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Note to Students

This book may be different than other mathematics textbooks you have used in

the past. In this book, the reader is expected to do more than read the book and is

expected to study the material in the book by working out examples rather than just

reading about them. So this book is not just about mathematical content but is also

about the process of learning and doing mathematics. Along the way, you will also

learn some important mathematical topics that will help you in your future study

of mathematics.

This book is designed not to be just casually read but rather to be engaged. It

may seem like a cliché (because it is in almost every mathematics book now) but

there is truth in the statement that mathematics is not a spectator sport. To learn and

understand mathematics, you must engage in the process of doing mathematics. So

you must actively read and study the book, which means to have a pencil and paper

with you and be willing to follow along and fill in missing details. This type of

engagement is not easy and is often frustrating, but if you do so, you will learn a

great deal about mathematics and more importantly, about doing mathematics.

Recognizing that actively studying a mathematics book is often not easy, sev-

eral features of the textbook have been designed to help you become more engaged

as you study the material. Some of the features are:

� Beginning Activities. The introductory material in almost every section of

this book contains a so-called beginning activity. Some beginning activities

will review prior mathematical work that is necessary for the new section.

This prior work may contain material from previous mathematical courses

or it may contain material covered earlier in this text. Other beginning ac-

tivities will introduce new concepts and definitions that will be used later

in that section. It is very important that you work on these beginning ac-

tivities before starting the rest of the section. Please note that answers to

these beginning activities are not included in the text, but the answers will

be developed in the material later in that section.

v



vi Note to Students

� Focus Questions. At the start of each section, we list some focus questions

that provide information about what is important and what ideas are the main

focus of the section. A good goal for studying section is to be able answer

each of the focus questions.

� Progress Checks. Several Progress Checks are included in each section.

These are either short exercises or short activities designed to help you de-

termine if you are understanding the material as you are studying the material

in the section. As such, it is important to work through these progress checks

to test your understanding, and if necessary, study the material again before

proceeding further. So it is important to attempt these progress checks before

checking the answers, which are are provided in Appendix A.

� Section Summaries. To assist you with studying the material in the text,

there is a summary at the end of each of the sections. The summaries usu-

ally list the important definitions introduced in the section and the important

results proven in the section. In addition, although not given in a list, the

section summaries should contain answers to the focus questions given at

the beginning of the section.

� Answers for Selected Exercises. Answers or hints for several exercises are

included in an Appendix B. Those exercises with an answer or a hint in the

appendix are preceded by a star .?/.

� Interactive Geogebra Applets. The text contains links to several interactive

Geogebra applets or worksheets. These are active links in the pdf version of

the textbook, so clicking on the link will take you directly to the applet. Short

URL’s for these links have been created so that they are easier to enter if you

are using a printed copy of the textbook.

Following is a link to the GVSU MTH 123 playlist of Geogebra applets on

the Geogebra website. (MTH 123 is the trigonometry course at Grand Valley

State University.)

http://gvsu.edu/s/Ov

These applets are usually part of a beginning activity or a progress check and

are intended to be used as part of the textbook. See page 15 for an example

of a link to an applet on the Geogebra website. This one is part of Progress

Check 1.6 and is intended to reinforce the unit circle definitions of the cosine

and sine functions.

http://gvsu.edu/s/Ov


Note to Students vii

� Video Screencasts. Although not part of the textbook, there are several on-

line videos (on YouTube) that can be used in conjunction with this textbook.

There are two sources for video screencasts.

1. The MTH 123 Playlist on Grand Valley’s Department of Mathematics

YouTube channel:

http://gvsu.edu/s/MJ

Note: MTH 123 is the course number for the trigonometry course at

Grand Valley State University.

2. MTH 123 video screencasts on Rocket Math 1. These video screencasts

were created by Lynne Mannard, an affiliate faculty member in the

Department of Mathematics at Grand Valley State University.

http://gvsu.edu/s/0cc

http://gvsu.edu/s/MJ
http://gvsu.edu/s/0cc


Preface

This text was written for the three-credit trigonometry course at Grand Valley State

University (MTH 123 – Trigonometry). This text begins with a circular function

approach to trigonometry and transitions to the study of triangle trigonometry, vec-

tors, trigonometric identities, and complex numbers.

The authors are very interested in constructive criticism of the textbook from

the users of the book, especially students who are using or have used the book.

Please send any comments you have to

trigtext@gmail.com

Important Features of the Textbook

This book is meant to be used and studied by students and the important features

of the textbook were designed with that in mind. Please see the Note to Students

on page (v) for a description of these features.

Content and Organization

The first two chapters of the textbook emphasize the development of the cosine and

sine functions and how they can be used to model periodic phenomena. The other

four trigonometric functions are studied in Section 1.6 and Section 2.4. Triangles

and vectors are studied in Chapter 3, trigonometric identities and equations are

studied in Chapter 4, and finally, using trigonometry to better understand complex

numbers is in Chapter 5. Following is a more detailed description of the sections

within each chapter.

Chapter 1 – The Trigonometric Functions

Section 1.1 introduces the unit circle and the wrapping function for the unit circle.

This develops the important relationship between the real numbers and points on

viii



Preface ix

the unit circle, which leads to the idea of associating intervals of real numbers with

arcs on the unit circle. This is necessary for the development of the cosine and

sine functions in Section 1.2. Understanding the ideas in this section is critical for

proceeding further in the textbook.

The next two sections are intended to provide a rationale as to why we use

radian measure in the development of the trigonometric functions. In addition,

calculators and graphing devices are ubiquitious in the study of mathematics now,

and when we use a calculator, we need to set the angle mode to radians. One of the

purposes of Section 1.3 is to explain to students why we set our calculators to radian

mode. It seems somewhat intellectually dishonest to simply tell students that they

must use radian mode and provide no explanation as to why. Section 1.4 can be

considered an optional section since it is not used later in the textbook. However,

it does provide interesting applications of the use of radian measure when working

with linear and anglular velocity.

The common arcs
�

6
,

�

4
, and

�

3
are introduced in Section 1.5. The exact values

of the cosine and sine functions for these arcs are determined using information

about the right triangle with two 45ı angles and the right triangle with angles of

30ı and 60ı. An alternate development of these results using points on the unit

circle and the distance formula is given in Exercises (9) and (10). Section 1.5

concludes with a discussion of the use of reference arcs, and Section 1.6 introduces

the tangent, secant, cosecant, and cotangent functions.

Chapter 2 – Graphs of the Trigonometric Functions

The first three sections of this chapter deal with the graphs of sinusoidal functions

and their use in modeling periodic phenomena. The graphs of the cosine and sine

functions are developed in Section 2.1 using the unit circle. Geogebra applets are

used in this development. Section 2.2 deals with the graphs of sinusoidal functions

of the form y D A sin.B.x �C //CD or y D A cos.B.x �C //CD. In this sec-

tion, it is emphasized that the amplitude, period, and vertical shift for a sinusoidal

function is independent of whether a sine or cosine is used. The difference in using

a sine or cosine will be the phase shift. Sinusoidal models of periodic phenomena

are discussed in Section 2.3. With the use of technology, it is now possible to do

sine regressions. Although the textbook is relatively independent of the choice of

technology, instructions for doing sine regressions using Geogebra are given in this

section.

The graphs of the other four trigonometric functions are developed in Sec-

tion 2.4. Most of this section can be considered as optional, but it is important to
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at least discuss the material related to the graph of the tangent function since the

inverse tangent function is part of Section 2.5. The inverse sine functionand inverse

cosine function are, of course, also developed in this section. In order to show how

inverse functions can be used in mathematics, solutions of trigonometric equations

are studied in Section 2.6.

Chapter 3 – Triangles and Vectors

This chapter contains the usual material dealing with triangle trigonometry includ-

ing right triangle trigonometry, the Law of Sines and the Law of Cosines, which are

both handled in Section 3.3. The emphasis in this section is how to use these two

laws to solve problems involving triangles. By having them both in the same sec-

tion, students can get practice deciding which law to use for a particular problem.

The proofs of these two laws are included as appendices for Section 3.3.

More work with the Law of Cosines and the Law of Sines is included in Sec-

tion 3.4. In addition, this section contains problems dealing with the area of a

triangle including Heron’s formula for the area of a triangle. (The proof of Heron’s

formula is also in an appendix at the end of the section.)

The last two sections of this chapter deal with vectors. Section 3.5 deals with

the geometry of vectors, and Section 3.6 deals with vectors from an algebraic point

of view.

Chapter 4 – Identities and Equations

The first section of this chapter introduces the concept of a trigonometric identity.

The emphasis is on how to verify or prove an identity and how to show that an

equation is not an identity. The second section reviews and continues the work on

trigonometric equations from Section 2.6.

The last three sections of the chapter cover the usual trigonometric identities

in this type of course. In addition, the sections show how identities can be used to

help solve equations.

Chapter 5 – Complex Numbers

It is assumed that students have worked with complex numbers before. However,

Section 5.1 provides a good summary of previous work with complex numbers. In

addition, this section introduces the geometric representation of complex numbers

in the complex plane. Section 5.2 introduces the trigonometric or polar form of a

complex number including the rules for multiplying and dividing complex numbers
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in trigonometric form. Section 5.3 contains the material dealing with DeMoivre’s

Theorem about the powers of complex numbers and includes material on how to

find roots of complex numbers.





Chapter 1

The Trigonometric Functions

Trigonometry had its start as the study of triangles. The study of triangles can be

traced back to the second millenium B.C.E. in Egyptian and Babylonian mathemat-

ics. In fact, the word trigonmetry is derived from a Greek word meaning “triangle

measuring.” We will study the trigonometry of triangles in Chapter 3. Today,

however, the trigonometric functions are used in more ways. In particular, the

trigonometric functions can be used to model periodic phenomena such as sound

and light waves, the tides, the number of hours of daylight per day at a particular

location on earth, and many other phenomena that repeat values in specified time

intervals.

Our study of periodic phenomena will begin in Chapter 2, but first we must

study the trigonometric functions. To do so, we will use the basic form of a repeat-

ing (or periodic) phenomena of travelling around a circle at a constant rate.

1



2 Chapter 1. The Trigonometric Functions

1.1 The Unit Circle

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� What is the unit circle and why is it important in trigonmetry? What is

the equation for the unit circle?

� What is meant by “wrapping the number line around the unit circle?”

How is this used to identify real numbers as the lengths of arcs on the

unit circle?

� How do we associate an arc on the unit circle with a closed interval of

real numbers?

Beginning Activity

As has been indicated, one of the primary reasons we study the trigonometric func-

tions is to be able to model periodic phenomena mathematically. Before we begin

our mathematical study of periodic phenomena, here is a little “thought experi-

ment” to consider.

Imagine you are standing at a point on a circle and you begin walking around

the circle at a constant rate in the counterclockwise direction. Also assume that

it takes you four minutes to walk completely around the circle one time. Now

suppose you are at a point P on this circle at a particular time t .

� Describe your position on the circle 2 minutes after the time t .

� Describe your position on the circle 4 minutes after the time t .

� Describe your position on the circle 6 minutes after the time t .

� Describe your position on the circle 8 minutes after the time t .

The idea here is that your position on the circle repeats every 4 minutes. After 2

minutes, you are at a point diametrically opposed from the point you started. After
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4 minutes, you are back at your starting point. In fact, you will be back at your

starting point after 8 minutes, 12 minutes, 16 minutes, and so on. This is the idea

of periodic behavior.

The Unit Circle and the Wrapping Function

In order to model periodic phenomena mathematically, we will need functions that

are themselves periodic. In other words, we look for functions whose values repeat

in regular and recognizable patterns. Familiar functions like polynomials and ex-

ponential functions don’t exhibit periodic behavior, so we turn to the trigonometric

functions. Before we can define these functions, however, we need a way to intro-

duce periodicity. We do so in a manner similar to the thought experiment, but we

also use mathematical objects and equations. The primary tool is something called

the wrapping function. Instead of using any circle, we will use the so-called unit

circle. This is the circle whose center is at the origin and whose radius is equal to

1, and the equation for the unit circle is x2 C y2 D 1.

Figure 1.1: Setting up to wrap the number line around the unit circle

Figure 1.1 shows the unit circle with a number line drawn tangent to the circle

at the point .1; 0/. We will “wrap” this number line around the unit circle. Unlike

the number line, the length once around the unit circle is finite. (Remember that

the formula for the circumference of a circle as 2�r where r is the radius, so the

length once around the unit circle is 2�). However, we can still measure distances

and locate the points on the number line on the unit circle by wrapping the number

line around the circle. We wrap the positive part of this number line around the

circumference of the circle in a counterclockwise fashion and wrap the negative
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part of the number line around the circumference of the unit circle in a clockwise

direction.

Two snapshots of an animation of this process for the counterclockwise wrap

are shown in Figure 1.2 and two such snapshots are shown in Figure 1.3 for the

clockwise wrap.

Figure 1.2: Wrapping the positive number line around the unit circle

Figure 1.3: Wrapping the negative number line around the unit circle

Following is a link to an actual animation of this process, including both posi-

tive wraps and negative wraps.

http://gvsu.edu/s/Kr

Figure 1.2 and Figure 1.3 only show a portion of the number line being wrapped

around the circle. Since the number line is infinitely long, it will wrap around

http://gvsu.edu/s/Kr
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the circle infinitely many times. A result of this is that infinitely many different

numbers from the number line get wrapped to the same location on the unit circle.

� The number 0 and the numbers 2� , �2� , and 4� (as well as others) get

wrapped to the point .1; 0/. We will usually say that these points get mapped

to the point .1; 0/.

� The number
�

2
is mapped to the point .0; 1/. This is because the circum-

ference of the unit circle is 2� and so one-fourth of the circumference is
1

4
.2�/ D �

2
.

� If we now add 2� to
�

2
, we see that

5�

2
also gets mapped to .0; 1/. If we

subtract 2� from
�

2
, we see that �3�

2
also gets mapped to .0; 1/.

However, the fact that infinitely many different numbers from the number line get

wrapped to the same location on the unit circle turns out to be very helpful as it

will allow us to model and represent behavior that repeats or is periodic in nature.

Progress Check 1.1 (The Unit Circle.)

1. Find two different numbers, one positive and one negative, from the number

line that get wrapped to the point .�1; 0/ on the unit circle.

2. Describe all of the numbers on the number line that get wrapped to the point

.�1; 0/ on the unit circle.

3. Find two different numbers, one positive and one negative, from the number

line that get wrapped to the point .0; 1/ on the unit circle.

4. Find two different numbers, one positive and one negative, from the number

line that get wrapped to the point .0;�1/ on the unit circle.

One thing we should see from our work in Progress Check 1.1 is that integer

multiples of � are wrapped either to the point .1; 0/ or .�1; 0/ and that odd inte-

ger multiples of
�

2
are wrapped to either to the point .0; 1/ or .0;�1/. Since the

circumference of the unit circle is 2� , it is not surprising that fractional parts of �

and the integer multiples of these fractional parts of � can be located on the unit

circle. This will be studied in the next progress check.
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Progress Check 1.2 (The Unit Circle and �).

The following diagram is a unit circle with 24 points equally spaced points plotted

on the circle. Since the circumference of the circle is 2� units, the increment

between two consecutive points on the circle is
2�

24
D �

12
.

Label each point with the smallest nonnegative real number t to which it corre-

sponds. For example, the point .1; 0/ on the x-axis corresponds to t D 0. Moving

counterclockwise from this point, the second point corresponds to
2�

12
D �

6
.

π

12

π

6

π

4

3

π

12

7

π

3

5

π

4

5

π

6

7

π

12

5

π

6

11

π

12

23

Figure 1.4: Points on the unit circle

Using Figure 1.4, approximate the x-coordinate and the y-coordinate of each

of the following:

1. The point on the unit circle that corresponds to t D �

3
.

2. The point on the unit circle that corresponds to t D 2�

3
.

3. The point on the unit circle that corresponds to t D 4�

3
.

4. The point on the unit circle that corresponds to t D 5�

3
.
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5. The point on the unit circle that corresponds to t D �

4
.

6. The point on the unit circle that corresponds to t D 7�

4
.

Arcs on the Unit Circle

When we wrap the number line around the unit circle, any closed interval on the

number line gets mapped to a continuous piece of the unit circle. These pieces

are called arcs of the circle. For example, the segment
h

0;
�

2

i

on the number line

gets mapped to the arc connecting the points .1; 0/ and .0; 1/ on the unit circle as

shown in Figure 1.5. In general, when a closed interval Œa; b� is mapped to an arc

on the unit circle, the point corresponding to t D a is called the initial point of

the arc, and the point corresponding to t D b is called the terminal point of the

arc. So the arc corresponding to the closed interval
h

0;
�

2

i

has initial point .1; 0/

and terminal point .0; 1/.

arc

x

y

x2 + y2 = 1

Figure 1.5: An arc on the unit circle

Progress Check 1.3 (Arcs on the Unit Circle).

Draw the following arcs on the unit circle.

1. The arc that is determined by the interval
h

0;
�

4

i

on the number line.
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2. The arc that is determined by the interval

�

0;
2�

3

�

on the number line.

3. The arc that is determined by the interval Œ0;��� on the number line.

Coordinates of Points on the Unit Circle

When we have an equation (usually in terms of x and y) for a curve in the plane and

we know one of the coordinates of a point on that curve, we can use the equation

to determine the other coordinate for the point on the curve. The equation for the

unit circle is x2 C y2 D 1. So if we know one of the two coordinates of a point

on the unit circle, we can substitute that value into the equation and solve for the

value(s) of the other variable.

For example, suppose we know that the x-coordinate of a point on the unit

circle is �1

3
. This is illustrated on the following diagram. This diagram shows

the unit circle (x2 C y2 D 1) and the vertical line x D �1

3
. This shows that

there are two points on the unit circle whose x-coordinate is �1

3
. We can find

the y-coordinates by substituting the x-value into the equation and solving for y.

x

y
 

1
x = -

3

_

x2 C y2 D 1
�

�1

3

�2

C y2 D 1

1

9
C y2 D 1

y2 D 8

9

Since y2 D 8

9
, we see that y D ˙

r

8

9
and so y D ˙

p
8

3
. So the two points

on the unit circle whose x-coordinate is �1

3
are

 

�1

3
;

p
8

3

!

; which is in the second quadrant, and

 

�1

3
;�
p

8

3

!

; which is in the third quadrant.



1.1. The Unit Circle 9

The first point is in the second quadrant and the second point is in the third quad-

rant. We can now use a calculator to verify that

p
8

3
� 0:9428. This seems

consistent with the diagram we used for this problem.

Progress Check 1.4 (Points on the Unit Circle.)

1. Find all points on the unit circle whose y-coordinate is
1

2
.

2. Find all points on the unit circle whose x-coordinate is

p
5

4
.

Summary of Section 1.1

In this section, we studied the following important concepts and ideas:

� The unit circle is the circle of radius 1 that is centered at the origin. The

equation of the unit circle is x2 C y2 D 1. It is important because we will

use this as a tool to model periodic phenomena.

� We “wrap” the number line about the unit circle by drawing a number line

that is tangent to the unit circle at the point .1; 0/. We wrap the positive part

of the number line around the unit circle in the counterclockwise direction

and wrap the negative part of the number line around the unit circle in the

clockwise direction.

� When we wrap the number line around the unit circle, any closed interval of

real numbers gets mapped to a continuous piece of the unit circle, which is

called an arc of the circle. When the closed interval Œa; b� is mapped to an

arc on the unit circle, the point correpsonding to t D a is called the initial

point of the arc, and the point corresponding to t D b is called the terminal

point of the arc.

Exercises for Section 1.1

1. The following diagram shows eight points plotted on the unit circle. These

points correspond to the following values when the number line is wrapped

around the unit circle.

t D 1; t D 2; t D 3; t D 4; t D 5; t D 6; t D 7; and t D 9:
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x

y

(a) Label each point in the diagram with its value of t .

? (b) Approximate the coordinates of the points corresponding to t D 1,

t D 5, and t D 9.

2. The following diagram shows the points corresponding to t D �

5
and t D

2�

5
when the number line is wrapped around the unit circle.

x

y

On this unit circle, draw the points corresponding to t D 4�

5
, t D 6�

5
,

t D 8�

5
, and t D 10�

5
.

3. Draw the following arcs on the unit circle.
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(a) The arc that is determined by the interval
h

0;
�

6

i

on the number line.

(b) The arc that is determined by the interval

�

0;
7�

6

�

on the number line.

(c) The arc that is determined by the interval Œ0;��

3
� on the number line.

(d) The arc that is determined by the interval Œ0;�4�

5
� on the number line.

? 4. Determine the quadrant that contains the terminal point of each given arc

with initial point .1; 0/ on the unit circle.

(a)
7�

4

(b) �7�

4

(c)
3�

5

(d)
�3�

5

(e)
7�

3

(f)
�7�

3

(g)
5�

8

(h)
�5�

8
(i) 2:5

(j) �2:5

(k) 3

(l) 3C 2�

(m) 3 � �

(n) 3 � 2�

5. Find all the points on the unit circle:

? (a) Whose x-coordinate is
1

3
.

? (b) Whose y-coordinate is �1

2
.

(c) Whose x-coordinate is �3

5
.

(d) Whose y-coordinate is �3

4
and whose x-coordinate is negative.
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1.2 The Cosine and Sine Functions

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� If the real number t represents the (signed) length of an arc, how do we

define cos.t/ and sin.t/?

� In what quadrants (of the terminal point of an arc t on the unit circle) is

cos.t/ positive (negative)? In what quadrants (of the terminal point of

an arc t on the unit circle) is sin.t/ positive (negative)?

� What is the Pythagorean Identity? How is this identity derived from the

equation for the unit circle?

Beginning Activity

1. What is the unit circle? What is the equation of the unit circle?

2. Review Progress Check 1.4 on page 9.

3. Review the completed version of Figure 1.4 that is in the answers for Progress

Check 1.2 on page 6.

4. (a) What is the terminal point of the arc on the unit circle that corresponds

to the interval
h

0;
�

2

i

?

(b) What is the terminal point of the arc on the unit circle that corresponds

to the interval Œ0; ��?

(c) What is the terminal point of the arc on the unit circle that corresponds

to the interval

�

0;
3�

2

�

?

(d) What is the terminal point of the arc on the unit circle that corresponds

to the interval
h

0;��

2

i

?
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The Cosine and Sine Functions

We started our study of trigonometry by learning about the unit circle, how to

wrap the number line around the unit circle, and how to construct arcs on the unit

circle. We are now able to use these ideas to define the two major circular, or

trigonmetric, functions. These circular functions will allow us to model periodic

phenomena such as tides, the amount of sunlight during the days of the year, orbits

of planets, and many others.

It may seem like the unit circle is a fairly simple object and of little interest, but

mathematicians can almost always find something fascinating in even such simple

objects. For example, we define the two major circular functions, the cosine and

sine1 in terms of the unit circle as follows. Figure 1.6 shows an arc of length t on

the unit circle. This arc begins at the point .1; 0/ and ends at its terminal point P.t/.

We then define the cosine and sine of the arc t as the x and y coordinates of the

point P , so that P.t/ D .cos.t/; sin.t// (we abbreviate the cosine as cos and the

sine as sin). So the cosine and sine values are determined by the arc t and the cosine

x

y

t

P(t) = (cos(t), sin(t))

2x 2y+ = 1

Figure 1.6: The Circular Functions

1According to the web site Earliest Known Uses of Some of the Words of Mathematics at

http://jeff560.tripod.com/mathword.html , the origin of the word sine is Sanskrit

through Arabic and Latin. While the accounts of the actual origin differ, it appears that the Sanskrit

work “jya” (chord) was taken into Arabic as “jiba”, but was then translated into Latin as “jaib” (bay)

which became “sinus” (bay or curve). This word was then anglicized to become our “sine”. The

word cosine began with Plato of Tivoli who use the expression “chorda residui”. While the Latin

word chorda was a better translation of the Sanskrit-Arabic word for sine than the word sinus, that

word was already in use. Thus, “chorda residui” became “cosine”.

http://jeff560.tripod.com/mathword.html
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and sine are functions of the arc t . Since the arc lies on the unit circle, we call the

cosine and sine circular functions. An important part of trigonometry is the study

of the cosine and sine and the periodic phenomena that these functions can model.

This is one reason why the circular functions are also called the trigonometric

functions.

Note: In mathematics, we always create formal definitions for objects we com-

monly use. Definitions are critically important because with agreed upon defini-

tions, everyone will have a common understanding of what the terms mean. With-

out such a common understanding, there would be a great deal of confusion since

different people who have different meanings for various terms. So careful and

precise definitions are necessary in order to develop mathematical properties of

these objects. In order to learn and understand trigonometry, a person needs to be

able to explain how the circular functions are defined. So now is a good time to

start working on understanding these definitions.

Definition. If the real number t is the directed length of an arc (either positive

or negative) measured on the unit circle x2 C y2 D 1 (with counterclockwise

as the positive direction) with initial point (1, 0) and terminal point .x; y/,

then the cosine of t , denoted cos.t/, and sine of t , denoted sin.t/, are defined

to be

cos.t/ D x and sin.t/ D y:

Figure 1.6 illustrates these definitions for an arc whose terminal point is in the

first quadrant.

At this time, it is not possible to determine the exact values of the cosine and

sine functions for specific values of t . It can be done, however, if the terminal

point of an arc of length t lies on the x-axis or the y-axis. For example, since the

circumference of the unit circle is 2� , an arc of length t D � will have it terminal

point half-way around the circle from the point .1; 0/. That is, the terminal point is

at .�1; 0/. Therefore,

cos.�/ D �1 and sin.�/ D 0:

Progress Check 1.5 (Cosine and Sine Values).

Determine the exact values of each of the following:
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1. cos
��

2

�

and sin
��

2

�

.

2. cos

�

3�

2

�

and sin

�

3�

2

�

.

3. cos .0/ and sin .0/.

4. cos
�

��

2

�

and sin
�

��

2

�

.

5. cos .2�/ and sin .2�/.

6. cos .��/ and sin .��/.

Important Note: Since the cosine and sine are functions of an arc whose length

is the real number t , the input t determines the output of the cosine and sin. As a

result, it is necessary to specify the input value when working with the cosine and

sine. In other words, we ALWAYS write cos.t/ where t is the real number input,

and NEVER just cos. To reiterate, the cosine and sine are functions, so we MUST

indicate the input to these functions.

Progress Check 1.6 (Approximating Cosine and Sine Values).

For this progress check, we will use the Geogebra Applet called Terminal Points of

Arcs on the Unit Circle. A web address for this applet is

http://gvsu.edu/s/JY

For this applet, we control the value of the input t with the slider for t . The values

of t range from �20 to 20 in increments of 0:5. For a given value of t , an arc is

drawn of length t and the coordinates of the terminal point of that arc are displayed.

Use this applet to find approximate values for each of the following:

1. cos.1/ and sin.1/.

2. cos.2/ and sin.2/.

3. cos.�4/ and sin.�4/.

4. cos.5:5/ and sin.5:5/.

5. cos.15/ and sin.15/.

6. cos.�15/ and sin.�15/.

Some Properties of the Cosine and Sine Functions

The cosine and sine functions are called circular functions because their values

are determined by the coordinates of points on the unit circle. For each real number

t , there is a corresponding arc starting at the point .1; 0/ of (directed) length t that

lies on the unit circle. The coordinates of the end point of this arc determines the

values of cos.t/ and sin.t/.

In previous mathematics courses, we have learned that the domain of a function

is the set of all inputs that give a defined output. We have also learned that the range

of a function is the set of all possible outputs of the function.

http://gvsu.edu/s/JY
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Progress Check 1.7 (Domain and Range of the Circular Functions.)

1. What is the domain of the cosine function? Why?

2. What is the domain of the sine function? Why?

3. What is the largest x coordinate that a point on the unit circle can have?

What is the smallest x coordinate that a point on the unit circle can have?

What does this tell us about the range of the cosine function? Why?

4. What is the largest y coordinate that a point on the unit circle can have?

What is the smallest y coordinate that a point on the unit circle can have?

What does this tell us about the range of the sine function? Why?

Although we may not be able to calculate the exact values for many inputs for

the cosine and sine functions, we can use our knowledge of the coordinate system

and its quadrants to determine if certain values of cosine and sine are positive or

negative. The idea is that the signs of the coordinates of a point P.x; y/ that is

plotted in the coordinate plan are determined by the quadrant in which the point

lies. (Unless it lies on one of the axes.) Figure 1.7 summarizes these results for the

signs of the cosine and sine function values. The left column in the table is for the

location of the terminal point of an arc determined by the real number t .

Quadrant cos.t/ sin.t/

QI positive positive

QII negative positive

QIII negative negative

QIV positive negative

x

y

sin (t) > 0 sin (t) > 0

cos (t) > 0

cos (t) > 0cos (t) < 0

cos (t) < 0

sin (t) < 0 sin (t) < 0

Figure 1.7: Signs of the cosine and sine functions

What we need to do now is to determine in which quadrant the terminal point

of an arc determined by a real number t lies. We can do this by once again using

the fact that the circumference of the unit circle is 2� , and when we move around
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the unit circle from the point .1; 0/ in the positive (counterclockwise) direction, we

will intersect one of the coordinate axes every quarter revolution. For example, if

0 < t <
�

2
, the terminal point of the arc determined by t is in the first quadrant

and cos.t/ > 0 and sin.t/ > 0.

Progress Check 1.8 (Signs of cos.t/ and sin.t/.)

1. If
�

2
< t < � , then what are the signs of cos.t/ and sin.t/?

2. If � < t <
3�

2
, then what are the signs of cos.t/ and sin.t/?

3. If
3�

2
< t < 2� , then what are the signs of cos.t/ and sin.t/?

4. If
5�

2
< t < 3� , then what are the signs of cos.t/ and sin.t/?

5. For which values of t (between 0 and 2�) is cos.t/ positive? Why?

6. For which values of t (between 0 and 2�) is sin.t/ positive? Why?

7. For which values of t (between 0 and 2�) is cos.t/ negative? Why?

8. For which values of t (between 0 and 2�) is sin.t/ negative? Why?

Progress Check 1.9 (Signs of cos.t/ and sin.t/ (Part 2))

Use the results summarized in Figure 1.7 to help determine if the following quan-

tities are positive, negative, or zero. (Do not use a calculator.)

1. cos
��

5

�

2. sin
��

5

�

3. cos

�

5�

8

�

4. sin

�

5�

8

�

5. cos

��9�

16

�

6. sin

��9�

16

�

7. cos

��25�

12

�

8. sin

��25�

12

�
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The Pythagorean Identity

In mathematics, an identity is a statement that is true for all values of the vari-

ables for which it is defined. In previous courses, we have worked with algebraic

identities such as

7x C 12x D 19x a C b D b C a

a2 � b2 D .a C b/.a � b/ x.y C z/ D xy C xz

where it is understood that all the variables represent real numbers. In trigonome-

try, we will develop many so-called trigonometric identities. The following progress

check introduces one such identity between the cosine and sine functions.

Progress Check 1.10 (Introduction to the Pythagorean Identity)

We know that the equation for the unit circle is x2C y2 D 1. We also know that if

t is an real number, then the terminal point of the arc determined by t is the point

.cos.t/; sin.t// and that this point lies on the unit circle. Use this information to

develop an identity involving cos.t/ and sin.t/.

Using the definitions x D cos.t/ and y D sin.t/ along with the equation for

the unit circle, we obtain the following identity, which is perhaps the most

important trigonometric identity.

For each real number t; ..cos.t//2 C .sin.t//2 D 1:

This is called the Pythagorean Identity. We often use the shorthand nota-

tion cos2.t/ for .cos.t//2 and sin2.t/ for .sin.t//2 and write

For each real number t; cos2.t/C sin2.t/ D 1:

Important Note about Notation. Always remember that by cos2.t/ we mean

.cos.t//2. In addition, note that cos2.t/ is different from cos.t2/.

The Pythagorean Identity allows us to determine the value of cos.t/ or sin.t/ if

we know the value of the other one and the quadrant in which the terminal point of

arc t lies. This is illustrated in the next example.

Example 1.11 (Using the Pythagorean Identity)

Assume that cos.t/ D 2

5
and the terminal point of arc .t/ lies in the fourth quadrant.

We will use this information to determine the value of sin.t/. The primary tool we

will use is the Pythagorean Identity, but please keep in mind that the terminal point
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for the arc t is the point .cos.t/; sin.t//. That is, x D cos.t/ and y D sin.t/. So

this problem is very similar to using the equation x2 C y2 D 1 for the unit circle

and substituting x D 2

5
.

Using the Pythagorean Identity, we then see that

cos2.t/C sin2.t/ D 1
�

2

5

�2

C sin2.t/ D 1

4

25
C sin2.t/ D 1

sin2.t/ D 1 � 4

25

sin2.t/ D 21

25

This means that sin.t/ D ˙
r

21

25
, and since the terminal point of arc .t/ is in the

fourth quadrant, we know that sin.t/ < 0. Therefore, sin.t/ D �
r

21

25
. Since

p
25 D 5, we can write

sin.t/ D �
p

21p
25
D �
p

21

5
:

Progress Check 1.12 (Using the Pythagorean Identity)

1. If cos.t/ D 1

2
and the terminal point of the arc t is in the fourth quadrant,

determine the value of sin.t/.

2. If sin.t/ D �2

3
and � < t <

3�

2
, determine the value of cos.t/.



20 Chapter 1. The Trigonometric Functions

Summary of Section 1.2

In this section, we studied the following important concepts and ideas:

� If the real number t is the directed

length of an arc (either positive or

negative) measured on the unit circle

x2 C y2 D 1 (with counterclockwise

as the positive direction) with initial

point (1, 0) and terminal point .x; y/,

then

cos.t/ D x and sin.t/ D y:

x

y

t

P(t) = (cos(t), sin(t))

2x 2y+ = 1

� The signs of cos.t/ and sin.t/ are determind by the quadrant in which the

terminal point of an arc t lies.

Quadrant cos.t/ sin.t/

QI positive positive

QII negative positive

QIII negative negative

QIV positive negative

� One of the most important identities in trigonometry, called the Pythagorean

Identity, is derived from the equation for the unit circle and states:

For each real number t; cos2.t/C sin2.t/ D 1:

Exercises for Section 1.2

? 1. Fill in the blanks for each of the following:

(a) For a real number t , the value of cos.t/ is defined to be the -

coordinate of the point of an arc t whose initial point

is on the whose equation is x2 C
y2 D 1.

(b) The domain of the cosine function is .
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(c) The maximum value of cos.t/ is and this occurs at

t D for 0 � t < 2� . The minimum value of cos.t/

is and this occurs at t D for 0 � t <

2� .

(d) The range of the cosine function is .

2. (a) For a real number t , the value of sin.t/ is defined to be the -

coordinate of the point of an arc t whose initial point

is on the whose equation is x2 C
y2 D 1.

(b) The domain of the sine function is .

(c) The maximum value of sin.t/ is and this occurs at

t D for 0 � t < 2� . The minimum value of sin.t/ is

and this occurs at t D for 0 � t <

2� .

(d) The range of the sine function is .

3. (a) Complete the following table of values.

Length of arc on Terminal point

the unit circle of the arc cos.t/ sin.t/

0 .1; 0/ 1 0

�

2

�

3�

2

2�

(b) Complete the following table of values.

Length of arc on Terminal point

the unit circle of the arc cos.t/ sin.t/

0 .1; 0/ 1 0

��

2

��

�3�

2

�2�
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(c) Complete the following table of values.

Length of arc on Terminal point

the unit circle of the arc cos.t/ sin.t/

2� .1; 0/ 1 0

5�

2

3�

7�

2

4�

4. ? (a) What are the possible values of cos.t/ if it is known that sin.t/ D 3

5
?

(b) What are the possible values of cos.t/ if it is known that sin.t/ D 3

5
and the terminal point of t is in the second quadrant?

? (c) What is the value of sin.t/ if it is known that cos.t/ D �2

3
and the

terminal point of t is in the third quadrant?

? 5. Suppose it is known that 0 < cos.t/ <
1

3
.

(a) By squaring the expressions in the given inequalities, what conclusions

can be made about cos2.t/?

(b) Use part (a) to write inequalities involving� cos2.t/ and then inequal-

ities involving 1 � cos2.t/.

(c) Using the Pythagorean identity, we see that sin2.t/ D 1 � cos2.t/.

Write the last inequality in part (b) in terms of sin2.t/.

(d) If we also know that sin.t/ > 0, what can we now conclude about the

value of sin.t/?

6. Use a process similar to the one in exercise (5) to complete each of the fol-

lowing:

(a) Suppose it is known that �1

4
< sin.t/ < 0 and that cos.t/ > 0. What

can be concluded about cos.t/?

(b) Suppose it is known that 0 � sin.t/ � 3

7
and that cos.t/ < 0. What

can be concluded about cos.t/?
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7. Using the four digit approximations for the cosine and sine values in Progress

Check 1.6, calculate each of the following:

� cos2.1/C sin2.1/.

� cos2.2/C sin2.2/.

� cos2.�4/C sin2.�4/.

� cos2.15/C sin2.15/.

What should be the exact value of each of these computations? Why are the

results not equal to this exact value?
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1.3 Arcs, Angles, and Calculators

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� How do we measure angles using degrees?

� What do we mean by the radian measure of an angle? How is the radian

measure of an angle related to the length of an arc on the unit circle?

� Why is radian measure important?

� How do we convert from radians to degrees and from degrees to radians?

� How do we use a calculator to approximate values of the cosine and sine

functions?

Introduction

The ancient civilization known as Babylonia was a cultural region based in south-

ern Mesopatamia, which is present-day Iraq. Babylonia emerged as an independent

state around 1894 BCE. The Babylonians developed a system of mathematics that

was based on a sexigesimal (base 60) number system. This was the origin of the

modern day usage of 60 minutes in an hour, 60 seconds in a minute, and 360 de-

grees in a circle.

Many historians now believe that for the ancient Babylonians, the year con-

sisted of 360 days, which is not a bad approximation given the crudeness of the

ancient astronomical tools. As a consequence, they divided the circle into 360

equal length arcs, which gave them a unit angle that was 1/360 of a circle or what

we now know as a degree. Even though there are 365.24 days in a year, the Babylo-

nian unit angle is still used as the basis for measuring angles in a circle. Figure 1.8

shows a circle divided up into 6 angles of 60 degrees each, which is also something

that fit nicely with the Babylonian base-60 number system.
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Figure 1.8: A circle with six 60-degree angles.

Angles

We often denote a line that is drawn through 2 points A and B by
 !
AB . The portion

of the line
 !
AB that starts at the point A and continues indefinitely in the direction

of the point B is called ray AB and is denoted by
�!
AB . The point A is the initial

point of the ray
�!
AB . An angle is formed by rotating a ray about its endpoint. The

ray in its initial position is called the initial side of the angle, and the position of

the ray after it has been rotated is called the terminal side of the ray. The endpoint

of the ray is called the vertex of the angle.

A B

C

initial side

te
rm

in
al s

id
e

vertex

α

Figure 1.9: An angle including some notation.
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Figure 1.9 shows the ray
�!
AB rotated about the point A to form an angle. The

terminal side of the angle is the ray
�!
AC . We often refer to this as angle BAC ,

which is abbreviated as †BAC . We can also refer to this angle as angle CAB or

†CAB . If we want to use a single letter for this angle, we often use a Greek letter

such as ˛ (alpha). We then just say the angle ˛. Other Greek letters that are often

used are ˇ (beta), 
 (gamma), � (theta), � (phi), and � (rho).

Arcs and Angles

To define the trigonometric functions in terms of angles, we will make a simple

connection between angles and arcs by using the so-called standard position of an

angle. When the vertex of an angle is at the origin in the xy-plane and the initial

side lies along the positive x-axis, we see that the angle is in standard position.

The terminal side of the angle is then in one of the four quadrants or lies along one

of the axes. When the terminal side is in one of the four quadrants, the terminal

side determines the so-called quadrant designation of the angle. See Figure 1.10.

A B

initial side

te
rm

in
a
l sid

e

vertex

α

vertexvertex x

y

C

Figure 1.10: Standard position of an angle in the second quadrant.

Progress Check 1.13 (Angles in Standard Position)

Draw an angle in standard position in (1) the first quadrant; (2) the third quadrant;

and (3) the fourth quadrant.

If an angle is in standard position, then the point where the terminal side of

the angle intersects the unit circle marks the terminal point of an arc as shown in

Figure 1.11. Similarly, the terminal point of an arc on the unit circle determines

a ray through the origin and that point, which in turn defines an angle in standard

position. In this case we say that the angle is subtended by the arc. So there is

a natural correspondence between arcs on the unit circle and angles in standard

position. Because of this correspondence, we can also define the trigonometric
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functions in terms of angles as well as arcs. Before we do this, however, we need

to discuss two different ways to measure angles.

(0,0)

angle

arc

Figure 1.11: An arc and its corresponding angle.

Degrees Versus Radians

There are two ways we will measure angles – in degrees and radians. When we

measure the length of an arc, the measurement has a dimension (the length, be

it inches, centimeters, or something else). As mentioned in the introduction, the

Babylonians divided the circle into 360 regions. So one complete wrap around

a circle is 360 degrees, denoted 360ı. The unit measure of 1ı is an angle that

is 1=360 of the central angle of a circle. Figure 1.8 shows 6 angles of 60ı each.

The degree ı is a dimension, just like a length. So to compare an angle measured

in degrees to an arc measured with some kind of length, we need to connect the

dimensions. We can do that with the radian measure of an angle.

Radians will be useful in that a radian is a dimensionless measurement. We

want to connect angle measurements to arc measurements, and to do so we will

directly define an angle of 1 radian to be an angle subtended by an arc of length 1

(the length of the radius) on the unit circle as shown in Figure 1.12.

Definition. An angle of one radian is the angle in standard position on the

unit circle that is subtended by an arc of length 1 (in the positive direction).

This directly connects angles measured in radians to arcs in that we associate

a real number with both the arc and the angle. So an angle of 2 radians cuts off an

arc of length 2 on the unit circle, an angle of 3 radians cuts of an arc of length 3

on the unit circle, and so on. Figure 1.13 shows the terminal sides of angles with

measures of 0 radians, 1 radian, 2 radians, 3 radians, 4 radians, 5 radians, and 6

radians. Notice that 2� � 6:2832 and so 6 < 2� as shown in Figure 1.13.
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x

y

1 radian

1

Figure 1.12: One radian.

1 radian2 radians

3 radians

4 radians
5 radians

6 radians

Figure 1.13: Angles with Radian

Measure 1, 2, 3, 4, 5, and 6

We can also have angles whose radian measure is negative just like we have arcs

with a negative length. The idea is simply to measure in the negative (clockwise)

direction around the unit circle. So an angle whose measure is �1 radian is the

angle in standard position on the unit circle that is subtended by an arc of length 1

in the negative (clockwise) direction.

So in general, an angle (in standard position) of t radians will correspond to an

arc of length t on the unit circle. This allows us to discuss the sine and cosine of

an angle measured in radians. That is, when we think of sin.t/ and cos.t/, we can

consider t to be:

� a real number;

� the length of an arc with initial point .1; 0/ on the unit circle;

� the radian measure of an angle in standard position.

When we draw a picture of an angle in standard position, we often draw a small

arc near the vertex from the initial side to the terminal side as shown in Figure 1.14,

which shows an angle whose measure is
3

4
� radians.

Progress Check 1.14 (Radian Measure of Angles)

1. Draw an angle in standard position with a radian measure of:
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x

y

Figure 1.14: An angle with measure
3

4
� in standard position

(a)
�

2
radians.

(b) � radians.

(c)
3�

2
radians.

(d) �3�

2
radians.

2. What is the degree measure of each of the angles in part (1)?

Conversion Between Radians and Degrees

Radian measure is the preferred measure of angles in mathematics for many rea-

sons, the main one being that a radian has no dimensions. However, to effectively

use radians, we will want to be able to convert angle measurements between radi-

ans and degrees.

Recall that one wrap of the unit circle corresponds to an arc of length 2� , and

an arc of length 2� on the unit circle corresponds to an angle of 2� radians. An

angle of 360ı is also an angle that wraps once around the unit circle, so an angle

of 360ı is equivalent to an angle of 2� radians, or

� each degree is
�

180
radians,

� each radian is
180

�
degrees.
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Notice that 1 radian is then
180

�
� 57:3ı, so a radian is quite large compared to

a degree. These relationships allow us to quickly convert between degrees and

radians. For example:

� If an angle has a degree measure of 35 degrees, then its radian measure can

be calculated as follows:

35 degrees � � radians

180 degrees
D 35�

180
radians:

Rewriting this fraction, we see that an angle with a measure of 35 degrees

has a radian measure of
7�

36
radians.

� If an angle has a radian measure of
3�

10
radians, then its degree measure can

be calculated as follows:

3�

10
radians � 180 degrees

� radians
D 540

10
degrees:

So an angle with a radian measure of
3�

10
has an angle measure of 54ı.

IMPORTANT NOTE: Since a degree is a dimension, we MUST include the de-

gree mark ı whenever we write the degree measure of an angle. A radian has no

dimension so there is no dimension mark to go along with it. Consequently, if we

write 2 for the measure of an angle we understand that the angle is measured in

radians. If we really mean an angle of 2 degrees, then we must write 2ı.

Progress Check 1.15 (Radian-Degree Conversions)

Complete the following table to convert from degrees to radians and vice versa.

Calculators and the Trignometric Functions

We have now seen that when we think of sin.t/ or cos.t/, we can think of t as a real

number, the length of an arc, or the radian measure of an angle. In Section 1.5, we

will see how to determine the exact values of the cosine and sine functions for a few

special arcs (or angles). For example, we will see that cos
��

6

�

D
p

3

2
. However,

the definition of cosine and sine as coordinates of points on the unit circle makes it

difficult to find exact values for these functions except at very special arcs. While

exact values are always best, technology plays an important role in allowing us to
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Angle in radians Angle in degrees

0 0ı

�

6
�

4
�

3
�

2
90ı

120ı

3�

4
135ı

150ı

180ı

Angle in radians Angle in degrees

7�

6
5�

4
4�

3
3�

2
270ı

300ı

315ı

330ı

2� 360ı

Table 1.1: Conversions between radians and degrees.

approximate the values of the circular (or trigonometric)functions. Most hand-held

calculators, calculators in phone or tablet apps, and online calculators have a cosine

key and a sine key that you can use to approximate values of these functions, but

we must keep in mind that the calculator only provides an approximation of the

value, not the exact value (except for a small collection of arcs). In addition, most

calculators will approximate the sine and cosine of angles.

To do this, the calculator has two modes for angles: Radian and Degree. Be-

cause of the correspondence between real numbers, length of arcs, and radian mea-

sures of angles, for now, we will always put our calculators in radian mode. In

fact, we have seen that an angle measured in radians subtends an arc of that radian

measure along the unit circle. So the cosine or sine of an angle measure in ra-

dians is the same thing as the cosine or sine of a real number when that real

number is interpreted as the length of an arc along the unit circle. (When we

study the trigonometry of triangles in Chapter 3, we will use the degree mode. For

an introductory discussion of the trigonometric functions of an angle measure in
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degrees, see Exercise (4)).

Progress Check 1.16 (Using a Calculator)

In Progress Check 1.6, we used the Geogebra Applet called Terminal Points of

Arcs on the Unit Circle at http://gvsu.edu/s/JY to approximate the values

of the cosine and sine functions at certain values. For example, we found that

� cos.1/ � 0:5403,

sin.1/ � 0:8415.

� cos.2/ � �0:4161

sin.2/ � 0:9093.

� cos.�4/ � �0:6536

sin.�4/ � 0:7568.

� cos.�15/ � �0:7597

sin.�15/ � �0:6503.

Use a calculator to determine these values of the cosine and sine functions and

compare the values to the ones above. Are they the same? How are they different?

