008, p. 220) could “see no reason to hold on to the 

assumption that our psychological competence is chiefly dependent on the applica-

tion of concepts of mental states.” This is because his simulation theory exploited the 

body in exactly the same way that Brooks’ (1999) behaviour-based robots exploited 

the world: as a replacement for representation (Gordon, 1999). “One’s own behav-

ior control system is employed as a manipulable model of other such systems. . . . 

Because one human behavior control system is being used to model others, general 

information about such systems is unnecessary” (p. 765).

What kind of evidence exists to support a more embodied or less Cartesian 

simulation theory? Researchers have argued that simulation theory is supported by 

the discovery of the brain mechanisms of interest to social cognitive neuroscience 

(Lieberman, 2007). In particular, it has been argued that mirror neurons provide 

the neural substrate that instantiates simulation theory (Gallese & Goldman, 1998): 

“[Mirror neuron] activity seems to be nature’s way of getting the observer into the 

same ‘mental shoes’ as the target—exactly what the conjectured simulation heuris-

tic aims to do” (p. 497–498).
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Importantly, the combination of the mirror system and simulation theory 

implies that the “mental shoes” involved in mind reading are not symbolic repre-

sentations. They are instead motor representations; they are actions-on-objects as 

instantiated by the mirror system. This has huge implications for theories of social 

interactions, minds, and selves: 

Few great social philosophers of the past would have thought that social under-

standing had anything to do with the pre-motor cortex, and that ‘motor ideas’ 

would play such a central role in the emergence of social understanding. Who could 

have expected that shared thought would depend upon shared ‘motor representa-

tions’? (Metzinger, 2009, p. 171)

If motor representations are the basis of social interactions, then simulation theory 

becomes an account of mind reading that stands as a reaction against classical, rep-

resentational theories. Mirror neuron explanations of simulation theory replace 

sense-think-act cycles with sense-act reflexes in much the same way as was the case 

in behaviour-based robotics. Such a revolutionary position is becoming common-

place for neuroscientists who study the mirror system (Metzinger, 2009).

Neuroscientist Vittorio Gallese, one of the discoverers of mirror neurons, pro-

vides an example of this radical position: 

Social cognition is not only social metacognition, that is, explicitly thinking about 

the contents of some else’s mind by means of abstract representations. We can cer-

tainly explain the behavior of others by using our complex and sophisticated men-

talizing ability. My point is that most of the time in our daily social interactions, we 

do not need to do this. We have a much more direct access to the experiential world 

of the other. This dimension of social cognition is embodied, in that it mediates 

between our multimodal experiential knowledge of our own lived body and the way 

we experience others. (Metzinger, 2009, p. 177)

Cartesian philosophy was based upon an extraordinary act of skepticism (Descartes, 

1996). In his search for truth, Descartes believed that he could not rely on his knowl-

edge of the world, or even of his own body, because such knowledge could be illusory.

I shall think that the sky, the air, the earth, colors, shapes, sounds, and all exter-

nal things are merely the delusions of dreams which he [a malicious demon] has 

devised to ensnare my judgment. I shall consider myself as not having hands or 

eyes, or flesh, or blood or senses, but as falsely believing that I have all these things. 

(Descartes, 1996, p. 23) 

The disembodied Cartesian mind is founded on the myth of the external world.

Embodied theories of mind invert Cartesian skepticism. The body and the 

world are taken as fundamental; it is the mind or the holistic self that has become 

the myth. However, some have argued that our notion of a holistic internal self 
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is illusory (Clark, 2003; Dennett, 1991, 2005; Metzinger, 2009; Minsky, 1985, 2006; 

Varela, Thompson, & Rosch, 1991). “We are, in short, in the grip of a seductive but 

quite untenable illusion: the illusion that the mechanisms of mind and self can ulti-

mately unfold only on some privileged stage marked out by the good old-fashioned 

skin-bag” (Clark, 2003, p. 27).

5.13 Levels of Embodied Cognitive Science

Classical cognitive scientists investigate cognitive phenomena at multiple levels 

(Dawson, 1998; Marr, 1982; Pylyshyn, 1984). Their materialism commits them to 

exploring issues concerning implementation and architecture. Their view that the 

mind is a symbol manipulator leads them to seek the algorithms responsible for 

solving cognitive information problems. Their commitment to logicism and ration-

ality has them deriving formal, mathematical, or logical proofs concerning the capa-

bilities of cognitive systems.

Embodied cognitive science can also be characterized as adopting these same 

multiple levels of investigation. Of course, this is not to say that there are not also 

interesting technical differences between the levels of investigation that guide 

embodied cognitive science and those that characterize classical cognitive science.

By definition, embodied cognitive science is committed to providing imple-

mentational accounts. Embodied cognitive science is an explicit reaction against 

Cartesian dualism and its modern descendant, methodological solipsism. In its 

emphasis on environments and embodied agents, embodied cognitive science is 

easily as materialist as the classical approach. Some of the more radical positions 

in embodied cognitive science, such as the myth of the self (Metzinger, 2009) or 

the abandonment of representation (Chemero, 2009), imply that implementational 

accounts may be even more critical for the embodied approach than is the case for 

classical researchers.

However, even though embodied cognitive science shares the implementa-

tional level of analysis with classical cognitive science, this does not mean that it 

interprets implementational evidence in the same way. For instance, consider single 

cell recordings from visual neurons. Classical cognitive science, with its emphasis 

on the creation of internal models of the world, views such data as providing evi-

dence about what kinds of visual features are detected, to be later combined into 

more complex representations of objects (Livingstone & Hubel, 1988). In contrast, 

embodied cognitive scientists see visual neurons as being involved not in modelling, 

but instead in controlling action. As a result, single cell recordings are more likely to 

be interpreted in the context of ideas such as the affordances of ecological percep-

tion (Gibson, 1966, 1979; Noë, 2004). “Our brain does not simply register a chair, a 

teacup, an apple; it immediately represents the seen object as what I could do with 
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it—as an affordance, a set of possible behaviors” (Metzinger, 2009, p. 167). In short, 

while embodied and classical cognitive scientists seek implementational evidence, 

they are likely to interpret it very differently.

The materialism of embodied cognitive science leads naturally to propos-

als of functional architectures. An architecture is a set of primitives, a physically 

grounded toolbox of core processes, from which cognitive phenomena emerge. 

Explicit statements of primitive processes are easily found in embodied cognitive 

science. For example, it is common to see subsumption architectures explicitly 

laid out in accounts of behaviour-based robots (Breazeal, 2002; Brooks, 1999, 2002; 

Kube & Bonabeau, 2000; Scassellati, 2002).

Of course, the primitive components of a typical subsumption architecture are 

designed to mediate actions on the world, not to aid in the creation of models of 

it. As a result, the assumptions underlying embodied cognitive science’s primitive 

sense-act cycles are quite different from those underlying classical cognitive sci-

ence’s primitive sense-think-act processing.

As well, embodied cognitive science’s emphasis on the fundamental role of an 

agent’s environment can lead to architectural specifications that can dramatically 

differ from those found in classical cognitive science. For instance, a core aspect 

of an architecture is control—the mechanisms that choose which primitive opera-

tion or operations to execute at any given time. Typical classical architectures will 

internalize control; for example, the central executive in models of working memory 

(Baddeley, 1986). In contrast, in embodied cognitive science an agent’s environ-

ment is critical to control; for example, in architectures that exploit stigmergy 

(Downing & Jeanne, 1988; Holland & Melhuish, 1999; Karsai, 1999; Susi & Ziemke, 

2001; Theraulaz & Bonabeau, 1999). This suggests that the notion of the extended 

mind is really one of an extended architecture; control of processing can reside out-

side of an agent.

When embodied cognitive scientists posit an architectural role for the environ-

ment, as is required in the notion of stigmergic control, this means that an agent’s 

physical body must also be a critical component of an embodied architecture. One 

reason for this is that from the embodied perspective, an environment cannot be 

defined in the absence of an agent’s body, as in proposing affordances (Gibson, 1979). 

A second reason for this is that if an embodied architecture defines sense-act primi-

tives, then the available actions that are available are constrained by the nature 

of an agent’s embodiment. A third reason for this is that some environments are 

explicitly defined, at least in part, by bodies. For instance, the social environment 

for a sociable robot such as Kismet (Breazeal, 2002) includes its moveable ears, eye-

brows, lips, eyelids, and head, because it manipulates these bodily components to 

coordinate its social interactions with others.
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Even though an agent’s body can be part of an embodied architecture does not 

mean that this architecture is not functional. The key elements of Kismet’s expres-

sive features are shape and movement; the fact that Kismet is not flesh is irrelevant 

because its facial features are defined in terms of their function.

In the robotic moment, what you are made of—silicon, metal, flesh—pales in com-

parison with how you behave. In any given circumstance, some people and some 

robots are competent and some not. Like people, any particular robot needs to be 

judged on its own merits. (Turkle, 2011, p. 94)

That an agent’s body can be part of a functional architecture is an idea that is for-

eign to classical cognitive science. It also leads to an architectural complication that 

may be unique to embodied cognitive science. Humans have no trouble relating to, 

and accepting, sociable robots that are obviously toy creatures, such as Kismet or 

the robot dog Aibo (Turkle, 2011). In general, as the appearance and behaviour of 

such robots becomes more lifelike, their acceptance will increase.

However, as robots become closer in resemblance to humans, they produce 

a reaction called the uncanny valley (MacDorman & Ishiguro, 2006; Mori, 1970). 

The uncanny valley is seen in a graph that plots human acceptance of robots as a 

function of robot appearance. The uncanny valley is the part of the graph in which 

acceptance, which has been steadily growing as appearance grows more lifelike, 

suddenly plummets when a robot’s appearance is “almost human”—that is, when it 

is realistically human, but can still be differentiated from biological humans.

The uncanny valley is illustrated in the work of roboticist Hiroshi Ishiguro, who,

built androids that reproduced himself, his wife, and his five-year old daughter. The 

daughter’s first reaction when she saw her android clone was to flee. She refused to 

go near it and would no longer visit her father’s laboratory. (Turkle, 2011, p. 128) 

Producing an adequate architectural component—a body that avoids the uncanny 

valley—is a distinctive challenge for embodied cognitive scientists who ply their 

trade using humanoid robots.

In embodied cognitive science, functional architectures lead to algorithmic 

explorations. We saw that when classical cognitive science conducts such explora-

tions, it uses reverse engineering to attempt to infer the program that an informa-

tion processor uses to solve an information processing problem. In classical cogni-

tive science, algorithmic investigations almost always involve observing behaviour, 

often at a fine level of detail. Such behavioural observations are the source of rela-

tive complexity evidence, intermediate state evidence, and error evidence, which 

are used to place constraints on inferred algorithms.

Algorithmic investigations in classical cognitive science are almost exclusively 

focused on unseen, internal processes. Classical cognitive scientists use behavioural 

observations to uncover the algorithms hidden within the “black box” of an agent. 
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Embodied cognitive science does not share this exclusive focus, because it attrib-

utes some behavioural complexities to environmental influences. Apart from this 

important difference, though, algorithmic investigations—specifically in the form 

of behavioural observations—are central to the embodied approach. Descriptions 

of behaviour are the primary product of forward engineering; examples in behav-

iour-based robotics span the literature from time lapse photographs of Tortoise tra-

jectories (Grey Walter, 1963) to modern reports of how, over time, robots sort or 

rearrange objects in an enclosure (Holland & Melhuish, 1999; Melhuish et al., 2006; 

Scholes et al., 2004; Wilson et al., 2004). At the heart of such behavioural accounts 

is acceptance of Simon’s (1969) parable of the ant. The embodied approach cannot 

understand an architecture by examining its inert components. It must see what 

emerges when this architecture is embodied in, situated in, and interacting with an 

environment.

When embodied cognitive science moves beyond behaviour-based robotics, 

it relies on some sorts of behavioural observations that are not employed as fre-

quently in classical cognitive science. For example, many embodied cognitive scien-

tists exhort the phenomenological study of cognition (Gallagher, 2005; Gibbs, 2006; 

Thompson, 2007; Varela, Thompson, & Rosch, 1991). Phenomenology explores how 

people experience their world and examines how the world is meaningful to us via 

our experience (Brentano, 1995; Husserl, 1965; Merleau-Ponty, 1962).

Just as enactive theories of perception (Noë, 2004) can be viewed as being 

inspired by Gibson’s (1979) ecological account of perception, phenomenological 

studies within embodied cognitive science (Varela, Thompson, & Rosch, 1991) are 

inspired by the philosophy of Maurice Merleau-Ponty (1962). Merleau-Ponty rejected 

the Cartesian separation between world and mind: “Truth does not ‘inhabit’ only 

‘the inner man,’ or more accurately, there is no inner man, man is in the world, and 

only in the world does he know himself ” (p. xii). Merleau-Ponty strove to replace this 

Cartesian view with one that relied upon embodiment. “We shall need to reawaken 

our experience of the world as it appears to us in so far as we are in the world through 

our body, and in so far as we perceive the world with our body” (p. 239).

Phenomenology with modern embodied cognitive science is a call to further 

pursue Merleau-Ponty’s embodied approach.

What we are suggesting is a change in the nature of reflection from an abstract, dis-

embodied activity to an embodied (mindful), open-ended reflection. By embodied, 

we mean reflection in which body and mind have been brought together. (Varela, 

Thompson, & Rosch, 1991, p. 27) 

However, seeking evidence from such reflection is not necessarily straightforward 

(Gallagher, 2005). For instance, while Gallagher acknowledges that the body is 

critical in its shaping of cognition, he also notes that many aspects of our bodily 
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interaction with the world are not available to consciousness and are therefore dif-

ficult to study phenomenologically.

Embodied cognitive science’s interest in phenomenology is an example of a 

reaction against the formal, disembodied view of the mind that classical cognitive 

science has inherited from Descartes (Devlin, 1996). Does this imply, then, that 

embodied cognitive scientists do not engage in the formal analyses that character-

ize the computational level of analysis? No. Following the tradition established by 

cybernetics (Ashby, 1956; Wiener, 1948), which made extensive use of mathematics 

to describe feedback relations between physical systems and their environments, 

embodied cognitive scientists too are engaged in computational investigations. 

Again, though, these investigations deviate from those conducted within classi-

cal cognitive science. Classical cognitive science used formal methods to develop 

proofs about what information processing problem was being solved by a system 

(Marr, 1982), with the notion of “information processing problem” placed in the 

context of rule-governed symbol manipulation. Embodied cognitive science oper-

ates in a very different context, because it has a different notion of information pro-

cessing. In this new context, cognition is not modelling or planning, but is instead 

coordinating action (Clark, 1997).

When cognition is placed in the context of coordinating action, one key ele-

ment that must be captured by formal analyses is that actions unfold in time. It has 

been argued that computational analyses conducted by classical researchers fail to 

incorporate the temporal element (Port & van Gelder, 1995a): “Representations are 

static structures of discrete symbols. Cognitive operations are transformations from 

one static symbol structure to the next. These transformations are discrete, effec-

tively instantaneous, and sequential” (p. 1). As such, classical analyses are deemed 

by some to be inadequate. When embodied cognitive scientists explore the com-

putational level, they do so with a different formalism, called dynamical systems 

theory (Clark, 1997; Port & van Gelder, 1995b; Shapiro, 2011).

Dynamical systems theory is a mathematical formalism that describes how sys-

tems change over time. In this formalism, at any given time a system is described as 

being in a state. A state is a set of variables to which values are assigned. The vari-

ables define all of the components of the system, and the values assigned to these 

variables describe the characteristics of these components (e.g., their features) at a 

particular time. At any moment of time, the values of its components provide the 

position of the system in a state space. That is, any state of a system is a point in a 

multidimensional space, and the values of the system’s variables provide the coor-

dinates of that point.

The temporal dynamics of a system describe how its characteristics change 

over time. These changes are captured as a path or trajectory through state space. 

Dynamical systems theory provides a mathematical description of such trajectories, 
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usually in the form of differential equations. Its utility was illustrated in Randall 

Beer’s (2003) analysis of an agent that learns to categorize objects, of circuits for 

associative learning (Phattanasri, Chiel, & Beer, 2007), and of a walking leg con-

trolled by a neural mechanism (Beer, 2010).

While dynamical systems theory provides a medium in which embodied cog-

nitive scientists can conduct computational analyses, it is also intimidating and 

difficult. “A common criticism of dynamical approaches to cognition is that they 

are practically intractable except in the simplest cases” (Shapiro, 2011, pp. 127–

128). This was exactly the situation that led Ashby (1956, 1960) to study feedback 

between multiple devices synthetically, by constructing the Homeostat. This does 

not mean, however, that computational analyses are impossible or fruitless. On the 

contrary, it is possible that such analyses can co-operate with the synthetic explora-

tion of models in an attempt to advance both formal and behavioural investigations 

(Dawson, 2004; Dawson, Dupuis, & Wilson, 2010).

In the preceding paragraphs we presented an argument that embodied cogni-

tive scientists study cognition at the same multiple levels of investigation that char-

acterize classical cognitive science. Also acknowledged is that embodied cognitive 

scientists are likely to view each of these levels slightly differently than their classi-

cal counterparts. Ultimately, that embodied cognitive science explores cognition at 

these different levels of analysis also implies that embodied cognitive scientists are 

also committed to the notion of validating their theories by seeking strong equiva-

lence. It stands to reason that the validity of a theory created within embodied cog-

nitive science would be best established by showing that this theory is supported at 

all of the different levels of investigation.

5.14 What Is Embodied Cognitive Science?

To review, the central claim of classical cognitive science is that cognition is compu-

tation, where computation is taken to be the manipulation of internal representa-

tions. From this perspective, classical cognitive science construes cognition as an 

iterative sense-think-act cycle. The “think” part of this cycle is emphasized, because 

it is responsible for modelling and planning. The “thinking” also stands as a required 

mentalistic buffer between sensing and acting, producing what is known as the clas-

sical sandwich (Hurley, 2001). The classical sandwich represents a modern form of 

Cartesian dualism, in the sense that the mental (thinking) is distinct from the physi-

cal (the world that is sensed, and the body that can act upon it) (Devlin, 1996).

Embodied cognitive science, like connectionist cognitive science, arises from the 

view that the core logicist assumptions of classical cognitive science are not adequate 

to explain human cognition (Dreyfus, 1992; Port & van Gelder, 1995b; Winograd & 

Flores, 1987b).
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The lofty goals of artificial intelligence, cognitive science, and mathematical lin-

guistics that were prevalent in the 1950s and 1960s (and even as late as the 1970s) 

have now given way to the realization that the ‘soft’ world of people and societies 

is almost certainly not amenable to a precise, predictive, mathematical analysis 

to anything like the same degree as is the ‘hard’ world of the physical universe. 

(Devlin, 1996, p. 344) 

As such a reaction, the key elements of embodied cognitive science can be portrayed 

as an inversion of elements of the classical approach.

While classical cognitive science abandons Cartesian dualism in one sense, 

by seeking materialist explanations of cognition, it remains true to it in another 

sense, through its methodological solipsism (Fodor, 1980). Methodological solip-

sism attempts to characterize and differentiate mental states without appealing to 

properties of the body or of the world (Wilson, 2004), consistent with the Cartesian 

notion of the disembodied mind.

In contrast, embodied cognitive science explicitly rejects methodological solip-

sism and the disembodied mind. Instead, embodied cognitive science takes to heart 

the message of Simon’s (1969) parable of the ant by recognizing that crucial con-

tributors to behavioural complexity include an organism’s environment and bodily 

form. Rather than creating formal theories of disembodied minds, embodied cogni-

tive scientists build embodied and situated agents.

Classical cognitive science adopts the classical sandwich (Hurley, 2001), con-

struing cognition as an iterative sense-think-act cycle. There are no direct links 

between sensing and acting from this perspective (Brooks, 1991); a planning pro-

cess involving the manipulation of internal models stands as a necessary intermedi-

ary between perceiving and acting.

In contrast, embodied cognitive science strives to replace sense-think-act pro-

cessing with sense-act cycles that bypass representational processing. Cognition is 

seen as the control of direct action upon the world rather than the reasoning about 

possible action. While classical cognitive science draws heavily from the symbol-

manipulating examples provided by computer science, embodied cognitive science 

steps further back in time, taking its inspiration from the accounts of feedback and 

adaptation provided by cybernetics (Ashby, 1956, 1960; Wiener, 1948).

Shapiro (2011) invoked the theme of conceptualization to characterize embod-

ied cognitive science because it saw cognition as being directed action on the world. 

Conceptualization is the view that the form of an agent’s body determines the con-

cepts that it requires to interact with the world. Conceptualization is also a view that 

draws from embodied and ecological accounts of perception (Gibson, 1966, 1979; 

Merleau-Ponty, 1962; Neisser, 1976); such theories construed perception as being 

the result of action and as directing possible actions (affordances) on the world. 
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As such, the perceptual world cannot exist independently of a perceiving agent; 

umwelten (Uexküll, 2001) are defined in terms of the agent as well.

The relevance of the world to embodied cognitive science leads to another of 

its characteristics: Shapiro’s (2011) notion of replacement. Replacement is the view 

that an agent’s direct actions on the world can replace internal models, because the 

world can serve as its own best representation. The replacement theme is central 

to behaviour-based robotics (Breazeal, 2002; Brooks, 1991, 1999, 2002; Edsinger-

Gonzales & Weber, 2004; Grey Walter, 1963; Sharkey, 1997), and leads some radical 

embodied cognitive scientists to argue that the notion of internal representations 

should be completely abandoned (Chemero, 2009). Replacement also permits theo-

ries to include the co-operative interaction between and mutual support of world 

and agent by exploring notions of cognitive scaffolding and leverage (Clark, 1997; 

Hutchins, 1995; Scribner & Tobach, 1997).

The themes of conceptualization and replacement emerge from a view of cogni-

tion that is radically embodied, in the sense that it cannot construe cognition with-

out considering the rich relationships between mind, body, and world. This also 

leads to embodied cognitive science being characterized by Shapiro’s (2011) third 

theme, constitution. This theme, as it appears in embodied cognitive science, is the 

extended mind hypothesis (Clark, 1997, 1999, 2003, 2008; Clark & Chalmers, 1998; 

Menary, 2008, 2010; Noë, 2009; Rupert, 2009; Wilson, 2004, 2005). According to the 

extended mind hypothesis, the world and body are literally constituents of cogni-

tive processing; they are not merely causal contributors to it, as is the case in the 

classical sandwich.

Clearly embodied cognitive science has a much different view of cognition than 

is the case for classical cognitive science. This in turn leads to differences in the way 

that cognition is studied.

Classical cognitive science studies cognition at multiple levels: computa-

tional, algorithmic, architectural, and implementational. It typically does so by 

using a top-down strategy, beginning with the computational and moving “down” 

towards the architectural and implementational (Marr, 1982). This top-down strat-

egy is intrinsic to the methodology of reverse engineering or functional analysis 

(Cummins, 1975, 1983). In reverse engineering, the behaviour of an intact system is 

observed and manipulated in an attempt to decompose it into an organized system 

of primitive components.

We have seen that embodied cognitive science exploits the same multiple levels 

of investigation that characterize classical cognitive science. However, embodied 

cognitive science tends to replace reverse engineering with an inverse, bottom-up 

methodology, as in forward engineering or synthetic psychology (Braitenberg, 1984; 

Dawson, 2004; Dawson, Dupuis, & Wilson, 2010; Pfeifer & Scheier, 1999). In for-

ward engineering, a set of interesting primitives is assembled into a working system. 
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This system is then placed in an interesting environment in order to see what it can 

and cannot do. In other words, forward engineering starts with implementational 

and architectural investigations. Forward engineering is motivated by the realiza-

tion that an agent’s environment is a crucial contributor to behavioural complexity, 

and it is an attempt to leverage this possibility. As a result, some have argued that 

this approach can lead to simpler theories than is the case when reverse engineering 

is adopted (Braitenberg, 1984).

Shapiro (2011) has noted that it is too early to characterize embodied cognitive 

science as a unified school of thought. The many different variations of the embodied 

approach, and the important differences between them, are beyond the scope of the 

current chapter. A more accurate account of the current state of embodied cognitive 

science requires exploring an extensive and growing literature, current and historical 

(Agre, 1997; Arkin, 1998; Bateson, 1972; Breazeal, 2002; Chemero, 2009; Clancey, 1997; 

Clark, 1997, 2003, 2008; Dawson, Dupuis, & Wilson, 2010; Dourish, 2001; Gallagher, 

2005; Gibbs, 2006; Gibson, 1979; Goldman, 2006; Hutchins, 1995; Johnson, 2007; 

Menary, 2010; Merleau-Ponty, 1962; Neisser, 1976; Noë, 2004, 2009; Pfeifer & Scheier, 

1999; Port & van Gelder, 1995b; Robbins & Aydede, 2009; Rupert, 2009; Shapiro, 2011; 

Varela, Thompson, & Rosch, 1991; Wilson, 2004; Winograd & Flores, 1987b).
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Classical Music and Cognitive Science

6.0 Chapter Overview

In the previous three chapters I have presented the elements of three different 

approaches to cognitive science: classical, connectionist, and embodied. In the cur-

rent chapter I present a review of these elements in the context of a single topic: 

musical cognition. In general, this is done by developing an analogy: cognitive sci-

ence is like classical music. This analogy serves to highlight the contrasting charac-

teristics between the three approaches of cognitive science, because each school of 

thought approaches the study of music cognition in a distinctive way.

These distinctions are made evident by arguing that the analogy between cog-

nitive science and classical music is itself composed of three different relationships: 

between Austro-German classical music and classical cognitive science, between 

musical Romanticism and connectionist cognitive science, and between modern 

music and embodied cognitive science. One goal of the current chapter is to develop 

each of these more specific analogies, and in so doing we review the core character-

istics of each approach within cognitive science.

Each of these more specific analogies is also reflected in how each school of 

cognitive science studies musical cognition. Classical, connectionist, and embodied 

cognitive scientists have all been involved in research on musical cognition, and 

they have not surprisingly focused on different themes.

6
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Reviewing the three approaches within cognitive science in the context of music 

cognition again points to distinctions between the three approaches. However, the 

fact that all three approaches are involved in the study of music points to possible 

similarities between them. The current chapter begins to set the stage for a second 

theme that is fundamental to the remainder of the book: that there is the possibility 

for a synthesis amongst the three approaches that have been introduced in the ear-

lier chapters. For instance, the current chapter ends by considering the possibility 

of a hybrid theory of musical cognition, a theory that has characteristics of classical, 

connectionist, and embodied cognitive science.

6.1 The Classical Nature of Classical Music

There are many striking parallels between the classical mind and classical music, 

particularly the music composed in the Austro-German tradition of the eighteenth 

and nineteenth centuries. First, both rely heavily upon formal structures. Second, 

both emphasize that their formal structures are content laden. Third, both attribute 

great importance to abstract thought inside an agent (or composer) at the expense 

of contributions involving the agent’s environment or embodiment. Fourth, both 

emphasize central control. Fifth, the “classical” traditions of both mind and music 

have faced strong challenges, and many of the challenges in one domain can be 

related to analogous challenges in the other.

The purpose of this section is to elaborate the parallels noted above between 

classical music and classical cognitive science. One reason to do so is to begin to 

illustrate the analogy that classical cognitive science is like classical music. However, 

a more important reason is that this analogy, at least tacitly, has a tremendous effect 

on how researchers approach musical cognition. The methodological implications 

of this analogy are considered in detail later in this chapter.

To begin, let us consider how the notions of formalism or logicism serve as 

links between classical cognitive science and classical music. Classical cognitive sci-

ence takes thinking to be the rule-governed manipulation of mental representa-

tions. Rules are sensitive to the form of mental symbols (Haugeland, 1985). That is, 

a symbol’s form is used to identify it as being a token of a particular type; to be so 

identified means that only certain rules can be applied. While the rules are sensitive 

to the formal nature of symbols, they act in such a way to preserve the meaning of 

the information that the symbols represent. This property reflects classical cogni-

tive science’s logicism: the laws of thought are equivalent to the formal rules that 

define a system of logic (Boole, 2003). The goal of characterizing thought purely in 

the form of logical rules has been called the Boolean dream (Hofstadter, 1995).

It is not implausible that the Boolean dream might also characterize concep-

tions of music. Music’s formal nature extends far beyond musical symbols on a sheet 
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of staff paper. Since the time of Pythagoras, scholars have understood that music 

reflects regularities that are intrinsically mathematical (Ferguson, 2008). There is 

an extensive literature on the mathematical nature of music (Assayag et al., 2002; 

Benson, 2007; Harkleroad, 2006). For instance, different approaches to tuning 

instruments reflect the extent to which tunings are deemed mathematically sensi-

ble (Isacoff, 2001).

To elaborate, some pairs of tones played simultaneously are pleasing to the ear, 

such as a pair of notes that are a perfect fifth apart (see Figure 4-10)—they are con-

sonant—while other combinations are not (Krumhansl, 1990). The consonance of 

notes can be explained by the physics of sound waves (Helmholtz & Ellis, 1954). Such 

physical relationships are ultimately mathematical, because they concern ratios of 

frequencies of sine waves. Consonant tone pairs have frequency ratios of 2:1 (octave), 

3:2 (perfect fifth), and 4:3 (perfect fourth). The most dissonant pair of tones, the tri-

tone (an augmented fourth) is defined by a ratio that includes an irrational number 

(√2:1), a fact that was probably known to the Pythagoreans.

The formal nature of music extends far beyond the physics of sound. There 

are formal descriptions of musical elements, and of entire musical compositions, 

that are analogous to the syntax of linguistics (Chomsky, 1965). Some research-

ers have employed generative grammars to express these regularities (Lerdahl 

& Jackendoff, 1983; Steedman, 1984).

For instance, Lerdahl and Jackendoff (1983) argued that listeners impose a 

hierarchical structure on music, organizing “the sound signals into units such as 

motives, themes, phrases, periods, theme-groups, sections and the piece itself ” 

(p. 12). They defined a set of well-formedness rules, which are directly analogous to 

generative rules in linguistics, to define how this musical organization proceeds and 

to rule out impossible organizations.

That classical music is expected to have a hierarchically organized, well-formed 

structure is a long-established view amongst scholars who do not use generative 

grammars to capture such regularities. Composer Aaron Copland (1939, p. 113) 

argued that a composition’s structure is “one of the principal things to listen for” 

because it is “the planned design that binds an entire composition together.”

One important musical structure is the sonata-allegro form (Copland, 1939), 

which is a hierarchical organization of musical themes or ideas. At the top level of this 

hierarchy are three different components that are presented in sequence: an initial 

exposition of melodic structures called musical themes, followed by the free develop-

ment of these themes, and finishing with their recapitulation. Each of these segments 

is itself composed of three sub-segments, which are again presented in sequence. 

This structure is formal in the sense that the relationship between different themes 

presented in different sub-segments is defined in terms of their key signatures.
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For instance, the exposition uses its first sub-segment to introduce an opening 

theme in the tonic key, that is, the initial key signature of the piece. The exposition’s 

second sub-segment then presents a second theme in the dominant key, a perfect 

fifth above the tonic. The final sub-segment of the exposition finishes with a closing 

theme in the dominant key. The recapitulation has a substructure that is related to 

that of the exposition; it uses the same three themes in the same order, but all are 

presented in the tonic key. The development section, which falls between the expo-

sition and the recapitulation, explores the exposition’s themes, but does so using 

new material written in different keys.

Sonata-allegro form foreshadowed the modern symphony and produced a market 

for purely instrumental music (Rosen, 1988). Importantly, it also provided a structure, 

shared by both composers and their audiences, which permitted instrumental music 

to be expressive. Rosen notes that the sonata became popular because it,

has an identifiable climax, a point of maximum tension to which the first part of 

the work leads and which is symmetrically resolved. It is a closed form, without the 

static frame of ternary form; it has a dynamic closure analogous to the denouement 

of 18th-century drama, in which everything is resolved, all loose ends are tied up, 

and the work rounded off. (Rosen, 1988, p. 10) 

In short, the sonata-allegro form provided a logical structure that permitted the 

music to be meaningful.

The idea that musical form is essential to communicating musical meaning 

brings us to the second parallel between classical music and classical cognitive sci-

ence: both domains presume that their formal structures are content-bearing.

Classical cognitive science explains cognition by invoking the intentional 

stance (Dennett, 1987), which is equivalent to relying on a cognitive vocabulary 

(Pylyshyn, 1984). If one assumes that an agent has certain intentional states (e.g., 

beliefs, desires, goals) and that lawful regularities (such as the principle of rational-

ity) govern relationships between the contents of these states, then one can use the 

contents to predict future behaviour. “This single assumption [rationality], in com-

bination with home truths about our needs, capacities and typical circumstances, 

generates both an intentional interpretation of us as believers and desirers and 

actual predictions of behavior in great profusion” (Dennett, 1987, p. 50). Similarly, 

Pylyshyn (1984, pp. 20–21) noted that “the principle of rationality . . . is indispensa-

ble for giving an account of human behavior.”

Is there any sense in which the intentional stance can be applied to classical 

music? Classical composers are certainly of the opinion that music can express 

ideas. Copland noted that, 

my own belief is that all music has an expressive power, some more and some less, 

but that all music has a certain meaning behind the notes and that that meaning 
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behind the notes constitutes, after all, what the piece is saying, what the piece is 

about. (Copland, 1939, p. 12)

John Cage (1961) believed that compositions had intended meanings: 

It seemed to me that composers knew what they were doing, and that the experi-

ments that had been made had taken place prior to the finished works, just as 

sketches are made before paintings and rehearsals precede performances. (John 

Cage, 1961, p. 7) 

Scholars, too, have debated the ability of music to convey meanings. One of the cen-

tral questions in the philosophy of music is whether music can represent. As late as 

1790, the dominant philosophical view of music was that it was incapable of convey-

ing ideas, but by the time that E. T. A. Hoffman reviewed Beethoven’s Fifth Symphony 

in 1810, this view was predominately rejected (Bonds, 2006), although the auton-

omist school of musical aesthetics—which rejected musical representation—was 

active in the late nineteenth century (Hanslick, 1957). Nowadays most philosophers 

of music agree that music is representational, and they focus their attention on how 

musical representations are possible (Kivy, 1991; Meyer, 1956; Robinson, 1994, 1997; 

Sparshoot, 1994; Walton, 1994).

How might composers communicate intended meanings with their music? 

One answer is by exploiting particular musical forms. Conventions such as sonata-

allegro form provide a structure that generates expectations, expectations that are 

often presumed to be shared by the audience. Copland (1939) used his book about 

listening to music to educate audiences about musical forms so that they could 

better understand his compositions as well as those of others: “In helping others 

to hear music more intelligently, [the composer] is working toward the spread of 

a musical culture, which in the end will affect the understanding of his own crea-

tions” (p. vi).

The extent to which the audience’s expectations are toyed with, and ultimately 

fulfilled, can manipulate its interpretation of a musical performance. Some scholars 

have argued that these manipulations can be described completely in terms of the 

structure of musical elements (Meyer, 1956). The formalist’s motto of classical cog-

nitive science (Haugeland, 1985) can plausibly be applied to classical music.

A third parallel between classical cognitive science, which likely follows directly 

from the assumption that formal structures can represent content, is an emphasis 

on Cartesian disembodiment. Let us now consider this characteristic in more detail.

Classical cognitive science attempts to explain cognitive phenomena by appeal-

ing to a sense-think-act cycle (Pfeifer & Scheier, 1999). In this cycle, sensing mecha-

nisms provide information about the world, and acting mechanisms produce behav-

iours that might change it. Thinking, considered as the manipulation of mental rep-

resentations, is the interface between sensing and acting (Wilson, 2004). However, 
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this interface, internal thinking, receives the most emphasis in a classical theory, 

with an accompanying underemphasis on sensing and acting (Clark, 1997).

One can easily find evidence for the classical emphasis on representations. 

Autonomous robots that were developed following classical ideas devote most of 

their computational resources to using internal representations of the external 

world (Brooks, 2002; Moravec, 1999; Nilsson, 1984). Most survey books on cogni-

tive psychology (Anderson, 1985; Best, 1995; Haberlandt, 1994; Robinson-Riegler & 

Robinson-Riegler, 2003; Solso, 1995; Sternberg, 1996) have multiple chapters on 

representational topics such as memory and reasoning and rarely mention embodi-

ment, sensing, or acting. Classical cognitive science’s sensitivity to the multiple real-

ization argument (Fodor, 1968b, 1975), with its accompanying focus on functional 

(not physical) accounts of cognition (Cummins, 1983), underlines its view of think-

ing as a disembodied process. It was argued in Chapter 3 that the classical notion 

of the disembodied mind was a consequence of its being inspired by Cartesian 

philosophy.

Interestingly, a composer of classical music is also characterized as being simi-

larly engaged in a process that is abstract, rational, and disembodied. Does not a 

composer first think of a theme or a melody and then translate this mental rep-

resentation into a musical score? Mozart “carried his compositions around in his 

head for days before setting them down on paper” (Hildesheimer, 1983). Benson 

(2007, p. 25) noted that “Stravinsky speaks of a musical work as being ‘the fruit of 

study, reasoning, and calculation that imply exactly the converse of improvisation.’” 

In short, abstract thinking seems to be a prerequisite for composing.

Reactions against Austro-German classical music (Nyman, 1999) were reactions 

against its severe rationality. John Cage pioneered this reaction (Griffiths, 1994); 

beginning in the 1950s, Cage increasingly used chance mechanisms to determine 

musical events. He advocated “that music should no longer be conceived of as 

rational discourse” (Nyman, 1999, p. 32). He explicitly attacked the logicism of tra-

ditional music (Ross, 2007), declaring that “any composing strategy which is wholly 

‘rational’ is irrational in the extreme” (p. 371).

Despite opposition such as Cage’s, the disembodied rationality of classical 

music was one of its key features. Indeed, the cognitive scaffolding of composing 

is frowned upon. There is a general prejudice against composers who rely on exter-

nal aids (Rosen, 2002). Copland (1939, p. 22) observed that “a current idea exists 

that there is something shameful about writing a piece of music at the piano.” 

Rosen traces this idea to Giovanni Maria Artusi’s criticism of composers such as 

Monteverdi, in 1600: “It is one thing to search with voices and instruments for 

something pertaining to the harmonic faculty, another to arrive at the exact truth 

by means of reasons seconded by the ear” (p. 17). The expectation (then and now) is 

that composing a piece involves “mentally planning it by logic, rules, and traditional 
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reason” (Rosen, 2002, p. 17). This expectation is completely consistent with the dis-

embodied, classical view of thinking, which assumes that the primary purpose of 

cognition is not acting, but is instead planning.

Planning has been described as solving the problem of what to do next 

(Dawson, 1998; Stillings, 1995). A solution to this problem involves providing 

an account of the control system of a planning agent; such accounts are critical 

components of classical cognitive science. “An adequate theory of human cogni-

tive processes must include a description of the control system—the mechanism 

that determines the sequence in which operations will be performed” (Simon, 1979, 

p. 370). In classical cognitive science, such control is typically central. The notion of 

central control is also characteristic of classical music, providing the fourth parallel 

between classical cognitive science and classical music.

Within the Austro-German musical tradition, a composition is a formal struc-

ture intended to express ideas. A composer uses musical notation to signify the 

musical events which, when realized, accomplish this expressive goal. An orches-

tra’s purpose is to bring the score to life, in order for the performance to deliver the 

intended message to the audience: 

We tend to see both the score and the performance primarily as vehicles for pre-

serving what the composer has created. We assume that musical scores provide a 

permanent record or embodiment in signs; in effect, a score serves to ‘fix’ or objec-

tify a musical work. (Benson, 2003, p. 9)

However, a musical score is vague; it cannot determine every minute detail of a 

performance (Benson, 2003; Copland, 1939). As a result, during a performance the 

score must be interpreted in such a way that the missing details can be filled in 

without distorting the composer’s desired effect. In the Austro-German tradition 

of music, an orchestra’s conductor takes the role of interpreter and controls the 

orchestra in order to deliver the composer’s message (Green & Malko, 1975, p. 7): 

“The conductor acts as a guide, a solver of problems, a decision maker. His guidance 

chart is the composer’s score; his job, to animate the score, to make it come alive, to 

bring it into audible being.” 

The conductor provides another link between classical music and classical cog-

nitive science, because the conductor is the orchestra’s central control system. The 

individual players are expected to submit to the conductor’s control.

Our conception of the role of a classical musician is far closer to that of self-effacing 

servant who faithfully serves the score of the composer. Admittedly, performers are 

given a certain degree of leeway; but the unwritten rules of the game are such that 

this leeway is relatively small and must be kept in careful check. (Benson, 2003, p. 5) 

It has been suggested—not necessarily validly—that professional, classically trained 

musicians are incapable of improvisation (Bailey, 1992)!
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The conductor is not the only controller of a performance. While it is unavoid-

ably vague, the musical score also serves to control the musical events generated by 

an orchestra. If the score is a content-bearing formal expression, then it is reasona-

ble to assume that it designates the contents that the score is literally about. Benson 

(2003) described this aspect of a score as follows: 

The idea of being ‘treu’—which can be translated as true or a faithful—implies 

faithfulness to someone or something. Werktreue, then, is directly a kind of faith-

fulness to the Werk (work) and, indirectly, a faithfulness to the composer. Given the 

centrality of musical notation in the discourse of classical music, a parallel notion is 

that of Texttreue: fidelity to the written score. (Benson, 2003, p. 5)

Note Benson’s emphasis on the formal notation of the score. It highlighted the idea 

that the written score is analogous to a logical expression, and that converting it into 

the musical events that the score is about (in Brentano’s sense) is not only desirable, 

but also rational. This logicism of classical music perfectly parallels the logicism 

found in classical cognitive science.

The role of the score as a source of control provides a link back to another issue 

discussed earlier, disembodiment. We saw in Chapter 3 that the disembodiment 

of modern classical cognitive science is reflected in its methodological solipsism. 

In methodological solipsism, representational states are individuated from one 

another only in terms of their relations to other representational states. Relations 

of the states to the external world—the agent’s environment—are not considered.

It is methodological solipsism that links a score’s control back to disembodi-

ment, providing another link in the analogy between the classical mind and classical 

music. When a piece is performed, it is brought to life with the intent of delivering a 

particular message to the audience. Ultimately, then, the audience is a fundamental 

component of a composition’s environment. To what extent does this environment 

affect or determine the composition itself?

In traditional classical music, the audience is presumed to have absolutely no 

effect on the composition. Composer Arnold Schoenberg believed that the audience 

was “merely an acoustic necessity—and an annoying one at that” (Benson, 2003, 

p. 14). Composer Virgil Thompson defined the ideal listener as “a person who 

applauds vigorously” (Copland, 1939, p. 252). In short, the purpose of the audience 

is to passively receive the intended message. It too is under the control of the score: 

The intelligent listener must be prepared to increase his awareness of the musical 

material and what happens to it. He must hear the melodies, the rhythms, the har-

monies, the tone colors in a more conscious fashion. But above all he must, in order 

to follow the line of the composer’s thought, know something of the principles of 

musical form. (Copland, 1939, p. 17)
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To see that this is analogous to methodological solipsism, consider how we differ-

entiate compositions from one another. Traditionally, this is done by referring to a 

composition’s score (Benson, 2003). That is, compositions are identified in terms 

of a particular set of symbols, a particular formal structure. The identification of a 

composition does not depend upon identifying which audience has heard it. A com-

position can exist, and be identified, in the absence of its audience-as-environment.

Another parallel between the classical mind and classical music is that there 

have been significant modern reactions against the Austro-German musical tradi-

tion (Griffiths, 1994, 1995). Interestingly, these reactions parallel many of the reac-

tions of embodied cognitive science against the classical approach. In later sections of 

this chapter we consider some of these reactions, and explore the idea that they make 

plausible the claim that “non-cognitive” processes are applicable to classical music. 

However, before we do so, let us first turn to consider how the parallels considered 

above are reflected in how classical cognitive scientists study musical cognition.

6.2 The Classical Approach to Musical Cognition

In Chapter 8 on seeing and visualizing, we see that classical theories take the pur-

pose of visual perception to be the construction of mental models of the external, 

visual world. To do so, these theories must deal with the problem of underdetermi-

nation. Information in the world is not sufficient, on its own, to completely deter-

mine visual experience.

Classical solutions to the problem of underdetermination (Bruner, 1973; 

Gregory, 1970, 1978; Rock, 1983) propose that knowledge of the world—the contents 

of mental representations—is also used to determine visual experience. In other 

words, classical theories of perception describe visual experience as arising from 

the interaction of stimulus information with internal representations. Seeing is a 

kind of thinking.

Auditory perception has also been the subject of classical theorization. Classical 

theories of auditory perception parallel classical theories of visual perception in 

two general respects. First, since the earliest psychophysical studies of audition 

(Helmholtz & Ellis, 1954), hearing has been viewed as a process for building internal 

representations of the external world.

We have to investigate the various modes in which the nerves themselves are 

excited, giving rise to their various sensations, and finally the laws according to 

which these sensations result in mental images of determinate external objects, 

that is, in perceptions. (Helmholtz & Ellis, 1954, p. 4) 

Second, in classical theories of hearing, physical stimulation does not by itself deter-

mine the nature of auditory percepts. Auditory stimuli are actively organized, being 
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grouped into distinct auditory streams, according to psychological principles of 

organization (Bregman, 1990). “When listeners create a mental representation of 

auditory input, they too must employ rules about what goes with what” (p. 11).

The existence of classical theories of auditory perception, combined with the 

links between classical music and classical cognitive science discussed in the pre-

vious section, should make it quite unsurprising that classical theories of music 

perception and cognition are well represented in the literature (Deutsch, 1999; 

Francès, 1988; Howell, Cross, & West, 1985; Krumhansl, 1990; Lerdahl, 2001; Lerdahl 

& Jackendoff, 1983; Sloboda, 1985; Snyder, 2000; Temperley, 2001). This section pro-

vides some brief examples of the classical approach to musical cognition. These 

examples illustrate that the previously described links between classical music and 

cognitive science are reflected in the manner in which musical cognition is studied.

The classical approach to musical cognition assumes that listeners construct 

mental representations of music. Sloboda (1985) argued that,

a person may understand the music he hears without being moved by it. If he 

is moved by it then he must have passed through the cognitive stage, which 

involves forming an abstract or symbolic internal representation of the music. 

(Sloboda, 1985, p. 3)

Similarly, “a piece of music is a mentally constructed entity, of which scores and 

performances are partial representations by which the piece is transmitted” 

(Lerdahl & Jackendoff, 1983, p. 2). A classical theory must provide an account of 

such mentally constructed entities. How are they represented? What processes are 

required to create and manipulate them?

There is a long history of attempting to use geometric relations to map the 

relationships between musical pitches, so that similar pitches are nearer to one 

another in the map (Krumhansl, 2005). Krumhansl (1990) has shown how simple 

judgments about tones can be used to derive a spatial, cognitive representation of 

musical elements.

Krumhansl’s general paradigm is called the tone probe method (Krumhansl & 

Shepard, 1979). In this paradigm, a musical context is established, for instance by 

playing a partial scale or a chord. A probe note is then played, and subjects rate how 

well this probe note fits into the context. For instance, subjects might rate how well 

the probe note serves to complete a partial scale. The relatedness between pairs 

of tones within a musical context can also be measured using variations of this 

paradigm.

Extensive use of the probe tone method has revealed a hierarchical organiza-

tion of musical notes. Within a given musical context—a particular musical key—the 

most stable tone is the tonic, the root of the key. For example, in the musical key of C 

major, the note C is the most stable. The next most stable tones are those in either the 

third or fifth positions of the key’s scale. In the key of C major, these are the notes E or 
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G. Less stable than these two notes are any of the set of remaining notes that belong to 

the context’s scale. In the context of C major, these are the notes D, F, A, and B. Finally, 

the least stable tones are the set of five notes that do not belong to the context’s scale. 

For C major, these are the notes C#, D#, F#, G#, and A#.

This hierarchical pattern of stabilities is revealed using different kinds of con-

texts (e.g., partial scales, chords), and is found in subjects with widely varying 

degrees of musical expertise (Krumhansl, 1990). It can also be used to account for 

judgments about the consonance or dissonance of tones, which is one of the oldest 

topics in the psychology of music (Helmholtz & Ellis, 1954).

Hierarchical tonal stability relationships can also be used to quantify rela-

tionships between different musical keys. If two different keys are similar to one 

another, then their tonal hierarchies should be similar as well. The correlations 

between tonal hierarchies were calculated for every possible pair of the 12 differ-

ent major and 12 different minor musical keys, and then multidimensional scaling 

was performed on the resulting similarity data (Krumhansl & Kessler, 1982). A four-

dimensional solution was found to provide the best fit for the data. This solution 

arranged the tonic notes along a spiral that wrapped itself around a toroidal surface. 

The spiral represents two circles of fifths, one for the 12 major scales and the other 

for the 12 minor scales.

The spiral arrangement of notes around the torus reflects elegant spatial rela-

tionships among tonic notes (Krumhansl, 1990; Krumhansl & Kessler, 1982). For 

any key, the nearest neighbours moving around from the inside to the outside of 

the torus are the neighbouring keys in the circle of fifths. For instance, the nearest 

neighbours to C in this direction are the notes F and G, which are on either side of 

C in the circle of fifths.

In addition, the nearest neighbour to a note in the direction along the torus 

(i.e., orthogonal to the direction that captures the circles of fifths) reflects relation-

ships between major and minor keys. Every major key has a complementary minor 

key, and vice versa; complimentary keys have the same key signature, and are musi-

cally very similar. Complimentary keys are close together on the torus. For example, 

the key of C major has the key of A minor as its compliment; the tonic notes for 

these two scales are also close together on the toroidal map.

Krumhansl’s (1990) tonal hierarchy is a classical representation in two senses. 

First, the toroidal map derived from tonal hierarchies provides one of the many 

examples of spatial representations that have been used to model regularities in 

perception (Shepard, 1984a), reasoning (Sternberg, 1977), and language (Tourange

au & Sternberg, 1981, 1982). Second, a tonal hierarchy is not a musical property per 

se, but instead is a psychologically imposed organization of musical elements. “The 

experience of music goes beyond registering the acoustic parameters of tone fre-

quency, amplitude, duration, and timbre. Presumably, these are recoded, organized, 
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and stored in memory in a form different from sensory codes” (Krumhansl, 1990, 

p. 281). The tonal hierarchy is one such mental organization of musical tones.

In music, tones are not the only elements that appear to be organized by psy-

chological hierarchies. “When hearing a piece, the listener naturally organizes the 

sound signals into units such as motives, themes, phrases, periods, theme-groups, 

and the piece itself ” (Lerdahl & Jackendoff, 1983, p. 12). In their classic work A 

Generative Theory of Tonal Music, Lerdahl and Jackendoff (1983) developed a clas-

sical model of how such a hierarchical organization is derived.

Lerdahl and Jackendoff ’s (1983) research program was inspired by Leonard 

Bernstein’s (1976) Charles Eliot Norton lectures at Harvard, in which Bernstein 

called for the methods of Chomskyan linguistics to be applied to music. “All musi-

cal thinkers agree that there is such a thing as a musical syntax, comparable to 

a descriptive grammar of speech” (p. 56). There are indeed important parallels 

between language and music that support developing a generative grammar of 

music (Jackendoff, 2009). In particular, systems for both language and music must 

be capable of dealing with novel stimuli, which classical researchers argue requires 

the use of recursive rules. However, there are important differences too. Most nota-

ble for Jackendoff (2009) is that language conveys propositional thought, while 

music does not. This means that while a linguistic analysis can ultimately be evalu-

ated as being true or false, the same cannot be said for a musical analysis, which has 

important implications for a grammatical model of music.

Lerdahl and Jackendoff ’s (1983) generative theory of tonal music correspond-

ingly has components that are closely analogous to a generative grammar for lan-

guage and other components that are not. The linguistic analogs assign structural 

descriptions to a musical piece. These structural descriptions involve four different, 

but interrelated, hierarchies.

The first is grouping structure, which hierarchically organizes a piece into 

motives, phrases, and sections. The second is metrical structure, which relates the 

events of a piece to hierarchically organized alternations of strong and weak beats. 

The third is time-span reduction, which assigns pitches to a hierarchy of structural 

importance that is related to grouping and metrical structures. The fourth is pro-

longational reduction, which is a hierarchy that “expresses harmonic and melodic 

tension and relaxation, continuity and progression” (Lerdahl & Jackendoff, 1983, 

p. 9). Prolongational reduction was inspired by Schenkerian musical analysis 

(Schenker, 1979), and is represented in a fashion that is very similar to a phrase 

marker. As a result, it is the component of the generative theory of tonal music that 

is most closely related to a generative syntax of language (Jackendoff, 2009).

Each of the four hierarchies is associated with a set of well-formedness rules 

(Lerdahl & Jackendoff, 1983). These rules describe how the different hierarchies are 

constructed, and they also impose constraints that prevent certain structures from 



 Classical Music and Cognitive Science  277

being created. Importantly, the well-formedness rules provide psychological prin-

ciples for organizing musical stimuli, as one would expect in a classical theory. The 

rules “define a class of grouping structures that can be associated with a sequence 

of pitch-events, but which are not specified in any direct way by the physical signal 

(as pitches and durations are)” (p. 39). Lerdahl and Jackendoff take care to express 

these rules in plain English so as not to obscure their theory. However, they presume 

that the well-formedness rules could be translated into a more formal notation, 

and indeed computer implementations of their theory are possible (Hamanaka, 

Hirata, & Tojo, 2006).

Lerdahl and Jackendoff ’s (1983) well-formedness rules are not sufficient to 

deliver a unique “parsing” of a musical piece. One reason for this is because, unlike 

language, a musical parsing cannot be deemed to be correct; it can only be described 

as having a certain degree of coherence or preferredness. Lerdahl and Jackendoff 

supplement their well-formedness rules with a set of preference rules. For instance, 

one preference rule for grouping structure indicates that symmetric groups are to 

be preferred over asymmetric ones. Once again there is a different set of preference 

rules for each of the four hierarchies of musical structure.

The hierarchical structures defined by the generative theory of tonal music 

(Lerdahl & Jackendoff, 1983) describe the properties of a particular musical event. 

In contrast, the hierarchical arrangement of musical tones (Krumhansl, 1990) is a 

general organizational principle that applies to musical pitches in general, not to 

an event. Interestingly, the two types of hierarchies are not mutually exclusive. The 

generative theory of tonal music has been extended (Lerdahl, 2001) to include tonal 

pitch spaces, which are spatial representations of tones and chords in which the 

distance between two entities in the space reflects the cognitive distance between 

them. Lerdahl has shown that the properties of tonal pitch space can be used to aid 

in the construction of the time-span reduction and the prolongational reduction, 

increasing the power of the original generative theory. The theory can be used to 

predict listeners’ judgments about the attraction and tension between tones in a 

musical selection (Lerdahl & Krumhansl, 2007).

Lerdahl and Jackendoff ’s (1983) generative theory of tonal music shares another 

characteristic with the linguistic theories that inspired it: it provides an account of 

musical competence, and it is less concerned with algorithmic accounts of music 

perception. The goal of their theory is to provide a “formal description of the musi-

cal intuitions of a listener who is experienced in a musical idiom” (p. 1). Musical 

intuition is the largely unconscious knowledge that a listener uses to organize, iden-

tify, and comprehend musical stimuli. Because characterizing such knowledge is the 

goal of the theory, other processing is ignored.

Instead of describing the listener’s real-time mental processes, we will be concerned 

only with the final state of his understanding. In our view it would be fruitless to 
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theorize about mental processing before understanding the organization to which 

the processing leads. (Lerdahl & Jackendoff, 1983, pp. 3–4)

One consequence of ignoring mental processing is that the generative theory of 

tonal music is generally not applied to psychologically plausible representations. 

For instance, in spite of being a theory about an experienced listener, the vari-

ous incarnations of the theory are not applied to auditory stimuli, but are instead 

applied to musical scores (Hamanaka, Hirata, & Tojo, 2006; Lerdahl, 2001; Lerdahl 

& Jackendoff, 1983).

Of course, this is not a principled limitation of the generative theory of tonal 

music. This theory has inspired researchers to develop models that have a more 

algorithmic emphasis and operate on representations that take steps towards psy-

chological plausibility (Temperley, 2001).

Temperley’s (2001) theory can be described as a variant of the original genera-

tive theory of tonal music (Lerdahl & Jackendoff, 1983). One key difference between 

the two is the input representation. Temperley employs a piano-roll representation, 

which can be described as being a two-dimensional graph of musical input. The 

vertical axis, or pitch axis, is a discrete representation of different musical notes. 

That is, each row in the vertical axis can be associated with its own piano key. The 

horizontal axis is a continuous representation of time. When a note is played, a hori-

zontal line is drawn on the piano-roll representation; the height of the line indicates 

which note is being played. The beginning of the line represents the note’s onset, 

the length of the line represents the note’s duration, and the end of the line repre-

sents the note’s offset. Temperley assumes the psychological reality of the piano-roll 

representation, although he admits that the evidence for this strong assumption is 

inconclusive.

Temperley’s (2001) model applies a variety of preference rules to accomplish 

the hierarchical organization of different aspects of a musical piece presented as a 

piano-roll representation. He provides different preference rule systems for assign-

ing metrical structure, melodic phrase structure, contrapuntal structure, pitch class 

representation, harmonic structure, and key structure. In many respects, these 

preference rule systems represent an evolution of the well-formedness and prefer-

ence rules in Lerdahl and Jackendoff ’s (1983) theory.

For example, one of Temperley’s (2001) preference rule systems assigns metri-

cal structure (i.e., hierarchically organized sets of beats) to a musical piece. Lerdahl 

and Jackendoff (1983) accomplished this by applying four different well-formed-

ness rules and ten different preference rules. Temperley accepts two of Lerdahl and 

Jackendoff ’s well-formedness rules for metre (albeit in revised form, as preference 

rules) and rejects two others because they do not apply to the more realistic rep-

resentation that Temperley adopts. Temperley adds three other preference rules. 

This system of five preference rules derives metric structure to a high degree of 
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accuracy (i.e., corresponding to a degree of 86 percent or better with Temperley’s 

metric intuitions).

One further difference between Temperley’s (2001) algorithmic emphasis and 

Lerdahl and Jackendoff ’s (1983) emphasis on competence is reflected in how the 

theory is refined. Because Temperley’s model is realized as a working computer 

model, he could easily examine its performance on a variety of input pieces and 

therefore identify its potential weaknesses. He took advantage of this ability to pro-

pose an additional set of four preference rules for metre, as an example, to extend 

the applicability of his algorithm to a broader range of input materials.

To this point, the brief examples provided in this section have been used to 

illustrate two of the key assumptions made by classical researchers of musical cog-

nition. First, mental representations are used to impose an organization on music 

that is not physically present in musical stimuli. Second, these representations are 

classical in nature: they involve different kinds of rules (e.g., preference rules, well-

formedness rules) that can be applied to symbolic media that have musical contents 

(e.g., spatial maps, musical scores, piano-roll representations). A third characteris-

tic also is frequently present in classical theories of musical cognition: the notion 

that the musical knowledge reflected in these representations is acquired, or can be 

modified, by experience.

The plasticity of musical knowledge is neither a new idea nor a concept that is 

exclusively classical. We saw earlier that composers wished to inform their audience 

about compositional conventions so the latter could better appreciate performances 

(Copland, 1939). More modern examples of this approach argue that ear training, 

specialized to deal with some of the complexities of modern music to be introduced 

later in this chapter, can help to bridge the gaps between composers, performers, 

and audiences (Friedmann, 1990). Individual differences in musical ability were 

thought to be a combination of innate and learned information long before the 

cognitive revolution occurred (Seashore, 1967): “The ear, like the eye, is an instru-

ment, and mental development in music consists in the acquisition of skills and the 

enrichment of experience through this channel” (p. 3).

The classical approach views the acquisition of musical skills in terms of 

changes in mental representations. “We learn the structures that we use to repre-

sent music” (Sloboda, 1985, p. 6). Krumhansl (1990, p. 286) noted that the robust 

hierarchies of tonal stability revealed in her research reflect stylistic regularities 

in Western tonal music. From this she suggests that “it seems probable, then, that 

abstract tonal and harmonic relations are learned through internalizing distribu-

tional properties characteristic of the style.” This view is analogous to those classical 

theories of perception that propose that the structure of internal representations 

imposes constraints on visual transformations that mirror the constraints imposed 

by the physics of the external world (Shepard, 1984b).
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Krumhansl’s (1990) internalization hypothesis is one of many classical accounts 

that have descended from Leonard Meyer’s account of musical meaning arising from 

emotions manipulated by expectation (Meyer, 1956). “Styles in music are basically 

complex systems of probability relationships” (p. 54). Indeed, a tremendous variety 

of musical characteristics can be captured by applying Bayesian models, including 

rhythm and metre, pitch and melody, and musical style (Temperley, 2007). A great 

deal of evidence also suggests that expectations about what is to come next are criti-

cal determinants of human music perception (Huron, 2006). Temperley argues that 

classical models of music perception (Lerdahl, 2001; Lerdahl & Jackendoff, 1983; 

Temperley, 2001) make explicit these probabilistic relationships. “Listeners’ gen-

erative models are tuned to reflect the statistical properties of the music that they 

encounter” (Temperley, 2007, p. 207).

It was earlier argued that there are distinct parallels between Austro-German 

classical music and the classical approach to cognitive science. One of the most 

compelling is that both appeal to abstract, formal structures. It would appear that 

the classical approach to musical cognition takes this parallel very literally. That is, 

the representational systems proposed by classical researchers of musical cogni-

tion internalize the formal properties of music, and in turn they impose this formal 

structure on sounds during the perception of music.

6.3 Musical Romanticism and Connectionism

The eighteenth-century Industrial Revolution produced profound changes in the 

nature of European life, transferring power and wealth from the nobility to the 

commercial class (Plantinga, 1984). Tremendous discontentment with the existing 

social order, culminating in the French revolution, had a profound influence on 

political, intellectual, and artistic pursuits. It led to a movement called Romanticism 

(Claudon, 1980), which roughly spanned the period from the years leading up to the 

1789 French revolution through to the end of the nineteenth century.

A precise definition of Romanticism is impossible, for it developed at differ-

ent times in different countries, and in different arts—first poetry, then paint-

ing, and finally music (Einstein, 1947). Romanticism was a reaction against the 

reason and rationality that characterized the Enlightenment period that preceded 

it. Romanticism emphasized the individual, the irrational, and the imagina-

tive. Arguably music provided Romanticism’s greatest expression (Einstein, 1947; 

Plantinga, 1984), because music expressed mystical and imaginative ideas that 

could not be captured by language.

It is impossible to provide a clear characterization of Romantic music 

(Einstein, 1947; Longyear, 1988; Plantinga, 1984; Whittall, 1987). “We seek in vain 

an unequivocal idea of the nature of ‘musical Romanticism’” (Einstein, 1947, p. 4). 
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However, there is general agreement that Romantic music exhibits, 

a preference for the original rather than the normative, a pursuit of unique 

effects and extremes of expressiveness, the mobilization to that end of an 

enriched harmonic vocabulary, striking new figurations, textures, and tone colors. 

(Plantinga, 1984, p. 21) 

The list of composers who were musical Romanticism’s greatest practitioners begins 

with Beethoven, and includes Schubert, Mendelssohn, Schumann, Chopin, Berlioz, 

Liszt, Wagner, and Brahms.

Romantic music can be used to further develop the analogy between classi-

cal music and cognitive science. In particular, there are several parallels that exist 

between musical Romanticism and connectionist cognitive science. The most gen-

eral similarity between the two is that both are reactions against the Cartesian view 

of the mind that dominated the Enlightenment.

Romantic composers wished to replace the calculated, rational form of music 

such as Bach’s contrapuntal fugues (Gaines, 2005; Hofstadter, 1979) with a music 

that expressed intensity of feeling, which communicated the sublime. “It was 

a retrogression to the primitive relationship that man had had to music—to the 

mysterious, the exciting, the magical” (Einstein, 1947, p. 8). As a result, musical 

Romanticism championed purely instrumental music; music that was not paired 

with words. The instrumental music of the Romantics “became the choicest means 

of saying what could not be said, of expressing something deeper than the word had 

been able to express” (p. 32). In a famous 1813 passage, music critic E. T. A. Hoffman 

proclaimed instrumental music to be “the most romantic of all the arts—one might 

almost say, the only genuinely romantic one—for its sole subject is the infinite” 

(Strunk, 1950, p. 775).

Connectionist cognitive science too is a reaction against the rationalism and 

logicism of Cartesian philosophy. And one form of this reaction parallels Romantic 

music’s move away from the word: many connectionists interpreted the ability of net-

works to accomplish classical tasks as evidence that cognitive science need not appeal 

to explicit rules or symbols (Bechtel & Abrahamsen, 1991; Horgan & Tienson, 1996; 

Ramsey, Stich, & Rumelhart, 1991; Rumelhart & McClelland, 1986a).

A second aspect of musical Romanticism’s reaction against reason was its 

emphasis on the imaginary and the sublime. In general, the Romantic arts pro-

vided escape by longingly looking back at “unspoiled,” preindustrial existences 

and by using settings that were wild and fanciful. Nature was a common inspira-

tion. The untamed mountains and chasms of the Alps stood in opposition to the 

Enlightenment’s view that the world was ordered and structured.

For example, in the novel Frankenstein (Shelley, 1985), after the death of 

Justine, Victor Frankenstein seeks solace in a mountain journey. The beauty of a 

valley through which he travelled “was augmented and rendered sublime by the 
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mighty Alps, whose white and shining pyramids and domes towered above all, as 

belonging to another earth, the habitations of another race of beings” (p. 97). To be 

sublime was to reflect a greatness that could not be completely understood. “The 

immense mountains and precipices that overhung me on every side—the sound of 

the river raging among the rocks, and the dashing of the waterfalls around, spoke of 

a power mighty as Omnipotence” (p. 97).

Sublime Nature appeared frequently in musical Romanticism. Longyear’s 

(1988, p. 12) examples include “the forest paintings in Weber’s Der Freischütz or 

Wagner’s; the landscapes and seascapes of Mendelssohn and Gade; the Alpine pic-

tures in Schumann’s or Tchaikovsky’s Manfred” to name but a few.

Musical Romanticism also took great pains to convey the imaginary or the 

indescribable (Whittall, 1987). In some striking instances, Romantic composers 

followed the advice in John Keats’ 1819 Ode on a Grecian Urn, “Heard melodies 

are sweet, but those unheard / Are sweeter.” Consider Schumann’s piano work 

Humoreske (Rosen, 1995). It uses three staves: one for the right hand, one for the 

left, and a third—containing the melody!—which is not to be played at all. Though 

inaudible, the melody “is embodied in the upper and lower parts as a kind of after 

resonance—out of phase, delicate, and shadowy” (p. 8). The effects of the melody 

emerge from playing the other parts.

In certain respects, connectionist cognitive science is sympathetic to musical 

Romanticism’s emphasis on nature, the sublime, and the imaginary. Cartesian phi-

losophy, and the classical cognitive science that was later inspired by it, view the 

mind as disembodied, being separate from the natural world. In seeking theories that 

are biologically plausible and neuronally inspired (McClelland & Rumelhart, 1986; 

Rumelhart & McClelland, 1986c), connectionists took a small step towards embodi-

ment. Whereas Descartes completely separated the mind from the world, connec-

tionists assume that brains cause minds (Searle, 1984).

Furthermore, connectionists recognize that the mental properties caused by 

brains may be very difficult to articulate using a rigid set of rules and symbols. 

One reason that artificial neural networks are used to study music is because they 

may capture regularities that cannot be rationally expressed (Bharucha, 1999; 

Rowe, 2001; Todd & Loy, 1991). These regularities emerge from the nonlinear inter-

actions amongst network components (Dawson, 2004; Hillis, 1988). And the diffi-

culty in explaining such interactions suggests that networks are sublime. Artificial 

neural networks seem to provide “the possibility of constructing intelligence with-

out first understanding it” (Hillis, 1988, p. 176).

Musical Romanticism also celebrated something of a scale less grand than 

sublime Nature: the individual. Romantic composers broke away from the estab-

lished system of musical patronage. They began to write music for its own (or for 

the composer's own) sake, instead of being written for commission (Einstein, 1947). 
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Beethoven’s piano sonatas were so brilliant and difficult that they were often beyond 

the capabilities of amateur performers who had mastered Haydn and Mozart. His 

symphonies were intended to speak “to a humanity that the creative artist had raised 

to his own level” (p. 38). The subjectivity and individualism of musical Romanticism 

is one reason that there is no typical symphony, art-song, piano piece or composer 

from this era (Longyear, 1988).

Individualism was also reflected in the popularity of musical virtuosos, for 

whom the Romantic period was a golden age (Claudon, 1980). These included the 

violinists Paganini and Baillot, and the pianists Liszt, Chopin, and Schumann. They 

were famous not only for their musical prowess, but also for a commercialization 

of their character that exploited Romanticist ideals (Plantinga, 1984). Paganini and 

Liszt were “transformed by the Romantic imagination into a particular sort of hero: 

mysterious, sickly, and bearing the faint marks of dark associations with another 

world” (Plantinga, 1984, p. 185).

Individualism is also a fundamental characteristic of connectionism. It is 

not a characteristic of connectionist researchers themselves (but see below), but 

is instead a characteristic of the networks that they describe. When connectionist 

simulations are reported, the results are almost invariably provided for individual 

networks. This was demonstrated in Chapter 4; the interpretations of internal 

structure presented there are always of individual networks. This is because there 

are many sources of variation between networks as a result of the manner in which 

they are randomly initialized (Dawson, 2005). Thus it is unlikely that one network 

will be identical to another, even though both have learned the same task. Rather 

than exploring “typical” network properties, it is more expedient to investigate the 

interesting characteristics that can be found in one of the networks that were suc-

cessfully trained.

There are famous individual networks that are analogous to musical virtuosos. 

These include the Jets-Sharks network used to illustrate the interactive activation 

with competition (IAC) architecture (McClelland & Rumelhart, 1988); a multilay-

ered network that converted English verbs from present to past tense (Pinker & 

Prince, 1988; Rumelhart & McClelland, 1986a); and the NETTALK system that 

learned to read aloud (Sejnowski & Rosenberg, 1988).

Individualism revealed itself in another way in musical Romanticism. When 

Romantic composers wrote music for its own sake, they assumed that its audience 

would be found later (Einstein, 1947). Unfortunately, “few artists gained recognition 

without long, difficult struggles” (Riedel, 1969, p. 6). The isolation of the composer 

from the audience was an example of another Romantic invention: the composer was 

the misunderstood genius who idealistically pursued art for art’s sake. “The Romantic 

musician . . . was proud of his isolation. In earlier centuries the idea of misunderstood 

genius was not only unknown; it was inconceivable” (Einstein, 1947, p. 16).
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The isolated genius is a recurring character in modern histories of connection-

ism, one of which is presented as a fairy tale (Papert, 1988), providing an interest-

ing illustration of the link between Romanticism and connectionism. According 

to the prevailing view of connectionist history (Anderson & Rosenfeld, 1998; 

Hecht-Nielsen, 1987; Medler, 1998; Olazaran, 1996), the isolation of the neural net 

researcher began with a crusade by Minsky and Papert, prior to the publication of 

Perceptrons (Minsky & Papert, 1969), against research funding for perceptron-like 

systems.

Minsky and Papert’s campaign achieved its purpose. The common wisdom that 

neural networks were a research dead-end became firmly established. Artificial 

intelligence researchers got all of the neural network research money and more. 

The world had been reordered. And neurocomputing had to go underground. 

(Hecht-Nielsen, 1987, p. 17)

Going underground, at least in North America, meant connectionist research was 

conducted sparingly by a handful of researchers, disguised by labels such as “adap-

tive pattern recognition” and “biological modelling” during the “quiet years” from 

1967 until 1982 (Hecht-Nielsen, 1987). A handful of neural network researchers 

“struggled through the entire span of quiet years in obscurity.” While it did not com-

pletely disappear, “neural-net activity decreased significantly and was displaced to 

areas outside AI (it was considered ‘deviant’ within AI)” (Olazaran, 1996, p. 642). 

Like the Romantic composers they resemble, these isolated connectionist research-

ers conducted science for science’s sake, with little funding, waiting for an audience 

to catch up—which occurred with the 1980s rise of New Connectionism.

Even though Romanticism can be thought of as a musical revolution, it did 

not abandon the old forms completely. Instead, Romanticist composers adapted 

them, and explored them, for their own purposes. For example, consider the his-

tory of the symphony. In the early seventeenth century, the symphony was merely 

a short overture played before the raising of the curtains at an opera (Lee, 1916). 

Later, the more interesting of these compositions came to be performed to their 

own audiences outside the theatre. The modern symphony, which typically consists 

of four movements (each with an expected form and tempo), begins to be seen in 

the eighteenth-century compositions of Carl Philip Emmanuel Bach. Experiments 

with this structure were conducted in the later eighteenth century by Haydn and 

Mozart. When Beethoven wrote his symphonies in the early nineteenth century, the 

modern symphonic form was established—and likely perfected. “No less a person 

than Richard Wagner affirmed that the right of composing symphonies was abol-

ished by Beethoven’s Ninth’” (p. 172).

Beethoven is often taken to be the first Romantic composer because he also 

proved that the symphony had enormous expressive power. The Romantic compos-

ers who followed in his footsteps did not introduce dramatic changes in musical form; 
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rather they explored variations within this form in attempts to heighten its emo-

tional expressiveness. “Strictly speaking, no doubt, musical Romanticism is more 

style than language” (Whittall, 1987, p. 17). Romantic composers developed radically 

new approaches to instrumentation, producing new tone colours (Ratner, 1992). The 

amount of sound was manipulated as an expressive tool; Romanticists increased 

“the compass, dynamic range, and timbral intensity of virtually all instruments” 

(Ratner, 1992, p. 9). New harmonic progressions were invented. But all of these 

expressive innovations involved relaxing, rather than replacing, classical conven-

tions. “There can be little doubt that ‘romantic’ musical styles emanate from and 

comingle with ‘classic’ ones. There is no isolable time and place where one leaves off 

and the other begins” (Plantinga, 1984, p. 22).

Connectionist cognitive science has been portrayed as a revolution (Hanson 

& Olson, 1991) and as a paradigm shift (Schneider, 1987). However, it is important to 

remember that it, like musical Romanticism, also shares many of the characteristics 

of the classical school that it reacted against.

For instance, connectionists don’t abandon the notion of information process-

ing; they argue that the brain is just a different kind of information processor than 

is a digital computer (Churchland, Koch, & Sejnowski, 1990). Connectionists don’t 

discard the need for representations; they instead offer different kinds, such as dis-

tributed representations (Hinton, McClelland, & Rumelhart, 1986). Connectionists 

don’t dispose of symbolic accounts; they propose that they are approximations to 

subsymbolic regularities (Smolensky, 1988).

Furthermore, it was argued earlier in this book that connectionist cognitive sci-

ence cannot be distinguished from classical cognitive science on many other dimen-

sions, including the adoption of functionalism (Douglas & Martin, 1991) and the 

classical sandwich (Calvo & Gomila, 2008; Clark, 1997). When these two approaches 

are compared in the context of the multiple levels of investigation discussed in 

Chapter 2, there are many similarities between them: 

Indeed, the fact that the two can be compared in this way at all indicates a commit-

ment to a common paradigm—an endorsement of the foundational assumption of 

cognitive science: cognition is information processing. (Dawson, 1998, p. 298)

Copland (1952, pp. 69–70) argued that the drama of European music was defined 

by two polar forces: “the pull of tradition as against the attraction of innovation.” 

These competing forces certainly contributed to the contradictory variety found in 

musical Romanticism (Einstein, 1947); perhaps they too have shaped modern con-

nectionist cognitive science. This issue can be explored by considering connection-

ist approaches to musical cognition and comparing them to the classical research 

on musical cognition that was described earlier in the current chapter.
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6.4 The Connectionist Approach to Musical Cognition

Connectionist research on musical cognition is perhaps not as established as clas-

sical research, but it has nonetheless produced a substantial and growing literature 

(Bharucha, 1999; Fiske, 2004; Griffith & Todd, 1999; Todd & Loy, 1991). The purpose 

of this section is to provide a very brief orientation to this research. As the section 

develops, the relationship of connectionist musical cognition to certain aspects of 

musical Romanticism is illustrated.

By the late 1980s, New Connectionism had begun to influence research on 

musical cognition. The effects of this spreading influence have been documented 

in two collections of research papers (Griffith & Todd, 1999; Todd & Loy, 1991). 

Connectionist musical cognition has been studied with a wide variety of network 

architectures, and covers a broad range of topics, most notably classifying pitch and 

tonality, assigning rhythm and metre, classifying and completing melodic structure, 

and composing new musical pieces (Griffith & Todd, 1999).

Why use neural networks to study musical cognition? Bharucha (1999) pro-

vided five reasons. First, artificial neural networks can account for the learning 

of musical patterns via environmental exposure. Second, the type of learning that 

they describe is biologically plausible. Third, they provide a natural and biologically 

plausible account of contextual effects and pattern completion during perception. 

Fourth, they are particularly well suited to modelling similarity-based regularities 

that are important in theories of musical cognition. Fifth, they can discover regu-

larities (e.g., in musical styles) that can elude more formal analyses.

To begin our survey of connectionist musical cognition, let us consider 

the artificial neural network classifications of pitch, tonality, and harmony 

(Griffith & Todd, 1999; Purwins et al., 2008). A wide variety of such tasks have been 

successfully explored: artificial neural networks have been trained to classify chords 

(Laden & Keefe, 1989; Yaremchuk & Dawson, 2005; Yaremchuk & Dawson, 2008), 

assign notes to tonal schema similar to the structures proposed by Krumhansl (1990) 

(Leman, 1991; Scarborough, Miller, & Jones, 1989), model the effects of expecta-

tion on pitch perception and other aspects of musical perception (Bharucha, 1987; 

Bharucha & Todd, 1989), add harmony to melodies (Shibata, 1991), determine the 

musical key of a melody (Griffith, 1995), and detect the chord patterns in a composi-

tion (Gjerdingen, 1992).

Artificial neural networks are well suited for this wide range of pitch-related 

tasks because of their ability to exploit contextual information, which in turn per-

mits them to deal with noisy inputs. For example, networks are capable of pat-

tern completion, which is replacing information that is missing from imperfect 

input patterns. In musical cognition, one example of pattern completion is virtual 

pitch (Terhardt, Stoll, & Seewann, 1982a, 1982b), the perception of pitches that are 
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missing their fundamental frequency.

Consider a sine wave whose frequency is f. When we hear a musical sound, 

its pitch (i.e., its tonal height, or the note that we experience) is typically associ-

ated with this fundamental frequency (Helmholtz & Ellis, 1954; Seashore, 1967). 

The harmonics of this sine wave are other sine waves whose frequencies are integer 

multiples of f (i.e., 2f, 3f, 4f and so on). The timbre of the sound (whether we can 

identify a tone as coming from, for example, a piano versus a clarinet) is a function 

of the amplitudes of the various harmonics that are also audible (Seashore, 1967).

Interestingly, when a complex sound is filtered so that its fundamental fre-

quency is removed, our perception of its pitch is not affected (Fletcher, 1924). It is as 

if the presence of the other harmonics provides enough information for the auditory 

system to fill in the missing fundamental, so that the correct pitch is heard—a phe-

nomenon Schumann exploited in Humoreske. Co-operative interactions amongst 

neurons that detect the remaining harmonics are likely responsible for this effect 

(Cedolin & Delgutte, 2010; Smith et al., 1978; Zatorre, 2005).

Artificial neural networks can easily model such co-operative processing and 

complete the missing fundamental. For instance, one important connectionist 

system is called a Hopfield network (Hopfield, 1982, 1984). It is an autoassociative 

network that has only one set of processing units, which are all interconnected. 

When a pattern of activity is presented to this type of network, signals spread rap-

idly to all of the processors, producing dynamic interactions that cause the net-

work’s units to turn on or off over time. Eventually the network will stabilize in a 

least-energy state; dynamic changes in processor activities will come to a halt.

Hopfield networks can be used to model virtual pitch, because they complete 

the missing fundamental (Benuskova, 1994). In this network, each processor repre-

sents a sine wave of a particular frequency; if the processor is on, then this repre-

sents that the sine wave is present. If a subset of processors is activated to represent 

a stimulus that is a set of harmonics with a missing fundamental, then when the 

network stabilizes, the processor representing the missing fundamental will be also 

activated. Other kinds of self-organizing networks are also capable of completing 

the missing fundamental (Sano & Jenkins, 1989).

An artificial neural network’s ability to deal with noisy inputs allows it to 

cope with other domains of musical cognition as well, such as assigning rhythm 

and metre (Desain & Honing, 1989; Griffith & Todd, 1999). Classical models of this 

type of processing hierarchically assign a structure of beats to different levels of 

a piece, employing rules that take advantage of the fact that musical rhythm and 

metre are associated with integer values (e.g., as defined by time signatures, or 

in the definition of note durations such as whole notes, quarter notes, and so on) 

(Lerdahl & Jackendoff, 1983; Temperley, 2001). However, in the actual performance 

of a piece, beats will be noisy or imperfect, such that perfect integer ratios of beats 
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will not occur (Gasser, Eck, & Port, 1999). Connectionist models can correct for this 

problem, much as networks can restore absent information such as the missing 

fundamental.

For example, one network for assigning rhythm and metre uses a system of 

oscillating processors, units that fire at a set frequency (Large & Kolen, 1994). One 

can imagine having available a large number of such oscillators, each representing a 

different frequency. While an oscillator’s frequency of activity is constant, its phase 

of activity can be shifted (e.g., to permit an oscillator to align itself with external 

beats of the same frequency). If the phases of these processors can also be affected 

by co-operative and competitive interactions between the processors themselves, 

then the phases of the various components of the system can become entrained. 

This permits the network to represent the metrical structure of a musical input, 

even if the actual input is noisy or imperfect. This notion can be elaborated in a self-

organizing network that permits preferences for, or expectancies of, certain rhyth-

mic patterns to determine the final representation that the network converges to 

(Gasser Eck, & Port, 1999).

The artificial neural network examples provided above illustrate another of 

Bharucha’s (1999) advantages of such models: biological plausibility. Many neural 

network models are attempts to simulate some aspects of neural accounts of audi-

tory and musical perception. For instance, place theory is the proposal that musical 

pitch is represented by places of activity along the basilar membrane in the cochlea 

(Helmholtz & Ellis, 1954; von Bekesy, 1928). The implications of place theory can be 

explored by using it to inspire spatial representations of musical inputs to connec-

tionist networks (Sano & Jenkins, 1989).

The link between connectionist accounts and biological accounts of musical 

cognition is not accidental, because both reflect reactions against common criti-

cisms. Classical cognitive scientist Steven Pinker is a noted critic of connection-

ist cognitive science (Pinker, 2002; Pinker & Prince, 1988). Pinker (1997) has also 

been a leading proponent of massive modularity, which ascribes neural modules 

to most cognitive faculties—except for music. Pinker excluded music because he 

could not see any adaptive value for its natural selection: “As far as biological cause 

and effect are concerned, music is useless. It shows no signs of design for attaining 

a goal such as long life, grandchildren, or accurate perception and prediction of 

the world” (p. 528). The rise of modern research in the cognitive neuroscience of 

music (Cedolin & Delgutte, 2010; Peretz & Coltheart, 2003; Peretz & Zatorre, 2003; 

Purwins et al., 2008; Stewart et al., 2006; Warren, 2008) is a reaction against this 

classical position, and finds a natural ally in musical connectionism.

In the analogy laid out in the previous section, connectionism’s appeal to the 

brain was presented as an example of its Romanticism. Connectionist research on 

musical cognition reveals other Romanticist parallels. Like musical Romanticism, 
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connectionism is positioned to capture regularities that are difficult to express in 

language or by using formal rules (Loy, 1991).

For example, human subjects can accurately classify short musical selections 

into different genres or styles in a remarkably short period of time, within a quarter 

of a second (Gjerdingen & Perrott, 2008). But it is difficult to see how one could pro-

vide a classical account of this ability because of the difficulty in formally defining a 

genre or style for a classical model. “It is not likely that musical styles can be isolated 

successfully by simple heuristics and introspection, nor can they be readily modeled 

as a rule-solving problem” (Loy, 1991, p. 31).

However, many different artificial neural networks have been developed to 

classify music using categories that seem to defy precise, formal definitions. These 

include networks that can classify musical patterns as belonging to the early works 

of Mozart (Gjerdingen, 1990); classify selections as belonging to different genres 

of Western music (Mostafa & Billor, 2009); detect patterns of movement between 

notes in segments of music (Gjerdingen, 1994) in a fashion similar to a model of 

apparent motion perception (Grossberg & Rudd, 1989, 1992); evaluate the affective 

aesthetics of a melody (Coutinho & Cangelosi, 2009; Katz, 1995); and even predict 

the possibility that a particular song has “hit potential” (Monterola et al., 2009).

Categories such as genre or hit potential are obviously vague. However, even 

identifying a stimulus as being a particular song or melody may also be difficult 

to define formally. This is because a melody can be transposed into different keys, 

performed by different instruments or voices, or even embellished by adding impro-

visational flourishes.

Again, melody recognition can be accomplished by artificial neural networks 

that map, for instance, transposed versions of the same musical segment onto a 

single output representation (Benuskova, 1995; Bharucha & Todd, 1989; Page, 1994; 

Stevens & Latimer, 1992). Neural network melody recognition has implications for 

other aspects of musical cognition, such as the representational format for musi-

cal memories. For instance, self-organizing networks can represent the hierarchical 

structure of a musical piece in an abstract enough fashion so that only the “gist” is 

encoded, permitting the same memory to be linked to multiple auditory variations 

(Large, Palmer, & Pollack, 1995). Auditory processing organizes information into 

separate streams (Bregman, 1990); neural networks can accomplish this for musi-

cal inputs by processing relationships amongst pitches (Grossberg, 1999).

The insights into musical representation that are being provided by artificial 

neural networks have important implications beyond musical cognition. There is 

now wide availability of music and multimedia materials in digital format. How 

can such material be classified and searched? Artificial neural networks are proving 

to be useful in addressing this problem, as well as for providing adaptive systems 

for selecting music, or generating musical playlists, based on a user’s mood or past 
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preferences (Bugatti, Flammini, & Migliorati, 2002; Jun, Rho, & Hwang, 2010; Liu, 

Hsieh, & Tsai, 2010; Muñoz-Expósito et al., 2007).

Musical styles, or individual musical pieces, are difficult to precisely define, and 

therefore are problematic to incorporate into classical theories. “The fact that even 

mature theories of music are informal is strong evidence that the performer, the 

listener, and the composer do not operate principally as rule-based problem solvers” 

(Loy, 1991, p. 31). That artificial neural networks are capable of classifying music in 

terms of such vague categories indicates that “perhaps connectionism can show the 

way to techniques that do not have the liabilities of strictly formal systems” (p. 31). 

In other words, the flexibility and informality of connectionist systems allows them 

to cope with situations that may be beyond the capacity of classical models. Might 

not this advantage also apply to another aspect of musical cognition, composition?

Composition has in fact been one of the most successful applications of musi-

cal connectionism. A wide variety of composing networks have been developed. 

Networks have been developed to compose single-voiced melodies on the basis of 

learned musical structure (Mozer, 1991; Todd, 1989); to compose harmonized melo-

dies or multiple-voice pieces (Adiloglu & Alpaslan, 2007; Bellgard & Tsang, 1994; 

Hoover & Stanley, 2009; Mozer, 1994); to learn jazz melodies and harmonies, and 

then to use this information to generate new melodies when presented with novel 

harmonies (Franklin, 2006); and to improvise by composing variations on learned 

melodies (Nagashima & Kawashima, 1997). The logic of network composition is that 

the relationship between successive notes in a melody, or between different notes 

played at the same time in a harmonized or multiple-voice piece, is not random, 

but is instead constrained by stylistic, melodic, and acoustic constraints (Kohonen 

et al., 1991; Lewis, 1991; Mozer, 1991, 1994). Networks are capable of learning such 

constraints and using them to predict, for example, what the next note should be in 

a new composition.

In keeping with musical Romanticism, however, composing networks are pre-

sumed to have internalized constraints that are difficult to formalize or to express 

in ordinary language. “Nonconnectionist algorithmic approaches in the computer 

arts have often met with the difficulty that ‘laws’ of art are characteristically fuzzy 

and ill-suited for algorithmic description” (Lewis, 1991, p. 212). Furthermore these 

“laws” are unlikely to be gleaned from analyzing the internal structure of a network, 

“since the hidden units typically compute some complicated, often uninterpretable 

function of their inputs” (Todd, 1989, p. 31). It is too early to label a composing net-

work as an isolated genius, but it would appear that these networks are exploiting 

regularities that are in some sense sublime!

This particular parallel between musical Romanticism and connectionism, that 

both capture regularities that cannot be formalized, is apparent in another interest-

ing characteristic of musical connectionism. The most popular algorithm for training 
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artificial neural networks is the generalized delta rule (i.e., error backpropagation) 

(Chauvin & Rumelhart, 1995; Widrow & Lehr, 1990), and networks trained with this 

kind of supervised learning rule are the most likely to be found in the cognitive sci-

ence literature. While self-organizing networks are present in this literature and 

have made important contributions to it (Amit, 1989; Carpenter & Grossberg, 1992; 

Grossberg, 1988; Kohonen, 1984, 2001), they are much less popular. However, this 

does not seem to be the case in musical connectionism.

For example, in the two collections that document advances in artificial neural 

network applications to musical cognition (Griffith & Todd, 1999; Todd & Loy, 1991), 

23 papers describe new neural networks. Of these contributions, 9 involve super-

vised learning, while 14 describe unsupervised, self-organizing networks. This indi-

cates a marked preference for unsupervised networks in this particular connection-

ist literature.

This preference is likely due to the view that supervised learning is not practi-

cal for musical cognition, either because many musical regularities can be acquired 

without feedback or supervision (Bharucha, 1991) or because for higher-level 

musical tasks the definition of the required feedback is impossible to formalize 

(Gjerdingen, 1989). “One wonders, for example, if anyone would be comfortable in 

claiming that one interpretation of a musical phrase is only 69 percent [as] true as 

another” (p. 67). This suggests that the musical Romanticism of connectionism is 

even reflected in its choice of network architectures.

6.5 The Embodied Nature of Modern Music1

European classical music is innovation constrained by tradition (Copland, 1952). By 

the end of the nineteenth century, composers had invented a market for instrumen-

tal music by refining established musical conventions (Rosen, 1988). “The European 

musician is forced into the position of acting as caretaker and preserver of other 

men’s music, whether he likes it or no” (Copland, 1952, p. 69).

What are the general characteristics of European classical music? Consider the 

sonata-allegro form, which is based upon particular musical themes or melodies 

that are associated with a specific tonality. That is, they are written in a particular 

musical key. This tonality dictates harmonic structure; within a musical key, cer-

tain notes or chords will be consonant, while others will not be played because of 

their dissonance. The sonata-allegro form also dictates an expected order in which 

themes and musical keys are explored and a definite time signature to be used 

throughout.

1 Much of the text in this section has been adapted from the second chapter of Dawson, 

Dupuis, and Wilson (2010).
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The key feature from above is tonality, the use of particular musical keys to estab-

lish an expected harmonic structure. “Harmony is Western music’s uniquely distin-

guishing element” (Pleasants, 1955, p. 97). It was a reaction against this distinguish-

ing characteristic that led to what is known as modern music (Griffiths, 1994, 1995; 

Ross, 2007). This section further explores the analogy between classical music and 

cognitive science via parallels between modern music and embodied cognitive 

science.

In the early twentieth century, classical music found itself in a crisis of harmony 

(Pleasants, 1955). Composers began to abandon most of the characteristics of tra-

ditional European classical music in an attempt to create a new music that better 

reflected modern times. “‘Is it not our duty,’ [Debussy] asked, ‘to find a symphonic 

means to express our time, one that evokes the progress, the daring and the victories 

of modern days? The century of the aeroplane deserves its music’” (Griffiths, 1994, 

p. 98).

Modern music is said to have begun with the Prélude à L’après-midi d’un faune 

composed by Claude Debussy between 1892 and 1894 (Griffiths, 1994). The Prélude 

breaks away from the harmonic relationships defined by strict tonality. It fails to 

logically develop themes. It employs fluctuating tempos and irregular rhythms. It 

depends critically on instrumentation for expression. Debussy “had little time for 

the thorough, continuous, symphonic manner of the Austro-German tradition, the 

‘logical’ development of ideas which gives music the effect of a narrative” (p. 9).

Debussy had opened the paths of modern music—the abandonment of traditional 

tonality, the development of new rhythmic complexity, the recognition of color 

as an essential, the creation of a quite new form for each work, the exploration of 

deeper mental processes. (Griffiths, 1994, p. 12)

In the twentieth century, composers experimented with new methods that further 

pursued these paths and exploited notions related to emergence, embodiment, and 

stigmergy.

To begin, let us consider how modern music addressed the crisis of harmony by 

composing deliberately atonal music. The possibility of atonality in music emerges 

from the definition of musical tonality. In Western music there are 12 possible notes 

available. If all of these notes are played in order from lowest to highest, with each 

successive note a semitone higher than the last, the result is a chromatic scale.

Different kinds of scales are created by invoking constraints that prevent some 

notes from being played, as addressed in the Chapter 4 discussion of jazz progres-

sions. A major scale is produced when a particular set of 7 notes is played, and the 

remaining 5 notes are not played. Because a major scale does not include all of the 

notes in a chromatic scale, it has a distinctive sound—its tonality. A composition 

that had the tonal centre of A major only includes those notes that belong to the 

A-major scale.
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This implies that what is required to produce music that is atonal is to include 

all of the notes from the chromatic scale. If all notes were included, then it would be 

impossible to associate this set of notes with a tonal centre. One method of ensur-

ing atonality is the “twelve-tone technique,” or dodecaphony, invented by Arnold 

Schoenberg.

When a dodecaphony is employed, a composer starts by listing all twelve pos-

sible notes in some desired order, called the tone row. The tone row is the basis for 

a melody: the composer begins to write the melody by using the first note in the 

tone row, for a desired duration, possibly with repetition. However, this note cannot 

be reused in the melody until the remaining notes have also been used in the order 

specified by the tone row. This ensures that the melody is atonal, because all of the 

notes that make up a chromatic scale have been included. Once all twelve notes 

have been used, the tone row is used to create the next section of the melody. At this 

time, it can be systematically manipulated to produce musical variation.

The first dodecaphonic composition was Schoenberg’s 1923 Suite for Piano, 

Op. 25. Schoenberg and his students Alban Berg and Anton Webern composed 

extensively using the twelve-note technique. A later musical movement called seri-

alism used similar systems to determine other parameters of a score, such as note 

durations and dynamics. It was explored by Olivier Messiaen and his followers, 

notably Pierre Boulez and Karlheinz Stockhausen (Griffiths, 1995).

Dodecaphony provided an alternative to the traditional forms of classical 

music. However, it still adhered to the Austro-German tradition’s need for struc-

ture. Schoenberg invented dodecaphony because he needed a system to compose 

larger-scale atonal works; prior to its invention he was “troubled by the lack of 

system, the absence of harmonic bearings on which large forms might be directed. 

Serialism at last offered a new means of achieving order” (Griffiths, 1994, p. 81).

A new generation of American composers recognized that dodecaphony and 

serialism were still strongly tied to musical tradition: “To me, it was music of the 

past, passing itself off as music of the present” (Glass, 1987, p. 13). Critics accused 

serialist compositions of being mathematical or mechanical (Griffiths, 1994), and 

serialism did in fact make computer composition possible: in 1964 Gottfried Koenig 

created Project 1, which was a computer program that composed serial music 

(Koenig, 1999).

Serialism also shared the traditional approach’s disdain for the audience. 

American composer Steve Reich (1974, p. 10) noted that “in serial music, the 

series itself is seldom audible,” which appears to be a serial composer’s intent 

(Griffiths, 1994). Bernstein (1976, p. 273) wrote that Schoenberg “produced a music 

that was extremely difficult for the listener to follow, in either form or content.” This 

music’s opacity, and its decidedly different or modern sound, frequently led to hos-

tile receptions. One notable example is The Agony of Modern Music: 
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The vein for which three hundred years offered a seemingly inexhaustible yield of 

beautiful music has run out. What we know as modern music is the noise made by 

deluded speculators picking through the slag pile. (Pleasants, 1955, p. 3)

That serial music was derived from a new kind of formalism also fuelled its critics.

Faced with complex and lengthy analyses, baffling terminology and a total rejec-

tion of common paradigms of musical expression, many critics—not all conserva-

tive—found ample ammunition to back up their claims that serial music was a 

mere intellectual exercise which could not seriously be regarded as music at all. 

(Grant, 2001, p. 3)

Serialism revealed that European composers had difficulty breaking free of the 

old forms even when they recognized a need for new music (Griffiths, 1994). 

Schoenberg wrote, “I am at least as conservative as Edison and Ford have been. 

But I am, unfortunately, not quite as progressive as they were in their own fields” 

(Griffiths, 1995, p. 50).

 American composers rejected the new atonal structures (Bernstein, 1976). 

Phillip Glass described his feelings about serialism so: “A wasteland, dominated 

by these maniacs, these creeps, who were trying to make everyone write this crazy 

creepy music” (Schwarz, 1996). When Glass attended concerts, the only “breaths of 

fresh air” that he experienced were when works from modern American compos-

ers such as John Cage were on the program (Glass, 1987). Leonard Bernstein (1976, 

p. 273) wrote that “free atonality was in itself a point of no return. It seemed to 

fulfill the conditions for musical progress. . . . But then: a dead end. Where did one 

go from here?” The new American music was more progressive than its European 

counterpart because its composers were far less shackled by musical traditions.

For instance, American composers were willing to relinquish the central control 

of the musical score, recognizing the improvisational elements of classical composi-

tion (Benson, 2003). Some were even willing to surrender the composer’s control 

over the piece (Cage, 1961), recognizing that many musical effects depended upon 

the audience’s perceptual processes (Potter, 2000; Schwarz, 1996). It was therefore 

not atonality itself but instead the American reaction to it that led to a classical 

music with clear links to embodied cognitive science.