Summary of Section 1.3

In this section, we studied the following important concepts and ideas:

� An angle is formed by rotating a ray about its endpoint. The ray in its initial

position is called the initial side of the angle, and the position of the ray after

it has been rotated is called the terminal side of the ray. The endpoint of the

ray is called the vertex of the angle.

� When the vertex of an angle is at the origin in the xy-plane and the initial side

lies along the positive x-axis, we see that the angle is in standard position.

� There are two ways to measure angles. For degree meausre, one complete

wrap around a circle is 360 degrees, denoted 360ı. The unit measure of 1ı

is an angle that is 1=360 of the central angle of a circle. An angle of one

radian is the angle in standard position on the unit circle that is subtended

by an arc of length 1 (in the positive direction).

� We convert the measure of an angle from degrees to radians by using the fact

that each degree is
�

180
radians. We convert the measure of an angle from

radians to degrees by using the fact that each radian is
180

�
degrees.

http://gvsu.edu/s/JY
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Exercises for Section 1.3

1. Convert each of the following degree measurements for angles into radian

measures for the angles. In each case, first write the result as a fractional

multiple of � and then use a calculator to obtain a 4 decimal place approxi-

mation of the radian measure.

? (a) 15ı

? (b) 58ı
(c) 112ı

(d) 210ı

? (e) �40ı

(f) �78ı

2. Convert each of the following radian measurements for angles into degree

measures for the angles. When necessary, write each result as a 4 decimal

place approximation.

? (a)
3

8
� radians

? (b)
9

7
� radians

(c) � 7

15
� radians

? (d) 1 radian

(e) 2.4 radians

(f) 3 radians

3. Draw an angle in standard position of an angle whose radian measure is:

(a)
1

4
�

(b)
1

3
�

(c)
2

3
�

(d)
5

4
�

(e) �1

3
�

(f) 3.4

4. In Progess Check 1.16, we used the Geogebra Applet called Terminal Points

of Arcs on the Unit Circle to approximate values of the cosine and sine func-

tions. We will now do something similar to approximate the cosine and sine

values for angles measured in degrees.

We have seen that the terminal side of an angle in standard position intersects

the unit circle in a point. We use the coordinates of this point to determine

the cosine and sine of that angle. When the angle is measured in radians, the

radian measure of the angle is the same as the arc on the unit circle subs-

tended by the angle. This is not true when the angle is measure in degrees,

but we can still use the intersection point to define the cosine and sine of the

angle. So if an angle in standard position has degree measurement aı, then

we define cos.aı/ to be the x-coordinate of the point of intersection of the

terminal side of that angle and the unit circle. We define sin.aı/ to be the
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y-coordinate of the point of intersection of the terminal side of that angle

and the unit circle.

We will now use the Geogebra applet Angles and the Unit Circle. A web

address for this applet is

http://gvsu.edu/s/VG

For this applet, we control the value of the input aı with the slider for a.

The values of a range from �180ı to 180ı in increments of 5ı. For a given

value of aı, an angle in standard position is drawn and the coordinates of the

point of intersection of the terminal side of that angle and the unit circle are

displayed. Use this applet to approximate values for each of the following:

? (a) cos .10ı/ and sin .10ı/.

(b) cos .60ı/ and sin .60ı/.

(c) cos .135ı/ and sin .135ı/.

? (d) cos .�10ı/ and sin .�10ı/.

(e) cos .�135ı/ and sin .�135ı/.

(f) cos .85ı/ and sin .85ı/.

5. Exericse (4) must be completed before doing this exercise. Put the calculator

you are using in Degree mode. Then use the calculator to determine the

values of the cosine and sine functions in Exercise (4). Are the values the

same? How are they different?

http://gvsu.edu/s/VG
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1.4 Velocity and Angular Velocity

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� What is arc length?

� What is the difference between linear velocity and angular velocity?

� What are the formulas that relate linear velocity to angular velocity?

Beginning Activity

1. What is the formula for the circumference C of a circle whose radius is r?

2. Suppose person A walks along the circumference of a circle with a radius

of 10 feet, and person B walks along the circumference of a circle of radius

20 feet. Also, suppose it takes both A and B 1 minute to walk one-quarter

of the circumference of their respective circles (one-quarter of a complete

revolution). Who walked the most distance?

3. Suppose both people continue walking at the same pace they did for the first

minute. How many complete revolutions of the circle will each person walk

in 8 minutes? In 10 minutes?

Arc Length on a Circle

In Section 1.3, we learned that the radian measure of an angle was equal to the

length of the arc on the unit circle associated with that angle. So an arc of length

1 on the unit circle subtends an angle of 1 radian. There will be times when it will

also be useful to know the length of arcs on other circles that subtend the same

angle.

In Figure 1.15, the inner circle has a radius of 1, the outer circle has a radius of

r , and the angle shown has a measure of � radians. So the arc length on the unit
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x

y

r
1

θ

θ

s

Figure 1.15: Arcs subtended by an angle of 1 radian.

circle subtended by the angle is � , and we have used s to represent the arc length

on the circle of radius r subtended by the angle.

Recall that the circumference of a circle of radius r is 2�r while the circum-

ference of the circle of radius 1 is 2� . Therefore, the ratio of an arc length s on the

circle of radius r that subtends an angle of � radians to the corresponding arc on

the unit circle is
2�r

2�
D r . So it follows that

s

�
D 2�r

�

s D r�

Definition. On a circle of radius r , the arc length s intercepted by a central

angle with radian measure � is

s D r�:

Note: It is important to remember that to calculate arc length2 , we must measure

the central angle in radians.

2It is not clear why the letter s is usually used to represent arc length. One explanation is that the

arc “subtends” an angle.
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Progress Check 1.17 (Using the Formula for Arc Length)

Using the circles in the beginning activity for this section:

1. Use the formula for arc length to determine the arc length on a circle of

radius 10 feet that subtends a central angle of
�

2
radians. Is the result equal

to one-quarter of the circumference of the circle?

2. Use the formula for arc length to determine the arc length on a circle of

radius 20 feet that subtends a central angle of
�

2
radians. Is the result equal

to one-quarter of the circumference of the circle?

3. Determine the arc length on a circle of radius 3 feet that is subtended by an

angle of 22ı.

Why Radians?

Degree measure is familiar and convenient, so why do we introduce the unit of

radian? This is a good question, but one with a subtle answer. As we just saw, the

length s of an arc on a circle of radius r subtended by angle of � radians is given

by s D r� , so � D s
r

. As a result, a radian is a ratio of two lengths (the quotient of

the length of an arc by a radius of a circle), which makes a radian a dimensionless

quantity. Thus, a measurement in radians can just be thought of as a real number.

This is convenient for dealing with arc length (and angular velocity as we will soon

see), and it will also be useful when we study periodic phenomena in Chapter 2.

For this reason radian measure is universally used in mathematics, physics, and

engineering as opposed to degrees, because when we use degree measure we al-

ways have to take the degree dimension into account in computations. This means

that radian measure is actually more natural from a mathematical standpoint than

degree measure.

Linear and Angular Velocity

The connection between an arc on a circle and the angle it subtends measured

in radians allows us to define quantities related to motion on a circle. Objects

traveling along circular paths exhibit two types of velocity: linear and angular

velocity. Think of spinning on a merry-go-round. If you drop a pebble off the

edge of a moving merry-go-round, the pebble will not drop straight down. Instead,

it will continue to move forward with the velocity the merry-go-round had the
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moment the pebble was released. This is the linear velocity of the pebble. The

linear velocity measures how the arc length changes over time.

Consider a point P moving at a constant velocity along the circumference of a

circle of radius r . This is called uniform circular motion. Suppose that P moves

a distance of s units in time t . The linear velocity v of the point P is the distance

it travelled divided by the time elapsed. That is, v D s

t
. The distance s is the arc

length and we know that s D r� .

Definition. Consider a point P moving at a constant velocity along the cir-

cumference of a circle of radius r . The linear velocity v of the point P is

given by

v D s

t
D r�

t
;

where � , measured in radians, is the central angle subtended by the arc of

length s.

Another way to measure how fast an object is moving at a constant speed on a

circular path is called angular velocity. Whereas the linear velocity measures how

the arc length changes over time, the angular velocity is a measure of how fast the

central angle is changing over time.

Definition. Consider a point P moving with constant velocity along the cir-

cumference of a circle of radius r on an arc that corresponds to a central angle

of measure � (in radians). The angular velocity ! of the point is the radian

measure of the angle � divided by the time t it takes to sweep out this angle.

That is

! D �

t
:

Note: The symbol ! is the lower case Greek letter “omega.” Also, notice that the

angular velocity does not depend on the radius r .

This is a somewhat specialized definition of angular velocity that is slightly

different than a common term used to describe how fast a point is revolving around

a circle. This term is revolutions per minute or rpm. Sometimes the unit revolu-

tions per second is used. A better way to represent revolutions per minute is to use

the “unit fraction”
rev

min
. Since 1 revolution is 2� radians, we see that if an object
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is moving at x revolutions per minute, then

! D x
rev

min
� 2�rad

rev
D x.2�/

rad

min
:

Progress Check 1.18 (Determining Linear Velocity)

Suppose a circular disk is rotating at a rate of 40 revolutions per minute. We wish

to determine the linear velocity v (in feet per second) of a point that is 3 feet from

the center of the disk.

1. Determine the angular velocity ! of the point in radians per minute. Hint:

Use the formula

! D x
rev

min
� 2�rad

rev
:

2. We now know ! D �

t
. So use the formula v D r�

t
to determine v in feet

per minute.

3. Finally, convert the linear velocity v in feet per minute to feet per second.

Notice that in Progress Check 1.18, once we determined the angular velocity,

we were able to determine the linear velocity. What we did in this specific case we

can do in general. There is a simple formula that directly relates linear velocity to

angular velocity. Our formula for linear velocity is v D s

t
D r�

t
. Notice that we

can write this is v D r
�

t
. That is, v D r!.

Consider a point P moving with constant (linear) velocity v along the circum-

ference of a circle of radius r . If the angular velocity is !, then

v D r!:

So in Progress Check 1.18, once we determined that ! D 80�
rad

min
, we could

determine v as follows:

v D r! D .3 ft/

�

80�
rad

min

�

D 240�
ft

min
:

Notice that since radians are “unit-less”, we can drop them when dealing with

equations such as the preceding one.



40 Chapter 1. The Trigonometric Functions

Example 1.19 (Linear and Angular Velocity)

The LP (long play) or 33
1

3
rpm vinyl record is an analog sound storage medium

and has been used for a long time to listen to music. An LP is usually 12 inches

or 10 inches in diameter. In order to work with our formulas for linear and angular

velocity, we need to know the angular velocity in radians per time unit. To do this,

we will convert 33
1

3
revolutions per minute to radians per minute. We will use the

fact that 33
1

3
D 100

3
.

! D 100

3

rev

min
� 2� rad

1 rev

D 200�

3

rad

min

We can now use the formula v D r! to determine the linear velocity of a point on

the edge of a 12 inch LP. The radius is 6 inches and so

v D r!

D .6 inches/

�

200�

3

rad

min

�

D 400�
inches

min

It might be more convenient to express this as a decimal value in inches per second.

So we get

v D 400�
inches

min
� 1 min

60 sec

� 20:944
inches

sec

The linear velocity is approximately 20.944 inches per second.

Progress Check 1.20 (Linear and Angular Velocity)

For these problems, we will assume that the Earth is a sphere with a radius of 3959

miles. As the Earth rotates on its axis, a person standing on the Earth will travel in

a circle that is perpendicular to the axis.

1. The Earth rotates on its axis once every 24 hours. Determine the angular

velocity of the Earth in radians per hour. (Leave your answer in terms of the

number � .)
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2. As the Earth rotates, a person standing on the equator will travel in a circle

whose radius is 3959 miles. Determine the linear velocity of this person in

miles per hour.

3. As the Earth rotates, a person standing at a point whose latitude is 60ı north

will travel in a circle of radius 2800 miles. Determine the linear velocity of

this person in miles per hour and feet per second.

Summary of Section 1.4

In this section, we studied the following important concepts and ideas:

� On a circle of radius r , the arc length s intercepted by a central angle with

radian measure � is

s D r�:

� Uniform circular motion is when a point moves at a constant velocity along

the circumference of a circle. The linear velocity is the arc length travelled

by the point divided by the time elapsed. Whereas the linear velocity mea-

sures how the arc length changes over time, the angular velocity is a measure

of how fast the central angle is changing over time. The angular velocity of

the point is the radian measure of the angle divided by the time it takes to

sweep out this angle.

� For a point P moving with constant (linear) velocity v along the circumfer-

ence of a circle of radius r , we have

v D r!;

where ! is the angular velocity of the point.

Exercises for Section 1.4

1. Determine the arc length (to the nearest hundredth of a unit when necessary)

for each of the following.

? (a) An arc on a circle of radius 6 feet that is intercepted by a central angle

of
2�

3
radians. Compare this to one-third of the circumference of the

circle.
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? (b) An arc on a circle of radius 100 miles that is intercepted by a central

angle of 2 radians.

? (c) An arc on a circle of radius 20 meters that is intercepted by a central

angle of
13�

10
radians.

(d) An arc on a circle of radius 10 feet that is intercepted by a central angle

of 152 degrees.

2. In each of the following, when it is possible, determine the exact measure of

the central angle in radians. Otherwise, round to the nearest hundredth of a

radian.

? (a) The central angle that intercepts an arc of length 3� feet on a circle of

radius 5 feet.

? (b) The central angle that intercepts an arc of length 18 feet on a circle of

radius 5 feet.

(c) The central angle that intercepts an arc of length 20 meters on a circle

of radius 12 meters.

3. In each of the following, when it is possible, determine the exact measure of

central the angle in degrees. Otherwise, round to the nearest hundredth of a

degree.

? (a) The central angle that intercepts an arc of length 3� feet on a circle of

radius 5 feet.

? (b) The central angle that intercepts an arc of length 18 feet on a circle of

radius 5 feet.

(c) The central angle that intercepts an arc of length 20 meters on a circle

of radius 12 meters.

(d) The central angle that intercepts an arc of length 5 inches on a circle of

radius 5 inches.

(e) The central angle that intercepts an arc of length 12 inches on a circle

of radius 5 inches.

4. Determine the distance (in miles) that the planet Mars travels in one week in

its path around the sun. For this problem, assume that Mars completes one

complete revolution around the sun in 687 days and that the path of Mars

around the sun is a circle with a radius of 227.5 million miles.
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5. Determine the distance (in miles) that the Earth travels in one day in its path

around the sun. For this problem, assume that Earth completes one complete

revolution around the sun in 365.25 days and that the path of Earth around

the sun is a circle with a radius of 92.96 million miles.

6. A compact disc (CD) has a diameter of 12 centimeters (cm). Suppose that

the CD is in a CD-player and is rotating at 225 revolutions per minute. What

is the angular velocity of the CD (in radians per second) and what is the

linear velocity of a point on the edge of the CD?

7. A person is riding on a Ferris wheel that takes 28 seconds to make a complete

revolution. Her seat is 25 feet from the axle of the wheel.

(a) What is her angular velocity in revolutions per minute? Radians per

minute? Degrees per minute?

(b) What is her linear velocity?

(c) Which of the quantities angular velocity and linear velocity change if

the person’s seat was 20 feet from the axle instead of 25 feet? Compute

the new value for any value that changes. Explain why each value

changes or does not change.

8. A small pulley with a radius of 3 inches is connected by a belt to a larger

pulley with a radius of 7.5 inches (See Figure 1.16). The smaller pulley is

connected to a motor that causes it to rotate counterclockwise at a rate of 120

rpm (revolutions per minute). Because the two pulleys are connected by the

belt, the larger pulley also rotates in the counterclockwise direction.

Figure 1.16: Two Pulleys Connected by a Belt

(a) Determine the angular velocity of the smaller pulley in radians per

minute.
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? (b) Determine the linear velocity of the rim of the smaller pulley in inches

per minute.

(c) What is the linear velocity of the rim of the larger pulley? Explain.

(d) Find the angular velocity of the larger pulley in radians per minute.

(e) How many revolutions per minute is the larger pulley turning?

9. A small pulley with a radius of 10 centimeters inches is connected by a belt to

a larger pulley with a radius of 24 centimeters inches (See Figure 1.16). The

larger pulley is connected to a motor that causes it to rotate counterclockwise

at a rate of 75 rpm (revolutions per minute). Because the two pulleys are

connected by the belt, the smaller pulley also rotates in the counterclockwise

direction.

(a) Determine the angular velocity of the larger pulley in radians per minute.

? (b) Determine the linear velocity of the rim of the large pulley in inches

per minute.

(c) What is the linear velocity of the rim of the smaller pulley? Explain.

(d) Find the angular velocity of the smaller pulley in radians per second.

(e) How many revolutions per minute is the smaller pulley turning?

10. The radius of a car wheel is 15 inches. If the car is traveling 60 miles per

hour, what is the angular velocity of the wheel in radians per minute? How

fast is the wheel spinning in revolutions per minute?

11. The mean distance from Earth to the moon is 238,857 miles. Assuming the

orbit of the moon about Earth is a circle with a radius of 238,857 miles and

that the moon makes one revolution about Earth every 27.3 days, determine

the linear velocity of the moon in miles per hour. Research the distance of

the moon to Earth and explain why the computations that were just made are

approximations.
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1.5 Common Arcs and Reference Arcs

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� How do we determine the values for cosine and sine for arcs whose

endpoints are on the x-axis or the y-axis?

� What are the exact values of cosine and sine for t D �

6
, t D �

4
, and

t D �

3
?

� What is the reference arc for a given arc? How do we determine the

reference arc for a given arc?

� How do we use reference arcs to calculate the values of the cosine and

sine at other arcs that have
�

6
,

�

4
, or

�

3
as reference arcs?

Beginning Activity

Figure 1.17 shows a unit circle with the terminal points for some arcs between 0

and 2� . In addition, there are four line segments drawn on the diagram that form

a rectangle. The line segments go from: (1) the terminal point for t D �

6
to the

terminal point for t D 5�

6
; (2) the terminal point for t D 5�

6
to the terminal point

for t D 7�

6
; (3) the terminal point for t D 7�

6
to the terminal point for t D 11�

6
;

and (4) the terminal point for t D 11�

6
to the terminal point for t D �

6
.

1. What are the approximate values of cos
��

6

�

and sin
��

6

�

?

2. What are the approximate values of cos

�

5�

6

�

and sin

�

5�

6

�

?
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π

6

π

4

3

π

3

5

π

4

5

π

6

7 π

6

11

π

4

π

3

π

2
π

3

2

π

4

7

π

3

4

π

6

5

π

2

3

0

Figure 1.17: Some Arcs on the unit circle

3. What are the approximate values of cos

�

7�

6

�

and sin

�

7�

6

�

?

4. What are the approximate values of cos

�

11�

6

�

and sin

�

11�

6

�

?

5. Draw a similar rectangle on Figure 1.17 connecting the terminal points for

t D �

4
, t D 3�

4
, t D 5�

4
, and t D 7�

4
. How do the cosine and sine values

for these arcs appear to be related?

Our task in this section is to determine the exact cosine and sine values for all

of the arcs whose terminal points are shown in Figure 1.17. We first notice that we

already know the cosine and sine values for the arcs whose terminal points are on

one of the coordinate axes. These values are shown in the following table.

t 0
�

2
�

3�

2
2�

cos.t/ 1 0 �1 0 1

sin.t/ 0 1 0 �1 0

Table 1.2: Cosine and Sine Values
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The purpose of the beginning activity was to show that we determine the values

of cosine and sine for the other arcs by finding only the cosine and sine values for

the arcs whose terminal points are in the first quadrant. So this is our first task. To

do this, we will rely on some facts about certain right triangles. The three triangles

we will use are shown in Figure 1.18.

45
o

45
o

c 2

2

c

2

2

c

30
o

c

c

2

60
o

3

2

c
60

o

c

2

30
o

c

3

2

c

Figure 1.18: Special Right Triangles.

In each figure, the hypotenuse of the right triangle has a length of c units.

The lengths of the other sides are determined using the Pythagorean Theorem. An

explanation of how these lengths were determined can be found on page 420 in

Appendix C. The usual convention is to use degree measure for angles when we

work with triangles, but we can easily convert these degree measures to radian

measures.

� A 30ı angle has a radian measure of
�

6
radians.

� A 45ı angle has a radian measure of
�

4
radians.

� A 60ı angle has a radian measure of
�

3
radians.

The Values of Cosine and Sine at t D
�

6
Figure 1.19 shows the unit circle in the first quadrant with an arc in standard posi-

tion of length
�

6
. The terminal point of the arc is the point P and its coordinates

are
�

cos
��

6

�

; sin
��

6

��

. So from the diagram, we see that

x D cos
��

6

�

and y D sin
��

6

�

:



48 Chapter 1. The Trigonometric Functions

P

Q

π

6
π/6

1

x

y

Figure 1.19: The arc
�

6
and its associated angle.

As shown in the diagram, we form a right triangle by drawing a line from P

that is perpendicular to the x-axis and intersects the x-axis at Q. So in this right

triangle, the angle associated with the arc is
�

6
radians or 30ı. From what we

know about this type of right triangle, the other acute angle in the right triangle is

60ı or
�

3
radians. We can then use the results shown in the triangle on the left in

Figure 1.18 to conclude that x D
p

3

2
and y D 1

2
. (Since in this case, c D 1.)

Therefore, we have just proved that

cos
��

6

�

D
p

3

2
and sin

��

6

�

D 1

2
:

Progress Check 1.21 (Comparison to the Beginning Activity)

In the beginning activity for this section, we used the unit circle to approximate

the values of the cosine and sine functions at t D �

6
, t D 5�

6
, t D 7�

6
, and

t D 11�

6
. We also saw that these values are all related and that once we have

values for the cosine and sine functions at t D �

6
, we can use our knowledge of

the four quadrants to determine these function values at t D 5�

6
, t D 7�

6
, and
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t D 11�

6
. Now that we know that

cos
��

6

�

D
p

3

2
and sin

��

6

�

D 1

2
;

determine the exact values of each of the following:

1. cos

�

5�

6

�

and sin

�

5�

6

�

.

2. cos

�

7�

6

�

and sin

�

7�

6

�

.

3. cos

�

11�

6

�

and sin

�

11�

6

�

.

The Values of Cosine and Sine at t D
�

4
Figure 1.20 shows the unit circle in the first quadrant with an arc in standard posi-

tion of length
�

4
. The terminal point of the arc is the point P and its coordinates

are
�

cos
��

4

�

; sin
��

4

��

. So from the diagram, we see that

x D cos
��

4

�

and y D sin
��

4

�

:

π

4
π

4

P

π

4

x

y

Q

1

Figure 1.20: The arc
�

4
and its associated angle.

As shown in the diagram, we form a right triangle by drawing a line from P

that is perpendicular to the x-axis and intersects the x-axis at Q. So in this right
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triangle, the acute angles are
�

4
radians or 45ı. We can then use the results shown

in the triangle in the middle of Figure 1.18 to conclude that x D
p

2

2
and y D

p
2

2
.

(Since in this case, c D 1.) Therefore, we have just proved that

cos
��

4

�

D
p

2

2
and sin

��

4

�

D
p

2

2
:

Progress Check 1.22 (Comparison to the Beginning Activity)

Now that we know that

cos
��

4

�

D
p

2

2
and sin

��

4

�

D
p

2

2
;

use a method similar to the one used in Progress Check 1.21 to determine the exact

values of each of the following:

1. cos

�

3�

4

�

and sin

�

3�

4

�

.

2. cos

�

5�

4

�

and sin

�

5�

4

�

.

3. cos

�

7�

4

�

and sin

�

7�

4

�

.

The Values of Cosine and Sine at t D
�

3
Figure 1.21 shows the unit circle in the first quadrant with an arc in standard posi-

tion of length
�

3
. The terminal point of the arc is the point P and its coordinates

are
�

cos
��

3

�

; sin
��

3

��

. So from the diagram, we see that

x D cos
��

3

�

and y D sin
��

3

�

:

As shown in the diagram, we form a right triangle by drawing a line from P

that is perpendicular to the x-axis and intersects the x-axis at Q. So in this right

triangle, the angle associated with the arc is
�

3
radians or 60ı. From what we know

about this type of right triangle, the other acute angle in the right triangle is 30ı

or
�

6
radians. We can then use the results shown in the triangle on the right in
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P

Qx

1

y

π

3

π

3

Figure 1.21: The arc
�

3
and its associated angle.

Figure 1.18 to conclude that x D 1

2
and y D

p
3

2
. (Since in this case, c D 1.)

Therefore, we have just proved that

cos
��

3

�

D 1

2
and sin

��

3

�

D
p

3

2
:

Reference Arcs (Reference Angles)

In the beginning activity for this section and in Progress Checks 1.21 and 1.22, we

saw that we could relate the coordinates of the terminal point of an arc of length

greater than
�

2
on the unit circle to the coordinates of the terminal point of an arc

of length between 0 and
�

2
on the unit circle. This was intended to show that we

can do this for any angle of length greater than
�

2
, and this means that if we know

the values of the cosine and sine for any arc (or angle) between 0 and
�

2
, then we

can find the values of the cosine and sine for any arc at all. The arc between 0 and
�

2
to which we relate a given arc of length greater than

�

2
is called a reference arc.

Definition. The reference arc Ot for an arc t is the smallest non-negative

arc (always considered non-negative) between the terminal point of the arc

t and the closer of the two x-intercepts of the unit circle. Note that the two

x-intercepts of the unit circle are .�1; 0/ and .1; 0/.
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The concept of reference arc is illustrated in Figure 1.22. Each of the thicker

arcs has length Ot and it can be seen that the coordinates of the points in the second,

third, and fourth quadrants are all related to the coordinates of the point in the first

quadrant. The signs of the coordinates are all determined by the quadrant in which

the point lies.

(cos(  ), sin(  ))(- cos(  ), sin(  ))

(cos(  ), - sin(  ))

t

t

t

t

t

t

tt

(- cos(  ), - sin(  ))tt tt

Figure 1.22: Reference arcs.

How we calculate a reference arc for a given arc of length t depends upon

the quadrant in which the terminal point of t lies. The diagrams in Figure 1.23

illustrate how to calculate the reference arc for an arc of length t with 0 � t � 2� .

In Figure 1.23, we see that for an arc of length t with 0 � t � 2� :

� If
�

2
< t < � , then the point intersecting the unit circle and the x axis that

is closest to the terminal point of t is .�1; 0/. So the reference arc is � � t .

In this case, Figure 1.23 shows that
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cos.� � t / D � cos.t/ and sin.� � t / D sin.t/:

� If � < t <
3�

2
, then the point intersecting the unit circle and the x axis that

is closest to the terminal point of t is .�1; 0/. So the reference arc is t � � .

In this case, Figure 1.23 shows that

cos.t � �/ D � cos.t/ and sin.t � �/ D � sin.t/:

� If
3�

2
< t < 2� , then the point intersecting the unit circle and the x axis that

is closest to the terminal point of t is .1; 0/. So the reference arc is 2� � t .

In this case, Figure 1.23 shows that

cos.2� � t / D cos.t/ and sin.2� � t / D � sin.t/:

Progress Check 1.23 (Reference Arcs – Part 1)

For each of the following arcs, draw a picture of the arc on the unit circle. Then

determine the reference arc for that arc and draw the reference arc in the first quad-

rant.

1. t D 5�

4
2. t D 4�

5
3. t D 5�

3

Progress Check 1.24 (Reference Arcs – Part 2)

Although we did not use the term then, in Progress Checks 1.21 and 1.22, we used

the facts that t D �

6
and t D �

4
were the reference arcs for other arcs to determine

the exact values of the cosine and sine functions for those other arcs. Now use the

values of cos
��

3

�

and sin
��

3

�

to determine the exact values of the cosine and

sine functions for each of the following arcs:
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(cos(t), sin(t))

x

y

t

If the arc t is in Quadrant I, then t

is its own reference arc.

(cos(t), sin(t))

x

y

(cos(π - t), sin(π - t))

π - tπ - t

If the arc t is in Quadrant II, then

� � t is its reference arc.

x

y

(cos(t), sin(t))

(cos(t - π), sin(t - π))

t - π

t - π

If the arc t is in Quadrant III, then

t � � is its reference arc.

(cos(t), sin(t))

x

y

(cos(2π - t), sin(2π - t))

2π - t

2π - t

If the arc t is in Quadrant IV, then

2� � t is its reference arc.

Figure 1.23: Reference arcs

1. t D 2�

3
2. t D 4�

3
3. t D 5�

3

Reference Arcs for Negative Arcs

Up to now, we have only discussed reference arcs for positive arcs, but the same

principles apply when we use negative arcs. Whether the arc t is positive or nega-

tive, the reference arc for t is the smallest non-negative arc formed by the terminal

point of t and the nearest x-intercept of the unit circle. For example, for the arc

t D ��

4
is in the fourth quadrant, and the closer of the two x-intercepts of the unit

circle is .1; 0/. So the reference arc is Ot D �

4
as shown in Figure 1.24.
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π

4

π

4

_

A

B

(1, 0)

Figure 1.24: Reference Arc for t D �

4
.

Since we know that the point A has coordinates

 p
2

2
;

p
2

2

!

, we conclude that

the point B has coordinates

 p
2

2
;�
p

2

2

!

, and so

cos
�

��

4

�

D
p

2

2
and sin

�

��

4

�

D �
p

2

2
:

Progress Check 1.25 (Reference Arcs for Negative Arcs)

For each of the following arcs, determine the reference arc and the values of the

cosine and sine functions.

1. t D ��

6
2. t D �2�

3
3. t D �5�

4

Example 1.26 (Using Reference Arcs)

Sometimes we can use the concept of a reference arc even if we do not know the

length of the arc but do know the value of the cosine or sine function. For example,

suppose we know that

0 < t <
�

2
and sin.t/ D 2

3
:
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Are there any conclusions we can make with this information? Following are some

possibilities.

1. We can use the Pythagorean identity to determine cos.t/ as follows:

cos2.t/C sin2.t/ D 1

cos2.t/ D 1 �
�

2

3

�2

cos2.t/ D 5

9

Since t is in the first quadrant, we know that cos.t/ is positive, and hence

cos.t/ D
r

5

9
D
p

5

3
:

2. Since 0 < t <
�

2
, t is in the first quadrant. Hence, � � t is in the second

quadrant and the reference arc is t . In the second quadrant we know that the

sine is positive, so we can conclude that

sin.� � t / D sin.t/ D 2

3
:

Progress Check 1.27 (Working with Reference Arcs)

Following is information from Example 1.26:

0 < t <
�

2
and sin.t/ D 2

3
:

Use this information to determine the exact values of each of the following:

1. cos.� � t /

2. sin.� C t /

3. cos.� C t /

4. sin.2� � t /

Summary of Section 1.5

In this section, we studied the following important concepts and ideas:

� The values of cos.t/ and sin.t/ for arcs whose terminal points are on one of

the coordinate axes are shown in Table 1.3 below.
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� Exact values for the cosine and sine functions at
�

6
,

�

4
, and

�

3
are known

and are shown in Table 1.3 below.

� A reference arc for an arc t is the arc (always considered nonnegative) be-

tween the terminal point of the arc t and point intersecting the unit circle and

the x-axis closest to it.

� If t is an arc that has an arc Ot as a reference arc, then j cos.t/j and j cos.Ot /j are

the same. Whether cos.t/ D cos.Ot / or cos.t/ D � cos.Ot/ is determined by

the quadrant in which the terminal side of t lies. The same is true for sin.t/.

� We can determine the exact values of the cosine and sine functions at any arc

with
�

6
,

�

4
, or

�

3
as reference arc. These arcs between 0 and 2� are shown

in Figure 1.17. The results are summarized in Table 1.3 below.

t x D cos.t/ y D sin.t/

0 1 0

�

6

p
3

2

1

2

�

4

p
2

2

p
2

2

�

3

1

2

p
3

2
�

2
0 1

2�

3
�1

2

p
3

2

3�

4
�
p

2

2

p
2

2

5�

6
�
p

3

2

1

2

t x D cos.t/ y D sin.t/

� �1 0

7�

6
�
p

3

2
�1

2

5�

4
�
p

2

2
�
p

2

2

4�

3
�1

2
�
p

3

2

3�

2
0 �1

5�

3

1

2
�
p

3

2

7�

4

p
2

2
�
p

2

2

11�

6

p
3

2
�1

2

Table 1.3: Exact values of the cosine and sine functions.
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Exercises for Section 1.5

? 1. A unit circle is shown in each of the following showing information about

an arc t . In each case, use the information on the unit circle to determine the

values of t , cos.t/, and sin.t/.

(a)

1

2
, ?( )

x

y

t

(b)

(?, 1)
y

t

x

(c)

y

t

x

(d)

y

t
x

2. Determine the exact value for each of the following expressions and then use

a calculator to check the result. For example,

cos.0/C sin
��

3

�

D 1C
p

3

2
� 1:8660:

? (a) cos2
��

6

�

? (b) 2 sin2
��

4

�

C cos.�/

(c)
cos

��

6

�

sin
��

6

�

(d) 3 sin
��

2

�

C cos
��

4

�

3. For each of the following, determine the reference arc for the given arc and

draw the arc and its reference arc on the unit circle.

? (a) t D 4�

3

? (b) t D 13�

8

(c) t D 9�

4

? (d) t D �4�

3

(e) t D �7�

5

(f) t D 5
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4. For each of the following, draw the given arc t on the unit circle, determine

the referenc arc for t , and then determine the exact values for cos.t/ and

sin.t/.

? (a) t D 5�

6

(b) t D 5�

4

(c) t D 5�

3

? (d) t D �2�

3

(e) t D �7�

4

(f) t D 19�

6

5. (a) Use a calculator (in radian mode) to determine five-digit approxima-

tions for cos.4/ and sin.4/.

(b) Use a calculator (in radian mode) to determine five-digit approxima-

tions for cos.4 � �/ and sin.4 � �/.

(c) Use the concept of reference arcs to explain the results in parts (a) and

(b).

6. Suppose that we have the following information about the arc t .

0 < t <
�

2
and sin.t/ D 1

5
:

Use this information to determine the exact values of each of the following:

? (a) cos.t/

(b) sin.� � t /

(c) cos.� � t /

? (d) sin.� C t /

(e) cos.� C t /

(f) sin.2� � t /

7. Suppose that we have the following information about the arc t .

�

2
< t < � and cos.t/ D �2

3
:

Use this information to determine the exact values of each of the following:

(a) sin.t/

(b) sin.� � t /

(c) cos.� � t /

(d) sin.� C t /

(e) cos.� C t /

(f) sin.2� � t /

8. Make sure your calculator is in Radian Mode.
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(a) Use a calculator to find an eight-digit approximation of sin
��

6
C �

4

�

D

sin

�

5�

12

�

.

(b) Determine the exact value of sin
��

6

�

C sin
��

4

�

.

(c) Use a calculator to find an eight-digit approximation of your result in

part (b). Compare this to your result in part (a). Does it seem that

sin
��

6
C �

4

�

D sin
��

6

�

C sin
��

4

�

:

(d) Determine the exact value of sin
��

6

�

cos
��

4

�

C cos
��

6

�

sin
��

4

�

.

(e) Determine an eight-digit approximation of your result in part (d).

(f) Compare the results in parts (a) and (e). Does it seem that

sin
��

6
C �

4

�

D sin
��

6

�

cos
��

4

�

C cos
��

6

�

sin
��

4

�

:

9. This exercise provides an alternate

method for determining the exact values

of cos
��

4

�

and sin
��

4

�

. The diagram

to the right shows the terminal point

P.x; y/ for an arc of length t D �

4
on

the unit circle. The points A.1; 0/ and

B.0; 1/ are also shown.

Since the point B is the terminal point of

the arc of length
�

2
, we can conclude that

the length of the arc from P to B is also
�

4
. Because of this, we conclude that the

point P lies on the line y D x as shown

in the diagram. Use this fact to determine

the values of x and y. Explain why this

proves that

cos
��

4

�

D
p

2

2
and sin

��

4

�

D
p

2

2
:
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10. This exercise provides an alternate

method for determining the exact values

of cos
��

6

�

and sin
��

6

�

. The diagram

to the right shows the terminal point

P.x; y/ for an arc of length t D �

6
on the unit circle. The points A.1; 0/,

B.0; 1/, and C.x;�y/ are also shown.

Notice that B is the terminal point of the

arc t D �

2
, and C is the terminal point of

the arc t D ��

6
.

We now notice that the length of the arc from P to B is

�

2
� �

6
D �

3
:

In addition, the length of the arc from C to P is

�

6
� ��

6
D �

3
:

This means that the distance from P to B is equal to the distance from C to

P .

(a) Use the distance formula to write a formula (in terms of x and y) for

the distance from P to B .

(b) Use the distance formula to write a formula (in terms of x and y) for

the distance from C to P .

(c) Set the distances from (a) and (b) equal to each other and solve the

resulting equation for y. To do this, begin by squaring both sides of the

equation. In order to solve for y, it may be necessary to use the fact

that x2 C y2 D 1.

(d) Use the value for y in (c) and the fact that x2 C y2 D 1 to determine

the value for x.

Explain why this proves that

cos
��

6

�

D
p

3

2
and sin

��

3

�

D 1

2
:
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11. This exercise provides an alternate

method for determining the exact values

of cos
��

3

�

and sin
��

3

�

. The diagram

to the right shows the terminal point

P.x; y/ for an arc of length t D �

3
on the unit circle. The points A.1; 0/,

B.0; 1/, and S

 p
3

2
;
1

2

!

are also shown.

Notice that B is the terminal point of the

arc t D �

2
.

From Exercise (10), we know that S is

the terminal point of an arc of length
�

6
.

We now notice that the length of the arc from A to P is
�

3
. In addition, since

the length of the arc from A to B is
�

2
and the and the length of the arc from

B to P is
�

3
. This means that the distance from P to B is equal

�

2
� �

3
D �

6
:

Since both of the arcs have length
�

6
, the distance from A to S is equal to

the distance from P to B .

(a) Use the distance formula to determine the distance from A to S .

(b) Use the distance formula to write a formula (in terms of x and y) for

the distance from P to B .

(c) Set the distances from (a) and (b) equal to each other and solve the

resulting equation for y. To do this, begin by squaring both sides of the

equation. In order to solve for y, it may be necessary to use the fact

that x2 C y2 D 1.

(d) Use the value for y in (c) and the fact that x2 C y2 D 1 to determine

the value for x.

Explain why this proves that

cos
��

3

�

D 1

2
and sin

��

3

�

D
p

3

2
:
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1.6 Other Trigonometric Functions

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� How is the tangent function defined? What is the domain of the tangent

function?

� What are the reciprocal functions and how are they defined? What are

the domains of each of the reciprocal functions?

We defined the cosine and sine functions as the coordinates of the terminal

points of arcs on the unit circle. As we will see later, the sine and cosine give

relations for certain sides and angles of right triangles. It will be useful to be able

to relate different sides and angles in right triangles, and we need other circular

functions to do that. We obtain these other circular functions – tangent, cotangent,

secant, and cosecant – by combining the cosine and sine together in various ways.

Beginning Activity

Using radian measure:

1. For what values of t is cos.t/ D 0?

2. For what values of t is sin.t/ D 0?

3. In what quadrants is cos.t/ > 0? In what quadrants is sin.t/ > 0?

4. In what quadrants is cos.t/ < 0? In what quadrants is sin.t/ < 0?

The Tangent Function

Next to the cosine and sine, the most useful circular function is the tangent.3

3The word tangent was introduced by Thomas Fincke (1561-1656) in his Flenspurgensis Geome-

triae rotundi libri XIIII where he used the word tangens in Latin. From “Earliest Known Uses of

Some of the Words of Mathematics at http://jeff560.tripod.com/mathword.html.

http://jeff560.tripod.com/mathword.html
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Definition. The tangent function is the quotient of the sine function divided

by the cosine function. So the tangent of a real number t is defined to be
sin.t/

cos.t/
for those values t for which cos.t/ ¤ 0. The common abbreviation for

the tangent of t is

tan.t/ D sin.t/

cos.t/
:

In this definition, we need the restriction that cos.t/ ¤ 0 to make sure the

quotient is defined. Since cos.t/ D 0 whenever t D �

2
C k� for some integer k,

we see that tan.t/ is defined when t ¤ �

2
C k� for all integers k. So

The domain of the tangent function is the set of all real numbers t for

which t ¤ �

2
C k� for every integer k.

Notice that although the domain of the sine and cosine functions is all real numbers,

this is not true for the tangent function.

When we worked with the unit circle definitions of cosine and sine, we often

used the following diagram to indicate signs of cos.t/ and sin.t/ when the terminal

point of the arc t is in a given quadrant.

x

y

sin (t) > 0 sin (t) > 0

cos (t) > 0

cos (t) > 0cos (t) < 0

cos (t) < 0

sin (t) < 0 sin (t) < 0

Progress Check 1.28 (Signs and Values of the Tangent Function)

Considering t to be an arc on the unit circle, for the terminal point of t :

1. In which quadrants is tan.t/ positive?

2. In which quadrants is tan.t/ negative?
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3. For what values of t is tan.t/ D 0?

4. Complete Table 1.4, which gives the values of cosine, sine, and tangent at

the common reference arcs in Quadrant I.

t cos.t/ sin.t/ tan.t/

0 0

�

6

1

2

�

4

p
2

2

�

4

p
3

2

�

2
1

Table 1.4: Values of the Tangent Function

Just as with the cosine and sine, if we know the values of the tangent function

at the reference arcs, we can find its values at any arc related to a reference arc. For

example, the reference arc for the arc t D 5�

3
is

�

3
. So

tan

�

5�

3

�

D
sin

�

5�

3

�

cos

�

5�

3

�

D
� sin

��

3

�

cos
��

3

�

D
�
p

3

2
1

2

D �
p

3
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We can shorten this process by just using the fact that tan
��

3

�

D
p

3 and that

tan

�

5�

3

�

< 0 since the terminal point of the arc
5�

3
is in the fourth quadrant.

tan

�

5�

3

�

D � tan
��

3

�

D �
p

3:

Progress Check 1.29 (Values of the Tangent Function)

1. Determine the exact values of tan

�

5�

4

�

and tan

�

5�

6

�

.

2. Determine the exact values of cos.t/ and tan.t/ if it is known that sin.t/ D 1

3
and tan.t/ < 0.

The Reciprocal Functions

The remaining circular or trigonometric functions are reciprocals of the cosine,

sine, and tangent functions. Since these functions are reciprocals, their domains

will be all real numbers for which the denominator is not equal to zero. The first

we will introduce is the secantfunction. 4 function.

Definition. The secant function is the reciprocal of the cosine function. So

the secant of a real number t is defined to be
1

cos.t/
for those values t where

cos.t/ ¤ 0. The common abbreviation for the secant of t is

sec.t/ D 1

cos.t/
:

Since the tangent function and the secant function use cos.t/ in a denominator,

they have the same domain. So

4The term secant was introduced by was by Thomas Fincke (1561-1656) in his Thomae Finkii

Flenspurgensis Geometriae rotundi libri XIIII, Basileae: Per Sebastianum Henricpetri, 1583. Vieta

(1593) did not approve of the term secant, believing it could be confused with the geometry term.

He used Transsinuosa instead. From “Earliest Known Uses of Some of the Words of Mathematics at

http://jeff560.tripod.com/mathword.html.

http://jeff560.tripod.com/mathword.html
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The domain of the secant function is the set of all real numbers t for

which t ¤ �

2
C k� for every integer k.

Next up is the cosecant function. 5

Definition. The cosecant function is the reciprocal of the secant function. So

the cosecant of a real number t is defined to be
1

sin.t/
for those values t where

sin.t/ ¤ 0. The common abbreviation for the cotangent of t is

csc.t/ D 1

sin.t/
:

Since sin.t/ D 0 whenever t D k� for some integer k, we see that

The domain of the cosecant function is the set of all real numbers t for

which t ¤ k� for every integer k.

Finally, we have the cotangent function. 6

Definition. The cotangent function is the reciprocal of the tangent function.

So the cotangent of a real number t is defined to be
1

tan.t/
for those values t

where tan.t/ ¤ 0. The common abbreviation for the cotangent of t is

cot.t/ D 1

tan.t/
:

Since tan.t/ D 0 whenever t D k� for some integer k, we see that

The domain of the cotangent function is the set of all real numbers t for

which t ¤ k� for every integer k.

5Georg Joachim von Lauchen Rheticus appears to be the first to use the term cosecant (as cosecans

in Latin) in his Opus Palatinum de triangulis. From Earliest Known Uses of Some of the Words of

Mathematics at http://jeff560.tripod.com/mathword.html.
6The word cotangent was introduced by Edmund Gunter in Canon Triangulorum (Table of Arti-

ficial Sines and Tangents) where he used the term cotangens in Latin. From Earliest Known Uses of

Some of the Words of Mathematics at http://jeff560.tripod.com/mathword.html.

http://jeff560.tripod.com/mathword.html
http://jeff560.tripod.com/mathword.html
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A Note about Calculators

When it is not possible to determine exact values of a trigonometric function, we

use a calculator to determine approximate values. However, please keep in mind

that many calculators only have keys for the sine, cosine, and tangent functions.

With these calculators, we must use the definitions of cosecant, secant, and cotan-

gent to determine approximate values for these functions.

Progress Check 1.30 (Values of Trignometric Functions

When possible, find the exact value of each of the following functional values.

When this is not possible, use a calculator to find a decimal approximation to four

decimal places.

1. sec

�

7�

4

�

2. csc
���

4

�

3. tan

�

7�

8

�

4. cot

�

4�

3

�

5. csc.5/

Progress Check 1.31 (Working with Trignometric Functions

1. If cos.x/ D 1

3
and sin.x/ < 0, determine the exact values of sin.x/, tan.x/,

csc .x/, and cot.x/.

2. If sin.x/ D � 7

10
and tan.x/ > 0, determine the exact values of cos.x/ and

cot.x/.

3. What is another way to write .tan.x//.cos.x//?

Summary of Section 1.6

In this section, we studied the following important concepts and ideas:

� The tangent function is the quotient of the sine function divided by the

cosine function. So is the quotient of the sine function divided by the cosine

function. That is,

tan.t/ D sin.t/

cos.t/
;

for those values t for which cos.t/ ¤ 0. The domain of the tangent func-

tion is the set of all real numbers t for which t ¤ �

2
C k� for every integer

k.



1.6. Other Trigonometric Functions 69

� The reciprocal functions are the secant, cosecant, and tangent functions.

Reciprocal Function Domain

sec.t/ D 1

cos.t/
The set of real numbers t for which t ¤ �

2
C k�

for every integer k.

csc.t/ D 1

sin.t/
The set of real numbers t for which t ¤ k� for

every integer k.

cot.t/ D 1

tan.t/
The set of real numbers t for which t ¤ k� for

every integer k.

Exercises for Section 1.6

? 1. Complete the following table with the exact values of each functional value

if it is defined.
t cot.t/ sec.t/ csc.t/

0

�

6
�

4
�

3
�

2

2. Complete the following table with the exact values of each functional value

if it is defined.

t cot.t/ sec.t/ csc.t/
2�

3
7�

6
7�

4

��

3

�
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3. Determine the quadrant in which the terminal point of each arc lies based on

the given information.

? (a) cos.x/ > 0 and tan.x/ < 0.

? (b) tan.x/ > 0 and csc.x/ < 0.

(c) cot.x/ > 0 and sec.x/ > 0.

(d) sin.x/ < 0 and sec.x/ > 0.

(e) sec.x/ < 0 and csc.x/ > 0.

(f) sin.x/ < 0 and cot.x/ > 0.

? 4. If sin.t/ D 1

3
and cos.t/ < 0, determine the exact values of cos.t/, tan.t/,

csc.t/, sec.t/, and cot.t/.