Consider, for instance, the implications of relinquishing centralized control in 

modern music. John Cage was largely motivated by his desire to free musical com-

positions from the composer’s will. He wrote that “when silence, generally speak-

ing, is not in evidence, the will of the composer is. Inherent silence is equivalent to 

denial of the will” (Cage, 1961, p. 53). Cage’s most famous example of relinquish-

ing control is in his “silent piece,” 4’33”, first performed by pianist David Tudor in 

1952 (Nyman, 1999). It consists of three parts; the entire score for each part reads 

“TACET,” which instructs the performer to remain silent. Tudor signaled the start 
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of each part by closing the keyboard lid, and opened the lid when the part was over.

4’33” places tremendous compositional responsibility upon its audience. Cage 

is quoted on this subject as saying: 

Most people think that when they hear a piece of music, they’re not doing anything 

but something is being done to them. Now this is not true, and we must arrange 

our music, we must arrange our art, we must arrange everything, I believe, so that 

people realize that they themselves are doing it. (Nyman, 1999, p. 24)

This is contrary to the traditional disembodiment of classical music that treats audi-

ences as being passive and unimportant.

Cage pioneered other innovations as he decentralized control in his composi-

tions. From the early 1950s onwards, he made extended use of chance operations 

when he composed. Cage used dice rolls to determine the order of sounds in his 1951 

piano piece Music of Changes (Ross, 2007). The stochastic nature of Cage’s composi-

tional practices did not produce music that sounded random. This is because Cage 

put tremendous effort into choosing interesting sound elements. “In the Music of 

Changes the effect of the chance operations on the structure (making very apparent 

its anachronistic character) was balanced by a control of the materials” (Cage, 1961, 

p. 26). Cage relaxed his influence on control—that is, upon which element to per-

form next—with the expectation that this, coupled with his careful choice of ele-

ments that could be chosen, would produce surprising and interesting musical 

results. Cage intended novel results to emerge from his compositions.

The combination of well-considered building blocks to produce emergent 

behaviours that surprise and inform is characteristic of embodied cognitive science 

(Braitenberg, 1984; Brooks, 1999; Dawson, 2004; Dawson, Dupuis, & Wilson, 2010; 

Pfeifer & Scheier, 1999; Webb & Consi, 2001).

Advances in synthetic psychology come about by taking a set of components, by 

letting them interact, and by observing surprising emergent phenomena. However, 

the role of theory and prior knowledge in this endeavor is still fundamentally 

important, because it guides decisions about what components to select, and about 

the possible dynamics of their interaction. In the words of Cervantes, diligence is 

the mother of good luck. (Dawson, 2004, p. 22)

An emphasis on active audiences and emergent effects is also found in the works 

of other composers inspired by Cage (Schwarz, 1996). For instance, compositions 

that incorporated sounds recorded on magnetic tape were prominent in early mini-

malist music. Minimalist pioneer Terry Riley began working with tape technology 

in 1960 (Potter, 2000). He recorded a variety of sounds and made tape loops from 

them. A tape loop permitted a sound segment to be repeated over and over. He then 

mixed these tapes using a device called an echoplex that permitted the sounds “to 

be repeated in an ever-accumulating counterpoint against itself ” (p. 98). Further 
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complexities of sound were produced by either gradually or suddenly changing the 

speed of the tape to distort the tape loop’s frequency. Riley’s tape loop experiments 

led him to explore the effects of repetition, which was to become a centrally impor-

tant feature of minimalist music.

Riley’s work strongly influenced other minimalist composers. One of the most 

famous minimalist tape compositions is Steve Reich’s 1965 It’s Gonna Rain. Reich 

recorded a sermon of a famous street preacher, Brother Walter, who made fre-

quent Sunday appearances in San Francisco’s Union Square. From this recording, 

Reich made a tape loop of a segment of the sermon that contained the title phrase. 

Reich (2002) played two copies of this tape loop simultaneously on different tape 

machines, and made a profound discovery:

In the process of trying to line up two identical tape loops in some particular 

relationship, I discovered that the most interesting music of all was made by simply 

lining the loops up in unison, and letting them slowly shift out of phase with each 

other. (Reich, 2002, p. 20) 

He recorded the result of phase-shifting the loops, and composed his piece by 

phase-shifting a loop of this recording. Composer Brian Eno describes Reich’s It’s 

Gonna Rain thus: 

The piece is very, very interesting because it’s tremendously simple. It’s a piece  

of music that anybody could have made. But the results, sonically, are very  

complex. . . . What you become aware of is that you are getting a huge amount of 

material and experience from a very, very simple starting point. (Eno, 1996)

The complexities of It’s Gonna Rain emerge from the dynamic combination of 

simple components, and thus are easily linked to the surrender of control that was 

begun by John Cage. However, they also depend to a large extent upon the per-

ceptual processes of a listener when confronted with the continuous repetition of 

sound fragments. “The mind is mesmerized by repetition, put into such a state that 

small motifs can leap out of the music with a distinctness quite unrelated to their 

acoustic dominance” (Griffiths, 1994, p. 167). From a perceptual point of view, it is 

impossible to maintain a constant perception of a repeated sound segment. During 

the course of listening, the perceptual system will habituate to some aspects of it, 

and as a result—as if by chance—new regularities will emerge. “The listening expe-

rience itself can become aleatory in music[,] subject to ‘aural illusions’” (p. 166).

Minimalism took advantage of the active role of the listener and exploited rep-

etition to deliberately produce aural illusions. The ultimate effect of a minimalist 

composition is not a message created by the composer and delivered to a (passive) 

audience, but is instead a collaborative effort between musician and listener. Again, 

this mirrors the interactive view of world and agent that characterizes embodied 
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cognitive science and stands opposed to the disembodied stance taken by both 

Austro-German music and classical cognitive science.

Minimalism became lastingly important when its composers discovered how 

their techniques, such as decentralized control, repetition, and phase shifting, could 

be communicated using a medium that was more traditional than tape loops. This 

was accomplished when Terry Riley realized that the traditional musical score could 

be reinvented to create minimalist music. Riley’s 1964 composition In C is 53 bars of 

music written in the key of C major, indicating a return to tonal music. Each bar is 

extremely simple; the entire score fits onto a single page. Performers play each bar 

in sequence. However, they repeat a bar as many times as they like before moving 

on to the next. When they reach the final bar, they repeat it until all of the other 

performers have reached it. At that time, the performance is concluded.

Riley’s In C can be thought of as a tape loop experiment realized as a musical 

score. Each performer is analogous to one of the tape loops, and the effect of the 

music arises from their interactions with one another. The difference, of course, is 

that each “tape loop” is not identical to the others, because each performer controls 

the number of times that they repeat each bar. Performers listen and react to In C 

as they perform it.

There are two compelling properties that underlie a performance of In C. First, 

each musician is an independent agent who is carrying out a simple act. At any 

given moment each musician is performing one of the bars of music. Second, what 

each musician does at the next moment is affected by the musical environment that 

the ensemble of musicians is creating. A musician’s decision to move from one bar 

to the next depends upon what they are hearing. In other words, the musical envi-

ronment being created is literally responsible for controlling the activities of the 

agents who are performing In C. This is a musical example of a concept that we 

discussed earlier as central to embodied cognitive science: stigmergy.

In stigmergy, the behaviours of agents are controlled by an environment in 

which they are situated, and which they also can affect. The performance of a piece 

like In C illustrates stigmergy in the sense that musicians decide what to play next 

on the basis of what they are hearing right now. Of course, what they decide to play 

will form part of the environment, and will help guide the playing decisions of other 

performers.

The stigmergic nature of minimalism contrasts with the classical ideal of a 

composer transcribing mental contents. One cannot predict what In C will sound 

like by examining its score. Only an actual performance will reveal what In C’s score 

represents. Reich (1974, p. 9) wrote: “Though I may have the pleasure of discovering 

musical processes and composing the musical material to run through them, once 

the process is set up and loaded it runs by itself.” 
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Reich’s idea of a musical process running by itself is reminiscent of synthetic psy-

chology, which begins by defining a set of primitive abilities for an agent. Typically 

there are nonlinear interactions between these building blocks, and between the 

building blocks and the environment. As a result, complex and interesting behav-

iours emerge—results that far exceed behavioural predictions based on knowing the 

agent’s makeup (Braitenberg, 1984). Human intelligence is arguably the emergent 

product of simple, interacting mental agents (Minsky, 1985). The minimalists have 

tacitly adopted this view and created a mode of composition that reflects it.

The continual evolution of modern technology has had a tremendous impact on 

music. Some of this technology has created situations in which musical stigmergy is 

front and centre. For example, consider a computer program called Swarm Music 

(Blackwell, 2003). In Swarm Music, there are one or more swarms of “particles.” 

Each particle is a musical event: it exists in a musical space where the coordinates of 

the space define musical parameters such as pitch, duration, and loudness, and the 

particle’s position defines a particular combination of these parameters. A swarm of 

particles is dynamic, and it is drawn to attractors that are placed in the space. The 

swarm can thus be converted into music. “The swarming behavior of these particles 

leads to melodies that are not structured according to familiar musical rules, but are 

nevertheless neither random nor unpleasant” (Blackwell & Young, 2004).

Swarm Music is made dynamic by coupling it with human performers in an 

improvised and stigmergic performance. The sounds created by the human per-

formers are used to revise the positions of the attractors for the swarms, causing 

the music generated by the computer system to change in response to the other 

performers. The human musicians then change their performance in response to 

the computer.

Performers who have improvised with Swarm Music are affected by its stigmer-

gic nature. Jazz singer Kathleen Willison,

was surprised to find in the first improvisation that Swarm Music seemed to 

be imitating her: ‘(the swarm) hit the same note at the same time—the harmo-

nies worked.’ However, there was some tension; ‘at times I would have liked it 

to slow down . . . it has a mind of its own . . . give it some space.’ Her solution to 

the ‘forward motion’ of the swarms was to ‘wait and allow the music to catch up’. 

(Blackwell, 2003, p. 47)

Another new technology in which musical stigmergy is evident is the reacTable 

(Jordà et al., 2007; Kaltenbrunner et al., 2007). The reacTable is an electronic syn-

thesizer that permits several different performers to play it at the same time. The 

reacTable is a circular, translucent table upon which objects can be placed. Some 

objects generate waveforms, some perform algorithmic transformations of their 

inputs, and some control others that are nearby. Rotating an object, and using a 
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fingertip to manipulate a visual interface that surrounds it, modulates a musical 

process (i.e., changes the frequency and amplitude of a sine wave). Visual signals 

displayed on the reacTable—and visible to all performers—indicate the properties 

of the musical event produced by each object as well as the flow of signals from one 

object to another.

The reacTable is an example of musical stigmergy because when multiple 

performers use it simultaneously, they are reacting to the existing musical events. 

These events are represented as physical locations of objects on the reacTable 

itself, the visual signals emanating from these objects, and the aural events that 

the reacTable is producing. By co-operatively moving, adding, or removing objects, 

the musicians collectively improvise a musical performance. The reacTable is an 

interface intended to provide a “combination of intimate and sensitive control, with 

a more macro-structural and higher level control which is intermittently shared, 

transferred and recovered between the performer(s) and the machine” (Jordà et al., 

2007, p. 145). That is, the reacTable—along with the music it produces—provides 

control analogous to that provided by the nest-in-progress of an insect colony.

From the preceding discussion, we see that modern music shares many charac-

teristics with the embodied reaction to classical cognitive science. With its decen-

tralization of control, responsibility for the composition has “leaked” from the 

composer's mind. Its definition also requires contributions from both the perform-

ers and the audience, and not merely a score. This has implications for providing 

accounts of musical meaning, or of the goals of musical compositions. The classi-

cal notion of music communicating intended meanings to audiences is not easily 

applied to modern music.

Classical cognitive science’s view of communication is rooted in cybernetics 

(Shannon, 1948; Wiener, 1948), because classical cognitive science arose from explor-

ing key cybernetic ideas in a cognitivist context (Conrad, 1964b; Leibovic, 1969; 

Lindsay & Norman, 1972; MacKay, 1969; Selfridge, 1956; Singh, 1966). As a result, 

the cybernetic notion of communication—transfer of information from one loca-

tion to another—is easily found in the classical approach.

The classical notion of communication is dominated by the conduit metaphor 

(Reddy, 1979). According to the conduit metaphor, language provides containers 

(e.g., sentences, words) that are packed with meanings and delivered to receivers, 

who unpack them to receive the intended message. Reddy provides a large number 

of examples of the conduit metaphor, including: “You still haven’t given me any idea 

of what you mean”; “You have to put each concept into words very carefully”; and 

“The sentence was filled with emotion.”

The conduit metaphor also applies to the traditional view of classical music, 

which construes this music as a “hot medium” to which the listener contributes little 

(McLuhan, 1994): the composer places some intended meaning into a score, the 
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orchestra brings the score to life exactly as instructed by the score, and the (passive) 

audience unpacks the delivered music to get the composer’s message.

We thus hear people say that music can only have meaning if it is seen to be a 

type of language, with elements akin to words, phrases and sentences, and with 

elements that refer beyond themselves to extramusical things, events, or ideas. 

(Johnson, 2007, p. 207)

In other words, the classical view of musical meaning is very similar to the view of 

meaning espoused by classical cognitive science: music is a symbolic, intentional 

medium.

The view of music as a symbolic medium that conveys intended meaning has 

generated a long history of resistance. The autonomist school of aesthetics (see 

Hanslick, 1957) argued against the symbolic theories of musical meaning, as well 

as against theories that music communicated emotion. Hanslick’s (1957) position 

was that music was a medium whose elements were pure and nonrepresentational. 

Hanslick famously argued that “the essence of music is sound and motion” (p. 48). 

Modern positions that treat musical meaning in an embodied fashion are related to 

Hanslick’s (Johnson, 2007; Leman, 2008).

Embodied alternatives to musical meaning become attractive because the con-

duit metaphor breaks down in modern music. If control is taken away from the 

score and the conductor, if the musicians become active contributors to the com-

position (Benson, 2003), if the audience is actively involved in completing the com-

position as well, and if music is actually a “cool medium,” then what is the intended 

message of the piece?

Modern embodied theories of music answer this question by taking a position 

that follows naturally from Hanslick’s (1957) musical aesthetics. They propose that 

the sound and motion of music literally have bodily effects that are meaningful. For 

instance, Johnson (2007) noted that,

to hear music is just to be moved and to feel in the precise way that is defined by 

the patterns of musical motion. Those feelings are meaningful in the same way that 

any pattern of emotional flow is meaningful to us at a pre-reflective level of aware-

ness. (Johnson, 2007, p. 239)

Similarly, Leman (2008, p. 17) suggested that “moving sonic forms do something 

with our bodies, and therefore have a signification through body action rather than 

through thinking.” Some implications of this position are considered in the next 

section.

Minimalist composers themselves adopt a McLuhanesque view of the mean-

ing of their compositions: the music doesn’t deliver a message, but is itself the 

message. After being schooled in the techniques of serialism, which deliberately 
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hid the underlying musical structures from the audience’s perception, the mini-

malists desired to create a different kind of composition. When presented mini-

malist compositions, the audience would hear the musical processes upon which 

the pieces were built. Reich (2002, p. 34) said he was “interested in perceptible 

processes. I want to be able to hear the process happening throughout the sound-

ing music.”

Reich made processes perceptible by making them gradual. But this didn’t 

make his compositions less musical.

Even when all the cards are on the table and everyone hears what is gradually hap-

pening in a musical process, there are still enough mysteries to satisfy all. These 

mysteries are the impersonal, unintended, psychoacoustic by-products of the 

intended process. (Reich, 2002, p. 35)

Reich’s recognition that the listener contributes to the composition—that classical 

music is a cool medium, not a hot one—is fundamental to minimalist music. Philip 

Glass (1987) was surprised to find that he had different experiences of different per-

formances of Samuel Beckett’s Play, for which Glass composed music. He realized 

that “Beckett’s Play doesn’t exist separately from its relationship to the viewer, who 

is included as part of the play’s content” (p. 36). Audiences of Glass’ Einstein on the 

Beach had similar experiences. “The point about Einstein was clearly not what it 

‘meant’ but that it was meaningful as generally experienced by the people who saw 

it” (p. 33).

Modern music has many parallels to embodied cognitive science, and has 

many characteristics that distinguish it from other traditions of classical music. 

Alternative views of composition, the role of the audience, and the control of a per-

formance are clearly analogous to embodied concepts such as emergence, embodi-

ment, and stigmergy. They also lead to a very different notion of the purpose of 

music, in its transition from “hot” to “cool.” Not surprisingly, the radical differences 

between classical and modern music are reflected in differences between classical 

and embodied cognitive science’s study of musical cognition, as is discussed in the 

next section.

6.6 The Embodied Approach to Musical Cognition

A well-established modern view of classical music is that it has meaning, and that 

its purpose is to convey this meaning in a fashion that is consistent with Reddy’s 

(1979) conduit metaphor.

Composers and performers of all cultures, theorists of diverse schools and styles, 

aestheticians and critics of many different persuasions are all agreed that music has 
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meaning and that this meaning is somehow communicated to both participants 

and listeners. (Meyer, 1956, p. 1)

Furthermore, there is a general consensus that the meaning that is communi-

cated is affective, and not propositional, in nature. However, the means by which 

musical meaning is communicated is subject to a tremendous amount of debate 

(Meyer, 1956; Robinson, 1997).

One view of musical communication, consistent with classical cognitive science, 

is that music is a symbol system. For example, the semiotic view of music is that 

it is a system of signs that provides a narrative or a discourse (Agawu, 1991, 2009; 

Austerlitz, 1983; Lidov, 2005; Monelle, 2000; Pekkilä, Neumeyer, & Littlefield, 2006; 

Tarasti, 1995; Turino, 1999). From this perspective, musical signs are intentional: they 

are about the tensions or emotions they produce or release in listeners. This approach 

naturally leads to an exploration of the parallels between music and language 

(Austerlitz, 1983; Jackendoff, 2009; Lidov, 2005), as well as to the proposal of gen-

erative grammars of musical structure (Lerdahl, 2001; Lerdahl & Jackendoff, 1983; 

Sundberg & Lindblom, 1976). Potential parallels between language and music have 

led some researchers to describe brain areas for syntax and semantics that are respon-

sible for processing both music and language (Koelsch et al., 2004; Patel, 2003).

A related view of musical communication, but one more consistent with con-

nectionist than classical cognitive science, is that music communicates emotion but 

does so in a way that cannot be captured by set of formal rules or laws (Lewis, 1991; 

Loy, 1991; Minsky, 1981; Todd, 1989). Instead, musical meanings are presumed to 

be entwined in a complex set of interactions between past experiences and current 

stimulation, interactions that may be best captured by the types of learning exhib-

ited by artificial neural networks. “Many musical problems that resist formal solu-

tions may turn out to be tractable anyway, in future simulations that grow artificial 

musical semantic networks” (Minsky, 1981, p. 35).

Both views of musical meaning described above are consistent with the con-

duit metaphor, in that they agree that (1) music is intentional and content-bearing 

(although they disagree about formalizing this content) and (2) that the purpose 

of music is to communicate this content to audiences. A third approach to musi-

cal meaning, most consistent with embodied cognitive science, distinguishes itself 

from the other two by rejecting the conduit metaphor.

According to the embodied view (Clarke, 2005; Johnson, 2007; Leman, 2008), 

the purpose of music is not to acquire abstract or affective content, but to instead 

directly, interactively, and physically experience music. “People try to be involved 

with music because this involvement permits an experience of behavioral resonance 

with physical energy” (Leman, 2008, p. 4).

The emphasis on direct contact that characterizes the embodied view of music 

is a natural progression from the autonomist school of musical aesthetics that arose 
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in the nineteenth century (Hanslick, 1957). Music critic Eduard Hanslick (1957) 

opposed the view that music was representative and that its purpose was to com-

municate content or affect. For Hanslick, a scientific aesthetics of music was made 

impossible by sentimental appeals to emotion: “The greatest obstacle to a scientific 

development of musical aesthetics has been the undue prominence given to the 

action of music on our feelings” (p. 89).

As noted previously, Hanslick (1957, p. 48) argued instead that “the essence 

of music is sound and motion.” The modern embodied approach to music echoes 

and amplifies this perspective. Johnson (2007) agreed with Hanslick that music 

is not typically representative or intentional. Instead, Johnson argued that the 

dynamic nature of music—its motion, in Hanslick’s sense—presents “the flow of 

human experience, feeling, and thinking in concrete, embodied forms” (p. 236). 

The motion of music is not communicative, it is causal. “To hear the music is just 

to be moved and to feel in the precise way that is defined by the patterns of the 

musical motion” (p. 239). The motion intrinsic to the structure of music is motion 

that we directly and bodily experience when it is presented to us. Johnson argues 

that this is why metaphors involving motion are so central to our conceptualiza-

tion of music.

“Many people try to get into direct contact with music. Why do they do so? 

Why do people make great efforts to attend a concert? Why do they invest so much 

time in learning to play a musical instrument” (Leman, 2008, p. 3). If the meaning 

of music is the felt movement that it causes, then the need for direct experience 

of music is completely understandable. This is also reflected in an abandonment 

of the conduit metaphor. The embodied view of music does not accept the notion 

that music is a conduit for the transmission of propositional or affective contents. 

Indeed, it hypothesizes that the rational assessment of music might interfere with 

how it should best be experienced.

Activities such as reasoning, interpretation, and evaluation may disturb the feeling 

of being directly involved because the mind gets involved in a representation of the 

state of the environment, which distracts the focus and, as a result, may break the 

‘magic spell’ of being entrained. (Leman, 2008, p. 5)

Clearly embodied researchers have a very different view of music than do classical 

or connectionist researchers. This in turn leads to very different kinds of research 

on musical cognition than the examples that have been introduced earlier in this 

chapter.

To begin, let us consider the implication of the view that listeners should be 

directly involved with music (Leman, 2008). From this view, it follows that the full 

appreciation of music requires far more than the cognitive interpretation of audi-

tory stimulation. “It is a matter of corporeal immersion in sound energy, which is 

a direct way of feeling musical reality. It is less concerned with cognitive reflection, 



304  Chapter 6

evaluation, interpretation, and description” (Leman, 2008, p. 4). This suggests that 

cross-modal interactions may be critical determinants of musical experience.

Some research on musical cognition is beginning to explore this possibility. In 

one study (Vines et al., 2006) subjects were presented with performances by two 

clarinetists. Some subjects only heard, some subjects only saw, and some subjects 

both heard and saw the performances. Compared to the first two groups of subjects, 

those who both heard and saw the performances had very different experiences. 

The visual information altered the experience of tension at different points, and 

the movements of the performers provided additional information that affected the 

experienced phrasing as well as expectations about emotional content. “The audi-

tory and visual channels mutually enhance one another to convey content, and . . . 

an emergent quality exists when a musician is both seen and heard” (p. 108).

In a more recent study, Vines et al. (2011) used a similar methodology, but they 

also manipulated the expressive style with which the stimulus (a solo clarinet piece 

composed by Stravinsky) was performed. Subjects were presented with the piece 

in restrained, standard, or exaggerated fashion. These manipulations of expressive 

style only affected the subjects who could see the performance. Again, interactions 

were evident when performances were both seen and heard. For instance, subjects 

in this condition had significantly higher ratings of “happiness” in comparison to 

other subjects.

The visual component of musical performance makes a unique contribution to the 

communication of emotion from performer to audience. Seeing a musician can 

augment, complement, and interact with the sound to modify the overall experi-

ence of music. (Vines et al., 2011, p. 168)

Of course, the embodied approach to music makes much stronger claims than 

that there are interactions between hearing and seeing; it views cognition not as a 

medium for planning, but instead as a medium for acting. It is not surprising, then, 

to discover that embodied musical cognition has studied the relationships between 

music and actions, gestures, and motion in a variety of ways (Gritten & King, 2011).

One of the most prominent of these relationships involves the exploration 

of new kinds of musical instruments, called digital musical instruments. A digi-

tal musical instrument is a musical instrument that involves a computer and in 

which the generation of sound is separate from the control interface that chooses 

sound (Marshall et al. 2009). This distinction is important, because as Marshall et 

al. (2009) pointed out, there are many available sensors that can register a human 

agent’s movements, actions, or gestures. These include force sensitive resistors, 

video cameras, accelerometers, potentiometers, and bend sensors, not to mention 

buttons and microphones.

The availability of digital sensors permits movements, actions, and gestures 

to be measured and used to control the sounds generated by a digital musical 
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instrument. This requires that a mapping be defined from a measured action to 

a computer-generated sound (Verfaille, Wanderley, & Depalle, 2006). Of course, 

completely novel relationships between gesture and sound become possible within 

this framework (Sapir, 2002). This permits the invention of musical instruments 

that can be played by individuals with no training on an instrument, because they 

can interact with a digital musical instrument using everyday gestures and actions 

(Paradiso, 1999).

The development of digital musical instruments has resulted in the need to 

study a variety of topics quite different from those examined by classical and con-

nectionist researchers. One important topic involves determining how to use meas-

ured actions to control sound production (Verfaille, Wanderley, & Depalle, 2006). 

However, an equally important topic concerns the nature of the gestures 

and actions themselves. In particular, researchers of digital musical instru-

ments are concerned with exploring issues related to principles of good design 

(Dourish, 2001; Norman, 2002, 2004) in order to identify and evaluate possible 

interfaces between actions and instruments (Magnusson, 2010; O’Modhrain, 2011; 

Ungvary & Vertegaal, 2000; Wanderley & Orio, 2002). Another issue is to choose a 

set of actions that can be varied, so that a performer of a digital musical instrument 

can manipulate its expressiveness (Arfib, Couturier, & Kessous, 2005).

The development of digital musical instruments has also led to a reevaluation of 

the roles of composers, performers, and audience. In the acoustic paradigm (Bown, 

Eldridge, & McCormack, 2009), which adheres to the traditional view of classical 

music outlined earlier in this chapter, these three components have distinct and 

separable roles. Digital musical instruments result in the acoustic paradigm being 

disrupted. Bown, Eldridge, and McCormack (2009) argued that the software com-

ponents should not be viewed as instruments, but instead as behavioural objects. 

A behavioural object is “an entity that can act as a medium for interaction between 

people through its dissemination and evolution, can develop interactively with indi-

viduals in processes of creative musical development, and can interact with other 

behavioral objects to produce musical output” (p. 193); it is behavioural in the sense 

that it can act and interact, but it is an object in the sense that it is a material thing 

that can be seen and touched.

In their role as behavioural objects, digital musical instruments blur the 

sharp distinctions between the roles defined by the acoustic paradigm (Bown, 

Eldridge, & McCormack, 2009). This is because their software components dramat-

ically alter the interactions between composer, performer, and listener.

Interaction does not involve the sharing simply of passive ideas or content, but 

of potentially active machines that can be employed for musical tasks. Whereas 

musical ideas may once have developed and circulated far more rapidly than 

the inanimate physical objects that define traditional musical instruments, 



306  Chapter 6

software objects can now evolve and move around at just as fast a pace. (Bown, 

Eldridge, & McCormack, 2009, p. 192)

The new interactions discussed by Bown, Eldridge, and McCormack (2009) sug-

gested that digital musical instruments can affect musical thought. It has been 

argued that these new instruments actually scaffold musical cognition, and there-

fore they extend the musical mind (Magnusson, 2009). According to Magnusson, 

traditional acoustic instruments have been created in bricoleur fashion by explor-

ing combinations of existing materials, and learning to play such an instrument 

involves exploring its affordances. “The physics of wood, strings and vibrating 

membranes were there to be explored and not invented” (p. 174). In contrast, the 

software of digital musical instruments permits many aspects of musical cognition 

to be extended into the instrument itself. Digital musical instruments, 

typically contain automation of musical patterns (whether blind or intelligent) that 

allow the performer to delegate musical actions to the instrument itself, such as 

playing arpeggios, generating rhythms, expressing spatial dimensions as scales (as 

opposed to pitches), and so on. (Magnusson, 2009, p. 168) 

The embodied approach is not limited to the study of digital musical instruments. 

Actions are required to play traditional musical instruments, and such actions 

have been investigated. For instance, researchers have examined the fingering 

choices made by pianists as they sight read (Sloboda et al., 1998) and developed 

ergonomic models of piano fingering (Parncutt et al., 1997). Bowing and fingering 

movements for string instruments have also been the subject of numerous inves-

tigations (Baader, Kazennikov, & Wiesendanger, 2005; Kazennikov & Wiesendange

r, 2009; Konczak, van der Velden, & Jaeger, 2009; Maestre et al., 2010; Rasamima

nana & Bevilacqua, 2008; Turner-Stokes & Reid, 1999). This research has included 

the development of the MusicJacket, a worn device that analyzes the movement of 

a violin player and provides vibrotactile feedback to teach proper bowing (van der 

Linden et al., 2011). The relationship between alternative flute fingerings and their 

effect on produced tones have also been examined (Botros, Smith, & Wolfe, 2006; 

Verfaille, Depalle, & Wanderley, 2010).

The embodied approach is also actively exploring the possibility that gestural or 

other kinds of interactions can be used to retrieve digitized music (Casey et al., 2008; 

Leman, 2008). Personal music collections are becoming vast, and traditional meth-

ods of discovering music (i.e., record stores and radio stations) are being replaced 

by social networking sites and the World Wide Web. As a result, there is a growing 

need for these large digital collections of music to be searchable. However, the most 

common approach for cataloguing and searching these collections is to use textual 

metadata that provides an indirect description of the stored music, such as the name 

of the composer, the title of the song, or the genre of the music (Leman, 2008).
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The embodied approach is interested in the possibility of using more direct 

aspects of music to guide such retrieval (Leman, 2008). Is it possible to access music 

on the basis of one’s personal experience of music? Leman hypothesizes that human 

action can serve as the basis of a corporeal-based querying system for retrieving 

music. His idea is to use the body to convert a musical idea (e.g., a desire to retrieve 

a particular type of music) into musical physical energy that can be mapped onto 

the profiles of digitized music, permitting content-based retrieval. For instance, one 

could query a musical database by singing or playing a melody (De Mulder et al., 

2006), by manipulating a spatial representation that maps the similarity of stored 

music (Cooper et al., 2006; Pampalk, Dixon, & Widmer, 2004), or even by making 

gestures (Ko & Byun, 2002).

Compared to the other two approaches described in this chapter, the embod-

ied approach to musical cognition is fairly new, and it is not as established. “The 

hypothesis that musical communication is based on the encoding, transmission, 

and decoding of intended actions is, I believe, an attractive one. However, at this 

moment it is more a working hypothesis than an established fact” (Leman, 2008, 

p. 237). This “working hypothesis,” though, has launched an interesting literature on 

the study of the relationship between music and action that is easily distinguished 

from the classical and connectionist research on musical cognition.

6.7 Cognitive Science and Classical Music

In the preceding sections of this chapter we have explored the analogy that cognitive 

science is like classical music. This analogy was developed by comparing the char-

acteristics of three different types of classical music to the three different schools 

of cognitive science: Austro-German classical music to classical cognitive science, 

musical Romanticism to connectionist cognitive science, and modern music to 

embodied cognitive science.

We also briefly reviewed how each of the three different schools has stud-

ied topics in the cognition of music. One purpose of this review was to show that 

each school of cognitive science has already made important contributions to this 

research domain. Another purpose was to show that the topics in musical cogni-

tion studied by each school reflected different, tacit views of the nature of music. 

For instance, the emphasis on formalism in traditional classical music is reflected 

in classical cognitive science’s attempt to create generative grammars of musical 

structure (Lerdahl & Jackendoff, 1983). Musical romanticism’s affection for the 

sublime is reflected in connectionist cognitive science’s use of unsupervised net-

works to capture regularities that cannot be formalized (Bharucha, 1999). Modern 

music’s rejection of the classic distinctions between composer, performer, and audi-

ence is reflected in embodied cognitive science’s exploration of how digital musical 
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instruments can serve as behavioural objects to extend the musical mind (Bown, 

Eldridge, & McCormack, 2009; Magnusson, 2009).

The perspectives summarized above reflect a fragmentation of how cognitive 

science studies musical cognition. Different schools of cognitive science view music 

in dissimilar ways, and therefore they explore alternative topics using diverse meth-

odologies. The purpose of this final section is to speculate on a different relation-

ship between cognitive science and musical cognition, one in which the distinctions 

between the three different schools of thought become less important, and in which 

a hybrid approach to the cognition of music becomes possible.

One approach to drawing the different approaches to musical cognition 

together is to return to the analogy between cognitive science and classical music 

and to attempt to see whether the analogy itself provides room for co-operation 

between approaches. One of the themes of the analogy was that important differ-

ences between Austro-German music, Romantic music, and modern music existed, 

and that these differences paralleled those between the different schools of cogni-

tive science. However, there are also similarities between these different types of 

music, and these similarities can be used to motivate commonalities between the 

various cognitive sciences of musical cognition. It was earlier noted that similarities 

existed between Austro-German classical music and musical Romanticism because 

the latter maintained some of the structures and traditions of the former. So let us 

turn instead to bridging a gap that seems much wider, the gap between Austro-

German and modern music.

The differences between Austro-German classical music and modern music 

seem quite clear. The former is characterized by centralized control and formal struc-

tures; it is a hot medium (McLuhan, 1994) that creates marked distinctions between 

composer, performer, and a passive audience (Bown, Eldridge, & McCormack, 2009), 

and it applies the conduit metaphor (Reddy, 1979) to view the purpose of music as 

conveying content from composer to listener. In contrast, modern music seems to 

invert all of these properties. It abandons centralized control and formal structures; 

it is a cool medium that blurs the distinction between composer, performer, and an 

active audience; and it rejects the conduit metaphor and the intentional nature of 

music (Hanslick, 1957; Johnson, 2007).

Such dramatic differences between types of classical music suggest that it 

would not be surprising for very different theories to be required to explain such 

cognitive underpinnings. For instance, consider the task of explaining the process of 

musical composition. A classical theory might suffice for an account of composing 

Austro-German music, while a very different approach, such as embodied cognitive 

science, may be required to explain the composition of modern music.

One reason for considering the possibility of theoretical diversity is that in 

the cool medium of modern music, where control of the composition is far more 
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decentralized, a modern piece seems more like an improvisation than a traditional 

composition. “A performance is essentially an interpretation of something that 

already exists, whereas improvisation presents us with something that only comes 

into being in the moment of its presentation” (Benson, 2003, p. 25). Jazz guitarist 

Derek Bailey (1992) noted that the ability of an audience to affect a composition is 

expected in improvisation: “Improvisation’s responsiveness to its environment puts 

the performance in a position to be directly influenced by the audience” (p. 44). 

Such effects, and more generally improvisation itself, are presumed to be absent 

from the Austro-German musical tradition: “The larger part of classical composi-

tion is closed to improvisation and, as its antithesis, it is likely that it will always 

remain closed” (p. 59).

However, there is a problem with this kind of dismissal. One of the shocks 

delivered by modern music is that many of its characteristics also apply to tradi-

tional classical music.

For instance, Austro-German music has a long tradition of improvisation, 

particularly in church music (Bailey, 1992). A famous example of such improvisa-

tion occurred when Johann Sebastian Bach was summoned to the court of German 

Emperor Frederick the Great in 1747 (Gaines, 2005). The Emperor played a theme 

for Bach on the piano and asked Bach to create a three-part fugue from it. The theme 

was a trap, probably composed by Bach’s son Carl Philipp Emanuel (employed by 

the Emperor), and was designed to resist the counterpoint techniques required to 

create a fugue. “Still, Bach managed, with almost unimaginable ingenuity, to do it, 

even alluding to the king’s taste by setting off his intricate counterpoint with a few 

gallant flourishes” (Gaines, 2005, p. 9). This was pure improvisation, as Bach com-

posed and performed the fugue on the spot.

Benson (2003) argued that much of traditional music is actually improvisa-

tional, though perhaps less evidently than in the example above. Austro-German 

music was composed within the context of particular musical and cultural tradi-

tions. This provided composers with a constraining set of elements to be incorpo-

rated into new pieces, while being transformed or extended at the same time.

Composers are dependent on the ‘languages’ available to them and usually those 

languages are relatively well defined. What we call ‘innovation’ comes either from 

pushing the boundaries or from mixing elements of one language with another. 

(Benson, 2003, p. 43)

Benson argued that improvisation provides a better account of how traditional 

music is composed than do alternatives such as “creation” or “discovery,” and then 

showed that improvisation also applies to the performance and the reception of 

pre-modern works.

The example of improvisation suggests that the differences between the differ-

ent traditions of classical music are quantitative, not qualitative. That is, it is not 
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the case that Austro-German music is (for example) formal while modern music 

is not; instead, it may be more appropriate to claim that the former is more formal 

(or more centrally controlled, or less improvised, or hotter) than the latter. The 

possibility of quantitative distinctions raises the possibility that different types of 

theories can be applied to the same kind of music, and it also suggests that one 

approach to musical cognition may benefit by paying attention to the concerns of 

another.

The likelihood that one approach to musical cognition can benefit by heeding 

the concerns of another is easily demonstrated. For instance, it was earlier argued 

that musical Romanticism was reflected in connectionism’s assumption that arti-

ficial neural networks could capture regularities that cannot be formalized. One 

consequence of this assumption was shown to be a strong preference for the use of 

unsupervised networks.

However, unsupervised networks impose their own tacit restrictions upon what 

connectionist models can accomplish. One popular architecture used to study musi-

cal cognition is the Kohonen network (Kohonen, 1984, 2001), which assigns input 

patterns to winning (most-active) output units, and which in essence arranges these 

output units (by modifying weights) such that units that capture similar regularities 

are near one another in a two-dimensional map. One study that presented such a 

network with 115 different chords found that its output units arranged tonal centres 

in a pattern that reflected a noisy version of the circle of fifths (Leman, 1991).

A limitation of this kind of research is revealed by relating it to classical work 

on tonal organization (Krumhansl, 1990). As we saw earlier, Krumhansl found two 

circles of fifths (one for major keys, the other for minor keys) represented in a spiral 

representation wrapped around a toroidal surface. In order to capture this elegant 

representation, four dimensions were required (Krumhansl & Kessler, 1982). By 

restricting networks to representations of smaller dimensionality (such as a two-

dimensional Kohonen feature map), one prevents them from detecting or repre-

senting higher-dimensional regularities. In this case, knowledge gleaned from clas-

sical research could be used to explore more sophisticated network architectures 

(e.g., higher-dimensional self-organized maps).

Of course, connectionist research can also be used to inform classical models, 

particularly if one abandons “gee whiz” connectionism and interprets the internal 

structure of musical networks (Dawson, 2009). When supervised networks are trained 

on tasks involving the recognition of musical chords (Yaremchuk & Dawson, 2005; 

Yaremchuk & Dawson, 2008), they organize notes into hierarchies that capture cir-

cles of major seconds and circles of major thirds, as we saw in the network analy-

ses presented in Chapter 4. As noted previously, these so-called strange circles are 

rarely mentioned in accounts of music theory. However, once discovered, they are 

just as formal and as powerful as more traditional representations such as the circle 
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of fifths. In other words, if one ignores the sublime nature of networks and seeks to 

interpret their internal structures, one can discover new kinds of formal representa-

tions that could easily become part of a classical theory.

Other, more direct integrations can be made between connectionist and clas-

sical approaches to music. For example, NetNeg is a hybrid artificial intelligence 

system for composing two voice counterpoint pieces (Goldman et al., 1999). It 

assumes that some aspects of musical knowledge are subsymbolic and difficult to 

formalize, while other aspects are symbolic and easily described in terms of formal 

rules. NetNeg incorporates both types of processes to guide composition. It includes 

a network component that learns to reproduce melodies experienced during a train-

ing phase and uses this knowledge to generate new melodies. It also includes two 

rule-based agents, each of which is responsible for composing one of the voices that 

make up the counterpoint and for enforcing the formal rules that govern this kind 

of composition.

There is a loose coupling between the connectionist and the rule-based agents 

in NetNeg (Goldman et al., 1999), so that both co-operate, and both place con-

straints, on the melodies that are composed. The network suggests the next note in 

the melody, for either voice, and passes this information on to a rule-based agent. 

This suggestion, combined with interactions between the two rule-based agents 

(e.g., to reach an agreement on the next note to meet some aesthetic rule, such as 

moving the melody in opposite directions), results in each rule-based agent choos-

ing the next note. This selection is then passed back to the connectionist part of the 

system to generate the next melodic prediction as the process iterates.

Integration is also possible between connectionist and embodied approaches 

to music. For example, for a string instrument, each note in a composition can be 

played by pressing different strings in different locations, and each location can 

be pressed by a different finger (Sayegh, 1989). The choice of string, location, and 

fingering is usually not specified in the composition; a performer must explore a 

variety of possible fingerings for playing a particular piece. Sayegh has developed 

a connectionist system that places various constraints on fingering so the network 

can suggest the optimal fingering to use. A humorous—yet strangely plausible—

account of linking connectionist networks with actions was provided in Garrison 

Cottrell’s (1989) proposal of the “connectionist air guitar.”

Links also exist between classical and embodied approaches to musical cognition, 

although these are more tenuous because such research is in its infancy. For example, 

while Leman (2008) concentrated on the direct nature of musical experience that 

characterizes the embodied approach, he recognized that indirect accounts—such as 

verbal descriptions of music—are both common and important. The most promising 

links are appearing in work on the cognitive neuroscience of music, which is begin-

ning to explore the relationship between music perception and action.
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Interactions between perception of music and action have already been estab-

lished. For instance, when classical music is heard, the emotion associated with it 

can affect perceptions of whole-body movements directed towards objects (Van den 

Stock et al., 2009). The cognitive neuroscience of music has revealed a great deal of 

evidence for the interaction between auditory and motor neural systems (Zatorre, 

Chen, & Penhune, 2007).

Such evidence brings to mind the notion of simulation and the role of mirror 

neurons, topics that were raised in Chapter 5’s discussion of embodied cognitive sci-

ence. Is it possible that direct experience of musical performances engages the mirror 

system? Some researchers are considering this possibility (D’Ausilio, 2009; Lahav, 

Saltzman, & Schlaug, 2007). Lahav, Saltzman, and Schlaug (2007) trained non-musi-

cians to play a piece of music. They then monitored their subjects’ brain activity while 

they listened to this newly learned piece while not performing any movements. It was 

discovered that motor-related areas of the brain were activated during the listen-

ing. Less activity in these areas was noted if subjects heard the same notes that were 

learned, but presented in a different order (i.e., as a different melody).

The mirror system has also been shown to be involved in the observation and 

imitation of guitar chording (Buccino et al., 2004; Vogt et al., 2007); and musical 

expertise, at least for professional piano players, is reflected in more specific mirror 

neuron processing (Haslinger et al., 2005). It has even been suggested that the 

mirror system is responsible for listeners misattributing anger to John Coltrane’s 

style of playing saxophone (Gridley & Hoff, 2006)!

A completely hybrid approach to musical cognition that includes aspects of all 

three schools of cognitive science is currently only a possibility. The closest realization 

of this possibility might be an evolutionary composing system (Todd & Werner, 1991). 

This system is an example of a genetic algorithm (Holland, 1992; Mitchell, 1996), 

which evolves a solution to a problem by evaluating the fitness of each member of a 

population, preserves the most fit, and then generates a new to-be-evaluated gener-

ation by combining attributes of the preserved individuals. Todd and Werner (1991) 

noted that such a system permits fitness to be evaluated by a number of potentially 

quite different critics; their model considers contributions of human, rule-based, 

and network critics.

Music is a complicated topic that has been considered at multiple levels of 

investigation, including computational or mathematical (Assayag et al., 2002; 

Benson, 2007; Harkleroad, 2006; Lerdahl & Jackendoff, 1983), algorithmic or behav-

ioural (Bailey, 1992; Deutsch, 1999; Krumhansl, 1990; Seashore, 1967; Snyder, 2000), 

and implementational or biological (Jourdain, 1997; Levitin, 2006; Peretz & Zatorre, 

2003). Music clearly is a domain that is perfectly suited to cognitive science. In this 

chapter, the analogy between classical music and cognitive science has been devel-

oped to highlight the very different contributions of classical, connectionist, and 
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embodied cognitive science to the study of musical cognition. It raised the possibil-

ity of a more unified approach to musical cognition that combines elements of all 

three different schools of thought.
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Marks of the Classical?

7.0 Chapter Overview

In the previous chapter, the characteristics of the three approaches to cognitive 

science were reviewed, highlighting important distinctions between the classical, 

connectionist, and embodied approaches. This was done by exploring the analogy 

between cognitive science and classical music. It was argued that each of the three 

approaches within cognitive science was analogous to one of three quite different 

traditions within classical music, and that these differences were apparent in how 

each approach studied music cognition. However, at the end of the chapter the pos-

sibility of hybrid theories of music cognition was raised.

The possibility of hybrid theories of music cognition raises the further possibil-

ity that the differences between the three approaches within cognitive science might 

not be as dramatic as could be imagined. The purpose of the current chapter is to 

explore this further possibility. It asks the question: are there marks of the classical? 

That is, is there a set of necessary and sufficient properties that distinguish classical 

theories from connectionist and embodied theories?

The literature suggests that there should be a large number of marks of the 

classical. It would be expected that classical theories appeal to centralized control, 

serial processing, local and internal representations, explicit rules, and a cognitive 

vocabulary that appeals to the contents of mental representations. It would also be 

7
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expected that both connectionist and embodied theories reject many, if not all, of 

these properties.

In the current chapter we examine each of these properties in turn and make the 

argument that they do not serve as marks of the classical. First, an examination of the 

properties of classical theories, as well as a reflection on the properties of the comput-

ing devices that inspired them, suggests that none of these properties are necessary 

classical components. Second, it would also appear that many of these properties are 

shared by other kinds of theories, and therefore do not serve to distinguish classical 

cognitive science from either the connectionist or the embodied approaches.

The chapter ends by considering the implications of this conclusion. I argue 

that the differences between the approaches within cognitive science reflect vari-

ances in emphasis, and not qualitative differences in kind, amongst the three kinds 

of theory. This sets the stage for the possibility of hybrid theories of the type exam-

ined in Chapter 8.

7.1 Symbols and Situations

As new problems are encountered in a scientific discipline, one approach to deal-

ing with them is to explore alternative paradigms (Kuhn, 1970). One consequence 

of adopting this approach is to produce a clash of cultures, as the new paradigms 

compete against the old.

The social structure of science is such that individual scientists will justify the 

claims for a new approach by emphasizing the flaws of the old, as well as the virtues 

and goodness of the new. Similarly, other scientists will justify the continuation of 

the traditional method by minimizing its current difficulties and by discounting the 

powers or even the novelty of the new. (Norman, 1993, p. 3)

In cognitive science, one example of this clash of cultures is illustrated in the rise of 

connectionism. Prior to the discovery of learning rules for multilayered networks, 

there was a growing dissatisfaction with the progress of the classical approach 

(Dreyfus, 1972). When trained multilayered networks appeared in the literature, 

there was an explosion of interest in connectionism, and its merits—and the poten-

tial for solving the problems of classical cognitive science—were described in widely 

cited publications (McClelland & Rumelhart, 1986, 1988; Rumelhart & McClelland, 

1986c; Schneider, 1987; Smolensky, 1988). In response, defenders of classical cogni-

tive science argued against the novelty and computational power of the new con-

nectionist models (Fodor & McLaughlin, 1990; Fodor & Pylyshyn, 1988; Minsky & 

Papert, 1988; Pinker & Prince, 1988).

A similar clash of cultures, concerning the debate that arose as part of embod-

ied cognitive science’s reaction to the classical tradition, is explored in more detail 
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in this section. One context for this clash is provided by the research of eminent AI 

researcher Terry Winograd. Winograd’s PhD dissertation involved programming a 

computer to understand natural language, the SHRDLU system that operated in 

a restricted blocks world (Winograd, 1972a, 1972b). SHRDLU would begin with a 

representation of different shaped and coloured blocks arranged in a scene. A user 

would type in a natural language command to which the program would respond, 

either by answering a query about the scene or performing an action that changed 

the scene. For instance, if instructed “Pick up a big red block,” SHRDLU would 

comprehend this instruction, execute it, and respond with “OK.” If then told “Find a 

block that is taller than the one you are holding and put it in the box,” then SHRDLU 

had to comprehend the words one and it; it would respond “By it I assume you 

mean the block which is taller than the one I am holding.”

Winograd’s (1972a) program was a prototypical classical system (Harnish, 2002). 

It parsed input strings into grammatical representations, and then it took advan-

tage of the constraints of the specialized blocks world to map these grammatical 

structures onto a semantic interpretation of the scene. SHRDLU showed “that if the 

database was narrow enough the program could be made deep enough to display 

human-like interactions” (p. 121).

Winograd’s later research on language continued within the classical tradi-

tion. He wrote what served as a bible to those interested in programming comput-

ers to understand language, Language As a Cognitive Process, Volume 1: Syntax 

(Winograd, 1983). This book introduced and reviewed theories of language and 

syntax, and described how those theories had been incorporated into working com-

puter programs. As the title suggests, a second volume on semantics was planned by 

Winograd. However, this second volume never appeared.