5. If cos.t/ D �3

5
and sin.t/ < 0, determine the exact values of sin.t/, tan.t/,

csc.t/, sec.t/, and cot.t/.

6. If sin.t/ D �2

5
and tan.t/ < 0, determine the exact values of cos.t/, tan.t/,

csc.t/, sec.t/, and cot.t/.

7. If sin.t/ D 0:273 and cos.t/ < 0, determine the five-digit approximations

for cos.t/, tan.t/, csc.t/, sec.t/, and cot.t/.

8. In each case, determine the arc t that satisfies the given conditions or explain

why no such arc exists.

? (a) tan.t/ D 1, cos.t/ D � 1p
2

, and 0 < t < 2� .

? (b) sin.t/ D 1, sec.t/ is undefined, and 0 < t < � .

(c) sin.t/ D
p

2

2
, sec.t/ D �

p
2, and 0 < t < � .

(d) sec.t/ D � 2p
3

, tan.t/ D
p

3, and 0 < t < 2� .

(e) csc.t/ D
p

2, tan.t/ D �1, and 0 < t < 2� .

9. Use a calculator to determine four-digit decimal approximations for each of

the following.

(a) csc.1/

(b) tan

�

12�

5

�

(c) cot.5/

(d) sec

�

13�

8

�

(e) sin2.5:5/

(f) 1C tan2.2/

(g) sec2.2/



Chapter 2

Graphs of the Trigonometric

Functions

Wherever we live, we have experienced the fact that the amount of daylight where

we live varies over the year but that the amount of daylight we be the about the same

in a given month, say March, of every year. This is an example of a periodic (or

repeating) phenomena. Another example of something that is periodic is a sound

wave. In fact, waves are usually represented by a picture such as the following:

As we will see in this Chapter, the sine and cosine functions provide an excellent

way to study these waves mathematically.

71
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2.1 Graphs of the Cosine and Sine Functions

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� What are the graphs and important properties of the graphs of y D
cos.x/ and y D sin.x/?

� What are the domains of the sine and cosine functions? What are the

ranges of the sine and cosine functions?

� What are the periods of the sine and cosine functions? What does period

mean?

� What is amplitude? How does the amplitude affect the graph of the sine

or cosine?

Beginning Activity

1. The most basic form of drawing the graph of a function is to plot points. Use

the values in the given table to plot the points on the graph of y D sin.x/

and then draw the graph of y D sin.t/ for 0 � t � 2� . Note: On the t -axis,

the gridlines are
�

12
units apart and on the y-axis, the gridlines are 0.1 of a

unit apart.
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0.5

1

-0.5

-1

π 2π

t

3π

2

π

2

y

t sin.t/ sin.t/ (approx)

0 0 0

�

6

1

2
0.5

�

4

p
2

2
0.707

�

3

p
3

2
0.866

�

2
1 1

2�

3

p
3

2
0.866

3�

4

p
2

2
0.714

5�

6

1

2
0.5

� 0 0

t sin.t/ sin.t/ (approx)

7�

6
�1

2
�0:5

5�

4
�
p

2

2
�0:707

4�

3
�
p

3

2
�0:866

3�

2
�1 �1

5�

3
�
p

3

2
�0:866

7�

4
�
p

2

2
�0:707

11�

6
�1

2
�0:5

2� 0 0

2. We can also use a graphing calculator or other graphing device to draw the

graph of the sine function. Make sure the device is set to radian mode and use

it to draw the graph of y D sin.t/ using�2� � t � 4� and�1:2 � y � 1:2.

Note: Many graphing utilities require the use of x as the independent vari-

able. For such devices, we need to use y D sin.x/. This will make no

difference in the graph of the function.

(a) Compare this to the graph from part (1). What are the similarities?

What are the differences?



74 Chapter 2. Graphs of the Trigonometric Functions

(b) Find four separate values of t where the graph of the sine function

crosses the t -axis. Such values are called t -intercepts of the sine func-

tion (or roots or zeros).

(c) Based on the graphs, what appears to be the maximum value of sin.t/.

Determine two different values of t that give this maximum value of

sin.t/.

(d) Based on the graphs, what appears to be the minimum value of sin.t/.

Determine two different values of t that give this minimum value of

sin.t/.

The Periods of the Sine and Cosine Functions

One thing we can observe from the graphs of the sine function in the beginning

activity is that the graph seems to have a “wave” form and that this “wave” repeats

as we move along the horizontal axis. We see that the portion of the graph between

0 and 2� seems identical to the portion of the graph between 2� and 4� and to

the portion of the graph between �2� and 0. The graph of the sine function is

exhibiting what is known as a periodic property. Figure 2.1 shows the graph of

y D sin.t/ for three cycles.

1

−1

−2π −π π 2π 3π 4π

y = sin(t)

Figure 2.1: Graph of y D sin.t/ with �2� � t � 4�

We say that the sine function is a periodic function. Such functions are often

used to model repititious phenomena such as a pendulm swinging back and forth,

a weight attached to a spring, and a vibrating guitar string.
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The reason that the graph of y D sin.t/ repeats is that the value of sin.t/ is the

y-coordinate of a point as it moves around the unit circle. Since the circumference

of the unit circle is 2� units, an arc of length .t C 2�/ will have the same terminal

point as an arc of length t . Since sin.t/ is the y-coordinate of this point, we see

that sin.t C 2�/ D sin.t/. This means that the period of the sine function is 2� .

Following is a more formal definition of a periodic function.

Definition. A function f is periodic with period p if f .t C p/ D f .t/ for

all t in the domain of f and p is the smallest positive number that has this

property.

Notice that if f is a periodic function with period p, then if we add 2p to t , we

get

f .t C 2p/ D f ..t C p/C p/ D f .t C p/ D f .t/:

We can continue to repeat this process and see that for any integer k,

f .t C kp/ D f .t/:

So far, we have been discussing only the sine function, but we get similar behavior

with the cosine function. Recall that the wrapping function wraps the number

line around the unit circle in a way that repeats in segments of length 2� . This

is periodic behavior and it leads to periodic behavior of both the sine and cosine

functions since the value of the sine function is the y-coordinate of a point on the

unit circle and the value of the cosine function is the x-coordinate of the same

point on the unit circle, the sine and cosine functions repeat every time we make

one wrap around the unit circle. That is,

cos.t C 2�/ D cos.t/ and sin.t C 2�/ D sin.t/:

It is important to recognize that 2� is the smallest number that makes this happen.

Therefore, the cosine and sine functions are periodic with period 2� .

Progress Check 2.1 (The Graph of the Cosine Function).

We can, of course, use a graphing utility to draw the graph of the cosine function.

However, it does help to understand the graph if we actually draw the graph by

hand as we did for the sine function in the beginning activity. Use the values in the

given table to plot the points on the graph of y D cos.t/ and then draw the graph

of y D cos.t/ for 0 � t � 2� .
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0.5
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-0.5
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π 2π

t

3π

2

π

2
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t cos.t/ cos.t/ (approx)

0 1 1

�

6

p
3

2
0.866

�

4

p
2

2
0.707

�

3

1

2
0.5

�

2
0 0

2�

3
�1

2
�0:5

3�

4

�
p

2

2
�0:714

5�

6

�
p

3

2
�0:866

� �1 �1

t cos.t/ cos.t/ (approx)

7�

6
�
p

3

2
�0:866

5�

4

�
p

2

2
�0:714

4�

3
�1

2
�0:5

3�

2
0 �1

2�

3

1

2
0:5

7�

4

p
2

2
0.707

11�

6

p
3

2
�0:866

2� 1 1
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−2π −π π 2π 3π 4π

1

−1

y = cos(t)

Figure 2.2: Graph of y D cos.t/ with �2� � t � 4�

Progress Check 2.2 (The Cosine Function).

1. Compare the graph in Figure 2.2 to the graph from Progress Check 2.1. What

are the similarities? What are the differences?

2. Find four separate values of t where the graph of the cosine function crosses

the t -axis. Such values are called t -intercepts of the cosine function (or

roots or zeros).

3. Based on the graphs, what appears to be the maximum value of cos.t/. De-

termine two different values of t that give this maximum value of cos.t/.

4. Based on the graphs, what appears to be the minimum value of cos.t/. De-

termine two different values of t that give this minimum value of cos.t/.

Activity 2.3 (The Graphs of the Sine and Cosine Functions).

We have now constructed the graph of the sine and cosine functions by plotting

points and by using a graphing utility. We can have a better understanding of these

graphs if we can see how these graphs are related to the unit circle definitions of

sin.t/ and cos.t/. We will use two Geogebra applets to help us do this.

The first applet is called Sine Graph Generator. The web address is

http://gvsu.edu/s/Ly

To begin, just move the slider for t until you get t D 1 and observe the resulting

image. On the left, there will be a copy of the unit circle with an arc drawn that has

http://gvsu.edu/s/Ly
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length 1. The y-coordinate of the terminal point of this arc (0.84 rounded to the

nearest hundredth) will also be displayed. The horizontal line will be connected to

the point .1; 0:84/ on the graph of y D sin.t/. As the values of t are changed with

the slider, more points will be drawn in this manner on the graph of y D sin.t/.

The other applet is called Cosine Graph Generator and it works in a manner

similar to Sine Graph Generator. The web address for this applet is

http://gvsu.edu/s/Lz

Properties of the Graphs of the Sine and Cosine Functions

The graphs of y D sin.t/ and y D cos.t/ are called sinusoidal waves and the

sine and cosine functions are called sinusoidal functions. Both of these particular

sinusoidal waves have a period of 2� . The graph over one period is called a cycle

of the graph. As with other functions in our previous study of algebra, another

important property of graphs is their intercepts, in particular, the horizontal inter-

cepts or the points where the graph crosses the horizontal axis. One big difference

from algebra is that the sine and cosine functions have infinitely many horizontal

intercepts.

In Progress Check 2.2, we used Figure 2.2 and determined that

��

2
;
�

2
;

3�

2
;

5�

2
;

7�

2

are t -intercepts on the graph of y D cos.t/. In particular,

In the interval Œ0; 2��, the only t -intercepts of y D cos.t/ are t D �

2
and

t D 3�

2
.

There are, of course, other t -intercepts, and this is where the period of 2� is helpful.

We can generate any other t -intercept of y D cos.t/ by adding integer multiples of

the period 2� to these two values. For example, if we add 6� to each of them, we

see that

t D 13�

2
and t D 15�

2
are t intercepts of y D cos.t/:

http://gvsu.edu/s/Lz
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Progress Check 2.4 (The t -intercepts of the Sine Function)

Use a graph to determine the t -intercepts of y D sin.t/ in the interval Œ0; 2��.

Then use the period property of the sine function to determine the t -intercepts

of y D sin.t/ in the interval Œ�2�; 4��. Compare this result to the graph in

Figure 2.1. Finally, determine two t -intercepts of y D sin.t/ that are not in the

interval Œ�2�; 4��.

Activity 2.5 (Exploring Graphs of Sine Functions)

Do one of the following:

1. Draw the graphs of y D sin.x/, y D 1

2
sin.x/ and y D 2 sin.x/, y D

� sin.x/, and y D 2 sin.x/ on the same axes. Make sure your graphing

utility is in radian mode and use �2� � x � 2� and �2:5 � y � 2:5.

2. Use the Geogebra applet Amplitude of a Sinusoid at the following web ad-

dress:

http://gvsu.edu/s/LM

The expression for g.t/ can be changed but leave it set to g.t/ D sin.t/. The

slider can be moved to change the value of A and the graph of y D A sin.t/

will be drawn. Explore these graphs by changing the values of A making sure

to use negative values of A as well as positive values of A. (It is possible to

change this to g.t/ D cos.t/ and explore the graphs of y D A cos.t/.

The Amplitude of Sine and Cosine Functions

The graphs of the functions from Activity 2.5 should have looked like one of the

graphs in Figure 2.3. Both graphs are graphs of y D A sin.t/, but the one on the

left is for A > 0 and the one on the right is for A < 0. Note that when A < 0,

�A > 0. Another important characteristic of a sinusoidal wave is the amplitude.

The amplitude of each of the graphs in Figure 2.3 is represented by the length of

the dashed lines, and we see that this length is equal to jAj.

Definition. The amplitude of a sinusoidal wave is one-half the distance be-

tween the maximum and minimum functional values.

Amplitude D 1

2
j.max y-coordinate/ � .min y-coordinate/j :

http://gvsu.edu/s/LM
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π

2

, A( )

π

2

, A( )

A

A,( )3π

2

,( )3π

2
A

A

-A

-A

π π2π

2π

A > 0 A < 0

Figure 2.3: Graphs of y D A sin.t/.

Progress Check 2.6 (The Graph of y D A cos.t/)

Draw graphs of y D A cos.t/ for A > 0 and for A < 0 similar to the graphs for

y D A sin.t/ in Figure 2.3.

Using a Graphing Utility

We often will use a graphing utility to draw the graph of a sinusoidal function.

When doing so, it is a good idea to use the amplitude to help set an appropriate

viewing window. The basic idea is to have the screen on the graphing utility show

slightly more than one period of the sinusoid. For example, if we are trying to draw

a graph of y D 3:6 cos.x/, we could use the following viewing window.

�0:5 � x � 6:5 and � 4 � y � 4:

If it is possible, set the x-tickmarks to be every
�

4
or

�

2
units.

Progress Check 2.7 (Using a Graphing Utility)

1. Use a graphing utility to draw the graph of y D 3:6 cos.x/ using the viewing

window stated prior to this progress test.

2. Use a graphing utility to draw the graph of y D �2:75 sin.x/.

Symmetry and the Negative Identities

Examine the graph of y D cos.t/ shown in Figure 2.2. If we focus on that portion

of the graph between �2� and 2� , we can notice that the left side of the graph
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is the “mirror image” of the right side of the graph. To see this better, use the

Geogebra applet Symmetry of the Graph of y D cos.t/ at the following link:

http://gvsu.edu/s/Ot

(t, b)(-t, b)

Figure 2.4: Graph Showing Symmetry of y D cos.t/

Figure 2.4 shows a typical image from this applet. Since the second coordinate of a

point on the graph is the value of the function at the first coordinate, this figure (and

applet) are indicating that b D cos.t/ and b D cos.�t /. That is, this is illustrating

the fact that cos.�t / D cos.t/. The next activity provides an explanation as to why

this is true.

Activity 2.8 (Positive and Negative Arcs)

For this activity, we will use the Geogebra applet called Drawing a Positive Arc

and a Negative Arc on the Unit Circle. A link to this applet is

http://gvsu.edu/s/Ol

As the slider for t in the applet is used, an arc of length t will be drawn in blue

and an arc of length �t will be drawn in red. In addition, the coordinates of the

terminal points of both the arcs t and �t will be displayed. Study the coordinates

of these two points for various values of t . What do you observe? Keeping in mind

that the coordinates of these points can also be represented as

.cos.t/; sin.t// and .cos.�t /; sin.�t //;

what does these seem to indicate about the relationship between cos.�t / and cos.t/?

What about the relationship between sin.�t / and sin.t/?

http://gvsu.edu/s/Ot
http://gvsu.edu/s/Ol
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Figure 2.5 shows a typical situation illustrated in Activity 2.8. An arc and it

corresponding negative arc have been drawn on the unit circle. What we have seen

t

-t

(cos(t), sin(t))

(cos(-t), sin(-t))

Figure 2.5: An Arc and a Negative Arc on the Unit Circle

is that if the terminal point of the arc t is .a; b/, then by the symmetry of the circle,

we see that the terminal point of the arc �t is .a;�b/. So the diagram illustrates

the following results, which are sometimes called negative arc identities.

Negative Arc Identities

For every real number t ,

sin.�t / D � sin.t/ cos.�t / D cos.t/:

To further verify the negative arc identities for sine and cosine, use a graphing

utility to:

� Draw the graph of y D cos.�x/ using 0 � x � 2� . The graph should be

identical to the graph of y D cos.x/.
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� Draw the graph of y D � sin.�x/ using 0 � x � 2� . The graph should be

identical to the graph of y D sin.x/.

These so-called negative arc identities give us a way to look at the symmetry of the

graphs of the cosine and sine functions. We have already illustrated the symmetry

of the cosine function in Figure 2.4. Because of this, we say the graph of y D
cos.t/ is symmetric about the y-axis.

What about symmetry in the graph of the sine function? Figure 2.6 illustrates

what the negative identity sin.�t / D � sin.t/ implies about the symmetry of y D
sin.t/. In this case, we say the graph of y D sin.t/ is symmetric about the origin.

(t, b)

(-t, -b)

Figure 2.6: Graph Showing Symmetry of y D sin.t/.

To see the symmetry of the graph of the sine function better, use the Geogebra

applet Symmetry of the Graph of y D sin.t/ at the following link:

http://gvsu.edu/s/Ou

Summary of Section 2.1

In this section, we studied the following important concepts and ideas:

� The important characteristics of sinusoidal functions of the form y D A sin.t/

or y D A cos.t/ shown in Table 2.1.

� The information in Table 2.1 can seem like a lot to remember, and in fact,

in the next sections, we will get a lot more information about sinusoidal

waves. So instead of trying to remember everything in Table 2.1, it is bet-

ter to remember the basic shapes of the graphs as shown in Figure 2.7 and

Figure 2.8.

http://gvsu.edu/s/Ou
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y D A sin.t/ y D A cos.t/

All real numbers domain All real numbers

2� period 2�

jAj amplitude jAj
.0; 0/ y-intercept .0; A/

t D 0 and t D � t -intercepts in Œ0; 2�/ t D �

2
and t D 3�

2

jAj maximum value jAj
�jAj minimum value �jAj

The interval Œ�jAj; jAj� range The interval Œ�jAj; jAj�

t D �

2
when A > 0, maximum occurs at t D 0

t D 3�

2
when A > 0, minimum occurs at t D �

t D 3�

2
when A < 0, maximum occurs at t D �

t D �

2
when A < 0, minimum occurs at t D 0

the origin symmetry with respect to the y-axis

Table 2.1: Characteristics of Sinusoidal Functions.

� One way to remember the location of the tick-marks on the t -axis is to re-

member the spacing for these tick-marks is one-quarter of a period and the

period is 2� . So the spacing is
2�

4
D �

2
.
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,( )3π

2
A

A
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π π2π

2π

A > 0 A < 0

Figure 2.7: Graphs of y D A sin.t/.

(0, A)

(0, A)(π, −A)

(π, −A)(2π, A)

(2π, A)

, 0π
2

( )

, 0π
2

)(
3π

2
, 0( )

3π

2
, 0( )

y = A cos(t), A > 0 y = A cos(t), A < 0

Figure 2.8: Graphs of y D A cos.t/.

Supplemental Material – Even and Odd Functions

There is a more general mathematical context for these types of symmetry, and that

has to do with what are called even functions and odd functions.

Definition.

� A function f is an even function if f .�x/ D f .x/ for all x in the

domain of f .

� A function f is an odd function if f .�x/ D �f .x/ for all x in the

domain of f .
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So with these definitions, we can say that the cosine function is an even func-

tion and the sine function is an odd function. Why do we use these terms? One

explanation is that the concepts of even functions and odd functions are used to

describe functions f of the form f .x/ D xn for some positive integer n, and the

graphs of these functions exhibit different types of symmetry when n is even versus

when n is odd.

(x, f (x))(-x, f (-x))

y = f (x)

Figure 2.9: f .x/ D xn, n even

and f .�x/ D f .x/.

(x, f (x))

(-x, f (-x))

y = f (x)

Figure 2.10: f .x/ D xn, n odd

and f .�x/ D �f .x/.

In Figure 2.9, we see that when n is even, f .�x/ D f .x/ since .�x/n D xn.

So the graph is symmetric about the y-axis. When n is odd as in Figure 2.10,

f .�x/ D �f .x/ since .�x/n D �xn. So the graph is symmetric about the

origin. This is why we use the term even functions for those functions f for which

f .�x/ D f .x/, and we use the term odd functions for those functions for which

f .�x/ D �f .x/.

Exercises for Section 2.1

1. In each of the following, the graph on the left shows the terminal point of an

arc t (with 0 � t < 2�) on the unit circle. The graphs on the right show the

graphs of y D cos.t/ and y D sin.t/ with some points on the graph labeled.

Match the point on the graphs of y D cos.t/ and y D sin.t/ that correspond

to the point on the unit circle. In addition, state the coordinates of the points

on y D cos.t/ and y D sin.t/.
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? (a)

? (b)
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(c)

(d)

2. For each of the following, determine an equation of the form y D A cos.x/

or y D A sin.x/ for the given graph.
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? (a)

? (b)

(c)

(d)

3. Draw the graph of each of the following sinusoidal functions over the indi-

cated interval. For each graph,

� State the t -intercepts on the given interval.

� State the y-intercept.

� State the maximum value of the function and the coordinates of all the

points where the maximum value occurs.

� State the minimum value of the function and the coordinates of all the

points where the minimum value occurs.

? (a) y D sin.t/ with �2� � t � 2� .

? (b) y D 3 cos.t/ with �� � t � 3� .

(c) y D 5 sin.t/ with 0 � t � 4� .

(d) y D 3

7
cos.t/ with �� � t � 3� .

(e) y D �2:35 sin.t/ with �� � t � � .

(f) y D �4 cos.t/ with 0 � t � 6� .
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2.2 Graphs of Sinusoidal Functions

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

Let A, B , C , and D be constants with B > 0 and consider the graph of

f .t/ D A sin.B.t � C //CD or f .t/ D A cos.B.t � C //CD.

� How does the value of A affect the graph of f ? How is A related to the

amplitude of f ?

� How does the value of B affect the graph of f ? How is B related to the

period of f ?

� How does the value of C affect the graph of f ?

� How does the value of D affect the graph of f ?

� What does a phase shift do to a sine or cosine graph? How do we rec-

ognize a phase shift from the equation of the sinusoid?

� How do we accurately draw the graph of y D A sin.B.t � C //CD or

y D A cos.B.t�C //CD without a calculator and how do we correctly

describe the effects of the constants A, B , C , and D on the graph?

Beginning Activity

In this section, we will study the graphs of functions whose equations are y D
A sin.B.t � C // C D and y D A cos.B.t � C // C D where A, B , C , and D

are real numbers. These functions are called sinusoidal functions and their graphs

are called sinusoidal waves. We will first focus on functions whose equations are

y D sin.Bt/ and y D cos.Bt/. Now complete Part 1 or Part 2 of this beginning

activity.

Part 1 – Using a Geogebra Applet

To begin our exploration, we will use a Geogebra applet called Period of a Sinusoid.

The web address for this applet is
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http://gvsu.edu/s/LY

After you open the applet, notice that there is an input box at the top of the screen

where you can input a function. For now, leave this set at g.t/ D sin.t/. The graph

of the sine function should be displayed. The slider at the top can be used to change

the value of B . When this is done, the graph of y D A sin.Bt/ will be displayed

for the current value of B along with the graph of y D sin.t/.

1. Use the slider to change the value of B . Explain in detail the difference

between the graph of y D g.t/ D sin.t/ and y D f .t/ D sin.Bt/ for a

constant B > 0. Pay close attention to the graphs and determine the period

when

(a) B D 2. (b) B D 3. (c) B D 4. (d) B D 0:5.

In particular, how does the period of y D sin.Bt/ appear to depend on B?

Note: Consider doing two separate cases: one when B > 1 and the other

when 0 < B < 1.

2. Now click on the reset button in the upper right corner of the screen. This

will reset the value of the B to its initial setting of B D 1.

3. Change the function to g.t/ D cos.t/ and repeat part (1) for the cosine

function. Does changing the value of B affect the graph of y D cos.Bt/

in the same way that changing the value for B affects the graph of y D
sin.Bt/?

Part 2 – Using a Graphing Utility

Make sure your graphing utility is set to radian mode. Note: Most graphing utilities

require the use of x (or X ) as the independent variable (input) for a function. We

will use x for the independent variable when we discuss the use of a graphing

utility.

1. We will first examine the graph of y D sin.Bx/ for three different values of

B . Graph the three functions:

y D sin.x/ y D sin.2x/ y D sin.4x/

using the following settings for the viewing window: 0 � x � 4� and

�1:5 � y � 1:5. If possible on your graphing utility, set it so that the

http://gvsu.edu/s/LY
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tickmarks on the x-axis are space at
�

2
units. Examine these graphs closely

and determine period for each sinusoidal wave. In particular, how does the

period of y D sin.Bx/ appear to depend on B?

2. Clear the graphics screen. We will now examine the graph of y D sin.Bx/

for three different values of B . Graph the following three functions:

y D sin.x/ y D sin

�

1

2
x

�

y D sin

�

1

4
x

�

using the following settings for the viewing window: 0 � x � � and

�1:5 � y � 1:5. If possible on your graphing utility, set it so that the

tickmarks on the x-axis are spaced at
�

2
units. Examine these graphs closely

and determine period for each sinusoidal wave. In particular, how does the

period of y D sin.Bx/ appear to depend on B?

3. How does the graph of y D sin.Bx/ appear to be related to the graph of

y D sin.x/. Note: Consider doing two separate cases: one when B > 1 and

the other when 0 < B < 1.

The Period of a Sinusoid

When we discuss an expression such as sin.t/ or cos.t/, we often refer to the

expression inside the parentheses as the argument of the function. In the beginning

activity, we examined situations in which the argument was Bt for some number

B . We also saw that this number affects the period of the sinusoid. If we examined

graphs close enough, we saw that the period of y D sin.Bt/ and y D cos.Bt/ is

equal to
2�

B
. The graphs in Figure 2.11 illustrate this.

Notice that the graph of y D sin.2t/ has one complete cycle over the interval

Œ0; �� and so its period is � D 2�

2
. The graph of y D sin.4t/ has one complete

cycle over the interval
h

0;
�

2

i

and so its period is
�

2
D 2�

4
. In these two cases,

we had B > 1 in y D sin.Bt/. Do we get the same result when 0 < B < 1?

Figure 2.12 shows graphs for y D sin

�

1

2
t

�

and y D sin

�

1

4
t

�

.

Notice that the graph of y D sin

�

1

2
t

�

has one complete cycle over the interval

Œ0; 4�� and so
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1 1

−1 -1

π π

2π 2π

π

2

π

2

y = sin(2t) y = sin(4t)

Figure 2.11: Graphs of y D sin.2t/ and y D sin.4t/. The graph of y D sin.t/ is

also shown (dashes).

1

-1

1

-1

4π 4π

y = sin(   t)1

2
y = sin(   t)1

4

2π 2π

Figure 2.12: Graphs of y D sin

�

1

2
t

�

and y D sin

�

1

4
t

�

. The graph of y D sin.t/

is also shown (dashes).

the period of y D sin

�

1

2
t

�

is 4� D 2�

1

2

.

The graph of y D sin

�

1

4
t

�

has one-half of a complete cycle over the interval

Œ0; 4�� and so

the period of y D sin

�

1

4
t

�

is 8� D 2�

1

4

.

A good question now is, “Why are the periods of y D sin.Bt/ and y D cos.Bt/

equal to
2�

B
?” The idea is that when we multiply the independent variable t by a
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constant B , it can change the input we need to get a specific output. For example,

the input of t D 0 in y D sin.t/ and y D sin.Bt/ yield the same output. To

complete one period in y D sin.t/ we need to go through interval of length 2� so

that our input is 2� . However, in order for the argument (Bt ) in y D sin.Bt/ to be

2� , we need Bt D 2� and if we solve this for t , we get t D 2�

B
. So the function

given by y D sin.Bt/ (or y D cos.Bt/) will complete one complete cycle when t

varies from t D 0 to t D 2�

B
, and hence, the period is

2�

B
. Notice that if we use

y D A sin.Bt/ or y D A cos.Bt/, the value of A only affects the amplitude of the

sinusoid and does not affect the period.

If A is a real number and B is a positive real number, then the period of the

functions given by y D A sin.Bt/ and y D A cos.Bt/ is
2�

B
.

Progress Check 2.9 (The Amplitude and Period of a Sinusoid)

1. Determine the amplitude and period of the following sinusoidal functions.:

(a) y D 3 cos

�

1

3
t

�

.

(b) y D �2 sin
��

2
t
�

.

2. The graph to the right is a graph of

a sinusoidal function. Determine an

equation for this function.

Phase Shift

We will now investigate the effect of subtracting a constant from the argument

(independent variable) of a circular function. That is, we will investigate what

effect the value of a real number C has the graph of y D sin.t � C / and y D
cos.t � C /.

Activity 2.10 (The Graph of y = sin(t � C))

Complete Part 1 or Part 2 of this activity.
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Part 1 – Using a Geogebra Applet

We will use a Geogebra applet called Sinusoid – Phase Shift. The web address for

this applet is

http://gvsu.edu/s/Mu

After you open the applet, notice that there is an input box at the top of the screen

where you can input a function. For now, leave this set at g.t/ D sin.t/. The

graph of the sine function should be displayed. The slider at the top can be used to

change the value of C . When this is done, the graph of y D A sin.t � C / will be

displayed for the current value of C along with the graph of y D sin.t/.

1. Use the slider to change the value of C . Explain in detail the difference

between the graph of y D g.t/ D sin.t/ and y D f .t/ D sin.t � C / for a

constant C . Pay close attention to the graphs and determine the horizontal

shift when

(a) C D 1.

(b) C D 2.

(c) C D 3.

(d) C D �1.

(e) C D �2.

(f) C D �3.

In particular, describe the difference between the graph of y D sin.t � C /

and the graph of y D sin.t/? Note: Consider doing two separate cases: one

when C > 0 and the other when C < 0.

2. Now click on the reset button in the upper right corner of the screen. This

will reset the value of the C to its initial setting of C D 0.

3. Change the function to g.t/ D cos.t/ and repeat part (1) for the cosine

function. Does changing the value of C affect the graph of y D cos.t � C /

affect the sinusoidal wave in the same way that changing the value for C

affects the graph of y D sin.t � C /?

Part 2 – Using a Graphing Utility

Make sure your graphing utility is set to radian mode.

1. We will first examine the graph of y D sin.x � C / for two different values

of C . Graph the three functions:

y D sin.x/ y D sin.x � 1/ y D sin.x � 2/

http://gvsu.edu/s/Mu
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using the following settings for the viewing window: 0 � x � 4� and

�1:5 � y � 1:5. Examine these graphs closely and describe the difference

between the graph of y D sin.x �C / and the graph of y D sin.x/ for these

values of C .

2. Clear the graphics screen. We will now examine the graph of y D sin.x�C /

for two different values of C . Graph the following three functions:

y D sin.x/ y D sin.x C 1/ D sin.x � .�1//

y D sin.x C 2/ D sin.x � .�2//

using the following settings for the viewing window: 0 � x � � and�1:5 �
y � 1:5. Examine these graphs closely and describe the difference between

the graph of y D sin.t � C / and the graph of y D sin.t/ for these values of

C .

3. Describe the difference between the graph of y D sin.x � C / and the graph

of y D sin.x/? Note: Consider doing two separate cases: one when C > 0

and the other when C < 0.

By exploring the graphs in Activity 2.10, we should notice that when C > 0,

the graph of y D sin.t � C / is the graph of y D sin.t/ horizontally translated

to the right by C units. In a similar manner, the graph of y D cos.t � C / is

the graph of y D cos.t/ horizontally translated to the right by C units. When

working with a sinusoidal graph, such a horizontal translation is called a phase

shift. This is illustrated in Figure 2.13 , which shows the graphs of y D sin.t � 1/

and y D sin
�

t � �

2

�

. For reference, the graph of y D sin.t/ is also shown.

1 1

-1 -1

1 3 5 7 π 2π

y = sin(t - 1)
π

2

_
y = sin( )t - 

Figure 2.13: Graphs of y D sin.t � 1/ and y D sin
�

t � �

2

�

. The graph of

y D sin.t/ is also shown (dashes).
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So, why are we seeing this phase shift? The reason is that the graph of y D
sin.t/ will go through one complete cycle over the interval defined by 0 � t � 2� .

Similarly, the graph of y D sin.t�C / will go through one complete cycle over the

interval defined by 0 � t � C � 2� . Solving for t , we see that C � t � 2� C C .

So we see that this cylcle for y D sin.t/ has been shifted by C units.

This argument also works when C < 0 and when we use the cosine function

instead of the sine function. Figure 2.14 illustrates this with y D cos.t� .�1// and

y D cos
�

t �
�

��

2

��

. Notice that we can rewrite these two equations as follows:

y D cos.t � .�1// y D cos
�

t �
�

��

2

��

y D cos.t C 1/ y D cos
�

t C �

2

�

We summarize the results for phase shift as follows:

1 1

-1
-1

-1 1 3 5 7

y = cos(t + 1)

π

2

_
y = cos ( )t + 

π 2π

Figure 2.14: Graphs of y D cos.t C 1/ and y D cos
�

t C �

2

�

. The graph of

y D cos.t/ is also shown (dashes).

For y D sin.t �C / and y D cos.t �C /, where C is any nonzero real number:

� The graph of y D sin.t/ (or y D cos.t/) is shifted horizontally jC j units.

This is called the phase shift of the sinusoid.

� If C > 0, the graph of y D sin.t/ (or y D cos.t/) is shifted horizontally

C units to the right. That is, there is a phase shift of C units to the right.

� If C < 0, the graph of y D sin.t/ (or y D cos.t/) is shifted horizontally

C units to the left. That is, there is a phase shift of C units to the left.
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Progress Check 2.11 (Phase Shift of a Sinusoid)

1. Determine the amplitude and phase shift of the following sinusoidal func-

tions.

(a) y D 3:2
�

sin.t � �

3

�

(b) y D 4 cos
�

t C �

6

�

2. The graph to the right is a

graph of a sinusoidal function.

(a) Determine an equation

for this function.

(b) Determine a second

equation for this func-

tion.

π/2 π 3π/2 2π−π/2−π

3

1

-1

-3

Vertical Shift

We have one more transformation of a sinusoid to explore, the so-called vertical

shift. This is one by adding a constant to the equation for a sinusoid and is explored

in the following activity.

Activity 2.12 (The Vertical Shift of a Sinuosid)

Complete Part 1 or Part 2 of this activity.

Part 1 – Using a Geogebra Applet

We will now investigate the effect of adding a constant to a sinusoidal function.

That is, we will investigate what effect the value of a real number D has the graph

of y D A sin.B.t �C //CD and y D A cos.B.t �C //CD. Complete Part 1 or

Part 2 of this activity. We will use a Geogebra applet called Exploring a Sinusoid.

The web address for this applet is

http://gvsu.edu/s/LX

After you open the applet, notice that there is an input box at the top of the screen

where you can input a function. For now, leave this set at g.t/ D sin.t/. The graph

of the sine function should be displayed. There are four sliders at the top that can

be used to change the values of A, B , C , and D.

http://gvsu.edu/s/LX
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1. Leave the values A D 1, B D 1, and C D 0 set. Use the slider for D to

change the value of C . When this is done, the graph of y D sin.t/CD will

be displayed for the current value of D along with the graph of y D sin.t/.

(a) Use the slider to change the value of D. Explain in detail the difference

between the graph of y D g.t/ D sin.t/ and y D f .t/ D sin.t/CD

for a constant D. Pay close attention to the graphs and determine the

vertical shift when

i. D D 1.

ii. D D 2.

iii. D D 3.

iv. D D �1.

v. D D �2.

vi. D D �3.

In particular, describe the difference between the graph of y D sin.t/C
D and the graph of y D sin.t/? Note: Consider doing two separate

cases: one when D > 0 and the other when D < 0.

(b) Now click on the reset button in the upper right corner of the screen.

This will reset the value of the C to its initial setting of C D 0.

(c) Change the function to g.t/ D cos.t/ and repeat part (1) for the co-

sine function. Does changing the value of D affect the graph of y D
cos.t/C D affect the sinusoidal wave in the same way that changing

the value for D affects the graph of y D sin.t/CD?

2. Now change the value of A to 0:5, the value of B to 2, and the value of C to

0.5. The graph of g.t/ D cos.t/ will still be displayed but we will now have

f .t/ D 0:5 cos.2.t � 0:5//CD. Does changing the value of D affect the

graph of y D 0:5 cos.2.t � 0:5//CD affect the sinusoidal wave in the same

way that changing the value for D affects the graph of y D cos.t/?

Part 2 – Using a Graphing Utility

Make sure your graphing utility is set to radian mode.

1. We will first examine the graph of y D cos.x/CD for four different values

of D. Graph the five functions:

y D cos.x/ y D cos.x/C 1 y D cos.x/C 2

y D cos.x/ � 1 y D cos.x/ � 2

using the following settings for the viewing window: 0 � x � 2� and

�3 � y � 3. Examine these graphs closely and describe the difference

between the graph of y D cos.x/ C D and the graph of y D cos.x/ for

these values of D.
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2. Clear the graphics screen. We will now examine the graph of y D 0:5 cos.2.x�
0:5//CD for two different values of D. Graph the following three functions:

y D 0:5 cos.2.x � 0:5// y D 0:5 cos.2.x � 0:5//C 2

y D 0:5 cos.2.x � 0:5// � 2

using the following settings for the viewing window: 0 � x � 2� and

�3 � y � 3. Examine these graphs closely and describe the difference

between the graph of y D 0:5 cos.2.x � 0:5// C D and the graph of y D
0:5 cos.2.x � 0:5// for these values of D.

By exploring the graphs in Activity 2.12, we should notice that the graph of

something like y D A sin.B.t � C // CD is the graph of y D A sin.B.t � C //

shifted up D units when D > 0 and shifted down jDj units when D < 0. When

working with a sinusoidal graph, such a vertical translation is called a vertical

shift. This is illustrated in Figure 2.15 for a situation in which D > 0.

y = Asin(B(t − C))

y = Asin(B(t − C)) + D

D D D

Figure 2.15: Graphs of y D A sin.B.t�C // (dashes) and y D A sin.B.t�C //CD

(solid) for D > 0.

The y-axis is not shown in Figure 2.15 because this shows a general graph with

a phase shift.

What we have done in Activity 2.12 is to start with a graph such as y D
A sin.B.t�C // and added a constant to the dependent variable to get y D A sin.B.t�
C //CD. So when t stays the same, we are adding D to the the dependent variable.

The effect is to translate the entire graph up by D units if D > 0 and down by jDj
units if D < 0.
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Amplitude, Period, Phase Shift, and Vertical Shift

The following is a summary of the work we have done in this section dealing with

amplitude, period, phase shift, and vertical shift for a sinusoidal function.

Let A, B , C , and D be nonzero real numbers with B > 0. For

y D A sin .B.x � C //CD and y D A cos .B.x � C /CD/ W

1. The amplitude of the sinusoidal graph is jAj.

� If jAj > 1, then there is a vertical stretch of the pure sinusoid by a

factor of jAj.
� If jAj < 1, then there is a vertical contraction of the pure sinusoid by a

factor of jAj.

2. The period of the sinusoidal graph is
2�

B
.

� When B > 1, there is a horizontal compression of the graphs.

� When 0 < B < 1, there is a horizontal stretches of the graph.

3. The phase shift of the sinusoidal graph is jC j.

� If C > 0, there is a horizontal shift of C units to the right.

� If C < 0, there is a horizontal shift of jC j units to the left.

4. The vertical shift of the sinusoidal graph is jDj.

� If D > 0, the vertical shift is D units up.

� If D < 0, the vertical shift is jDj units down.

Example 2.13 (The Graph of a Sinusoid)

This example will illustrate how to use the characteristics of a sinusoid and will

serve as an introduction to the more general discussion that follows. The graph of

y D 3 sin
�

4
�

t � �

8

��

C 2 will look like the following: Notice that the axes have

not yet been drawn. We want to state the coordinates of the points P , Q, R, S , and

T . There are several choices but we will make the point P as close to the origin as

possible. Following are the important characteristics of this sinusoid:
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y = D

P

Q

R

S

T

V

W

Figure 2.16: Graph of a Sinusoid

� The amplitude is 3.

� The period is
2�

4
D �

2
.

� The phase shift is
�

8
.

� The vertical shift is 2.

So for the graph in Figure 2.16, we can make the following conclusions.

� Since the vertical shift is 2, the horizontal line that is the center line of the

sinusoid is y D 2.

� Since the phase shift is
�

8
and this is a sine function, the coordinates of P

are
��

8
; 2
�

.

� Since the period is
�

2
, the t -coordinate of R is

�

8
C 1

2

��

2

�

D 3�

8
. So the

coordinates of R are

�

3�

8
; 2

�

.

� Since the period is
�

2
, the t -coordinate of T is

�

8
C �

2
D 5�

8
. So the

coordinates of R are

�

5�

8
; 2

�

.

� Since the period is
�

2
, the t -coordinate of Q is

�

8
C1

4

��

2

�

D �

4
. Also, since

the amplitude is 3, the y-coordinate of Q is 2C 3 D 5. So the coordinates

of Q are
��

4
; 5
�

.
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� Since the period is
�

2
, the t -coordinate of S is

�

8
C 3

4

��

2

�

D �

2
. Also, since

the amplitude is 3, the y-coordinate of S is 2 � 3 D �1. So the coordinates

of S are
��

2
;�1

�

.

We can verify all of these results by using a graphing utility to draw the graph of

y D 3 sin
�

4
�

t � �

8

��

C 2 using 0 � t � 5�

8
and �2 � y � 6. If the utility

allows, set the t -scale to one-quarter of a period, which is
�

8
.

Important Notes about Sinusoids

� For y D A sin.B.t�C //CD and y D A cos.B.t�C //CD, the amplitude,

the period, and the vertical shift will be the same.

� The graph for both functions will look like that shown in Figure 2.17. The

difference between y D A sin.B.t�C //CD and y D A cos.B.t�C //CD

will be the phase shift.

� The horizontal line shown is not the t -axis. It is the horizontal line y D D,

which we often call the center line for the sinusoid.

y = D

P

Q

R

S

T

V

W

Figure 2.17: Graph of a Sinusoid

So to use the results about sinusoids and Figure 2.17, we have:

1. The amplitude, which we will call amp, is equal to the lengths of the seg-

ments QV and W S .
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2. The period, which we will call per, is equal to
2�

B
. In addition, the lengths

of the segments P V , VR, RW , and W T are equal to
1

4
per .

3. For y D A sin.B.x�C //CD, we can use the point P for the phase shift. So

the t -coordinate of the point P is C and P has coordinates .C; D/. We can

determine the coordinates of the other points as need by using the amplitude

and period. For example:

� The point Q has coordinates

�

C C 1

4
per; D C amp

�

.

� The point R has coordinates

�

C C 1

2
per; D

�

.

� The point S has coordinates

�

C C 3

4
per; D � amp

�

� The point T has coordinates .C C per; D/.

4. For y D A cos.B.x�C //CD, we can use the point Q for the phase shift. So

the t -coordinate of the point Q is C and Q has coordinates .C; D C amp/.

We can determine the coordinates of the other points as need by using the

amplitude and period. For example:

� The point P has coordinates

�

C � 1

4
per; D

�

.

� The point R has coordinates

�

C C 1

4
per; D

�

.

� The point S has coordinates

�

C C 1

2
per; D � amp

�

� The point T has coordinates

�

C C 3

4
per; D

�

.

Please note that it is not necessary to try to remember all of the facts in items (3)

and (4). What we should remember is how to use the concepts of one-quarter of a

period and the amplitude illustrated in items (3) and (4). This will be done in the

next two progress checks, which in reality are guided examples.

Progress Check 2.14 (Graphing a Sinusoid)

The characteristics of a sinusoid can be helpful in setting an appropriate viewing

window when producing a useable graph of a sinusoid on a graphing utility. This
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is especially true when the period is small or large. For example, consider the

sinusoidal function

y D 6:3 cos .50�.t C 0:01//C 2:

For this sinusoid:

1. What is the amplitude?

2. What is the period?

3. What is the phase shift?

4. What is the vertical shift?

5. Use this information to determine coordinates for the point Q in the follow-

ing diagram.

y = D

P

Q

R

S

T

V

W

6. Now determine the coordinates of points P , R, S , and T .

7. Use this information and a graphing utility to draw a graph of (slightly more

than) one period of this sinusoid that shows the points P , Q, and T .

Progress Check 2.15 (Determining an Equation for a Sinusoid)

We will determine two equations for the sinusoid shown in Figure 2.18.

1. Determine the coordinates of the points Q and R. The vertical distance

between these two points is equal to two times the amplitude. Use the y-

coordinates of these points to determine two times the amplitude and then

the amplitude.

2. The center line for the sinusoid is half-way between the high point Q and

the low point R. Use the y-coordinates of Q and R to determine the center

line y D D. This will be the vertical shift.
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7π

12

π

4

13π

12

2

4

6

8

P

Q

R

Figure 2.18: The Graph of a Sinusoid

3. The horizontal distance between Q and R is equal to one-half of a period.

Use the t -coordinates of Q and R to determine the length of one-half of a

period and hence, the period. Use this to determine the value of B .

4. We will now find an equation of the form y D A cos.B.t � C //C D. We

still need the phase shift C . Use the point Q to determine the phase shift

and hence, the value of C . We now have values for A, B , C , and D for the

equation y D A cos.B.t � C //CD.

5. To determine an equation of the form y D A sin.B.t � C 0// CD, we will

use the point P to determine the phase shift C 0. (A different symbol was

used because C 0 will be different than C in part (4).) Notice that the y-

coordinate of P is 4 and so P lies on the center line. We can use the fact that

the horizontal distance between P and Q is equal to one-quarter of a period.

Determine the t coordinate of P , which will be equal to C 0. Now write the

equation y D A sin.B.t � C 0// C D using the values of A, B , C 0, and D

that we have determined.

We can check the equations we found in parts (4) and (5) by graphing these equa-

tions using a graphing utility.

Summary of Section 2.2

In this section, we studied the following important concepts and ideas: For a

sinusoidal function of the form f .t/ D A sin.B.t�C //CD or f .t/ D A cos.B.t�
C //CD where A, B , C , and D are real numbers with B > 0:

� The value of jAj is the amplitude of the sinusoidal function.
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� The value of B determines the period of the sinusoidal function. the period

is equal to
2�

B
.

� The value of C is the phase shift (horizontal shift) of the sinusoidal function.

The graph is shifted to the right if C > 0 and shifted to the left if C < 0.

� The value of D is the vertical shift of the sinusoid. The horizontal line

y D D is the so-called center line for the graph of the sinusoidal function.

� The important notes about sinusoids on page 103.

Exercises for Section 2.2

1. The following is a graph of slightly more than one period of a sinusoidal

function. Six points are labeled on the graph.

For each of the following sinusoidal functions:

� State the amplitude, period, phase shift, and vertical shift.

� State the coordinates of the points A, B , C , F , F , and G. Since the

functions are periodic, there are several correct answers. For these

functions, make the point A be as close to the origin as possible.

Notice that the horizontal line is not the horizontal axis but rather, the line

y D D.

? (a) y D 2 sin.�x/

(b) y D 7:2 cos.2x/

? (c) y D 3 sin
�

x � �

4

�

(d) y D 3 sin
�

x C �

4

�
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(e) y D 4 cos
�

x � �

3

�

(f) y D 2:8 cos
�

2
�

x � �

3

��

? (g) y D 4 sin
�

2
�

x � �

4

��

C 1

(h) y D �4 cos
�

2
�

x C �

4

��

C 1

(i) y D 3 cos
�

2�x � �

2

�

(j) y D �1:75 sin
�

2x � �

3

�

C 2

(k) y D 5 sin .120�x/

(l) y D 40 sin

�

50�

�

x � 1

100

��

2. Each of the following graphs is a graph of a sinusoidal function. In each

case:

� Determine the amplitude of the sinusoidal function.

� Determine the period of the sinusoidal function.

� Determine the vertical shift of the sinusoidal function.

� Determine an equation of the form y D A sin .B .x � C // C D that

produces the given graph.