Instead, Winograd’s next groundbreaking book, Understanding Computers 

and Cognition, was one of the pioneering works in embodied cognitive science 

and launched a reaction against the classical approach (Winograd & Flores, 1987b). 

This book explained why Winograd did not continue with a text on the classi-

cal approach to semantics, because he had arrived at the opinion that classical 

accounts of language understanding would never be achieved. “Our position, in 

accord with the preceding chapters, is that computers cannot understand lan-

guage” (p. 107).

The reason that Winograd and Flores (1987b) adopted this position was their 

view that computers are restricted to a rationalist notion of meaning that, in accord-

ance with methodological solipsism (Fodor, 1980), must interpret terms indepen-

dently of external situations or contexts. Winograd and Flores argued instead for an 

embodied, radically non-rational account of meaning: “Meaning always derives from 

an interpretation that is rooted in a situation” (Winograd & Flores, 1987b, p. 111). 

They took their philosophical inspiration from Heidegger instead of from Descartes.
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Winograd and Flores’ (1987b) book was impactful and divisive. For example, the 

journal Artificial Intelligence published a set of four widely divergent reviews of the 

book (Clancey, 1987; Stefik & Bobrow, 1987; Suchman, 1987; Vellino, 1987), prefaced 

by an introduction noting that “when new books appear to be controversial, we try to 

present multiple perspectives on them.” Winograd and Flores (1987a) also published 

a response to the four reviews. In spite of its contentious reception, the book paved 

the way for research in situated cognition (Clancey, 1997), and it is one of the earliest 

examples of what is now well-established embodied cognitive science.

The rise of the embodied reaction is the first part of the clash of cultures in 

Norman’s (1993) sociology of cognitive science. A second part is the response of clas-

sical cognitive science to the embodied movement, a response that typically involves 

questioning the adequacy and the novelty of the new paradigm. An excellent exam-

ple of this aspect of the culture clash is provided in a series of papers published in 

the journal Cognitive Science in 1993.

This series began with a paper entitled “Situated action: A symbolic interpreta-

tion” (Vera & Simon, 1993), which provided a detailed classical response to theories 

of situated action (SA) or situated cognition, approaches that belong to embodied 

cognitive science. This response was motivated by Vera and Simon’s (1993) observa-

tion that SA theories reject central assumptions of classical cognitive science: situ-

ated action research “denies that intelligent systems are correctly characterized as 

physical symbol systems, and especially denies that symbolic processing lies at the 

heart of intelligence” (pp. 7–8). Vera and Simon argued in favor of a much different 

conclusion: that situated action research is essentially classical in nature. “We find 

that there is no such antithesis: SA systems are symbolic systems, and some past 

and present symbolic systems are SA systems” (p. 8).

Vera and Simon (1993) began their argument by characterizing the important 

characteristics of the two positions that they aimed to integrate. Their view of classi-

cal cognitive science is best exemplified by the general properties of physical symbol 

systems (Newell, 1980) that were discussed in Chapter 3, with prototypical examples 

being early varieties of production systems (Anderson, 1983; Newell, 1973, 1990; 

Newell & Simon, 1972).

Vera and Simon (1993) noted three key characteristics of physical symbol sys-

tems: perceptual processes are used to establish the presence of various symbols or 

symbolic structures in memory; reasoning processes are used to manipulate internal 

symbol strings; and finally, the resulting symbol structures control motor actions on 

the external world. In other words, sense-think-act processing was explicitly articu-

lated. “Sequences of actions can be executed with constant interchange among (a) 

receipt of information about the current state of the environment (perception), (b) 

internal processing of information (thinking), and (c) response to the environment 

(motor activity)” (p. 10).
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Critical to Vera and Simon’s (1993) attempt to cast situated action in a classical 

context was their notion of “symbol.” First, symbols were taken to be some sort of 

pattern, so that pattern recognition processes could assert that some pattern is a 

token of a particular symbolic type (i.e., symbol recognition). Second, such patterns 

were defined as true symbols when,

they can designate or denote. An information system can take a symbol token 

as input and use it to gain access to a referenced object in order to affect it or be 

affected by it in some way. Symbols may designate other symbols, but they may 

also designate patterns of sensory stimuli, and they may designate motor actions. 

(Vera & Simon, 1993, p. 9)

Vera and Simon (1993) noted that situated action or embodied theories are highly 

variable and therefore difficult to characterize. As a result, they provided a very gen-

eral account of the core properties of such theories by focusing on a small number, 

including Winograd and Flores (1987b). Vera and Simon observed that situated 

action theories require accounts of behaviour to consider situations or contexts, 

particularly those involving an agent’s environment. Agents must be able to adapt 

to ill-posed (i.e., difficult to formalize) situations, and do so via direct and continu-

ously changing interactions with the environment.

Vera and Simon (1993) went on to emphasize six main claims that in their view 

characterized most of the situated action literature: (1) situated action requires no 

internal representations; (2) it operates directly with the environment (sense-act 

rather than sense-think-act); (3) it involves direct access to affordances; (4) it does 

not use productions; (5) it exploits a socially defined, not physically defined, envi-

ronment; and (6) it makes no use of symbols. With this position, Vera and Simon 

were situated to critique the claim that the embodied approach is qualitatively dif-

ferent from classical cognitive science. They did so by either arguing against the 

import of some embodied arguments, or by in essence arguing for the formal equiv-

alence of classical and SA theories. Both of these approaches are in accord with 

Norman’s (1993) portrayal of a culture clash.

As an example of the first strategy, consider Vera and Simon’s (1993) treatment 

of the notion of readiness-to-hand. This idea is related to Heidegger’s (1962) con-

cept of Dasein, or being-in-the-world, which is an agent’s sense of being engaged 

with its world. Part of this engagement involves using “entities,” which Heidegger 

called equipment, and which are experienced in terms of what cognitive scientists 

would describe as affordances or potential actions (Gibson, 1979). “Equipment is 

essentially ‘something-in-order-to’” (Heidegger, 1962, p. 97).

Heidegger’s (1962) position was that when agents experience the affordances of 

equipment, other properties—such as the physical nature of equipment—disappear. 

This is readiness-to-hand. “That with which our everyday dealings proximally dwell 

is not the tools themselves. On the contrary, that with which we concern ourselves 
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primarily is the work” (p. 99). Another example of readiness-to-hand is the blind per-

son’s cane, which is not experienced as such when it is being used to navigate, but is 

instead experienced as an extension of the person themselves (Bateson, 1972, p. 465): 

“The stick is a pathway along which transforms of difference are being transmitted.”

Heidegger’s philosophy played a dominant role in the embodied theory pro-

posed by Winograd and Flores (1987b). They took readiness-to-hand as evidence 

of direct engagement with the world; we only become aware of equipment itself 

when the structural coupling between world, equipment, and agent breaks down. 

Winograd and Flores took the goal of designing equipment, such as human-com-

puter interfaces, to be creating artifacts that are invisible to us when they are used. 

“A successful word processing device lets a person operate on the words and par-

agraphs displayed on the screen, without being aware of formulating and giving 

commands” (Winograd & Flores, 1987b, p. 164). The invisibility of artifacts—the 

readiness-to-hand of equipment—is frequently characterized as being evidence of 

good design (Dourish, 2001; Norman, 1998, 2002, 2004).

Importantly, readiness-to-hand was also used by Winograd and Flores (1987b) 

as evidence for rejecting the need for classical representations, and to coun-

ter the claim that tool use is mediated by symbolic thinking or planning (Miller, 

Galanter, & Pribram, 1960). From the classical perspective, it might be expected 

that an agent is consciously aware of his or her plans; the absence of such aware-

ness, or readiness-to-hand, must therefore indicate the absence of planning. Thus 

readiness-to-hand reflects direct, non-symbolic links between sensing and acting.

If we focus on concernful activity instead of on detached contemplation, the status 

of this representation is called into question. In driving a nail with a hammer (as 

opposed to thinking about a hammer), I need not make use of any explicit repre-

sentation of the hammer. (Winograd & Flores, 1987b, p. 33)

Vera and Simon (1993, p. 19) correctly noted, though, that our conscious awareness 

of entities is mute with respect to either the nature or the existence of represen-

tational formats: “Awareness has nothing to do with whether something is repre-

sented symbolically, or in some other way, or not at all.” That is, consciousness of 

contents is not a defining feature of physical symbol systems. This position is a deft 

dismissal of using readiness-to-hand to support an anti-representational position.

After dealing with the implications of readiness-to-hand, Vera and Simon 

(1993) considered alternate formulations of the critiques raised by situated action 

researchers. Perhaps the prime concern of embodied cognitive science is that the 

classical approach emphasizes internal, symbolic processing to the near total exclu-

sion of sensing and acting. We saw in Chapter 3 that production system pioneers 

admitted that their earlier efforts ignored sensing and acting (Newell, 1990). (We 

also saw an attempt to rectify this in more recent production system architectures 

[Meyer et al., 2001; Meyer & Kieras, 1997a, 1997b]).



 Marks of the Classical?  321

Vera and Simon (1993) pointed out that the classical tradition has never disa-

greed with the claim that theories of cognition cannot succeed by merely provid-

ing accounts of internal processing. Action and environment are key elements of 

pioneering classical accounts (Miller, Galanter, & Pribram, 1960; Simon, 1969). Vera 

and Simon stress this by quoting the implications of Simon’s (1969) own parable of 

the ant: 

The proper study of mankind has been said to be man. But . . . man—or at least the 

intellective component of man—may be relatively simple; . . . most of the complex-

ity of his behavior may be drawn from his environment, from his search for good 

designs. (Simon, 1969, p. 83)

Modern critics of the embodied notion of the extended mind (Adams & Aizawa, 2008) 

continue to echo this response: “The orthodox view in cognitive science maintains 

that minds do interact with their bodies and their environments” (pp. 1–2).

Vera and Simon (1993) emphasized the interactive nature of classical models by 

briefly discussing various production systems designed to interact with the world. 

These included the Phoenix project, a system that simulates the fighting of forest 

fires in Yellowstone National Park (Cohen et al., 1989), as well as the Navlab system 

for navigating an autonomous robotic vehicle (Pomerleau, 1991; Thorpe, 1990). 

Vera and Simon also described a production system for solving the Towers of Hanoi 

problem, but it was highly scaffolded. That is, its memory for intermediate states of 

the problem was in the external towers and discs themselves; the production system 

had neither an internal representation of the problem nor a goal stack to plan its 

solution. Instead, it solved the problem perceptually, with its productions driven by 

the changing appearance of the problem over time.

The above examples were used to argue that at least some production systems 

are situated action models. Vera and Simon (1993) completed their argument by 

making the parallel argument that some notable situated action theories are sym-

bolic because they are instances of production systems. One embodied theory that 

received this treatment was Rodney Brooks’ behaviour-based robotics (Brooks, 1991, 

1989, 1999, 2002), which was introduced in Chapter 5. To the extent that they agreed 

that Brooks’ robots do not employ representations, Vera and Simon suggested that 

this limits their capabilities. “It is consequently unclear whether Brooks and his 

Creatures are on the right track towards fully autonomous systems that can func-

tion in a wider variety of environments” (Vera & Simon, 1993, p. 35).

However, Vera and Simon (1993) went on to suggest that even systems such 

as Brooks’ robots could be cast in a symbolic mould. If a system has a state that is 

in some way indexed to a property or entity in the world, then that state should be 

properly called a symbol. As a result, a basic sense-act relationship that was part of 

the most simplistic subsumption architecture would be an example of a production 

for Vera and Simon.
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Furthermore, Vera and Simon (1993) argued that even if a basic sense-act rela-

tionship is wired in, and therefore there is no need to view it as symbolized, it is 

symbolic nonetheless: 

On the condition end, the neural impulse aroused by the encoded incoming stimuli 

denotes the affordances that produced these stimuli, while the signals to efferent 

nerves denote the functions of the actions. There is every reason to regard these 

impulses and signals as symbols: A symbol can as readily consist of the activation of a 

neuron as it can of the creation of a tiny magnetic field. (Vera and Simon, 1993, p. 42) 

Thus any situated action model can be described in a neutral, symbolic language—

as a production system—including even the most reflexive, anti-representational 

instances of such models.

The gist of Vera and Simon’s (1993) argument, then, was that there is no princi-

pled difference between classical and embodied theories, because embodied models 

that interact with the environment are in essence production systems. Not surpris-

ingly, this position attracted a variety of criticisms.

For example, Cognitive Science published a number of articles in response to 

the original paper by Vera and Simon (Norman, 1993). One theme apparent in some 

of these papers was that Vera and Simon’s definition of symbol was too vague to 

be useful (Agre, 1993; Clancey, 1993). Agre, for instance, accused Vera and Simon 

not of defending a well-articulated theory, but instead of exploiting an indistinct 

worldview. He argued that they “routinely claim vindication through some ‘sym-

bolic’ gloss of whatever phenomenon is under discussion. The problem is that just 

about anything can seem ‘symbolic’ if you look at it right” (Agre, 1993, p. 62).

One example of such vagueness was Vera and Simon’s (1993) definition of a 

symbol as a “designating pattern.” What do they mean by designate? Designation 

has occurred if “an information system can take a symbol token as input and use 

it to gain access to a referenced object in order to affect it or to be affected by it in 

some way” (Vera & Simon, 1993, p. 9). In other words the mere establishment of a 

deictic or indexing relationship (Pylyshyn, 1994, 2000, 2001) between the world and 

some state of an agent is sufficient for Vera and Simon to deem that state “symbolic.”

This very liberal definition of symbolic leads to some very glib characteriza-

tions of certain embodied positions. Consider Vera and Simon’s (1993) treatment 

of affordances as defined in the ecological theory of perception (Gibson, 1979). In 

Gibson’s theory, affordances—opportunities for action offered by entities in the 

world—are perceived directly; no intervening symbols or representations are pre-

sumed. “When I assert that perception of the environment is direct, I mean that it is 

not mediated by retinal pictures, neural pictures, or mental pictures” (p. 147). Vera 

and Simon (1993, p. 20) denied direct perception: “the thing that corresponds to 

an affordance is a symbol stored in central memory denoting the encoding in func-

tional terms of a complex visual display, the latter produced, in turn, by the actual 
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physical scene that is being viewed.”

Vera and Simon (1993) adopted this representational interpretation of affor-

dances because, by their definition, an affordance designates some worldly state of 

affairs and must therefore be symbolic. As a result, Vera and Simon redefined the 

sense-act links of direct perception as indirect sense-think-act processing. To them, 

affordances were symbols informed by senses, and actions were the consequence of 

the presence of motor representations. Similar accounts of affordances have been 

proposed in the more recent literature (Sahin et al., 2007).

While Vera and Simon’s (1993) use of designation to provide a liberal defini-

tion of symbol permits a representational account of anti-representational theo-

ries, it does so at the expense of neglecting core assumptions of classical models. In 

particular, other leading classical cognitive scientists adopt a much more stringent 

definition of symbol that prevents, for instance, direct perception to be viewed as 

a classical theory. Pylyshyn has argued that cognitive scientists must adopt a cog-

nitive vocabulary in their theories (Pylyshyn, 1984). Such a vocabulary captures 

regularities by appealing to the contents of representational states, as illustrated 

in adopting the intentional stance (Dennett, 1987) or in employing theory-theory 

(Gopnik & Meltzoff, 1997; Gopnik & Wellman, 1992).

Importantly, for Pylyshyn mere designation is not sufficient to define the 

content of symbols, and therefore is not sufficient to support a classical or cog-

nitive theory. As discussed in detail in Chapter 8, Pylyshyn has developed a theory 

of vision that requires indexing or designation as a primitive operation (Pylyshyn, 

2003c, 2007). However, this theory recognizes that designation occurs without rep-

resenting the features of indexed entities, and therefore does not establish cogni-

tive content. As a result, indexing is a critical component of Pylyshyn’s theory—but 

it is also a component that he explicitly labels as being non-representational and 

non-cognitive.

Vera and Simon’s (1993) vagueness in defining the symbolic has been a central 

concern in other critiques of their position. It has been claimed that Vera and Simon 

omit one crucial characteristic in their definition of symbol system: the capabil-

ity of being a universal computing device (Wells, 1996). Wells (1996) noted in one 

example that devices such as Brooks’ behaviour-based robots are not capable of 

universal computation, one of the defining properties of a physical symbol system 

(Newell & Simon, 1976). Wells argues that if a situated action model is not universal, 

then it cannot be a physical symbol system, and therefore cannot be an instance of 

the class of classical or symbolic theories.

The trajectory from Winograd’s (1972a) early classical research to his pioneer-

ing articulation of the embodied approach (Winograd & Flores, 1987b) and the route 

from Winograd and Flores’ book to Vera and Simon’s (1993) classical account of 

situated action to the various responses that this account provoked raise a number 

of issues.
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First, this sequence of publications nicely illustrates Norman’s (1993) descrip-

tion of culture clashes in cognitive science. Dissatisfied with the perceived limits of 

the classical approach, Winograd and Flores highlighted its flaws and detailed the 

potential advances of the embodied approach. In reply, Vera and Simon (1993) dis-

counted the differences between classical and embodied theories, and even pointed 

out how connectionist networks could be cast in the light of production systems.

Second, the various positions described above highlight a variety of perspec-

tives concerning the relationships between different schools of thought in cognitive 

science. At one extreme, all of these different schools of thought are considered to be 

classical in nature, because all are symbolic and all fall under a production system 

umbrella (Vera & Simon, 1993). At the opposite extreme, there are incompatible dif-

ferences between the three approaches, and supporters of one approach argue for 

its adoption and for the dismissal of the others (Chemero, 2009; Fodor & Pylyshyn, 

1988; Smolensky, 1988; Winograd & Flores, 1987b).

In between these poles, one can find compromise positions in which hybrid 

models that call upon multiple schools of thought are endorsed. These include pro-

posals in which different kinds of theories are invoked to solve different sorts of prob-

lems, possibly at different stages of processing (Clark, 1997; Pylyshyn, 2003c). These 

also include proposals in which different kinds of theories are invoked simultane-

ously to co-operatively achieve a full account of some phenomenon (McNeill, 2005).

Third, the debate between the extreme poles appears to hinge on core defini-

tions used to distinguish one position from another. Is situated cognition classical? 

As we saw earlier, this depends on the definition of symbolic, which is a key classical 

idea, but it has not been as clearly defined as might be expected (Searle, 1992). It is 

this third point that is the focus of the remainder of this chapter. What are the key 

concepts that are presumed to distinguish classical cognitive science from its puta-

tive competitors? When one examines these concepts in detail, are they truly dis-

tinguished between positions? Or do they instead reveal potential compatibilities 

between the different approaches to cognitive science?

7.2 Marks of the Classical

In previous chapters, the elements of classical, of connectionist, and of embodied 

cognitive science have been presented. We have proceeded in a fashion that accen-

tuated potential differences between these three schools of thought. However, now 

that the elements of all three approaches have been presented, we are in a position to 

explore how real and extensive these differences are. Is there one cognitive science, 

or many? One approach to answering this question is to consider whether the dis-

tinctions between the elements of the cognitive sciences are truly differences in kind.

The position of the current chapter is that there are strong relations amongst 
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the three schools of thought in cognitive science; differences between these schools 

are more matters of degree than qualitative differences of kind. Let us set a context 

for this discussion by providing an argument similar in structure to the one framed 

by Adams and Aizawa (2008) against the notion of the extended mind.

One important critique of embodied cognitive science’s proposal of the extended 

mind is based on an analysis of the mark of the cognitive (Adams & Aizawa, 2008). 

The mark of the cognitive is a set of necessary and sufficient features that distin-

guish cognitive phenomena from other phenomena. Adams and Aizawa’s central 

argument against the extended mind is that it fails to provide the required features.

If one thinks that cognitive processing is simply any sort of dynamical system 

process, then—so understood—cognitive processing is again likely to be found 

spanning the brain, body and environment. But, so understood, cognitive pro-

cessing will also be found in the swinging of a pendulum of a grandfather clock 

or the oscillations of the atoms of a hydrogen molecule. Being a dynamical 

system is pretty clearly insufficient for cognition or even a cognitive system. 

(Adams & Aizawa, 2008, p. 23)

Connectionist and embodied approaches can easily be characterized as explicit 

reactions against the classical viewpoint. That is, they view certain characteristics 

of classical cognitive science as being incorrect, and they propose theories in which 

these characteristics have been removed. For instance, consider Rodney Brooks’ 

reaction against classical AI and robotics: 

During my earlier years as a postdoc at MIT, and as a junior faculty member at 

Stanford, I had developed a heuristic in carrying out research. I would look at how 

everyone else was tackling a certain problem and find the core central thing that 

they all agreed on so much that they never even talked about it. I would negate the 

central implicit belief and see where it led. This often turned out to be quite useful. 

(Brooks, 2002, p. 37)

This reactive approach suggests a context for the current chapter: that there should 

be a mark of the classical, a set of necessary and sufficient features that distinguish 

the theories of classical cognitive science from the theories of either connectionist 

or of embodied cognitive science. Given the material presented in earlier chapters, 

a candidate set of such features can easily be produced: central control, serial pro-

cessing, internal representations, explicit rules, the disembodied mind, and so on. 

Alternative approaches to cognitive science can be characterized as taking a subset 

of these features and inverting them in accordance with Brooks’ heuristic.

In the sections that follow we examine candidate features that define the mark 

of the classical. It is shown that none of these features provide a necessary and suf-

ficient distinction between classical and non-classical theories. For instance, central 

control is not a required property of a classical system, but was incorporated as 
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an engineering convenience. Furthermore, central control is easily found in non-

classical systems such as connectionist networks.

If there is no mark of the classical, then this indicates that there are not many 

cognitive sciences, but only one. Later chapters support this position by illustrating 

theories of cognitive science that incorporate elements of all three approaches.

7.3 Centralized versus Decentralized Control

Two of the key elements of a classical theory of cognitive science are a set of primitive 

symbols and a set of primitive processes for symbol manipulation. However, these 

two necessary components are not by themselves sufficient to completely define a 

working classical model. A third element is also required: a mechanism of control.

Control is required to determine “what to do next,” to choose which primitive 

operation is to be applied at any given moment.

Beyond the capability to execute the basic operations singly, a computing machine 

must be able to perform them according to the sequence—or rather, the logical pat-

tern—in which they generate the solution of the mathematical problem that is the 

actual purpose of the calculation in hand. (von Neumann, 1958, p. 11)

The purpose of this section is to explore the notion of control from the perspective 

of the three schools of thought in cognitive science. This is done by considering 

cognitive control in the context of the history of the automatic control of computing 

devices. It is argued that while the different approaches in cognitive science may 

claim to have very different accounts of cognitive control, there are in fact no quali-

tative differences amongst these accounts.

One of the earliest examples of automatic control was Jacquard’s punched card 

mechanism for, in essence, programming a loom to weave a particular pattern into 

silk fabric (Essinger, 2004), as discussed in Chapter 3. One punched card controlled 

the appearance of one thread row in the fabric. Holes punched in the card permit-

ted rods to move, which raised specified threads to make them visible at this point 

in the fabric. The cards that defined a pattern were linked together as a belt that 

advanced one card at a time during weaving. A typical pattern to be woven was 

defined by around 2,000 to 4,000 different punched cards; very complex patterns 

required using many more cards. For instance, Jacquard’s self-portrait in silk was 

defined by 24,000 different punched cards.

Jacquard patented his loom in 1804 (Essinger, 2004). By the end of the nine-

teenth century, punched cards inspired by his invention had a central place in the 

processing of information. However, their role was to represent this information, 

not to control how it was manipulated.

After Herman Hollerith graduated from Columbia School of Mines in 1879, he 
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was employed to work on the 1880 United States Census, which was the first census 

to collect not only population data but also to be concerned with economic issues 

(Essinger, 2004). Hollerith’s census experience revealed a marked need to automate 

the processing of the huge amount of information that had been collected.

While engaged in work upon the tenth census, the writer’s attention was called to 

the methods employed in the tabulation of population statistics and the enormous 

expense involved. These methods were at the time described as ‘barbarous[;] 

some machine ought to be devised for the purpose of facilitating such tabulations’. 

(Hollerith, 1889, p. 239)

Hollerith’s response was to represent census information using punched cards 

(Austrian, 1982; Comrie, 1933; Hollerith, 1889). A standard punched card, called a 

tabulating card, measured 18.7 cm by 8.3 cm, and its upper left hand corner was 

beveled to prevent the card from being incorrectly oriented. A blank tabulating card 

consisted of 80 vertical columns, with 12 different positions in each column through 

which a hole could be punched. The card itself acted as an electrical insulator and 

was passed through a wire brush and a brass roller. The brush and roller came in 

contact wherever a hole had been punched, completing an electrical circuit and per-

mitting specific information to be read from a card and acted upon (Eckert, 1940).

Hollerith invented a set of different devices for manipulating tabulating cards. 

These included a card punch for entering data by punching holes in cards, a verifier 

for checking for data entry errors, a counting sorter for sorting cards into different 

groups according to the information punched in any column of interest, a tabula-

tor or accounting machine for adding numbers punched into a set of cards, and a 

multiplier for taking two different numbers punched on a card, computing their 

product, and punching the product onto the same card. Hollerith’s devices were 

employed during the 1890 census. They saved more than two years of work and $5 

million dollars, and permitted complicated tables involving relationships between 

different variables to be easily created (Essinger, 2004).

In Hollerith’s system, punched cards represented information, and the various 

specialized devices that he invented served as the primitive processes available for 

manipulating information. Control, however, was not mechanized—it was provided 

by a human operator of the various tabulating machines in a room. “The calcu-

lating process was done by passing decks of cards from one machine to the next, 

with each machine contributing something to the process” (Williams, 1997, p. 253). 

This approach was very powerful. In what has been described as the first book 

about computer programming, Punched Card Methods in Scientific Computation 

(Eckert, 1940), astronomer Wallace Eckert described how a set of Hollerith’s 

machines—a punched card installation—could be employed for harmonic analysis, 

for solving differential equations, for computing planetary perturbations, and for 

performing many other complex calculations.
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The human controller of a punched card installation was in a position analo-

gous to a weaver in Lyon prior to the invention of Jacquard’s loom. That is, both were 

human operators—or more precisely, human controllers—of machines responsible 

for producing complicated products. Jacquard revolutionized the silk industry by 

automating the control of looms. Modern computing devices arose from an anal-

ogous innovation, automating the control of Hollerith’s tabulators (Ceruzzi, 1997, 

p. 8): The entire room comprising a punched card installation “including the people 

in it—and not the individual machines is what the electronic computer eventually 

replaced.”

The first phase of the history of replacing punched card installations with auto-

matically controlled computing devices involved the creation of calculating devices 

that employed mechanical, electromechanical, or relay technology (Williams, 1997). 

This phase began in the 1930s with the creation of the German calculators invented 

by Konrad Zuse (Zuse, 1993), the Bell relay computers developed by George Stibitz 

(Irvine, 2001; Stibitz & Loveday, 1967a, 1967b), and the Harvard machines designed 

by Howard Aiken (Aiken & Hopper, 1946).

The internal components of any one of these calculators performed operations 

analogous to those performed by the different Hollerith machines in a punched 

card installation. In addition, the actions of these internal components were auto-

matically controlled. Completing the parallel with the Jacquard loom, this control 

was accomplished using punched tape or cards. The various Stibitz and Aiken 

machines read spools of punched paper tape; Zuse’s machines were controlled by 

holes punched in discarded 35 mm movie film (Williams, 1997). The calculators 

developed during this era by IBM, a company that had been founded in part from 

Hollerith’s Computer Tabulating Recording Company, were controlled by decks of 

punched cards (Williams, 1997).

In the 1940s, electromechanical or relay technology was replaced with much 

faster electronic components, leading to the next generation of computer devices. 

Vacuum tubes were key elements of both the Atanasoff-Berry computer (ABC), cre-

ated by John Atanasoff and Clifford Berry (Burks & Burks, 1988; Mollenhoff, 1988; 

Smiley, 2010), and the ENIAC (Electronic Numerical Integrator and Computer) 

engineered by Presper Eckert and John Mauchly (Burks, 2002; Neukom, 2006).

The increase in speed of the internal components of electronic computers 

caused problems with paper tape or punched card control. The issue was that the 

electronic machines were 500 times faster than relay-based devices (Pelaez, 1999), 

which meant that traditional forms of control were far too slow.

This control problem was solved for Eckert and Mauchly’s ENIAC by using a 

master controller that itself was an electronic device. It was a set of ten electronic 

switches that could each be set to six different values; each switch was associated 

with a counter that could be used to advance a switch to a new setting when a 
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predefined value was reached (Williams, 1997). The switches would route incoming 

signals to particular components of ENIAC, where computations were performed; 

a change in a switch’s state would send information to a different component of 

ENIAC. The control of this information flow was accomplished by using a plug 

board to physically wire the connections between switches and computer compo-

nents. This permitted control to match the speed of computation, but at a cost: 

ENIAC was a fast but relatively inflexible machine. It was best suited for use in 

long and repetitious calculations. Once it was wired up for a particular program, 

it was in fact a special purpose machine. Adapting it to another purpose (a differ-

ent problem) required manual intervention to reconfigure the electrical circuits. 

(Pelaez, 1999, p. 361) 

Typically two full days of rewiring the plug board were required to convert ENIAC 

from one special purpose machine to another.

Thus the development of electronic computers led to a crisis of control. Punched 

tape provided flexible, easily changed, control. However, punched tape readers were 

too slow to take practical advantage of the speed of the new machines. Plug boards 

provided control that matched the speed of the new componentry, but was inflexible 

and time consuming to change. This crisis of control inspired another innovation, 

the stored program computer (Aspray, 1982; Ceruzzi, 1997; Pelaez, 1999).

The notion of the stored program computer was first laid out in 1945 by 

John von Neumann in a draft memo that described the properties of the EDVAC 

(Electronic Discrete Variable Automatic Computer), the computer that directly 

descended from the ENIAC (Godfrey & Hendry, 1993; von Neumann, 1993). One of 

the innovations of this design was the inclusion of a central controller. In essence, 

the instructions that ordinarily would be represented as a sequence on a punched 

tape would instead be represented internally in EDVAC’s memory. The central 

controller had the task of fetching, interpreting, and executing an instruction from 

memory and then repeating this process after proceeding to the next instruction 

in the sequence.

There is no clear agreement about which particular device was the first stored 

program computer; several candidate machines were created in the same era. These 

include the EDVAC (created 1945–1950) (Reitwiesner, 1997; von Neumann, 1993; 

Williams, 1993), Princeton’s IAS computer (created 1946–1951) (Burks, 2002; 

Cohen, 1999), and the Manchester machine (running in 1948) (Copeland, 2011; 

Lavington, 1980). Later work on the ENIAC also explored its use of stored pro-

grams (Neukom, 2006). Regardless of “firsts,” all of these machines were function-

ally equivalent in the sense that they replaced external control—as by a punched 

tape—with internalizing tape instructions into memory.

The invention of the stored program computer led directly to computer sci-

ence’s version of the classical sandwich (Hurley, 2001). “Sensing” involves loading 
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the computer’s internal memory with both the program and the data to be pro-

cessed. “Thinking” involves executing the program and performing the desired cal-

culations upon the stored data. “Acting” involves providing the results of the calcu-

lations to the computer’s operator, for instance by punching an output tape or a set 

of punched cards.

The classical sandwich is one of the defining characteristics of classical cogni-

tive science (Hurley, 2001), and the proposal of a sense-act cycle to replace the sand-

wich’s sense-think-act processing (Brooks, 1999, 2002; Clark, 1997, 2008; Pfeifer & 

Scheier, 1999) is one of the characteristic reactions of embodied cognitive science 

against the classical tradition (Shapiro, 2011). Classical cognitive science’s adoption 

of the classical sandwich was a natural consequence of being inspired by computer 

science’s approach to information processing, which, at the time that classical cog-

nitive science was born, had culminated in the invention of the stored program 

computer.

However, we have seen from the history leading up to its invention that the 

stored program computer—and hence the classical sandwich—was not an in-prin-

ciple requirement for information processing. It was instead the result of a practi-

cal need to match the speed of control with the speed of electronic components. 

In fact, the control mechanisms of a variety of information processing models that 

are central to classical cognitive science are in fact quite consistent with embodied 

cognitive science.

For example, the universal Turing machine is critically important to classical 

cognitive science, not only in its role of defining the core elements of symbol manip-

ulation, but also in its function of defining the limits of computation (Dawson, 1998). 

However, in most respects a universal Turing machine is a device that highlights 

some of the key characteristics of the embodied approach.

For instance, the universal Turing machine is certainly not a stored program 

computer (Wells, 2002). If one were to actually build such a device—the original 

was only used as a theoretical model (Turing, 1936)—then the only internal memory 

that would be required would be for holding the machine table and the machine 

head’s internal state. (That is, if any internal memory was required at all. Turing’s 

notion of machine state was inspired by the different states of a typewriter’s keys 

[Hodges, 1983], and thus a machine state may not be remembered or represented, 

but rather merely adopted. Similarly, the machine table would presumably be built 

from physical circuitry, and again would be neither represented nor remembered). 

The program executed by a universal Turing machine, and the data manipula-

tions that resulted, were completely scaffolded. The machine’s memory is literally 

an external notebook analogous to that used by Oscar in the famous argument for 

extending the mind (Clark & Chalmers, 1998). That is, the data and program for a 

universal Turing machine are both stored externally, on the machine’s ticker tape.
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Indeed, the interactions between a universal Turing machine’s machine head 

and its ticker tape are decidedly of the sense-act, and not of the sense-think-act, 

variety. Every possible operation in the machine table performs an action (either 

writing something on the ticker tape or moving the tape one cell to the right or to 

the left) immediately after sensing the current symbol on the tape and the current 

state of the machine head. No other internal, intermediary processing (i.e., think-

ing) is required.

Similarly, external scaffolding was characteristic of later-generation relay com-

puters developed at Bell labs, such as the Mark III. These machines employed more 

than one tape reader, permitting external tapes to be used to store tables of pre-

computed values. This resulted in the CADET architecture (“Can’t Add, Doesn’t 

Even Try”) that worked by looking up answers to addition and other problems 

instead of computing the result (Williams, 1997). This was possible because of a 

“hunting circuit” that permitted the computer to move to any desired location on 

a punched tape (Stibitz & Loveday, 1967b). ENIAC employed scaffolding as well, 

obtaining standard function values by reading them from cards (Williams, 1997).

From an engineering perspective, the difference between externally controlled 

and stored program computers was quantitative (e.g. speed of processing) and not 

qualitative (e.g. type of processing). In other words, to a computer engineer there 

may be no principled difference between a sense-act device such as a universal 

Turing machine and a sense-think-act computer such as the EDVAC. In the context 

of cognitive control, then, there may be no qualitative element that distinguishes 

the classical and embodied approaches.

Perhaps a different perspective on control may reveal sharp distinctions 

between classical and embodied cognitive science. For instance, a key element in 

the 1945 description of the EDVAC was the component called the central control 

unit (Godfrey & Hendry, 1993; von Neumann, 1993). It was argued by von Neumann 

that the most efficient way to control a stored program computer was to have a 

physical component of the device devoted to control (i.e., to the fetching, decod-

ing, and executing of program steps). Von Neumann called this the “central control 

organ.” Perhaps it is the notion that control is centralized to a particular location or 

organ of a classical device that serves as the division between classical and embod-

ied models. For instance, behaviour-based roboticists often strive to decentralize 

control (Brooks, 1999). In Brooks’ early six-legged walking robots like Attila, each 

leg of the robot was responsible for its own control, and no central control organ 

was included in the design (Brooks, 2002).

However, it appears that the need for a central control organ was tied again 

to pragmatic engineering rather than to a principled requirement for defining 

information processing. The adoption of a central controller reflected adherence to 

engineering’s principle of modular design (Marr, 1976). According to this principle, 
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“any large computation should be split up and implemented as a collection of small 

sub-parts that are as nearly independent of one another as the overall task allows” 

(p. 485). Failure to devise a functional component or process according to the prin-

ciple of modular design typically means, 

that the process as a whole becomes extremely difficult to debug or to improve, 

whether by a human designer or in the course of natural evolution, because a small 

change to improve one part has to be accompanied by many simultaneous compen-

sating changes elsewhere. (Marr, 1976, p. 485)

Digital computers were explicitly designed according to the principle of modu-

lar design, which von Neumann (1958) called “the principle of only one organ for 

each basic operation” (p. 13). Not only was this good engineering practice, but von 

Neumann also argued that this principle distinguished digital computers from their 

analog ancestors such as the differential analyzer (Bush, 1931).

The principle of modular design is also reflected in the architecture of the uni-

versal Turing machine. The central control organ of this device is its machine table 

(see Figure 3-8), which is separate and independent from the other elements of the 

device, such as the mechanisms for reading and writing the tape, the machine state, 

and so on. Recall that the machine table is a set of instructions; each instruction 

is associated with a specific input symbol and a particular machine state. When 

a Turing machine in physical state x reads symbol y from the tape, it proceeds to 

execute the instruction at coordinates (x, y) in its machine table.

Importantly, completely decentralized control results in a Turing machine 

when von Neumann’s (1958) principle of only one organ for each basic operation 

is taken to the extreme. Rather than taking the entire machine table as a central 

control organ, one could plausibly design an uber-modular system in which each 

instruction was associated with its own organ. For example, one could replace the 

machine table with a production system in which each production was responsible 

for one of the machine table’s entries. The conditions for each production would 

be a particular machine state and a particular input symbol, and the production’s 

action would be the required manipulation of the ticker tape. In this case, the pro-

duction system version of the Turing machine would behave identically to the origi-

nal version. However, it would no longer have a centralized control organ.

In short, central control is not a necessary characteristic of classical informa-

tion processing, and therefore does not distinguish between classical and embodied 

theories. Another way of making this point is to remember the Chapter 3 obser-

vation that production systems are prototypical examples of classical architec-

tures (Anderson et al., 2004; Newell, 1973), but they, like many embodied models 

(Dawson, Dupuis, & Wilson, 2010; Holland & Melhuish, 1999; Susi & Ziemke, 2001; 

Theraulaz & Bonabeau, 1999), are controlled stigmergically. “Traditional production 

system control is internally stigmergic, because the contents of working memory 
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determine which production will act at any given time” (Dawson, Dupuis, & Wilson, 

2010, p. 76).

The discussion to this point has used the history of the automatic control of 

computers to argue that characteristics of control cannot be used to provide a prin-

cipled distinction between classical and embodied cognitive science. Let us now 

examine connectionist cognitive science in the context of cognitive control.

Connectionists have argued that the nature of cognitive control provides a prin-

cipled distinction between network models and models that belong to the classi-

cal tradition (Rumelhart & McClelland, 1986b). In particular, connectionist cogni-

tive scientists claim that control in their networks is completely decentralized, and 

that this property is advantageous because it is biologically plausible. “There is one 

final aspect of our models which is vaguely derived from our understanding of brain 

functioning. This is the notion that there is no central executive overseeing the gen-

eral flow of processing” (Rumelhart & McClelland, 1986b, p. 134).

However, the claim that connectionist networks are not under central con-

trol is easily refuted; Dawson and Schopflocher (1992a) considered a very simple 

connectionist system, the distributed memory or standard pattern associator 

described in Chapter 4 (see Figure 4-1). They noted that connectionist research-

ers typically describe such models as being autonomous, suggesting that the key 

operations of such a memory (namely learning and recall) are explicitly defined in 

its architecture, that is, in the connection weights and processors, as depicted in 

Figure 4-1.

However, Dawson and Schopflocher (1992a) proceeded to show that even in 

such a simple memory system, whether the network learns or recalls information 

depends upon instructions provided by an external controller: the programmer 

demonstrating the behaviour of the network. When instructed to learn, the compo-

nents of the standard pattern associator behave one way. However, when instructed 

to recall, these same components behave in a very different fashion. The nature of 

the network’s processing depends critically upon signals provided by a controller 

that is not part of the network architecture.

For example, during learning the output units in a standard pattern associator 

serve as a second bank of input units, but during recall they record the network’s 

response to signals sent from the other input units. How the output units behave is 

determined by whether the network is involved in either a learning phase or a recall 

phase, which is signaled by the network’s user, not by any of its architectural compo-

nents. Similarly, during the learning phase connection weights are modified accord-

ing to a learning rule, but the weights are not modified during the recall phase. How 

the weights behave is under the user’s control. Indeed, the learning rule is defined 

outside the architecture of the network that is visible in Figure 4-1.

Dawson and Schopflocher (1992a) concluded that,
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current PDP networks are not autonomous because their learning principles are 

not in fact directly realized in the network architecture. That is, networks governed 

by these principles require explicit signals from some external controller to deter-

mine when they will learn or when they will perform a learned task. (Dawson and 

Schopflocher 1992a, pp. 200–201)

This is not a principled limitation, for Dawson and Schopflocher presented a much 

more elaborate architecture that permits a standard pattern associator to learn and 

recall autonomously, that is, without the need for a user’s intervention. However, 

this architecture is not typical; standard pattern associators like the one in Figure 

4-1 demand executive control.

The need for such control is not limited to simple distributed memories. The 

same is true for a variety of popular and more powerful multilayered network 

architectures, including multilayered perceptrons and self-organizing networks 

(Roy, 2008). “There is clearly a central executive that oversees the operation of the 

back-propagation algorithm” (p. 1436). Roy (2008) proceeded to argue that such 

control is itself required by brain-like systems, and therefore biologically plausible 

networks demand not only an explicit account of data transformation, but also a 

biological theory of executive control.

In summary, connectionist networks generally require the same kind of control 

that is a typical component of a classical model. Furthermore, it was argued earlier 

that there does not appear to be any principled distinction between this kind of con-

trol and the type that is presumed in an embodied account of cognition. Control is a 

key characteristic of a cognitive theory, and different schools of thought in cognitive 

science are united in appealing to the same type of control mechanisms. In short, 

central control is not a mark of the classical.

7.4 Serial versus Parallel Processing

Classical cognitive science was inspired by the characteristics of digital computers; 

few would deny that the classical approach exploits the digital computer metaphor 

(Pylyshyn, 1979a). Computers are existence proofs that physical machines are capa-

ble of manipulating, with infinite flexibility, semantically interpretable expressions 

(Haugeland, 1985; Newell, 1980; Newell & Simon, 1976). Computers illustrate how 

logicism can be grounded in physical mechanisms.

The connectionist and the embodied reactions to classical cognitive science 

typically hold that the digital computer metaphor is not appropriate for theories of 

cognition. It has been argued that the operations of traditional electronic comput-

ers are qualitatively different from those of human cognition, and as a result the 
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classical models they inspire are doomed to fail, as are attempts to produce artificial 

intelligence in such machines (Churchland & Sejnowski, 1992; Dreyfus, 1972, 1992; 

Searle, 1980).

In concert with rejecting the digital computer metaphor, connectionist and 

embodied cognitive scientists turn to qualitatively different notions in an attempt 

to distinguish their approaches from the classical theories that preceded them. 

However, their attempt to define the mark of the classical, and to show how this 

mark does not apply to their theories, is not always successful.

For example, it was argued in the previous section that when scholars aban-

doned the notion of centralized control, they were in fact reacting against a concept 

that was not a necessary condition of classical theory, but was instead an engineer-

ing convenience. Furthermore, mechanisms of control in connectionist and embod-

ied theories were shown not to be radically different from those of classical models. 

The current section provides another such example.

One of the defining characteristics of classical theory is serial processing, the 

notion that only one operation can be executed at a time. Opponents of classi-

cal cognitive science have argued that this means classical models are simply too 

slow to be executed by the sluggish hardware that makes up the brain (Feldman & 

Ballard, 1982). They suggest that what is instead required is parallel processing, 

in which many operations are carried out simultaneously. Below it is argued that 

characterizing digital computers or classical theories as being serial in nature is not 

completely accurate. Furthermore, characterizing alternative schools of thought in 

cognitive science as champions of parallel processing is also problematic. In short, 

the difference between serial and parallel processing may not provide a clear dis-

tinction between different approaches to cognitive science.

It cannot be denied that serial processing has played an important role in the 

history of modern computing devices. Turing’s (1936) original account of computa-

tion was purely serial: a Turing machine processed only a single symbol at a time, 

and did so by only executing a single operation at a time. However, the purpose of 

Turing’s proposal was to provide an uncontroversial notion of “definite method”; 

serial processing made Turing’s notion of computation easy to understand, but was 

not a necessary characteristic.

A decade later, the pioneering stored program computer EDVAC was also a 

serial device in two different ways (Ceruzzi, 1997; von Neumann, 1993). First, it only 

executed one command at a time. Second, even though it used 44 bits to represent a 

number as a “word,” it processed these words serially, operating on them one bit at 

a time. Again, though, this design was motivated by a desire for simplicity—in this 

case, simplicity of engineering. “The device should be as simple as possible, that is, 

contain as few elements as possible. This can be achieved by never performing two 
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operations simultaneously, if this would cause a significant increase in the number 

of elements required” (von Neumann, 1993, p. 8).

Furthermore, the serial nature of EDVAC was also dictated by engineering 

constraints on the early stored program machines. The existence of such devices 

depended upon the invention of new kinds of memory components (Williams, 1997). 

EDVAC used a delay line memory system, which worked by delaying a series of 

pulses (which represented a binary number) for a few milliseconds, and then by 

feeding these pulses back into the delay line so that they persisted in memory. 

Crucially, delay line memories only permitted stored information to be accessed in 

serial, one bit at a time.

EDVAC’s simple, serial design reflected an explicit decision against parallel 

processing that von Neumann (1993) called telescoping processes.

It is also worth emphasizing that up to now all thinking about high speed digital 

computing devices has tended in the opposite direction: Towards acceleration by 

telescoping processes at the price of multiplying the number of elements required. 

It would therefore seem to be more instructive to try to think out as completely as 

possible the opposite viewpoint. (von Neumann, 1993, p. 8) 

EDVAC’s opposite viewpoint was only practical because of the high speed of its 

vacuum tube components.

Serial processing was an attractive design decision because it simplified the 

architecture of EDVAC. However, it was not a necessary design decision. The tel-

escoping of processes was a common design decision in older computing devices 

that used slower components. Von Neumann was well aware that many of EDVAC’s 

ancestors employed various degrees of parallel processing.

In all existing devices where the element is not a vacuum tube the reaction time of 

the element is sufficiently long to make a certain telescoping of the steps involved in 

addition, subtraction, and still more in multiplication and division, desirable. (von 

Neumann, 1993, p. 6)

For example, the Zuse computers performed arithmetic operations in parallel, with 

one component manipulating the exponent and another manipulating the mantissa 

of a represented number (Zuse, 1993). Aiken’s Mark II computer at Harvard also 

had multiple arithmetic units that could be activated in parallel, though this was 

not common practice because coordination of its parallel operations were difficult to 

control (Williams, 1997). ENIAC used 20 accumulators as mathematical operators, 

and these could be run simultaneously; it was a parallel machine (Neukom, 2006).

In spite of von Neumann’s (1993) championing of serial processing, advances 

in computer memory permitted him to adopt a partially parallel architecture in the 

machine he later developed at Princeton (Burks, Goldstine, & Von Neumann, 1989). 

Cathode ray tube memories (Williams & Kilburn, 1949) allowed all of the bits of 



 Marks of the Classical?  337

a word in memory to be accessed in parallel, though operations on this retrieved 

information were still conducted in serial.

To get a word from the memory in this scheme requires, then, one switching mech-

anism to which all 40 tubes are connected in parallel. Such a switching scheme 

seems to us to be simpler than the technique needed in the serial system and is, of 

course, 40 times faster. We accordingly adopt the parallel procedure and thus are 

led to consider a so-called parallel machine, as contrasted with the serial principles 

being considered for the EDVAC. (Burks, Goldstine & von Neumann, 1989, p. 44)

Interestingly, the extreme serial design in EDVAC resurfaced in the pocket calcula-

tors of the 1970s, permitting them to be simple and small (Ceruzzi, 1997).

The brief historical review provided above indicates that while some of the early 

computing devices were serial processors, many others relied upon a certain degree 

of parallel processing. The same is true of some prototypical architectures proposed 

by classical cognitive science. For example, production systems (Newell, 1973, 1990; 

Newell & Simon, 1972) are serial in the sense that only one production manipulates 

working memory at a time. However, all of the productions in such a system scan 

the working memory in parallel when determining whether the condition that 

launches their action is present.

An alternative approach to making the case that the serial processing is not a 

mark of the classical is to note that serial processing also appears in non-classical 

architectures. The serial versus parallel distinction is typically argued to be one of 

the key differences between connectionist and classical theories. For instance, par-

allel processing is required to explain how the brain is capable of performing com-

plex calculations in spite of the slowness of neurons in comparison to electronic 

components (Feldman & Ballard, 1982; McClelland, Rumelhart, & Hinton, 1986; 

von Neumann, 1958). In comparing brains to digital computers, von Neumann 

(1958, p. 50) noted that “the natural componentry favors automata with more, but 

slower, organs, while the artificial one favors the reverse arrangement of fewer, but 

faster organs.”

It is certainly the case that connectionist architectures have a high degree of par-

allelism. For instance, all of the processing units in the same layer of a multilayered 

perceptron are presumed to operate simultaneously. Nevertheless, even prototypical 

parallel distributed processing models reveal the presence of serial processing.

One reason that the distributed memory or the standard pattern associator 

requires external, central control (Dawson & Schopflocher, 1992a) is because this 

kind of model is not capable of simultaneous learning and recalling. This is because 

one of its banks of processors is used as a set of input units during learning, but is 

used completely differently, as output units, during recall. External control is used 

to determine how these units are employed and therefore determines whether the 

machine is learning or recalling. External control also imposes seriality in the sense 
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that during learning input, patterns are presented in sequence, and during recall, 

presented cues are again presented one at a time. Dawson and Schopflocher (1992a) 

demonstrated how true parallel processing could be accomplished in such a net-

work, but only after substantially elaborating the primitive components of the con-

nectionist architecture.

A degree of serial processing is also present in multilayered networks. First, 

while all processors in one layer can be described as operating in parallel, the flow 

of information from one layer to the next is serial. Second, the operations of an 

individual processor are intrinsically serial. A signal cannot be output until internal 

activation has been computed, and internal activation cannot be computed until the 

net input has been determined.

Parallel processing is not generally proposed as a characteristic that distin-

guishes embodied from classical models. However, some researchers have noted the 

advantages of decentralized computation in behaviour-based robots (Brooks, 1999).

Again, though, embodied theories seem to exploit a mixture of parallel and 

serial processing. Consider the early insect-like walking robots of Rodney Brooks 

(1989, 1999, 2002). Each leg in the six-legged robot Genghis is a parallel processor, 

in the sense that each leg operates autonomously. However, the operations of each 

leg can be described as a finite state automaton (see the appendix on Genghis in 

Brooks, 2002), which is an intrinsically serial device.

The stigmergic control of the swarm intelligence that emerges from a col-

lection of robots or social insects (Beni, 2005; Bonabeau & Meyer, 2001; Hinchey, 

Sterritt, & Rouff, 2007; Sharkey, 2006; Tarasewich & McMullen, 2002) also appears 

to be a mixture of parallel and serial operations. A collective operates in parallel 

in the sense that each member of the collective is an autonomous agent. However, 

the behaviour of each agent is often best characterized in serial: first the agent does 

one thing, and then it does another, and so on. For instance, in a swarm capable of 

creating a nest by blind bulldozing (Parker, Zhang, & Kube, 2003), agents operate in 

parallel. However, each agent moves in serial from one state (e.g., plowing, collid-

ing, finishing) to another.

In summary, serial processing has been stressed more in classical models, while 

parallel processing has received more emphasis in connectionist and embodied 

approaches. However, serial processing cannot be said to be a mark of the classical.

First, serial processing in classical information processing systems was adopted 

as an engineering convenience, and many digital computers included a certain 

degree of parallel processing. Second, with careful examination serial processing 

can also be found mixed in with the parallel processing of connectionist networks 

or of collective intelligences.



 Marks of the Classical?  339

7.5 Local versus Distributed Representations

Classical and connectionist cognitive scientists agree that theories of cognition 

must appeal to internal representations (Fodor & Pylyshyn, 1988). However, they 

appear to have strong disagreements about the nature of such representations. In 

particular, connectionist cognitive scientists propose that their networks exploit 

distributed representations, which provide many advantages over the local repre-

sentations that they argue characterize the classical approach (Bowers, 2009). That 

is, distributed representations are often taken to be a mark of the connectionist, and 

local representations are taken to be a mark of the classical.

There is general, intuitive agreement about the differences between distributed 

and local representations. In a connectionist distributed representation, “knowl-

edge is coded as a pattern of activation across many processing units, with each 

unit contributing to multiple, different representations. As a consequence, there 

is no one unit devoted to coding a given word, object, or person” (Bowers, 2009, 

p. 220). In contrast, in a classical local representation, “individual words, objects, 

simple concepts, and the like are coded distinctly, with their own dedicated rep-

resentation” (p. 22).

However, when the definition of distributed representation is examined more 

carefully (van Gelder, 1991), two facts become clear. First, this term is used by dif-

ferent connectionists in different ways. Second, some of the uses of this term do not 

appear to differentiate connectionist from classical representations.

Van Gelder (1991) noted, for instance, that one common sense of distributed 

representation is that it is extended: a distributed representation uses many units 

to represent each item, while local representations do not. “To claim that a node is 

distributed is presumably to claim that its states of activation correspond to pat-

terns of neural activity—to aggregates of neural ‘units’—rather than to activations 

of single neurons” (Fodor & Pylyshyn, 1988, p. 19). It is this sense of an extended or 

distributed representation that produces connectionist advantages such as damage 

resistance, because the loss of one of the many processors used to represent a con-

cept will not produce catastrophic loss of represented information.

However, the use of extended to define distributed does not segregate con-

nectionist representations from their classical counterparts. For example, the 

mental image is an important example of a classical representation (Kosslyn, 1980; 

Kosslyn, Thompson, & Ganis, 2006; Paivio, 1971, 1986). It would be odd to think of 

a mental image as being distributed, particularly in the context of the connection-

ist use of this term. However, proponents of mental imagery would argue that 

they are extended, functionally in terms of being extended over space, and physi-

cally in terms of being extended over aggregates of neurons in topographically 

organized areas of the cortex (Kosslyn, 1994; Kosslyn, Ganis, & Thompson, 2003; 
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Kosslyn et al., 1995). “There is good evidence that the brain depicts representa-

tions literally, using space on the cortex to represent space in the world” (Kosslyn, 

Thompson, & Ganis, 2006, p. 15).

Another notion of distributed representation considered by van Gelder (1991) 

was the coarse code (Feldman & Ballard, 1982; Hinton, McClelland, & Rumelhart, 

1986). Again, a coarse code is typically presented as distinguishing connectionist 

networks from classical models. A coarse code is extended in the sense that multiple 

processors are required to do the representing. These processors have two prop-

erties. First, their receptive fields are wide—that is, they are very broadly tuned, 

so that a variety of circumstances will lead to activation in a processor. Second, 

the receptive fields of different processors overlap. In this kind of representa-

tion, a high degree of accuracy is possible by pooling the responses of a number of 

broadly tuned (i.e., coarse) processors (Dawson, Boechler, & Orsten, 2005; Dawson, 

Boechler, & Valsangkar-Smyth, 2000).

While coarse coding is an important kind of representation in the connection-

ist literature, once again it is possible to find examples of coarse coding in classi-

cal models as well. For example, one way that coarse coding of spatial location is 

presented by connectionists (Hinton, McClelland, & Rumelhart, 1986) can easily be 

recast in terms of Venn diagrams. That is, each non-empty set represents the coarse 

location of a target in a broad spatial area; the intersection of overlapping non-

empty sets provides more accurate target localization.

However, classical models of syllogistic reasoning can be cast in similar fash-

ions that include Euler circles and Venn diagrams (Johnson-Laird, 1983). Indeed, 

Johnson-Laird’s (1983) more modern notion of mental models can themselves be 

viewed as an extension of these approaches: syllogistic statements are represented 

as a tableau of different instances; the syllogism is solved by combining (i.e., inter-

secting) tableaus for different statements and examining the relevant instances that 

result. In other words, mental models can be considered to represent a classical 

example of coarse coding, suggesting that this concept does not necessarily distin-

guish connectionist from classical theories.

After his more detailed analysis of the concept, van Gelder (1991) argued that 

a stronger notion of distributed is required, and that this can be accomplished by 

invoking the concept of superposition. Two different concepts are superposed if the 

same resources are used to provide their representations. “Thus in connectionist 

networks we can have different items stored as patterns of activity over the same 

set of units, or multiple different associations encoded in one set of weights” (p. 43).

Van Gelder (1991) pointed out that one issue with superposition is that it must 

be defined in degrees. For instance, it may be the case that not all resources are 

used simultaneously to represent all contents. Furthermore, operationalizing the 

notion of superposition depends upon how resources are defined and measured. 
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Finally, different degrees of superposition may be reflected in the number of differ-

ent contents that a given resource can represent. For example, it is well known that 

one kind of artificial neural network, the Hopfield network (Hopfield, 1982), is of 

limited capacity, where if the network is comprised of N processors, it will be only 

to be able to represent in the order of 0.18N distinct memories (Abu-Mostafa & St. 

Jacques, 1985; McEliece, et al., 1987).

Nonetheless, van Gelder (1991) expressed confidence that the notion of super-

position provides an appropriate characteristic for defining a distributed representa-

tion. “It is strong enough that very many kinds of representations do not count as 

superposed, yet it manages to subsume virtually all paradigm cases of distribution, 

whether these are drawn from the brain, connectionism, psychology, or optics” (p. 54).

Even if van Gelder’s (1991) definition is correct, it is still the case that the con-

cept of superposition does not universally distinguish connectionist representations 

from classical ones. One example of this is when concepts are represented as collec-

tions of features or microfeatures. For instance, in an influential PDP model called 

an interactive activation and competition network (McClelland & Rumelhart, 1988), 

most of the processing units represent the presence of a variety of features. Higher-

order concepts are defined as sets of such features. This is an instance of superpo-

sition, because the same feature can be involved in the representation of multiple 

networks. However, the identical type of representation—that is, superposition 

of featural elements—is also true of many prototypical classical representations, 

including semantic networks (Collins & Quillian, 1969, 1970a, 1970b) and feature set 

representations (Rips, Shoben, & Smith, 1973; Tversky, 1977; Tversky & Gati, 1982).

The discussion up to this point has considered a handful of different notions 

of distributed representation, and has argued that these different definitions do 

not appear to uniquely separate connectionist and classical concepts of represen-

tation. To wrap up this discussion, let us take a different approach, and consider 

why in some senses connectionist researchers may still need to appeal to local 

representations.

One problem of considerable interest within cognitive neuroscience is the issue 

of assigning specific behavioural functions to specific brain regions; that is, the locali-

zation of function. To aid in this endeavour, cognitive neuroscientists find it useful to 

distinguish between two qualitatively different types of behavioural deficits. A single 

dissociation consists of a patient performing one task extremely poorly while per-

forming a second task at a normal level, or at least very much better than the first. In 

contrast, a double dissociation occurs when one patient performs the first task sig-

nificantly poorer than the second, and another patient (with a different brain injury) 

performs the second task significantly poorer than the first (Shallice, 1988).

Cognitive neuroscientists have argued that double dissociations reflect damages 

to localized functions (Caramazza, 1986; Shallice, 1988). The view that dissociation 
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data reveals internal structures that are local in nature has been named the locality 

assumption (Farah, 1994).

However, Farah (1994) hypothesized that the locality assumption may be 

un warranted for two reasons. First, its validity depends upon the additional 

assumption that the brain is organized into a set of functionally distinct modules 

(Fodor, 1983). Farah argued that the modularity of the brain is an unresolved empir-

ical issue. Second, Farah noted that it is possible for nonlocal or distributed archi-

tectures, such as parallel distributed processing (PDP) networks, to produce single 

or double dissociations when lesioned. As the interactive nature of PDP networks is 

“directly incompatible with the locality assumption” (p. 46), the locality assumption 

may not be an indispensable tool for cognitive neuroscientists.

Farah (1994) reviewed three areas in which neuropsychological dissociations 

had been used previously to make inferences about the underlying local structure. 

For each she provided an alternative architecture—a PDP network. Each of these 

networks, when locally damaged, produced (local) behavioural deficits analogous to 

the neuropsychological dissociations of interest. These results led Farah to conclude 

that one cannot infer that a specific behavioural deficit is associated with the loss of 

a local function, because the prevailing view is that PDP networks are, by definition, 

distributed and therefore nonlocal in structure.

However, one study challenged Farah’s (1994) argument both logically and 

empirically (Medler, Dawson, & Kingstone, 2005). Medler, Dawson, and Kingstone 

(2005) noted that Farah’s whole argument was based on the assumption that con-

nectionist networks exhibit universally distributed internal structure. However, this 

assumption needs to be empirically supported; Medler and colleagues argued that 

this could only be done by interpreting the internal structure of a network and by 

relating behavioural deficits to interpretations of ablated components. They noted 

that it was perfectly possible for PDP networks to adopt internal representations 

that were more local in nature, and that single and double dissociations in lesioned 

networks may be the result of damaging local representations.

Medler, Dawson, and Kingstone (2005) supported their position by training a 

network on a logic problem and interpreting the internal structure of the network, 

acquiring evidence about how local or how nonlocal the function of each hidden 

unit was. They then created different versions of the network by lesioning one of 

its 16 hidden units, assessing behavioural deficits in each lesioned network. They 

found that the more local a hidden unit was the more profound and specific was 

the behavioural deficit that resulted when the unit was lesioned. “For a double dis-

sociation to occur within a computational model, the model must have some form 

of functional localization” (p. 149).

We saw earlier that one of the key goals of connectionist cognitive science was 

to develop models that were biologically plausible. Clearly one aspect of this is 



 Marks of the Classical?  343

to produce networks that are capable of reflecting appropriate deficits in behav-

iour when damaged, such as single or double dissociations. Medler, Dawson, and 

Kingstone (2005) have shown that the ability to do so, even in PDP networks, 

requires local representations. This provides another line of evidence against the 

claim that distributed representations can be used to distinguish connectionist 

from classical models. In other words, local representations do not appear to be a 

mark of the classical.

7.6 Internal Representations

One of the key properties of classical cognitive science is its emphasis on sense-

think-act processing. Classical cognitive scientists view the purpose of cognition as 

planning action on the basis of input information. This planning typically involves 

the creation and manipulation of internal models of the external world. Is the clas-

sical sandwich (Hurley, 2001) a mark of the classical?

Sense-think-act processing does not distinguish classical models from con-

nectionist networks. The distributed representations within most modern net-

works mediate all relationships between input units (sensing) and output units 

(responding). This results in what has been described as the connectionist sand-

wich (Calvo & Gomila, 2008). Sense-think-act processing is a mark of both the clas-

sical and the connectionist.

While sense-think-act processing does not distinguish classical cognitive sci-

ence from connectionism, it may very well differentiate it from embodied cognitive 

science. Embodied cognitive scientists have argued in favor of sense-act processing 

that abandons using internal models of the world (Pfeifer & Scheier, 1999). The pur-

pose of cognition might not be to plan, but instead to control action on the world 

(Clark, 1997). Behaviour-based robots arose as an anti-representational reaction to 

classical research in artificial intelligence (Brooks, 1991). The direct link between 

perception and action—a link often described as circumventing internal represen-

tation—that characterized the ecological approach to perception (Gibson, 1979; 

Turvey et al., 1981) has been a cornerstone of embodied theory (Chemero, 2009; 

Chemero & Turvey, 2007; Neisser, 1976; Noë, 2004; Winograd & Flores, 1987a).

The distinction between sense-think-act processing and sense-act processing is 

a putative differentiator between classical and embodied approaches. However, it is 

neither a necessary nor sufficient one. This is because in both classical and embod-

ied approaches, mixtures of both types of processing can readily be found.

For example, it was earlier shown that the stored program computer—a digi-

tal computer explicitly designed to manipulate internal representations—emerged 

from technical convenience, and did not arise because classical information process-

ing demanded internal representations. Prototypical classical machines, such as the 
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Turing machine, can easily be described as pure sense-act processors (Wells, 1996). 

Also, earlier electromechanical computers often used external memories to scaffold 

processing because of the slow speed of their componentry.

Furthermore, prototypical classical architectures in cognitive science appeal to 

processes that are central to the embodied approach. For example, modern produc-

tion systems have been extended to include sensing and acting, and have used these 

extensions to model (or impose) constraints on behaviour, such as our inability to use 

one hand to do two tasks at the same time (Kieras & Meyer, 1997; Meyer et al., 2001; 

Meyer & Kieras, 1997a, 1997b, 1999; Meyer et al., 1995). A production system for 

solving the Towers of Hanoi problem also has been formulated that uses the external 

towers and discs as the external representation of the problem (Vera & Simon, 1993). 

Some have argued that the classical emphasis on internal thinking, at the expense 

of external sense-acting, simply reflects the historical development of the classical 

approach and does not reflect its intrinsic nature (Newell, 1990).

Approaching this issue from the opposite direction, many embodied cognitive 

scientists are open to the possibility that the representational stance of classical cog-

nitive science may be required to provide accounts of some cognitive phenomena. 

For instance, Winograd and Flores (1987a) made strong arguments for embodied 

accounts of cognition. They provided detailed arguments of how classical views of 

cognition are dependent upon the disembodied view of the mind that has descended 

from Descartes. They noted that “detached contemplation can be illuminating, but 

it also obscures the phenomena themselves by isolating and categorizing them” 

(pp. 32–33). However, in making this kind of observation, they admitted the exist-

ence of a kind of reasoning called detached contemplation. Their approach offers an 

alternative to representational theories, but does not necessarily completely aban-

don the possibility of internal representations.

Similarly, classical cognitive scientists who appeal exclusively to internal repre-

sentations and embodied cognitive scientists who completely deny internal represen-

tations might be staking out extreme and radical positions to highlight the differences 

between their approaches (Norman, 1993). Some embodied cognitive scientists have 

argued against this radical polarization of cognitive science, such as Clark (1997): 

Such radicalism, I believe, is both unwarranted and somewhat counterproduc-

tive. It invites competition where progress demands cooperation. In most cases, at 

least, the emerging emphasis on the roles of body and world can be seen as com-

plementary to the search for computational and representational understandings. 

(Clark, 1997, p. 149)

Clark (1997) adopted this position because he realized that representations may be 

critical to cognition, provided that appeals to representation do not exclude appeals 

to other critical, embodied elements: “We should not be too quick to reject the more 

traditional explanatory apparatuses of computation and representation. Minds may 
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be essentially embodied and embedded and still depend crucially on brains which 

compute and represent” (p. 143).

The reason that an embodied cognitive scientist such as Clark may be reluctant 

to eliminate representations completely is because one can easily consider situa-

tions in which internal representations perform an essential function. Clark (1997) 

suggested that some problems might be representation hungry, in the sense that 

the very nature of these problems requires their solutions to employ internal rep-

resentations. A problem might be representation hungry because it involves fea-

tures that are not reliably present in the environment, as in reasoning about absent 

states, or in counterfactual reasoning. A problem might also be representation 

hungry if it involves reasoning about classes of objects that are extremely abstract, 

because there is a wide variety of different physical realizations of class instances 

(for instance, reasoning about “computers”!).

The existence of representation-hungry problems leaves Clark (1997) open to 

representational theories in cognitive science, but these theories must be placed 

in the context of body and world. Clark didn’t want to throw either the represen-

tational or embodied babies out with the bathwater (Hayes, Ford, & Agnew, 1994). 

Instead, he viewed a co-operative system in which internal representations can be 

used when needed, but the body and the world can also be used to reduce internal 

cognitive demands by exploiting external scaffolds. “We will not discover the right 

computational and representational stories unless we give due weight to the role of 

body and local environment—a role that includes both problem definition and, on 

occasion, problem solution” (Clark, 1997, p. 154).

It would seem, then, that internal representations are not a mark of the classi-

cal, and some cognitive scientists are open to the possibility of hybrid accounts of 

cognition. That is, classical researchers are extending their representational theo-

ries by paying more attention to actions on the world, while embodied research-

ers are open to preserving at least some internal representations in their theories. 

An example hybrid theory that appeals to representations, networks, and actions 

(Pylyshyn, 2003c, 2007) is presented in detail in Chapter 8.

7.7 Explicit Rules versus Implicit Knowledge

Connectionists have argued that one mark of the classical is its reliance on explicit 

rules (McClelland, Rumelhart, & Hinton, 1986). For example, it has been claimed 

that all classical work on knowledge acquisition “shares the assumption that the 

goal of learning is to formulate explicit rules (proposition, productions, etc.) which 

capture powerful generalizations in a succinct way” (p. 32).

Explicit rules may serve as a mark of the classical because it has also been argued 

that they are not characteristic of other approaches in cognitive science, particularly 
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connectionism. Many researchers assume that PDP networks acquire implicit 

knowledge. For instance, consider this claim about a network that learns to convert 

verbs from present to past tense: 

The model learns to behave in accordance with the rule, not by explicitly 

noting that most words take -ed in the past tense in English and storing this 

rule away explicitly, but simply by building up a set of connections in a pattern 

associator through a long series of simple learning experiences. (McClelland, 

Rumelhart, & Hinton, 1986, p. 40)

One problem that immediately arises in using explicit rules as a mark of the clas-

sical is that the notions of explicit rules and implicit knowledge are only vaguely 

defined or understood (Kirsh, 1992). For instance, Kirsh (1992) notes that the dis-

tinction between explicit rules and implicit knowledge is often proposed to be simi-

lar to the distinction between local and distributed representations. However, this 

definition poses problems for using explicit rules as a mark of the cognitive. This is 

because, as we have already seen in an earlier section of this chapter, the distinction 

between local and distributed representations does not serve well to separate clas-

sical cognitive science from other approaches.

Furthermore, defining explicit rules in terms of locality does not eliminate con-

nectionism’s need for them (Hadley, 1993). Hadley (1993) argued that there is solid 

evidence of the human ability to instantaneously learn and apply rules.

Some rule-like behavior cannot be the product of ‘neurally-wired’ rules whose struc-

ture is embedded in particular networks, for the simple reason that humans can 

often apply rules (with considerable accuracy) as soon as they are told the rules. 

(Hadley, 1993, p. 185)

Hadley proceeded to argue that connectionist architectures need to exhibit such 

(explicit) rule learning. “The foregoing conclusions present the connectionist with 

a formidable scientific challenge, which is, to show how general purpose rule fol-

lowing mechanisms may be implemented in a connectionist architecture” (p. 199).

Why is it that, on more careful consideration, it seems that explicit rules are not 

a mark of the cognitive? It is likely that the assumption that PDP networks acquire 

implicit knowledge is an example of what has been called gee whiz connection-

ism (Dawson, 2009). That is, connectionists assume that the internal structure of 

their networks is neither local nor rule-like, and they rarely test this assumption by 

conducting detailed interpretations of network representations. When such inter-

pretations are conducted, they can reveal some striking surprises. For instance, the 

internal structures of networks have revealed classical rules of logic (Berkeley et al., 

1995) and classical production rules (Dawson et al., 2000).

The discussion in the preceding paragraphs raises the possibility that connec-

tionist networks can acquire explicit rules. A complementary point can also be made 
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to question explicit rules as a mark of the classical: classical models may not them-

selves require explicit rules. For instance, classical cognitive scientists view an explicit 

rule as an encoded representation that is part of the algorithmic level. Furthermore, 

the reason that it is explicitly represented is that it is not part of the architecture 

(Fodor & Pylyshyn, 1988). In short, classical theories posit a combination of explicit 

(algorithmic, or stored program) and implicit (architectural) determinants of cogni-

tion. As a result, classical debates about the cognitive architecture can be construed 

as debates about the implicitness or explicitness of knowledge: 

Not only is there no reason why Classical models are required to be rule-

explicit but—as a matter of fact—arguments over which, if any, rules are explic-

itly mentally represented have raged for decades within the Classicist camp. 

(Fodor & Pylyshyn, p. 60)

To this point, the current section has tacitly employed the context that the distinc-

tion between explicit rules and implicit knowledge parallels the distinction between 

local and distributed representations. However, other contexts are also plausible. 

For example, classical models may be characterized as employing explicit rules in 

the sense that they employ a structure/process distinction. That is, classical sys-

tems characteristically separate their symbol-holding memories from the rules that 

modify stored contents.

For instance, the Turing machine explicitly distinguishes its ticker tape memory 

structure from the rules that are executed by its machine head (Turing, 1936). 

Similarly, production systems (Anderson, 1983; Newell, 1973) separate their sym-

bolic structures stored in working memory from the set of productions that scan 

and manipulate expressions. The von Neumann (1958, 1993) architecture by defini-

tion separates its memory organ from the other organs that act on stored contents, 

such as its logical or arithmetical units.

To further establish this alternative context, some researchers have claimed 

that PDP networks or other connectionist architectures do not exhibit the struc-

ture/process distinction. For instance, a network can be considered to be an active 

data structure that not only stores information, but at the same time manipulates 

it (Hillis, 1985). From this perspective, the network is both structure and process.

However, it is still the case that the structure/process distinction fails to pro-

vide a mark of the classical. The reason for this was detailed in this chapter’s earlier 

discussion of control processes. That is, almost all PDP networks are controlled 

by external processes—in particular, learning rules (Dawson & Schopflocher, 1992a; 

Roy, 2008). This external control takes the form of rules that are as explicit as any to 

be found in a classical model.

To bring this discussion to a close, I argue that a third context is possible for 

distinguishing explicit rules from implicit knowledge. This context is the differ-

ence between digital and analog processes. Classical rules may be explicit in the 
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sense that they are digital: consistent with the neural all-or-none law (Levitan & 

Kaczmarek, 1991; McCulloch & Pitts, 1943), as the rule either executes or does not. 

In contrast, the continuous values of the activation functions used in connectionist 

networks permit knowledge to be applied to varying degrees. From this perspective, 

networks are analog, and are not digital.

Again, however, this context also does not successfully provide a mark of the 

classical. First, one consequence of Church’s thesis and the universal machine is 

that digital and analogical devices are functionally equivalent, in the sense that 

one kind of computer can simulate the other (Rubel, 1989). Second, connectionist 

models themselves can be interpreted as being either digital or analog in nature, 

depending upon task demands. For instance, when a network is trained to either 

respond or not, as in pattern classification (Lippmann, 1989) or in the simulation of 

animal learning (Dawson, 2008), output unit activation is treated as being digital. 

However, when one is interested in solving a problem in which continuous values 

are required, as in function approximation (Hornik, Stinchcombe, & White, 1989; 

Kremer, 1995; Medler & Dawson, 1994) or in probability matching (Dawson et al., 

2009), the same output unit activation function is treated as being analog in nature.

In conclusion, though the notion of explicit rules has been proposed to distin-

guish classical models from other kinds of architectures, a more careful considera-

tion suggests that this approach is flawed. Our analysis suggests, however, that the 

use of explicit rules does not appear to be a reliable mark of the classical. Regardless 

of how the notion of explicit rules is defined, it appears that classical architectures 

do not use such rules exclusively, and it also appears that such rules need to be part 

of connectionist models of cognition.

7.8 The Cognitive Vocabulary

The goal of cognitive science is to explain cognitive phenomena. One approach to 

such explanation is to generate a set of laws or principles that capture the regu-

larities that are exhibited by members that belong to a particular class. Once it is 

determined that some new system belongs to a class, then it is expected that the 

principles known to govern that class will also apply to the new system. In this 

sense, the laws governing a class capture generalizations (Pylyshyn, 1984).

The problem that faced cognitive science in its infancy was that the classes of 

interest, and the laws that captured generalizations about their members, depended 

upon which level of analysis was adopted (Marr, 1982). For instance, at a physical 

level of investigation, electromechanical and digital computers do not belong to the 

same class. However, at a more abstract level of investigation (e.g., at the architectural 

level described in Chapter 2), these two very different types of physical devices belong 

to the same class, because their components are functionally equivalent: “Many of 
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the electronic circuits which performed the basic arithmetic operations [in ENIAC] 

were simply electronic analogs of the same units used in mechanical calculators and 

the commercial accounting machines of the day” (Williams, 1997, p. 272).

The realization that cognitive systems must be examined from multiple levels 

of analysis motivated Marr’s (1982) tri-level hypothesis. According to this hypoth-

esis, cognitive systems must be explained at three different levels of analysis: physi-

cal, algorithmic, and computational.

It is not enough to be able to predict locally the responses of single cells, nor is it 

enough to be able to predict locally the results of psychophysical experiments. Nor 

is it enough to be able to write computer programs that perform approximately in 

the desired way. One has to do all these things at once and also be very aware of the 

additional level of explanation that I have called the level of computational theory. 

(Marr, 1982, pp. 329–330)

The tri-level hypothesis provides a foundation for cognitive science and accounts 

for its interdisciplinary nature (Dawson, 1998). This is because each level of analysis 

uses a qualitatively different vocabulary to ask questions about cognitive systems 

and uses very different methods to provide the answers to these questions. That is, 

each level of analysis appeals to the different languages and techniques of distinct 

scientific disciplines. The need to explain cognitive systems at different levels of 

analysis forces cognitive scientists to be interdisciplinary.

Marr’s (1982) tri-level hypothesis can also be used to compare the different 

approaches to cognitive science. Is the tri-level hypothesis equally applicable to the 

three different schools of thought? Provided that the three levels are interpreted 

at a moderately coarse level, it would appear that this question could be answered 

affirmatively.

At Marr’s (1982) implementational level, cognitive scientists ask how informa-

tion processes are physically realized. For a cognitive science of biological agents, 

answers to implementational-level questions are phrased in a vocabulary that 

describes biological mechanisms. It would appear that all three approaches to cog-

nitive science are materialist and as a result are interested in conducting implemen-

tational-level analyses. Differences between the three schools of thought at this level 

might only be reflected in the scope of biological mechanisms that are of interest. 

In particular, classical and connectionist cognitive scientists will emphasize neural 

mechanisms, while embodied cognitive scientists are likely to be interested not only 

in the brain but also in other parts of the body that interact with the external world.

At Marr’s (1982) algorithmic level, cognitive scientists are interested in speci-

fying the procedures that are used to solve particular information processing 

problems. At this level, there are substantial technical differences amongst the 

three schools of thought. For example, classical and connectionist cognitive scien-

tists would appeal to very different kinds of representations in their algorithmic 
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accounts (Broadbent, 1985; Rumelhart & McClelland, 1985). Similarly, an algo-

rithmic account of internal planning would be quite different from an embodied 

account of controlled action, or of scaffolded, cognition. In spite of such technical 

differences, though, it would be difficult to claim that one approach to cognitive sci-

ence provides procedural accounts, while another does not. All three approaches to 

cognitive science are motivated to investigate at the algorithmic level.

At Marr’s (1982) computational level, cognitive scientists wish to determine the 

nature of the information processing problems being solved by agents. Answering 

these questions usually requires developing proofs in some formal language. Again, 

all three approaches to cognitive science are well versed in posing computational-

level questions. The differences between them are reflected in the formal lan-

guage used to explore answers to these questions. Classical cognitive science often 

appeals to some form of propositional logic (Chomsky, 1959a; McCawley, 1981; 

Wexler & Culicover, 1980), the behaviour of connectionist networks lends itself to 

being described in terms of statistical mechanics (Amit, 1989; Grossberg, 1988; 

Smolensky, 1988; Smolensky & Legendre, 2006), and embodied cognitive scientists 

have a preference for dynamical systems theory (Clark, 1997; Port & van Gelder, 

1995b; Shapiro, 2011).

Marr’s (1982) tri-level hypothesis is only one example of exploring cognition at 

multiple levels. Precursors of Marr’s approach can be found in core writings that 

appeared fairly early in cognitive science’s modern history. For instance, philosopher 

Jerry Fodor (1968b) noted that one cannot establish any kind of equivalence between 

the behaviour of an organism and the behaviour of a simulation without first specify-

ing a level of description that places the comparison in a particular context.

Marr (1982) himself noted that an even stronger parallel exists between the 

tri-level hypothesis and Chomsky’s (1965) approach to language. To begin with, 

Chomsky’s notion of an innate and universal grammar, as well as his idea of a 

“language organ” or a “faculty of language,” reflect a materialist view of language. 

Chomsky clearly expects that language can be investigated at the implementational 

level. The language faculty is due “to millions of years of evolution or to principles of 

neural organization that may be even more deeply grounded in physical law” (p. 59). 

Similarly, “the study of innate mechanisms leads us to universal grammar, but also, 

of course, to investigation of the biologically determined principles that underlie 

language use” (Chomsky, 1980, p. 206).

Marr’s (1982) algorithmic level is mirrored by Chomsky’s (1965) concept of 

linguistic performance. Linguistic performance is algorithmic in the sense that a 

performance theory should account for “the actual use of language in concrete situ-

ations” (Chomsky, 1965, p. 4). The psychology of language can be construed as being 

primarily concerned with providing theories of performance (Chomsky, 1980). That 

is, psychology’s “concern is the processes of production, interpretation, and the like, 
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which make use of the knowledge attained, and the processes by which transition 

takes place from the initial to the final state, that is, language acquisition” (pp. 201–

202). An account of the processes that underlie performance requires an investiga-

tion at the algorithmic level.

Finally, Marr (1982) noted that Chomsky’s notion of linguistic competence par-

allels the computational level of analysis. A theory of linguistic competence speci-

fies an ideal speaker-listener’s knowledge of language (Chomsky, 1965). A grammar 

is a theory of competence; it provides an account of the nature of language that 

“is unaffected by such grammatically irrelevant conditions as memory limitations, 

distractions, shifts of attention and interest, and errors (random or characteristic) 

in applying . . . knowledge of the language in actual performance” (p. 3). As a com-

putational-level theory, a grammar accounts for what in principle could be said or 

understood; in contrast, a performance theory accounts for language behaviours 

that actually occurred (Fodor, 1968b). Marr (1982) argued that influential criti-

cisms of Chomsky’s theory (Winograd, 1972a) mistakenly viewed transformational 

grammar as an algorithmic, and not a computational, account. “Chomsky’s theory 

of transformational grammar is a true computational theory . . . concerned solely 

with specifying what the syntactic decomposition of an English sentence should be, 

and not at all with how that decomposition should be achieved” (Marr, 1982, p. 28).

The notion of the cognitive vocabulary arises by taking a different approach to 

linking Marr’s (1982) theory of vision to Chomsky’s (1965) theory of language. In 

addition to proposing the tri-level hypothesis, Marr detailed a sequence of different 

types of representations of visual information. In the early stages of visual processing, 

information was represented in the primal sketch, which provided a spatial represen-

tation of visual primitives such as boundaries between surfaces. Operations on the 

primal sketch produced the 2½-D sketch, which represents the properties, including 

depth, of all visible surfaces. Finally, operations on the 2½-D sketch produce the 3-D 

model, which represents the three-dimensional properties of objects (including sur-

faces not directly visible) in a fashion that is independent of view.

Chomsky’s (1965) approach to language also posits different kinds of represen-

tations (Jackendoff, 1987). These include representations of phonological structure, 

representations of syntax, and representations of semantic or conceptual structures. 

Jackendoff argued that Marr’s (1982) theory of vision could be directly linked to 

Chomsky’s theory of language by a mapping between 3-D models and conceptual 

structures. This link permits the output of visual processing to play a critical role in 

fixing the semantic content of linguistic representations (Jackendoff, 1983, 1990).

One key element of Jackendoff ’s (1987) proposal is the distinction that he 

imposed between syntax and semantics. This type of separation is characteristic of 

classical cognitive science, which strives to separate the formal properties of sym-

bols from their content-bearing properties (Haugeland, 1985).
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For instance, classical theorists define symbols as physical patterns that 

bear meaning because they denote or designate circumstances in the real world 

(Vera & Simon, 1993). The physical pattern part of this definition permits symbols 

to be manipulated in terms of their shape or form: all that is required is that the 

physical nature of a pattern be sufficient to identify it as a token of some symbolic 

type. The designation aspect of this definition concerns the meaning or semantic 

content of the symbol and is completely separate from its formal or syntactic nature.

To put it dramatically, interpreted formal tokens lead two lives: SYNTACTICAL 

LIVES, in which they are meaningless markers, moved according to the rules of 

some self-contained game; and SEMANTIC LIVES, in which they have meanings 

and symbolic relations to the outside world. (Haugeland, 1985, p. 100)

In other words, when cognitive systems are viewed representationally (e.g., as in 

Jackendoff, 1987), they can be described at different levels, but these levels are not 

identical to those of Marr’s (1982) tri-level hypothesis. Representationally, one level 

is physical, involving the physical properties of symbols. A second level is formal, 

concerning the logical properties of symbols. A third level is semantic, regarding 

the meanings designated by symbols. Again, each of these levels involves using a 

particular vocabulary to capture its particular regularities.

This second sense of levels of description leads to a position that some research-

ers have used to distinguish classical cognitive science from other approaches. In 

particular, it is first proposed that a cognitive vocabulary is used to capture regulari-

ties at the semantic level of description. It is then argued that the cognitive vocabu-

lary is a mark of the classical, because it is a vocabulary that is used by classical 

cognitive scientists, but which is not employed by their connectionist or embodied 

counterparts.

The cognitive vocabulary is used to capture regularities at the cognitive level 

that cannot be captured at the physical or symbolic levels (Pylyshyn, 1984). “But 

what sort of regularities can these be? The answer has already been given: precisely 

the regularities that tie goals, beliefs, and actions together in a rational manner” 

(p. 132). In other words, the cognitive vocabulary captures regularities by describing 

meaningful (i.e., rational) relations between the contents of mental representations. 

It is the vocabulary used when one adopts the intentional stance (Dennett, 1987) 

to predict future behaviour or when one explains an agent at the knowledge level 

(Newell, 1982, 1993).

To treat a system at the knowledge level is to treat it as having some knowledge and 

some goals, and believing it will do whatever is within its power to attain its goals, 

in so far as its knowledge indicates. (Newell, 1982, p. 98)

The power of the cognitive vocabulary is that it uses meaningful relations between 

mental contents to explain intelligent behaviour (Fodor & Pylyshyn, 1988). For 
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instance, meaningful, complex tokens are possible because the semantics of such 

expressions are defined in terms of the contents of their constituent symbols as well 

as the structural relationships that hold between these constituents. The cognitive 

vocabulary’s exploitation of constituent structure leads to the systematicity of clas-

sical theories: if one can process some expressions, then it is guaranteed that other 

expressions can also be processed because of the nature of constituent structures. 

This in turn permits classical theories to be productive, capable of generating an 

infinite variety of expressions from finite resources.

Some classical theorists have argued that other approaches in cognitive sci-

ence do not posit the structural relations between mental contents that are cap-

tured by the cognitive vocabulary (Fodor & Pylyshyn, 1988). For instance, Fodor and 

Pylyshyn (1988) claimed that even though connectionist theories are representa-

tional, they are not cognitive because they exploit a very limited kind of relationship 

between represented contents.

Classical theories disagree with Connectionist theories about what primitive 

relations hold among these content-bearing entities. Connectionist theories 

acknowledge only causal connectedness as a principled relation among nodes; 

when you know how activation and inhibition flow among them, you know every-

thing there is to know about how the nodes in a network are related. (Fodor and 

Pylyshyn, 1988, p. 12) 

As a result, Fodor and Pylyshyn argued, connectionist models are not componen-

tial, nor systematic, nor even productive. In fact, because they do not use a cognitive 

vocabulary (in the full classical sense), connectionism is not cognitive.

Related arguments can be made against positions that have played a central 

role in embodied cognitive science, such as the ecological approach to perception 

advocated by Gibson (1979). Fodor and Pylyshyn (1981) have argued against the 

notion of direct perception, which attempts to construe perception as involving the 

direct pick-up of information about the layout of a scene; that is, acquiring this 

information without the use of inferences from cognitive contents: “The funda-

mental difficulty for Gibson is that ‘about’ (as in ‘information about the layout in 

the light’) is a semantic relation, and Gibson has no account at all of what it is to 

recognize a semantic relation” (p. 168). Fodor and Pylyshyn argued that Gibson’s 

only notion of information involves the correlation between states of affairs, and 

that this notion is insufficient because it is not as powerful as the classical notion of 

structural relations among cognitive contents. “The semantic notion of information 

that Gibson needs depends, so far as anyone knows, on precisely the mental repre-

sentation construct that he deplores” (p. 168).

It is clear from the discussion above that Pylyshyn used the cognitive vocabu-

lary to distinguish classical models from connectionist and embodied theories. This 

does not mean that he believed that non-classical approaches have no contributions 
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to make. For instance, in Chapter 8 we consider in detail his theory of seeing and 

visualizing (Pylyshyn, 2003c, 2007); it is argued that this is a hybrid theory, because 

it incorporates elements from all three schools of thought in cognitive science.

However, one of the key elements of Pylyshyn’s theory is that vision is quite 

distinct from cognition; he has made an extended argument for this position. When 

he appealed to connectionist networks or embodied access to the world, he did so 

in his account of visual, and not cognitive, processes. His view has been that such 

processes can only be involved in vision, because they do not appeal to the cogni-

tive vocabulary and therefore cannot be viewed as cognitive processes. In short, the 

cognitive vocabulary is viewed by Pylyshyn as a mark of the classical.

Is the cognitive vocabulary a mark of the classical? It could be—provided that 

the semantic level of explanation captures regularities that cannot be expressed at 

either the physical or symbolic levels. Pylyshyn (1984) argued that this is indeed the 

case, and that the three different levels are independent: 

The reason we need to postulate representational content for functional states is 

to explain the existence of certain distinctions, constraints, and regularities in the 

behavior of at least human cognitive systems, which, in turn, appear to be express-

ible only in terms of the semantic content of the functional states of these systems. 

Chief among the constraints is some principle of rationality. (Pylyshyn, 1984, p. 38)

However, it is not at all clear that in the practice of classical cognitive science—par-

ticularly the development of computer simulation models—the cognitive level is dis-

tinct from the symbolic level. Instead, classical researchers adhere to what is known 

as the formalist’s motto (Haugeland, 1985). That is, the semantic regularities of a 

classical model emerge from the truth-preserving, but syntactic, regularities at the 

symbolic level.

If the formal (syntactical) rules specify the relevant texts and if the (semantic) 

interpretation must make sense of all those texts, then simply playing by the rules is 

itself a surefire way to make sense. Obey the formal rules of arithmetic, for instance, 

and your answers are sure to be true. (Haugeland, 1985, p. 106) 

If this relation holds between syntax and semantics, then the cognitive vocabulary is 

not capturing regularities that cannot be captured at the symbolic level.

The formalist’s motto is a consequence of the physical symbol system hypothesis 

(Newell, 1980; Newell & Simon, 1976) that permitted classical cognitive science to 

replace Cartesian dualism with materialism. Fodor and Pylyshyn (1988, p. 13) adopt 

the physical symbol system hypothesis, and tacitly accept the formalist’s motto: 

“Because Classical mental representations have combinatorial structure, it is pos-

sible for Classical mental operations to apply to them by reference to their form.” 

Note that in this quote, operations are concerned with formal and not semantic prop-

erties; semantics is preserved provided that there is a special relationship between 
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constraints on symbol manipulations and constraints on symbolic content.

To summarize this section: The interdisciplinary nature of cognitive science 

arises because cognitive systems require explanations at multiple levels. Two mul-

tiple level approaches are commonly found in the cognitive science literature. 

The first is Marr’s (1982) tri-level hypothesis, which requires cognitive systems 

to be explained at the implementational, algorithmic, and computational levels. 

It is argued above that all three schools of thought in cognitive science adhere to 

the tri-level hypothesis. Though at each level there are technical differences to be 

found between classical, connectionist, and embodied cognitive science, all three 

approaches seem consistent with Marr’s approach. The tri-level hypothesis cannot 

be used to distinguish one cognitive science from another.

The second is a tri-level approach that emerges from the physical symbol system 

hypothesis. It argues that information processing requires explanation at three 

independent levels: the physical, the symbolic, and the semantic (Dennett, 1987; 

Newell, 1982; Pylyshyn, 1984). The physical and symbolic levels in this approach 

bear a fairly strong relationship to Marr’s (1982) implementational and algorithmic 

levels. The semantic level, though, differs from Marr’s computational level in calling 

for a cognitive vocabulary that captures regularities by appealing to the contents of 

mental representations. This cognitive vocabulary has been proposed as a mark of 

the classical that distinguishes classical theories from those proposed by connec-

tionist and embodied researchers. However, it has been suggested that this view 

may not hold, because the formalist’s motto makes the proposal of an independent 

cognitive vocabulary difficult to defend.

7.9 From Classical Marks to Hybrid Theories

Vera and Simon’s (1993) analysis of situated action theories defines one extreme 

pole of a continuum for relating different approaches in cognitive science. At this 

end of the continuum, all theories in cognitive science—including situated action 

theories and connectionist theories—are classical or symbolic in nature. “It follows 

that there is no need, contrary to what followers of SA seem sometimes to claim, for 

cognitive psychology to adopt a whole new language and research agenda, breaking 

completely from traditional (symbolic) cognitive theories” (p. 46).

The position defined by Vera and Simon’s (1993) analysis unites classical, con-

nectionist, and cognitive science under a classical banner. However, it does so 

because key terms, such as symbolic, are defined so vaguely that their value becomes 

questionable. Critics of their perspective have argued that anything can be viewed as 

symbolic given Vera and Simon’s liberal definition of what symbols are (Agre, 1993; 

Clancey, 1993).
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The opposite pole of the continuum for relating different approaches in cogni-

tive science is defined by theories that propose sharp differences between differ-

ent schools of thought, and which argue in favor of adopting one while abandon-

ing others (Chemero, 2009; Fodor & Pylyshyn, 1988; Smolensky, 1988; Winograd & 

Flores, 1987b).

One problem with this end of the continuum, an issue that is the central theme of 

the current chapter, is that it is very difficult to define marks of the classical, features 

that uniquely distinguish classical cognitive science from competing approaches. 

Our examination of the modern computing devices that inspired classical cognitive 

science revealed that many of these machines lacked some of the properties that are 

often considered marks of the classical. That is, it is not clear that properties such as 

central control, serial processing, local and internal representations, explicit rules, 

and the cognitive vocabulary are characteristics that distinguish classical theories 

from other kinds of models.

The failure to find clear marks of the classical may suggest that a more prof-

itable perspective rests somewhere along the middle of the continuum for relat-

ing different approaches to cognitive science, for a couple of reasons. For one, the 

extent to which a particular theory is classical (or connectionist, or embodied) may 

be a matter of degrees. That is, any theory in cognitive science may adopt features 

such as local vs. distributed representations, internal vs. external memories, serial 

vs. parallel processes, and so on, to varying degrees. Second, differences between 

approaches may be important in the middle of the continuum, but may not be so 

extreme or distinctive that alternative perspectives cannot be co-operatively coordi-

nated to account for cognitive phenomena.

To say this differently, rather than seeking marks of the classical, perhaps 

we should find arcs that provide links between different theoretical perspectives. 

One phenomenon might not nicely lend itself to an explanation from one school 

of thought, but be more easily accounted for by applying more than one school 

of thought at the same time. This is because the differing emphases of the simul-

taneously applied models may be able to capture different kinds of regularities. 

Cognitive science might be unified to the extent that it permits different theoretical 

approaches to be combined in hybrid models.

A hybrid model is one in which two or more approaches are applied simulta-

neously to provide a complete account of a whole phenomenon. The approaches 

might be unable to each capture the entirety of the phenomenon, but—in a fashion 

analogous to coarse coding—provide a complete theory when the different aspects 

that they capture are combined. One example of such a theory is provided in David 

McNeill’s (2005) Gesture And Thought.

McNeill (2005) noted that the focus of modern linguistic traditions on com-

petence instead of performance (Chomsky, 1965) emphasizes the study of static 
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linguistic structures. That is, such traditions treat language as a thing, not as a pro-

cess. In contrast to this approach, other researchers have emphasized the dynamic 

nature of language (Vygotsky, 1986), treating it as a process, not as a thing. One 

example of a dynamic aspect of language of particular interest to McNeill (2005) is 

gesture, which in McNeill’s view is a form of imagery. Gestures that accompany lan-

guage are dynamic because they are extended through time with identifiable begin-

nings, middles, and ends. McNeill’s proposal was that a complete account of lan-

guage requires the simultaneous consideration of its static and dynamic elements.

McNeill (2005) argued that the static and dynamic elements of language are 

linked by a dialectic. A dialectic involves some form of opposition or conflict that is 

resolved through change; it is this necessary change that makes dialectic dynamic. 

The dialectic of language results because speech and gesture provide very different 

formats for encoding meaning. For instance, 

in speech, ideas are separated and arranged sequentially; in gesture, they are 

instantaneous in the sense that the meaning of the gesture is not parceled out over 

time (even though the gesture may take time to occur, its full meaning is immedi-

ately present). (McNeill, 2005, p. 93)

As well, speech involves analytic meaning (i.e., based on parts), pre-specified pair-

ings between form and meaning, and the use of forms defined by conventions. In 

contrast, gestures involve global meaning, imagery, and idiosyncratic forms that are 

created on the fly.

McNeill (2005) noted that the dialectic of language arises because there is a 

great deal of evidence suggesting that speech and gesture are synchronous. That is, 

gestures do not occur during pauses in speech to fill in meanings that are difficult to 

utter; both occur at the same time. As a result, two very different kinds of meaning 

are presented simultaneously. “Speech puts different semiotic modes together at the 

same moment of the speaker’s cognitive experience. This is the key to the dialectic” 

(p. 94).

According to McNeill (2005), the initial co-occurrence of speech and gesture 

produces a growth point, which is an unstable condition defined by the dialectic. 

This growth point is unpacked in an attempt to resolve the conflict between dynamic 

and static aspects of meaning. This unpacking is a move from the unstable to the 

stable. This is accomplished by creating a static, grammatical structure. “Change 

seeks repose. A grammatically complete sentence (or its approximation) is a state 

of repose par excellence, a natural stopping point, intrinsically static and reachable 

from instability” (p. 95). Importantly, the particular grammatical structure that is 

arrived at when stability is achieved depends upon what dynamic or gestural infor-

mation was present during speech.