� Determine an equation of the form y D A cos .B .x � C // C D that

produces the given graph.

? (a) (b)
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(c)

? (d)

(e)

(f)

3. Each of the following web links is to an applet on Geogebratube. For each

one, the graph of a sinusoidal function is given. The goal is to determine a

function of the form

f .x/ D A sin.B.x � C //CD or f .x/ D A cos.B.x � C //CD

as directed in the applet. There are boxes that must be used to enter the

values of A, B , C , and D.

(a) http://gvsu.edu/s/09f

(b) http://gvsu.edu/s/09g

(c) http://gvsu.edu/s/09h

(d) http://gvsu.edu/s/09i

(e) http://gvsu.edu/s/09j

(f) http://gvsu.edu/s/09k

http://gvsu.edu/s/09f
http://gvsu.edu/s/09g
http://gvsu.edu/s/09h
http://gvsu.edu/s/09i
http://gvsu.edu/s/09j
http://gvsu.edu/s/09k
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2.3 Applications and Modeling with Sinusoidal Functions

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

Let A, B , C , and D be constants with B > 0 and consider the graph of

f .t/ D A sin.B.t � C //CD or f .t/ D A cos.B.t � C //CD.

� What does frequency mean?

� How do we model periodic data accurately with a sinusoidal function?

� What is a mathematical model?

� Why is it reasonable to use a sinusoidal function to model periodic phe-

nomena?

In Section 2.2, we used the diagram in Figure 2.19 to help remember important

facts about sinusoidal functions.

y = D

P

Q

R

S

T

V

W

Figure 2.19: Graph of a Sinusoid

For example:

� The horizontal distance between a point where a maximum occurs and the

next point where a minimum occurs (such as points Q and S ) is one-half of



2.3. Applications and Modeling with Sinusoidal Functions 111

a period. This is the length of the segment from V to W in Figure 2.19.

� The vertical distance between a point where a minimum occurs (such as

point S ) and a point where is maximum occurs (such as point Q) is equal to

two times the amplitude.

� The center line y D D for the sinusoid is half-way between the maximum

value at point Q and the minimum value at point S . The value of D can be

found by calculating the average of the y-coordinates of these two points.

� The horizontal distance between any two successive points on the line y D
D in Figure 2.19 is one-quarter of a period.

In Progress Check 2.16, we will use some of these facts to help determine an equa-

tion that will model the volume of blood in a person’s heart as a function of time. A

mathematical model is a function that describes some phenomenon. For objects

that exhibit periodic behavior, a sinusoidal function can be used as a model since

these functions are periodic. However, the concept of frequency is used in some

applications of periodic phenomena instead of the period.

Definition. The frequency of a sinusoidal function is the number of periods

(or cycles) per unit time.

A typical unit for freqency is the hertz. One hertz (Hz) is one cycle per second.

This unit is named after Heinrich Hertz (1857 – 1894).

Since frequency is the number of cyles per unit time, and the period is the

amount of time to complete one cycle, we see that frequency and period are related

as follows:

frequency D 1

period
:

Progress Check 2.16 (Volume of Blood in a Person’s Heart)

The volume of the average heart is 140 milliliters (ml), and it pushes out about

one-half its volume (70 ml) with each beat. In addition, the frequency of the for

a well-trained athlete heartbeat for a well-trained athlete is 50 beats (cycles) per

minute. We will model the volume, V.t/ (in milliliters) of blood in the heart as a

function of time t measured in seconds. We will use a sinusoidal function of the

form

V.t/ D A cos.B.t � C //CD:
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If we choose time 0 minutes to be a time when the volume of blood in the heart is

the maximum (the heart is full of blood), then it reasonable to use a cosine function

for our model since the cosine function reaches a maximum value when its input

is 0 and so we can use C D 0, which corresponds to a phase shift of 0. So our

function can be written as V.t/ D A cos.Bt/CD.

1. What is the maximum value of V.t/? What is the minimum value of V.t/?

Use these values to determine the values of A and D for our model? Explain.

2. Since the frequency of heart beats is 50 beats per minute, we know that

the time for one heartbeat will be
1

50
of a minute. Determine the time (in

seconds) it takes to complete one heartbeat (cycle). This is the period for

this sinusoidal function. Use this period to determine the value of B . Write

the formula for V.t/ using the values of A, B , C , and D that have been

determined.

Example 2.17 (Continuation of Progress Check 2.16)

Now that we have determined that

V.t/ D 35 cos

�

5�

3
t

�

C 105

(where t is measured in seconds since the heart was full and V.t/ is measured in

milliliters) is a model for the amount of blood in the heart, we can use this model

to determine other values associated with the amount of blood in the heart. For

example:

� We can determine the amount of blood in the heart 1 second after the heart

was full by using t D 1.

V.1/ D 35 cos

�

5�

3

�

C 105 � 122:5:

So we can say that 1 second after the heart is full, there will be 122.5

milliliters of blood in the heart.

� In a similar manner, 4 seconds after the heart is full of blood, there will be

87.5 milliliters of blood in the heart since

V.4/ D 35 cos

�

20�

3

�

C 105 � 87:5:
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� Suppose that we want to know at what times after the heart is full that there

will be 100 milliliters of blood in the heart. We can determine this if we can

solve the equation V.t/ D 100 for t . That is, we need to solve the equation

35 cos

�

5�

3
t

�

C 105 D 100:

Although we will learn other methods for solving this type of equation later

in the book, we can use a graphing utility to determine approximate solutions

for this equation. Figure 2.20 shows the graphs of y D V.t/ and y D 100.

To solve the equation, we need to use a graphing utility that allows us to

determine or approximate the points of intersection of two graphs. (This can

be done using most Texas Instruments calculators and Geogebra.) The idea

is to find the coordinates of the points P , Q, and R in Figure 2.20.

0.4 0.8 1.2

50

100

150

-0.4

P Q R

P(−0.3274, 100) Q(0.3274, 100) R(0.8726, 100)

Figure 2.20: Graph of V.t/ D 35 cos

�

5�

3
t

�

C 105 and y D 100

We really only need to find the coordinates of one of those points since we

can use properties of sinusoids to find the others. For example, we can de-

termine that the coordinates of P are .�0:3274; 100/. Then using the fact

that the graph of y D V.t/ is symmetric about the y-axis, we know the co-

ordinates of Q are .0:3274; 100/. We can then use the periodic property of

the function, to determine the t -coordinate of R by adding one period to the

t -coordinate of P . This gives �0:3274C 6

5
D 0:8726, and the coordinates

of R are .0:8726; 100/. We can also use the periodic property to determine

as many solutions of the equation V.t/ D 100 as we like.
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Progress Check 2.18 (Hours of Daylight)

The summer solstice in 2014 was on June 21 and the winter solstice was on De-

cember 21. The maximum hours of daylight occurs on the summer solstice and the

minimum hours of daylight occurs on the winter solstice. According to the U.S.

Naval Observatory website,

http://aa.usno.navy.mil/data/docs/Dur_OneYear.php,

the number of hours of daylight in Grand Rapids, Michigan on June 21, 2014 was

15.35 hours, and the number of hours of daylight on December 21, 2014 was 9.02

hours. This means that in Grand Rapids,

� The maximum number of hours of daylight was 15.35 hours and occured on

day 172 of the year.

� The minimum number of hours of daylight was 9.02 hours and occured on

day 355 of the year.

1. Let y be the number of hours of daylight in 2014 in Grand Rapids and let

t be the day of the year. Determine a sinusoidal model for the number of

hours of daylight y in 2014 in Grand Rapids as a function of t .

2. According to this model,

(a) How many hours of daylight were there on March 10, 2014?

(b) On what days of the year were there 13 hours of daylight?

Determining a Sinusoid from Data

In Progress Check 2.18 the values and times for the maximum and minimum hours

of daylight. Even if we know some phenomenon is periodic, we may not know the

values of the maximum and minimum. For example, the following table shows the

number of daylight hours (rounded to the nearest hundredth of an hour) on the first

of the month for Edinburgh, Scotland (55ı570 N, 3ı120 W).

We will use a sinusoidal function of the form y D A sin.B.t�C //CD, where

y is the number of hours of daylight and t is the time measured in months to model

this data. We will use 1 for Jan., 2 for Feb., etc. As a first attempt, we will use 17.48

for the maximum hours of daylight and 7.08 for the minimum hours of daylight.

http://aa.usno.navy.mil/data/docs/Dur_OneYear.php
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Jan Feb Mar Apr May June

7.08 8.60 10.73 13.15 15.40 17.22

July Aug Sept Oct Nov Dec

17.48 16.03 13.82 11.52 9.18 7.40

Table 2.2: Hours of Daylight in Edinburgh

� Since 17:48� 7:08 D 10:4, we see that the amplitude is 5.2 and so A D 5:2.

� The vertical shift will be 7:08C 5:2 D 12:28 and so D D 12:28.

� The period is 12 months and so B D 2�

12
D �

6
.

� The maximum occurs at t D 7. For a sine function, the maximum is one-

quarter of a period from the time when the sine function crosses its horizontal

axis. This indicates a phase shift of 4 to the right. So C D 4.

So we will use the function y D 5:2 sin
��

6
.t � 4/

�

C 12:28 to model the number

of hours of daylight. Figure 2.21 shows a scatterplot for the data and a graph of

this function. Although the graph fits the data reasonably well, it seems we should

be able to find a better model. One of the problems is that the maximum number

of hours of daylight does not occur on July 1. It probably occurs about 10 days

earlier. The minimum also does not occur on January 1 and is probably somewhat

less that 7.08 hours. So we will try a maximum of 17.50 hours and a minimun of

7.06 hours. Also, instead of having the maximum occur at t D 7, we will say it

occurs at t D 6:7. Using these values, we have A D 5:22, B D �

6
, C D 3:7, and

D D 12:28. Figure 2.22 shows a scatterplot of the data and a graph of

y D 5:22 sin
��

6
.t � 3:7/

�

C 12:28: (1)

This appears to model the data very well. One important thing to note is that

when trying to determine a sinusoid that “fits” or models actual data, there is no

single correct answer. We often have to find one model and then use our judgement

in order to determine a better model. There is a mathematical “best fit” equation

for a sinusoid that is called the sine regression equation. Please note that we

need to use some graphing utility or software in order to obtain a sine regression

equation. Many Texas Instruments calculators have such a feature as does the
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Figure 2.21: Hours of Daylight in Edinburgh

software Geogebra. Following is a sine regression equation for the number of

hours of daylight in Edinburgh shown in Table 2.2 obtained from Geogebra.

y D 5:153 sin.0:511t � 1:829/C 12:174: (2)

A scatterplot with a graph of this function is shown in Figure 2.23.

Note: See the supplements at the end of this section for instructions on how to use

Geogebra and a Texas Instruments TI-84 to determine a sine regression equation

for a given set of data.

It is interesting to compare equation (1) and equation (2), both of which are

models for the data in Table 2.2. We can see that both equations have a similar

amplitude and similar vertical shift, but notice that equation (2) is not in our stan-

dard form for the equation of a sinusoid. So we cannot immediately tell what that

equation is saying about the period and the phase shift. In this next activity, we will

learn how to determine the period and phase shift for sinusoids whose equations

are of the form y D a sin.bt C c/C d or y D a cos.bt C c/C d .

Activity 2.19 (Working with Sinusoids that Are Not In Standard Form)

So far, we have been working with sinusoids whose equations are of the form

y D A sin.B.t � C // C D or y D A cos.B.t � C // C D. When written in

this form, we can use the values of A, B , C , and D to determine the amplitude,
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Figure 2.22: Hours of Daylight in Edinburgh

period, phase shift, and vertical shift of the sinusoid. We must always remember,

however, that to to this, the equation must be written in exactly this form. If we

have an equation in a slightly different form, we have to determine if there is a way

to use algebra to rewrite the equation in the form y D A sin.B.t � C // C D or

y D A cos.B.t � C //CD. Consider the equation

y D 2 sin
�

3t C �

2

�

:

1. Use a graphing utility to draw the graph of this equation with��

3
� t � 2�

3
and �3 � y � 3. Does this seem to be the graph of a sinusoid? If so, can

you use the graph to find its amplitude, period, phase shift, and vertical shift?

2. It is possible to verify any observations that were made by using a little

algebra to write this equation in the form y D A sin.B.t � C //C D. The

idea is to rewrite the argument of the sine function, which is 3t C �

2
by

“factoring a 3” from both terms. This may seem a bit strange since we are

not used to using fractions when we factor. For example, it is quite easy to

factor 3y C 12 as

3y C 12 D 3.y C 4/:

In order to “factor” three from
�

2
, we basically use the fact that 3 � 1

3
D 1.
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Figure 2.23: Hours of Daylight in Edinburgh

So we can write

�

2
D 3 � 1

3
� �

6

D 3 � �
6

Now rewrite 3t C �

2
by factoring a 3 and then rewrite y D 2 sin

�

3t C �

2

�

in the form y D A sin.B.t � C //CD.

3. What is the amplitude, period, phase shift, and vertical shift for

y D 2 sin
�

3t C �

2

�

?

In Activity 2.19, we did a little factoring to show that

y D 2 sin
�

3t C �

2

�

D 2 sin
�

3
�

t C �

6

��

y D 2 sin
�

3
�

t �
�

��

6

���

So we can see that we have a sinusoidal function and that the amplitude is 3, the

period is
2�

3
, the phase shift is ��

6
, and the vertical shift is 0.

In general, we can see that if b and c are real numbers, then

bt C c D b
�

t C c

b

�

D b
�

t �
�

�c

b

��

:
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This means that

y D a sin .bt C c/C d D a sin
�

b
�

t �
�

�c

b

���

C d:

So we have the following result:

If y D a sin.bt C c/C d or y D a cos.bt C c/C d , then

� The amplitude of the sinusoid is jaj.

� The period of the sinusoid is
2�

b
.

� The phase shift of the sinusoid is �c

b
.

� The vertical shift of the sinusoid is d .

Progress Check 2.20 (The Other Form of a Sinusoid)

1. Determine the amplitude, period, phase shift, and vertical shift for each of

the following sinusoids. Then use this information to graph one complete

period of the sinusoid and state the coordinates of a high point, a low point,

and a point where the sinusoid crosses the center line.

(a) y D �2:5 cos
�

3x C �

3

�

C 2.

(b) y D 4 sin
�

100�x � �

4

�

2. We determined two sinusoidal models for the number of hours of daylight in

Edinburgh, Scotland shown in Table 2.2. These were

y D 5:22 sin
��

6
.t � 3:7/

�

C 12:28

y D 5:153 sin.0:511t � 1:829/C 12:174

The second equation was determined using a sine regression feature on a

graphing utility. Compare the amplitudes, periods, phase shifts, and vertical

shifts of these two sinusoidal functions.
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Supplement – Sine Regression Using Geogebra

Before giving written instructions for creating a sine regression equation in Geoge-

bra, it should be noted that there is a Geogebra Playlist on the Grand Valley State

University Math Channel on YouTube. The web address is

http://gvsu.edu/s/QA

The video screencasts that are of most interest for now are:

� Geogebra – Basic Graphing

� Geogebra – Plotting Points

� Geogebra – Copying the Graphics

View

� Geogebra – Sine Regression

To illustrate the procedure for a sine regression equation using Geogebra, we

will use the data in Table 2.2 on page 115.

Step 1. Set a viewing window that is appropriate for the data that will be used.

Step 2. Enter the data points. There are three ways to do this.

� Perhaps the most efficient way to enter points is to use the spreadsheet

view. To do this, click on the View Menu and select Spreadsheet. A

small spreadsheet will open on the right. Although you can use any

sets of rows and columns, an easy way is to use cells A1 and B1 for the

first data point, cells A2 and B2 for the second data point, and so on.

So the first few rows in the spreadsheet would be:

A B

1 1 7.08

2 2 8.6

3 3 10.73

Once all the data is entered, to plot the points, select the rows and

columns in the spreadsheet that contain the data, then click on the small

downward arrow on the bottom right of the button with the label f1; 2g
and select “Create List of Points.” A small pop-up screen will appear in

which the list of points can be given a name. The default name is “list‘”

but that can be changed if desired. Now click on the Create button in

the lower right side of the pop-up screen. If a proper viewing window

has been set, the points should appear in the graphics view. Finally,

close the spreadsheet view.

http://gvsu.edu/s/QA
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� Enter each point separately as an order pair. For example, for the first

point in Table 2.2, we would enter .1; 7:08/. In this case, each point

will be given a name such as A, B , C , etc.

� Enter all the points in a list. For example (for a smaller set of points),

we could enter something like

pts D f.�3; 3/; .�2;�1/; .0; 1/; .1; 3/; .3; 0/g

Notice that the list of ordered pairs must be enclosed in braces.

Step 3. Use the FitSin command. How this is used depends on which option was

used to enter and plot the data points.

� If a list of points has been created (such as one named list1), simply

enter

f .x/ D FitSin[list1]

All that is needed is the name of the list inside the brackets.

� If separate data points have been enter, include the names of all the

points inside the brackets and separate them with commas. An abbre-

viated version of this is

f .x/ D FitSin[A, B, C]

The sine regression equation will now be shown in the Algebra view

and will be graphed in the graphics view.

Step 4. Select the rounding option to be used. (This step could be performed at

any time.) To do this, click on the Options menu and select Rounding.

Summary of Section 2.3

In this section, we studied the following important concepts and ideas:

� The frequency of a sinusoidal function is the number of periods (or cycles)

per unit time.

frequency D 1

period
:

� A mathematical model is a function that describes some phenomenon. For

objects that exhibit periodic behavior, a sinusoidal function can be used as a

model since these functions are periodic.
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� To determine a sinusoidal function that models a periodic phenomena, we

need to determine the amplitude, the period, and the vertical shift for the

periodic phenomena. In addition, we need to determine whether to use a

cosine function or a sine function and the resulting phase shift.

� A sine regression equation can be determined that is a mathematical “best

fit” for data from a periodic phenomena.

Exercises for Section 2.3

1. Determine the amplitude, period, phase shift, and vertical shift for each of

the following sinusoids. Then use this information to graph one complete

period of the sinusoid and state coordinates of a high point, a low point, and

a point where the sinusoid crosses the center line.

? (a) y D 4 sin
�

�x � �

8

�

.

? (b) y D 5 cos
�

4x C �

2

�

C 2.

(c) y D �3:2 cos
�

50�x � �

2

�

.

(d) y D 4:8 sin

�

1

4
x C �

8

�

.

2. Modeling a Heartbeat. For a given person at rest, suppose the heart pumps

blood at a regular rate of about 75 pulses per minute. Also, suppose that

the volume of this person’s heart is approximately 150 milliliters (ml), and

it pushes out about 54% its volume with each beat. We will model the vol-

ume, V.t/ of blood (in milliliters) in the heart at any time t , as a sinusoidal

function of the form

V.t/ D A cos.Bt/CD:

(a) If we choose time 0 to be a time when the heart is full of blood, why is

it reasonable to use a cosine function for our model?

? (b) What is the maximum value of V.t/? What is the minimum value of

V.t/? What does this tell us about the values of A and D? Explain.

? (c) The frequency of a simple harmonic motion is the number of periods

per unit time, or the number of pulses per minute in this example. How

is the frequency f related to the period? What value should B have?

Explain.

(d) Draw a graph (without a calculator) of your V.t/ using your values of

A, B , and D, of two periods beginning at t D 0.
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(e) Clearly identify the maximum and minimum values of V.t/ on the

graph. What do these numbers tell us about the heart at these times?

3. The electricity supplied to residential houses is called alternating current

(AC) because the current varies sinusoidally with time. The voltage which

causes the current to flow also varies sinusoidally with time. In an alternat-

ing (AC) current circuit, the voltage V (in volts) as a function of time is a

sinusoidal function of the form

V D V0 sin.2�f t/; (1)

where V0 is a positive constant and f is the frequency. The frequency is the

number of complete oscillations (cycles) per second. In the United States, f

is 60 hertz (Hz), which means that the frequence is 60 cycles per second.

(a) What is the amplitude and what is the period of the sinusoidal function

in (1)?

The power (in watts) delivered to a resistance R (in ohms)at any time t is

given by

P D V 2

R
: (2)

(b) Show that P D V 2
0

R
sin2.2�f t/.

(c) The graph of P as a function of time is shown below.

t

P

Assuming that this shows that P is a sinusoidal function of t , write

P as a sinusoidal function of time t by using the negative of a cosine

function with no phase shift.
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(d) So we know that P D V 2
0

R
sin2.2�f t/ and that P is equal to the sinu-

soidal function in part (c). Set the two expressions for P equal to each

other and use the resulting equation to conclude that

sin2.2�f t/ D 1

2
Œ1 � cos.4�f t/�:

4. The electricity supplied to residential houses is called alternating current

(AC) because the current varies sinusoidally with time. The voltage which

causes the current to flow also varies sinusoidally with time. Both current

and voltage have a frequency of 60 cycles per second, but they have different

phase shifts. (Note: A frequency of 60 cycles per second corresponds to a

period of
1

60
of a second.)

Let C be the current (in amperes), let V be the voltage (in volts), and let t be

time (in seconds). The following list gives information that is known about

C and V .

� The current C is a sinusoidal function of time with a frequency of 60

cycles per second, and it reaches its maximum of 5 amperes when t D
0 seconds.

� The voltage V is a sinusoidal function of time with a frequency of

60 cycles per second. As shown in the graphs on the next page, V

“leads” the current in the sense that it reaches its maximum before the

current reaches its maximum. (“Leading” corresponds to a negative

phase shift, and “lagging” corresponds to a positive phase shift.) In

this case, the voltage V leads the current by 0.003 seconds, meaning

that it reaches its maximum 0.003 seconds before the current reaches

its maximum.

� The peak voltage is 180 volts.

� There is no vertical shift on either the current or the voltage graph.

(a) Determine sinusoidal functions for both C and V .

(b) What is the voltage when the current is a maximum?

(c) What is the current when the voltage is a minimum?

(d) What is the current when the voltage is equal to zero?
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t

C

V

t

Figure 2.24: Current C and Voltage V As Functions of Time

5. We will let t be the number of the day of the year. The following table

shows sunrise times (in minutes since midnight) for certain days of the year

at Houghton, Michigan.

day 1 31 61 91 121 151 181

time 521 501 453 394 339 304 302

day 211 241 271 301 331 361

time 330 369 408 451 494 520

The points for this table are plotted on the following graph.
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(a) Let t be the number of the day of the year and let y be the the sunrise

time in minutes since midnight at Houghton, MI. Determine a sinu-

soidal model for y as a function of t .

(b) To check the work in Part (a), use a graphing utility or Geogebra to plot

the points in the table and superimpose the graph of the function from

Part (a).

(c) Use Geogebra to determine a sinusoidal model for y as a function of t .

This model will be in the form y D a sin.bt C c/C d , where a, b, c,

and d are real numbers.

(d) Determine the amplitude, period, phase shift, and vertical shift for the

sinusoidal model in Part (c).

6. Modeling the Distance from the Earth to the Sun. The Earth’s orbit

around the sun is not a perfect circle. In 1609 Johannes Kepler published

two of his famous laws of planetary motion, one of which states that plane-

tary orbits are actually ellipses. So the distance from the Earth to the sun is

not a constant, but varies over the course of its orbit (we will assume a 365

day year). According to the 1996 US Ephemeris1, the distances from the sun

to the Earth on the 21st of each month are given in Table 2.3. The distances

are measured in Astronomical Units (AU), where 1 AU is approximately

149,597,900 kilometers.

1http://image.gsfc.nasa.gov/poetry/venus/q638.html

http://image.gsfc.nasa.gov/poetry/venus/q638.html
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Month Day of the year Distance

January 21 0.9840

February 52 0.9888

March 80 0.9962

April 111 1.0050

May 141 1.0122

June 172 1.0163

July 202 1.0161

August 233 1.0116

September 264 1.0039

October 294 0.9954

November 325 0.9878

December 355 0.9837

Table 2.3: Distances from the Earth to the sun on the 21st of each month

A plot of this data with the day of the year along the horizontal axis and the

distance from the Earth to the sun on the vertical axis is given in Figure 2.25.

We will use a sinusoidal function to model this data. That is, we will let f .t/

be the distance from the Earth to the Sun on day t of the year and that

f .t/ D A sin.B.t � C /CD:

(a) What are the maximum and minimum distances from the Earth to the

sun given by the data? What does this tell us about the amplitude of

f .t/? Use this to approximate the values of A and D in the model

function f ? What is the center line for this sinusoidal model?

(b) The period of this sinusoidal function is 365 days. What is the value of

B for this sinusoidal function?

(c) Draw the center line you found in part (a) on the plot of the data in

Figure 2.25. At approximately what value of t will the graph of f

intersect this center line? How is this number related to the phase shift

of the data? What is the value of C for this sinusoidal function?

(d) Use Geogebra to plot the points from the data in Table 2.3 and then use

Geogebra to draw the graph of the sinusoidal model f .t/ D A sin.B.t�
C /CD. Does this function model the data reasonably well?

(e) Use the sinusoidal model f .t/ D A sin.B.t � C /CD to estimate the

distance from the Earth to the Sun on July 4.
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Figure 2.25: Distance from the Earth to the sun as a function of the day of the year

7. Continuation of Exercise (6). Use Geogebra to plot the points from the

data in Table 2.3. Then use the “FitSin” command in Geogebra to find a

sinusoidal model for this data of the form g.t/ D a sin.bt C c/C d .

What is the amplitude of this sinusoidal model? What is the period? What is

the horizontal shift? What is the phase shift?

How do these values compare with the corresponding values for the sinusoid

f .t/ D A sin.B.t � C //CD obtained in Exercise (6)?

8. As the moon orbits the earth, the appearance of the moon changes. We see

various lunar disks at different times of the month. These changes reappear

during each lunar month. However, a lunar month is not exactly the same

as the twelve months we use in our calendar today. A lunar month is the

number of days it takes the moon to go through one complete cycle from a

full moon (100% illumination) to the next full moon.

The following data were gathered from the web site for the U.S. Naval Obser-

vatory. The data are the percent of the moon that is illuminated is geocentric

value of the percent of the moon that is illuminated. That is, the percent of

illumination is computed for a fictitious observer located at the center of the

Earth.
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Date Percent

Illumintated

3/1/2013 87%

3/3/2013 69%

3/5/2017 47%

3/7/2017 25%

3/9/2017 9%

3/12/2013 0%

3/13/2013 2%

3/15/2017 12%

Date Percent

Illumintated

3/17/2013 27%

3/19/2013 45%

3/21/2013 64%

3/23/2013 81%

3/25/2013 94%

3/27/2013 100%

3/29/2013 96%

(a) Determine a sinusoidal function of the form y D A cos.B.x�C //CD

to model this data. For this function, let x be the number of days since

the beginning of March 2017 and let y be the percent of the moon that

is illuminated. What is the amplitude, period, phase shift, and vertical

shift of this sinusoidal function?

(b) Use Geogebra to draw a scatterplot of this data and sumperimpose the

graph of the function from part (a).

(c) Use Geogebra to determine a sinusoidal function of the form y D
A sin.Bx C K/CD to model this data and superimpose its graph on

the scatterplot. What is the amplitude, period, phase shift, and vertical

shift of this sinusoidal function?

9. Each of the following web links is to an applet on Geogebratube. For each

one, data is plotted and in some cases, the actual data is shown in a spread-

sheet on the right. The goal is to determine a function of the form

f .x/ D A sin.B.x � C //CD or f .x/ D A cos.B.x � C //CD

that fits the data as closely as possible. Each applet will state which type of

function to use. There are boxes that must be used to enter the values of A,

B , C , and D.

(a) http://gvsu.edu/s/09l

(b) http://gvsu.edu/s/09m

(c) http://gvsu.edu/s/09n

(d) http://gvsu.edu/s/09o

http://gvsu.edu/s/09l
http://gvsu.edu/s/09m
http://gvsu.edu/s/09n
http://gvsu.edu/s/09o
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2.4 Graphs of the Other Trigonometric Functions

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� What are the important properties of the graph of y D tan.t/. That is,

what is the domain and what is the range of the tangent function, and

what happens to the values of the tangent function at the points that are

near points not in the domain of the tangent function?

� What are the important properties of the graph of y D sec.t/. That is,

what is the domain and what is the range of the secant function, and

what happens to the values of the secant function at the points that are

near points not in the domain of the secant function?

� What are the important properties of the graph of y D cot.t/. That is,

what is the domain and what is the range of the cotangent function, and

what happens to the values of the cotangent function at the points that

are near points not in the domain of the cotangent function?

� What are the important properties of the graph of y D csc.t/. That is,

what is the domain and what is the range of the cosecant function, and

what happens to the values of the cosecant function at the points that are

near points not in the domain of the cosecant function?

We have seen how the graphs of the cosine and sine functions are determined by

the definition of these functions. We also investigated the effects of the constants

A, B , C , and D on the graph of y D A sin.B.x � C // C D and the graph of

y D A cos.B.x � C //CD.

In the following beginning activity, we will explore the graph of the tangent

function. Later in this section, we will discuss the graph of the secant function,

and the graphs of the cotangent and cosecant functions will be explored in the

exercises. One of the key features of these graphs is the fact that they all have

vertical asymptotes. Important information about all four functions is summarized

at the end of this section.
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Beginning Activity

1. Use a graphing utility to draw the graph of f .x/ D 1

.x C 1/.x � 1/
using

�2 � x � 2 and �10 � y � 10. If possible, use the graphing utility to draw

the graphs of the vertical lines x D �1 and x D 1.

The graph of the function f has vertical asymptotes x D �1 and x D 1.

The reason for this is that at these values of x, the numerator of the function

is not zero and the denominator is 0. So x D �1 and x D 1 are not in

the domain of this function. In general, if a function is a quotient of two

functions, then there will be a vertical asymptote for those values of x for

which the numerator is not zero and the denominator is zero. We will see

this for the the tangent, cotangent, secant, and cosecant functions.

2. How is the tangent function defined? Complete the following: For each real

number x with cos.t/ ¤ 0, tan.t/ D .

3. Use a graphing utility to draw the graph of y D tan.t/ using �� � t � �

and �10 � y � 10.

4. What are some of the vertical asymptotes of the graph of the function y D
tan.t/? What appears to be the range of the tangent function?

The Graph of the Tangent Function

The graph of the tangent function is very different than the graphs of the sine and

cosine functions. One reason is that because tan.t/ D sin.t/

cos.t/
, there are values of t

for which tan.t/ is not defined. We have seen that

The domain of the tangent function is the set of all real numbers t for which

t ¤ �

2
C k� for every integer k.

In particular, the real numbers
�

2
and ��

2
are not in the domain of the tangent

function. So the graph of the tangent function will have vertical asymptotes at

t D �

2
and t D ��

2
(as well as at othe values). We should have observed this in

the beginning activity.

So to draw an accurate graph of the tangent function, it will be necessary to

understand the behavior of the tangent near the points that are not in its domain.

We now investigate the behavior of the tangent for points whose values of t that
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are slightly less than
�

2
and for points whose values of t that are slightly greater

than ��

2
. Using a calculator, we can obtain the values shown in Table 2.4.

t tan.t/

�

2
� 0:1 9.966644423

�

2
� 0:01 99.99666664

�

2
� 0:001 999.9996667

�

2
� 0:0001 9999.999967

t tan.t/

��

2
C 0:1 �9:966644423

��

2
C 0:01 �99:99666664

��

2
C 0:001 �999:9996667

��

2
C 0:0001 �9999:999967

Table 2.4: Table of Values for the Tangent Function

So as the input t gets close to
�

2
but stays less than

�

2
, the values of tan.t/ are

getting larger and larger, seemingly without bound. Similarly, input t gets close to

��

2
but stays greater than ��

2
, the values of tan.t/ are getting farther and farther

away from 0 in the negative direction, seemingly without bound. We can see this in

the definition of the tangent: as t gets close to
�

2
from the left, cos.t/ gets close to 0

and sin.t/ gets close to 1. Now tan.t/ D sin.t/

cos.t/
and fractions where the numerator

is close to 1 and the denominator close to 0 have very large values. Similarly, as t

gets close to ��

2
from the right, cos.t/ gets close to 0 (but is negative) and sin.t/

gets close to 1. Fractions where the numerator is close to 1 and the denominator

close to 0, but negative, are very large (in magnitude) negative numbers.

Progress Check 2.21 (The Graph of the Tangent Function)

1. Use a graphing utility to draw the graph of y D tan.t/ using ��

2
� t � �

2
and �10 � y � 10.

2. Use a graphing utility to draw the graph of y D tan.t/ using�3�

2
� t � 3�

2
and �10 � y � 10.
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3. Are these graphs consistent with the information we have discussed about

vertical asymptotes for the tangent function?

4. What appears to be the range of the tangent function?

5. What appears to be the period of the tangent function?

Activity 2.22 (The Tangent Function and the Unit Circle)

The diagram in Figure 2.26 can be used to show how tan.t/ is related to the unit

circle definitions of cos.t/ and sin.t/.

(cos (t), sin (t))

(1, 0)
(0, 0)

y

x

m

t

Figure 2.26: Illustrating tan.t/ with the Unit Circle

In the diagram, an arc of length t is drawn and tan.t/ D cos.t/

sin.t/
D y

x
. This

gives the slope of the line that goes through the points .0; 0/ and .cos.t/; sin.t//.

The vertical line through the point .1; 0/ intersects this line at the point .1; m/. This

means that the slope of this line is also
m

1
and hence, we see that

tan t D cos t

sin t
D m:

Now use the Geogebra applet Tangent Graph Generator to see how this informa-

tion can be used to help see how the graph of the tangent function can be generated

using the ideas in Figure 2.26. The web address is
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http://gvsu.edu/s/Zm

Effects of Constants on the Graphs of the Tangent Function

There are similarities and a some differences in the methods of drawing the graph

of a function of the form y D A tan.B.t � C //C D and drawing the graph of a

function of the form y D A sin.B.t � C //CD. See page 101 for a summary of

the effects of the parameters A, B , C , and D on the graph of a sinusoidal function.

One of the differences in dealing with a tangent (secant, cotangent, or cose-

cant) function is that we do not use the terminology that is specific to sinusoidal

waves. In particular, we will not use the terms amplitude and phase shift. Instead of

amplitude, we use the more general term vertical strech (or vertical compression),

and instead of phase shift, we use the more general term horizontal shift. We will

explore this is the following progress check.

Progress Check 2.23 Effects of Parameters on a Tangent Function

Consider the function whose equation is y D 3 tan
�

2
�

x � �

8

��

C 1. Even if we

use a graphing utility to draw the graph, we should answer the following questions

first in order to get a reasonable viewing window for the graphing utility. It might

be a good idea to use a method similar to what we would use if we were graphing

y D 3 sin
�

2
�

x � �

8

��

C 1.

1. We know that for the sinusoid, the period is
2�

2
. However, the period of the

tangent function is � . So what will be the period of y D 3 tan
�

2
�

x � �

8

��

C
1?

2. For the sinusoid, the amplitude is 3. However, we do not use the term “am-

plitude” for the tangent. So what is the effect of the paramter 2 on the graph

of y D 3 tan
�

2
�

x � �

8

��

C 1?

3. For the sinusoid, the phase shift is
�

8
. However, we do not use the term

“phase shift” for the tangent. So what is the effect of the paramter
�

8
on the

graph of y D 3 tan
�

2
�

x � �

8

��

C 1?

4. Use a graphing utility to draw the graph of this function for one complete

period. Use the period of the function that contains the number 0.

http://gvsu.edu/s/Zm
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The Graph of the Secant Function

To understand the graph of the secant function, we need to recall the definition of

the secant and the restrictions on its domain. If necessary, refer to Section 1.6 to

complete the following progress check.

Progress Check 2.24 (The Secant Function)

1. How is the secant function defined?

2. What is the domain of the secant function?

3. Where will the graph of the secant function have vertical asymptotes?

4. What is the period of the secant function?

Activity 2.25 (The Graph of the Secant Function)

1. We will use the Geogebra Applet with the following web address:

http://gvsu.edu/s/Zn

This applet will show how the graph of the secant function is related to the

graph of the cosine function. In the applet, the graph of y D cos.t/ is shown

and is left fixed. We generate points on the graph of y D sec.t/ by using

the slider for t . For each value of t , a vertical line is drawn from the point

.t; cos.t// to the point .t; sec.t//. Notice how these points indicate that the

graph of the secant function has vertical asymptotes at t D �

2
, t D 3�

2
, and

t D 5�

2
.

2. Use a graphing utility to draw the graph of y D sec.x/ using ��

2
� x � �

2

and �10 � y � 10. Note: It may be necessary to use sec.x/ D 1

cos.x/
.

3. Use a graphing utility to draw the graph of y D sec.x/ using �3�

2
� x �

3�

2
and �10 � y � 10.

The work in Activity 2.25 and Figure 2.27 can be used to help answer the

questions in Progress Check 2.26.

http://gvsu.edu/s/Zn
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Figure 2.27: Graph of One Period of y D sec.x/ with 0 � x � 2�

Progress Check 2.26 (The Graph of the Secant Function)

1. Is the graph in Figure 2.27 consistent with the graphs from Activity 2.25?

2. Why is the graph of y D sec.x/ above the x-axis when ��

2
< x <

�

2
?

3. Why is the graph of y D sec.x/ below the x-axis when
�

2
< x <

3�

2
?

4. What is the range of the secant function?

Summary of Section 2.4

In this section, we studied the following important concepts and ideas:

� The Tangent Function. Table 2.5 shows some of the important characteris-

tics of the tangent function. We have already discussed most of these items,

but the last two items in this table will be explored in Exercise (1) and Exer-

cise (2).

A graph of three periods of the tangent function is shown in Figure 2.28.
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y D tan.t/ y D sec.t/

period � 2�

domain real numbers t with t ¤ �

2
C k� for every integer k

y-intercept .0; 0/ .0; 1/

x-intercepts t D k� , where k is some integer none

symmetry with respect to the origin with respect to the y-axis

Table 2.5: Properties of the Tangent and Secant Functions

t

y

Figure 2.28: Graph of y D tan.t/

y

t

Figure 2.29: Graph of y D sec.t/

� The Secant Function. Table 2.5 shows some of the important characteristics

of the secant function. The symmetry of the secant function is explored in

Exercise (3). Figure 2.29 shows a graph of the secant function.

� The Cosecant Function. The graph of the cosecant function is studied in a

way that is similar to how we studied the graph of the secant function. This

is done in Exercises (4), (5), and (6). Table 2.6 shows some of the important

characteristics of the cosecant function. The symmetry of the cosecant func-

tion is explored in Exercise (3). Figure 2.30 shows a graph of the cosecant

function.

� The Cotangent Function. The graph of the cosecant function is studied in

a way that is similar to how we studied the graph of the tangent function.

This is done in Exercises (7), (8), and (9). Table 2.6 shows some of the

important characteristics of the cotangent function. The symmetry of the

cotangent function is explored in Exercise (3). Figure 2.31 shows a graph of

the cotangent function.
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y D csc.t/ y D cot.t/

period 2� �

domain real numbers t with t ¤ k� for all integers k

range jyj � 1 all real numbers

y-intercept none none

x-intercepts none t D �

2
C k� , where k is an integer

symmetry with respect to the origin

Table 2.6: Properties of the Cosecant and Cotangent Functions

y

t

Figure 2.30: Graph of y D csc.t/

y

t

Figure 2.31: Graph of y D cot.t/
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Exercises for Section 2.4

1. In this exercise, we will explore the period of the tangent function.

? (a) Use the definition of the tangent function and the fact that the period of

both the sine and cosine functions is equal to 2� to prove that for any

real number t in the domain of the tangent function,

tan.t C 2�/ D tan.t/:

However, this does not prove that

the period of the tangent function

is equal to 2� . We will now show

that the period is equal to � . The

key to the proof is the diagram to

the right.

Suppose that P is the terminal point of the arc t . So cos.t/ D a and sin.t/ D
b. The diagram shows a point Q that is the terminal point of the arc t C � .

By the symmetry of the circle, we know that the point Q has coordinates

.�a;�b/.

(b) Explain why cos.t C �/ D �a and sin.t C �/ D �b.

(c) Use the information in part (a) and the definition of the tangent function

to prove that tan.t C �/ D tan.t/.

The diagram also indicates that the smallest positive value of p for which

tan.t C p/ D tan.t/ must be p D � . Hence, the period the tangent function

is equal to � .

2. We have seen that cos.�t / D cos.t/ and sin.�t / D � sin.t/ for every real

number t . Now assume that t is a real number for which tan.t/ is defined.

(a) Use the definition of the tangent function to write a formula for tan.�t /

in terms of sin.�t / and cos.�t /.

(b) Now use the negative arc identities for the cosine and sine functions

to help prove that tan.�t / D � tan.t/. This is called the negative arc

identity for the tangent function.
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(c) Use the negative arc identity for the tangent function to explain why

the graph of y D tan.t/ is symmetric about the origin.

3. Use the negative arc identities for sine, cosine, and tangent to help prove the

following negative arc identities for cosecant, secant, and cotangent.

? (a) For every real number t for which t ¤ k� for every integer k,

csc.�t / D �csc.t/.

(b) For every real number t for which t ¤ �

2
C k� for every integer k,

sec.�t / D sec.t/.

(c) For every real number t for which t ¤ k� for every integer k,

cot.�t / D � cot.t/.

4. The Cosecant Function. If necessary, refer to Section 1.6 to answer the

followiing questions.

(a) How is the cosecant function defined?

(b) What is the domain of the cosecant function?

(c) Where will the graph of the cosecant function have vertical asymp-

totes?

(d) What is the period of the cosecant function?

5. Exploring the Graph of the Cosecant Function.

(a) Use the Geogebra Applet with the following web address to explore

the relationship between the graph of the cosecant function and the

sine function.

http://gvsu.edu/s/0bH

In the applet, the graph of y D sin.t/ is shown and is left fixed. Points

on the graph of y D csc.t/ are generated by using the slider for t . For

each value of t , a vertical line is drawn from the point .t; sin.t// to the

point .t; csc.t//. Notice how these points indicate that the graph of the

cosecant function has vertical asymptotes at t D 0, t D � , and t D 2� .

(b) Use a graphing utility to draw the graph of y D csc.x/ using ��

2
�

x � �

2
and �10 � y � 10. Note: It may be necessary to use csc.x/ D

1

sin.x/
.

http://gvsu.edu/s/0bH
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(c) Use a graphing utility to draw the graph of y D csc.x/ using �3�

2
�

x � 3�

2
and �10 � y � 10.

6. The Graph of the Cosecant Function.

(a) Why does the graph of y D csc.x/ have vertical asymptotes at x D 0,

x D � , and x D 2�? What is the domain of the cosecant function?

(b) Why is the graph of y D csc.x/ above the x-axis when 0 < x < �?

(c) Why is the graph of y D csc.x/ below the x-axis when � < x < 2�?

(d) What is the range of the cosecant function?

7. The Cotangent Function. If necessary, refer to Section 1.6 to answer the

followiing questions.

(a) How is the cotangent function defined?

(b) What is the domain of the cotangent function?

(c) Where will the graph of the cotangent function have vertical asymp-

totes?

(d) What is the period of the cotangent function?

8. Exploring the Graph of the Cotangent Function.

(a) Use a graphing utility to draw the graph of y D cot.x/ using �� �
x � � and �10 � y � 10. Note: It may be necessary to use cot.x/ D

1

tan.x/
.

(b) Use a graphing utility to draw the graph of y D cot.x/ using �2� �
x � 2� and �10 � y � 10.

9. The Graph of the Cotangent Function.

(a) Why does the graph of y D cot.x/ have vertical asymptotes at x D 0,

x D � , and x D 2�? What is the domain of the cotangent function?

(b) Why is the graph of y D cot.x/ above the x-axis when 0 < x <
�

2

and when � < x <
3�

2
?

(c) Why is the graph of y D cot.x/ below the x-axis when
�

2
< x < �

and when
3�

2
< x < 2�?

(d) What is the range of the cotangent function?
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2.5 Inverse Trignometric Functions

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� Why doesn’t the sine function really have an inverse? What do we mean,

then, by the inverse sine function? In other words, how is the inverse

sine function defined?

� How is the inverse cosine function defined?

� How is the inverse tangent function defined?

Beginning Activity

1. If y D 5x C 7 and y D 4, what is the value of x?

2. If y D px and y D 2:5, what is the value of x?

3. If y D x2 and y D 25, what are the possible values of x?

4. If y D sin.x/ and y D 1

2
, find two values for x with 0 � x � 2� .

Introduction

The work in the beginning activity illustrates the general problem that if we are

given a function f and y D f .x/, can we find the values of x if we know the

value of y. In effect, this means that if we know the value of y, can we solve for

the value of x? For the first problem, we can substitute y D 4 into y D 5xC 7 and

solve for x. This gives

4 D 5x C 7

�3 D 5x

x D �3

5
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For the second and third problems, we have

2:5 D
p

x 25 D x2

2:52 D
�p

x
�2

x D ˙
p

25

x D 6:25 x D ˙5

The work with the equation x2 D 25 shows that we can have more than one so-

lution for this type of problem. With trigonometric functions, we can even have

more solutions. For example, if y D sin.x/ and y D 1

2
, we have

sin.x/ D 1

2
:

If we restrict the values of x to 0 � x � 2� , there will be two solutions as shown

in Figure 2.32

1

−1

Figure 2.32: Graph Showing sin.x/ D 1

2

From our knowledge of the common arcs and reference arcs, these two solu-

tions are x D �

6
and x D 5�

6
. In addition, the periodic nature of the sine function

tells us that if there are no restrictions on x, there will be infinitely many solutions

of the equation sin.x/ D 1

2
. What we want to develop is a method to indicate

exactly one of these solutions. But which one do we choose?

We have done something like this when we solve an equation such as x2 D 25.

There are two solutions to this equation, but we have a function (the square root

function) that gives us exactly one of these two functions. So when we write x Dp
25 D 5, we are specifying only the positive solution of the equation. If we want

the other solution, we have to write x D �
p

25 D �5. Notice that we used the
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square root function to designate the “simpler” of the two functions, namely the

positive solution.

For the sine function, what we want is an inverse sine function that does just

what the name suggests – uniquely reverses what the sine function does. That is,

the inverse sine function takes a value from the range of the sine function and gives

us exactly one arc whose sine has that value. We will try to do this in as simple of

a manner as possible. (It may sometimes be hard to believe, but mathematicians

generally do try to keep things simple.) To be more specific, if we have y D sin.x/,

we want to be able to specify any value for y with �1 � y � 1 and obtain one

value for x. We will choose the value for x that is as close to 0 as possible. (Keep

it simple.)

So ensure that there is only one solution, we will restrict the graph of y D
sin.x/ to the interval ��

2
� x � �

2
. This also guarantees that �1 � y � 1 as

shown in Figure 2.33.

y

x

Figure 2.33: Graph of y D sin.x/ restricted to ��

2
� x � �

2

As is illustrated in Figure 2.33, for each value of y with �1 � y � 1, there is

exactly one value of x with sin.x/ D y and ��

2
� x � �

2
.
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Definition. The inverse sine function (denoted by arcsin or sin�1), is defined

as follows:

For �1 � y � 1,

t D arcsin.y/ or t D sin�1.y/

means

y D sin.t/ and � �

2
� t � �

2
:

Caution. Either notation may be used for the arcsine function. That is, arcsin.y/

and sin�1.y/ mean the same thing. However, the notation sin�1 does not mean the

reciprocal of the sine but rather the inverse of the sine with a restricted domain. It

is very important to remember the facts that the domain of the inverse sine is the

interval Œ�1; 1� and the range of the inverse sine is the interval
h

��

2
;

�

2

i

.

Note: Some people prefer using t D arcsin.y/ instead of t D sin�1.y/ since it

can be a reminder of what the notation means. The equation t D arcsin.y/ is an

abbreviation for

t is the arc with sine value y and ��

2
� t � �

2
.

It is important to keep writing the restriction ��

2
� t � �

2
since it is important to

realize that arcsin.y/ function gives only one arc whose sine value is y and t must

be in this interval.

Example 2.27 (Inverse Sine Function)

We will determine the exact value of arcsin

 p
3

2

!

. So we let t D arcsin

 p
3

2

!

.

This means that

sin.t/ D
p

3

2
and � �

2
� t � �

2
:

That is, we are trying to find the arc t whose sine is

p
3

2
and ��

2
� y � �

2
. Using

our knowledge of sine values for common arcs, we notice that sin
��

3

�

D
p

3

2
and
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so we conclude that t D �

3
or that

arcsin

 p
3

2

!

D �

3
:

This is illustrated graphically in Figure 2.34.

3

2
( )0,

( )
3

π , 0

y = sin(t)

Figure 2.34: Graphical Version of arcsin

 p
3

2

!

D �

3

Note: Most calculators and graphing utilities can calculate approximate values for

the inverse sine function. On calcultors, it is often the sin�1 key and for many

computer programs, it is necessary to type “arcsin.” Using a calculator, we see that

arcsin

 p
3

2

!

� 1:04720, which is a decimal approximation for
�

3
.

Progress Check 2.28 (Calculating Values for the Inverse Sine Function)

Determine the exact value of each of the following. You may check your results

with a calculator.

1. arcsin

 

�
p

3

2

!

2. sin�1

�

1

2

�

3. arcsin .�1/

4. arcsin

 

�
p

2

2

!
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In the next progress check, we will use the inverse sine function in two-step

calculations. Please pay attention to the results that are obtained.

Progress Check 2.29 (Calculations Involving the Inverse Sine Function)

Determine the exact value of each of the following. You may check your results

with a calculator.

1. sin

�

sin�1

�

1

2

��

2. arcsin
�

sin
��

4

��

3. sin

�

sin�1

�

2

5

��

4. arcsin

�

sin

�

3�

4

��

The work in Progress Check 2.29 illustrates some important properties of the

inverse since function when it is composed with the sine function. This property is

that in some sense, the inverse sine and the sine functions “undo” each other. To

see what this means, we let y D sin.t/ with ��

2
� t � �

2
. Then

sin�1.sin.t// D sin�1.y/ D t

by definition. This means that if we apply the sine, then the inverse sine to an arc

between ��

2
and

�

2
, we get back the arc. This is what we mean when we say the

inverse sine undoes the sine.

Similarly, if t D sin�1.y/ for some y with �1 � y � 1, then

sin.sin�1.y// D sin.t/ D y

by definition. So the sine also undoes the inverse sine as well. We summarize these

two results as follows:

Properties of the Inverse Sine Function

� For each t in the closed interval
h

��

2
;

�

2

i

,

sin�1.sin.t// D t:

� For each y in the closed interval Œ�1; 1�,

sin
�

sin�1.y/
�

D y:
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The Inverse Cosine and Inverse Tangent Functions

In a manner similar to how we defined the inverse sine function, we can define the

inverse cosine and the inverse tangent functions. The key is to restrict the domain

of the corresponding circular function so that we obtain the graph of a one-to-one

function. So we will use y D cos.t/ with 0 � t � � and y D tan.t/ with

��

2
< t <

�

2
as is illustrated in Figure 2.35.

x

y

Figure 2.35: Graph of y D cos.t/ for 0 � t � � and Graph of y D tan.t/ for

��

2
< t <

�

2
.

Note: We do not use the interval ��

2
� t � �

2
for the cosine function since

the cosine function is not one-to-one on that inverval. In addition, the interval for

the tangent function does not contain the endpoints since the tangent function is

not defined at ��

2
and

�

2
.

Using these domains, we now define the inverse functions for cosine and tan-

gent.
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Definition. We define the inverse cosine function, arccos or cos�1, as fol-

lows:

For �1 � y � 1,

t D arccos.y/ or t D cos�1.y/

to mean

y D cos.t/ and 0 � t � �:

We define the inverse tangent function, arctan or tan�1, as follows:

For t 2 R,

t D arctan.y/ or y D tan�1.y/

to mean

y D tan.t/ and � �

2
< t <

�

2
:

Note: The preceding results can be written using the arcsine function rather than

sin�1. It is very important to realize that these results are valid only for ��

2
� t �

�

2
and �1 � y � 1.

Example 2.30 (An Example of Inverse Cosine)

The equation y D arccos

�

�1

2

�

D cos�1

�

�1

2

�

means that

cos.y/ D �1

2
and 0 � y � �:

That is, we are trying to find the arc y whose cosine is �1

2
and 0 � y � � . Using

our knowledge of cosine values for common arcs, we notice that cos
��

3

�

D 1

2
.

So we conclude that the reference angle Oy for y is Oy D �

3
. Since y must be in QII,

we conclude that y D � � �

3
or y D 2�

3
. So

arccos

�

�1

2

�

D 2�

3
:

This can be checked using a calculator and is illustrated in Figure 2.36.
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Figure 2.36: Diagram Used for the Inverse Cosine of �1

2
.

Progress Check 2.31 (Inverse Cosine and Inverse Tangent Functions)

Determine the exact value of each of the following. You may check your results

with a calculator.

1. cos

�

cos�1

�

1

2

��

2. arccos
�

cos
��

4

��

3. arccos
�

cos
���

4

��

4. tan�1

�

tan

�

5�

4

��

The work in Progress Check 2.31 illustrates some important properties of the

inverse cosine and inverse tangent functions similar to the properties of the inverse

sine function on page 147.

Properties of the Inverse Cosine Function

� For each t in the closed interval Œ0; ��,

cos�1.cos.t// D t:

� For each y in the closed interval Œ�1; 1�,

cos
�

cos�1.y/
�

D y:
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Properties of the Inverse Tangent Function

� For each t in the open interval
�

��

2
;
�

2

�

,

tan�1.tan.t// D t:

� For each real number y,

tan
�

tan�1.y/
�

D y:

The justification for these properties is included in the exercises.

Progress Check 2.32 (Inverse Trigonometric Functions)

Determine the exact value of each of the following and check them using a calcu-

lator.

1. y D arccos.1/

2. y D tan�1
�p

3
�

3. y D arctan .�1/

4. y D cos�1

 

�
p

2

2

!

5. sin

�

arccos

�

�1

2

��

6. tan

 

arcsin

 

�
p

3

2

!!

7. arccos
�

sin
��

6

��

When we evaluate an expression such as sin

�

arccos

�

�1

2

��

in the previous

preview activity, we can use the fact that it is possible to determine the exact value

of arccos

�

�1

2

�

to complete the problem. If we are given a similar problem but

do not know the exact value of an inverse trigonometric function, we can often use

the Pythagorean Identity to help. We will do this in the next progress check.

Progress Check 2.33 (Using the Pythagorean Identity)

1. Determine the exact value of sin

�

arccos

�

1

3

��

. Following is a suggested

way to start this. Since we do not know the exact value of arccos

�

1

3

�

, we
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start by letting t D arccos

�

1

3

�

. We then know that

cos.t/ D 1

3
and 0 � t � �:

Notice that sin.t/ D sin

�

arccos

�

1

3

��

. So to complete the problem, de-

termine the exact value of sin.t/ using the Pythagorean Identity keeping in

mind that 0 � t � � .

2. Determine the exact value of cos

�

arcsin

�

�4

7

��

.

Summary of Section 2.5

In this section, we studied the following important concepts and ideas:

� The Inverse Sine Function uniquely reverses what the sine function does.

The inverse sine function takes a value y from the range of the sine function

and gives us exactly one real number t whose sine is equal to y. That is, if y

is a real number and �1 � y � 1, then

sin�1.y/ D t means that sin.t/ D y and ��

2
� t � �

2
.

In addition, the inverse sine function satisfies the following important prop-

erties:

* For each t in the closed interval
h

��

2
;

�

2

i

,

sin�1.sin.t// D t:

* For each y in the closed interval Œ�1; 1�,

sin
�

sin�1.y/
�

D y:

� The Inverse cosine Function uniquely reverses what the cosine function

does. The inverse cosine function takes a value y from the range of the

cosine function and gives us exactly one real number t whose cosine is equal

to y. That is, if y is a real number and �1 � y � 1, then

cos�1.y/ D t means that cos.t/ D y and 0 � t � � .
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In addition, the inverse cosine function satisfies the following important

properties:

* For each t in the closed interval Œ0; ��,

cos�1.cos.t// D t:

* For each y in the closed interval Œ�1; 1�,

cos
�

cos�1.y/
�

D y:

� The Inverse Tangent Function uniquely reverses what the tangent function

does. The inverse tangent function takes a value y from the range of the

tangent function and gives us exactly one real number t whose tangent is

equal to y. That is, if y is a real number, then

tan�1.y/ D t means that tan.t/ D y and ��

2
< t <

�

2
.

In addition, the inverse tangent function satisfies the following important

properties:

* For each t in the open interval
�

��

2
;
�

2

�

,

tan�1.tan.t// D t:

* For each real number y,

tan
�

tan�1.y/
�

D y:

Exercises for Section 2.5

1. Rewrite each of the following using the corresponding trigonometric func-

tion for the inverse trigonometric function. Then determine the exact value

of the inverse trigonometric function.

? (a) t D arcsin

 p
2

2

!

? (b) t D arcsin

 

�
p

2

2

!
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(c) t D arccos

 p
2

2

!

? (d) t D arccos

 

�
p

2

2

!

(e) y D tan�1

 p
3

3

!

? (f) y D tan�1

 

�
p

3

3

!

(g) y D cos�1.0/

? (h) t D arctan.0/

(i) y D sin�1

�

�1

2

�

? (j) y D cos�1

�

�1

2

�

2. Determine the exact value of each of the following expressions.

? (a) sin
�

sin�1 .1/
�

? (b) sin�1
�

sin
��

3

��

(c) cos�1
�

sin
��

3

��

(d) sin�1
�

sin
�

��

3

��

? (e) cos�1
�

cos
�

��

3

��

? (f) arcsin

�

sin

�

2�

3

��

(g) tan .arctan.1//

(h) arctan
�

tan
��

4

��

? (i) arctan

�

tan

�

3�

4

��

3. Determine the exact value of each of the following expressions.

? (a) cos

�

arcsin

�

2

5

��

? (b) sin

�

arccos

�

�2

3

��

? (c) tan

�

arcsin

�

1

3

��

(d) cos

�

arcsin

�

�2

5

��

(e) tan

�

arccos

�

�2

9

��

4. This exercise provides a justifiction for the properties of the inverse cosine

function on page 150. Let t be a real number in the closed interval Œ0; �� and

let

y D cos.t/: (1)

We then see that �1 � y � 1 and

cos�1.y/ D t: (2)

(a) Use equations (1) and (2) to rewrite the expression cos�1.cos.t//.
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(b) Use equations (1) and (2) to rewrite the expression cos
�

cos�1.y/
�

.

5. This exercise provides a justifiction for the properties of the inverse tangent

function on page 151. Let t be a real number in the open interval
�

��

2
;
�

2

�

and let

y D tan.t/: (3)

We then see that y is a real number and

tan�1.y/ D t: (4)

(a) Use equations (3) and (4) to rewrite the expression tan�1.tan.t//.

(b) Use equations (3) and (4) to rewrite the expression tan
�

tan�1.y/
�

.
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2.6 Solving Trigonmetric Equations

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

For these questions, we let q be a real number with �1 � q � 1 and let r be a

real number.

� How can an inverse trigonometric function be used to determine one

solution of an equation of the form sin.x/ D q, cos.x/ D q, or tan.x/ D
r?

� How can properties of the trigonometric functions be used to determine

all solutions of an equation of the form sin.x/ D q, cos.x/ D q, or

tan.x/ D r within one complete period of the trigonometric function?

� How can we use the period of a trigonometric function to determine

a formula for the solutions of an equation of the form sin.x/ D q,

cos.x/ D q, or tan.x/ D r?

Recall that a mathematical equation like x2 D 1 is a relation between two

expressions that may be true for some values of the variable while an identity like

cos.�x/ D cos.x/ is an equation that is true for all allowable values of the variable.

So an identity is a special type of equation. Equations that are not identities are also

called conditional equations because they are not valid for all allowable values of

the variable. To solve an equation means to find all of the values for the variables

that make the two expressions on either side of the equation equal to each other.

We solved algebraic equations in algebra and now we will solve trigonometric

equations.

A trigonometric equation is an equation that involves trigonometric func-

tions. We have already used graphical methods to approximate solutions of trigono-

metric equations. In Example 2.17 on page 112, we used the function

V.t/ D 35 cos

�

5�

3
t

�

C 105

as a model for the amount of blood in the heart. For this function, t is measured in

seconds since the heart was full and V.t/ is measured in milliliters. To determine
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the times when there are 140 milliliters of blood in the heart, we needed to solve

the equation

35 cos

�

5�

3
t

�

C 105 D 100:

At that time, we used the “intersect” capability of a graphing utility to determine

some solutions of this equation. In this section, we will learn how to use the inverse

cosine function and properties of the cosine function to determine the solutions of

this equation. We begin by first studying simpler equations.

Beginning Activity

Use a graphing utility to draw the graphs of y D cos.x/ and y D 0:7 on the same

axes using �� � x � � and �1:2 � y � 1:2. Use the graphing utility to find

the points of intersection of these two graphs and to determine solutions of the

equation cos.x/ D 0:7.

In the beginning activity, we should have determined the following approxima-

tions for solutions of the equation cos.x/ D 0:7.

x1 � 0:79540; x2 � �0:79540:

These approximations have been rounded to five decimal places.

The graph to the right shows the

two graphs using �3� � x �
3� . The solutions x1 and x2 are

shown on the graph. As can be

seen, the graph shows x1 and x2

and four other solutions to the

equation cos.x/ D 0:7. In fact,

if we imagine the graph extended

indefinitely to the left and to the

right, we can see that there are

infinitely many solutions for this

equation.

This is where we can use the fact that the period of the cosine function is 2� .

The other solutions differ from x1 or x2 by an integer multiple of the period of 2� .

We can represent an integer multiple of 2� by k.2�/ for some integer k. So we

say that any solution of the equation cos.x/ D 0:7 can be approximated by

x � 0:79540C k.2�/ or x � �0:79540C k.2�/:
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For example, if we use k D 4, we see that

x � 25:92814 or x � 24:33734:

We can use a calculator to check that for both values, cos.x/ D 0:7.

A Strategy for Solving a Trigonometric Equation

The example using the equation cos.x/ D 0:7 was designed to illustrate the fact

that if there are no restrictions placed on the unknown x, then there can be infinitely

many solutions for an equation of the form

“some trigonometric function of x” = a number.

A general strategy to solve such equations is:

� Find all solutions of the equation within one period of the function. This is

often done by using properties of the trigonometric function. Quite often,

there will be two solutions within a single period.

� Use the period of the function to express formulas for all solutions by adding

integer multiples of the period to each solution found in the first step. For

example, if the function has a period of 2� and x1 and x2 are the only two

solutions in a complete period, then we would write the solutions for the

equation as

x D x1 C k.2�/; x D x2 C k.2�/; where k is an integer:

Note: Instead of writing “k is an integer,” we could write

k 2 f: : : ;�2;�1; 0; 1; 2; : : :g.

Progress Check 2.34 (Solving a Trigonometric Equation)

Use a graph to approximate the solutions (rounded to four decimal places) of the

equation sin.x/ D �0:6 on the interval �� � x � � . Then use the period of the

sine function to write formulas that can be used to approximate any solution of this

equation.

Using Inverse Functions to Solve Trigonometric Equations

Although we can use a graphing utility to determine approximations for solutions

to many equations, we often need to have some notation to indicate specific num-

bers (that are often solutions of equations). We have already seen this in previous
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mathematics courses. For example, we use the notation
p

20 to represent the pos-

itive real number whose square is equal to 20. We can use this to say that the two

solutions of the equation x2 D 20 are

x D
p

20 and x D �
p

20:

Notice that there are two solutions of the equation but
p

20 represents only one of

those solutions. We will now learn how to use the inverse trigonometric functions

to do something similar for trigonometric equations. One big difference is that

most trigonometric equations will have infinitely many solutions instead of just

two. We will use the inverse trigonometric functions to represent one solution of

an equation and then learn how to represent all of the solutions in terms of this one

solution. We will first show how this is done with the equation cos.x/ D 0:7 from

the beginning activity for this section.

Example 2.35 (Solving an Equation Involving the Cosine Function)

For the equation cos.x/ D 0:7, we first use the result about the inverse cosine

function on page 150, which states that for t in the closed interval Œ0; ��,

cos�1.cos.t// D t:

So we “apply the inverse cosine function” to both sides of the equation cos.x/ D
0:7. This gives:

cos.x/ D 0:7

cos�1.cos.x/ D cos�1.0:7/

x D cos�1.0:7/

Another thing we must remember is that this gives the one solution for the equation

that is in interval Œ0; ��. Before we use the periodic property, we need to determine

the other solutions for the equation in one complete period of the cosine function.

We can use the interval Œ0; 2�� but it is easier to use the interval Œ��; ��. One

reason for this is the following so-called “negative arc identity” stated on page 82.

cos.�x/ D cos.x/ for every real number x:

Hence, since one solution for the equation is x D cos�1.0:7/, another solution is

x D � cos�1.0:7/. This means that the two solutions of the equation x D cos.x/

on the interval Œ��; �� are

x D cos�1.0:7/ and x D � cos�1.0:7/:
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It can be verified that the equation cos.x/ D 0:7 has two solutions on the interval

Œ��; �� by drawing the graphs of y D cos.x/ and y D 0:7 on the interval Œ��; ��.

So if we restrict ourselves to this interval, we have something very much like solv-

ing the equation x2 D 20 in that there are two solutions that are negatives of each

other. The main difference now is that the trigonometric equation has infinitely

many solutions and as before, we now use the periodic property of the cosine func-

tion. Since the period is 2� , just like with the numerical approximations from the

beginning activity, we can say that any solution of the equation cos.x/ D 0:7 will

be of the form

x D cos�1.0:7/C k.2�/ or x D � cos�1.0:7/C k.2�/;

where k is some integer.

Progress Check 2.36 (Solving an Equation)

Determine all solutions of the equation 4 cos.x/C 3 D 2 in the interval Œ��; ��.

Then use the periodic property of the cosine function to write formulas that can be

used to generate all the solutions of this equation. Hint: First use algebra to rewrite

the equation in the form cos.x/ D “some number”.

The previous examples have shown that when using the inverse cosine function

to solve equations of the form cos.x/ D a number, it is easier to use the interval

Œ��; �� rather than the interval Œ0; 2��. This is not necessarily true when using the

inverse sine function since the inverse sine function gives a value in the interval
h

��

2
;

�

2

i

. However, to keep things similar, we will continue to use the interval

Œ��; �� as the complete period for the sine (or cosine) function. For the inverse

sine, we use the following property stated on page 147.

For each t in the closed interval
h

��

2
;
�

2

i

,

sin�1.sin.t// D t:

When solving equations involving the cosine function, we also used a negative arc

identity. We do the same and will use the following negative arc identity stated on

page 82.

sin.�x/ D � sin.x/ for every real number x:

Example 2.37 (Solving an Equation Involving the Sine Function)

We will illustrate the general process using the equation sin.x/ D �0:6 from

Progress Check 2.34. Because of the negative arc identity for the sine function,
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it is actually easier to work with the equation sin.x/ D 0:6. This is because if

x D a is a solution of the equation sin.x/ D 0:6, then

sin.�a/ D � sin.a/ D �0:6;

and so, x D �a is a solution of the equation sin.x/ D �0:6. For the equation

sin.x/ D 0:6, we start by “applying the inverse sine function” to both sides of the

equation.

sin.x/ D 0:6

sin�1.sin.x// D sin�1.0:6/

x D sin�1.0:6/

We need to remember that this is only one solution of the equation. Since we know

that the sine function is positive in the first and second quadrants, this solution is

in the first quadrant and there is another solution in the second quadrant. Using

x D sin�1.0:6/ as a reference arc (angle), the solution in the second quadrant is

x D � � sin�1.0:6/. We now use the result that if x D a is a solution of the

equation sin.x/ D 0:6, then x D �a is a solution of the equation sin.x/ D �0:6.

Please note that

�.� � sin�1.0:6// D �� C sin�1.0:6/:

Our work so far is summarized in the following table.

Solutions for sin.x/ D 0:6 in Œ0; �� Solutions for sin.x/ D �0:6 in Œ��; 0�

x D sin�1.0:6/ x D � sin�1.0:6/

x D � � sin�1.0:6/ x D �� C sin�1.0:6/

At this point, we should use a calculator to verify that the two values in the right

column are actually solutions of the equation sin.x/ D �0:6. Now that we have

the solutions for sin.x/ D �0:6 in one complete cycle, we can use the fact that

the period of the sine function is 2� and say that the solutions of the equation

sin.x/ D �0:6 have the form

x D � sin�1.0:6/C k.2�/ or x D .�� C sin�1.0:6//C k.2�/;

where k is some integer.

Progress Check 2.38 (Solving an Equation Involving the Sine Function)

Determine all solutions of the equation 2 sin.x/C1:2 D 2:5 in the interval Œ��; ��.

Then use the periodic property of the sine function to write formulas that can be

used to generate all the solutions of this equation. Hint: First use algebra to rewrite

the equation in the form sin.x/ D “some number”.
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Solving More Complicated Trigonometric Equations

We have now learned to solve equations of the form cos.x/ D q and sin.x/ D q,

where q is a real number and �1 � q � 1. We can use our ability to solve

these types of equations to help solve more complicated equations of the form

cos.f .x// D q or sin.f .x// D q where f is some function. The idea (which is

typical in mathematics) is to convert this more complicated problem to two simpler

problems. The idea is to:

1. Make the substitution t D f .x/ to get an equation of the form cos.t/ D q

or sin.t/ D q.

2. Solve the equation in (1) for t .

3. For each solution t of the equation in (1), solve the equation f .x/ D t for

x. This step may be easy, difficult, or perhaps impossible depending on the

equation f .x/ D t .

This process will be illustrated in the next progress check, which will be a guided

investigation for solving the equation 3 cos.2x C 1/C 6 D 5.

Progress Check 2.39 (Solving an Equation)

We will solve the equation 3 cos.2x C 1/C 6 D 5.

1. First, use algebra to rewrite the equation in the form cos.2x C 1/ D �1

3
.

Then, make the substitution t D 2x C 1.

2. Determine all solutions of the equation cos.t/ D �1

3
with �� � t � � .

3. For each of these two solutions, use t D 2x C 1 to find corresponding

solutions for x. In addition, use the substitution t D 2x C 1 to write

�� � 2x C 1 � � and solve this inequality for x. This will give all of

the solutions of the equation cos.2x C 1/ D �1

3
in one complete cycle of

the function given by y D cos.2x C 1/.

4. What is the period of the function y D cos.2x C 1/. Use the results in (3)

and this period to write formulas that will generate all of the solutions of

the equation cos.2x C 1/ D �1

3
. These will be the solutions of the original

equation 3 cos.2xC 1/C 6 D 5.
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Solving Equations Involving the Tangent Function

Solving an equation of the form tan.x/ D q is very similar to solving equations

of the form cos.x/ D q or sin.x/ D q. The main differences are the tangent

function has a period of � (instead of 2�), and the equation tan.x/ D q has only

one solution in a complete period. We, of course, use the inverse tangent function

for the equation tan.x/ D q.

Progress Check 2.40 (Solving an Equation Involving the Tangent Function)

Use the inverse tangent function to determine one solution of the equation

4 tan.x/C 1 D 10 in the interval
�

��

2
� x � �

2

�

. Then determine a formula that

can be used to generate all solutions of this equation.

Summary of Section 2.6

In this section, we studied the following important concepts and ideas:

A trigonometric equation is an equation that involves trigonometric functions. If

we can write the trigonometric equation in the form

“some trigonometric function of x” D a number;

then we can use the following strategry to solve the equation.

� Find one solution of the equation using the approrpriae inverse trigonometric

function.

� Determine all solutions of the equation within one complete period of the

trigonometric function. (This often involves the use of a reference arc based

on the solution obtained in the first step.)

� Use the period of the function to write formulas for all of the solutions of the

trigonometric equation.

Exercises for Section 2.6

1. For each of the following equations, use a graph to approximate the solutions

(to three decimal places) of the equation on the indicated interval. Then use

the periodic property of the trigonometric function to write formulas that can

be used to approximate any solution of the given equation.

? (a) sin.x/ D 0:75 with �� � x � � .
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(b) cos.x/ D 0:75 with �� � x � � .

(c) tan.x/ D 0:75 with ��

2
< x <

�

2
.

? (d) sin.x/ D �0:75 with �� � x � � .

(e) cos.x/ D �0:75 with �� � x � � .

(f) tan.x/ D �0:75 with ��

2
< x <

�

2
.

? 2. For each of the equations in Exercise (1), use an inverse trigonometric func-

tion to write the exact values of all the solutions of the equation on the indi-

cated interval. Then use the periodic property of the trigonometric function

to write formulas that can be used to generate all of the solutions of the given

equation.

3. For each of the equations of the following equations, use an inverse trigono-

metric function to write the exact values of all the solutions of the equation

on the indicated interval. Then use the periodic property of the trigonometric

function to write formulas that can be used to generate all of the solutions of

the given equation.

? (a) sin.x/C 2 D 2:4 with �� � x � � .

? (b) 5 cos.x/C 3 D 7 with �� � x � � .

(c) 2 tan.x/C 4 D 10 with ��

2
< x <

�

2
.

(d) �3:8 sin.x/C 7 D 10 with �� � x � � .

(e) 8 cos.x/C 7 D 2 with �� � x � � .

4. Determine the exact values of the solutions of the given equation on one

complete period of the trigonometric function that is used in the equation.

Then use the periodic property of the trigonometric function to write formu-

las that can be used to all of the solutions of the given equation.

? (a) 4 sin.2x/ D 3.

(b) 4 cos.2x/ D 3.

(c) cos.�x/ D 0:6.

? (d) sin
�

�x � �

4

�

D 0:2.

(e) cos
�

�x � �

4

�

D 0:2.

5. In Example 2.17 on page 2.17, we used graphical methods to find two solu-

tions of the equation

35 cos

�

5�

3
t

�

C 105 D 100:
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We found that two solutions were t � 0:3274 and t � 0:8726. Rewrite

this equation and then use the inverse cosine function to determine the exact

values of these two solutions. Then use the period of the function y D
35 cos

�

5�

3
t

�

C105 to write formulas that can be used to generate all of the

solutions of the given equation.



Chapter 3

Triangles and Vectors

As was stated at the start of Chapter 1, trigonometry had its origins in the study of

triangles. In fact, the word trigonometry comes from the Greek words for triangle

measurement. We will see that we can use the trigonometric functions to help

determine lengths of sides of triangles or the measure on angles in triangles. As we

will see in the last two sections of this chapter, triangle trigonometry is also useful

in the study of vectors.

3.1 Trigonometric Functions of Angles

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� How do we define the cosine and sine as functions of angles?

� How are the trigonometric functions defined on angles using circles of

any radius?

166
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Beginning Activity

1. How do we define an angle whose measure is one radian? See the definition

on page 27.

2. Draw an angle in standard position with a measure of
�

4
radians. Draw an

angle in standard position with a measure of
5�

3
radians.

3. What is the formula for the arc length s on a circle of radius r that is in-

tercepted by an angle with radian measure �? See page 36. Why does this

formula imply that radians are a dimensionless quantity and that a measure-

ment in radians can be thought of as a real number?

Some Previous Results

In Section 1.2, we defined the cosine function and the sine function using the unit

circle. In particular, we learned that we could define cos.t/ and sin.t/ for any real

number where the real number t could be thought of as the length of an arc on the

unit circle.

In Section 1.3, we learned that the radian measure of an angle is the length of

the arc on the unit circle that is intercepted by the angle. That is,

An angle (in standard position) of t radians will correspond to an arc

of length t on the unit circle, and this allows us to think of cos.t/ and

sin.t/ when t is the radian measure of an angle.

So when we think of cos.t/ and sin.t/ (and the other trigonometric functions), we

can consider t to be:

� a real number;

� the length of an arc with initial point .1; 0/ on the unit circle;

� the radian measure of an angle in standard position.

Figure 3.1 shows an arc on the unit circle with the corresponding angle.
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(x, y)

t

t

1

Figure 3.1: An Angle in Standard Position with the Unit Circle

Trigonometric Functions of an Angle

With the notation in Figure 3.1, we see that cos.t/ D x and sin.t/ D y. In this

context, we often call the cosine and sine circular functions because they are de-

fined by points on the unit circle. Now we want to focus on the perspective of the

cosine and sine as functions of angles. When using this perspective we will refer to

the cosine and sine as trigonometric functions. Technically, we have two different

types of cosines and sines: one defined as functions of arcs and the other as func-

tions of angles. However, the connection is so close and the distinction so minor

that we will often interchange the terms circular and trigonometric. One notational

item is that when we think of the trigonometric functions as functions of angles,

we often use Greek letters for the angles. The most common ones are � (theta), ˛

(alpha), ˇ (beta), and � (phi).

Although the definition of the trigonometric functions uses the unit circle, it

will be quite useful to expand this idea to allow us to determine the cosine and sine

of angles related to circles of any radius. The main concept we will use to do this

will be similar triangles. We will use the triangles shown in Figure 3.2.

In this figure, the angle � is in standard position, the point P.u; v/ is on the

unit circle, and the point Q is on a circle of radius r . So we see that

cos.�/ D u and sin.�/ D v:

We will now use the triangles 4PAO and 4QBO to write cos.�/ and sin.�/ in

terms of x, y, and r . Figure 3.3 shows these triangles by themselves without the

circles.

The two triangles in Figure 3.2 are similar triangles since the corresponding

angles of the two triangles are equal. (See page 421 in Appendix C.) Because of
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Q(x, y)

P(u, v)

A BO
θ

1

r

Figure 3.2: An Angle in Standard Position

θ θ

O OA B

P

Q

u

v

x

y
r

1

Figure 3.3: Similar Triangles from Figure 3.2

this, we can write

u

1
D x

r

v

1
D y

r

u D x

r
v D y

r

cos.�/ D x

r
sin.�/ D y

r

In addition, note that u2 C v2 D 1 and x2 C y2 D r2. So we have obtained

the following results, which show that once we know the coordinates of one point

on the terminal side of an angle � in standard position, we can determine all six

trigonometric functions of that angle.
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For any point .x; y/ other than the origin on the terminal side of an angle � in

standard position, the trigonometric functions of � are defined as:

cos.�/ D x

r
sin.�/ D y

r
tan.�/ D y

x
; x ¤ 0

sec.�/ D r

x
; x ¤ 0 csc .�/ D r

y
; y ¤ 0 cot.�/ D x

y
; y ¤ 0

where r2 D x2 C y2 and r > 0 and so r D
p

x2 C y2.

Notice that the other trigonometric functions can also be determined in terms

of x, y, and r . For example, if x ¤ 0, then

tan.�/ D sin.�/

cos.�/
sec.�/ D 1

cos.�/

D
y

r
x

r

D 1
x

r

D y

r
� r

x
D 1 � r

x

D y

x
D r

x

For example, if the point .3;�1/ is on the terminal side of the angle � , then we can

use x D 3, y D �1, and r D
p

.�3/2 C 12 D
p

10, and so

cos.�/ D 3p
10

tan.�/ D �1

3
sec.�/ D

p
10

3

sin.�/ D � 1p
10

cot.�/ D �3

1
csc.�/ D �

p
10

1

The next two progress checks will provide some practice with using these re-

sults.

Progress Check 3.1 (The Trigonometric Functions for an Angle)

Suppose we know that the point P.�3; 7/ is on the terminal side of the angle � in

standard position.

1. Draw a coordinate system, plot the point P , and draw the terminal side of

the angle � .
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2. Determine the radius r of the circle centered at the origin that passes through

the point P.�5; 13/. Hint: x2 C y2 D r2.

3. Now determine the values of the six trigonometric functions of � .

Progress Check 3.2 (The Trigonometric Functions for an Angle)

Suppose that ˛ is an angle, that tan.˛/ D 2

3
, and when ˛ is in standard position,

its terminal side is in the third quadrant.

1. Draw a coordinate system, draw the terminal side of the angle ˛ in standard

position.

2. Determine a point that lies on the terminal side of ˛.

3. Determine the six trigonometric functions of ˛.

The Pythagorean Identity

Perhaps the most important identity for the circular functions is the so-called Pythagorean

Identity, which states that for any real number t ,

cos2.t/C sin2.t/ D 1:

It should not be surprising that this identity also holds for the trigonometric func-

tions when we consider these to be functions of angles. This will be verified in the

next progress check.

Progress Check 3.3 (The Pythagorean Identity)

Let � be an angle and assume that .x; y/ is a point on the terminal side of � in

standard position. We then let r2 D x2 C y2. So we see that

cos2.�/C sin2.�/ D
�x

r

�2

C
�y

r

�2

:

1. Use algebra to rewrite
�x

r

�2
C
�y

r

�2
as a single fraction with denominator

r2.

2. Now use the fact that x2 C y2 D r2 to prove that
�x

r

�2

C
�y

r

�2

D 1.
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3. Finally, conclude that

cos2.�/C sin2.�/ D 1:

The next progress check shows how to use the Pythagorean Identity to help

determine the trigonometric functions of an angle.

Progress Check 3.4 (Using the Pythagorean Identity) Assume that � is an angle

in standard position and that sin.�/ D 1

3
and

�

2
< � < � .

1. Use the Pythagorean Identity to determine cos2.�/ and then use the fact that
�

2
< � < � to determine cos.�/.

2. Use the identity tan.�/ D sin.�/

cos.�/
to determine the value of tan.�/.

3. Determine the values of the other three trigonometric functions of � .

The Inverse Trigonometric Functions

In Section 2.5, we studied the inverse trigonometric functions when we considered

the trigonometric (circular) functions to be functions of a real number t . At the start

of this section, however, we saw that t could also be considered to be the length

of an arc on the unit circle, or the radian measure of an angle in standard position.

At that time, we were using the unit circle to determine the radian measure of an

angle but now we can use any point on the terminal side of the angle to determine

the angle. The important thing is that these are now functions of angles and so

we can use the inverse trigonometric functions to determine angles. We can use

either radian measure or degree measure for the angles. The results we need are

summarized below.

1. � D arcsin.x/ D sin�1.x/ means sin.�/ D x

and ��

2
� � � �

2
or �90ı � � � 90ı.

2. � D arccos.x/ D cos�1.x/ means cos.�/ D x and

0 � � � � or 0ı � � � 180ı.

3. � D arctan.x/ D tan�1.x/ means tan.�/ D x and

��

2
< � <

�

2
or �90ı < � < 90ı.



3.1. Trigonometric Functions of Angles 173

The important things to remember are that an equation involving the inverse trigono-

metric function can be translated to an equation involving the corresponding trigono-

metric function and that the angle must be in a certain range. For example, if we

know that the point .5; 3/ is on the terminal side of an angle � and that 0 � � < � ,

then we know that

tan.�/ D y

x
D 3

5
:

We can use the inverse tangent function to determine (and approximate) the angle

� since the inverse tangent function gives an angle (in radian measure) between

��

2
and

�

2
. Since tan.�/ > 0, we will get an angle between 0 and

�

2
. So

� D arctan

�

3

5

�

� 0:54042:

If we used degree measure, we would get

� D arctan

�

3

5

�

� 30:96376ı:

It is important to note that in using the inverse trigonometric functions, we must

be careful with the restrictions on the angles. For example, if we had stated that

tan.˛/ D 5

3
and � < ˛ <

3�

2
, then the inverse tangent function would not give

the correct result. We could still use

� D arctan

�

3

5

�

� 0:54042;

but now we would have to use this result and the fact that the terminal side of ˛ is

in the third quadrant. So

˛ D � C �

˛ D arctan

�

3

5

�

C �

˛ � 3:68201

We should now use a calculator to verify that tan.˛/ D 3

5
.

The relationship between the angles ˛ and � is shown in Figure 3.4.

Progress Check 3.5 (Finding an Angle)

Suppose that the point .�2; 5/ is on the terminal side of the angle � in standard

position and that 0 � � < 360ı. We then know that tan.�/ D �5

2
D �2:5.
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θ

α

(5, 3)

(−5, −3)

Figure 3.4: Two Angles with the Same Tangent Value

1. Draw a picture of the angle � .

2. Use a calculator to approximate the value of tan�1.�2:5/ to three decimal

places.

3. Notice that tan�1.�2:5/ is a negative angle and cannot equal � since � is

a positive angle. Use the approximation for tan�1.�2:5/ to determine an

approximation for � to three decimal places.

In the following example, we will determine the exact value of an angle that is

given in terms of an inverse trigonometric function.

Example 3.6 Determining an Exact Value

We will determine the exact value of cos

�

arcsin

�

�2

7

��

. Notice that we can use

a calculator to determine that

cos

�

arcsin

�

�2

7

��

� 0:958315:

Even though this is correct to six decimal places, it is not the exact value. We can

use this approximation, however, to check our work below.

We let � D arcsin

�

�2

7

�

. We then know that

sin.�/ D �2

7
and � �

2
� � � �

2
:

We note that since sin.�/ < 0, we actually know that ��

2
� � � 0.
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So we can use the Pyhtagorean Identity to determine cos2.�/ as follows:

cos2.�/C sin2.�/ D 1

cos2.�/ D 1 �
�

�2

7

�2

cos2.�/ D 45

49

Since ��

2
� � � 0, we see that cos.�/ D

p
45

7
. That is

cos

�

arcsin

�

�2

7

��

D
p

45

7
:

We can now use a calculator to verify that

p
45

7
� 0:958315.

Summary of Section 3.1

In this section, we studied the following important concepts and ideas:

The trigonometric functions can be defined using any point on the terminal side

of an angle in standard position. For any point .x; y/ other than the origin on the

terminal side of an angle � in standard position, the trigonometric functions of �

are defined as:

cos.�/ D x

r
sin.�/ D y

r
tan.�/ D y

x
; x ¤ 0

sec.�/ D r

x
; x ¤ 0 csc .�/ D r

y
; y ¤ 0 cot.�/ D x

y
; y ¤ 0

where r2 D x2 C y2 and r > 0 and so r D
p

x2 C y2. The Pythagorean Identity

is still true when we use the trigonometric functions of an angle. That is, for any

angle � ,

cos2.�/C sin2.�/ D 1:

In addition, we still have the inverse trigonometric functions. In particular,

� � D arcsin.x/ D sin�1.x/ means sin.�/ D x

and ��

2
� � � �

2
or �90ı � � � 90ı.

� � D arccos.x/ D cos�1.x/ means cos.�/ D x and

0 � � � � or 0ı � � � 180ı.
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� � D arctan.x/ D tan�1.x/ means tan.�/ D x and

��

2
< � <

�

2
or �90ı < � < 90ı.

Exercises for Section 3.1

1. In each of the following, the coordinates of a point P on the terminal side of

an angle � are given. For each of the following:

� Plot the point P in a coordinate system and draw the terminal side of

the angle.

� Determine the radius r of the circle centered at the origin that passes

through the point P .

� Determine the values of the six trigonometric functions of the angle � .

? (a) P.3; 3/

? (b) P.5; 8/

(c) P.�2;�2/

(d) P.5;�2/

? (e) P.�1;�4/

(f) P.2
p

3; 2/

(g) P.�3; 4/

(h) P.3;�3
p

3/

(i) P.2;�1/

2. For each of the following, draw the terminal side of the indicated angle on

a coordinate system and determine the values of the six trigonometric func-

tions of that angle

(a) The terminal side of the angle ˛ is in the first quadrant and

sin.˛/ D 1p
3

.

? (b) The terminal side of the angle ˇ is in the second quadrant and

cos.ˇ/ D �2

3
.

(c) The terminal side of the angle 
 is in the second quadrant and

tan.
/ D �1

2
.

(d) The terminal side of the angle � is in the second quadrant and

sin.�/ D 1

3
.

3. For each of the following, determine an approximation for the angle � in

degrees (to three decimal places) when 0ı � � < 360ı.

(a) The point .3; 5/ is on the terminal side � .
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(b) The point .2;�4/ is on the terminal side of � .

? (c) sin.�/ D 2

3
and the terminal side of � is in the second quadrant.

(d) sin.�/ D �2

3
and the terminal side of � is in the fourth quadrant.

? (e) cos.�/ D �1

4
and the terminal side of � is in the second quadrant.

(f) cos.�/ D �3

4
and the terminal side of � is in the third quadrant.

4. For each of the angles in Exercise (3), determine the radian measure of � if

0 � � < 2� .

5. Determine the exact value of each of the following. Check all results with a

calculator.

(a) cos

�

arcsin

�

1

5

��

.

? (b) tan

�

cos�1

�

2

3

��

.

(c) sin
�

tan�1 .2/
�

.

(d) cos

�

arcsin

�

�1

5

��

.

(e) sin

�

arccos

�

�3

5

��

.
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3.2 Right Triangles

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� How does the cosine relate sides and acute angles in a right triangle?

Why?

� How does the sine relate sides and acute angles in a right triangle? Why?

� How does the tangent relate sides and acute angles in a right triangle?

Why?

� How can we use the cosine, sine, and tangent of an angle in a right

triangle to help determine unknown parts of that triangle?

Beginning Activity

The following diagram shows a typical right triangle. The lengths of the three

sides of the right triangle are labeled as a, b, and c. The angles opposite the sides

of lengths a, b, and c are labeled ˛ (alpha), ˇ (beta), and 
 (gamma), repsectively.

(Alpha, beta, and gamma are the first three letters in the Greek alphabet.) The small

square with the angle 
 indicates that this is the right angle in the right triangle.

The triangle, of course, has three sides. We call the side opposite the right angle

(the side of length c in the diagram) the hypotenuse of the right triangle.

When we work with triangles, the angles are usually measured in degrees and

so we would say that 
 is an angle of 90ı.

1. What can we conclude about a, b, and c from the Pythagorean Theorem?

When working with triangles, we usually measure angles in degrees. For the frac-

tional part of the degree measure of an angle, we often used decimals but we also

frequently use minutes and seconds.

2. What is the sum of the angles in a triangle? In this case, what is ˛C ˇC 
?
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a

b

c

α

β

γ

3. What is the sum of the two acute angles in a right triangle. In this case, what

is ˛ C ˇ?

4. How many minutes are in a degree? How many seconds are in a minute?

5. Determine the solution of the equation 7:3 D 118:8

x
correct to the nearest

thousandth. (You should be able to show that x � 2:575.)

6. Determine the solution of the equation sin.32ı/ D 5

x
correct to the nearest

ten-thousandth. (You should be able to show that x � 9:4354.)

Introduction

Suppose you want to find the height of a tall object such as a flagpole (or a tree or

a building). It might be inconvenient (or even dangerous) to climb the flagpole and

measure it, so what can you do? It might be easy to measure the length the shadow

the flagpole casts and also the angle � determined by the ground level to the sun

(called the angle of elevation of the object) as in Figure 3.5. In this section, we

will learn how to use the trigonometric functions to relate lengths of sides to angles

in right triangles and solve this problem as well as many others.
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shadow

Flag Pole

Sun

θ

Figure 3.5: Finding the height of a flagpole (drawing not to scale)

Trigonometric Functions and Right Triangles

We have seen how we determine the values of the trigonometric functions of an an-

gle � by placing � in standard position and letting .x; y/ be the point of intersection

of the terminal side of angle � with a circle of radius r . Then

cos.�/ D x

r
; sec.�/ D r

x
if x ¤ 0;

sin.�/ D y

r
; csc.�/ D r

y
if y ¤ 0;

tan.�/ D y

x
if x ¤ 0; cot.�/ D x

y
if y ¤ 0:

In our work with right triangles, we will use only the sine, cosine, and tangent

functions.

Now we will see how to relate the trigonometric functions to angles in right

triangles. Suppose we have a right triangle with sides of length x and y and hy-

potenuse of length r . Let � be the angle opposite the side of length y as shown

in Figure 3.6. We can now place our triangle such that the angle � is in standard

position in the plane and the triangle will fit into the circle of radius r as shown at

right in Figure 3.7.

By the definition of our trigonometric functions we then have

cos.�/ D x

r
sin.�/ D y

r
tan.�/D y

x

If instead of using x, y, and r , we label y as the length of the side opposite the

acute angle � , x as the length of the side adjacent to the acute angle � , and r as the

length of the hypotenuse, we get the following figure:
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r

x

y

θ

Figure 3.6: A right triangle

r

x

y

θ

Figure 3.7: Right triangle in standard

position

r

x

y

θ

side adjacent

to angle θ

side opposite

angle θ

h
y
p
o
te

n
u
se

So we see that

sin.�/ D length of side opposite �

length of hypotenuse
sin.�/D opposite

hypotenuse

cos.�/ D length of side adjacent to �

length of hypotenuse
cos.�/D adjacent

hypotenuse

tan.�/ D length of side opposite �

length of side adjacent to �
tan.�/D opposite

adjacent

The equations on the right are convenient abbreviations of the correct equations on

the left.
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Progress Check 3.7 We must be careful when we use the terms opposite and ad-

jacent because the meaning of these terms depends on the angle we are using. Use

the diagrams in Figure 3.8 to determine formulas for each of the following in terms

of a, b, and c.

a

b

c

α

β

γ

hypote
nuse

side opposite β

side

adjacent

to β

a

b

c

α

β

γ

hypote
nuse side

opposite

α

side adjacent to α

Figure 3.8: Labels for a right triangle

cos.˛/ D cos.ˇ/ D

sin.˛/ D sin.ˇ/ D

tan.˛/ D tan.ˇ/ D

We should also note that with the labeling of the right triangle shown in Fig-

ure 3.8, we can use the Pythagorean Theorem and the fact that the sum of the angles

of a triangle is 180 degrees to conclude that

a2 C b2 D c2 and ˛ C ˇ C 
 D 180ı


 D 90ı

˛ C ˇ D 90ı

Example 3.8 Suppose that one of the acute angles of a right triangle has a measure

of 35ı and that the side adjacent to this angle is 8 inches long. Determine the other

acute angle of the right triangle and the lengths of the other two sides.

Solution. The first thing we do is draw a picture of the triangle. (The picture does

not have to be perfect but it should reasonably reflect the given information.) In

making the diagram, we should also label the unknown parts of the triangle. One

way to do this is shown in the diagram.
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8 in

35
ο

ac

θ

One thing we notice is that 35ı C � D 90ı and so � D 55ı. We can also use the

cosine and tangent of 35ı to determine the values of a and c.

cos
�

35ı� D 8

c
tan

�

35ı� D a

8

c cos
�

35ı� D 8 8 tan
�

35ı� D a

c D 8

cos .35ı/
a � 5:60166

c � 9:76620

Before saying that this example is complete, we should check our results. One way

to do this is to verify that the lengths of the three sides of the right triangle satisfy

the formula for the Pythagorean Theorem. Using the given value for one side and

the calculated values of a and c, we see that

82 C a2 � 95:379

c2 � 95:379

So we see that our work checks with the Pythagorean Theorem.

Solving Right Triangles

What we did in Example 3.8 is what is called solving a right triangle. Please

note that this phrase is misleading because you cannot really “solve” a triangle.

Unfortunately, this phrase is ensconced in the vernacular of trigonometry and so

we will continue to use it. The idea is that if we are given enough information

about the lengths of sides and measures of angles in a right triangle, then we can

determine all of the other values. The next progress check is also an example of

“solving a right triangle.”
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Progress Check 3.9 (Solving a Right Triangle)

The length of the hypotenuse of a right triangle is 17 feet and the length of one side

of this right triangle is 5 feet. Determine the length of the other side and the two

acute angles for this right triangle.