McNeill’s (2005) theory is intriguing because it exploits two different kinds 

of theories simultaneously: a classical theory of linguistic competence and an 
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embodied theory of gestured meaning. Both the static/classical and dynamic/

embodied parts of McNeill’s theory are involved with conveying meaning. They 

occur at the same time and are therefore co-expressive, but they are not redundant: 

“gesture and speech express the same underlying idea unit but express it in their 

own ways—their own aspects of it, and when they express overlapping aspects they 

do so in distinctive ways” (p. 33). By exploiting two very different approaches in 

cognitive science, McNeill is clearly providing a hybrid model.

One hybrid model different in nature from McNeill’s (2005) is one in which 

multiple theoretical approaches are applied in succession. For example, theories of 

perception often involve different stages of processing (e.g., visual detection, visual 

cognition, object recognition [Treisman, 1988]). Perhaps one stage of such process-

ing is best described by one kind of theory (e.g., a connectionist theory of visual 

detection) while a later stage is best described by a different kind of theory (e.g., a 

symbolic model of object recognition). One such theory of seeing and visualizing 

favoured by Pylyshyn (2003c, 2007) is discussed in detail as an example of a hybrid 

cognitive science in Chapter 8.
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Seeing and Visualizing

8.0 Chapter Overview

Zenon Pylyshyn is one of the leading figures in the study of the foundations of cog-

nitive science. His own training was highly interdisciplinary; he earned degrees in 

engineering-physics, control systems, and experimental psychology. In 1994, he 

joined Rutgers University as Board of Governors Professor of Cognitive Science and 

Director of the Rutgers Center for Cognitive Science. Prior to his arrival at Rutgers 

he was Professor of Psychology, Professor of Computer Science, Director of the 

University of Western Ontario Center for Cognitive Science, and an honorary pro-

fessor in the departments of Philosophy and Electrical Engineering at Western. I 

myself had the privilege of having Pylyshyn as my PhD supervisor when I was a 

graduate student at Western.

Pylyshyn is one of the key proponents of classical cognitive science (Dedrick 

& Trick, 2009). One of the most important contributions to classical cognitive science 

has been his analysis of its foundations, presented in his classic work Computation 

and Cognition (Pylyshyn, 1984). Pylyshyn’s (1984) book serves as a manifesto for 

classical cognitive science, in which cognition is computation: the manipulation 

of formal symbols. It stands as one of the pioneering appeals for using the multi-

ple levels of investigation within cognitive science. It provides an extremely cogent 

argument for the need to use a cognitive vocabulary to capture explanatory gener-

alizations in the study of cognition. In it, Pylyshyn also argued for establishing the 

8
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strong equivalence of a cognitive theory by determining the characteristics of the 

cognitive architecture.

As a champion of classical cognitive science, it should not be surprising that 

Pylyshyn has published key criticisms of other approaches to cognitive science. 

Fodor and Pylyshyn’s (1988) Cognition article “Connectionism and cognitive archi-

tecture” is one of the most cited critiques of connectionist cognitive science that 

has ever appeared. Fodor and Pylyshyn (1981) have also provided one of the major 

critiques of direct perception (Gibson, 1979). This places Pylyshyn securely in the 

camp against embodied cognitive science; direct perception in its modern form 

of active perception (Noë, 2004) has played a major role in defining the embodied 

approach. Given the strong anti-classical, anti-representational perspective of radi-

cal embodied cognitive science (Chemero, 2009), it is far from surprising to be able 

to cite Pylyshyn’s work in opposition to it.

In addition to pioneering classical cognitive science, Pylyshyn has been a cru-

cial contributor to the literature on mental imagery and visual cognition. He is well 

known as a proponent of the propositional account of mental imagery, and he has 

published key articles critiquing its opponent, the depictive view (Pylyshyn, 1973, 

1979b, 1981a, 2003b). His 1973 article “What the mind’s eye tells the mind’s brain: 

A critique of mental imagery” is a science citation classic that is responsible for 

launching the imagery debate in cognitive science. In concert with his analysis of 

mental imagery, Pylyshyn has developed a theory of visual cognition that may serve 

as an account of how cognition connects to the world (Pylyshyn, 1989, 1999, 2000, 

2001, 2003c, 2007; Pylyshyn & Storm, 1988). The most extensive treatments of this 

theory can be found in his 2003 book Seeing and Visualizing—which inspired the 

title of the current chapter—and in his 2007 book Things and Places.

The purpose of the current chapter is to provide a brief introduction to Pylyshyn’s 

theory of visual cognition, in part because this theory provides a wonderful example 

of the interdisciplinary scope of modern cognitive science. A second, more crucial 

reason is that, as argued in this chapter, this theory contains fundamental aspects 

of all three approaches—in spite of Pylyshyn’s position as a proponent of classical 

cognitive science and as a critic of both connectionist and embodied cognitive sci-

ence. Thus Pylyshyn’s account of visual cognition provides an example of the type 

of hybrid theory that was alluded to in the previous two chapters: a theory that 

requires classical, connectionist, and embodied elements.

8.1 The Transparency of Visual Processing

Some researchers are concerned that many perceptual theorists tacitly assume a 

snapshot conception of experience (Noë, 2002) or a video camera theory of vision 

(Frisby, 1980). Such tacit assumptions are rooted in our phenomenal experience of 
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an enormously high-quality visual world that seems to be delivered to us effortlessly. 

“You open your eyes and—presto!—you enjoy a richly detailed picture-like experi-

ence of the world, one that represents the world in sharp focus, uniform detail and 

high resolution from the centre out to the periphery” (Noë, 2002, p. 2).

Indeed, our visual experience suggests that perception puts us in direct contact 

with reality. Perception is transparent; when we attempt to attend to perceptual pro-

cessing, we miss the processing itself and instead experience the world around us 

(Gendler & Hawthorne, 2006). Rather than experiencing the world as picture-like 

(Noë, 2002), it is as if we simply experience the world (Chalmers, 2006; Merleau-

Ponty, 1962). Merleau-Ponty (1962, p. 77) noted that “our perception ends in objects, 

and the object[,] once constituted, appears as the reason for all the experiences of it 

which we have had or could have.” Chalmers (2006) asserts that,

in the Garden of Eden, we had unmediated contact with the world. We were 

directly acquainted with objects in the world and with their properties. Objects 

were presented to us without causal mediation, and properties were revealed to us 

in their true intrinsic glory. (Chalmers, 2006, p. 49)

To say that visual processing is transparent is to say that we are only aware of the 

contents that visual processes deliver. This was a central assumption to the so-called 

New Look theory of perception. For instance, Bruner (1957, p. 124) presumed that 

“all perceptual experience is necessarily the end product of a categorization pro-

cess.” Ecological perception (Gibson, 1979), a theory that stands in strong opposi-

tion in almost every respect to the New Look, also agrees that perceptual processes 

are transparent. “What one becomes aware of by holding still, closing one eye, and 

observing a frozen scene are not visual sensations but only the surfaces of the world 

that are viewed now from here” (p. 286, italics original).

That visual processing is transparent is not a position endorsed by all. For 

instance, eighteenth-century philosopher George Berkeley and nineteenth-century 

art critic John Ruskin both argued that it was possible to recover the “innocence 

of the eye” (Gombrich, 1960). According to this view, it is assumed that at birth 

humans have no concepts, and therefore cannot experience the world in terms of 

objects or categories; “what we really see is only a medley of colored patches such 

as Turner paints” (p. 296). Seeing the world of objects requires learning about the 

required categories. It was assumed that an artist could return to the “innocent 

eye”: “the painter must clear his mind of all he knows about the object he sees, wipe 

the slate clean, and make nature write her own story” (p. 297).

Most modern theories of visual perception take the middle ground between the 

New Look and the innocent eye by proposing that our experience of visual catego-

ries is supported by, or composed of, sensed information (Mach, 1959). Mach (1959) 

proclaimed that,
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thus, perceptions, presentations, volitions, and emotions, in short the whole inner 

and outer world, are put together, in combinations of varying evanescence and per-

manence, out of a small number of homogeneous elements. Usually, these elements 

are called sensations. (Mach, 1959, p. 22)

From this perspective, a key issue facing any theory of seeing or visualizing is deter-

mining where sensation ends and where perception begins.

Unfortunately, the demarcation between sensation and perception is not easily 

determined by introspection. Subjective experience can easily lead us to the inten-

tional fallacy in which a property of the content of a mental representation is mis-

takenly attributed to the representation itself (Pylyshyn, 2003c). We see in the next 

section that the transparency of visual processing hides from our awareness a con-

troversial set of processes that must cope with tremendously complex information 

processing problems.

8.2 The Poverty of the Stimulus

Some researchers have noted a striking tension between experience and science 

(Varela, Thompson, & Rosch, 1991). On the one hand, our everyday experience 

provides a compelling and anchoring sense of self-consciousness. On the other 

hand, cognitive science assumes a fundamental self-fragmentation, because much 

of thought is putatively mediated by mechanisms that are modular, independent, 

and completely incapable of becoming part of conscious experience. “Thus cogni-

tivism challenges our conviction that consciousness and the mind either amount 

to the same thing or [that] there is an essential or necessary connection between 

them” (p. 49).

The tension between experience and science is abundantly evident in vision 

research. It is certainly true that the scientific study of visual perception relies heav-

ily on the analysis of visual experience (Pylyshyn, 2003c). However, researchers are 

convinced that this analysis must be performed with caution and be supplemented 

by additional methodologies. This is because visual experience is not complete, in 

the sense that it does not provide direct access to or experience of visual processing. 

Pylyshyn (2003b) wrote,

what we do [experience] is misleading because it is always the world as it appears 

to us that we see, not the real work that is being done by the mind in going from the 

proximal stimuli, generally optical patterns on the retina, to the familiar experience 

of seeing (or imagining) the world. (Pylyshyn, 2003b, p. xii)

Vision researchers have long been aware that the machinery of vision is not a part 

of our visual experience. Helmholtz noted that “it might seem that nothing could be 

easier than to be conscious of one’s own sensations; and yet experience shows that 
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for the discovery of subjective sensations some special talent is needed” (Helmholtz 

& Southall, 1962b, p. 6). Cognitive psychologist Roger Shepard observed that, 

we do not first experience a two-dimensional image and then consciously calcu-

late or infer the three-dimensional scene that is most likely, given that image. The 

first thing we experience is the three-dimensional world—as our visual system has 

already inferred it for us on the basis of the two-dimensional input. (Shepard, 1990, 

p. 168)

In the nineteenth century, Hermann von Helmholtz argued that our visual experi-

ence results from the work of unconscious mechanisms. “The psychic activities that 

lead us to infer that there in front of us at a certain place there is a certain object 

of a certain character, are generally not conscious activities, but unconscious ones” 

(Helmholtz & Southall, 1962b, p. 4). However, the extent and nature of this uncon-

scious processing was only revealed when researchers attempted to program com-

puters to see. It was then discovered that visual processes face a difficult problem 

that also spurred advances in modern linguistic theory: the poverty of the stimulus.

Generative linguistics distinguished between those theories of language 

that were descriptively adequate and those that were explanatorily adequate 

(Chomsky, 1965). A descriptively adequate theory of language provided a grammar 

that was capable of describing the structure of any possible grammatical sentence 

in a language and incapable of describing the structure of any sentence that did 

not belong to this language. A more powerful explanatorily adequate theory was 

descriptively adequate but also provided an account of how that grammar was 

learned. “To the extent that a linguistic theory succeeds in selecting a descriptively 

adequate grammar on the basis of primary linguistic data, we can say that it meets 

the condition of explanatory adequacy” (p. 25).

Why did Chomsky use the ability to account for language learning as a defin-

ing characteristic of explanatory adequacy? It was because Chomsky realized that 

language learning faced the poverty of the stimulus. The poverty-of-the-stimulus 

argument is the claim that primary linguistic data—that is, the linguistic utterances 

heard by a child—do not contain enough information to uniquely specify the gram-

mar used to produce them.

It seems that a child must have the ability to ‘invent’ a generative grammar that 

defines well-formedness and assigns interpretations to sentences even though the 

primary linguistic data that he uses as a basis for this act of theory construction 

may, from the point of view of the theory he constructs, be deficient in various 

respects. (Chomsky, 1965, p. 201) 

The poverty of the stimulus is responsible for formal proofs that text learning of a 

language is not possible if the language is defined by a complex grammar (Gold, 1967; 

Pinker, 1979; Wexler & Culicover, 1980).
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Language acquisition can be described as solving the projection problem: 

determining the mapping from primary linguistic data to the acquired grammar 

(Baker, 1979; Peters, 1972). When language learning is so construed, the poverty 

of the stimulus becomes a problem of underdetermination. That is, the projection 

from data to grammar is not unique, but is instead one-to-many: one set of primary 

linguistic data is consistent with many potential grammars.

For sighted individuals, our visual experience makes us take visual perception 

for granted. We have the sense that we simply look at the world and see it. Indeed, 

the phenomenology of vision led artificial intelligence pioneers to expect that build-

ing vision into computers would be a straightforward problem. For instance, Marvin 

Minsky assigned one student, as a summer project, the task of programming a com-

puter to see (Horgan, 1993). However, failures to develop computer vision made it 

apparent that the human visual system was effortlessly solving, in real time, enor-

mously complicated information processing problems. Like language learning, 

vision is dramatically underdetermined. That is, if one views vision as the projec-

tion from primary visual data (the proximal stimulus on the retina) to the internal 

interpretation or representation of the distal scene, this projection is one-to-many. 

A single proximal stimulus is consistent with an infinite number of different inter-

pretations (Gregory, 1970; Marr, 1982; Pylyshyn, 2003c; Rock, 1983; Shepard, 1990).

One reason that vision is underdetermined is because the distal world is 

arranged in three dimensions of space, but the primary source of visual informa-

tion we have about it comes from patterns of light projected onto an essentially two 

dimensional surface, the retina. “According to a fundamental theorem of topology, 

the relations between objects in a space of three dimensions cannot all be preserved 

in a two-dimensional projection” (Shepard, 1990, pp. 173–175).

This source of underdetermination is illustrated in Figure 8-1, which illustrates 

a view from the top of an eye observing a point in the distal world as it moves from 

position X1 to position Y1 over a given interval of time. 

Figure 8-1. Underdetermination of projected movement.
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The primary visual data caused by this movement is the motion, from point A to 

point B, of a point projected onto the back of the retina. The projection from the 

world to the back of the eye is uniquely defined by the laws of optics and of projec-

tive geometry.

However, the projection in the other direction, from the retina to the distal 

world, is not unique. If one attempts to use the retinal information alone to identify 

the distal conditions that caused it, then infinitely many possibilities are available. 

Any of the different paths of motion in the world (occurring over the same dura-

tion) that are illustrated in Figure 8-1 are consistent with the proximal information 

projected onto the eye. Indeed, movement from any position along the dashed line 

through the X-labelled points to any position along the other dashed line is a poten-

tial cause of the proximal stimulus.

One reason for the poverty of the visual stimulus, as illustrated in Figure 8-1, is 

that information is necessarily lost when an image from a three-dimensional space 

is projected onto a two-dimensional surface.

We are so familiar with seeing, that it takes a leap of imagination to realize that 

there are problems to be solved. But consider it. We are given tiny distorted upside-

down images in the eyes, and we see separate solid objects in surrounding space. 

From the patterns of stimulation on the retinas we perceive the world of objects, 

and this is nothing short of a miracle. (Gregory, 1978, p. 9)

A second reason for the poverty of the visual stimulus arises because the neural 

circuitry that mediates visual perception is subject to the limited order constraint 

(Minsky & Papert, 1969). There is no single receptor that takes in the entire visual 

stimulus in a glance. Instead, each receptor processes only a small part of the pri-

mary visual data. This produces deficiencies in visual information. For example, 

consider the aperture problem that arises in motion perception (Hildreth, 1983), 

illustrated in Figure 8-2. 

Figure 8-2. The aperture problem in motion perception.
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In this situation, a motion detector’s task is to detect the movement of a contour, 

shown in grey. However, the motion detector is of limited order: its window on 

the moving contour is the circular aperture in the figure, an aperture that is much 

smaller than the contour it observes.

Because of its small aperture, the motion detector in Figure 8-2 can only be 

sensitive to the component of the contour’s motion that is perpendicular to the edge 

of the contour, vector A. It is completely blind to any motion parallel to the contour, 

the dashed vector B. This is because movement in this direction will not change 

the appearance of anything within the aperture. As a result, the motion detector is 

unable to detect the true movement of the contour, vector T.

The limited order constraint leads to a further source of visual underdetermi-

nation. If visual detectors are of limited order, then our interpretation of the proxi-

mal stimulus must be the result of combining many different (and deficient) local 

measurements together. However, many different global interpretations exist that 

are consistent with a single set of such measurements. The local measurements by 

themselves cannot uniquely determine the global perception that we experience.

Consider the aperture problem of Figure 8-2 again. Imagine one, or many, local 

motion detectors that deliver vector A at many points along that contour. How 

many true motions of the contour could produce this situation? In principle, one 

can create an infinite number of different possible vector Ts by choosing any desired 

length of vector B—to which any of the detectors are completely blind—and adding 

it to the motion that is actually detected, i.e., vector A.

Pylyshyn (2003b, 2007) provided many arguments against the theory that vision 

constructs a representation of the world, which is depictive in nature. However, the 

theory that Pylyshyn opposed is deeply entrenched in accounts of visual processing.

For years the common view has been that a large-scope inner image is built up by 

superimposing information from individual glances at the appropriate coordinates 

of the master image: as the eye moves over a scene, the information on the retina 

is transmitted to the perceptual system, which then projects it onto an inner screen 

in the appropriate location, thus painting the larger scene for the mind side to 

observe. (Pylyshyn, 2003b, pp. 16–17)

 Proponents of this view face another source of the poverty of the visual stimulus. It 

is analogous to the limited order constraint, in the sense that it arises because vision 

proceeds by accessing small amounts of information in a sequence of fragmentary 

glimpses.

Although we experience our visual world as a rich, stable panorama that is pre-

sent in its entirety, this experience is illusory (Dennett, 1991; Pylyshyn, 2003c, 2007). 

Evidence suggests that we only experience fragments of the distal world a glance 

at a time. For instance, we are prone to change blindness, where we fail to notice a 

substantial visual change even though it occurs in plain sight (O’Regan et al., 2000). 
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A related phenomenon is inattentional blindness, in which visual information that 

should be obvious is not noticed because attention is not directed to it (even though 

the gaze is!). In one famous experiment (Simons & Chabris, 1999), subjects watched 

a video of a basketball game and were instructed to count the number of times that 

the teams changed possession of the ball. In the midst of the game a person dressed 

in a gorilla suit walked out onto the court and danced a jig. Amazingly, most subjects 

failed to notice this highly visible event because they were paying attention to the ball.

If the visual system collects fragments of visual information a glance at a time, 

then our visual experience further suggests that these different fragments are 

“stitched together” to create a stable panorama. In order for this to occur, the frag-

ments have to be inserted in the correct place, presumably by identifying compo-

nents of the fragment (in terms of visible properties) in such a way that it can be 

asserted that “object x in one location in a glimpse collected at time t + 1 is the 

same thing as object y in a different location in a glimpse collected at an earlier 

time t.” This involves computing correspondence, or tracking the identities of 

objects over time or space, a problem central to the study of binocular vision (Marr, 

Palm, & Poggio, 1978; Marr & Poggio, 1979) and motion perception (Dawson, 1991; 

Dawson & Pylyshyn, 1988; Ullman, 1978, 1979).

However, the computing of correspondence is a classic problem of underdeter-

mination. If there are N different elements in two different views of a scene, then 

there are at least N! ways to match the identities of elements across the views. This 

problem cannot be solved by image matching—basing the matches on the appear-

ance or description of elements in the different views—because the dynamic nature 

of the world, coupled with the loss of information about it when it is projected onto 

the eyes, means that there are usually radical changes to an object’s proximal stimu-

lus over even brief periods of time.

How do we know which description uniquely applies to a particular individual 

and, what’s more important, how do we know which description will be unique 

at some time in the future when we will need to find the representation of that 

particular token again in order to add some newly noticed information to it? 

(Pylyshyn, 2007, p. 12)

To summarize, visual perception is intrinsically underdetermined because of the 

poverty of the visual stimulus. If the goal of vision is to construct representations 

of the distal world, then proximal stimuli do not themselves contain enough infor-

mation to accomplish this goal. In principle, an infinite number of distal scenes 

could be the cause of a single proximal stimulus. “And yet we do not perceive a 

range of possible alternative worlds when we look out at a scene. We invariably see 

a single unique layout. Somehow the visual system manages to select one of the 

myriad logical possibilities” (Pylyshyn, 2003b, p. 94). Furthermore, the interpreta-

tion selected by the visual system seems—from our success in interacting with the 
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world—to almost always be correct. “What is remarkable is that we err so seldom” 

(Shepard, 1990, p. 175).

How does the visual system compensate for the poverty of the stimulus as well 

as generate unique and accurate solutions to problems of underdetermination? In 

the following sections we consider two very different answers to this question, both 

of which are central to Pylyshyn’s theory of visual cognition. The first of these, which 

can be traced back to Helmholtz (Helmholtz & Southall, 1962b) and which became 

entrenched with the popularity of the New Look in the 1950s (Bruner, 1957, 1992), 

is that visual perception is full-fledged cognitive processing. “Given the slenderest 

clues to the nature of surrounding objects we identify them and act not so much 

according to what is directly sensed, but to what is believed” (Gregory, 1970, p. 11).

8.3 Enrichment via Unconscious Inference

Hermann von Helmholtz was not aware of problems of visual underdetermina-

tion of the form illustrated in Figures 8-1 and 8-2. However, he was aware that 

visual sensors could be seriously misled. One example that he considered at length 

(Helmholtz & Southall, 1962a, 1962b) was the mechanical stimulation of the eye 

(e.g., slight pressure on the eyeball made by a blunt point), which produced a sensa-

tion of light (a pressure-image or phosphene) even though a light stimulus was not 

present. From this he proposed a general rule for determining the “ideas of vision”: 

Such objects are always imagined as being present in the field of vision as 

would have to be there in order to produce the same impression on the nerv-

ous mechanism, the eyes being used under ordinary normal conditions. 

(Helmholtz & Southall, 1962b, p. 2)

Helmholtz’s studies of such phenomena forced him to explain the processes by 

which such a rule could be realized. He first noted that the visual system does not 

have direct access to the distal world, but instead that primary visual data was 

retinal activity. He concluded that inference must be involved to transform retinal 

activity into visual experience. “It is obvious that we can never emerge from the 

world of our sensations to the apperception of an external world, except by infer-

ring from the changing sensation that external objects are the causes of this change” 

(Helmholtz & Southall, 1962b, p. 33). This theory allowed Helmholtz to explain 

visual illusions as the result of mistaken reasoning rather than as the product of 

malfunctions in the visual apparatus: “It is rather simply an illusion in the judg-

ment of the material presented to the senses, resulting in a false idea of it” (p. 4).

Helmholtz argued that the accuracy of visual inferences is due to an agent’s 

constant exploration and experimentation with the world, determining how actions 

in the world such as changing viewpoints alter visual experience.
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Spontaneously and by our own power, we vary some of the conditions under which 

the object has been perceived. We know that the changes thus produced in the 

way that objects look depend solely on the movements we have executed. Thus we 

obtain a different series of apperceptions of the same object, by which we can be 

convinced with experimental certainty that they are simply apperceptions and that 

it is the common cause of them all. (Helmholtz & Southall, 1962b, p. 31)

Helmholtz argued that the only difference between visual inference and logical rea-

soning was that the former was unconscious while the latter was not, describing 

“the psychic acts of ordinary perception as unconscious conclusions” (Helmholtz 

& Southall, 1962b, p. 4). Consciousness aside, seeing and reasoning were processes 

of the same kind: “There can be no doubt as to the similarity between the results of 

such unconscious conclusions and those of conscious conclusions” (p. 4).

A century after Helmholtz, researchers were well aware of the problem of under-

determination with respect to vision. Their view of this problem was that it was based 

in the fact that certain information is missing from the proximal stimulus, and that 

additional processing is required to supply the missing information. With the rise of 

cognitivism in the 1950s, researchers proposed a top-down, or theory-driven, account 

of perception in which general knowledge of the world was used to disambiguate the 

proximal stimulus (Bruner, 1957, 1992; Bruner, Postman, & Rodrigues, 1951; Gregory, 

1970, 1978; Rock, 1983). This approach directly descended from Helmholtz’s discus-

sion of unconscious conclusions because it equated visual perception with cognition.

One of the principal characteristics of perceiving [categorization] is a characteristic 

of cognition generally. There is no reason to assume that the laws governing infer-

ences of this kind are discontinuous as one moves from perceptual to more concep-

tual activities. (Bruner, 1957, p. 124)

The cognitive account of perception that Jerome Bruner originated in the 1950s 

came to be known as the New Look. According to the New Look, higher-order cog-

nitive processes could permit beliefs, expectations, and general knowledge of the 

world to provide additional information for disambiguation of the underdetermin-

ing proximal stimulus. “We not only believe what we see: to some extent we see 

what we believe” (Gregory, 1970, p. 15). Hundreds of studies provided experimental 

evidence that perceptual experience was determined in large part by a perceiver’s 

beliefs or expectations. (For one review of this literature see Pylyshyn, 2003b.) Given 

the central role of cognitivism since the inception of the New Look, it is not surpris-

ing that this type of theory has dominated the modern literature.

The belief that perception is thoroughly contaminated by such cognitive factors as 

expectations, judgments, beliefs, and so on, became the received wisdom in much of 

psychology, with virtually all contemporary elementary texts in human information 

processing and vision taking that point of view for granted. (Pylyshyn, 2003b, p. 56)
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To illustrate the New Look, consider a situation in which I see a small, black and 

white, irregularly shaped, moving object. This visual information is not sufficient to 

uniquely specify what in the world I am observing. To deal with this problem, I use 

general reasoning processes to disambiguate the situation. Imagine that I am inside 

my home. I know that I own a black and white cat, I believe that the cat is indoors, 

and I expect that I will see this cat in the house. Thus I experience this visual stimu-

lus as “seeing my cat Phoebe.” In a different context, different expectations exist. For 

instance, if I am outside the house on the street, then the same proximal stimulus 

will be disambiguated with different expectations; “I see my neighbour’s black and 

white dog Shadow.” If I am down walking in the forest by the creek, then I may use 

different beliefs to “see a skunk.” 

It would seem that a higher agency of the mind, call it the executive agency, has 

available to it the proximal input, which it can scan, and it then behaves in a 

manner very like a thinking organism in selecting this or that aspect of the stimulus 

as representing the outer object or event in the world. (Rock, 1983, p. 39)

The New Look in perception is a prototypical example of classical cognitive science. 

If visual perception is another type of cognitive processing, then it is governed by 

the same laws as are reasoning and problem solving. In short, a crucial consequence 

of the New Look is that visual perception is rational, in the sense that vision’s suc-

cess is measured in terms of the truth value of the representations it produces.

For instance, Richard Gregory (1970, p. 29, italics added) remarked that “it is 

surely remarkable that out of the infinity of possibilities the perceptual brain gener-

ally hits on just about the best one.” Gregory (1978, p. 13, italics added) also equated 

visual perception to problem solving, describing it as “a dynamic searching for the 

best interpretation of the available data.” The cognitive nature of perceptual pro-

cessing allows,

past experience and anticipation of the future to play a large part in augmenting 

sensory information, so that we do not perceive the world merely from the sensory 

information available at any given time, but rather we use this information to test 

hypotheses of what lies before us. Perception becomes a matter of suggesting and 

testing hypotheses. (Gregory, 1978, p. 221) 

In all of these examples, perception is described as a process that delivers represen-

tational contents that are most (semantically) consistent with visual sensations and 

other intentional contents, such as beliefs and desires.

The problem with the New Look is this rational view of perception. Because 

of its emphasis on top-down influences, the New Look lacks an account of links 

between the world and vision that are causal and independent of beliefs. If all of 

our perceptual experience was belief dependent, then we would never see anything 

that we did not expect to see. This would not contribute to our survival, which often 
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depends upon noticing and reacting to surprising circumstances in the environment.

Pylyshyn’s (2003b, 2007) hybrid theory of visual cognition rests upon the 

assumption that there exists a cognitively impenetrable visual architecture that is 

separate from general cognition. This architecture is data-driven in nature, gov-

erned by causal influences from the visual world and insulated from beliefs and 

expectations. Such systems can solve problems of underdetermination without 

requiring assumptions of rationality, as discussed in the next section.

8.4 Natural Constraints

Some researchers would argue that perception is a form of cognition, because it 

uses inferential reasoning or problem solving processing to go beyond the infor-

mation given. However, this kind of account is not the only viable approach for 

dealing with the poverty of the visual stimulus. Rock (1983, p. 3) wrote: “A phe-

nomenon may appear to be intelligent, but the mechanism underlying it may have 

no common ground with the mechanisms underlying reasoning, logical thought, 

or problem solving.” The natural computation approach to vision (Ballard, 1997; 

Marr, 1982; Richards, 1988) illustrates the wisdom of Rock’s quote, because it 

attempts to solve problems of underdetermination by using bottom-up devices that 

apply built-in constraints to filter out incorrect interpretations of an ambiguous 

proximal stimulus.

The central idea underlying natural computation is constraint propagation. 

Imagine a set of locations to which labels can be assigned, where each label is a pos-

sible property that is present at a location. Underdetermination exists when more 

than one label is possible at various locations. However, constraints can be applied 

to remove these ambiguities. Imagine that if some label x is assigned to one location 

then this prevents some other label y from being assigned to a neighbouring loca-

tion. Say that there is good evidence to assign label x to the first location. Once this 

is done, a constraint can propagate outwards from this location to its neighbours, 

removing label y as a possibility for them and therefore reducing ambiguity.

Constraint propagation is part of the science underlying the popular Sudoku 

puzzles (Delahaye, 2006). A Sudoku puzzle is a 9 × 9 grid of cells, as illustrated in 

Figure 8-3. The grid is further divided into a 3 × 3 array of smaller 3 × 3 grids called 

cages. In Figure 8-3, the cages are outlined by the thicker lines. When the puzzle is 

solved, each cell will contain a digit from the range 1 to 9, subject to three constraints. 

First, a digit can occur only once in each row of 9 cells across the grid. Second, a digit 

can only occur once in each column of 9 cells along the grid. Third, a digit can only 

occur once in each cage in the grid. The puzzle begins with certain numbers already 

assigned to their cells, as illustrated in Figure 8-3. The task is to fill in the remaining 

digits in such a way that none of the three constraining rules are violated.
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Figure 8-3. An example Sudoku puzzle.

A Sudoku puzzle can be considered as a problem to be solved by relaxation labelling. 

In relaxation labelling, sets of possible labels are available at different locations. For 

instance, at the start of the puzzle given in Figure 8-3 the possible labels at every 

blank cell are 1, 2, 3, 4, 5, 6, 7, 8, and 9. There is only one possible label (given in the 

figure) that has already been assigned to each of the remaining cells. The task of 

relaxation labelling is to iteratively eliminate extra labels at the ambiguous loca-

tions, so that at the end of processing only one label remains.

Figure 8-4. The “there can be only one” constraint propagating from the cell 

labelled 5 

In the context of relaxation labelling, Sudoku puzzles can be solved by prop-

agating different constraints through the grid; this causes potential labels to be 

removed from ambiguous cells. One key constraint, called “there can be only one,” 

emerges from the primary definition of a Sudoku puzzle. In the example problem 

given in Figure 8-3, the digit 5 has been assigned at the start to a particular location, 

which is also shown in Figure 8-4. According to the rules of Sudoku, this means that 

this digit cannot appear anywhere else in the column, row, or cage that contains 
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this location. The affected locations are shaded dark grey in Figure 8-4. One can 

propagate the “there can be only one” constraint through these locations, removing 

the digit 5 as a possible label for any of them.

This constraint can be propagated iteratively through the puzzle. During one 

iteration, any cell with a unique label can be used to eliminate that label from all 

of the other cells that it controls (e.g., as in Figure 8-4). When this constraint is 

applied in this way, the result may be that some new cells have unique labels. In this 

case the constraint can be applied again, from these newly unique cells, to further 

disambiguate the Sudoku puzzle.

The “there can be only one” constraint is important, but it is not powerful enough 

on its own to solve any but the easiest Sudoku problems. This means that other con-

straints must be employed as well. Another constraint is called “last available label,” 

and is illustrated in Figure 8-5.

Figure 8-5A illustrates one of the cages of the Figure 8-3 Sudoku problem part-

way through being solved (i.e., after some iterations of “there can be only one”). 

The cells containing a single number have been uniquely labelled. The other cells 

still have more than one possible label, shown as multiple digits within the cell. 

Note the one cell at the bottom shaded in grey. It has the possible labels 1, 3, 5, and 

9. However, this cell has the “last available label” of 9—the label 9 is not available 

in any other cell in the cage. Because a 9 is required to be in this cage, this means 

that this label must be assigned here and the cell’s other three possible labels can 

be removed. Note that when this is done, the “last available label” constraint applies 

to a second cell (shown in grey in Figure 8-5B), meaning that it can be uniquely 

assigned the label 1 by applying this constraint a second time.

Figure 8-5. The “last available label” constraint.
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After two applications of the “last available label” constraint, the cage illustrated in 

Figure 8-5A becomes the cage shown at the top of Figure 8-6. Note that this cage 

has only two ambiguous cells, each with the possible labels 3 and 5. These two cells 

define what Sudoku solvers call a naked pair, which can be used to define a third 

rule called the “naked pair constraint.”

Figure 8-6. The “naked pair constraint.”

In the naked pair pointed out by the two arrows in Figure 8-6, it is impossible for 

one cell to receive the label 3 and for the other cell not to receive the label 5. This 

is because these two cells have only two remaining possible labels, and both sets of 

labels are identical. However, this also implies that the labels 3 and 5 cannot exist 

elsewhere in the part of the puzzle over which the two cells containing the naked 

pair have control. Thus one can use this as a constraint to remove the possible labels 

3 and 5 from the other cells in the same column as the naked pair, i.e., the cells 

shaded in grey in the lower part of Figure 8-6.

The three constraints described above have been implemented as a working 

model in an Excel spreadsheet. This model has confirmed that by applying only 

these three constraints one can solve a variety of Sudoku problems of easy and 

medium difficulty, and can make substantial progress on difficult problems. (These 

three constraints are not sufficient to solve the difficult Figure 8-3 problem.) In 

order to develop a more successful Sudoku solver in this framework, one would 

have to identify additional constraints that can be used. A search of the Internet 

for “Sudoku tips” reveals a number of advanced strategies that can be described as 

constraints, and which could be added to a relaxation labelling model.
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For our purposes, though, the above Sudoku example illustrates how constraints 

can be propagated to solve problems of underdetermination. Furthermore, it shows 

that such solutions can be fairly mechanical in nature, not requiring higher-order 

reasoning or problem solving. For instance, the “there can be only one” constraint 

could be instantiated as a simple set of interconnected switches: turning the 5 on 

in Figure 8-4 would send a signal that would turn the 5 off at all of the other grey-

shaded locations.

The natural computation approach to vision assumes that problems of visual 

underdetermination are also solved by non-cognitive processes that use constraint 

propagation. However, the constraints of interest to such researchers are not formal 

rules of a game. Instead, they adopt naïve realism, and they assume that the exter-

nal world is structured and that some aspects of this structure must be true of 

nearly every visual scene. Because the visual system has evolved to function in this 

structured environment, it has internalized those properties that permit it to solve 

problems of underdetermination. “The perceptual system has internalized the most 

pervasive and enduring regularities of the world” (Shepard, 1990, p. 181).

The regularities of interest to researchers who endorse natural computation are 

called natural constraints. A natural constraint is a property that is almost invariably 

true of any location in a visual scene. For instance, many visual properties of three-

dimensional scenes, such as depth, colour, texture, and motion, vary smoothly. This 

means that two locations in the three-dimensional scene that are very close together 

are likely to have very similar values for any of these properties, while this will not 

be the case for locations that are further apart. Smoothness can therefore be used to 

constrain interpretations of a proximal stimulus: an interpretation whose proper-

ties vary smoothly is much more likely to be true of the world than interpretations 

in which property smoothness is not maintained.

Natural constraints are used to solve visual problems of underdetermination 

by imposing additional restrictions on scene interpretations. In addition to being 

consistent with the proximal stimulus, the interpretation of visual input must also 

be consistent with the natural constraints. With appropriate natural constraints, 

only a single interpretation will meet both of these criteria (for many examples, see 

Marr, 1982). A major research goal for those who endorse the natural computation 

approach to vision is identifying natural constraints that filter out correct interpre-

tations from all the other (incorrect) possibilities.

For example, consider the motion correspondence problem (Ullman, 1979), 

which is central to Pylyshyn’s (2003b, 2007) hybrid theory of visual cognition. In the 

motion correspondence problem, a set of elements is seen at one time, and another 

set of elements is seen at a later time. In order for the visual system to associate a 

sense of movement to these elements, their identities must be tracked over time. 

The assertion that some element x, seen at time t, is the “same thing” as some other 
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element y, seen at time t + 1, is called a motion correspondence match. However, the 

assignment of motion correspondence matches is underdetermined. This is illus-

trated in Figure 8-7 as a simple apparent motion stimulus in which two squares 

(dashed outlines) are presented at one time, and then later presented in different 

locations (solid outlines). For this display there are two logical sets of motion cor-

respondence matches that can be assigned, shown in B and C of the figure. Both 

sets of matches are consistent with the display, but they represent radically differ-

ent interpretations of the identities of the elements over time. Human observers of 

this display will invariably experience it as Figure 8-7B, and never as Figure 8-7C. 

Why is this interpretation preferred over the other one, which seems just as logically 

plausible?

The natural computation approach answers this question by claiming that the 

interpretation illustrated in Figure 8-7B is consistent with additional natural con-

straints, while the interpretation in Figure 8-7C is not. A number of different natural 

constraints on the motion correspondence problem have been identified and then 

incorporated into computer simulations of motion perception (Dawson, 1987, 1991; 

Dawson, Nevin-Meadows, & Wright, 1994; Dawson & Pylyshyn, 1988; Dawson & Wright, 

1989, 1994; Ullman, 1979).

Figure 8-7. The motion correspondence problem.

One such constraint is called the nearest neighbour principle. The visual system 

prefers to assign correspondence matches that represent short element displace-

ments (Burt & Sperling, 1981; Ullman, 1979). For example, the two motion corre-

spondence matches in Figure 8-7B are shorter than the two in Figure 8-7C; they are 

therefore more consistent with the nearest neighbour principle.

B

C

A
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The nearest neighbour principle is a natural constraint because it arises from the 

geometry of the typical viewing conditions for motion (Ullman, 1979, pp. 114–118). 

When movement in a three-dimensional world is projected onto a two-dimensional 

surface (e.g., the retina), slower movements occur with much higher probability on 

the retina than do faster movements. A preference for slower movement is equiva-

lent to exploiting the nearest neighbour principle, because a short correspondence 

match represents slow motion, while a long correspondence match represents fast 

motion.

Another powerful constraint on the motion correspondence problem is called 

the relative velocity principle (Dawson, 1987, 1991). To the extent that visual elements 

arise from physical features on solid surfaces, the movement of neighbouring ele-

ments should be similar. According to the relative velocity principle, motion corre-

spondence matches should be assigned in such a way that objects located near one 

another will be assigned correspondence matches consistent with movements of 

similar direction and speed. This is true of the two matches illustrated in Figure 

8-7B, which are of identical length and direction, but not of the two matches illus-

trated in Figure 8-7C, which are of identical length but represent motion in different 

directions.

Like the nearest neighbour constraint, the relative velocity principle is a natural 

constraint. It is a variant of the property that motion varies smoothly across a scene 

(Hildreth, 1983; Horn & Schunk, 1981). That is, as objects in the real world move, 

locations near to one another should move in similar ways. Furthermore, Hildreth 

(1983) has proven that solid objects moving arbitrarily in three-dimensional space 

project unique smooth patterns of retinal movement. The relative velocity principle 

exploits this general property of projected motion.

Other natural constraints on motion correspondence have also been proposed. 

The element integrity principle is a constraint in which motion correspondence 

matches are assigned in such a way that elements only rarely split into two or fuse 

together into one (Ullman, 1979). It is a natural constraint in the sense that the physi-

cal coherence of surfaces implies that the splits or fusions are unlikely. The polar-

ity matching principle is a constraint in which motion correspondence matches are 

assigned between elements of identical contrast (e.g., between two elements that are 

both light against a dark background, or between two elements that are both dark 

against a light background) (Dawson, Nevin-Meadows, & Wright, 1994). It is a natu-

ral constraint because movement of an object in the world might change its shape 

and colour, but is unlikely to alter the object’s contrast relative to its background.

The natural computation approach to vision is an alternative to a classi-

cal approach called unconscious inference, because natural constraints can be 

exploited by systems that are not cognitive, that do not perform inferences on the 
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basis of cognitive contents. In particular, it is very common to see natural compu-

tation models expressed in a very anti-classical form, namely, artificial neural net-

works (Marr, 1982). Indeed, artificial neural networks provide an ideal medium for 

propagating constraints to solve problems of underdetermination.

The motion correspondence problem provides one example of an artificial 

neural network approach to solving problems of underdetermination (Dawson, 1991; 

Dawson, Nevin-Meadows, & Wright, 1994). Dawson (1991) created an artificial 

neural network that incorporated the nearest neighbour, relative velocity, element 

integrity, and polarity matching principles. These principles were realized as patterns 

of excitatory and inhibitory connections between processors, with each processor 

representing a possible motion correspondence match. For instance, the connection 

between two matches that represented movements similar in distance and direction 

would have an excitatory component that reflected the relative velocity principle. Two 

matches that represented movements of different distances and directions would 

have an inhibitory component that reflected the same principle. The network would 

start with all processors turned on to similar values (indicating that each match was 

initially equally likely), and then the network would iteratively send signals amongst 

the processors. The network would quickly converge to a state in which some pro-

cessors remained on (representing the preferred correspondence matches) while all 

of the others were turned off. This model was shown to be capable of modelling a 

wide variety of phenomena in the extensive literature on the perception of apparent 

movement.

The natural computation approach is defined by another characteristic that dis-

tinguishes it from classical cognitive science. Natural constraints are not psychologi-

cal properties, but are instead properties of the world, or properties of how the world 

projects itself onto the eyes. “The visual constraints that have been discovered so 

far are based almost entirely on principles that derive from laws of optics and pro-

jective geometry” (Pylyshyn, 2003b, p. 120). Agents exploit natural constraints—or 

more precisely, they internalize these constraints in special processors that consti-

tute what Pylyshyn calls early vision—because they are generally true of the world 

and therefore work.

To classical theories that appeal to unconscious inference, natural con-

straints are merely “heuristic bags of tricks” that happen to work (Anstis, 1980; 

Ramachandran & Anstis, 1986); there is no attempt to ground these tricks in the 

structure of the world. In contrast, natural computation theories are embodied, 

because they appeal to structure in the external world and to how that structure 

impinges on perceptual agents. As naturalist Harold Horwood (1987, p. 35) writes, 

“If you look attentively at a fish you can see that the water has shaped it. The fish 

is not merely in the water: the qualities of the water itself have called the fish into 

being.”
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8.5 Vision, Cognition, and Visual Cognition

It was argued earlier that the classical approach to underdetermination, uncon-

scious inference, suffered from the fact that it did not include any causal links 

between the world and internal representations. The natural computation approach 

does not suffer from this problem, because its theories treat vision as a data-driven 

or bottom-up process. That is, visual information from the world comes into contact 

with visual modules—special purpose machines—that automatically apply natural 

constraints and deliver uniquely determined representations. How complex are the 

representations that can be delivered by data-driven processing? To what extent 

could a pure bottom-up theory of perception succeed?

On the one hand, the bottom-up theories are capable of delivering a variety 

of rich representations of the visual world (Marr, 1982). These include the primal 

sketch, which represents the proximal stimulus as an array of visual primi-

tives, such as oriented bars, edges, and terminators (Marr, 1976). Another is the 

2½-D sketch, which makes explicit the properties of visible surfaces in viewer-

centred coordinates, including their depth, colour, texture, and orientation 

(Marr & Nishihara, 1978). The information made explicit in the 2½-D sketch is 

available because data-driven processes can solve a number of problems of under-

determination, often called “shape from” problems, by using natural constraints 

to determine three-dimensional shapes and distances of visible elements. These 

include structure from motion (Hildreth, 1983; Horn & Schunk, 1981; Ullman, 1979; 

Vidal & Hartley, 2008), shape from shading (Horn & Brooks, 1989), depth from bin-

ocular disparity (Marr, Palm, & Poggio, 1978; Marr & Poggio, 1979), and shape from 

texture (Lobay & Forsyth, 2006; Witkin, 1981).

It would not be a great exaggeration to say that early vision—part of visual process-

ing that is prior to access to general knowledge—computes just about everything 

that might be called a ‘visual appearance’ of the world except the identities and 

names of the objects. (Pylyshyn, 2003b, p. 51)

On the other hand, despite impressive attempts (Biederman, 1987), it is generally 

acknowledged that the processes proposed by natural computationalists cannot 

deliver representations rich enough to make full contact with semantic knowledge 

of the world. This is because object recognition—assigning visual information to 

semantic categories—requires identifying object parts and determining spatial rela-

tionships amongst these parts (Hoffman & Singh, 1997; Singh & Hoffman, 1997). 

However, this in turn requires directing attention to specific entities in visual rep-

resentations (i.e., individuating the critical parts) and using serial processes to 

determine spatial relations amongst the individuated entities (Pylyshyn, 1999, 200

1, 2003c, 2007; Ullman, 1984). The data-driven, parallel computations that charac-

terize natural computation theories of vision are poor candidates for computing 
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relationships between individuated objects or their parts. As a result, what early 

vision “does not do is identify the things we are looking at, in the sense of relating 

them to things we have seen before, the contents of our memory. And it does not 

make judgments about how things really are” (Pylyshyn, 2003b, p. 51).

Thus it appears that a pure, bottom-up natural computation theory of vision will 

not suffice. Similarly, it was argued earlier that a pure, top-down cognitive theory 

of vision is also insufficient. A complete theory of vision requires co-operative inter-

actions between both data-driven and top-down processes. As philosopher Jerry 

Fodor (1985, p. 2) has noted, “perception is smart like cognition in that it is typically 

inferential, it is nevertheless dumb like reflexes in that it is typically encapsulated.” 

This leads to what Pylyshyn calls the independence hypothesis: the proposal that 

some visual processing must be independent of cognition. However, because we are 

consciously aware of visual information, a corollary of the independence hypothesis 

is that there must be some interface between visual processing that is not cognitive 

and visual processing that is.

This interface is called visual cognition (Enns, 2004; Humphreys & Bruce, 1989; 

Jacob & Jeannerod, 2003; Ullman, 2000), because it involves visual atten-

tion (Wright, 1998). Theories in visual cognition about both object identifica-

tion (Treisman, 1988; Ullman, 2000) and the interpretation of motion (Wright & 

Dawson, 1994) typically describe three stages of processing: the precognitive deliv-

ery of visual information, the attentional analysis of this visual information, and the 

linking of the results of these analyses to general knowledge of the world.

One example theory in visual cognition is called feature integration theory 

(Treisman, 1986, 1988; Treisman & Gelade, 1980). Feature integration theory arose 

from two basic experimental findings. The first concerned search latency functions, 

which represent the time required to detect the presence or absence of a target as a 

function of the total number of display elements in a visual search task. Pioneering 

work on visual search discovered the so-called “pop-out effect”: for some targets, 

the search latency function is essentially flat. This indicated that the time to find 

a target is independent of the number of distractor elements in the display. This 

result was found for targets defined by a unique visual feature (e.g., colour, contrast, 

orientation, movement), which seemed to pop out of a display, automatically draw-

ing attention to the target (Treisman & Gelade, 1980). In contrast, the time to detect 

a target defined by a unique combination of features generally increases with the 

number of distractor items, producing search latency functions with positive slopes.

The second experimental finding that led to feature integration theory was the 

discovery of illusory conjunctions (Treisman & Schmidt, 1982). Illusory conjunc-

tions occur when features are mistakenly combined. For instance, subjects might 

be presented a red triangle and a green circle in a visual display but experience an 

illusory conjunction: a green triangle and a red circle.
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Feature integration theory arose to explain different kinds of search latency 

functions and illusory conjunctions. It assumes that vision begins with a first, non-

cognitive stage of feature detection in which separate maps for a small number of 

basic features, such as colour, orientation, size, or movement, record the presence 

and location of detected properties. If a target is uniquely defined in terms of pos-

sessing one of these features, then it will be the only source of activity in that feature 

map and will therefore pop out, explaining some of the visual search results.

A second stage of processing belongs properly to visual cognition. In this stage, 

a spotlight of attention is volitionally directed to a particular spot on a master map 

of locations. This attentional spotlight enables the visual system to integrate fea-

tures by bringing into register different feature maps at the location of interest. 