Hint: Draw a picture and label the third side of the right triangle with a variable

and label the two acute angles as ˛ and ˇ.

Applications of Right Triangles

As the examples have illustrated up to this point, when working on problems in-

volving right triangles (including application problems), we should:

� Draw a diagram for the problem.

� Identify the things you know about the situation. If appropriate, include this

information in your picture.

� Identify the quantity that needs to be determined and give this quantity a

variable name. If appropriate, include this information in your diagram.

� Find an equation that relates what is known to what must be determined. This

will often involve a trigonometric function or the Pythagorean Theorem.

� Solve the equation for the unknown. Then think about this solution to make

sure it makes sense in the context of the problem.

� If possible, find a way to check the result.

We return to the example given in the introduction to this section on page 179. In

this example, we used the term angle of elevation. This is a common term (as well

as angle of depression) in problems involving triangles. We can define an angle

of elevation of an object to be an angle whose initial side is horizontal and has a

rotation so that the terminal side is above the horizontal. An angle of depression is

then an angle whose initial side is horizontal and has a rotation so that the terminal

side is below the horizontal. See Figure 3.9.
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horizontal

horizontal

angle of elevation

angle of depression

line of sight

lin
e o

f s
ig

ht

object

object

Figure 3.9: Angle of Elevation and Angle of Depression

Example 3.10 Determining the Height of a Flagpole

Suppose that we want to determine the height of a flagpole and cannot measure the

height directly. Suppose that we measure the length of the shadow of the flagpole

to be 44 feet, 5 inches. In addition, we measure the angle of elevation of the sun to

be 33ı150.

Solution. The first thing we do is to draw the diagram. In the diagram, we let h

shadow

Flag Pole

Sun

θ

h

x

Figure 3.10: Finding the height of a flagpole (drawing not to scale)

be the height of the flagpole, x be the length of the shadow, and � be the angle of
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elavation. We are given values for x and � , and we see that

tan.�/ D h

x

x tan.�/ D h (1)

So we can now determine the value of h, but we must be careful to use a decimal (or

fractional) value for x (equivalent to 44 feet, 5 inches) and a decimal (or fractional)

value for � (equivalent to 33ı150). So we will use

x D 44C 5

12
and � D

�

33C 15

60

�ı
:

Using this and equation (1), we see that

h D
�

44C 5

12

�

tan

�

33C 15

60

�ı

h � 29:1208 feet:

The height of the flagpole is about 29.12 feet or 29 feet, 1.4 inches.

Progress Check 3.11 (Length of a Ramp)

A company needs to build a wheelchair accessible ramp to its entrance. The Amer-

icans with Disabilities Act Guidelines for Buildings and Facilities for ramps state

the “The maximum slope of a ramp in new construction shall be 1:12.”

1. The 1:12 guideline means that for every 1 foot of rise in the ramp there must

be 12 feet of run. What is the angle of elevation (in degrees) of such a ramp?

2. If the company’s entrance is 7.5 feet above the level ground, use trigonome-

try to approximate the length of the ramp that the company will need to build

using the maximum slope. Explain your process.

Progress Check 3.12 (Guided Activity – Using Two Right Triangles)

This is a variation of Example 3.19. Suppose that the flagpole sits on top a hill and

that we cannot directly measure the length of the shadow of the flagpole as shown

in Figure 3.19.

Some quantities have been labeled in the diagram. Angles ˛ and ˇ are angles

of elevation to the top of the flagpole from two different points on level ground.

These points are d feet apart and directly in line with the flagpole. The problem
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αβ

h

d

flagpole

x

Figure 3.11: Flagpole on a hill

is to determine h, the height from level ground to the top of the flagpole. The

following measurements have been recorded.

˛ D 43:2ı d D 22:75feet

ˇ D 34:7ı

Notice that a value for x was not given because it is the distance from the first point

to an imaginary point directly below the flagpole and even with level ground.

Please keep in mind that it is probably easier to write formulas in terms of ˛,

ˇ, and 
 and wait until the end to use the numerical values. For example, we see

that

tan.˛/ D h

x
and (1)

tan.ˇ/ D h

d C x
: (2)

In equation (1), notice that we know the value of ˛. This means if we can determine

a value for either x or h, we can use equation (1) to determine the value of the other.

We will first determine the value of x.

1. Solve equation (1) for h and then substitute this into equation (2). Call this

equation (3).

2. One of the terms in equation (3) has a denominator. Multiply both sides of

equation (3) by this denominator.

3. Now solve the resulting equation for x (in terms of ˛, ˇ, and d ).
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4. Substitute the given values for ˛, ˇ, and d to determine the value of x and

then use this value and equation (1) to determine the value of h.

5. Is there a way to check to make sure the result is correct?

Summary of Section 3.2

In this section, we studied the following important concepts and ideas:

Given enough information about the lengths of sides and measures of angles in a

right triangle, we can determine all of the other values using the following relation-

ships:

r

x

y

θ

side adjacent

to angle θ

side opposite

angle θ

h
y
p
o
te

n
u
se

sin.�/ D opposite

hypotenuse

cos.�/ D adjacent

hypotenuse

tan.�/ D opposite

adjacent

Exercises for Section 3.2

? 1. For each of the following right triangles, determine the value of x correct to

the nearest thousandth.

(a)

47

6

x

(c)

4.9

7

x

(b)

3.167
x

(d)

7

x

9.5
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2. One angle in a right triangle is 55ı and the side opposite that angle is 10 feet

long. Determine the length of the other side, the length of the hypotenuse,

and the measure of the other acute angle.

3. One angle in a right triangle is 37:8ı and the length of the hypotenuse is 25

inches. Determine the length of the other two sides of the right triangle.

? 4. One angle in a right triangle is 27ı120 and the length of the side adjacent to

this angle is 4 feet. Determine the other acute angle in the triangle, the length

of the side opposite this angle, and the length of the hypotenuse.

Note: The notation means that the angle is 27 degrees, 12 seconds. Remem-

ber that 1 second is
1

60
of a degree.

5. If we only know the measures of the three angles of a right triangle, ex-

plain why it is not possible to determine the lengths of the sides of this right

triangle.

6. Suppose that we know the measure � of one of the acute angles in a right

triangle and we know the length x of the side opposite the angle � . Explain

how to determine the length of the side adjacent to the angle � and the length

of the hypotenuse.

? 7. In the diagram to the right, deter-

mine the values of a, b, and h to the

nearest thousandth.

The given values are:

˛ D 23ı

ˇ D 140ı

c D 8

α β

γ

θ

a

b

c

h

x

8. A tall evergreen tree has been damaged in a strong wind. The top of the tree

is cracked and bent over, touching the ground as if the trunk were hinged.

The tip of the tree touches the ground 20 feet 6 inches from the base of the

tree (where the tree and the ground meet). The tip of the tree forms an angle

of 17 degrees where it touches the ground. Determine the original height of

the tree (before it broke) to the nearest tenth of a foot. Assume the base of

the tree is perpendicular to the ground.

9. Suppose a person is standing on the top of a building and that she has an

instrument that allows her to measure angles of depression. There are two

points that are 100 feet apart and lie on a straight line that is perpendicular
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to the base of the building. Now suppose that she measures the angle of

depression to the closest point to be 35:5ı and that she measures the angle

of depression to the other point to be 29:8ı. Determine the height of the

building.

10. A company has a 35 foot lad-

der that it uses for cleaning the

windows in their building. For

safety reasons, the ladder must

never make an angle of more than

50ı with the ground.

(a) What is the greatest height

that the ladder can reach

on the building if the angle

it makes with the ground is

no more than 50ı.

(b) Suppose the building is 40

feet high. Again, follow-

ing the safety guidelines,

what length of ladder is

needed in order to have the

ladder reach the top of the

building?

ground

ladder
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3.3 Triangles that Are Not Right Triangles

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� What is the Law of Sines?

� What information do we need about a triangle to apply the Law of

Sines?

� What do we mean by the ambiguous case for the Law of Sines? Why is

it ambiguous?

� What is the Law of Cosines?

� What information do we need about a triangle to apply the Law of

Cosines?

Introduction

In Section 3.2, we learned how to use the trigonometric functions and given in-

formation about a right triangle to determine other parts of that right triangle. Of

course, there are many triangles without right angles (these triangles are called

oblique triangles). Our next task is to develop methods to relate sides and angles

of oblique triangles. In this section, we will develop two such methods, the Law of

Sines and the Law of Cosines. In the next section, we will learn how to use these

methods in applications.

As with right triangles, we will want some standard notation when working

with general triangles. Our notation will be similar to the what we used for right

triangles. In particular, we will often let the lengths of the three sides of a triangle

be a, b, and c. The angles opposite the sides of length a, b, and c will be labeled

˛, ˇ, and 
 , respectively. See Figure 3.12.

We will sometimes label the vertices of the triangle as A, B , and C as shown

in Figure 3.12.
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α

β

a

b

c

γ

A

B

C

Figure 3.12: Standard Labeling for a Triangle

Beginning Activity

Before we state the Law of Sines and the Law of Cosines, we are going to use two

Geogebra apps to explore the relationships about the parts of a triangle. In each

of these apps, a triangle is drawn. The lengths of the sides of the triangle and the

measure for each of the angles in shown. The size and shape of the triangle can be

changed by dragging one (or all) of the points that form the vertices of the triangle.

1. Open the Geogebra app called The Law of Sines at

http://gvsu.edu/s/01B

(a) Experiment by moving the vertices of the triangle and observing what

happens with the lengths and the angles and the computations shown

in the lower left part of the screen.

(b) Use a particular triangle and verify the computations shown in the

lower left part of the screen. Round your results to the nearest thou-

sandth as is done in the app.

(c) Write an equation (or equations) that this app is illustrating. This will

be part of the Law of Sines.

2. Open the Geogebra app called The Law of Cosines at

http://gvsu.edu/s/01C

(a) Experiment by moving the vertices of the triangle and observing what

happens with the lengths and the angles and the computations shown

in the lower left part of the screen.

http://gvsu.edu/s/01B
http://gvsu.edu/s/01C
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(b) Use a particular triangle and verify the computations shown in the

lower left part of the screen. Round your results to the nearest thou-

sandth as is done in the app.

(c) Write an equation that this app is illustrating. This will be part of the

Law of Cosines.

The Law of Sines

The first part of the beginning activity was meant to illustrate the Law of Sines.

Following is a formal statement of the Law of Sines.

Law of Sines

In a triangle, if a, b, and c are the lengths of the sides opposite angles

˛, ˇ, and 
 , respectively, then

sin.˛/

a
D

sin.ˇ/

b
D

sin.
/

c
:

This is equivalent to

a

sin.˛/
D

b

sin.ˇ/
D

c

sin.
/
:

Please note that the Law of Sines actually has three equations condensed into

a single line. The three equations are:

sin.˛/

a
D sin.ˇ/

b

sin.˛/

a
D sin.
/

c

sin.ˇ/

b
D sin.
/

c
:

The key to using the Law of Sines is that each equation involves 4 quantities, and

if we know 3 of these quantities, we can use the Law of Sines to determine the

fourth. These 4 quantities are actually two different pairs, where one element of a

pair is an angle and the other element of that pair is the length of the side opposite

that angle. In Figure 3.13, � and x form one such pair, and � and y are another

such pair. We can write the Law of Sines as follows:
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θ φ

x
y

Figure 3.13: Diagram for the Law of Sines

Law of Sines

In a triangle, if x is the length of the side opposite angle � and y is the length

of the side opposite angle �, then

x

sin.�/
D y

sin.�/
or

sin.�/

x
D sin.�/

y
:

Example 3.13 (Using the Law of Sines)

Suppose that the measures of two angles of a triangle are 25ı and 51:3ı and that

the side opposite the 25ı angle is 12 feet long. We will use the Law of Sines to

determine the other three parts of the triangle. (Remember that we often say that we

are “solving the triangle.”) The first step is to draw a reasonable accurate diagram

of the triangle and label the parts. This is shown in the following diagram.

γ

a = 12 ftb

c

α = 25 β = 51.3

We notice that we know the values of the length of a side and its opposite angles

(a and ˛). Since we also know the value of ˇ, we can use the Law of Sines to
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determine b. This is done as follows:

a

sin.˛/
D b

sin.ˇ/

b D a sin.ˇ/

sin.˛/

b D 12 sin .51:3ı/

sin .25ı/

b � 22:160

So we see that the side opposite the 51:3ı angle is about 22.160 feet in length. We

still need to determine 
 and c. We will use the fact that the sum of the angles of a

triangle is equal to 180ı to determine 
 .

˛C ˇ C 
 D 180ı

25ı C 51:3ı C 
 D 180ı


 D 103:7ı

Now that we know 
 , we can use the Law of Sines again to determine c. To do

this, we solve the following equation for c.

a

sin.˛/
D c

sin.
/
:

We should verify that the result is c � 27:587 feet. To check our results, we should

verify that for this triangle,

sin.˛/

a
D sin.ˇ/

b
D sin.
/

c
� 0:035:

Progress Check 3.14 (Using the Law of Sines)

Suppose that the measures of two angles of a triangle are 15ı and 135ı and that

the side that is common to these two angles is 71 inches long. Following is a

reasonably accurate diagram for this triangle.

71 in

15

135

Determine the lengths of the other two sides of the triangle and the measure of

the third angle. Hint: First introduce some appropriate notation, determine the

measure of the third angle, and then use the Law of Sines.
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Using the Law of Sines to Determine an Angle

As we have stated, an equation for the Law of Sines involves four quantities, two

angles and the lengths of the two sides opposite these angles. In the examples we

have looked at, two angles and one side has been given. We then used the Law of

Sines to determine the length of the other side.

We can run into a slight complication when we want to determine an angle

using the Law of Sines. This can occur when we are given the lengths of two sides

and the measure of an angle opposite one of these sides. The problem is that there

are two different angles between 0ı and 180ı that are solutions of an equation of

the form

sin.�/D “a number between 0 and 1”:

For example, consider the equation sin.�/ D 0:7. We can use the inverse sine

function to determine one solution of this equation, which is

�1 D sin�1.0:7/ � 44:427ı:

The inverse sine function gives us the solution that is between 0ı anbd 90ı, that

is, the solution in the first quadrant. There is a second solution to this equation

in the second quadrant, that is, between 90ı and 180ı. This second solution is

�2 D 180ı � �1. So in this case,

�2 D 180ı � sin�1.0:7/ � 135:573ı:

The next two progress checks will be guided activities through examples where we

will need to use the Law of Sines to determine an angle.

Progress Check 3.15 (Using the Law of Sines for an Angle)

Suppose a triangle has a side of length 2 feet that is an adjacent side for an angle of

40ı. Is it possible for the side opposite the 40ı angle to have a length of 1.7 feet?

To try to answer this, we first draw a reasonably accurate diagram of the situa-

tion as shown below.

40

2 f
t

The horizontal line is not a side of the triangle (yet). For now, we are just using it as

one of the sides of the 40ı angle. In addition, we have not drawn the side opposite

the 40ı angle since just by observation, it appears there could be two possible ways

to draw a side of length 3 feet. Now we get to the details.
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1. Let � be the angle opposite the side of length 2 feet. Use the Law of Sines

to determine sin.�/.

2. Use the inverse sine function to determine one solution (rounded to the near-

est tenth of a degree) for � . Call this solution �1.

3. Let �2 D 180ı � �1. Explain why (or verify that) �2 is also a solution of the

equation in part (1).

This means that there could be two triangles that satisfy the conditions of the prob-

lem.

4. Determine the third angle and the third side when the angle opposite the side

of length 2 is �1.

5. Determine the third angle and the third side when the angle opposite the side

of length 2 is �2.

There are times when the Law of Sines will show that there are no triangles

that meet certain conditions. We often see this when an equation the Law of Sines

produces an equation of the form

sin.�/ D p;

where p is real number but is not between 0 and 1. For example, changing the

conditions in Progress Check 3.15 so that we want a triangle that has a side of

length 2 feet that is an adjacent side for an angle of 40ı and the side opposite the

40ı angle is to have a length of 1 foot. As in Progress Check 3.15, we let � be the

angle opposite the side of length 2 feet and use the Law of Sines to obtain

sin.�/

2
D sin .40ı/

1

sin.�/ D 2 sin .40ı/

1
� 1:2856

There is no such angle � and this

shows that there is no triangle that

meets the specified conditions. The

diagram on the right illustrates the sit-

uation.
40

2 f
t

1 ft



198 Chapter 3. Triangles and Vectors

Progress Check 3.16 (Using the Law of Sines for an Angle)
Suppose a triangle has a side of length

2 feet that is an adjacent side for an

angle of 40ı. Is it possible for the side

opposite the 40ı angle to have a length

of 3 feet?
40

2 f
t

The only difference between this and Progress Check 3.15 is in the length of

the side opposite the 40ı angle. We can use the same diagram. By observation, it

appears there is likely only way to draw a side of length 3 feet. Now we get to the

details.

1. Let � be the angle opposite the side of length 2 feet. Use the Law of Sines

to determine sin.�/.

2. Use the inverse sine function to determine one solution (rounded to the near-

est tenth of a degree) for � . Call this solution �1.

3. Let �2 D 180ı � �1. Explain why (or verify that) �2 is also a solution of the

equation in part (1).

This means that there could be two triangles that satisfy the conditions of the prob-

lem.

4. Determine the third angle and the third side when the angle opposite the side

of length 2 is �1.

5. Determine the third angle when the angle opposite the side of length 2 is �2.

Now determine the sum 40ı C �2 and explain why this is not possible in a

triangle.

Law of Cosines

We have seen how the Law of Sines can be used to determine information about

sides and angles in oblique triangles. However, to use the Law of Since we need

to know three pieces of information. We need to know an angle and the length of

its opposite side, and in addition, we need to know another angle or the length of

another side. If we have three different pieces of information such as the lengths

of two sides and the included angle between them or the lengths of the three sides,

then we need a different method to determine the other pieces of information about

the triangle. This is where the Law of Cosines is useful.
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We first explored the Law of Cosines in the beginning activity for this section.

Following is the usual formal statement of the Law of Cosines. The proof of the

Law of Cosines is included at the end of this section.

Law of Cosines

In a triangle, if a, b, and c are the lengths of the sides opposite angles

˛, ˇ, and 
 , respectively, then

c2
D a2

C b2
� 2ab cos.
/

b2
D a2

C c2
� 2ac cos.ˇ/

a2
D b2

C c2
� 2bc cos.˛/

As with the Law of Sines, there are three equations in the Law of Sines. How-

ever, we can remember this with only one equation since the key to using the Law

of Cosines is that this law involves 4 quantities. These 4 quantities are the lengths

of the three sides and the measure of one of the angles of the triangle as shown in

Figure 3.14.

x

y

θ

z

Figure 3.14: Diagram for the Law of Cosines

In this diagram, x, y, and z are the lengths of the three sides and � is the angle

between the sides x and y. Theta can also be thought of as the angle opposite side

z. So we can write the Law of Cosines as follows:
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Law of Cosines

In a triangle, if x, y, and z are the lengths of the sides of a triangle and

� is the angle between the sides x and y as in Figure 3.14, then

z2
D x2

C y2
� 2xy cos.�/:

The idea is that if you know 3 of these 4 quantities, you can use the Law of

Cosines to determine the fourth quantity. The Law of Cosines involves the lengths

of all three sides of a triangle and one angle. It states that:

The square of the side opposite an angle is the sum of the squares of the two

sides of the angle minus two times the product of the two sides of the angle

and the cosine of the angle.

We will explore the use of the Law of Cosines in the next progress check.

Progress Check 3.17 (Using the Law of Cosines

Two sides of a triangle have length 2.5 meters and 3.5 meters, and the angle formed

by these two sides has a measure of 60ı. Determine the other parts of the triangle.

The first step is to draw a reasonably

accurate diagram of the triangle and

label the parts. This is shown in the

diagram on the right.
60

2.5 m

3
.5

 m c

α

β

1. Use the Law of Cosines to determine the length of the side opposite the 60ı

angle. (c).

We now know an angle (60ı) and the length of its opposite side. We can use the

Law of Sines to determine the other two angles. However, remember that we must

be careful when using the Law of Sines to determine an angle since the equation

may produce two angles.

2. Use the Law of Sines to determine sin.˛/. Determine the two possible values

for ˛ and explain why one of them is not possible.

3. Use the fact that the sum of the angles of a triangle is 180ı to determine the

angle ˇ.
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4. Use the Law of Sines to check the results.

We used the Law of Sines to determine two angles in Progress Check 3.17 and

saw that we had to be careful since the equation for the Law of Sines often produces

two possible angles. We can avoid this situation by using the Law of Cosines to

determine the angles instead. This is because an equation of the form cos.�/ D p,

where p is a real number betweeen 0 and 1 has only one solution for � between 0ı

and 180ı. The idea is to solve an equation from the Law of Cosines for the cosine

of the angle. In Progress Check 3.17, we first determined c2 D 3:12250. We then

could have proceeded as follows:

2:52 D 3:52 C 3:122502 � 2.3:5/.3:12250/ cos.˛/

2.3:5/.3:12250/ cos.˛/ D 3:52 C 3:122502 � 2:52

cos.˛/ D 15:75

21:8575
� 0:720577

We can then use the inverse cosine function and obtain ˛ � 43:898ı, which is

what we obtained in Progress Check 3.17.

We can now use the fact that the sum of the angles in a triangle is 180ı to deter-

mine ˇ but for completeness, we could also use the Law of Cosines to determine

ˇ and then use the angle sum for the triangle as a check on our work.

Progress Check 3.18 (Using the Law of Cosines)

The three sides of a triangle have lengths of 3 feet, 5 feet, and 6 feet. Use the Law

of Cosines to determine each of the three angles.

Appendix – Proof of the Law of Sines

We will use what we know about right triangles to prove the Law of Sines. The key

idea is to create right triangles from the diagram for a general triangle by drawing

an altitude of length h from one of the vertices. We first note that if ˛, ˇ, and 
 are

the three angles of a triangle, then

˛ C ˇ C 
 D 180ı:

This means that at most one of the three angles can be an obtuse angle (between

90ı and 180ı), and hence, at least two of the angles must be acute (less than 90ı).

Figure 3.15 shows the two possible cases for a general triangle. The triangle on the

left has three acute angles and the triangle on the right has two acute angles (˛ and

ˇ) and one obtuse angle (
 ).
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a

b

c

α

β

γ

a

b

c

α

β

γ

Figure 3.15: General Triangles

We will now prove the Law of Sines for the case where all three angles of the

triangle are acute angles. The proof for the case where one angle of the triangle is

obtuse is included in the exercises. The key idea is to create right triangles from

the diagram for a general triangle by drawing altitudes in the triangle as shown in

Figure 3.16 where an altitude of length h is drawn from the vertex of angle ˇ and

an altitude of length k is drawn from the vertex of angle 
 .

a

b

c

α

β

γ

a

b

c

α

β

γ

h

k

Figure 3.16: Diagram for the Proof of the Law of Sines

Using the right triangles in the diagram on the left, we see that

sin.˛/ D h

c
sin.
/D h

a

From this, we can conclude that

h D c sin.˛/ h D a sin.
/ (1)
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Using the two equations in (1), we can use the fact that both of the right sides are

equal to h to conclude that

c sin.˛/ D a sin.
/:

Now, dividing both sides of the last equation by ac, we see that

sin.˛/

a
D sin.
/

c
: (2)

We now use a similar argument using the triangle on the right in Figure 3.16. We

see that

sin.˛/ D k

b
sin.ˇ/ D k

a

From this, we obtain

k D b sin.˛/ k D a sin.ˇ/

and so

b sin.˛/ D a sin.ˇ/

sin.˛/

a
D sin.ˇ/

b
(3)

We can now use equations (2) and (3) to complete the proof of the Law of Sines,

which is
sin.˛/

a
D sin.ˇ/

b
D sin.
/

c
:

Appendix – Proof of the Law of Cosines

As with the Law of Sines, we will use results about right triangles to prove the Law

of Cosines. We will also use the distance formula. We will start with a general

triangle with a, b, and c representing the lengths of the sides opposite the angles

˛, ˇ, and 
 , respectively. We will place the angle 
 in standard position in the

coordinate system as shown in Figure 3.17.

In this diagram, the angle 
 is shown as an obtuse angle but the proof would be

the same if 
 was an acute angle. We have labeled the vertex of angle ˛ as A with

coordinates .x; y/ and we have drawn a line from A perpendicular to the x-axis.

So from the definitions of the trigonometric functions in Section 3.1, we see that

cos.
/ D x

b
sin.
/D y

b

x D b cos.
/ y D b sin.
/ (4)
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a

b
c

α

β

γ

A(x, y)

(a, 0)

Figure 3.17: Diagram for the Law of Cosines

We now use the distance formula with the points A and the vertex of angle ˇ, which

has coordinates .a; 0/. This gives

c D
q

.x � a/2 C .y � 0/2

c2 D .x � a/2 C y2

c2 D x2 � 2ax C a2 C y2

We now substitute the values for x and y in equation (4) and obtain

c2 D b2 cos2.
/ � 2ab cos.
/C a2 C b2 sin2.
/

c2 D a2 C b2 cos2.
/C b2 sin2.
/ � 2ab cos.
/

c2 D a2 C b2
�

cos2.
/C sin2.
/
�

� 2ab cos.
/

We can now use the last equation and the fact that cos2.
/ C sin2.
/ D 1 to

conclude that

c2 D a2 C b2 � 2ab cos.
/:

This proves one of the equations in the Law of Cosines. The other two equations

can be proved in the same manner by placing each of the other two angles in stan-

dard position.

Summary of Section 3.3

In this section, we studied the following important concepts and ideas:

The Law of Sines and the Law of Cosines can be used to determine the lengths of

sides of a triangle and the measure of the angles of a triangle.
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p

q

r

θ

φ

The Law of Sines states that if q is the length of the side opposite the angle � and

p is the length of the side opposite the angle �, then

sin.�/

q
D sin.�/

p
:

The Law of Cosines states that if p, q, and r are the lengths of the sides of a

triangle and � is the angles opposite the side q, then

q2 D p2 C r2 � 2pr cos.�/:

Each of the equations in the Law of Sines and the Law of Cosines involves four

variables. So if we know the values of three of the variables, then we can use the

appropriate equation to solve for the fourth variable.

Exercises for Section 3.3

For Exercises (1) through (4), use the Law of Sines.

? 1. Two angles of a triangle are 42ı and 73ı. The side opposite the 73ı angle is

6.5 feet long. Determine the third angle of the triangle and the lengths of the

other two sides.

2. A triangle has a side that is 4.5 meters long and this side is adjacent to an

angle of 110ı. In addition, the side opposite the 110ı angle is 8 meters long.

Determine the other two angles of the triangle and the length of the third

side.

? 3. A triangle has a side that is 5 inches long that is adjacent to an angle of 61ı.

The side opposite the 61ı angle is 4.5 inches long. Determine the other two

angles of the triangle and the length of the third side.

4. In a given triangle, the side opposite an angle of 107ı is 18 inches long. One

of the sides adjacent to the 107ı angle is 15.5 inches long. Determine the

other two angles of the triangle and the length of the third side.
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For Exercises (5) through (6), use the Law of Cosines.

? 5. The three sides of a triangle are 9 feet long, 5 feet long, and 7 feet long.

Determine the three angles of the triangle.

6. A triangle has two sides of lengths 8.5 meters and 6.8 meters. The angle

formed by these two sides is 102ı. Determine the length of the third side

and the other two angles of the triangle.

For the remaining exercises, use an appropriate method to solve the problem.

7. Two angles of a triangle are 81:5ı and 34ı. The length of the side opposite

the third angle is 8.8 feet. Determine the third angle and the lengths of the

other two sides of the triangle.

8. In the diagram to the right, deter-

mine the value of 
 (to the near-

est hundredth of a degree) and

determine the values of h and d

(to the nearest thousandth) if it is

given that

a D 4 b D 8

c D 10 � D 26ı

 

9. In the diagram to the right, it is given

that:

� The length of AC is 2.

� The length of BC is 2.

� †ACB D 40ı.

� †CAD D 20ı.

� †CBD D 45ı.

A

B

C

D

Determine the lengths of AB and AD to the nearest thousandth.
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3.4 Applications of Triangle Trigonometry

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� How do we use the Law of Sines and the Law of Cosines to help solve

applied problems that involve triangles?

� How do we determine the area of a triangle?

� What is Heron’s Law for the area of a triangle?

In Section 3.2, we used right triangles to solve some applied problems. It

should then be no surprise that we can use the Law of Sines and the Law of Cosines

to solve applied problems involving triangles that are not right triangles.

In most problems, we will first get a rough diagram or picture showing the

triangle or triangles involved in the problem. We then need to label the known

quantities. Once that is done, we can see if there is enough information to use the

Law of Sines or the Law of Cosines. Remember that each of these laws involves

four quantities. If we know the value of three of those four quantities, we can use

that law to determine the fourth quantity.

We begin with the example in Progress Check 3.12. The solution of this prob-

lem involved some complicated work with right triangles and some algebra. We

will now solve this problem using the results from Section 3.3.

Example 3.19 (Height to the Top of a Flagpole)

Suppose that the flagpole sits on top a hill and that we cannot directly measure the

length of the shadow of the flagpole as shown in Figure 3.19.

Some quantities have been labeled in the diagram. Angles ˛ and ˇ are angles

of elevation to the top of the flagpole from two different points on level ground.

These points are d feet apart and directly in line with the flagpole. The problem

is to determine h, the height from level ground to the top of the flagpole. The

following measurements have been recorded.

˛ D 43:2ı d D 22:75feet

ˇ D 34:7ı
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αβ

h

d

flagpole

A

B

C

D

Figure 3.18: Flagpole on a hill

We notice that if we knew either length BC or BD in4BDC , then we could use

right triangle trigonometry to determine the length BC , which is equal to h. Now

look at 4ABC . We are given one angle ˇ. However, we also know the measure

of angle ˛. Because they form a straight angle, we have

†ABC C ˛ D 180ı:

Hence, †ABC D 180ı � 43:2ı D 136:8ı. We now know two angles in 4ABC

and hence, we can determine the third angle as follows:

ˇ C†ABC C†ACB D 180ı

34:7ıC 136:8ı C†ACB D 180ı

†ACB D 8:5ı

We now know all angles in4ABC and the length of one side. We can use the Law

of Sines. We have

AC

sin .34:7ı/
D 22:75

sin .8:5ı/

AC D 22:75 sin .34:7ı/

sin .8:5ı/
� 87:620

We can now use the right triangle4BDC to determine h as follows:

h

AC
D sin

�

43:2ı�

h D AC � sin
�

43:2ı� � 59:980

So the top of the flagpole is 59.980 feet above the ground. This is the same answer

we obtained in Progress Check 3.12.
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Progress Check 3.20 (An Application)
A bridge is to be built across a river.

The bridge will go from point A to

point B in the diagram on the right.

Using a transit (an instrument to mea-

sure angles), a surveyor measures an-

gle ABC to be 94:2ı and measures

angle BCA to be 48:5ı. In addition,

the distance from B to C is measured

to be 98.5 feet. How long will the

bridge from point B to point A be?

A

B C

river

98.5 ft

Area of a Triangle

We will now develop a few different ways to calculate the area of a triangle. Per-

haps the most familiar formula for the area is the following:

The area A of a triangle is

A D 1

2
bh;

where b is the length of the base of a triangle and h is the length of the altitude

that is perpendicular to that base.

The triangles in Figure 3.19 illustrate the use of the variables in this formula.

b b

h h

Figure 3.19: Diagrams for the Formula for the Area of a Triangle

A proof of this formula for the area of a triangle depends on the formula for

the area of a parallelogram and is included in Appendix C.

Progress Check 3.21 (The Area of a Triangle)
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Suppose that the length of two sides

of a triangle are 5 meters and 7 meters

and that the angle formed by these two

sides is 26:5ı. See the diagram on the

right.
 7 m

5 m

26.5

h

For this problem, we are using the side of length 7 meters as the base. The altitude

of length h that is perpendicular to this side is shown.

1. Use right triangle trigonometry to determine the value of h.

2. Determine the area of this triangle.

The purpose of Progress Check 3.21 was to illustrate that if we know the length

of two sides of a triangle and the angle formed by these two sides, then we can

determine the area of that triangle.

The Area of a Triangle

The area of a triangle equals one-half the product of two of its sides times the

sine of the angle formed by these two sides.

Progress Check 3.22 (Proof of the Formula for the Area of a Triangle)
In the diagram on the right, b is the

length of the base of a triangle, a is

the length of another side, and � is the

angle formed by these two sides. We

let A be the area of the triangle.

h

a

b

θ

Follow the procedure illustrated in Progress Check 3.21 to prove that

A D 1

2
ab sin.�/:

Explain why this proves the formula for the area of a triangle.

There is another common formula for the area of a triangle known as Heron’s

Formula named after Heron of Alexandria (circa 75 CE). This formula shows that

the area of a triangle can be computed if the lengths of the three sides of the triangle

are known.
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Heron’s Formula

The area A of a triangle with sides of length a, b, and c is given by the formula

A D
p

s.s � a/.s � b/.s � c/;

where s D 1

2
.a C b C c/.

For example, suppose that the lengths of the three sides of a triangle are a D
3 ft, b D 5 ft, and c D 6 ft. Using Heron’s Formula, we get

s D 1

2
.a C b C c/ A D

p

s.s � a/.s � b/.s � c/

s D 7 A D
p

7.7� 3/.7 � 5/.7� 6/

A D
p

42

This fairly complex formula is actually derived from the previous formula for

the area of a triangle and the Law of Cosines. We begin our exploration of the

proof of this formula in Progress Check

Progress Check 3.23 (Heron’s Formula)

Suppose we have a triangle as shown in

the diagram on the right.

1. Use the Law of Cosines that in-

volves the angle 
 and solve this

formula for cos.
/. This gives a

formula for cos.
/ in terms of a,

b, and c.
α

β

a

b

c

γ

A

B

C

2. Use the Pythagorean Identity cos2.
/C sin2.
/ D 1 to write sin.
/ in terms

of cos2.
/. Substitute for cos2.
/ using the formula in (1). This gives a

formula for sin.
/ in terms of a, b, and c. (Do not do any algebraic simpli-

cation.)

3. We also know that a formula for the area of this triangle is A D 1

2
ab sin.
/.

Substitute for sin.
/ using the formula in (2). (Do not do any algebraic

simplification.) This gives a formula for the area A in terms of a, b, and c.
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The formula obtained in Progress Check 3.23 was

A D 1

2
ab

s

1 �
�

a2 C b2 � c2

2ab

�2

This is a formula for the area of a triangle in terms of the lengths of the three sides

of the triangle. It does not look like Heron’s Formula, but we can use some sub-

stantial algebra to rewrite this formula to obtain Heron’s Formula. This algebraic

work is completed in the appendix for this section.

Appendix – Proof of Heron’s Formula

The formula for the area of a triangle obtained in Progress Check 3.23 was

A D 1

2
ab

s

1 �
�

a2 C b2 � c2

2ab

�2

We now complete the algebra to show that this is equivalent to Heron’s formula.

The first step is to rewrite the part under the square root sign as a single fraction.

A D 1

2
ab

s

1�
�

a2 C b2 � c2

2ab

�2

D 1

2
ab

s

.2ab/2 �
�

a2 C b2 � c2
�2

.2ab/2

D 1

2
ab

q

.2ab/2 �
�

a2 C b2 � c2
�2

2ab

D

q

.2ab/2 �
�

a2 C b2 � c2
�2

4

Squaring both sides of the last equation, we obtain

A2 D
.2ab/2 �

�

a2 C b2 � c2
�2

16
:

The numerator on the right side of the last equation is a difference of squares. We

will now use the difference of squares formula, x2�y2 D .x�y/.xCy/ to factor
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the numerator.

A2 D
.2ab/2 �

�

a2 C b2 � c2
�2

16

D
�

2ab �
�

a2 C b2 � c2
�� �

2ab C
�

a2 C b2 � c2
��

16

D
�

�a2 C 2ab � b2 C c2
� �

a2 C 2ab C b2 � c2
�

16

We now notice that �a2C 2ab� b2 D �.a� b/2 and a2C 2abC b2 D .aC b/2.

So using these in the last equation, we have

A2 D
�

�.a � b/2 C c2
� �

.aC b/2 � c2
�

16

D
�

�
�

.a � b/2 � c2
�� �

.aC b/2 � c2
�

16

We can once again use the difference of squares formula as follows:

.a � b/2 � c2 D .a � b � c/.a � b C c/

.aC b/2 � c2 D .aC b � c/.a C b C c/

Substituting this information into the last equation for A2, we obtain

A2 D �.a � b � c/.a � b C c/.a C b � c/.a C b C c/

16
:

Since s D 1

2
.aC b C c/, 2s D a C b C c. Now notice that

�.a � b � c/ D �a C b C c a � b C c D aC b C c � 2b

D a C b C c � 2a D 2s � 2b

D 2s � 2a

a C b � c D aC b C c � 2c a C b C c D 2s

D 2s � 2c
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So

A2 D �.a � b � c/.a � b C c/.a C b � c/.a C b C c/

16

D .2s � 2a/.2s � 2b/.2s � 2c/.2s/

16

D 16s.s � a/.s � b/.s � c/

16

D s.s � a/.s � b/.s � c/

A D
p

s.s � a/.s � b/.s � c/

This completes the proof of Heron’s formula.

Summary of Section 3.4

In this section, we studied the following important concepts and ideas:

� How to use right triangle trigonometry, the Law of Sines, and the Law of

Cosines to solve applied problems involving triangles.

� Three ways to determine the area A of a triangle.

* A D 1

2
bh, where b is the length of the base and h is the length of the

altitude.

* A D 1

2
ab, where a and b are the lengths of two sides of the triangle and

� is the angle formed by the sides of length a and b.

* Heron’s Formula. If a, b, and c are the lengths of the sides of a triangle

and s D 1

2
.aC b C c/, then

A D
p

s.s � a/.s � b/.s � c/:

Exercises for Section 3.4

? 1. A ski lift is to be built along the side of a mountain from point A to point B

in the following diagram. We wish to determine the length of this ski lift.
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A

B

C

side of a

mountain

800 ft

A surveyor determines the measurement of angle BAC to be 155:6ı and

then measures a distance of 800 ft from Point A to Point C . Finally, she

determines the measurement of angle BCA to be 17:2ı. What is the the

length of the ski lift (from point A to point B)?

? 2. A boat sails from Muskegon bound for Chicago, a sailing distance of 121

miles. The boat maintains a constant speed of 15 miles per hour. After

encountering high cross winds the crew finds itself off course by 20ı after 4

hours. A crude picture is shown in the following diagram, where ˛ D 20ı.

Muskegon

Chicago

Lake Michigan

γ

α

(a) How far is the sailboat from Chicago at this time?

(b) What is the degree measure of the angle 
 (to the nearest tenth) in the

diagram? Through what angle should the boat turn to correct its course

and be heading straight to Chicago?

(c) Assuming the boat maintains a speed of 15 miles per hour, how much

time have they added to their trip by being off course?
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3. Two trees are on oppo-

site sides of a river. It

is known that the height

of the shorter of the two

trees is 13 meters. A per-

son makes the following

angle measurements:

α

β

taller

tree

shorter

tree

� The angle of elevation from the base of the shorter tree to the top of the

taller tree is ˛ D 20ı.

� The angle of elevation from the top of the shorter tree to the top of the

taller tree is ˇ D 12ı.

Determine the distance between the bases of the two trees and the height of

the taller tree.

4. One of the original Seven Wonders of the World, the Great Pyramid of Giza

(also known as the Pyramid of Khufu or the Pyramid of Cheops), was be-

lieved to have been built in a 10 to 20 year period concluding around 2560

B.C.E. It is also believed that the original height of the pyramid was 146.5

meters but that it is now shorter due to erosion and the loss of some topmost

stones. 1

To determine its current height, the angle of elevation from a distance of 30

meters from the base of the pyramid was measured to be 46:12ı, and then the

angle of elevation was measured to be 40:33ı from a distance of 60 meters

from the base of the pyramid as shown in the following diagram. Use this

information to determine the height h of the pyramid. (138.8 meters)

h
46.12

40.33

60 m

30 m

1https://en.wikipedia.org/wiki/Great_Pyramid_of_Giza

https://en.wikipedia.org/wiki/Great_Pyramid_of_Giza
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5. Two sides of a triangle have length 2.5

meters and 3.5 meters, and the angle

formed by these two sides has a mea-

sure of 60ı. Determine the area of the

triangle. Note: This is the triangle in

Progress Check 3.17 on page 200. 60

2.5 m

3
.5

 m c

α

β

6. A field has the shape of a quadrilateral that is not a parallelogram. As shown

in the following diagram, three sides measure 50 yards, 60 yards, and 70

yards. Due to some wetland along the fourth side, the length of the fourth

side could not be measured directly. The two angles shown in the diagram

measure 127ı and 132ı.

5
0
 y

ar
d
s

60 yards

7
0
 y

ard
s

127
o

132
o

wetland

Determine the length of the fourth side of the quadrilateral, the measures of

the other two angles in the quadrilateral, and the area of the quadrilateral.

Lengths must be accurate to the nearest hundredth of a yard, angle measures

must be correct to the nearest hundredth of a degree, and the area must be

correct to the nearest hundredth of a square yard.
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3.5 Vectors from a Geometric Point of View

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� What is a vector?

� How do we use the geometric form of vectors to find the sum of two

vectors?

� How do we use the geometric form of vectors to find a scalar multiple

of a vector?

� How do we use the geometric form of vectors to find the difference of

two vectors?

� What is the angle between two vectors?

� Why is force a vector and how do we use vectors and triangles to deter-

mine forces acting on an object?

We have all had the experience of dropping something and watching it fall to

the ground. What is happening, of course, is that the force of gravity is causing the

object to fall to the ground. In fact, we experience the force of gravity everyday

simply by being on Earth. Each person’s weight is a measure of the force of gravity

since pounds are a unit of force. So when a person weighs 150 pounds, it means

that gravity is exerting a force of 150 pounds straight down on that person. Notice

that we described this with a quantity and a direction (straight down). Such a

quantity (with magnitude and direction) is called a vector.

Now suppose that person who weighs 150 pounds is standing on a hill. In

mathematics, we simplify the situation and say that the person is standing on an

inclined plane as shown in Figure 3.20. (By making the hill a straight line, we

simplify the mathematics involved.) The diagram in Figure 3.20, an object is on

the inclined plane at the point P . The inclined plane makes an angle of � with the

horizontal. The vector w shows the weight of the object (force of gravity, straight

down). The diagram also shows two other vectors. The vector b is perpendicular
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a

b
θ

θ

P

w

Figure 3.20: Inclined Plane

to the plane represents the force that the object exerts on the plane. The vector a

is perpendicular to b and parallel to the inclined plane. This vector represents the

force of gravity along the plane. In this and the next section, we will learn more

about these vectors and how to determine the magnitudes of these vectors. We will

also see that with our definition of the addition of two vectors that w D aC b.

Definitions

There are some quantities that require only a number to describe them. We call this

number the magnitude of the quantity. One such example is temperature since we

describe this with only a number such as 68 degrees Fahrenheit. Other such quan-

tities are length, area, and mass. These types of quantities are often called scalar

quantities. However, there are other quantities that require both a magnitude and

a direction. One such example is force, and another is velocity. We would describe

a velocity with something like 45 miles per hour northwest. Velocity and force are

examples of a vector quantity. Other examples of vectors are acceleration and

displacement.

Some vectors are closely associated with scalars. In mathematics and science,

we make a distinction between speed and velocity. Speed is a scalar and we would

say something like our speed is 65 miles per hour. However, if we used a velocity,

we would say something like 65 miles per hour east. This is different than a veloc-

ity of 65 miles per hour north even though in both cases, the speed is 65 miles per

hour.

Definition. A vector is a quantity that has both magnitude and direction. A

scalar is a quantity that has magnitude only.
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Geometric Representation of Vectors
Vectors can be represented geomet-

rically by arrows (directed line seg-

ments). The arrowhead indicates the

direction of the vector, and the length

of the arrow describes the magnitude

of the vector. A vector with initial

point P (the tail of the arrow) and ter-

minal point Q (the tip of the arrow-

head) can be represented by

�!
PQ; v; or

�!v :

P

Q

initial point

terminal point

v

We often write v D �!PQ. In this text, we will use boldface font to designate a

vector. When writing with pencil and paper, we always use an arrow above the

letter (such as
�!v ) to designate a vector. The magnitude (or norm or length) of

the vector v is designated by jvj. It is important to remember that jvj is a number

that represents the magnitude or length of the vector v.

According to our definition, a vector possesses the attributes of length (magni-

tude) and direction, but position is not mentioned. So we will consider two vectors

to be equal if they have the same magnitude and direction. For example, if two

different cars are both traveling at 45 miles per hour northwest (but in different

locations), they have equal velocity vectors. We make a more formal definition.

Definition. Two vectors are equal if and only if they have the same magnitude

and the same direction. When the vectors v and w are equal, we write v D w.

Progress Check 3.24 (Equal and Unequal Vectors)

The following diagrams show the vector v next to four other vectors. Which (if

any) of these four vectors are equal to the vector v?

wv

(b)

v

u

(a)

v
a

(c)

v b

(d)
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Operations on Vectors

Scalar Multiple of a Vector

Doubling a scalar quantity is simply a matter of multiplying its magnitude by 2.

For example, if a container has 20 ounces of water and the amount of water is

doubled, it will then have 40 ounces of water. What do we mean by doubling a

vector? The basic idea is to keep the same direction and multiply the magnitude by

2. So if an object has a velocity of 5 feet per second southeast and a second object

has a velocity of twice that, the second object will have a velocity of 10 feet per

second in the southeast direction. In this case, we say that we multiplied the vector

by the scalar 2. We now make a definition that also takes into account that a scalar

can be negative.

Definition. For any vector v and any scalar c, the vector cv (called a scalar

multiple of the vector v) is a vector whose magnitude is jcj times the magni-

tude of the vector v.

� If c > 0, then the direction of cv is the same as the directionof v.

� If c < 0, then the direction of cv is the oppositie of the direction of v.

� If c D 0, then cv D 0v D 0.

The vector 0 is called the zero vector and the zero vector has no magnitude

and no direction. We sometimes write
�!
0 for the zero vector.

Note: In this definition, jcj is the absolute value of the scalar c. Care must be taken

not to confuse this with the notation jvj, which is the magnitude of the vector v.

This is one reason it is important to have a notation that clearly indicates when we

are working with a vector or a scalar.

Addition of Vectors

We illustrate how to add vectors with two displacement vectors. As with velocity

and speed, there is a distinction between displacement and distance. Distance is a

scalar. So we might say that we have traveled 2 miles. Displacement, on the other

hand, is a vector consisting of a distance and a direction. So the vectors 2 miles

north and 2 miles east are different displacement vectors.
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Now if we travel 3 miles north and then

travel 2 miles east, we end at a point that

defines a new displacement vector. See

the diagram to the right. In this diagram,

u is “3 miles north” and v is “2 miles

east.” The vector sum u C v goes from

the initial point of u to the terminal point

of v.

u

v

u + v

Definition. The sum of two vectors is defined as follows: We position the

vectors so that the initial point of w coincides with the terminal point of v.

The vector v C w is the vector whose initial point coincides with the initial

point of v and whos terminal point coincides with the terminal point of w.

v

w

v+w

The vector vC w is called the sum or resultant of the vectors v and w.

In the definition, notice that the vectors v, w, and vCw are placed so that the result

is a triangle. The lengths of the sides of that triangle are the magnitudes of these

sides jvj, jwj, and jvC wj. If we place the two vectors v and w so that their initial

points coincide, we can use a parallelogram to add the two vectors. This is shown

in Figure 3.21.

v

w

v+w

w

v

Figure 3.21: Sum of Two Vectors Using a Parallelogram

Notice that the vector v forms a pair of opposite sides of the parallelogram as does

the vector w.
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Progress Check 3.25 (Operations on Vectors)

The following diagram shows two vectors, v and w. Draw the following vectors:

(a) vC w (b) 2v (c) 2vC w (d) � 2w (e) � 2wC v

v
w

Subtraction of Vectors

Before explaining how to subtract vectors, we will first explain what is meant by the

“negative of a vector.” This works similarly to the negative of a real number. For

example, we know that when we add �3 to 3, the result is 0. That is, 3C.�3/D 0.

We want something similar for vec-

tors. For a vector w, the idea is to use

the scalar multiple .�1/w. The vec-

tor .�1/w has the same magnitude as

w but has the opposite direction of w.

We define �w to be .�1/w. Figure

shows that when we add �w to w, the

terminal point of the sum is the same

as the initial point of the sum and so

the result is the zero vector. That is,

wC .�w/ D 0.

w

(−
1
)w

 =
 −

w

w
 +

 (
−
w

) 
=
 0

Figure 3.22: The Sum of a Vector

and Its Negative

We are now in a position to define subtraction of vectors. The idea is much
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the same as subtraction of real numbers in that for any two real numbers a and b,

a � b D aC .�b/.

Definition. For any two vectors v and w, the difference between v and w is

denoted by v � w and is defined as follows:

v � w D vC .�w/:

v

w

−w

v − w

We also say that we are subtracting the vector w from the vector v.

Progress Check 3.26 (Operations on Vectors)

The following diagram shows two vectors, v and w. Draw the following vectors:

(a) � w (b) v � w (c) � v (d) w � v

v
w

The Angle Between Two Vectors

We have seen that we can use triangles to help us add or subtract two vectors. The

lengths of the sides of the triangle are the magnitudes of certain vectors. Since we
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are dealing with triangles, we will also use angles determined by the vectors.

Definition. The angle � between vectors is the angle formed by these two

vectors (with 0ı � � � 180ı) when they have the same initial point.

So in the diagram on the left in Figure 3.23, the angle � is the angle between

the vectors v and w. However, when we want to determine the sum of two angles,

we often form the parallelogram determined by the two vectors as shown in the

diagram on the right in Figure 3.23. (See page 422 in Appendix C for a summary

of properties of a parallelogram.) We then will use the angle 180ı� � and the Law

of Cosines since we the two sides of the triangle are the lengths of v and w and the

included angle is 180ı � � . We will explore this in the next progress check.

v

w

θ

v

w

θ
180 −

 θο

w

v

v +
 w

Figure 3.23: Angle Between Two Vectors

Progress Check 3.27 (The Sum of Two Vectors)

Suppose that the vectors a and b have magnitudes of 80 and 60, respectively, and

that the angle � between the two vectors is 53 degrees. In Figure 3.24, we have

drawn the parallelogram determined by these two vectors and have labeled the

vertices for reference.

a

a

b

b

θ

A B

CD

Figure 3.24: Diagram for Progress Check 3.27
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Remember that a vector is determined by its magnitude and direction. We will

determine jaC bj and the measure of the angle between a and aC b.

1. Determine the measure of †ABC .

2. In 4ABC , the length of side AB is jaj D 80 and the length of side BC is

jbj D 60. Use this triangle and the Law of Cosines to determine the length

of the third side, which is jaC bj.

3. Determine the measure of the angle between a and aC b. This is †CAB in

4ABC .

Force

An important vector quantity is that of force. In physics, a force on an object is

defined as any interaction that, when left unopposed, will change the motion of the

object. So a force will cause an object to change its velocity, that is the object will

accelerate. More informally, a force is a push or a pull on an object.

One force that affects our lives is the force of gravity. The magnitude of the

force of gravity on a person is that person’s weight. The direction of the force of

gravity is straight down. So if a person who weighs 150 pounds is standing still on

the ground, then the ground is also exerting a force of 150 pounds on the person

in the upward direction. The net force on the stationary person is zero. This is

an example of what is known as static equilibrium. When an object is in static

equilibrium, the sum of the forces acting on the object is equal to the zero vector.

Example 3.28 (Object Suspended from a Ceiling)
Suppose a 100 pound object is sus-

pended from the ceiling by two

wires that form a 40ı angle as shown

in the diagram to the right. Because

the object is stationary, the two wires

must exert a force on the object so

that the sum of these two forces

is equal to 100 pounds straight up.

(The force of gravity is 100 pounds

straight down.)

ceiling

40
o

100 pound object
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We will assume that the two wires

exert an forces of equal magnitudes

and that the angle between these

forces and the vertical in 20ı. So our

first step is to draw a picture of these

forces, which is shown on the right.

The vector v is a vector of magnitude

100 pounds. The vectors a and b are

the vectors for the forces exerted by

the two wires. (We have jaj D jbj.)
We also know that ˛ D 20ı and so

by the properties of parallelograms,

ˇ D 140ı.

v

a b

b a

α

β

Progress Check 3.29 (Completion of Example 3.28)

Use triangle trigonometry to determine the magnitude of the vector a in Exam-

ple 3.28. Note that we already know the direction of this vector.

Inclined Planes

At the beginning of this section, we discussed the forces involved when an object

is place on an inclined plane. Figure 3.25 is the diagram we used, but we now have

added labels for some of the angles. Recall that the vector w shows the weight

of the object (force of gravity, straight down), the vector b is perpendicular to the

plane and represents the force that the object exerts on the plane, and the vector a

is perpendicular to b and parallel to the inclined plane. This vector represents the

force of gravity along the plane. Notice that we have also added a second copy of

the vector a that begins at the tip of the vector b.

a

b
θ

P

w

a

α

β

Figure 3.25: Inclined Plane
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Using the angles shown, we see that ˛Cˇ D 90ı since they combine to form a

right angle, and ˛C� D 90ı since they are the two acute angles in a right triangle.

From this, we conclude that ˇ D � . This gives us the final version of the diagram

of the forces on an inclined plane shown in Figure 3.26. Notice that the vectors a,

a

b
θ

P

w

a

θ

Figure 3.26: Inclined Plane

b, and w form a right triangle, and so we can use right triangle trigonometry for

problems dealing with the forces on an inclined plane.

Progress Check 3.30 (A Problem Involving an Inclined Plane)

An object that weighs 250 pounds is placed on an inclined plane that makes an an-

gle of 12ı degrees with the horizontal. Using a diagram like the one in Figure 3.26,

determine the magnitude of the force against the plane caused by the object and the

magnitude of the force down the plane on the object due to gravity. Note: The mag-

nitude of the force down the plane will be the force in the direction up the plane

that is required to keep the object stationary.

Summary of Section 3.5

In this section, we studied the following important concepts and ideas:

Vectors and Scalars

A vector is a quantity that has both magnitude and direction. a scalar is a quantity

that has magnitude only. Two vectors are equal if and only if they have the same

magnitude and the same direction.

Scalar Multiple of a Vector

For any vector v and any scalar c, the vector cv (called a scalar multiple of the

vector v) is a vector whose magnitude is jcj times the magnitude of the vector v.
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� If c > 0, then the direction of cv is the same as the directionof v.

� If c < 0, then the direction of cv is the oppositie of the direction of v.

� If c D 0, then cv D 0v D 0.

The vector 0 is called the zero vector and the zero vector has no magnitude and no

direction. We sometimes write
�!
0 for the zero vector.

The Sum of Two Vectors

The sum of two vectors is defined as follows: We position the vectors so that the

initial point of w coincides with the terminal point of v. The vector v C w is the

vector whose initial point coincides with the initial point of v and whos terminal

point coincides with the terminal point of w.

v

w

v+w

The vector vC w is called the sum or resultant of the vectors v and w.

The Angle Between Two Vectors

The angle � between vectors is the angle formed by these two vectors (with 0ı �
� � 180ı) when they have the same initial point.

Exercises for Section 3.5

? 1. In each of the following diagrams, one of the vectors u, v, and u C v is

labeled. Label the vectors the other two vectors to make the diagram a valid

representation of uC v.
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(a)

u

(b)

v

(c)

u

(d)

u + v

? 2. On the following diagram, draw the vectors uCv, u�v, 2uCv, and 2u�v.

u

v

? 3. In the following diagram, jaj D 10 and jaC bj D 14. In addition, the angle

� between the vectors a and b is 30ı. Determine the magnitude of the vector

b and the angle between the vectors a and aC b.

a

b a + b

θ

4. Suppose that vectors a and b have magnitudes of 125 and 180, respectively.

Also assume that the angle between these two vectors is 35ı. Determine the

magnitude of the vector a C b and the measure of the angle between the

vectors a and aC b.

5. A car that weighs 3250 pounds is on an inclined plane that makes an angle

of 4:5ı with the horizontal. Determine the magnitude of the force of the car

on the inclined plane, and determine the magnitude of the force on the car

down the plane due to gravity. What is the magnitude of the smallest force

necessary to keep the car from rolling down the plane?
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6. An experiment determined that a force of 45 pounds is necessary to keep a

250 pound object from sliding down an inclined plane. Determine the angle

the inclined plane makes with the horizontal.

7. A cable that can withstand a force of 4500 pounds is used to pull an object

up an inclined plane that makes an angle of 15 degrees with the horizontal.

What is the heaviest object that can be pulled up this plane with the cable?

(Assume that friction can be ignored.)
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3.6 Vectors from an Algebraic Point of View

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� How do we find the component form of a vector?

� How do we find the magnitude and the direction of a vector written in

component form?

� How do we add and subtract vectors written in component form and how

do we find the scalar product of a vector written in component form?

� What is the dot product of two vectors?

� What does the dot product tell us about the angle between two vectors?

� How do we find the projection of one vector onto another?

Introduction and Terminology

We have seen that a vector is com-

pletely determined by magnitude and

direction. So two vectors that have

the same magnitude and direction are

equal. That means that we can posi-

tion our vector in the plane and iden-

tify it in different ways. For one, we

can place the tip of a vector v at the

origin and the tail will wind up at

some point .v1; v2/ as illustrated in

Figure 3.27.

x

y

v

v
1

v
2

v
1

v
2

( ),

θ

Figure 3.27: A Vector in Stan-

dard Position

A vector with its initial point at the origin is said to be in standard position



3.6. Vectors from an Algebraic Point of View 233

and is represent by v D hv1; v2i. Please note the important distinction in notation

between the vector v D hv1; v2i and the point .v1; v2/. The coordinates of the

terminal point .v1; v2/ are called the components of the vector v. We call v D
hv1; v2i the component form of the vector v. The first coordinate v1 is called the

x-component or the horizontal component of the vector v, and the first coordinate

v2 is called the y-component or the vertical component of the vector v. The

nonnegative angle � between the vector and the positive x-axis (with 0 � � <

360ı) is called the direction angle of the vector. See Figure 3.27.

Using Basis Vectors

There is another way to algebraically

write a vector if the components of the

vector are known. This uses the so-called

standard basis vectors for vectors in the

plane. These two vectors are denoted by

i and j and are defined as follows and are

shown in the diagram to the right.

i D h1; 0i and j D h0; 1i:
x

y

i

j

1

1

The diagram in Figure 3.28 shows how to use the vectors i and j to represent a

vector v D ha; bi.

v = <a, b>

ai

bj

x

y

Figure 3.28: Using the Vectors i and j

The diagram shows that if we place the base of the vector j at the tip of the

vector i, we see that

v D ha; bi D aiC bj:
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This is often called the i; j form of a vector, and the real number a is called the

i-component of v and the real number b is called the j-component of v

Algebraic Formulas for Geometric Properties of a Vector

Vectors have certain geometric properties

such as length and a direction angle. With

the use of the component form of a vector,

we can write algebraic formulas for these

properties. We will use the diagram to the

right to help explain these formulas.
x

y

v

v
1

v
2

θ

1 2
v = v i + v j

� The magnitude (or length) of the vector v is the distance from the origin to

the point .v1; v2/ and so

jvj D
q

v2
1 C v2

2 :

� The direction angle of v is � , where 0 � � < 360ı, and

cos.�/ D v1

jvj and sin.�/ D v2

jvj :

� The horizontal and component and vertical component of the vector v and

direction angle � are

v1 D jvj cos.�/ and v2 D jvj sin.�/:

Progress Check 3.31 (Using the Formulas for a Vector)

1. Suppose the horizontal component of a vector v is 7 and the vertical compo-

nent is �3. So we have v D 7iC .�3/j D 7i� 3j. Determine the magnitude

and the direction angle of v.

2. Suppose a vector w has a magnitude of 20 and a direction angle of �200ı.

Determine the horizontal and vertical components of w and write w in i; j

form.
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Operations on Vectors

In Section 3.5, we learned how to add two vectors and how to multiply a vector by

a scalar. At that time, the descriptions of these operations was geometric in nature.

We now know about the component form of a vector. So a good question is, “Can

we use the component form of vectors to add vectors and multiply a vector by a

scalar?”

To illustrate the idea, we will look at

Progress Check 3.25 on page 223, where

we added two vectors v and w. Although

we did not use the component forms of

these vectors, we can now see that

v D h2; 3i D 2iC 3j; and

w D h4;�1i D 4iC .�1/j:

The diagram to the right was part of the

solutions for this progress check but now

shows the vectors in a coordinate plane.

v

v + w

w

v = 2i + 3j

w = 4i + (-1)j

Notice that

vC w D 6iC 2j

vC w D .2C 4/iC .3C .�1//j

Figure 3.29 shows a more general diagram with

v D ha; bi D aiC bj and w D hc; di D ciC d j

in standard position. This diagram shows that the terminal point of vC w in stan-

dard position is .aC c; b C d/ and so

vC w D ha C c; b C di D .aC c/iC .b C d/j:

This means that we can add two vectors by adding their horizontal components

and by adding their vertical components. The next progress check will illustrate

something similar for scalar multiplication.
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v = ai + bjw
 =

 c
i 
+
 d

j

c

d

(a + c, b + d)

v + w

x

y

Figure 3.29: The Sum of Two Vectors

Progress Check 3.32 (Scalar Multiple of a Vector)

1. Let v D h3;�2i. Draw the vector v in standard position and then draw the

vectors 2v and �2v in standard position. What are the component forms of

the vectors 2v and �2v?

2. In general, how do you think a scalar multiple of a vector a D ha1; a2i by a

scalar c should be defined? Write a formal definition of a scalar multiple of

a vector based on your intuition.

Based on the work we have done, we make the following formal definitions.

Definition. For vectors v D hv1; v2i D v1i C v2j and w D hw1; w2i D
w1iCw2j and scalar c, we make the following definition:

vC w D hv1 Cw1; v2 Cw2i vC w D .v1 C w1/ iC .v2 C w2/ j

v � w D hv1 � w1; v2 � w2i v � w D .v1 � w1/ iC .v2 � w2/ j

cv D hcv1; cv2i cv D .cv1/ iC .cv2/ j

Progress Check 3.33 (Vector Operations

Let u D h1;�2i, v D h0; 4i, and w D h�5; 7i.

1. Determine the component form of the vector 2u� 3v.

2. Determine the magnitude and the direction angle for 2u� 3v.

3. Determine the component form of the vector uC 2v� 7w.
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The Dot Product of Two Vectors

Finding optimal solutions to systems is an important problem in applied mathemat-

ics. It is often the case that we cannot find an exact solution that satisfies certain

constraints, so we look instead for the “best” solution that satisfies the constraints.

An example of this is fitting a least squares curve to a set of data like our calcula-

tors do when computing a sine regression curve. The dot product is useful in these

situations to find “best” solutions to certain types of problems. Although we won’t

see it in this course, having collections of perpendicular vectors is very important

in that it allows for fast and efficient computations. The dot product of vectors

allows us to measure the angle between them and thus determine if the vectors are

perpendicular. The dot product has many applications, e.g., finding components of

forces acting in different directions in physics and engineering. We introduce and

investigate dot products in this section.

We have seen how to add vectors and multiply vectors by scalars, but we have

not yet introduced a product of vectors. In general, a product of vectors should give

us another vector, but there turns out to be no really useful way to define such a

product of vectors. However, there is a dot “product” of vectors whose output is a

scalar instead of a vector, and the dot product is a very useful product (even though

it isn’t a product of vectors in a technical sense).

Recall that the magnitude (or length) of the vector u D hu1; u2i is

juj D
q

u2
1 C u2

2 D
p

u1u1 C u2u2:

The expression under the second square root is an important one and we extend it

and give it a special name.

Definition. Let u D hu1; u2i and v D hv1; v2i be vectors in the plane. The

dot product of u and v is the scalar

u�v D u1v1 C u2v2:

This may seem like a strange number to compute, but it turns out that the dot

product of two vectors is useful in determining the angle between two vectors.

Recall that in Progress Check 3.27 on page 225, we used the Law of Cosines to

determine the sum of two vectors and then used the Law of Sines to determine the

angle between the sum and one of those vectors. We have now seen how much

easier it is to compute the sum of two vectors when the vectors are in component

form. The dot product will allow us to determine the cosine of the angle between

two vectors in component form. This is due to the following result:
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The Dot Product and the Angle between Two Vectors

If � is the angle between two nonzero vectors u and v (0ı � � � 180ı), then

u�v D jujjvj cos.�/ or cos.�/ D u�v
jujjvj :

Notice that if we have written the vectors v and w in component form, then we

have formulas to compute jvj, jwj, and v�w. This result may seem surprising but it

is a fairly direct consequence of the Law of Cosines as we will now show. Let � be

the angle between u and v as illustrated in Figure 3.30.

u

v

u − v

θ

Figure 3.30: The angle between u and v

We can apply the Law of Cosines to determine the angle � as follows:

ju� vj2 D juj2 C jvj2 � 2juj jvj cos.�/

.u � v/ � .u� v/ D juj2 C jvj2 � 2juj jvj cos.�/

.u � u/ � 2.u � v/C .v � v/ D juj2 C jvj2 � 2juj jvj cos.�/

juj2 � 2.u � v/C jvj2 D juj2 C jvj2 � 2juj jvj cos.�/

�2.u � v/ D �2 juj jvj cos.�/

u � v D juj jvj cos.�/:

Progress Check 3.34 (Using the Dot Product)

1. Determine the angle � between the vectors u D 3iC j and v D �5iC 2j.

2. Determine all vectors perpendicular to u D h1; 3i. How many such vectors

are there? Hint: Let v D ha; bi. Under what conditions will the angle

between u and v be 90ı?
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One purpose of Progress Check 3.34 was to use the formula

cos.�/ D u�v
jujjvj :

to determine when two vectors are perpendicular. Two vectors u and v will be

perpendicular if and only if the angle � between them is 90ı. Since cos .90ı/ D 0,

we see that this formula implies that u and v will be perpendicular if and only if

u�v D 0. (This is because a fraction will be equal to 0 only when the numerator is

equal to 0 and the denominator is not zero.) So we have

Two vectors are perpendicular if and only if their dot product is equal to 0.

Note: When two vectors are perpendicular, we also say that they are orthogonal.

Projections

Another useful application of the dot product is in finding the projection of one vec-

tor onto another. An example of where such a calculation is useful is the following.

Usain Bolt from Jamaica excited the world of track and field in 2008

with his world record performances on the track. Bolt won the 100

meter race in a world record time of 9.69 seconds. He has since bet-

tered that time with a race of 9.58 seconds with a wind assistance of

0.9 meters per second in Berlin on August 16, 20092. The wind assis-

tance is a measure of the wind speed that is helping push the runners

down the track. It is much easier to run a very fast race if the wind

is blowing hard in the direction of the race. So that world records

aren’t dependent on the weather conditions, times are only recorded

as record times if the wind aiding the runners is less than or equal to 2

meters per second. Wind speed for a race is recorded by a wind gauge

that is set up close to the track. It is important to note, however, that

weather is not always as cooperative as we might like. The wind does

not always blow exactly in the direction of the track, so the gauge must

account for the angle the wind makes with the track.

If the wind is blowing in the direction of the vector u and the track is in the direction

of the vector v in Figure 3.31, then only part of the total wind vector is actually
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v

u

proj u
v

θ

Figure 3.31: The Projection of u onto v

working to help the runners. This part is called the projection of the vector u

onto the vector v and is denoted projvu.

We can find this projection with a little trigonometry. To do so, we let � be the

angle between u and v as shown in Figure 3.31. Using right triangle trigonometry,

we see that

jprojvuj D juj cos.�/

D juj u � v
juj jvj

D u � v
jvj :

The quantity we just derived is called the scalar projection (or component) of u

onto v and is denoted by compvu. Thus

compvu D u � v
jvj :

This gives us the length of the vector projection. So to determine the vector, we

use a scalar multiple of this length times a unit vector in the same direction, which

is
1

jvjv. So we obtain

projvu D jprojvuj
�

1

jvj

�

D u � v
jvj

�

1

jvj

�

D u � v
jvj2 v

2http://www.iaaf.org/statistics/records/inout=O/discType=5/disc=100/detail.html

http://www.iaaf.org/statistics/records/inout=O/discType=5/disc=100/detail.html
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We can also write the projection of u onto v as

projvu D u � v
jvj2 v D u � v

v � v v:

The wind component that acts perpendicular to the direction of v in Figure 3.31 is

called the projection of u orthogonal to v and is denoted proj?vu as shown in

Figure 3.32. Since u D proj?vuC projvu, we have that

v

u

proj u
v

θ

proj u
v

Figure 3.32: The Projection of u onto v

proj?vu D u� projvu:

Following is a summary of the results we have obtained.

For nonzero vectors u and v, the projection of the vector u onto the vector

v, projvu, is given by

projvu D u � v
jvj2 v D u � v

v � v v:

See Figure 3.32. The projection of u orthogonal to v, denoted proj?vu, is

proj?vu D u� projvu:

We note that u D projvuC proj?vu.

Progress Check 3.35 (Projection of One Vector onto Another Vector

Let u D h7; 5i and v D h10;�2i. Determine projvu, proj?vu, and verify that

u D projvuC proj?vu. Draw a picture showing all of the vectors involved in this.

Summary of Section 3.6

In this section, we studied the following important concepts and ideas:
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The component form of a vector v is written as v D hv1; v2i and the i; j form of

the same vector is v D v1iC v2j. Using this notation, we have

� The magnitude (or length) of the vector v is jvj D
q

v2
1 C v2

2 .

� The direction angle of v is � , where 0 � � < 360ı, and

cos.�/ D v1

jvj and sin.�/ D v2

jvj :

� The horizontal and component and vertical component of the vector v and

direction angle � are

v1 D jvj cos.�/ and v2 D jvj sin.�/:

For two vectors v and w with v D hv1; v2i D v1i C v2j and w D hw1; w2i D
w1iCw2j and a scalar c:

� vC w D hv1 Cw1; v2 Cw2i D .v1 Cw1/ iC .v2 Cw2/ j.

� v � w D hv1 � w1; v2 � w2i D .v1 � w1/ iC .v2 � w2/ j.

� cv D hcv1; cv2i D .cv1/ iC .cv2/ j.

� The dot product of v and w is v�w D v1w1 C v2w2.

� If � is the angle between v and w, then

u�v D jujjvj cos.�/ or cos.�/ D u�v
jujjvj :

� The projection of the vector v onto the vector w, projwv, is given by

projwv D v � w
jwj2 w D v �w

w �ww:

The projection of v orthogonal to w, denoted proj?wv, is

proj?wv D v � projwv:

We note that v D projwvC proj?wv. See Figure 3.33.

Exercises for Section 3.6

1. Determine the magnitude and the direction angle of each of the following

vectors.
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w

v

proj v
w

θ

proj v
w

Figure 3.33: The Projection of v onto w

? (a) v D 3iC 5j

? (b) w D h�3; 6i
(c) a D 4i � 7j

(d) u D h�3;�5i

2. Determine the horizontal and vertical components of each of the following

vectors. Write each vector in i, j form.

? (a) The vector v with magnitude 12 and direction angle 50ı.

? (b) The vector u with juj D
p

20 and direction angle 125ı.

(c) The vector w with magnitude 5:25 and direction angle 200ı.

3. Let u D 2iC 3j, v D �iC 5j, and w D 4i � 2j. Determine the i, j form of

each of the following:

? (a) 5u� v

(b) 2vC 7w

? (c) uC vC w

(d) 3uC 5w

4. Determine the value of the dot product for each of the following pairs of

vectors.

? (a) v D 2iC 5j and w D 3i� 2j.

? (b) a and b where jaj D 6, jwj D 3, and the angle between v and w is 30ı.

(c) a and b where jaj D 6, jwj D 3, and the angle between v and w is

150ı.

(d) a and b where jaj D 6, jwj D 3, and the angle between v and w is 50ı.

(e) a D 5i� 2j and b D 2iC 5j.

5. Determine the angle between each of the following pairs of vectors.
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? (a) v D 2iC 5j and w D 3i� 2j.

(b) a D 5i� 2j and b D 2iC 5j.

(c) v D 3i� 2j and w D �iC 4j.

6. For each pair of vectors, determine projvw, proj?vw, and verify that w D
projvw C proj?vw. Draw a picture showing all of the vectors involved in

this.

? (a) v D 2iC 5j and w D 3i� 2j.

(b) v D h�2; 3i and w D h1; 1i



Chapter 4

Trigonometric Identities and

Equations

Trigonometric identities describe equalities between related trigonometric expres-

sions while trigonometric equations ask us to determine the specific values of the

variables that make two expressions equal. Identities are tools that can be used to

simplify complicated trigonometric expressions or solve trigonometric equations.

In this chapter we will prove trigonometric identities and derive the double and

half angle identities and sum and difference identities. We also develop methods

for solving trigonometric equations, and learn how to use trigonometric identities

to solve trigonometric equations.

4.1 Trigonometric Identities

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� What is an identity?

� How do we verify an identity?

245
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Consider the trigonometric equation sin.2x/ D cos.x/. Based on our current

knowledge, an equation like this can be difficult to solve exactly because the peri-

ods of the functions involved are different. What will allow us to solve this equa-

tion relatively easily is a trigonometric identity, and we will explicitly solve this

equation in a subsequent section. This section is an introduction to trigonometric

identities.

As we discussed in Section 2.6, a mathematical equation like x2 D 1 is a

relation between two expressions that may be true for some values of the variable.

To solve an equation means to find all of the values for the variables that make the

two expressions equal to each other. An identity, is an equation that is true for all

allowable values of the variable. For example, from previous algebra courses, we

have seen that

x2 � 1 D .x C 1/.x � 1/;

for all real numbers x. This is an algebraic identity since it is true for all real

number values of x. An example of a trigonometric identity is

cos2.x/C sin2.x/ D 1

since this is true for all real number values of x.

So while we solve equations to determine when the equality is valid, there

is no reason to solve an identity since the equality in an identity is always valid.

Every identity is an equation, but not every equation is an identity. To know that

an equation is an identity it is necessary to provide a convincing argument that the

two expressions in the equation are always equal to each other. Such a convincing

argument is called a proof and we use proofs to verify trigonometric identities.

Definition. An identity is an equation that is true for all allowable values of

the variables involved.

Beginning Activity

1. Use a graphing utility to draw the graph of y D cos
�

x � �

2

�

and y D

sin
�

x C �

2

�

over the interval Œ�2�; 2�� on the same set of axes. Are the

two expressions cos
�

x � �

2

�

and sin
�

x C �

2

�

the same – that is, do they

have the same value for every input x? If so, explain how the graphs indicate

that the expressions are the same. If not, find at least one value of x at which

cos
�

x � �

2

�

and sin
�

x C �

2

�

have different values.
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2. Use a graphing utility to draw the graph of y D cos
�

x � �

2

�

and y D
sin.x/ over the interval Œ�2�; 2�� on the same set of axes. Are the two

expressions cos
�

x � �

2

�

and sin.x/ the same – that is, do they have the

same value for every input x? If so, explain how the graphs indicate that

the expressions are the same. If not, find at least one value of x at which

cos
�

x � �

2

�

and sin.x/ have different values.

Some Known Trigonometric Identities

We have already established some important trigonometric identities. We can use

the following identities to help establish new identities.

The Pythagorean Identity

This identity is fundamental to the development of trigonometry. See page 18 in

Section 1.2.

For all real numbers t , cos2.t/C sin2.t/ D 1.

Identities from Definitions

The definitions of the tangent, cotangent, secant, and cosecant functions were in-

troduced in Section 1.6. The following are valid for all values of t for which the

right side of each equation is defined.

tan.t/ D sin.t/

cos.t/
cot.t/ D cos.t/

sin.t/

sec.t/ D 1

cos.t/
csc.t/ D 1

sin.t/

Negative Identities

The negative were introduced in Chapter 2 when the symmetry of the graphs were

discussed. (See page 82 and Exercise (2) on page 139.)

cos.�t / D cos.t/ sin.�t / D � sin.t/ tan.�t / D � tan.t/:

The negative identities for cosine and sine are valid for all real numbers t , and

the negative identity for tangent is valid for all real numbers t for which tan.t/ is

defined.
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Verifying Identities

Given two expressions, say tan2.x/ C 1 and sec2.x/, we would like to know if

they are equal (that is, have the same values for every allowable input) or not. We

can draw the graphs of y D tan2.x/ C 1 and y D sec2.x/ and see if the graphs

look the same or different. Even if the graphs look the same, as they do with y D
tan2.x/C1 and y D sec2.x/, that is only an indication that the two expressions are

equal for every allowable input. In order to verify that the expressions are in fact

always equal, we need to provide a convincing argument that works for all possible

input. To do so we use facts that we know (existing identities) to show that two

trigonometric expressions are always equal. As an example, we will verify that the

equation

tan2.x/C 1 D sec2.x/ (1)

is an identity.

A proper format for this kind of argument is to choose one side of the equation

and apply existing identities that we already know to transform the chosen side into

the remaining side. It usually makes life easier to begin with the more complicated

looking side (if there is one). In our example of equation (1) we might begin with

the expression tan2.x/C 1.

Example 4.1 (Verifying a Trigonometric Identity)

To verify that equation (1) is an identity, we work with the expression tan2.x/C 1.

It can often be a good idea to write all of the trigonometric functions in terms of

the cosine and sine to start. In this case, we know that tan.x/ D sin.x/

cos.x/
, so we

could begin by making this substitution to obtain the identity

tan2.x/C 1 D
�

sin.x/

cos.x/

�2

C 1: (2)

Note that this is an identity and so is valid for all allowable values of the variable.

Next we can apply the square to both the numerator and denominator of the right

hand side of our identity (2).

�

sin.x/

cos.x/

�2

C 1 D sin2.x/

cos2.x/
C 1: (3)

Next we can perform some algebra to combine the two fractions on the right hand

side of the identity (3) and obtain the new identity

sin2.x/

cos2.x/
C 1 D sin2.x/C cos2.x/

cos2.x/
: (4)
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Now we can recognize the Pythagorean identity cos2.x/ C sin2.x/ D 1, which

makes the right side of identity (4)

sin2.x/C cos2.x/

cos2.x/
D 1

cos2.x/
: (5)

Recall that our goal is to verify identity (1), so we need to transform the expression

into sec2.x/. Recall that sec.x/ D 1

cos.x/
, and so the right side of identity (5)

leads to the new identity
1

cos2.x/
D sec2.x/;

which verifies the identity.

An argument like the one we just gave that shows that an equation is an iden-

tity is called a proof. We usually leave out most of the explanatory steps (the steps

should be evident from the equations) and write a proof in one long string of iden-

tities as

tan2.x/C 1 D
�

sin.x/

cos.x/

�2

C 1

D sin2.x/

cos2.x/
C 1

D sin2.x/C cos2.x/

cos2.x/

D 1

cos2.x/

D sec2.x/:

To prove an identity is to show that the expressions on each side of the equation

are the same for every allowable input. We illustrated this process with the equation

tan2.x/ C 1 D sec2.x/. To show that an equation isn’t an identity it is enough to

demonstrate that the two sides of the equation have different values at one input.

Example 4.2 (Showing that an Equation is not an Identity)

Consider the equation with the equation cos
�

x � �

2

�

D sin
�

x C �

2

�

that we

encountered in our Beginning Activity. Although you can check that cos
�

x � �

2

�

and sin
�

x C �

2

�

are equal at some values,
�

4
for example, they are not equal at all

values – cos
�

0 � �

2

�

D 0 but sin
�

0C �

2

�

D 1. Since an identity must provide
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an equality for all allowable values of the variable, if the two expressions differ at

one input, then the equation is not an identity. So the equation cos
�

x � �

2

�

D

sin
�

x C �

2

�

is not an identity.

Example 4.2 illustrates an important point. to show that an equation is not an

identity, it is enough to find one input at which the two sides of the equation are

not equal. We summarize our work with identities as follows.

� To prove that an equation is an identity, we need to apply known iden-

tities to show that one side of the equation can be transformed into the

other.

� To prove that an equation is not an identity, we need to find one input

at which the two sides of the equation have different values.

Important Note: When proving an identity it might be tempting to start working

with the equation itself and manipulate both sides until you arrive at something you

know to be true. DO NOT DO THIS! By working with both sides of the equation,

we are making the assumption that the equation is an identity – but this assumes

the very thing we need to show. So the proper format for a proof of a trigonometric

identity is to choose one side of the equation and apply existing identities that we

already know to transform the chosen side into the remaining side. It usually makes

life easier to begin with the more complicated looking side (if there is one).

Example 4.3 (Verifying an Identity)

Consider the equation

2 cos2.x/ � 1 D cos2.x/ � sin2.x/:

Graphs of both sides appear to indicate that this equation is an identity. To prove

the identity we start with the left hand side:

2 cos2.x/ � 1 D cos2.x/C cos2.x/ � 1

D cos2.x/C .1� sin2.x// � 1

D cos2.x/ � sin2.x/:

Notice that in our proof we rewrote the Pythagorean identity cos2.x/Csin2.x/ D 1

as cos2.x/ D 1 � sin2.x/. Any proper rearrangement of an identity is also an

identity, so we can manipulate known identities to use in our proofs as well.
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To reiterate, the proper format for a proof of a trigonometric identity is to

choose one side of the equation and apply existing identities that we already know

to transform the chosen side into the remaining side. There are no hard and fast

methods for proving identities – it is a bit of an art. You must practice to become

good at it.

Progress Check 4.4 (Verifying Identities)

For each of the following use a graphing utility to graph both sides of the equation.

If the graphs indicate that the equation is not an identity, find one value of x at

which the two sides of the equation have different values. If the graphs indicate

that the equation is an identity, verify the identity.

1.
sec2.x/ � 1

sec2.x/
D sin2.x/

2. cos.x/ sin.x/ D 2 sin.x/

Summary of Section 4.1

In this section, we studied the following important concepts and ideas:

An identity is an equation that is true for all allowable values of the variables

involved.

� To prove that an equation is an identity, we need to apply known identities

to show that one side of the equation can be transformed into the other.

� To prove that an equation is not an identity, we need to find one input at

which the two sides of the equation have different values.

Exercises for Section 4.1

1. Use a graphing utility to graph each side of the given equation. If the equa-

tion appears to be an identity, prove the identity. If the equation appears to

not be an identity, demonstrate one input at which the two sides of the equa-

tion have different values. Remember that when proving an identity, work

to transform one side of the equation into the other using known identities.

Some general guidelines are

I. Begin with the more complicated side.
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II. It is often helpful to use the definitions to rewrite all trigonometric func-

tions in terms of the cosine and sine.

III. When appropriate, factor or combine terms. For example, sin2.x/ C
sin.x/ can be written as sin.x/.sin.x/ C 1/ and 1

sin.x/
C 1

cos.x/
can be

written as the single fraction
cos.x/Csin.x/
sin.x/cos.x/

with a common denominator.

IV. As you transform one side of the equation, keep the other side of the

equation in mind and use identities that involve terms that are on the

other side. For example, to verify that tan2.x/ C 1 D 1
cos2.x/

, start

with tan2.x/C 1 and make use identities that relate tan.x/ to cos.x/ as

closely as possible.

? (a) cos.x/ tan.x/ D sin.x/

? (b)
cot.s/

csc.s/
D cos.s/

(c)
tan.s/

sec.s/
D sin.s/

(d) cot2.x/C 1 D csc2.x/

? (e) sec2.x/C csc2.x/ D 1

(f) cot.t/C 1 D csc.t/.cos.t/C sin.t//

(g) tan2.�/.1C cot2.�// D 1

1� sin2.�/

(h)
1 � sin2.ˇ/

cos.ˇ/
D sin.ˇ/

(i)
1 � sin2.ˇ/

cos.ˇ/
D cos.ˇ/

(j) sin2.x/C tan2.x/C cos2.x/ D sec2.x/.

2. A student claims that cos.�/C sin.�/ D 1 is an identity because cos.0/C
sin.0/ D 1C 0 D 0. How would you respond to this student?

3. If a trigonometric equation has one solution, then the periodicity of the

trigonometric functions implies that the equation will have infinitely many

solutions. Suppose we have a trigonometric equation for which both sides of

the equation are equal at infinitely many different inputs. Must the equation

be an identity? Explain your reasoning.
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4.2 Trigonometric Equations

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� What is a trigonometric equation?

� What does it mean to solve a trigonometric equation?

� How is a trigonometric equation different from a trigonometric identity?

We have already learned how to solve certain types of trigonometric equa-

tions. In Section 2.6 we learned how to use inverse trigonometric functions to

solve trigonometric equations.

Beginning Activity

Refer back to the method from Section 2.6 to find all solutions to the equation

sin.x/ D 0:4.

Trigonometric Equations

When a light ray from a point P reflects off a surface at a point R to illuminate a

point Q as shown at left in Figure 4.1, the light makes two angles ˛ and ˇ with a

perpendicular to the surface. The angle ˛ is called the angle of incidence and the

angle ˇ is called the angle of reflection. The Law of Reflection states that when

light is reflected off a surface, the angle of incidence equals the angle of reflection.

What happens if the light travels through one medium (say air) from a point P ,

deflects into another medium (say water) to travel to a point Q? Think about what

happens if you look at an object in a glass of water. See Figure 4.1 at right. Again

the light makes two angles ˛ and ˇ with a perpendicular to the surface. The angle

˛ is called the angle of incidence and the angle ˇ is called the angle of refraction.

If light travels from air into water, the Law of Refraction says that

sin.˛/

sin.ˇ/
D ca

cw
(6)
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P

Q
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α β

P

Q

RAir

Water

α

β

Figure 4.1: Reflection and refraction.

where ca is the speed of light in air and cw is the speed of light in water. The

ratio
ca

cw
of the speed of light in air to the speed of light in water can be calculated

by experiment. In practice, the speed of light in each medium is compared to the

speed of light in a vacuum. The ratio of the speed of light in a vacuum to the speed

of light in water is around 1.33. This is called the index of refraction for water. The

index of refraction for air is very close to 1, so the ratio ca

cw
is close to 1.33. We can

usually measure the angle of incidence, so the Law of Refraction can tells us what

the angle of refraction is by solving equation (6).

Trigonometric equations arise in a variety of situations, like in the Law of Re-

fraction, and in a variety of disciplines including physics, chemistry, and engineer-

ing. As we develop trigonometric identities in this chapter, we will also use them

to solve trigonometric equations.

Recall that Equation (6) is a conditional equation because it is not true for all

allowable values of the variable. To solve a conditional equation means to find all

of the values for the variables that make the two expressions on either side of the

equation equal to each other.

Equations of Linear Type

Section 2.6 showed us how to solve trigonometric equations that are reducible to

linear equations. We review that idea in our first example.

Example 4.5 (Solving an Equation of Linear Type)

Consider the equation

2 sin.x/ D 1:

We want to find all values of x that satisfy this equation. Notice that this equation
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looks a lot like the linear equation 2y D 1, with sin.x/ in place of y. So this

trigonometric equation is of linear type and we say that it is linear in sin.x/. We

know how to solve 2y D 1, we simply divide both sides of the equation by 2 to

obtain y D 1

2
. We can apply the same algebraic operation to 2 sin.x/ D 1 to obtain

the equation

sin.x/ D 1

2
:

Now we could proceed in a couple of ways. From previous work we know that

sin.x/ D 1

2
when x D �

6
. Alternatively, we could apply the inverse sine to both

sides of our equation to see that one solution is x D sin�1

�

1

2

�

D �

6
.

Recall, however, this is not the only solution. The first task is to find all of the

solutions in one complete period of the sine function. We can use the interval with

0 � x � 2� but we often use the interval �� � x � � . In this case, it makes no

difference since the sine function is positive in the second quadrant. Using
�

6
as a

reference angle, we see that x D �� �

6
D 5�

6
is another solution of this equation.

(Use a calculator to check this.)

We now use the fact that the sine function is period with a period of 2� to write

formulas that can be used to generate all solutions of the equation 2 sin.x/ D 1.

So the angles in the first quadrant are
�

6
C k.2�/ and the angles in the second

quadrant are
5�

6
Ck.2�/, where k is an integer. So for the solutions of the equation

2 sin.x/ D 1, we write

x D �

6
C k.2�/ or x D 5�

6
C k.2�/;

where k is an integer.

We can always check our solutions by graphing both sides of the equation to see

where the two expressions intersect. Figure 4.2 shows that graphs of y D 2 sin.x/

and y D 1 on the interval Œ�2�; 3��. We can see that the points of intersection of

these two curves occur at exactly the solutions we found for this equation.

Progress Check 4.6 (Solving an Equation of Linear Type)

Find the exact values of all solutions to the equation 4 cos.x/ D 2
p

2. Do this

by first finding all solutions in one complete period of the cosine function and
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Figure 4.2: The graphs of y D 2 sin.x/ and y D 1

then using the periodic property to write formulas that can be used to generate all

solutions of the equation. Draw appropriate graphs to illustrate your solutions.

Solving an Equation Using an Inverse Function

When we solved the equation 2 sin.x/ D 1, we used the fact that we know that

sin
��

6

�

D 1

2
. When we cannot use one of the common arcs, we use the more

general method of using an inverse trigonometric function. This is what we did in

Section 2.6. See “A Strategy for Solving a Trigonometric Function” on page 158.

We will illustrate this strategy with the equation cos.x/ D 0:7. We start by apply-

ing the inverse cosine function to both sides of this equation to obtain

cos.x/ D 0:7

cos�1.cos.x/ D cos�1.0:7/

x D cos�1.0:7/

This gives the one solution for the equation that is in interval Œ0; ��. Before we use

the periodic property, we need to determine the other solutions for the equation in

one complete period of the cosine function. We can use the interval Œ0; 2�� but it

is easier to use the interval Œ��; ��. One reason for this is the following so-called

“negative arc identity” stated on page 82.

cos.�x/ D cos.x/ for every real number x:
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Hence, since one solution for the equation is x D cos�1.0:7/, another solution is

x D � cos�1.0:7/. This means that the two solutions of the equation x D cos.x/

on the interval Œ��; �� are

x D cos�1.0:7/ and x D � cos�1.0:7/:

Since the period iof the cosine function is 2� , we can say that any solution of the

equation cos.x/ D 0:7 will be of the form

x D cos�1.0:7/C k.2�/ or x D � cos�1.0:7/C k.2�/;

where k is some integer.

Note: The beginning activity for this section had the equation sin.x/ D 0:4. The

solutions for this equation are

x D arcsin.0:4/C k.2�/ or x D .� � arcsin.0:4//C k.2�/;

where k is an integer. We can write the solutions in approximate form as

x D 0:41152C k.2�/ or x D 2:73008C k.2�/;

where k is an integer.

Progress Check 4.7 (Solving Equations of Linear Type)

1. Determine formulas that can be used to generate all solutions to the equation

5 sin.x/ D 2. Draw appropriate graphs to illustrate your solutions in one

period of the sine function.

2. Approximate, to two decimal places, the angle of refraction of light passing

from air to water if the angle of incidence is 40ı.

Solving Trigonometric Equations Using Identities

We can use known trigonometric identities to help us solve certain types of trigono-

metric equations.

Example 4.8 (Using Identities to Solve Equations)

Consider the trigonometric equation

cos2.x/ � sin2.x/ D 1: (7)
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This equation is complicated by the fact that there are two different trigonometric

functions involved. In this case we use the Pythagorean Identity

sin2.x/C cos2.x/ D 1

by solving for cos2.x/ to obtain

cos2.x/ D 1� sin2.x/:

We can now substitute into equation (7) to get

.1 � sin2.x// � sin2.x/ D 1:

Note that everything is in terms of just the sine function and we can proceed to

solve the equation from here:

.1 � sin2.x// � sin2.x/ D 1

1 � 2 sin2.x/ D 1

�2 sin2.x/ D 0

sin2.x/ D 0

sin.x/ D 0:

We know that sin.x/ D 0 when x D �k for any integer k, so the solutions to the

equation

cos2.x/ � sin2.x/ D 1

are

x D �k for any integer k:

This is illustrated by Figure 4.3.

Progress Check 4.9 (Using Identities to Solve Equations)

Find the exact values of all solutions to the equation sin2.x/ D 3 cos2.x/. Draw

appropriate graphs to illustrate your solutions.

Other Methods for Solving Trigonometric Equations

Just like we did with linear equations, we can view some trigonometric equations

as quadratic in nature and use tools from algebra to solve them.
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Figure 4.3: The graphs of y D cos2.x/ � sin2.x/ and y D 1

Example 4.10 (Solving Trigonometric Equations of Quadratic Type)

Consider the trigonometric equation

cos2.x/ � 2 cos.x/C 1 D 0:

This equation looks like a familiar quadratic equation y2 � 2y C 1 D 0. We can

solve this quadratic equation by factoring to obtain .y � 1/2 D 0. So we can apply

the same technique to the trigonometric equation cos2.x/ � 2 cos.x/ C 1 D 0.

Factoring the left hand side yields

.cos.x/ � 1/2 D 0:

The only way .cos.x/ � 1/2 can be 0 is if cos.x/ � 1 is 0. This reduces our

quadratic trigonometric equation to a linear trigonometric equation. To summarize

the process so far we have

cos2.x/ � 2 cos.x/C 1 D 0

.cos.x/ � 1/2 D 0

cos.x/ � 1 D 0

cos.x/ D 1:

We know that cos.x/ D 1 when x D 2�k for integer values of k. Therefore, the

solutions to our original equation are

x D 2�k
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where k is any integer. As a check, the graph of y D cos2.x/ � 2 cos.x/ C 1 is

shown in Figure 4.4. The figure appears to show that the graph of y D cos2.x/ �
2 cos.x/C 1 intersects the x-axis at exactly the points we found, so our solution is

validated by graphical means.

Figure 4.4: the graph of y D cos2.x/ � 2 cos.x/C 1

Progress Check 4.11 (Solving Trigonometric Equations of Quadratic Type)

Find the exact values of all solutions to the equation sin2.x/ � 4 sin.x/ D �3.

Draw appropriate graphs to illustrate your solutions.

Summary of Section 4.2

In this section, we studied the following important concepts and ideas:

A trigonometric equation is a conditional equation that involves trigonometric

functions. If it is possible to write the equation in the form

“some trigonometric function of x” D a number; (1)

we can use the following strategy to solve the equation:

� Find all solutions of the equation within one period of the function. This is

often done by using properties of the trigonometric function. Quite often,

there will be two solutions within a single period.

� Use the period of the function to express formulas for all solutions by adding

integer multiples of the period to each solution found in the first step. For

example, if the function has a period of 2� and x1 and x2 are the only two
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solutions in a complete period, then we would write the solutions for the

equation as

x D x1 C k.2�/; x D x2 C k.2�/; where k is an integer:

We can sometimes use trigonometric identities to help rewrite a given equation in

the form of equation (1).

Exercises for Section 4.2

1. For each of the following equations, determine formulas that can be used to

generate all solutions of the given equation. Use a graphing utility to graph

each side of the given equation to check your solutions.