Different features present at that location can be conjoined together in a temporary 

object representation called an object file (Kahneman, Treisman, & Gibbs, 1992; 

Treisman, Kahneman, & Burkell, 1983). Thus in feature integration theory, search-

ing for objects defined by unique combinations of features requires a serial scan of 

the attentional spotlight from location to location, explaining the nature of search 

latency functions for such objects. This stage of processing also explains illusory 

conjunctions, which usually occur when the attentional processing is divided, 

impairing the ability of correctly combining features into object files.

A third stage of processing belongs to higher-order cognition. It involves using 

information about detected objects (i.e., features united in object files) as links to 

general knowledge of the world.

Conscious perception depends on temporary object representations in which the 

different features are collected from the dimensional modules and inter-related, 

then matched to stored descriptions in a long-term visual memory to allow recogni-

tion. (Treisman, 1988, p. 204)

Another proposal that relies on the notion of visual cognition concerns visual rou-

tines (Ullman, 1984). Ullman (1984) noted that the perception of spatial relations 

is central to visual processing. However, many spatial relations cannot be directly 

delivered by the parallel, data-driven processes postulated by natural computation-

alists, because these relations are not defined over entire scenes, but are instead 

defined over particular entities in scenes (i.e., objects or their parts). Furthermore, 

many of these relations must be computed using serial processing of the sort that is 

not proposed to be part of the networks that propagate natural constraints.

For example, consider determining whether some point x is inside a contour y. 

Ullman (1984) pointed out that there is little known about how the relation inside 

(x, y) is actually computed, and argued that it most likely requires serial process-

ing in which activation begins at x, spreading outward. It can be concluded that 

x is inside y if the spreading activation is contained by y. Furthermore, before 

inside (x, y) can be computed, the two entities, x and y, have to be individuated and 
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selected—inside makes no sense to compute without their specification. “What the 

visual system needs is a way to refer to individual elements qua token individuals” 

(Pylyshyn, 2003b, p. 207).

With such considerations in mind, Ullman (1984) developed a theory of visual 

routines that shares many of the general features of feature integration theory. In 

an initial stage of processing, data-driven processes deliver early representations 

of the visual scene. In the second stage, visual cognition executes visual routines 

at specified locations in the representations delivered by the first stage of process-

ing. Visual routines are built from a set of elemental operations and used to estab-

lish spatial relations and shape properties. Candidate elemental operations include 

indexing a salient item, spreading activation over a region, and tracing boundaries. 

A visual routine is thus a program, assembled out of elemental operations, which is 

activated when needed to compute a necessary spatial property. Visual routines are 

part of visual cognition because attention is used to select a necessary routine (and 

possibly create a new one), and to direct the routine to a specific location of interest. 

However, once the routine is activated, it can deliver its spatial judgment without 

requiring additional higher-order resources.

In the third stage, the spatial relations computed by visual cognition are linked, 

as in feature integration theory, to higher-order cognitive processes. Thus Ullman 

(1984) sees visual routines as providing an interface between the representations 

created by data-driven visual modules and the content-based, top-down processing 

of cognition. Such an interface permits data-driven and theory-driven processes to 

be combined, overcoming the limitations that such processes would face on their 

own.

Visual routines operate in the middle ground that, unlike the bottom-up creation of 

the base representations, is a part of the top-down processing and yet is independ-

ent of object-specific knowledge. Their study therefore has the advantage of going 

beyond the base representations while avoiding many of the additional complica-

tions associated with higher level components of the system. (Ullman, 1984, p. 119)

The example theories of visual cognition presented above are hybrid theories in the 

sense that they include both bottom-up and top-down processes, and they invoke 

attentional mechanisms as a link between the two. In the next section we see that 

Pylyshyn’s (2003b, 2007) theory of visual indexing is similar in spirit to these theo-

ries and thus exhibits their hybrid characteristics. However, Pylyshyn’s theory of 

visual cognition is hybrid in another important sense: it makes contact with classi-

cal, connectionist, and embodied cognitive science.

Pylyshyn’s theory of visual cognition is classical because one of the main prob-

lems that it attempts to solve is how to identify or re-identify individuated enti-

ties. Classical processing is invoked as a result, because “individuating and re-

identifying in general require the heavy machinery of concepts and descriptions” 
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(Pylyshyn, 2007, p. 32). Part of Pylyshyn’s theory of visual cognition is also connec-

tionist, because he appeals to non-classical mechanisms to deliver visual representa-

tions (i.e., natural computation), as well as to connectionist networks (in particular, 

to winner-take-all mechanisms; see Feldman & Ballard, 1982) to track entities after 

they have been individuated with attentional tags (Pylyshyn, 2001, 2003c). Finally, 

parts of Pylyshyn’s theory of visual cognition draw on embodied cognitive science. 

For instance, the reason that tracking element identities—solving the correspond-

ence problem—is critical is because Pylyshyn assumes a particular embodiment of 

the visual apparatus, a limited-order retina that cannot take in all information in 

a glance. Similarly, Pylyshyn uses the notion of cognitive scaffolding to account for 

the spatial properties of mental images.

8.6 Indexing Objects in the World

Pylyshyn’s theory of visual cognition began in the late 1970s with his interest in 

explaining how diagrams were used in reasoning (Pylyshyn, 2007). Pylyshyn and 

his colleagues attempted to investigate this issue by building a computer simulation 

that would build and inspect diagrams as part of deriving proofs in plane geometry.

From the beginning, the plans for this computer simulation made contact with 

two of the key characteristics of embodied cognitive science. First, the diagrams cre-

ated and used by the computer simulation were intended to be external to it and to 

scaffold the program’s geometric reasoning.

Since we wanted the system to be as psychologically realistic as possible we did not 

want all aspects of the diagram to be ‘in its head’ but, as in real geometry problem-

solving, remain on the diagram it was drawing and examining. (Pylyshyn, 2007, p. 10)

Second, the visual system of the computer was also assumed to be psychologically 

realistic in terms of its embodiment. In particular, the visual system was presumed 

to be a moving fovea that was of limited order: it could only examine the diagram in 

parts, rather than all at once.

We also did not want to assume that all properties of the entire diagram were 

available at once, but rather that they had to be noticed over time as the diagram 

was being drawn and examined. If the diagram were being inspected by moving 

the eyes, then the properties should be within the scope of the moving fovea. 

(Pylyshyn, 2007, p. 10)

These two intersections with embodied cognitive science—a scaffolding visual 

world and a limited order embodiment—immediately raised a fundamental infor-

mation processing problem. As different lines or vertices were added to a diagram, 

or as these components were scanned by the visual system, their different identi-

ties had to be maintained or tracked over time. In order to function as intended, 
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the program had to be able to assert, for example, that “this line observed here” 

is the same as “that line observed there” when the diagram is being scanned. In 

short, in considering how to create this particular system, Pylyshyn recognized that 

it required two core abilities: to be able to individuate visual entities, and to be able 

to track or maintain the identities of visual entities over time.

To maintain the identities of individuated elements over time is to solve the 

correspondence problem. How does one keep track of the identities of different 

entities perceived in different glances? According to Pylyshyn (2003b, 2007), the 

classical answer to this question must appeal to the contents of representations. To 

assert that some entity seen in a later glance was the same as one observed earlier, 

the descriptions of the current and earlier entities must be compared. If the descrip-

tions matched, then the entities should be deemed to be the same. This is called the 

image matching solution to the correspondence problem, which also dictates how 

entities must be individuated: they must be uniquely described, when observed, as 

a set of properties that can be represented as a mental description, and which can 

be compared to other descriptions.

Pylyshyn rejects the classical image matching solution to the correspondence 

problem for several reasons. First, multiple objects can be tracked as they move to 

different locations, even if they are identical in appearance (Pylyshyn & Storm, 1988). 

In fact, multiple objects can be tracked as their properties change, even when their 

location is constant and shared (Blaser, Pylyshyn, & Holcombe, 2000). These results 

pose problems for image matching, because it is difficult to individuate and track 

identical objects by using their descriptions!

Second, the poverty of the stimulus in a dynamic world poses severe challenges 

to image matching. As objects move in the world or as we (or our eyes) change posi-

tion, a distal object’s projection as a proximal stimulus will change properties, even 

though the object remains the same. “If objects can change their properties, we don’t 

know under what description the object was last stored” (Pylyshyn, 2003b, p. 205).

A third reason to reject image matching comes from the study of appar-

ent motion, which requires the correspondence problem to be solved before 

the illusion of movement between locations can be added (Dawson, 1991; 

Wright & Dawson, 1994). Studies of apparent motion have shown that motion cor-

respondence is mostly insensitive to manipulations of figural properties, such as 

shape, colour, or spatial frequency (Baro & Levinson, 1988; Cavanagh, Arguin, & von 

Grunau, 1989; Dawson, 1989; Goodman, 1978; Kolers, 1972; Kolers & Green, 1984; 

Kolers & Pomerantz, 1971; Kolers & von Grunau, 1976; Krumhansl, 1984; Navon, 

1976; Victor & Conte, 1990). This insensitivity to form led Nelson Goodman (1978, 

p. 78) to conclude that “plainly the visual system is persistent, inventive, and some-

times rather perverse in building a world according to its own lights.” One reason for 

this perverseness may be that the neural circuits for processing motion are largely 
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independent of those for processing form (Botez, 1975; Livingstone & Hubel, 1988; 

Maunsell & Newsome, 1987; Ungerleider & Mishkin, 1982).

A fourth reason to reject image matching is that it is a purely cognitive 

approach to individuating and tracking entities. “Philosophers typically assume 

that in order to individuate something we must conceptualize its relevant prop-

erties. In other words, we must first represent (or cognize or conceptualize) the 

relevant conditions of individuation” (Pylyshyn, 2007, p. 31). Pylyshyn rejected this 

approach because it suffers from the same core problem as the New Look: it lacks 

causal links to the world.

Pylyshyn’s initial exploration of how diagrams aided reasoning led to his reali-

zation that the individuation and tracking of visual entities are central to an account 

of how vision links us to the world. For the reasons just presented, he rejected a 

purely classical approach—mental descriptions of entities—for providing these 

fundamental abilities. He proposed instead a theory that parallels the structure of 

the examples of visual cognition described earlier. That is, Pylyshyn’s (2003b, 2007) 

theory of visual cognition includes a non-cognitive component (early vision), which 

delivers representations that can be accessed by visual attention (visual cognition), 

which in turn deliver representations that can be linked to general knowledge of the 

world (cognition).

On the one hand, the early vision component of Pylyshyn’s (2003b, 2007) theory 

of visual cognition is compatible with natural computation accounts of perception 

(Ballard, 1997; Marr, 1982). For Pylyshyn, the role of early vision is to provide causal 

links between the world and the perceiving agent without invoking cognition or 

inference: 

Only a highly constrained set of properties can be selected by early vision, or can 

be directly ‘picked up.’ Roughly, these are what I have elsewhere referred to as 

‘transducable’ properties. These are the properties whose detection does not require 

accessing memory and drawing inferences. (Pylyshyn, 2003b, p. 163)

The use of natural constraints to deliver representations such as the primal sketch 

and the 2½-D sketch is consistent with Pylyshyn’s view.

On the other hand, Pylyshyn (2003b, 2007) added innovations to traditional 

natural computation theories that have enormous implications for explanations of 

seeing and visualizing. First, Pylyshyn argued that one of the primitive processes 

of early vision is individuation—the picking out of an entity as being distinct from 

others. Second, he used evidence from feature integration theory and cognitive neu-

roscience to claim that individuation picks out objects, but not on the basis of their 

locations. That is, preattentive processes can detect elements or entities via primi-

tive features but simultaneously not deliver the location of the features, as is the case 

in pop-out. Third, Pylyshyn argued that an individuated entity—a visual object—is 

preattentively tagged by an index, called a FINST (“for finger instantiation”), which 
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can only be used to access an individuated object (e.g., to retrieve its properties 

when needed). Furthermore, only a limited number (four) of FINSTs are availa-

ble. Fourth, once assigned to an object, a FINST remains attached to it even as the 

object changes its location or other properties. Thus a primitive component of early 

vision is the solution of the correspondence problem, where the role of this solution 

is to maintain the link between FINSTs and dynamic, individuated objects.

The revolutionary aspect of FINSTs is that they are presumed to individuate 

and track visual objects without delivering a description of them and without fixing 

their location. Pylyshyn (2007) argued that this is the visual equivalent of the use 

of indexicals or demonstratives in language: “Think of demonstratives in natural 

language—typically words like this or that. Such words allow us to refer to things 

without specifying what they are or what properties they have” (p. 18). FINSTs are 

visual indices that operate in exactly this way. They are analogous to placing a finger 

on an object in the world, and, while not looking, keeping the finger in contact with 

it as the object moved or changed— thus the term finger instantiation. As long as 

the finger is in place, the object can be referenced (“this thing that I am pointing to 

now”), even though the finger does not deliver any visual properties.

There is a growing literature that provides empirical support for Pylyshyn’s 

FINST hypothesis. Many of these experiments involve the multiple object tracking 

paradigm (Flombaum, Scholl, & Pylyshyn, 2008; Franconeri et al., 2008; Pylyshyn, 

2006; Pylyshyn & Annan, 2006; Pylyshyn et al., 2008; Pylyshyn & Storm, 1988; 

Scholl, Pylyshyn, & Feldman, 2001; Sears & Pylyshyn, 2000). In the original version 

of this paradigm (Pylyshyn & Storm, 1988), subjects were shown a static display 

made up of a number of objects of identical appearance. A subset of these objects 

blinked for a short period of time, indicating that they were to-be-tracked targets. 

Then the blinking stopped, and all objects in the display began to move indepen-

dently and randomly for a period of about ten seconds. Subjects had the task of 

tracking the targets, with attention only; a monitor ended trials in which eye move-

ments were detected. At the end of a trial, one object blinked and subjects had to 

indicate whether or not it was a target.

The results of this study (see Pylyshyn & Storm, 1988) indicated that subjects 

could simultaneously track up to four independently moving targets with high 

accuracy. Multiple object tracking results are explained by arguing that FINSTs are 

allocated to the flashing targets prior to movement, and objects are tracked by the 

primitive mechanism that maintains the link from visual object to FINST. This link 

permits subjects to judge targethood at the end of a trial.

The multiple object tracking paradigm has been used to explore some of the 

basic properties of the FINST mechanism. Analyses indicate that this process is 

parallel, because up to four objects can be tracked, and tracking results cannot be 

explained by a model that shifts a spotlight of attention serially from target to target 
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(Pylyshyn & Storm, 1988). However, the fact that no more than four targets can be 

tracked also shows that this processing has limited capacity. FINSTs are assigned 

to objects, and not locations; objects can be tracked through a location-less fea-

ture space (Blase, Pylyshyn, & Holcombe, 2000). Using features to make the objects 

distinguishable from one another does not aid tracking, and object properties 

can actually change during tracking without subjects being aware of the changes 

(Bahrami, 2003; Pylyshyn, 2007). Thus FINSTs individuate and track visual objects 

but do not deliver descriptions of the properties of the objects that they index.

Another source of empirical support for the FINST hypothesis comes from stud-

ies of subitizing (Trick & Pylyshyn, 1993, 1994). Subitizing is a phenomenon in which 

the number of items in a set of objects (the cardinality of the set) can be effortlessly 

and rapidly detected if the set has four or fewer items (Jensen, Reese, & Reese, 1950; 

Kaufman et al., 1949). Larger sets cannot be subitized; a much slower process is 

required to serially count the elements of larger sets. Subitizing necessarily requires 

that the items to be counted are individuated from one another. Trick and Pylyshyn 

(1993, 1994) hypothesized that subitizing could be accomplished by the FINST 

mechanism; elements are preattentively individuated by being indexed, and count-

ing simply requires accessing the number of indices that have been allocated.

Trick and Pylyshyn (1993, 1994) tested this hypothesis by examining subitizing 

in conditions in which visual indexing was not possible. For instance, if the objects 

in a set are defined by conjunctions of features, then they cannot be preattentively 

FINSTed. Importantly, they also cannot be subitized. In general, subitizing does not 

occur when the elements of a set that are being counted are defined by properties 

that require serial, attentive processing in order to be detected (e.g., sets of concen-

tric contours that have to be traced in order to be individuated; or sets of elements 

defined by being on the same contour, which also require tracing to be identified).

At the core of Pylyshyn’s (2003b, 2007) theory of visual cognition is the claim 

that visual objects can be preattentively individuated and indexed. Empirical sup-

port for this account of early vision comes from studies of multiple object tracking 

and of subitizing. The need for such early visual processing comes from the goal of 

providing causal links between the world and classical representations, and from 

embodying vision in such a way that information can only be gleaned a glimpse at a 

time. Thus Pylyshyn’s theory of visual cognition, as described to this point, has char-

acteristics of both classical and embodied cognitive science. How does the theory 

make contact with connectionist cognitive science? The answer to this question 

comes from examining Pylyshyn’s (2003b, 2007) proposals concerning preattentive 

mechanisms for individuating visual objects and tracking them. The mechanisms 

that Pylyshyn proposed are artificial neural networks.

For instance, Pylyshyn (2000, 2003b) noted that a particular type of artificial 

neural network, called a winner-take-all network (Feldman & Ballard, 1982), is 
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ideally suited for preattentive individuation. Many versions of such a network have 

been proposed to explain how attention can be automatically drawn to an object 

or to a distinctive feature (Fukushima, 1986; Gerrissen, 1991; Grossberg, 1980; 

Koch & Ullman, 1985; LaBerge Carter, & Brown, 1992; Sandon, 1992). In a win-

ner-take-all network, an array of processing units is assigned to different objects 

or to feature locations. For instance, these processors could be distributed across 

the preattentive feature maps in feature integration theory (Treisman, 1988; 

Treisman & Gelade, 1980). Typically, a processor will have an excitatory connection 

to itself and will have inhibitory connections to its neighbouring processors. This 

pattern of connectivity results in the processor that receives the most distinctive 

input becoming activated and at the same time turning off its neighbours.

That such mechanisms might be involved in individuation is supported by results 

that show that the time course of visual search can be altered by visual manipulations 

that affect the inhibitory processing of such networks (Dawson & Thibodeau, 1998). 

Pylyshyn endorses a modified winner-take-all network as a mechanism for indi-

viduation; the modification permits an object indexed by the network to be inter-

rogated in order to retrieve its properties (Pylyshyn, 2000).

Another intersection between Pylyshyn’s (2003b, 2007) theory of visual cogni-

tion and connectionist cognitive science comes from his proposals about preatten-

tive tracking. How can such tracking be accomplished without the use of image 

matching? Again, Pylyshyn noted that artificial neural networks, such as those that 

have been proposed for solving the motion correspondence problem (Dawson, 1991; 

Dawson, Nevin-Meadows, & Wright, 1994; Dawson & Pylyshyn, 1988; Dawson & 

Wright, 1994), would serve as tracking mechanisms. This is because such models 

belong to the natural computation approach and have shown how tracking can pro-

ceed preattentively via the exploitation of natural constraints that are implemented 

as patterns of connectivity amongst processing units.

Furthermore, Dawson (1991) has argued that many of the regularities that 

govern solutions to the motion correspondence problem are consistent with the 

hypothesis that solving this problem is equivalent to tracking assigned visual tags. 

For example, consider some observations concerning the location of motion cor-

respondence processing and attentional tracking processes in the brain. Dawson 

argued that motion correspondence processing is most likely performed by neurons 

located in Area 7 of the parietal cortex, on the basis of motion signals transmit-

ted from earlier areas, such as the motion-sensitive area MT. Area 7 of the parietal 

cortex is also a good candidate for the locus of tracking of individuated entities.

First, many researchers have observed cells that appear to mediate object track-

ing in Area 7, such as visual fixation neurons and visual tracking neurons. Such cells 

are not evident earlier in the visual pathway (Goldberg & Bruce, 1985; Hyvarinen & 

Poranen, 1974; Lynch et al., 1977; Motter & Mountcastle, 1981; Robinson, Goldberg, 
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& Stanton, 1978; Sakata et al., 1985).

Second, cells in this area are also governed by extraretinal (i.e., attentional) 

influences—they respond to attended targets, but not to unattended targets, 

even when both are equally visible (Robinson, Goldberg, & Stanton, 1978). This is 

required of mechanisms that can pick out and track targets from identically shaped 

distractors, as in a multiple object tracking task.

Third, Area 7 cells that appear to be involved in tracking appear to be able to 

do so across sensory modalities. For instance, hand projection neurons respond to 

targets to which hand movements are to be directed and do not respond when either 

the reach or the target are present alone (Robinson Goldberg, & Stanton, 1978). 

Similarly, there exist many Area Y cells that respond during manual reaching, 

tracking, or manipulation, and which also have a preferred direction of reaching 

(Hyvarinen & Poranen, 1974). Such cross-modal coordination of tracking is criti-

cal, because as we see in the next section, Pylyshyn’s (2003b, 2007) theory of visual 

cognition assumes that indices can be applied, and tracked, in different sensory 

modalities, permitting seeing agents to point at objects that have been visually 

individuated.

The key innovation and contribution of Pylyshyn’s (2003b, 2007) theory of visual 

cognition is the proposal of preattentive individuation and tracking. This proposal 

can be seamlessly interfaced with related proposals concerning visual cognition. 

For instance, once objects have been tagged by FINSTs, they can be operated on by 

visual routines (Ullman, 1984, 2000). Pylyshyn (2003b) pointed out that in order to 

execute, visual routines require such individuation: 

The visual system must have some mechanism for picking out and referring to par-

ticular elements in a display in order to decide whether two or more such elements 

form a pattern, such as being collinear, or being inside, on, or part of another ele-

ment, so on. Pylyshyn (2003b, pp. 206–207)

In other words, visual cognition can direct attentional resources to FINSTed entities.

Pylyshyn’s (2003b, 2007) theory of visual cognition also makes contact with 

classical cognition. He noted that once objects have been tagged, the visual system 

can examine their spatial properties by applying visual routines or using focal 

attention to retrieve visual features. The point of such activities by visual cogni-

tion would be to update descriptions of objects stored as object files (Kahneman, 

Treisman, & Gibbs, 1992). The object file descriptions can then be used to make con-

tact with the semantic categories of classical cognition. Thus the theory of visual 

indexing provides a causal grounding of visual concepts: 

Indexes may serve as the basis for real individuation of physical objects. While 

it is clear that you cannot individuate objects in the full-blooded sense without a 

conceptual apparatus, it is also clear that you cannot individuate them with only 
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a conceptual apparatus. Sooner or later concepts must be grounded in a primitive 

causal connection between thoughts and things. (Pylyshyn, 2001, p. 154) 

It is the need for such grounding that has led Pylyshyn to propose a theory of visual 

cognition that includes characteristics of classical, connectionist, and embodied 

cognitive science.

8.7 Situation, Vision, and Action

Why is Pylyshyn’s (2003b, 2007) proposal of preattentive visual indices important? 

It has been noted that one of the key problems facing classical cognitive science is 

that it needs some mechanism for referring to the world that is preconceptual, and 

that the impact of Pylyshyn’s theory of visual cognition is that it provides an account 

of exactly such a mechanism (Fodor, 2009). How this is accomplished is sketched 

out in Figure 8-8, which provides a schematic of the various stages in Pylyshyn’s 

theory of visual cognition.

Figure 8-8. Pylyshyn’s theory of preattentive visual indexing provides referential 

links from object files to distal objects in the world.

The initial stages of the theory posit causal links from distal objects arrayed in space 

in a three-dimensional world and mental representations that are produced from 

these links. The laws of optics and projective geometry begin by creating a proximal 

stimulus—a pattern of stimulation on the retina—that is uniquely determined, but 

because of the problem of underdetermination cannot be uniquely inverted. The 

problem of underdetermination is initially dealt with by a variety of visual modules 
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that compose early vision, and which use natural constraints to deliver unique and 

useful representations of the world (e.g., the primal sketch and the 2½-D sketch). 

Pylyshyn’s theory of visual cognition elaborates Marr’s (1982) natural computa-

tion view of vision. In addition to using Marr’s representations, Pylyshyn claims 

that early vision can individuate visual objects by assigning them one of a limited 

number of tags (FINSTs). Furthermore, preattentive processes permit these tags 

to remain attached, even if the properties of the tagged objects change. This result 

of early vision is illustrated in Figure 8-8 as the sequences of solid arrows that link 

each visual object to its own internal FINST.

Once objects have been individuated by the assignment of visual indi-

ces, the operations of visual cognition can be applied (Treisman, 1986, 1988; 

Ullman, 1984, 2000). Attention can be directed to individuated elements, permitting 

visual properties to be detected or spatial relations amongst individuated objects to 

be computed. The result is that visual cognition can be used to create a description 

of an individuated object in its object file (Kahneman, Treisman, & Gibbs, 1992). As 

shown in Figure 8-8, visual cognition has created an internal object file for each of 

the three distal objects involved in the diagram.

Once object files have been created, general knowledge of the world—isotropic 

cognitive processes (Fodor, 1983) can be exploited. Object files can be used to access 

classical representations of the world, permitting semantic categories to be applied 

to the visual scene.

However, object files permit another important function in Pylyshyn’s theory 

of visual cognition because of the preattentive nature of the processes that created 

them: a referential link from an object file to a distal object in the world. This is 

possible because the object files are associated with FINSTs, and the FINSTs them-

selves were the end product of a causal, non-cognitive chain of events: 

An index corresponds to two sorts of links or relations: on the one hand, it corre-

sponds to a causal chain that goes from visual objects to certain tokens in the rep-

resentation of the scene being built (perhaps an object file), and on the other hand, 

it is also a referential relationship that enables the visual system to refer to those 

particular [visual objects]. The second of these functions is possible because the 

first one exists and has the right properties. (Pylyshyn, 2003b, p. 269) 

The referential links back to the distal world are illustrated as the dashed lines in 

Figure 8-8.

The availability of the referential links provides Pylyshyn’s theory of visual cog-

nition (2003b, 2007) with distinct advantages over a purely classical model. Recall 

that a top-down model operates by creating and maintaining internal descrip-

tions of distal objects. It was earlier noted that one problem with this approach is 

that the projected information from an object is constantly changing, in spite of 

the fact that the object’s identity is constant. This poses challenges for solving the 
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correspondence problem by matching descriptions. However, this also leads a classi-

cal model directly into what is known as the frame problem (Ford & Pylyshyn, 1996; 

Pylyshyn, 1987). The frame problem faces any system that has to update classical 

descriptions of a changing world. This is because as a property changes, a classical 

system must engage in a series of deductions to determine the implications of the 

change. The number of possible deductions is astronomical, resulting in the com-

putational intractability of a purely descriptive system.

The referential links provide a solution to the frame problem. This is because 

the tracking of a FINSTed object and the perseverance of the object file for that 

object occur without the need of constantly updating the object’s description. The 

link between the FINST and the world is established via the causal link from the 

world through the proximal stimulus to the operation of early vision. The exist-

ence of the referential link permits the contents of the object file to be refreshed or 

updated—not constantly, but only when needed. “One of the purposes of a tag was 

to allow the visual system to revisit the tagged object to encode some new property” 

(Pylyshyn, 2003b, p. 208).

The notion of revisiting an indexed object in order to update the contents of 

an object file when needed, combined with the assumption that visual processing is 

embodied in such a way to be of limited order, link Pylyshyn’s (2003b, 2007) theory 

of visual cognition to a different theory that is central to embodied cognitive science, 

enactive perception (Noë, 2004). Enactive perception realizes that the detailed phe-

nomenal experience of vision is an illusion because only a small amount of visual 

information is ever available to us (Noë, 2002). Enactive perception instead views 

perception as a sensorimotor skill that can access information in the world when it 

is needed. Rather than building detailed internal models of the world, enactive per-

ception views the world as its own representation (Noë, 2009); we don’t encode an 

internal model of the world, we inspect the outer world when required or desired. 

This account of enactive perception mirrors the role of referential links to the distal 

world in Pylyshyn’s theory of visual cognition.

Of course, enactive perception assumes much more than information in the 

world is accessed, and not encoded. It also assumes that the goal of perception is to 

guide bodily actions upon the world. “Perceiving is a way of acting. Perception is not 

something that happens to us, or in us. It is something we do” (Noë, 2004, p. 1). This 

view of perception arises because enactive perception is largely inspired by Gibson’s 

(1966, 1979) ecological approach to perception. Actions on the world were central to 

Gibson. He proposed that perceiving agents “picked up” the affordances of objects 

in the world, where an affordance is a possible action that an agent could perform 

on or with an object.

Actions on the world (ANCHORs) provide a further link between Pylyshyn’s 

(2003b, 2007) theory of visual cognition and enactive perception, and consequently 
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with embodied cognitive science. Pylyshyn’s theory also accounts for such actions, 

because FINSTs are presumed to exist in different sensory modalities. In particular, 

ANCHORs are analogous to FINSTs and serve as indices to places in motor-com-

mand space, or in proprioceptive space (Pylyshyn, 1989). The role of ANCHORs is 

to serve as indices to which motor movements can be directed. For instance, in the 

1989 version of his theory, Pylyshyn hypothesized that ANCHORs could be used to 

direct the gaze (by moving the fovea to the ANCHOR) or to direct a pointer.

The need for multimodal indexing is obvious because we can easily point at 

what we are looking at. Conversely, if we are not looking at something, it cannot 

be indexed, and therefore cannot be pointed to as accurately. For instance, when 

subjects view an array of target objects in a room, close their eyes, and then imag-

ine viewing the objects from a novel vantage point (a rotation from their origi-

nal position), their accuracy in pointing to the targets decreases (Rieser, 1989). 

Similarly, there are substantial differences between reaches towards visible objects 

and reaches towards objects that are no longer visible but are only present through 

imagery or memory (Goodale, Jakobson, & Keillor, 1994). Likewise, when subjects 

reach towards an object while avoiding obstacles, visual feedback is exploited to 

optimize performance; when visual feedback is not available, the reaching behav-

iour changes dramatically (Chapman & Goodale, 2010).

In Pylyshyn’s (2003b, 2007) theory of visual cognition, coordination between 

vision and action occurs via interactions between visual and motor indices, which 

generate mappings between the spaces of the different kinds of indices. Requiring 

transformations between spatial systems makes the location of indexing and track-

ing mechanisms in parietal cortex perfectly sensible. This is because there is a great 

deal of evidence suggesting that parietal cortex instantiates a variety of spatial map-

pings, and that one of its key roles is to compute transformations between different 

spatial representations (Andersen et al., 1997; Colby & Goldberg, 1999; Merriam, 

Genovese, & Colby, 2003; Merriam & Colby, 2005). One such transformation could 

produce coordination between visual FINSTs and motor ANCHORs.

One reason that Pylyshyn’s (2003b, 2007) theory of visual cognition is also con-

cerned with visually guided action is his awareness of Goodale’s work on visuomo-

tor modules (Goodale, 1988, 1990, 1995; Goodale & Humphrey, 1998; Goodale et al., 

1991), work that was introduced earlier in relation to embodied cognitive science. 

The evidence supporting Goodale’s notion of visuomotor modules clearly indi-

cates that some of the visual information used to control actions is not available 

to isotropic cognitive processes, because it can affect actions without requiring or 

producing conscious awareness. It seems very natural, then, to include motor indi-

ces (i.e., ANCHORs) in a theory in which such tags are assigned and maintained 

preattentively.
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The discussion in this section would seem to place Pylyshyn’s (2003b, 2007) 

theory of visual cognition squarely in the camp of embodied cognitive science. 

Referential links between object files and distal objects permit visual information 

to be accessible without requiring the constant updating of descriptive representa-

tions. The postulation of indices that can guide actions and movements and the 

ability to coordinate these indices with visual tags place a strong emphasis on action 

in Pylyshyn’s approach.

However, Pylyshyn’s theory of visual cognition has many properties that make 

it impossible to pigeonhole as an embodied position. In particular, a key difference 

between Pylyshyn’s theory and enactive perception is that Pylyshyn does not believe 

that the sole goal of vision is to guide action. Vision is also concerned with descrip-

tions and concepts—the classical cognition of represented categories: 

Preparing for action is not the only purpose of vision. Vision is, above all, a way 

to find out about the world, and there may be many reasons why an intelligent 

organism may wish to know about the world, apart from wanting to act upon it. 

(Pylyshyn, 2003b, p. 133)

8.8 Scaffolding the Mental Image

In Chapter 3 we introduced the imagery debate, which concerns two different 

accounts of the architectural properties of mental images. One account, known 

as the depictive theory (Kosslyn, 1980, 1994; Kosslyn, Thompson, & Ganis, 2006), 

argues that we experience the visual properties of mental images because the format 

of these images is quasi-pictorial, and that they literally depict visual information.

The other account, propositional theory, proposes that images are not depic-

tive, but instead describe visual properties using a logical or propositional represen-

tation (Pylyshyn, 1973, 1979b, 1981a, 2003b). It argues that the privileged properties 

of mental images proposed by Kosslyn and his colleagues are actually the result of 

the intentional fallacy: the spatial properties that Kosslyn assigns to the format of 

images should more properly be assigned to their contents.

The primary support for the depictive theory has come from relative complex-

ity evidence collected from experiments on image scanning (Kosslyn, 1980) and 

mental rotation (Shepard & Cooper, 1982). This evidence generally shows a linear 

relationship between the time required to complete a task and a spatial property 

of an image transformation. For instance, as the distance between two locations on 

an image increases, so too does the time required to scan attention from one loca-

tion to the other. Similarly, as the amount of rotation that must be applied to an 

image increases, so too does the time required to judge that the image is the same 

or different from another. Proponents of propositional theory have criticized these 
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results by demonstrating that they are cognitively penetrable (Pylyshyn, 2003c): a 

change in tacit information eliminates the linear relationship between time and 

image transformation, which would not be possible if the depictive properties of 

mental images were primitive.

If a process such as image scanning is cognitively penetrable, then this means 

that subjects have the choice not to take the time to scan attention across the 

image. But this raises a further question: “Why should people persist on using this 

method when scanning entirely in their imagination where the laws of physics 

and the principles of spatial scanning do not apply (since there is no real space)?” 

(Pylyshyn, 2003b, p. 309). Pylyshyn’s theory of visual cognition provides a possible 

answer to this question that is intriguing, because it appeals to a key proposal of the 

embodied approach: cognitive scaffolding.

Pylyshyn’s scaffolding approach to mental imagery was inspired by a general 

research paradigm that investigated whether visual processing and mental imagery 

shared mechanisms. In such studies, subjects superimpose a mental image over 

other information that is presented visually, in order to see whether the different 

sources of information can interact, for instance by producing a visual illusion 

(Bernbaum & Chung, 1981; Finke & Schmidt, 1977; Goryo, Robinson, & Wilson, 1984; 

Ohkuma, 1986). This inspired what Pylyshyn (2007) called the index projection 

hypothesis. This hypothesis brings Pylyshyn’s theory of visual cognition into con-

tact with embodied cognitive science, because it invokes cognitive scaffolding via 

the visual world.

According to the index projection hypothesis, mental images are scaffolded by 

visual indices that are assigned to real world (i.e., to visually present) entities. For 

instance, consider Pylyshyn’s (2003b) application of the index projection hypothesis 

to the mental map paradigm used to study image scanning: 

If, for example, you imagine the map used to study mental scanning superimposed 

over one of the walls in the room you are in, you can use the visual features of 

the wall to anchor various objects in the imagined map. In this case, the increase 

in time it takes to access information from loci that are further apart is easily 

explained since the ‘images,’ or, more neutrally, ‘thoughts’ of these objects are actu-

ally located further apart. (Pylyshyn, 2003b, p. 376, p. 374)

In other words, the spatial properties revealed in mental scanning studies are not 

due to mental images per se, but instead arise from “the real spatial nature of the 

sensory world onto which they are ‘projected’” (p. 374).

If the index projection hypothesis is valid, then how does it account for mental 

scanning results when no external world is visible? Pylyshyn argued that in such con-

ditions, the linear relationship between distance on an image and the time to scan it 

may not exist. For instance, evidence indicates that when no external information is 

visible, smooth attentional scanning may not be possible (Pylyshyn & Cohen, 1999). 
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As well, the exploration of mental images is accompanied by eye movements similar 

to those that occur when a real scene is explored (Brandt & Stark, 1997). Pylyshyn 

(2007) pointed out that this result is exactly what would be predicted by the index 

projection hypothesis, because the eye movements would be directed to real world 

entities that have been assigned visual indices.

The cognitive scaffolding of mental images may not merely concern their 

manipulation, but might also be involved when images are created. There is a long 

history of the use of mental images in the art of memory (Yates, 1966). One impor-

tant technique is the ancient method of loci, in which mental imagery is used to 

remember a sequence of ideas (e.g., ideas to be presented in a speech).

The memory portion of the Rhetorica ad Herrenium, an anonymous text that 

originated in Rome circa 86 BC and reached Europe by the Middle Ages, teaches 

the method of loci as follows. A well-known building is used as a “wax tablet” onto 

which memories are to be “written.” As one mentally moves, in order, through the 

rooms of the building, one places an image representing some idea or content in each 

locus—that is, in each imagined room. During recall, one mentally walks through 

the building again, and “sees” the image stored in each room. “The result will be that, 

reminded by the images, we can repeat orally what we have committed to the loci, 

proceeding in either direction from any locus we please” (Yates, 1966, p. 7).

In order for the method of loci to be effective, a great deal of effort must be 

used to initially create the loci to be used to store memories (Yates, 1966). Ancient 

rules of memory taught students the most effective way to do this. According to the 

Rhetorica ad Herrenium, each fifth locus should be given a distinguishing mark. A 

locus should not be too similar to the others, in order to avoid confusion via resem-

blance. Each locus should be of moderate size and should not be brightly lit, and 

the intervals between loci should also be moderate (about thirty feet). Yates (1966, 

p. 8) was struck by “the astonishing visual precision which [the classical rules of 

memory] imply. In a classically trained memory the space between the loci can be 

measured, the lighting of the loci is allowed for.”

How was such a detailed set of memory loci to be remembered? The student 

of memory was taught to use what we would now call cognitive scaffolding. They 

should lay down a set of loci by going to an actual building, and by literally moving 

through it from locus to locus, carefully committing each place to memory as they 

worked (Yates, 1966). Students were advised to visit secluded buildings in order 

to avoid having their memorization distracted by passing crowds. The Phoenix, 

a memory manual published by Peter of Ravenna in 1491, recommended visiting 

unfrequented churches for this reason. These classical rules for the art of memory 

“summon up a vision of a forgotten social habit. Who is that man moving slowly in 

the lonely building, stopping at intervals with an intent face? He is a rhetoric stu-

dent forming a set of memory loci” (Yates, 1966, p. 8).
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According to the index projection hypothesis, “by anchoring a small number 

of imagined objects to real objects in the world, the imaginal world inherits much 

of the geometry of the real world” (Pylyshyn, 2003b, p. 378). The classical art of 

memory, the method of loci, invokes a similar notion of scaffolding, attempting not 

only to inherit the real world’s geometry, but to also inherit its permanence.

8.9 The Bounds of Cognition

The purpose of this chapter was to introduce Pylyshyn’s (2003b, 2007) theory of 

visual cognition. This theory is of interest because different aspects of it make con-

tact with classical, connectionist, or embodied cognitive science.

The classical nature of Pylyshyn’s theory is found in his insistence that part 

of the purpose of vision is to make contact with perceptual categories that can be 

involved in general cognitive processing (e.g., inference and problem solving). The 

connectionist nature of Pylyshyn’s theory is found in his invocation of artificial 

neural networks as the mechanisms for assigning and tracking indices as part of 

early vision. The embodied nature of Pylyshyn’s theory is found in referential links 

between object files and distal objects, the use of indices to coordinate vision and 

action, and the use of indices and of referential links to exploit the external world as 

a scaffold for seeing and visualizing.

However, the hybrid nature of Pylyshyn’s theory of visual cognition presents us 

with a different kind of puzzle. How is this to be reconciled with Pylyshyn’s posi-

tion as a champion of classical cognitive science and as a critic of connectionist 

(Fodor & Pylyshyn, 1988) and embodied (Fodor & Pylyshyn, 1981) traditions? The 

answer to this question is that when Pylyshyn writes of cognition, this term has 

a very technical meaning that places it firmly in the realm of classical cognitive 

science, and which—by this definition—separates it from both connectionist and 

embodied cognitive science.

Recall that Pylyshyn’s (2003b, 2007) theory of visual cognition was motivated 

in part by dealing with some of the problems facing purely cognitive theories of 

perception such as the New Look. His solution was to separate early vision from 

cognition and to endorse perceptual mechanisms that solve problems of underde-

termination without requiring inferential processing.

I propose a distinction between vision and cognition in order to try to carve nature 

at her joints, that is, to locate components of the mind/brain that have some princi-

pled boundaries or some principled constraints in their interactions with the rest of 

the mind. (Pylyshyn, 2003b, p. 39)

The key to the particular “carving” of the system in his theory is that early vision, 

which includes preattentive mechanisms for individuating and tracking objects, 
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does not do so by using concepts, categories, descriptions, or inferences. Time and 

again in his accounts of seeing and visualizing, Pylyshyn describes early vision as 

being “preconceptual” or “non-conceptual.”

This is important because of Pylyshyn’s (1984) characterization of the levels of 

analysis of cognitive science. Some of the levels of analysis that he invoked—in par-

ticular, the implementational and algorithmic levels—are identical to those levels 

as discussed in Chapter 2 in this volume. However, Pylyshyn’s version of the compu-

tational level of analysis is more restrictive than the version that was also discussed 

in that earlier chapter.

For Pylyshyn (1984), a computational-level analysis requires a cognitive vocab-

ulary. A cognitive vocabulary captures generalizations by appealing to the contents 

of representations, and it also appeals to lawful principles governing these contents 

(e.g., rules of inference, the principle of rationality). “The cognitive vocabulary is 

roughly similar to the one used by what is undoubtedly the most successful predic-

tive scheme available for human behavior—folk psychology” (p. 2).

When Pylyshyn (2003b, 2007) separates early vision from cognition, he is pro-

posing that the cognitive vocabulary cannot be productively used to explain early 

vision, because early vision is not cognitive, it is preconceptual. Thus it is no acci-

dent that when his theory of visual cognition intersects connectionist and embodied 

cognitive science, it does so with components that are part of Pylyshyn’s account of 

early vision. Connectionism and embodiment are appropriate in this component 

of Pylyshyn’s theory because his criticism of these approaches is that they are not 

cognitive, because they do not or cannot use a cognitive vocabulary!
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Towards a Cognitive Dialectic 

9.0 Chapter Overview

In the philosophy of G. W. F. Hegel, ideas developed by following a dialectical pro-

gression. They began as theses that attempted to explain some truth; deficien-

cies in theses permitted alternative ideas to be formulated. These alternatives, or 

antitheses, represented the next stage of the progression. A final stage, synthesis, 

approached truth by creating an emergent combination of elements from theses 

and antitheses. It has been argued that cognitive science provides an example of a 

dialectical progression. The current chapter begins by casting classical cognitive sci-

ence as the thesis and considering both connectionist cognitive science and embod-

ied cognitive science as viable antitheses. This argument is supported by reviewing 

some of the key differences amongst these three approaches. What remains is con-

sidering whether synthesis of these various approaches is possible.

Some of the arguments from previous chapters, including the possibility of 

hybrid accounts of cognition, are used to support the claim that synthesis in cog-

nitive science is possible, though it has not yet been achieved. It is further argued 

that one reason synthesis has been impeded is because modern cognitivism, which 

exemplifies the classical approach, arose as a violent reaction against behaviour-

ist psychology. Some of the core elements of cognitive antitheses, such as exploit-

ing associations between ideas as well as invoking environmental control, were 

also foundations of the behaviourist school of thought. It is suggested that this has 

9
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worked against synthesis, because exploring such ideas has the ideological impact 

of abandoning the cognitive revolution.

In this chapter I then proceed to consider two approaches for making the com-

pletion of a cognitive dialectic more likely. One approach is to consider the suc-

cesses of the natural computation approach to vision, which developed influential 

theories that reflect contributions of all three approaches to cognitive science. It 

was able to do so because it had no ideological preference of one approach over the 

others. The second approach is for classical cognitive science to supplement its ana-

lytical methodologies with forward engineering. It is argued that such a synthetic 

methodology is likely to discover the limits of a “pure” paradigm, producing a ten-

sion that may only be resolved by exploring the ideas espoused by other positions 

within cognitive science.

9.1 Towards a Cognitive Dialectic

A dialectic involves conflict which generates tension and is driven by this ten-

sion to a state of conflict resolution (McNeill, 2005). According to philosopher 

G. W. F. Hegel (1931), ideas evolve through three phases: thesis, antithesis, and syn-

thesis. Different approaches to the study of cognition can be cast as illustrating a 

dialectic (Sternberg, 1999).

Dialectical progression depends upon having a critical tradition that allows current 

beliefs (theses) to be challenged by alternative, contrasting, and sometimes even 

radically divergent views (antitheses), which may then lead to the origination of 

new ideas based on the old (syntheses). (Sternberg, 1999, p. 52)

The first two aspects of a dialectic, thesis and antithesis, are easily found throughout 

the history of cognitive science. Chapters 3, 4, and 5 present in turn the elements 

of classical, connectionist, and embodied cognitive science. I have assigned both 

connectionist and embodied approaches with the role of antitheses to the classi-

cal thesis that defined the earliest version of cognitive science. One consequence 

of antitheses arising against existing theses is that putative inadequacies of the 

older tradition are highlighted, and the differences between the new and the old 

approaches are emphasized (Norman, 1993). Unsurprisingly, it is easy to find differ-

ences between the various cognitive sciences and to support the position that cogni-

tive science is fracturing in the same way that psychology did in the early twentieth 

century. The challenge to completing the dialectic is exploring a synthesis of the 

different cognitive sciences.

One kind of tool that is becoming popular for depicting and organizing large 

amounts of information, particularly for various Internet sites, is the tag cloud or 

word cloud (Dubinko et al., 2007). A word cloud is created from a body of text; it 
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summarizes that text visually by using size, colour, and font. Typically, the more fre-

quently a term appears in a text, the larger is its depiction in a word cloud. The goal 

of a word cloud is to summarize a document in a glance. As a way to illustrate con-

trasts between classical, connectionist, and embodied cognitive sciences, I compare 

word clouds created for each of chapters 3, 4, and 5. Figure 9-1 presents the word 

cloud generated for Chapter 3 on classical cognitive science. Note that it highlights 

words that are prototypically classical, such as physical, symbol, system, language, 

grammar, information, expression, as well as key names like Turing and Newell.

Figure 9-1. Word cloud generated from the text of Chapter 3 on classical cognitive 

science.

An alternative word cloud emerges from Chapter 4 on connectionist cognitive 

science, as shown in Figure 9-2. This word cloud picks out key connectionist ele-

ments such as network, input, hidden, output, units, connections, activity, learn-

ing, weights, and neural; names found within the cloud are McCulloch, Berkeley, 

Rescorla-Wagner, and Rumelhart. Interestingly, the words connectionist and clas-

sical are equally important in this cloud, probably reflecting the fact that connec-

tionist properties are typically introduced by contrasting them with (problematic) 

classical characteristics. The word clouds in Figures 9-1 and 9-2 differ strikingly 

from one another.

A third word cloud that is very different from the previous two is provided in 

Figure 9-3, which was compiled from Chapter 5 on embodied cognitive science. The 

words that it highlights include behaviour, world, environment, control, agent, robot, 

body, nature, extended, and mind; names captured include Grey Walter, Clark, and 

Ashby. Once again, embodied and classical are both important terms in the chapter, 
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reflecting that the embodied approach is an antithesis to the classical thesis, and is 

often presented in direct contrast to classical cognitive science.

 Figure 9-2. Word cloud generated from the text of Chapter 4 on connectionist 

cognitive science.

Figure 9-3. Word cloud generated from the text of Chapter 4 on embodied 

cognitive science.
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Another way to illustrate the differences between the different approaches to 

cognitive science is to consider a set of possible dimensions or features and to char-

acterize each approach to cognitive science in terms of each dimension. Table 9-1 

presents one example of this manoeuvre. The dimensions used in this table—core 

ideas, preferred formalism, tacit assumption, and so on—were selected because I 

viewed them as being important, but the list of these features could be extended.

Classical Cognitive 
Science

Connectionist 
Cognitive Science

Embodied 
Cognitive Science

Core Ideas Mind as a physical 

symbol system

Mind as digital 

computer

Mind as planner

Mind as creator 

and manipulator of 

models of the world

Mind as sense-think-

act processing

Mind as information 

processor, but not as 

a digital computer

Mind as a parallel 

computer

Mind as pattern 

recognizer

Mind as a statistical 

engine

Mind as biologically 

plausible mechanism

Mind as controller 

of action

Mind emerging 

from situation and 

embodiment, or 

being-in-the-world 

Mind as extending 

beyond skull into 

world

Mind as sense-act 

processing

Preferred 

Formalism

Symbolic logic Nonlinear 

optimization

Dynamical systems 

theory

Tacit 

Assumption

Nativism, naïve 

realism

Empiricism Embodied 

interaction

Type of 

Processing

Symbol manipulation Pattern recognition Acting on the world

Prototypical 

Architecture

Production system 

(Newell, 1973)

Multilayer perceptron 

(Rumelhart et al., 

1986b)

Behaviour-based 

robot (Brooks, 1989)

Prototypical 

Domain

Language

Problem solving

Discrimination 

learning

Perceptual 

categorization

Locomotion

Social interaction
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Classical Cognitive 
Science

Connectionist 
Cognitive Science

Embodied 
Cognitive Science

Philosophical 

Roots

Hobbes

Descartes

Leibniz

Craik

Aristotle

Locke

Hume

James

Vico

Dewey

Heidegger

Merleau-Ponty

Some Key 

Modern 

Theorists

Chomsky

Dennett

Fodor

Pylyshyn

J.A. Anderson

Hinton

Kohonen

McClelland

Brooks

Clark

Noë

Wilson

Some 

Pioneering 

Works

Plans And The 

Structure Of Behavior 

(Miller et al., 1960)

Aspects Of The 

Theory Of Syntax 

(Chomsky, 1965)

Human Problem 

Solving (Newell & 

Simon, 1972)

Principles Of 

Neurodynamics 

(Rosenblatt, 1962)

Parallel Models Of 

Associative Memory 

(Hinton & Anderson, 

1981)

Parallel Distributed 

Processing 

(McClelland & 

Rumelhart, 1986; 

Rumelhart & 

McClelland, 1986c)

Cognition 

And Reality 

(Neisser, 1976)

The Ecological 

Approach To 

Visual Perception 

(Gibson, 1979)

Understanding 

Computers 

And Cognition 

(Winograd & 

Flores, 1987b)

Table 9-1. Contrasts between the three schools of thought in cognitive science.

An examination of Table 9-1 once again reveals marked differences between the 

three approaches as described in this volume. Other features could be added to this 

table, but I suspect that they too would reveal striking differences between the three 

views of cognitive science, and would be less likely to reveal striking similarities.

The illustrations so far—with the word clouds and with the table—definitely 

point towards the existence of theses and antitheses. An obvious tension exists 

within cognitive science. How might a synthesis be achieved to alleviate this 
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tension? One approach to achieving synthesis in the cognitive dialectic may involve 

considering why the differences highlighted in Table 9-1 have arisen.

One context for considering Table 9-1 is the Indian fable of the six blind men 

and the elephant, the subject of a famous nineteenth-century poem by John Godfrey 

Saxe (Saxe, 1868). Each blind man feels a different part of the elephant, and comes 

away with a very different sense of the animal. The one who touched the tusk likens 

an elephant to a spear, the one who felt the knee compares the animal to a tree, the 

one who grabbed the tail likens it to a rope, and so on. After each has explored their 

part of the elephant, they reconvene to discuss its nature, and find that each has a 

dramatically different concept of the animal. The result is a heated, and ultimately 

unresolved, dispute: “And so these men of Indostan / Disputed loud and long, / Each 

in his own opinion / Exceeding stiff and strong, / Though each was partly in the right, 

/ And all were in the wrong!” (p. 260).

To apply the moral of this story to the differences highlighted in Table 9-1, it is 

possible that the different approaches to cognitive science reflect differences that 

arise because each pays attention to different aspects of cognition, and none directs 

its attention to the complete picture. This view is consistent with one characteriza-

tion of cognitive science that appeared at the cusp of the connectionist revolution 

(Norman, 1980).

Norman (1980) characterized a mature classical cognitive science that had 

decomposed human cognition into numerous information processing subsystems 

that defined what Norman called the pure cognitive system. The core of the pure 

cognitive system was a physical symbol system.

Norman’s (1980) concern, though, was that the classical study of the pure cog-

nitive system was doomed to fail because it, like one of the blind men, was paying 

attention to only one component of human cognition. Norman, prior to the rise of 

either connectionist or embodied cognitive science, felt that more attention had to 

be paid to the biological mechanisms and the surrounding environments of cogni-

tive agents.

The human is a physical symbol system, yes, with a component of pure cognition 

describable by mechanisms. . . . But the human is more: the human is an ani-

mate organism, with a biological basis and an evolutionary and cultural history. 

Moreover, the human is a social animal, interacting with others, with the envi-

ronment, and with itself. The core disciplines of cognitive science have tended to 

ignore these aspects of behavior. (Norman, 1980, pp. 2–4)

Norman (1980) called for cognitive scientists to study a variety of issues that would 

extend their focus beyond the study of purely classical cognition. This included 

returning to a key idea of cybernetics, feedback between agents and their environ-

ments. “The concept has been lost from most of cognitive studies, in part because 

of the lack of study of output and of performance” (p. 6). For Norman, cognitive 
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science had to consider “different aspects of the entire system, including the parts 

that are both internal and external to the cognizer” (p. 9).

Norman’s (1980) position points out one perspective for unifying the diversity 

illustrated in Table 9-1: recognize that each school of cognitive science is, like each 

blind man in the fable, investigating an incomplete aspect of cognition and take 

advantage of this by combining these different perspectives. “I believe in the value of 

multiple philosophies, multiple viewpoints, multiple approaches to common issues. 

I believe a virtue of Cognitive Science is that it brings together heretofore disparate 

disciplines to work on common themes” (pp. 12–14).

One illustration of the virtue of exploring multiple viewpoints in the study of 

single topics is Norman’s own work on design (Norman, 1998, 2002, 2004). Another 

illustration is the hybrid theory of seeing and visualizing (Pylyshyn, 2003c, 2007) 

described in Chapter 8, which draws on all three approaches to cognitive science in 

an attempt to arrive at a more complete account of a broad and diverse topic. The 

key to such successful examples is the acknowledgment that there is much to be 

gained from a co-operative view of different approaches; there is no need to view 

each approach to cognitive science as being mutually exclusive competitors.

9.2 Psychology, Revolution, and Environment

Norman (1980) called for cognitive science to extend its domain beyond the investi-

gation of pure cognition, suggesting, for example, a return to some of the topics that 

were central to cybernetics, such as feedback between agents and environments. 

This was not the first time that such a suggestion had been made.

Twenty years earlier, in Plans and the Structure of Behavior (Miller et al., 1960), 

cognitive psychologist George Miller, mathematical psychologist Eugene Galanter, 

and neuropsychologist Karl Pribram argued for cognitivism to revisit the contribu-

tions of cybernetics. The reason for this was that Miller, Galanter, and Pribram, like 

Norman, were worried that if cognitivism focused exclusively on mental representa-

tions, then it would be incomplete. Such a perspective “left an organism more in the 

role of a spectator than of a participant in the drama of living. Unless you can use 

your Image to do something, you are like a man who collects maps but never makes 

a trip” (p. 2).

A related perspective was the theme of another key work that preceded Norman 

(1980), Ulric Neisser’s (1976) Cognition and Reality. Neisser, an eminent pioneer of 

cognitivism (Neisser, 1967), argued that the relevance of cognitive psychology required 

it to be concerned with factors that lay beyond mental representations. “Perception 

and cognition are usually not just operations in the head, but transactions with the 

world. These transactions do not merely inform the perceiver, they also transform 

him” (Neisser, 1976, p. 11). Rather than being inspired by cybernetics, Neisser was 
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interested in reformulating cognitivism in the context of Gibson’s (1966, 1979) theory 

of ecological perception. “Because perception and action take place in continuous 

dependence on the environment, they cannot be understood without an understand-

ing of that environment itself ” (Neisser, 1976, p. 183).

It would appear, then, that there is an extended history of important cognitiv-

ists calling for cognitive science to extend itself beyond the study of what Norman 

(1980) called the pure cognitive system. It is equally clear that this message has not 

had the desired impact. For instance, had the main theme of Miller, Galanter, and 

Pribram (1960) been widely accepted, then there would have been no need for simi-

lar proposals to appear decades later, as with Neisser (1976) and Norman (1980).

Why has cognitive science stubbornly held firm to the classical approach, 

emphasizing the study of pure cognition? One possible answer to this question is 

that the development of cognitivism in one of cognitive science’s key contributors, 

psychology, occurred in a combative context that revealed thesis and antithesis but 

was not conducive to synthesis. This answer is considered in more detail below.

It is often claimed that cognitive science is chiefly concerned with the human 

cognitive capacities (Gardner, 1984; von Eckardt, 1995). Ironically, the one disci-

pline that would be expected to have the most to say about human mental phenom-

ena—experimental psychology—was one of the last to accept cognitivism. This was 

because around the time cognitive science emerged, experimental psychology was 

dominated by behaviourism.

Behaviourists argued that a scientific psychology must restrict itself to the 

study of observable behaviour and avoid invoking theoretical constructs that could 

not be directly observed, such as mental representation.

So long as behaviorism held sway—that is, during the 1920s, 1930s, and 1940s—

questions about the nature of human language, planning, problem solving, imagi-

nation and the like could only be approached stealthily and with difficulty, if they 

were tolerated at all. (Gardner, 1984, p. 12)

Other disciplines were quicker to endorse cognitivism and to draw upon the insights 

of diverse fields of study because they were not restricted by the behaviourist yoke. 

For instance, mathematician Norbert Wiener (1948) created the field of cybernet-

ics after realizing that problems involving communication, feedback, and informa-

tion were general enough to span many disciplines. He held “the conviction that 

the most fruitful areas for the growth of the sciences were those which had been 

neglected as a no-man’s land between the various fields” (p. 8).

Wiener realized that progress in cybernetics required interaction between 

researchers trained in different disciplines. He was a key organizer of the first 

joint meeting concerning cybernetics, held at Princeton in 1944, which included 

engineers, physiologists, and mathematicians. This in turn led to the Macy confer-

ences on cybernetics that occurred regularly from 1946 through 1953 (Conway & 
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Siegelman, 2005). The Macy conferences broadened the range of participants who 

attended the 1944 Princeton meeting to include psychologists, sociologists, and 

anthropologists.

The success of the Macy meetings prepared the way for a variety of similar inter-

disciplinary conferences that in turn set the stage for cognitive science. One of these 

was a 1956 conference organized by MIT’s Special Interest Group in Information 

Theory. This conference included presentations by Newell and Simon on their logic 

machine, and by Chomsky on generative grammar (Miller, 2003). Thus conference 

participant George Miller, trained in the behaviourist tradition, would have heard 

computer scientists and linguists freely using representational terms to great effect.

The success of cognitivism in other disciplines, communicated to psycholo-

gists who participated in these interdisciplinary conferences, led to a reaction 

against behaviourism in psychology. “No longer were psychologists restricted in 

their explanatory accounts to events that could either be imposed on a subject or 

observed in one’s behavior; psychologists were now willing to consider the repre-

sentation of information in the mind” (Gardner, 1984, p. 95).

George Miller (2003) has provided a personal account of this transition. His 

first book, Language and Communication (Miller, 1951), deliberately employed a 

behaviourist framework, a framework that he would completely abandon within a 

few years because of the influence of the cognitivist work of others. “In 1951, I appar-

ently still hoped to gain scientific respectability by swearing allegiance to behav-

iorism. Five years later, inspired by such colleagues as Noam Chomsky and Jerry 

Bruner, I had stopped pretending to be a behaviorist” (Miller, 2003, p. 141).

However, because cognitivism arose as a reaction against behaviourism in 

North American experimental psychology, cognitive psychology developed by 

taking an antagonistic approach to almost all of the central behaviourist posi-

tions (Bruner, 1990; Sperry, 1993). “We were not out to ‘reform’ behaviorism, but to 

replace it” said Bruner (1990, p. 3). In psychology, the cognitive revolution,

was not one of finding new positives to support the important role of cognition, 

many of which were already long evident. Rather, the story is one of discovering an 

alternative logic by which to refute the seemingly incontestable reasoning that here-

tofore required science to ostracize mind and consciousness. (Sperry, 1993, p. 881) 

Consider but one example that illustrates the tone within psychology during the 

cognitive revolution. Skinner’s (1957) account of language, Verbal Behavior, elicited 

a review by Noam Chomsky (1959b) that serves as one of the pioneering articles 

in cognitivism and is typically viewed as the turning point against psychological 

behaviourism (MacCorquodale, 1970; Schlinger, 2008). Some researchers, though, 

have objected to the tone of Chomsky’s review: “It is ungenerous to a fault; conde-

scending, unforgiving, obtuse, and ill-humored” (MacCorquodale, 1970, p. 84).
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On the other side of the antagonism, behaviourists have never accepted the 

impact of Chomsky’s review or the outcome of the cognitive revolution. Schlinger 

(2008, p. 335) argued that fifty years after its publication, Verbal Behavior (and 

behaviourism) was still vital because it worked: “It seems absurd to suggest 

that a book review could cause a paradigmatic revolution or wreak all the havoc 

that Chomsky’s review is said to have caused to Verbal Behavior or to behavioral 

psychology.”

The tone of the debate about Verbal Behavior is indicative of the tension and 

conflict that characterized cognitivism’s revolt against behaviourist psychology. As 

noted earlier, cognitivists such as Bruner viewed their goal as replacing, and not 

revising, behaviourist tenets: “It was not a revolution against behaviorism with 

the aim of transforming behaviorism into a better way of pursuing psychology 

by adding a little mentalism to it. Edward Tolman had done that, to little avail” 

(Bruner, 1990, p. 2).

One behaviourist position that was strongly reacted against by cognitivism 

“was the belief in the supremacy and the determining power of the environment” 

(Gardner, 1984, p. 11). Cognitive psychologists turned almost completely away from 

environmental determinism. Instead, humans were viewed as active information 

processors (Lindsay & Norman, 1972; Reynolds & Flagg, 1977). For instance, the 

New Look in perception was an argument that environmental stimulation could 

be overridden by the contents of beliefs, desires, and expectations (Bruner, 1957). In 

cognitivism, mind triumphed over environmental matter.

Cognitive psychology’s radical rejection of the role of the environment was a 

departure from the earlier cybernetic tradition, which placed a strong emphasis on 

the utility of feedback between an agent and its world. Cyberneticists had argued 

that,

for effective action on the outer world, it is not only essential that we possess good 

effectors, but that the performance of these effectors be properly monitored back 

to the central nervous system, and that the readings of these monitors be properly 

combined with the other information coming in from the sense organs to produce a 

properly proportioned output to the effectors. (Wiener, 1948, p. 114)

Some cognitivists still agreed with the view that the environment was an important 

contributor to the complexity of behaviour, as shown by Simon’s parable of the ant 

(Simon, 1969; Vera & Simon, 1993). Miller, Galanter, and Pribram (1960) acknowl-

edged that humans and other organisms employed internal representations of the 

world. However, they were also “disturbed by a theoretical vacuum between cog-

nition and action” (p. 11). They attempted to fill this vacuum by exploring the rel-

evance of key cybernetic ideas, particularly the notion of environmental feedback, 

to cognitive psychology.
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However, it is clear that Miller, Galanter, and Pribram’s (1960) message about 

the environment had little substantive impact. Why else would Norman (1980) be 

conveying the same message twenty years later? It is less clear why this was the 

case. One possibility is that as cognitivism took root in experimental psychology, 

and as cognitive psychology in turn influenced empirical research within cognitive 

science, interest in the environment was a minority position. Cognitive psychology 

was clearly in a leading position to inform cognitive science about its prototypical 

domain (i.e., adult human cognition; see von Eckardt, 1995). Perhaps this informing 

included passing along antagonist views against core behaviourist ideas.

Of course, cognitive psychology’s antagonism towards behaviourism and 

the behaviourist view of the environment is not the only reason for cognitive sci-

ence’s rise as a classical science. Another reason is that cognitive science was not so 

much inspired by cybernetics, but was instead inspired by computer science and 

the implications of the digital computer. Furthermore, the digital computer that 

inspired cognitive science—the von Neumann architecture, or the stored-program 

computer (von Neumann, 1993)—was a device that was primarily concerned with 

the manipulation of internal representations.

Finally, the early successes in developing classical models of a variety of high-

level cognitive phenomena such as problem solving (Newell et al., 1958; Newell & 

Simon, 1961, 1972), and of robots that used internal models to plan before execut-

ing actions on the world (Nilsson, 1984), were successes achieved without worrying 

much about the relationship between world and agent. Sense-think-act processing, 

particularly the sort that heavily emphasized thinking or planning, was promising 

new horizons for the understanding of human cognition. Alternative approaches, 

rooted in older traditions of cybernetics or behaviourism, seemed to have been com-

pletely replaced.

One consequence of this situation was that cognitive science came to be defined 

in a manner that explicitly excluded non-classical perspectives. For example, con-

sider von Eckardt’s (1995) attempt to characterize cognitive science. Von Eckardt 

argued that this can be done by identifying a set of domain-specifying assumptions, 

basic research questions, substantive assumptions, and methodological assump-

tions. Importantly, the specific members of these sets that von Eckardt identified 

reflect a prototypical classical cognitive science and seem to exclude both connec-

tionist and embodied varieties.

Consider just one feature of von Eckardt’s (1995) project. She began by speci-

fying the identification assumption for cognitive science—its assumed domain of 

study. According to von Eckardt, the best statement of this assumption is to say 

that cognitive science’s domain is human cognitive capacities. Furthermore, her dis-

cussion of this assumption—and of possible alternatives to it—rejects non-classical 

variants of cognitive science.
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For instance, Simon’s (1969) early consideration of the sciences of the artificial 

cast intelligence as being the ability to adapt behaviour to changing demands of the 

environment. Von Eckardt (1995) considered this idea as being a plausible alterna-

tive to her preferred identification assumption. However, her analysis of Simon’s 

proposal can be dismissed because it is too broad: “for there are cases of adaptive 

behavior (in Simon’s sense) mediated by fairly low-level biological mechanisms 

that are not in the least bit cognitive and, hence, do not belong within the domain 

of cognitive science” (p. 62). This view would appear to reject connectionism as 

being cognitive science, in the sense that it works upward from low-level biological 

mechanisms (Dawson, 2004) and that connectionism rejects the classical use of an 

explanatory cognitive vocabulary (Fodor & Pylyshyn, 1988; Smolensky, 1988).

Similarly, von Eckardt (1995) also rejected an alternative to her definition of 

cognitive science’s identification assumption, which would include in cognitive sci-

ence the study of core embodied issues, such as cognitive scaffolding.

Human beings represent and use their ‘knowledge’ in many ways, only some of 

which involve the human mind. What we know is represented in books, pictures, 

computer databases, and so forth. Clearly, cognitive science does not study the rep-

resentation and the use of knowledge in all these forms. (von Eckardt, 1995, p. 67) 

If cognitive science does not study external representations, then by von Eckardt’s 

definition the embodied approach does not belong to cognitive science.

The performance of classical simulations of human cognitive processes led 

researchers to propose in the late 1950s that within a decade most psychological theo-

ries would be expressed as computer programs (Simon & Newell, 1958). The classical 

approach’s failure to deliver on such promises led to pessimism (Dreyfus, 1992), which 

resulted in critical assessments of the classical assumptions that inspired alternative 

approaches (Rumelhart & McClelland, 1986c; Winograd & Flores, 1987b). The pre-

occupation of classical cognitivism with the manipulation of internal models of the 

world may have prevented it from solving problems that depend on other factors, 

such as a cybernetic view of the environment.

As my colleague George Miller put it some years later, ‘We nailed our new credo to 

the door, and waited to see what would happen. All went very well, so well, in fact, 

that in the end we may have been the victims of our success.’ (Bruner, 1990, pp. 2–3)

How has classical cognitivism been a victim of its success? Perhaps its success 

caused it to be unreceptive to completing the cognitive dialectic. With the rise of 

the connectionist and embodied alternatives, cognitive science seems to have been 

in the midst of conflict between thesis and antithesis, with no attempt at synthesis. 

Fortunately there are pockets of research within cognitive science that can illustrate 

a path towards synthesis, a path which requires realizing that each of the schools of 

thought we have considered here has its own limits, and that none of these schools 
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of thought should be excluded from cognitive science by definition. One example 

domain in which synthesis is courted is computational vision.

9.3 Lessons from Natural Computation

To sighted human perceivers, visual perception seems easy: we simply look and see. 

Perhaps this is why pioneers of computer vision took seeing for granted. One stu-

dent of Marvin Minsky was assigned—as a summer project—the task of program-

ming vision into a computer (Horgan, 1993). Only when such early projects were 

attempted, and had failed, did researchers realize that the visual system was effort-

lessly solving astronomically difficult information processing problems.

Visual perception is particularly difficult when one defines its goal as the con-

struction of internal models of the world (Horn, 1986; Marr, 1976, 1982; Ullman, 

1979). Such representations, called distal stimuli, must make explicit the three-

dimensional structure of the world. However, the information from which the distal 

stimulus is constructed—the proximal stimulus—is not rich enough to uniquely 

specify 3-D structure. As discussed in Chapter 8, the poverty of proximal stimuli 

underdetermines visual representations of the world. A single proximal stimulus is 

consistent with, in principle, an infinitely large number of different world models. 

The underdetermination of vision makes computer vision such a challenge to arti-

ficial intelligence researchers because information has to be added to the proximal 

stimulus to choose the correct distal stimulus from the many that are possible.

The cognitive revolution in psychology led to one approach for dealing with this 

problem: the New Look in perception proposed that seeing is a form of problem 

solving (Bruner, 1957, 1992; Gregory, 1970, 1978; Rock, 1983). General knowledge of 

the world, as well as beliefs, expectations, and desires, were assumed to contribute 

to our visual experience of the world, providing information that was missing from 

proximal stimuli.

The New Look also influenced computer simulations of visual perception. 

Knowledge was loaded into computer programs to be used to guide the analysis of 

visual information. For instance, knowledge of the visual appearance of the com-

ponents of particular objects, such as an air compressor, could be used to guide the 

segmentation of a raw image of such a device into meaningful parts (Tenenbaum& 

Barrow, 1977). That is, the computer program could see an air compressor by exploit-

ing its pre-existing knowledge of what it looked like. This general approach—using 

pre-existing knowledge to guide visual perception—was widespread in the computer 

science literature of this era (Barrow & Tenenbaum, 1975). Barrow and Tenenbaum’s 

(1975) review of the state of the art at that time concluded that image segmentation 
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was a low-level interpretation that was guided by knowledge, and they argued that 

the more knowledge the better.

Barrow and Tenenbaum’s (1975) review described a New Look within computer 

vision: 

Higher levels of perception could involve partitioning the picture into ‘mean-

ingful’ regions, based on models of particular objects, classes of objects, likely 

events in the world, likely configurations, and even on nonvisual events. Vision 

might be viewed as a vast, multi-level optimization problem, involving a 

search for the best interpretation simultaneously over all levels of knowledge. 

(Barrow & Tenenbaum, 1975, p. 2)

However, around the same time a very different data-driven alternative to computer 

vision emerged (Waltz, 1975).

Waltz’s (1975) computer vision system was designed to assign labels to regions 

and line segments in a scene produced by drawing lines and shadows. “These labels 

describe the edge geometry, the connection or lack of connection between adjacent 

regions, the orientation of each region in three dimensions, and the nature of the 

illumination for each region” (p. 21). The goal of the program was to assign one and 

only one label to each part of a scene that could be labelled, except in cases where a 

human observer would find ambiguity.

Waltz (1975) found that extensive, general knowledge of the world was not 

required to assign labels. Instead, all that was required was a propagation of local 

constraints between neighbouring labels. That is, if two to-be-labelled segments 

were connected by a line, then the segments had to be assigned consistent labels. 

Two ends of a line segment could not be labelled in such a way that one end of the 

line would be given one interpretation and the other end a different interpreta-

tion that was incompatible with the first. Waltz found that this approach was very 

powerful and could be easily applied to novel scenes, because it did not depend on 

specialized, scene-specific knowledge. Instead, all that was required was a method 

to determine what labels were possible for any scene location, followed by a method 

for comparisons between possible labels, in order to choose unique and compatible 

labels for neighbouring locations.

The use of constraints to filter out incompatible labels is called relaxation 

labelling (Rosenfeld, Hummel, & Zucker, 1976); as constraints propagate through 

neighbouring locations in a representation, the representation moves into a stable, 

lower-energy state by removing unnecessary labels. The discussion of solving 

Sudoku problems in Chapter 7 illustrates an application of relaxation labelling. 

Relaxation labelling proved to be a viable data-driven approach to dealing with 

visual underdetermination.
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Relaxation labelling was the leading edge of a broad perspective for understand-

ing vision. This was the natural computation approach to vision (Hildreth, 1983; 

Marr, 1976, 1982; Marr & Hildreth, 1980; Marr & Nishihara, 1978; Marr, Palm, & Poggio, 

1978; Marr & Poggio, 1979; Marr & Ullman, 1981; Richards, 1988; Ullman, 1979). 

Researchers who endorse the natural computation approach to vision use naïve 

realism to solve problems of underdetermination. They hypothesize that the visual 

world is intrinsically structured, and that some of this structure is true of any 

visual scene. They assume that a visual system that has evolved in such a struc-

tured world is able to take advantage of these visual properties to solve problems of 

underdetermination.

The properties of interest to natural computation researchers are called natu-

ral constraints. A natural constraint is a property of the visual world that is almost 

always true of any location in any scene. For example, a great many visual prop-

erties of three-dimensional scenes (depth, texture, colour, shading, motion) vary 

smoothly. This means that two locations very near one another in a scene are very 

likely to have very similar values for any of these properties. Locations that are fur-

ther apart will not be as likely to have similar values for these properties.

Natural constraints can be used to solve visual problems of underdetermination 

by imposing restrictions on scene interpretations. Natural constraints are properties 

that must be true of an interpretation of a visual scene. They can therefore be used 

to filter out interpretations consistent with the proximal stimulus but not consistent 

with the natural constraint. For example, an interpretation of a scene that violated 

the smoothness constraint, because its visual properties did not vary smoothly in the 

sense described earlier, could be automatically rejected and never experienced.

The natural computation approach triumphed because it was able to identify 

a number of different natural constraints for solving a variety of visual problems of 

underdetermination (for many examples, see Marr, 1982). As in the scene labelling 

approach described above, the use of natural constraints did not require scene-spe-

cific knowledge. Natural computation researchers did not appeal to problem solv-

ing or inference, in contrast to the knowledge-based models of an earlier generation 

(Barrow & Tenenbaum, 1975; Tenenbaum & Barrow, 1977). This was because natural 

constraints could be exploited using data-driven algorithms, such as neural net-

works. For instance, one can exploit natural constraints for scene labelling by using 

processing units to represent potential labels and by defining natural constraints 

between labels using the connection weights between processors (Dawson, 1991). 

The dynamics of the signals sent through this network will turn on the units for 

labels consistent with the constraints and turn off all of the other units.

In the context of the current discussion of the cognitive sciences, the natu-

ral computation approach to vision offers an interesting perspective on how a 

useful synthesis of divergent perspectives is possible. This is because the natural 



 Towards a Cognitive Dialectic  415

computation approach appeals to elements of classical, connectionist, and embod-

ied cognitive science.

Initially, the natural computation approach has strong classical characteristics. 

It views visual perception as a prototypical representational phenomenon, endors-

ing sense-think-act processing.

The study of vision must therefore include not only the study of how to extract from 

images the various aspects of the world that are useful to us, but also an inquiry 

into the nature of the internal representations by which we capture this informa-

tion and thus make it available as a basis for decisions about our thoughts and 

actions. (Marr, 1982, p. 3) 

Marr’s theory of early vision proposed a series of different kinds of representations 

of visual information, beginning with the raw primal sketch and ending with the 

2½-D sketch that represented the three-dimensional locations of all visible points 

and surfaces.

However representational it is, though, the natural computation approach is 

certainly not limited to the study of what Norman (1980) called the pure cogni-

tive system. For instance, unlike New Look theories of human perception, natural 

computation theories paid serious attention to the structure of the world. Indeed, 

natural constraints are not psychological properties, but are instead properties of 

the world. They are not identified by performing perceptual experiments, but are 

instead discovered by careful mathematical analyses of physical structures and 

their optical projections onto images. “The major task of Natural Computation is a 

formal analysis and demonstration of how unique and correct interpretations can 

be inferred from sensory data by exploiting lawful properties of the natural world” 

(Richards, 1988, p. 3). The naïve realism of the natural computation approach forced 

it to pay careful attention to the structure of the world.

In this sense, the natural computation approach resembles a cornerstone of 

embodied cognitive science, Gibson’s (1966, 1979) ecological theory of perception. 

Marr (1982) himself saw parallels between his natural computation approach and 

Gibson’s theory, but felt that natural computation addressed some flaws in ecologi-

cal theory. Marr’s criticism was that Gibson rejected the need for representation, 

because Gibson underestimated the complexity of detecting invariants: “Visual 

information processing is actually very complicated, and Gibson was not the only 

thinker who was misled by the apparent simplicity of the act of seeing” (p. 30). In 

Marr’s view, detecting visual invariants required exploiting natural constraints 

to build representations from which invariants could be detected and used. For 

instance, detecting the invariants available in a key Gibsonian concept, the optic 

flow field, requires applying smoothness constraints to local representations of 

detected motion (Hildreth, 1983; Marr, 1982).
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Strong parallels also exist between the natural computation approach and con-

nectionist cognitive science, because natural computation researchers were highly 

motivated to develop computer simulations that were biologically plausible. That 

is, the ultimate goal of a natural computation theory was to provide computational, 

algorithmic, and implementational accounts of a visual process. The requirement 

that a visual algorithm be biologically implementable results in a preference for 

parallel, co-operative algorithms that permit local constraints to be propagated 

through a network. As a result, most natural computation theories can be translated 

into connectionist networks.

How is it possible for the natural computation approach to endorse elements 

of each school of thought in cognitive science? In general, this synthesis of ideas 

is the result of a very pragmatic view of visual processing. Natural computation 

researchers recognize that “pure” theories of vision will be incomplete. For instance, 

Marr (1982) argued that vision must be representational in nature. However, he also 

noted that these representations are impossible to understand without paying seri-

ous attention to the structure of the external world.

Similarly, Marr’s (1982) book, Vision, is a testament to the extent of visual inter-

pretation that can be achieved by data-driven processing. However, data-driven 

processes cannot deliver a complete visual interpretation. At some point—when, 

for instance, the 2½-D sketch is linked to a semantic category—higher-order cogni-

tive processing must be invoked. This openness to different kinds of processing is 

why a natural computation researcher such as Shimon Ullman can provide ground-

breaking work on an early vision task such as computing motion correspondence 

matches (1979) and also be a pioneer in the study of higher-order processes of visual 

cognition (1984, 2000).

The search for biologically plausible algorithms is another example of the prag-

matism of the natural computation approach. Classical theories of cognition have 

been criticized as being developed in a biological vacuum (Clark, 1989). In contrast, 

natural computation theories have no concern about eliminating low-level biologi-

cal accounts from their theories. Instead, the neuroscience of vision is used to inform 

natural computation algorithms, and computational accounts of visual processing 

are used to provide alternative interpretations of the functions of visual neurons. 

For instance, it was only because of his computational analysis of the requirements 

of edge detection that Marr (1982) was able to propose that the centre-surround 

cells of the lateral geniculate nucleus were convolving images with difference-of-

Gaussian filters.

The pragmatic openness of natural computation researchers to elements 

of the different approaches to cognitive science seems to markedly contrast with 

the apparent competition that seems to characterize modern cognitive science 

(Norman, 1993). One account of this competition might be to view it as a conflict 
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between scientific paradigms (Kuhn, 1970). From this perspective, some antago-

nism between perspectives is necessary, because newer paradigms are attempting to 

show how they are capable of replacing the old and of solving problems beyond the 

grasp of the established framework. If one believes that they are engaged in such an 

endeavour, then a fervent and explicit rejection of including any of the old paradigm 

within the new is to be expected.

According to Kuhn (1970), a new paradigm will not emerge unless a crisis has 

arisen in the old approach. Some may argue that this is exactly the case for classical 

cognitive science, whose crises have been identified by its critics (Dreyfus, 1972, 1992), 

and which have led to the new connectionist and embodied paradigms. However, it 

is more likely that it is premature for paradigms of cognitive science to be battling 

one another, because cognitive science may very well be pre-paradigmatic, in search 

of a unifying body of belief that has not yet been achieved.

The position outlined in Chapter 7, that it is difficult to identify a set of core 

tenets that distinguish classical cognitive science from the connectionist and the 

embodied approaches, supports this view. Such a view is also supported by the exist-

ence of approaches that draw on the different “paradigms” of cognitive science, such 

as the theory of seeing and visualizing (Pylyshyn, 2003c, 2007) discussed in Chapter 

8, and the natural computation theory of vision. If cognitive science were not pre-

paradigmatic, then it should be easy to distinguish its different paradigms, and 

theories that draw from different paradigms should be impossible.

If cognitive science is pre-paradigmatic, then it is in the process of identifying 

its core research questions, and it is still deciding upon the technical requirements 

that must be true of its theories. My suspicion is that a mature cognitive science will 

develop that draws on core elements of all three approaches that have been studied. 

Cognitive science is still in a position to heed the call of a broadened cognitivism 

(Miller, Galanter, & Pribram, 1960; Norman, 1980). In order to do so, rather than 

viewing its current approaches as competing paradigms, it would be better served 

by adopting the pragmatic approach of natural computation and exploiting the 

advantages offered by all three approaches to cognitive phenomena.

9.4 A Cognitive Synthesis

Modern experimental psychology arose around 1860 (Fechner, 1966), and more 

than a century and a half later is viewed by many as still being an immature, pre-

paradigmatic discipline (Buss, 1978; Leahey, 1992). The diversity of its schools of 

thought and the breadth of topics that it studies are a testament to experimental 

psychology’s youth as a science. “In the early stages of the development of any sci-

ence different men confronting the same range of phenomena, but not usually all 
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the same particular phenomena, describe and interpret them in different ways” 

(Kuhn, 1970, p. 17).

Cognitive science was born in 1956 (Miller, 2003). Because it is about a century 

younger than experimental psychology, it would not be surprising to discover that 

cognitive science is also pre-paradigmatic. This might explain the variety of opin-

ions about the nature of cognition, introduced earlier as the competing elements 

of classical, connectionist, and embodied cognitive science. “The pre-paradigm 

period, in particular, is regularly marked by frequent and deep debates over legiti-

mate methods, problems, and standards of solution, though these serve rather to 

define schools than produce agreement” (Kuhn, 1970, pp. 47–48).

The current state of cognitive science defines an as yet incomplete dialectic. 

Competition amongst classical, connectionist, and embodied cognitive science 

reflects existing tensions between thesis and antithesis. What is missing is a state 

of synthesis in which cognitive science integrates key ideas from its competing 

schools of thought. This integration is necessary, because it is unlikely that, for 

instance, a classical characterization of the pure cognitive system will provide a 

complete explanation of cognition (Miller, Galanter, & Pribram, 1960; Neisser, 1976; 

Norman, 1980).

In the latter chapters of the current book, several lines of evidence are presented 

to suggest that synthesis within cognitive science is possible. First, it is extremely dif-

ficult to find marks of the classical, that is, characteristics that uniquely distinguish 

classical cognitive science from either the connectionist or embodied approaches. 

For instance, classical cognitive science was inspired by the digital computer, but a 

variety of digital computers incorporated processes consistent with connectionism 

(such as parallel processing) and with embodied cognitive science (such as external 

representations).

A second line of evidence is that there is a high degree of methodological simi-

larity between the three approaches. In particular, each school of cognitive science 

can be characterized as exploring four different levels of investigation: computa-

tional, algorithmic, architectural, and implementational. We see in Chapter 6 that 

the different approaches have disagreements about the technical details within each 

level. Nevertheless, all four levels are investigated by all three approaches within 

cognitive science. Furthermore, when different approaches are compared at each 

level, strong similarities can be identified. This is why, for instance, that it has been 

claimed that the distinction between classical and connectionist cognitive science is 

blurred (Dawson, 1998).

A third line of evidence accounts for the methodological similarity amongst the 

different approaches: cognitive scientists from different schools of thought share 

many core assumptions. Though they may disagree about its technical details, all 

cognitive scientists view cognition as a form of information processing. For instance, 
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each of the three schools of thought appeals to the notion of representation, while 

at the same time debating its nature. Are representations symbols, distributed pat-

terns, or external artifacts? All cognitive scientists have rejected Cartesian dualism 

and are seeking materialist explanations of cognition.

More generally, all three approaches in cognitive science agree that cognition 

involves interactions between the world and states of agents. This is why a pio-

neer of classical cognitive science can make the following embodied claim: “A man, 

viewed as a behaving system, is quite simple. The apparent complexity of his behav-

ior over time is largely a reflection of the complexity of the environment in which he 

finds himself ” (Simon, 1969, p. 25). However, it is again fair to say that the contri-

butions of world, body, and mind receive different degrees of emphasis within the 

three approaches to cognitive science. We saw earlier that production system pio-

neers admitted that they emphasized internal planning and neglected perception 

and action (Anderson et al., 2004; Newell, 1990). Only recently have they turned 

to including sensing and acting in their models (Kieras & Meyer, 1997; Meyer et al., 

2001; Meyer & Kieras, 1997a, 1997b, 1999; Meyer et al., 1995). Even so, they are still 

very reluctant to include sense-act processing—links between sensing and acting 

that are not mediated by internal representations—to their sense-think-act produc-

tion systems (Dawson, Dupuis, & Wilson, 2010).

A fourth line of evidence is the existence of hybrid theories, such as natural 

computation (Marr, 1982) or Pylyshyn’s (2003) account of visual cognition. These 

theories explicitly draw upon concepts from each approach to cognitive science. 

Hybrid theories are only possible when there is at least tacit recognition that each 

school of thought within cognitive science has important, co-operative contribu-

tions to make. Furthermore, the existence of such theories completely depends 

upon the need for such co-operation: no one school of thought provides a suf-

ficient explanation of cognition, but each is a necessary component of such an 

explanation.

It is one thing to note the possibility of a synthesis in cognitive science. It is 

quite another to point the way to bringing such a synthesis into being. One required 

component, discussed earlier in this chapter, is being open to the possible contribu-

tions of the different schools of thought, an openness demonstrated by the prag-

matic and interdisciplinary natural computation theory of perception.

A second component, which is the topic of this final section of the book, is 

being open to a methodological perspective that pervaded early cognitive science 

and its immediate ancestors, but which has become less favored in more recent 

times. Synthesis in cognitive science may require a return, at least in part, to the 

practice of synthetic psychology.

Present-day cognitive science for the most part employs analytic, and not 

synthetic, methodological practices. That is, most cognitive scientists are in the 
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business of carrying out reverse engineering (Dennett, 1998). They start with a com-

plete, pre-existing cognitive agent. They then observe its behaviour, not to mention 

how the behaviour is affected by various experimental manipulations. The results 

of these observations are frequently used to create theories in the form of computer 

simulations (Newell & Simon, 1961). For instance, Newell and Simon (1972) col-

lected data in the form of verbal protocols, and then used these protocols to derive 

working production systems. In other words, when analytic methodologies are 

used, the collection of data precedes the creation of a model.

The analytic nature of most cognitive science is reflected in its primary 

methodology, functional analysis, a prototypical example of reverse engineering 

(Cummins, 1975, 1983). Functional analysis dictates a top-down decomposition 

from the broad and abstract (i.e., computational specification of functions) to the 

narrower and more concrete (i.e., architecture and implementation).

Even the natural computation approach in vision endorsed a top-down analytic 

approach, moving from computational to implementational analyses instead of in 

the opposite direction. This was because higher-level analyses were used to guide 

interpretations of the lower levels.

In order to understand why the receptive fields are as they are—why they are circu-

larly symmetrical and why their excitatory and inhibitory regions have character-

istic shapes and distributions—we have to know a little of the theory of differential 

operators, band-pass channels, and the mathematics of the uncertainty principle. 

(Marr, 1982, p. 28)

An alternative approach is synthetic, not analytic; it is bottom-up instead of top-

down; and it applies forward engineering instead of reverse engineering. This 

approach has been called synthetic psychology (Braitenberg, 1984). In synthetic psy-

chology, one takes a set of primitive building blocks of interest and creates a working 

system from them. The behaviour of this system is observed in order to determine 

what surprising phenomena might emerge from simple components, particularly 

when they are embedded in an interesting or complex environment. As a result, in 

synthetic psychology, models precede data, because they are the source of data.

The forward engineering that characterizes synthetic psychology proceeds as 

a bottom-up construction (and later exploration) of a cognitive model. Braitenberg 

(1984) argued that this approach would produce simpler theories than those pro-

duced by analytic methodologies, because analytic models fail to recognize the 

influence of the environment, falling prey to what is known as the frame of refer-

ence problem (Pfeifer & Scheier, 1999). Also, analytic techniques have only indirect 

access to internal components, in contrast to the complete knowledge of such struc-

tures that is possessed by a synthetic designer.
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It is pleasurable and easy to create little machines that do certain tricks. It is also 

quite easy to observe the full repertoire of behavior of these machines—even if it 

goes beyond what we had originally planned, as it often does. But it is much more 

difficult to start from the outside and try to guess internal structure just from the 

observation of the data. (Braitenberg, 1984, p. 20)

Although Braitenberg proposed forward engineering as a novel methodology in 

1984, it had been widely practised by cyberneticists beginning in the late 1940s. For 

instance, the original autonomous robots, Grey Walter’s (1950a, 1950b, 1951, 1963) 

Tortoises, were created to observe whether complex behaviour would be supported 

by a small set of cybernetic principles. Ashby’s (1956, 1960) Homeostat was created 

to study feedback relationships between simple machines; after it was constructed, 

Ashby observed that this device demonstrated interesting and complicated adaptive 

relationships to a variety of environments. This kind of forward engineering is cur-

rently prevalent in one modern field that has inspired embodied cognitive science, 

behaviour-based robotics (Brooks, 1999; Pfeifer & Scheier, 1999; Sharkey, 2006).

Forward engineering is not limited to the creation of autonomous robots. It has 

been argued that the synthetic approach characterizes a good deal of connection-

ism (Dawson, 2004). The thrust of this argument is that the building blocks being 

used are the components of a particular connectionist architecture. These are put 

together into a working system whose behaviour can then be explored. In the con-

nectionist case, the synthesis of a working network involves using a training envi-

ronment to modify a network by applying a general learning rule.

Classical cognitive science is arguably the most commonly practised form of 

cognitive science, and it is also far less likely to adopt synthetic methodologies. 

However, this does not mean that classical cognitive scientists have not usefully 

employed forward engineering. One prominent example is in the use of production 

systems to study human problem solving (Newell & Simon, 1972). Clearly the analy-

sis of verbal protocols provided a set of potential productions to include in a model. 

However, this was followed by a highly synthetic phase of model development.

This synthetic phase proceeded as follows: Newell and Simon (1972) used verbal 

protocols to rank the various productions available in terms of their overall usage. 

They then began by creating a production system model that was composed of only 

a single production, the one most used. The performance of this simple system was 

then compared to the human protocol. The next step was to create a new production 

system by adding the next most used production to the original model, and examin-

ing the behaviour of the new two-production system. This process would continue, 

usually revealing better performance of the model (i.e., a better fit to human data) 

as the model was elaborated by adding each new production.

Forward engineering, in all of the examples alluded to above, provides a sys-

tematic exploration of what an architecture can produce “for free.” That is, it is not 
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used to create a model that fits a particular set of data. Instead, it is used to show 

how much surprising and complex behaviour can be generated from a simple set 

of components—particularly when that architecture is embedded in an interesting 

environment. It is used to explore the limits of a system—how many unexpected 

complexities appear in its behaviour? What behaviours are still beyond the sys-

tem’s capability? While reverse engineering encourages the derivation of a model 

constrained by data, forward engineering is concerned with a much more liber-

ating process of model design. “Only about 1 in 20 [students] ‘gets it’—that is, 

the idea of thinking about psychological problems by inventing mechanisms for 

them and then trying to see what they can and cannot do” (Minsky, 1995, personal 

communication).

The liberating aspect of forward engineering is illustrated in the development 

of the LEGO robot AntiSLAM (Dawson, Dupuis, & Wilson, 2010). Originally, this 

robot was created as a sonar-based version of one of Braitenberg’s (1984) simple 

thought experiments, Vehicle 2. Vehicle 2 used two light sensors to control the 

speeds of two separate motors and generated photophobic or photophilic behaviour 

depending upon its wiring. We replaced the light sensors with two sonar sensors, 

which itself was a departure from convention, because the standard view was that 

the two sensors would interfere with one another (Boogaarts, 2007). However, we 

found that the robot generated nimble behaviours and effortlessly navigated around 

many different kinds of obstacles at top speed. A slight tweak of the robot’s architec-

ture caused it to follow along a wall on its right. We then realized that if the environ-

ment for the robot became a reorientation arena, then it would generate rotational 

error. The forward engineering of this very simple robot resulted in our discovery 

that it generated navigational regularities “for free.”

The appeal of forward engineering, though, is not just the discovery of unex-

pected behaviour. It is also appealing because it leads to the discovery of an archi-

tecture’s limits. Not only do you explore what a system can do, but you discover 

its failures as well. It has been argued that in the analytic tradition, failures often 

lead to abandoning a model (Dawson, 2004), because failures amount to an inabil-

ity to fit a desired set of data. In the synthetic approach, which is not driven by 

data fitting, failures lead to tinkering with the architecture, usually by adding new 

capabilities to it (Brooks, 1999, 2002). The synthetic design of cognitive models is a 

prototypical instance of bricolage (Dawson, Dupuis, & Wilson, 2010; Turkle, 1995).

For instance, while the early version of AntiSLAM (Dawson, Dupuis, & Wilson, 

2010) produced rotational error, it could not process competing geometric and local 

cues, because it had no capability of detecting local cues. After realizing that the robot 

was capable of reorientation, this issue was solved by adding a light sensor to the 

existing architecture, so that a corner’s brightness could serve as a rudimentary fea-

ture. The robot is still inadequate, though, because it does not learn. We are currently 
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exploring how this problem might be solved by adding a modifiable connection-

ist network to map relations between sensors and motors. Note that this approach 

requires moving beyond a pure embodied account and taking advantage of connec-

tionist concepts.

In my opinion, it is the limitations inevitably encountered by forward engi-

neers that will provide incentive for a cognitive synthesis. Consider the strong anti-

representational positions of radical embodied cognitive scientists (Chemero, 2009; 

Noë, 2004). It is certainly astonishing to see how much interesting behaviour can 

be generated by systems with limited internal representations. But how much of 

cognition can be explained in a data-driven, antirepresentational manner before 

researchers have to appeal to representations? For instance, is a radical embod-

ied cognitive science of natural language possible? If embodied cognitive scientists 

take their theories to their limits, and are then open—as are natural computation 

researchers—to classical or connectionist concepts, then an interesting and produc-

tive cognitive synthesis is inevitable. That some embodied researchers (Clark, 1997) 

have long been open to a synthesis between embodied and classical ideas is an 

encouraging sign.

Similarly, radical connectionist researchers have argued that a great deal of 

cognition can be accomplished without the need for explicit symbols and explicit 

rules (Rumelhart & McClelland, 1986a; Smolensky, 1988). Classical researchers have 

acknowledged the incredible range of phenomena that have yielded to the fairly 

simple PDP architecture (Fodor & Pylyshyn, 1988). But, again, how much can con-

nectionists explain from a pure PDP perspective, and what phenomena will elude 

their grasp, demanding that classical ideas be reintroduced? Might it be possible 

to treat networks as dynamic symbols, and then manipulate them with external 

rules that are different from the learning rules that are usually applied? Once again, 

recent ideas seem open to co-operative use of connectionist and classical ideas 

(Smolensky & Legendre, 2006).

The synthetic approach provides a route that takes a cognitive scientist to the 

limits of their theoretical perspective. This in turn will produce a theoretical tension 

that will likely only be resolved when core elements of alternative perspectives are 

seriously considered. Note that such a resolution will require a theorist to be open 

to admitting different kinds of ideas. Rather than trying to show that their architec-

ture can do everything cognitive, researchers need to find what their architectures 

cannot do, and then expand their theories by including elements of alternative, pos-

sibly radically different, views of cognition.

This is not to say that the synthetic approach is the only methodology to be 

used. Synthetic methods have their own limitations, and a complete cognitive sci-

ence requires interplay between synthesis and analysis (Dawson, 2004). In particu-

lar, cognitive science ultimately is in the business of explaining the cognition of 
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biological agents. To do so, its models—including those developed via forward engi-

neering—must be validated. Validating a theory requires the traditional practices 

of the analytic approach, seeking equivalences between computations, algorithms, 

and architectures. It is hard to imagine such validation not proceeding by adopting 

analytic methods that provide relative complexity, error, and intermediate state evi-

dence. It is also hard to imagine that a complete exploration of a putative cognitive 

architecture will not exploit analytic evidence from the neurosciences.

Indeed, it may be that the inability to use analytic evidence to validate a “pure” 

model from one school of thought may be the primary motivation to consider alter-

native perspectives, fueling a true synthesis within cognitive science. According to 

Kuhn (1970), paradigms are born by discovering anomalies. The analytic techniques 

of cognitive science are well equipped to discover such problems. What is then 

required for synthesis is a willingness amongst cognitive scientists to admit that 

competing views of cognition might be able to be co-operatively applied in order to 

resolve anomalies.
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