? (a) 2 sin.x/ � 1 D 0

? (b) 2 cos.x/C 1 D 0

(c) 2 sin.x/C
p

2 D 0

? (d) 4 cos.x/ � 3 D 0

(e) 3 sin2.x/ � 2 sin.x/ D 0

(f) sin.x/ cos2.x/ D 2 sin.x/

(g) cos2.x/C 4 sin.x/ D 4

(h) 5 cos.x/C 4 D 2 sin2.x/

(i) 3 tan2.x/ � 1 D 0

(j) tan2.x/ � tan.x/ D 6

? 2. A student is asked to approximate all solutions in degrees (to two decimal

places) to the equation sin.�/ C 1

3
D 1 on the interval 0ı � � � 360ı.

The student provides the answer � D sin�1

�

2

3

�

� 41:81ı. Did the student

provide the correct answer to the stated problem? Explain.

3. X-ray crystallography is an important tool in chemistry. One application of

X-ray crystallography is to discover the atomic structure macromolecules.

For example, the double helical structure of DNA was found using X-ray

crystallography.

The basic idea behind X-ray crystallography is this: two X-ray beams with

the same wavelength � and phase are directed at an angle � toward a crystal

composed of atoms arranged in a lattice in planes separated by a distance d

as illustrated in Figure 4.5.1 The beams reflect off different atoms (labeled as

P and Q in Figure 4.5) within the crystal. One X-ray beam (the lower one as

1The symbol � is the Greek lowercase letter ”lambda”.
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illustrated in Figure 4.5) must travel a longer distance than the other. When

reflected, the X-rays combine but, because of the phase shift of the lower

beam, the combination might have a small amplitude or a large amplitude.

Bragg’s Law states that the sum of the reflected rays will have maximum

amplitude when the extra length the longer beam has to travel is equal to an

integer multiple of the wavelength � of the radiation. In other words,

n� D 2d sin.�/;

for some positive integer n. Assume that � D 1:54 angstroms and d D 2:06

angstroms. Approximate to two decimal places the smallest value of � (in

degrees) for which n D 1.

d

θ h

P

Q

Figure 4.5: X-rays reflected from crystal atoms.
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4.3 Sum and Difference Identities

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� What are the Cosine Difference and Sum Identities?

� What are the Sine Difference and Sum Identities?

� What are the Tangent Difference and Sum Identities?

� What are the Cofunction Identities?

� Why are the difference and sum identities useful?

The next identities we will investigate are the sum and difference identities

for the cosine and sine. These identities will help us find exact values for the

trigonometric functions at many more angles and also provide a means to derive

even more identities.

Beginning Activity

1. Is cos.A � B/ D cos.A/� cos.B/ an identity? Explain.

2. Is sin.A � B/ D sin.A/� sin.B/ an identity? Explain.

3. Use a graphing utility to draw the graph of y D sin
��

2
� x

�

and y D
cos.x/ over the interval Œ�2�; 2�� on the same set of axes. Do you think

sin
��

2
� x

�

D cos.x/ is an identity? Why or why not?

The Cosine Difference Identity

To this point we know the exact values of the trigonometric functions at only a

few angles. Trigonometric identities can help us extend this list of angles at which

we know exact values of the trigonometric functions. Consider, for example, the

problem of finding the exact value of cos
� �

12

�

. The definitions and identities

we have so far do not help us with this problem. However, we could notice that
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�

12
D �

3
��

4
and if we knew how the cosine behaved with respect to the difference

of two angles, then we could find cos
� �

12

�

. In our Beginning Activity, however,

we saw that the equation cos.A � B/ D cos.A/ � cos.B/ is not an identity, so we

need to understand how to relate cos.A � B/ to cosines and sines of A and B .

We state the Cosine Difference Identity below. This identity is not obvious,

and a verification of the identity is given later in this section. For now we focus on

using the identity.

Cosine Difference Identity

For any real numbers A and B we have

cos.A � B/ D cos.A/ cos.B/C sin.A/ sin.B/:

Example 4.12 (Using the Cosine Difference Identity)

Let us return to our problem of finding cos
� �

12

�

. Since we know
�

12
D �

3
� �

4
,

we can use the Cosine Difference Identity with A D �

3
and B D �

4
to obtain

cos
� �

12

�

D cos
��

3
� �

4

�

D cos
��

3

�

cos
��

4

�

C sin
��

3

�

sin
��

4

�

D
�

1

2

�

 p
2

2

!

C
 p

3

2

! p
2

2

!

D
p

2C
p

6

4
:

So we see that cos
� �

12

�

D
p

2C
p

6

4
.

Progress Check 4.13 (Using the Cosine Difference Identity)

1. Determine the exact value of cos

�

7�

12

�

using the Cosine Difference Iden-

tity.

2. Given that
5�

12
D �

6
C �

4
D �

6
�
�

��

4

�

, determine the exact value of

cos

�

5�

12

�

using the Cosine Difference Identity.
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The Cosine Sum Identity

Since there is a Cosine Difference Identity, we might expect there to be a Cosine

Sum Identity. We can use the Cosine Difference Identity along with the negative

identities to find an identity for cos.AC B/. The basic idea was contained in our

last Progress Check, where we wrote AC B as A � .�B/. To see how this works

in general, notice that

cos.AC B/ D cos.A � .�B//

D cos.A/ cos.�B/C sin.A/ sin.�B/

D cos.A/ cos.B/ � sin.A/ sin.B/:

This is the Cosine Sum Identity.

Cosine Sum Identity

For any real numbers A and B we have

cos.AC B/ D cos.A/ cos.B/ � sin.A/ sin.B/:

Progress Check 4.14 (Using the Cosine Sum and Difference Identities)

1. Find a simpler formula for cos .� C x/ in terms of cos.x/. Illustrate with a

graph.

2. Use the Cosine Difference Identity to prove that cos
��

2
� x

�

D sin.x/ is

an identity.

Cofunction Identities

In Progress Check 4.14 we used the Cosine Difference Identity to see that cos
��

2
� x

�

D

sin.x/ is an identity. Since this is an identity, we can replace x with
�

2
� x to see

that

sin
��

2
� x

�

D cos
��

2
�
��

2
� x

��

D cos.x/;

so sin
��

2
� x

�

D cos.x/. The two identities

cos
��

2
� x

�

D sin.x/ and sin
��

2
� x

�

D cos.x/

are called cofunction identities. These two cofunction identities show that the sine

and cosine of the acute angles in a right triangle are related in a particular way.
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Since the sum of the measures of the angles in a right triangle is � radians or

180ı, the measures of the two acute angles in a right triangle sum to
�

2
radians or

90ı. Such angles are said to be complementary. Thus, the sine of an acute angle

in a right triangle is the same as the cosine of its complementary angle. For this

reason we call the sine and cosine cofunctions. The naming of the six trigonometric

functions reflects the fact that they come in three sets of cofunction pairs: the sine

and cosine, the tangent and cotangent, and the secant and cosecant. The cofunction

identities are the same for any cofunction pair.

Cofunction Identities

For any real number x for which

the expressions are defined,

� cos
��

2
� x

�

D sin.x/

� sin
��

2
� x

�

D cos.x/

� tan
��

2
� x

�

D cot.x/

� cot
��

2
� x

�

D tan.x/

� sec
��

2
� x

�

D csc.x/

� csc
��

2
� x

�

D sec.x/

For any angle x in degrees for

which the functions are defined,

� cos .90ı � x/ D sin.x/

� sin .90ı � x/ D cos.x/

� tan .90ı � x/ D cot.x/

� cot .90ı � x/ D tan.x/

� sec .90ı � x/ D csc.x/

� csc .90ı � x/ D sec.x/

Progress Check 4.15 (Using the Cofunction Identities)

Use the cosine and sine cofuntion identities to prove the cofunction identity

tan
��

2
� x

�

D cot.x/:

The Sine Difference and Sum Identities

We can now use the Cosine Difference Identity and the Cofunction Identities to

derive a Sine Difference Identity:



4.3. Sum and Difference Identities 267

sin.A � B/ D cos
��

2
� .A � B/

�

D cos
���

2
� A

�

C B/
�

D cos
��

2
� A

�

cos.B/ � sin
��

2
� A

�

sin.B/

D sin.A/ cos.B/ � cos.A/ sin.B/:

We can derive a Sine Sum Identity from the Sine Difference Identity:

sin.AC B/ D sin.A � .�B//

D sin.A/ cos.�B/ � cos.A/ sin.�B/

D sin.A/ cos.B/C cos.A/ sin.B/:

Sine Difference and Sum Identities

For any real numbers A and B we have

sin.A � B/ D sin.A/ cos.B/ � cos.A/ sin.B/

and

sin.AC B/ D sin.A/ cos.B/C cos.A/ sin.B/:

Progress Check 4.16 (Using the Sine Sum and Difference Identities)

Use the Sine Sum or Difference Identities to find the exact values of the following.

1. sin
� �

12

�

2. sin

�

5�

12

�

Using Sum and Difference Identities to Solve Equations

As we have done before, we can use our new identities to solve other types of

trigonometric equations.
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Example 4.17 (Using the Cosine Sum Identity to Solve an Equation)

Consider the equation

cos.�/ cos
��

5

�

� sin.�/ sin
��

5

�

D
p

3

2
:

On the surface this equation looks quite complicated, but we can apply an identity

to simplify it to the point where it is straightforward to solve. Notice that left side of

this equation has the form cos.A/ cos.B/�sin.A/ sin.B/ with A D � and B D �

5
.

We can use the Cosine Sum Identity cos.ACB/ D cos.A/ cos.B/�sin.A/ sin.B/

to combine the terms on the left into a single term, and we can solve the equation

from there:

cos.�/ cos
��

5

�

� sin.�/ sin
��

5

�

D
p

3

2

cos
�

� C �

5

�

D
p

3

2
:

Now cos.x/ D
p

3

2
when x D �

6
C 2k� or x D ��

6
C 2k� for integers k. Thus,

cos
�

� C �

5

�

D
p

3

2
when � C �

5
D �

6
C 2k� or � C �

5
D ��

6
C 2k� . Solving

for � gives us the solutions

� D � �

30
C 2k� or � D �11�

30
C 2k�

where k is any integer. These solutions are illustrated in Figure 4.6.

Note: Up to now, we have been using the phrase “Determine formulas that can be

used to generate all the solutions of a given equation.” This is not standard termi-

nology but was used to remind us of what we have to do to solve a trigonometric

equation. We will now simply say, “Determine all solutions for the given equa-

tion.” When we see this, we should realize that we have to determine formulas that

can be used to generate all the solutions of a given equation.

Progress Check 4.18 (Using an Identity to Help Solve an Equation)

Determine all solutions of the equation

sin.x/ cos.1/C cos.x/ sin.1/ D 0:2:

Hint: Use a sum or difference identity and use the inverse sine function.
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Figure 4.6: Graphs of y D cos.�/ cos
��

5

�

� sin.�/ sin
��

5

�

and y D
p

3

2
.

Appendix – Proof of the Cosine Difference Identity

To understand how to calculate the cosine of the difference of two angles, let A

and B be arbitrary angles in radians. Figure 4.7 shows these angles with A > B ,

but the argument works in general. If we plot the points where the terminal sides

of the angles A, B , and A � B intersect the unit circle, we obtain the picture in

Figure 4.7.

x

y

(cos(A),sin(A)) (cos(B),sin(B))

(cos(A-B),sin(A-B))

A-B

A-B

Figure 4.7: The cosine difference formula

The arc on the unit circle from the point .cos.B/; sin.B// to the point

.cos.A/; sin.A// has length A � B , and the arc from the point (1,0) to the point

.cos.A�B/; sin.A�B// also has length A�B . So the chord from .cos.B/; sin.B//
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to .cos.A/; sin.A// has the same length as the chord from (1,0) to

.cos.A�B/; sin.A�B//. To find the cosine difference formula, we calculate these

two chord lengths using the distance formula.

The length of the chord from .cos.B/; sin.B// to .cos.A/; sin.A// is
q

.cos.A/ � cos.B//2 C .sin.A/ � sin.B//2

and the length of the chord from (1,0) to .cos.A � B/; sin.A � B// is
q

.cos.A � B/ � 1/2 C .sin.A � B/ � 0/2:

Since these two chord lengths are the same we obtain the equation

q

.cos.A � B/ � 1/2 C .sin.A � B/ � 0/2

D
q

.cos.A/ � cos.B//2 C .sin.A/ � sin.B//2: (2)

The cosine difference identity is found by simplifying Equation (2) by first

squaring both sides:

.cos.A � B/ � 1/2 C .sin.A� B/ � 0/2

D .cos.A/ � cos.B//2 C .sin.A/ � sin.B//2:

Then we expand both sides

Œcos2.A � B/ � 2 cos.A� B/C 1�C sin2.A � B/

D Œcos2.A/�2 cos.A/ cos.B/Ccos2.B/�CŒsin2.A/�2 sin.A/ sin.B/Csin2.B/�:

We can combine some like terms:

Œcos2.A � B/C sin2.A � B/� � 2 cos.A � B/C 1

D Œcos2.A/Csin2.A/�CŒcos2.B/Csin2.B/��2 cos.A/ cos.B/�2 sin.A/ sin.B/:

Finally, using the Pythagorean identities yields

1� 2 cos.A � B/C 1 D 1C 1 � 2 cos.A/ cos.B/ � 2 sin.A/ sin.B/

�2 cos.A � B/ D �2 cos.A/ cos.B/ � 2 sin.A/ sin.B/

cos.A � B/ D cos.A/ cos.B/C sin.A/ sin.B/:

Summary of Section 4.3

In this section, we studied the following important concepts and ideas:
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� Sum and Difference Identities

cos.A� B/ D cos.A/ cos.B/C sin.A/ sin.B/

cos.AC B/ D cos.A/ cos.B/ � sin.A/ sin.B/

sin.A� B/ D sin.A/ cos.B/ � cos.A/ sin.B/

sin.AC B/ D sin.A/ cos.B/C cos.A/ sin.B/

� Cofunction Identities

See page 266 for a list of the cofunction identities.

Exercises for Section 4.3

1. Use an appropriate sum or difference identity to find the exact value of each

of the following.

? (a) cos.�10ı/ cos.35ı/C sin.�10ı/ sin.35ı/

? (b) cos

�

7�

9

�

cos

�

2�

9

�

� sin

�

7�

9

�

sin

�

2�

9

�

(c) sin

�

7�

9

�

cos

�

2�

9

�

C cos

�

7�

9

�

sin

�

2�

9

�

(d) sin.80ı/ cos.55ı/C cos.80ı/ sin.55ı/

2. Angles A and B are in standard position and sin.A/ D 1

2
, cos.A/ > 0,

cos.B/ D 3

4
, and sin.B/ < 0. Draw a picture of the angles A and B in the

plane and then find each of the following.

? (a) cos.AC B/

(b) cos.A � B/

(c) sin.AC B/

(d) sin.A � B/

(e) tan.AC B/

(f) tan.A� B/

3. Identify angles A and B at which we know the values of the cosine and sine

so that a sum or difference identity can be used to calculate the exact value

of the given quantity. (For example, 15ı D 45ı � 30ı.)



272 Chapter 4. Trigonometric Identities and Equations

? (a) cos.15ı/

(b) sin.75ı/

(c) tan.105ı/

? (d) sec.345ı/

4. Verify the sum and difference identities for the tangent:

tan.A � B/ D tan.A/� tan.B/

1C tan.A/ tan.B/

and

tan.AC B/ D tan.A/C tan.B/

1 � tan.A/ tan.B/
.

5. Verify the cofunction identities

? (a) cot
��

2
� x

�

D tan.x/

(b) sec
��

2
� x

�

D csc.x/

(c) csc
��

2
� x

�

D sec.x/

6. Draw graphs to determine if a given equation is an identity. Verify those

equations that are identities and provide examples to show that the others are

not identities.

(a) sin
�

x C �

4

�

C sin
�

x � �

4

�

D 2 sin.x/ cos
��

4

�

(b) sin.210ıC x/ � cos.210ı C x/ D 0

7. Determine if the following equations are identities.

(a)
sin.r C s/

cos.r/ cos.s/
D tan.r/C tan.s/

(b)
sin.r � s/

cos.r/ cos.s/
D tan.r/ � tan.s/

8. Use an appropriate identity to solve the given equation.

(a) sin.�/ cos .35ı/C cos.�/ sin .35ı/ D 1

2

(b) cos.2x/ cos.x/C sin.2x/ sin.x/ D �1
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9. (a) Use a graphing device to draw the graph of f .x/ D sin.x/ C cos.x/

using �� � x � 2� and �2 � y � 2. Does the graph of this function

appear to be a sinusoid? If so, approximate the amplitude and phase

shift of the sinusoid. What is the period of this sinusoid.

(b) Use one of the sum identities to rewrite the expression sin
�

x C �

4

�

.

Then use the values of sin
��

4

�

and cos
��

4

�

to further rewrite the

expression.

(c) Use the result from part (b) to show that the function f .x/ D sin.x/C
cos.x/ is indeed a sinusoidal function. What is its amplitude, phase

shift, and period?

10. (a) Use a graphing device to draw the graph of g.x/ D sin.x/C
p

3 cos.x/

using �� � x � 2� and �2:5 � y � 2:5. Does the graph of this

function appear to be a sinusoid? If so, approximate the amplitude and

phase shift of the sinusoid. What is the period of this sinusoid.

(b) Use one of the sum identities to rewrite the expression sin
�

x C �

3

�

.

Then use the values of sin
��

3

�

and cos
��

3

�

to further rewrite the

expression.

(c) Use the result from part (b) to show that the function g.x/ D sin.x/Cp
3 cos.x/ is indeed a sinusoidal function. What is its amplitude, phase

shift, and period?

11. When two voltages are applied to a circuit, the resulting voltage in the circuit

will be the sum of the individual voltages. Suppose two voltages V1.t/ D
30 sin.120�t/ and V2.t/ D 40 cos.120�t/ are applied to a circuit. The

graph of the sum V.t/ D V1.t/C V2.t/ is shown in Figure 4.8.

(a) Use the graph to estimate the values of C so that

y D 50 sin.120�.t � C //

fits the graph of V .

(b) Use the Sine Difference Identity to rewrite 50 sin.120�.t � C // as an

expression of the form 50 sin.A/ cos.B/ � 50 cos.A/ sin.B/, where A

and B involve t and/or C . From this, determine a value of C that will

make

30 sin.120�t/C 40 cos.120�t/D 50 sin.120�.t � C //:

Compare this value of C to the one you estimated in part (a).
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Figure 4.8: Graph of V.t/ D V1.t/C V2.t/.
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4.4 Double and Half Angle Identities

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� What are the Double Angle Identities for the sine, cosine, and tangent?

� What are the Half Angle Identities for the sine, cosine, and tangent?

� What are the Product-to-Sum Identities for the sine and cosine?

� What are the Sum-to-Product Identities for the sine and cosine?

� Why are these identities useful?

The sum and difference identities can be used to derive the double and half

angle identities as well as other identities, and we will see how in this section.

Again, these identities allow us to determine exact values for the trigonometric

functions at more points and also provide tools for solving trigonometric equations

(as we will see later).

Beginning Activity

1. Use B D A in the Cosine Sum Identity

cos.AC B/ D cos.A/ cos.B/ � sin.A/ sin.B/

to write cos.2A/ in terms of cos.A/ and sin.A/.

2. Is the equation
cos.2x/

2
D cos.x/

an identity? Verify your answer.

The Double Angle Identities

Suppose a marksman is shooting a gun with muzzle velocity v0 D 1200 feet per

second at a target 1000 feet away. If we neglect all forces acting on the bullet except
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the force due to gravity, the horizontal distance the bullet will travel depends on the

angle � at which the gun is fired. If we let r be this horizontal distance (called the

range), then

r D v2
0

g
sin.2�/;

where g is the gravitational force acting to pull the bullet downward. In this con-

text, g D 32 feet per second squared, giving us

r D 45000 sin.2�/:

The marksman would want to know the minimum angle at which he should fire

in order to hit the target 1000 feet away. In other words, the marksman wants to

determine the angle � so that r D 1000. This leads to solving the equation

45000 sin.2�/D 1000: (3)

Equations like the range equation in which multiples of angles arise frequently,

and in this section we will determine formulas for cos.2A/ and sin.2A/ in terms

of cos.A/ and sin.A/. These formulas are called double angle identities. In our

Beginning Activity we found that

cos.2A/ D cos2.A/ � sin2.A/

can be derived directly from the Cosine Sum Identity. A similar identity for the

sine can be found using the Sine Sum Identity:

sin.2A/ D sin.AC A/

D sin.A/ cos.A/C cos.A/ sin.A/

D 2 cos.A/ sin.A/:

Progress Check 4.19 (Using the Double Angle Identities)

If cos.�/ D 5

13
and

3�

2
� � � 2� , find cos.2�/ and sin.2�/.

There is also a double angle identity for the tangent. We leave the verification

of that identity for the exercises. To summarize:
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Double Angle Identities

cos.2A/ D cos2.A/ � sin2.A/

sin.2A/ D 2 cos.A/ sin.A/

tan.2A/ D 2 tan.A/

1 � tan2.A/
;

The first two identities are valid for all numbers A and the third is valid as

long as A ¤ �

4
C k

��

2

�

, where k is an integer.

Progress Check 4.20 (Alternate Double Angle Identities)

Prove the alternate versions of the double angle identity for the cosine.

1. cos.2A/ D 1 � 2 sin2.A/

2. cos.2A/ D 2 cos2.A/ � 1.

Solving Equations with Double Angles

Solving equations, like 45000 sin.2�/ D 1000, that involve multiples of angles,

requires the same kind of techniques as solving other equations, but the multiple

angle can add another wrinkle.

Example 4.21 (Solving an Equation with a Multiple Angle)

Consider the equation

2 cos.2�/ � 1 D 0:

This is an equation that is linear in cos.2�/, so we can apply the same ideas as we

did earlier to this equation. We solve for cos.2�/ to see that

cos.2�/ D 1

2
:

We know the angles at which the cosine has the value
1

2
, namely

�

3
C 2�k and

��

3
C 2�k for integers k. In our case, this make

2� D �

3
C 2�k or 2� D ��

3
C 2�k

for integers k. Now we divide by 2 to find our solutions

� D �

6
C �k or � D ��

6
C �k
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for integers k. These solutions are illustrated in Figure 4.9.

Figure 4.9: Graphs of y D 2 cos.2�/� 1.

Progress Check 4.22 (Solving Equations with Double Angles)

Approximate the smallest positive solution in degrees, to two decimal places, to

the range equation

45000 sin.2�/D 1000:

We can also use the Double Angle Identities to solve equations with multiple

angles.

Example 4.23 (Solving an Equation with a Double Angle Identity)

Consider the equation

sin.2�/D sin.�/:

The fact that the two trigonometric functions have different periods makes this

equation a little more difficult. We can use the Double Angle Identity for the sine

to rewrite the equation as

2 sin.�/ cos.�/D sin.�/:

At this point we may be tempted to cancel the factor of sin.�/ from both sides, but

we should resist that temptation because sin.�/ can be 0 and we can’t divide by 0.

Instead, let’s put everything one one side and factor:

2 sin.�/ cos.�/ D sin.�/

2 sin.�/ cos.�/� sin.�/ D 0

sin.�/.2 cos.�/ � 1/ D 0:
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Now we have a product that is equal to 0, so at least one of the factors must be 0.

This yields the two equations

sin.�/ D 0 or cos.�/� 1 D 0:

We solve each equation in turn. We know that sin.�/ D 0 when � D �k for

integers k. Also, cos.�/ � 1 D 0 implies cos.�/ D 1, and this happens when

� D 2�k for integers k. Notice that these solutions are a subset of the collection

�k of solutions of sin.�/ D 0. Thus, the solutions to sin.2�/ D sin.�/ are � D �k

for integers k, as illustrated in Figure 4.10.

Figure 4.10: Graphs of y D sin.2�/ and y D sin.�/.

Progress Check 4.24 (Solving an Equation with a Double Angle Identity)

The goal is to solve the equation cos.2�/D sin.�/.

1. Use a double angle identity to help rewrite the equation in the form

2 sin2.�/C sin.�/ � 1 D 0:

2. Solve the quadratic type equation in (1) by factoring the left side of the equa-

tion.
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Half Angle Identities

Now we investigate the half angle identities, identities for cos

�

A

2

�

and sin

�

A

2

�

.

Here we use the double angle identities from Progress Check 4.20:

cos.A/ D cos

�

2

�

A

2

��

cos.A/ D 2 cos2

�

A

2

�

� 1

cos.A/C 1 D 2 cos2

�

A

2

�

cos2

�

A

2

�

D cos.A/C 1

2

cos

�

A

2

�

D ˙
r

1C cos.A/

2
:

The sign of cos

�

A

2

�

depends on the quadrant in which
A

2
lies.

Example 4.25 (Using the Cosine Half Angle Identity)

We can use the Cosine Half Angle Identity to determine the exact value of cos

�

7�

12

�

.

If we let A D 7�

6
, then we have

7�

12
D A

2
. The Cosine Half Angle Identity shows

us that

cos

�

7�

12

�

D cos

 

7�
6

2

!

D ˙

s

1C cos
�

7�
6

�

2

D ˙

s

1�
p

3
2

2

D ˙

s

2�
p

3

4
:

Since the terminal side of the angle
7�

12
lies in the second quadrant, we know that
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cos

�

7�

12

�

is negative. Therefore,

cos

�

7�

12

�

D �

s

2 �
p

3

4
:

We can find a similar half angle formula for the sine using the same approach:

cos.A/ D cos

�

2

�

A

2

��

cos.A/ D 1� 2 sin2

�

A

2

�

cos.A/ � 1 D �2 sin2

�

A

2

�

sin2

�

A

2

�

D 1� cos.A/

2

sin

�

A

2

�

D ˙
r

1� cos.A/

2
:

Again, the sign of sin
�

A
2

�

depends on the quadrant in which A
2

lies.

To summarize,

Half Angle Identities

For any number A we have

� cos

�

A

2

�

D ˙
r

1C cos.A/

2

� sin

�

A

2

�

D ˙
r

1 � cos.A/

2

where the sign depends on the quadrant in which
A

2
lies.

Progress Check 4.26 (Using the Half Angle Identities)

Use a Half Angle Identity to find the exact value of cos
��

8

�

.

Summary of Section 4.4

In this section, we studied the following important concepts and ideas:
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� Double Angle Identities

cos.2A/ D cos2.A/ � sin2.A/ sin.2A/ D 2 cos.A/ sin.A/

cos.2A/ D 2 cos2.A/ � 1 tan.2A/ D 2 tan.A/

1 � tan2.A/

cos.2A/ D 1 � 2 sin2.A/

� Half Angle Identities

cos

�

A

2

�

D ˙
r

1C cos.A/

2
sin

�

A

2

�

D ˙
r

1 � cos.A/

2

where the sign depends on the quadrant in which
A

2
lies.

Exercises for Section 4.4

? 1. Given that cos.�/ D 2

3
and sin.�/ < 0, determine the exact values of

sin.2�/, cos.2�/, and tan.2�/.

2. Find all solutions to the given equation. Use a graphing utility to graph each

side of the given equation to check your solutions.

? (a) cos.x/ sin.x/ D 1

2

(b) cos.2x/C 3 D 5 cos.x/

3. Determine which of the following equations is an identity. Verify your re-

sponses.

? (a) cot.t/ sin.2t/D 1C cos.2t/

(b) sin.2x/ D 2 � csc2.x/

csc2.x/

(c) cos.2x/ D 2 � sec2.x/

sec2.x/

4. Find a simpler formula for cos .� C x/ in terms of cos.x/. Illustrate with a

graph.
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5. A classmate shares his solution to the problem of solving sin.2x/ D 2 cos.x/

over the interval Œ0; 2�/. He has written

sin.2x/ D 2 cos.x/

sin.2x/

2
D cos.x/

sin.x/ D cos.x/

tan.x/ D 1;

so x D �

4
or x D 5�

4
.

(a) Draw graphs of sin.2x/ and 2 cos.x/ and explain why this classmates

solution is incorrect.

(b) Find the error in this classmate’s argument.

(c) Determine the solutions to sin.2x/ D 2 cos.x/ over the interval Œ0; 2�/.

6. Determine the exact value of each of the following:

? (a) sin .22:5ı/

(b) cos .22:5ı/

? (c) tan .22:5ı/

(d) sin .15ı/

(e) cos .15ı/

(f) tan .15ı/

(g) sin .195ı/

? (h) cos .195ı/

(i) tan .195ı/

7. Determine the exact value of each of the following:

? (a) sin

�

3�

8

�

(b) cos

�

3�

8

�

? (c) tan

�

3�

8

�

(d) sin

�

5�

8

�

(e) cos

�

5�

8

�

(f) tan

�

5�

8

�

(g) sin

�

11�

12

�

? (h) cos

�

11�

12

�

(i) tan

�

11�

12

�

8. If cos.x/ D 2

3
and sin.x/ < 0 and 0 � x � 2� , determine the exact value

of each of the following:

? (a) cos
�x

2

�

(b) sin
�x

2

�

(c) tan
�x

2

�

9. If sin.x/ D 2

5
and cos.x/ < 0 and 0 � x � 2� , determine the exact value

of each of the following:
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(a) cos
�x

2

�

(b) sin
�x

2

�

(c) tan
�x

2

�

10. A rectangle is inscribed in a semicircle of radius r as shown in the diagram

to the right.

q

r

x

y

We can write the area A of this rectangle as A D .2x/y.

(a) Write the area of this inscribed rectangle as a function of the angle �

shown in the diagram and then show that A D r2 sin.2�/.

(b) Use the formula from part (a) to determine the angle � that produces

the largest value of A and determine the dimensions of this inscribed

rectangle with the largest possible area.

11. Derive the Triple Angle Identity

sin.3A/ D �4 sin3.A/C 3 sin.A/

for the sine with the following steps.

(a) Write 3A as 2AC A and apply the Sine Sum Identity to write sin.3A/

in terms of sin.2A/ and sin.A/.

(b) Use Double Angle Identitys to write sin.2A/ in terms of sin.A/ and

cos.A/ and to write cos.2A/ in terms of sin.A/.

(c) Use a Pythagorean Identity to write cos2.A/ in terms of sin2.A/ and

simplify.

12. Derive the Quadruple Angle Identity

sin.4x/ D 4 cos.x/
�

sin.x/ � 2 sin3.x/
�

as follows.

(a) Write sin.4x/ D sin.2.2x/ and use the Double Angle Identity for sine

to rewrite this formula.
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(b) Now use the Double Angle Identity for sine and one of the Double

Angle Identities for cosine to rewrite the expression from part (a).

(c) Algebraically rewrite the expression from part (b) to obtain the desired

formula for sin.4x/.



286 Chapter 4. Trigonometric Identities and Equations

4.5 Sum and Product Identities

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� What are the Product-to-Sum Identities for the sine and cosine?

� What are the Sum-to-Product Identities for the sine and cosine?

� Why are these identities useful?

In general, trigonometric equations are very difficult to solve exactly. We have

been using identities to solve trigonometric equations, but there are still many more

for which we cannot find exact solutions. Consider, for example, the equation

sin.3x/C sin.x/ D 0:

The graph of y D sin.3x/ C sin.x/ is shown in Figure 4.11. We can see that

there are many solutions, but the identities we have so far do not help us with this

equation. What would make this equation easier to solve is if we could rewrite the

sum on the left as a product – then we could use the fact that a product is zero if and

only if one of its factors is 0. We will later introduce the Sum-to-Product Identities

that will help us solve this equation.

Beginning Activity

1. Let A D 30ı and B D 45ı. Calculate

cos.A/ cos.B/ and

�

1

2

�

Œcos.AC B/C cos.A � B/�

What do you notice?

Product-to-Sum Identities

The Cosine Sum and Difference Identities

cos.A � B/ D cos.A/ cos.B/C sin.A/ sin.B/ (4)

cos.AC B/ D cos.A/ cos.B/ � sin.A/ sin.B/ (5)
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Figure 4.11: Graph of y D sin.3x/C sin.x/.

will allow us to develop identities that will express product of cosines or sines in

terms of sums of cosines and sines. To see how these identities arise, we add the

left and right sides of (4) and (5) to obtain

cos.A � B/C cos.AC B/ D 2 cos.A/ cos.B/:

So

cos.A/ cos.B/ D
�

1

2

�

Œcos.AC B/C cos.A � B/� :

Similarly, subtracting the left and right sides of (5) from (4) gives us

cos.A � B/ � cos.AC B/ D 2 sin.A/ sin.B/:

So

sin.A/ sin.B/ D
�

1

2

�

Œcos.A � B/ � cos.AC B/� :

We can similarly obtain a formula for cos.A/ sin.B/. In this case we use the

sine sum and difference formulas

sin.A � B/ D sin.A/ cos.B/ � cos.A/ sin.B/ (6)

sin.AC B/ D sin.A/ cos.B/C cos.A/ sin.B/: (7)

Adding the left and right hand sides of (6) and (7) yields

sin.A � B/C sin.AC B/ D 2 sin.A/ cos.B/:
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So

sin.A/ cos.B/ D
�

1

2

�

Œsin.AC B/C sin.A � B/� :

Product-to-Sum Identities

For any numbers A and B we have

cos.A/ cos.B/ D
�

1

2

�

Œcos.AC B/C cos.A � B/�

sin.A/ sin.B/ D
�

1

2

�

Œcos.A � B/ � cos.AC B/�

sin.A/ cos.B/ D
�

1

2

�

Œsin.AC B/C sin.A � B/� :

Progress Check 4.27 (Using the Product-to-Sum Identities)

Find the exact value of sin .52:5ı/ sin .7:5ı/.

Sum-to-Product Identities

As our final identities, we derive the reverse of the Product-to-Sum identities.

These identities are called the Sum-to-Product identities. For example, to verify

the identity

cos.A/C cos.B/ D 2 cos

�

AC B

2

�

cos

�

A � B

2

�

;

we first note that A D ACB
2
C A�B

2
and B D ACB

2
� A�B

2
. So

cos.A/ D cos

�

AC B

2
C A � B

2

�

D cos

�

AC B

2

�

cos

�

A � B

2

�

� sin

�

AC B

2

�

sin

�

A � B

2

�

(8)

and

cos.B/ D cos

�

AC B

2
� A � B

2

�

D cos

�

AC B

2

�

cos

�

A � B

2

�

C sin

�

AC B

2

�

sin

�

A � B

2

�

: (9)
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Adding the left and right sides of (8) and (9) results in

cos.A/C cos.B/ D 2 cos

�

AC B

2

�

cos

�

A � B

2

�

:

Also, if we subtract the left and right hands sides of (9) from (8) we obtain

cos.A/ � cos.B/ D �2 sin

�

AC B

2

�

sin

�

A � B

2

�

:

Similarly,

sin.A/ D sin

�

AC B

2
C A� B

2

�

D sin

�

AC B

2

�

cos

�

A � B

2

�

C cos

�

AC B

2

�

sin

�

A � B

2

�

(10)

and

sin.B/ D sin

�

AC B

2
� A � B

2

�

D sin

�

AC B

2

�

cos

�

A � B

2

�

� cos

�

AC B

2

�

sin

�

A � B

2

�

: (11)

Adding the left and right sides of (10) and (11) results in

sin.A/C sin.B/ D 2 sin

�

AC B

2

�

cos

�

A � B

2

�

:

Again, if we subtract the left and right hands sides of (11) from (10) we obtain

sin.A/ � sin.B/ D 2 cos

�

AC B

2

�

sin

�

A � B

2

�

:

Sum-to-Product Identities

For any numbers A and B we have

cos.A/C cos.B/ D 2 cos

�

AC B

2

�

cos

�

A � B

2

�

cos.A/ � cos.B/ D �2 sin

�

AC B

2

�

sin

�

A � B

2

�

sin.A/C sin.B/ D 2 sin

�

AC B

2

�

cos

�

A � B

2

�

sin.A/ � sin.B/ D 2 cos

�

AC B

2

�

sin

�

A � B

2

�

:
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Progress Check 4.28 (Using the Sum-to-Product Identities)

Find the exact value of cos .112:5ı/C cos .67:5ı/.

We can use these Sum-to-Product and Product-to-Sum Identities to solve even

more types of trigonometric equations.

Example 4.29 (Solving Equations Using the Sum-to-Product Identity)

Let us return to the problem stated at the beginning of this section to solve the

equation

sin.3x/C sin.x/ D 0:

Using the Sum-to-Product

sin.A/C sin.B/ D 2 sin

�

AC B

2

�

cos

�

A � B

2

�

with A D x and B D 3x we can rewrite the equation as follows:

sin.3x/C sin.x/ D 0

2 sin

�

4x

2

�

cos
�x

2

�

D 0

2 sin.2x/ cos
�x

2

�

D 0:

The advantage of this form is that we now have a product of functions equal to 0,

and the only way a product can equal 0 is if one of the factors is 0. This reduces

our original problem to two equations we can solve:

sin.2x/ D 0 or cos
�x

2

�

D 0:

We know that sin.2x/ D 0 when 2x D k� or x D k
�

2
, where k is any integer,

and cos
�x

2

�

D 0 when
x

2
D �

2
C k� or x D � C k2� , where k is any integer.

These solutions can be seen where the graph of y D sin.3x/ C sin.x/ intersects

the x-axis as illustrated in Figure 4.12.

Summary of Trigonometric Identities

Trigonometric identities are useful in that they allow us to determine exact values

for the trigonometric functions at more points than before and also provide tools

for deriving new identities and for solving trigonometric equations. Here we pro-

vide a summary of our trigonometric identities.



4.5. Sum and Product Identities 291

Figure 4.12: Graph of y D sin.3x/C sin.x/.

Cofunction Identities

cos
��

2
� A

�

D sin.A/

sin
��

2
� A

�

D cos.A/

tan
��

2
� A

�

D cot.A/:

Double Angle Identities

sin.2A/ D 2 cos.A/ sin.A/

cos.2A/ D cos2.A/ � sin2.A/

cos.2A/ D 1� 2 sin2.A/

cos.2A/ D 2 cos2.A/ � 1

tan.2A/ D 2 tan.A/

1� tan2.A/
:

Half Angle Identities

cos2

�

A

2

�

D 1C cos.A/

2

cos

�

A

2

�

D ˙
r

1C cos.A/

2

sin2

�

A

2

�

D 1 � cos.A/

2

sin

�

A

2

�

D ˙
r

1� cos.A/

2

tan

�

A

2

�

D sin.A/

1C cos.A/

tan

�

A

2

�

D 1 � cos.A/

sin.A/
:

The signs of cos

�

A

2

�

and sin

�

A

2

�

de-

pend on the quadrant in which A
2

lies.

Cosine Difference and Sum Identities

cos.A � B/ D cos.A/ cos.B/C sin.A/ sin.B/

cos.AC B/ D cos.A/ cos.B/ � sin.A/ sin.B/:
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Sine Difference and Sum Identities

sin.A � B/ D sin.A/ cos.B/ � cos.A/ sin.B/

sin.AC B/ D sin.A/ cos.B/C cos.A/ sin.B/:

Tangent Difference and Sum Identities

tan.A � B/ D tan.A/ � tan.B/

1C tan.A/ tan.B/

tan.AC B/ D tan.A/C tan.B/

1 � tan.A/ tan.B/
:

Product-to-Sum Identities

cos.A/ cos.B/ D
�

1

2

�

Œcos.AC B/C cos.A � B/�

sin.A/ sin.B/ D
�

1

2

�

Œcos.A � B/ � cos.A � B/�

sin.A/ cos.B/ D
�

1

2

�

Œsin.AC B/C sin.A � B/� :

Sum-to-Product Identities

cos.A/C cos.B/ D 2 cos

�

AC B

2

�

cos

�

A � B

2

�

cos.A/ � cos.B/ D �2 sin

�

AC B

2

�

sin

�

A � B

2

�

sin.A/C sin.B/ D 2 sin

�

AC B

2

�

cos

�

A � B

2

�

sin.A/ � sin.B/ D 2 cos

�

AC B

2

�

sin

�

A � B

2

�

:

Exercises for Section 4.5

1. Write each of the following expressions as a sum of trigonometric function

values. When possible, determine the exact value of the resulting expression.
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? (a) sin .37:5ı/ cos .7:5ı/

(b) sin .75ı/ sin .15ı/

(c) cos .44ı/ cos .16ı/

(d) cos .45ı/ cos .15ı/

? (e) cos

�

5�

12

�

sin
� �

12

�

(f) sin

�

3�

4

�

cos
� �

12

�

2. Write each of the following expressions as a sum of trigonometric function

values. When possible, determine the exact value of the resulting expression.

? (a) sin .50ı/C sin .10ı/

(b) sin .195ı/ � sin .105ı/

(c) cos .195ı/ � cos .15ı/

(d) cos .76ı/C cos .14ı/

? (e) cos

�

7�

12

�

C cos
� �

12

�

(f) sin

�

7�

4

�

� sin

�

5�

12

�

3. Find all solutions to the given equation. Use a graphing utility to graph each

side of the given equation to check your solutions.

? (a) sin.2x/C sin.x/ D 0

(b) sin.x/ cos.x/ D 1

4

(c) cos.2x/C cos.x/ D 0



Chapter 5

Complex Numbers and Polar

Coordinates

One of the goals of algebra is to find solutions to polynomial equations. You have

probably done this many times in the past, solving equations like x2 � 1 D 0

or 2x2 C 1 D 3x. In the process, you encountered the quadratic formula that

allows us to find all solutions to quadratic equations. For example, the quadratic

formula gives us the solutions x D 2C
p
�4

2
and x D 2 �

p
�4

2
for the quadratic

equation x2 � 2x C 2 D 0. In this chapter we will make sense of solutions like

these that involve negative numbers under square roots, and discover connections

between algebra and trigonometry that will allow us to solve a larger collection of

polynomial equations than we have been able to until now.

294
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5.1 The Complex Number System

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� What is a complex number?

� What does it mean for two complex numbers to be equal?

� How do we add two complex numbers together?

� How do we multiply two complex numbers together?

� What is the conjugate of a complex number?

� What is the modulus of a complex number?

� How are the conjugate and modulus of a complex number related?

� How do we divide one complex number by another?

The quadratic formula x D �b ˙
p

b2 � 4ac

2a
allows us to find solutions to the

quadratic equation ax2 C bx C c D 0. For example, the solutions to the equation

x2 C x C 1 D 0 are

x D �1˙
p

1 � 4

2
D �1˙

p
�3

2
:

A problem arises immediately with this solution since there is no real number t

with the property that t2 D �3 or t D
p
�3. To make sense of solutions like this

we introduce complex numbers. Although complex numbers arise naturally when

solving quadratic equations, their introduction into mathematics came about from

the problem of solving cubic equations.1

If we use the quadratic formula to solve an equation such as x2 C x C 1 D 0,

1An interesting, and readable, telling of this history can be found in Chapter 6 of Journey Through

Genius by William Dunham.
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we obtain the solutions x D �1C
p
�3

2
and x D �1�

p
�3

2
. These numbers are

complex numbers and we have a special form for writing these numbers. We write

them in a way that that isolates the square root of �1. To illustrate, the number

�1C
p
�3

2
can be written as follows;

�1C
p
�3

2
D �1

2
C
p
�3

2

D �1

2
C
p

3
p
�1

2

D �1

2
C
p

3

2

p
�1:

Since there is no real number t satisfying t2 D �1, the number
p
�1 is not a real

number. We call
p
�1 an imaginary number and give is a special label i . Thus,

i D
p
�1 or i2 D �1. With this in mind we can write

�1C
p
�3

2
D �1

2
C
p

3

2
i;

and every complex number has this special form.

Definition. A complex number is an object of the form

aC bi;

where a and b are real numbers and i2 D �1.

The form aC bi , where a and b are real numbers is called the standard form

for a complex number. When we have a complex number of the form z D a C bi ,

the number a is called the real part of the complex number z and the number b is

called the imaginary part of z. Since i is not a real number, two complex numbers

aC bi and c C di are equal if and only if a D c and b D d .

There is an arithmetic of complex numbers that is determined by an addition

and multiplication of complex numbers. Adding and subtracting complex numbers

is natural:

.aC bi/C .c C di/ D .a C c/C .b C d/i

.aC bi/C .c C di/ D .a C c/C .b C d/i
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That is, to add (or subtract) two complex numbers we add (subtract)their real parts

and add (subract) their imaginary parts. Multiplication is also done in a natural

way – to multiply two complex numbers, we simply expand the product as usual

and exploit the fact that i2 D �1. So the product of two complex number is

.a C bi/.c C di/ D ac C .ad/i C .bc/i C .bd/i2

D .ac � bd/C .ad C bc/i

It can be shown that the complex numbers satisfy many useful and familiar

properties, which are similar to properties of the real numbers. If u, w, and z, are

complex numbers, then

1. w C z D z C w

2. uC .w C z/ D .uCw/C z

3. The complex number 0 D 0C 0i is an additive identity, that is z C 0 D z.

4. If z D aC bi , then the additive inverse of z is �z D .�a/C .�b/i , That is,

z C .�z/ D 0.

5. wz D zw

6. u.wz/ D .uw/z

7. u.w C z/ D uw C uz

8. If wz D 0, then w D 0 or z D 0.

We will use these properties as needed. For example, to write the complex

product .1 C i /i in the form a C bi with a and b real numbers, we distribute

multiplication over addition and use the fact that i2 D �1 to see that

.1C i /i D i C i2 D i C .�1/ D .�1/C i:

For another example, if w D 2C i and z D 3� 2i , we can use these properties to

write wz in the standard aC bi form as follows:

wz D .2C i /z

D 2z C iz

D 2.3� 2i/C i.3� 2i/

D .6 � 4i/C .3i � 2i2/

D 6 � 4i C 3i � 2.�1/

D 8 � i



298 Chapter 5. Complex Numbers and Polar Coordinates

Progress Check 5.1 (Sums and Products of Complex Numbers)

1. Write each of the sums or products as a complex number in standard form.

(a) .2C 3i/C .7 � 4i/

(b) .4 � 2i/.3C i /

(c) .2C i /i � .3C 4i/

2. Use the quadratic formula to write the two solutions to the quadratic equation

x2�xC 2 D 0 as complex numbers of the form r C si and uC vi for some

real numbers r , s, u, and v. (Hint: Remember: i D
p
�1. So we can rewrite

something like
p
�4 as

p
�4 D

p
4
p
�1 D 2i .)

Division of Complex Numbers

We can add, subtract, and multiply complex numbers, so it is natural to ask if we

can divide complex numbers. We illustrate with an example.

Example 5.2 (Dividing by a Complex Number)

Suppose we want to write the quotient
2C i

3C i
as a complex number in the form

a C bi . This problem is rationalizing a denominator since i D
p
�1. So in this

case we need to “remove” the imaginary part from the denominator. Recall that

the product of a complex number with its conjugate is a real number, so if we

multiply the numerator and denominator of
2C i

3C i
by the complex conjugate of the

denominator, we can rewrite the denominator as a real number. The steps are as

follows. Multiplying the numerator and denominator by the conjugate 3�i of 3Ci

gives us

2C i

3C i
D
�

2C i

3C i

��

3 � i

3 � i

�

D .2C i /.3� i /

.3C i /.3� i /

D .6 � i2/C .�2C 3/i

9� i2

D 7C i

10
:

Now we can write the final result in standard form as
7C i

10
D 7

10
C 1

10
i .
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Example 5.2 illustrates the general process for dividing one complex number

by another. In general, we can write the quotient
aC bi

c C di
in the form r C si by

multiplying numerator and denominator of our fraction by the conjugate c � di of

c C di to see that

aC bi

c C di
D
�

aC bi

c C di

��

c � di

c � di

�

D .ac C bd/C .bc � ad/i

c2 C d2

D ac C bd

c2 C d2
C bc � ad

c2 C d2
i:

Therefore, we have the formula for the quotient of two complex numbers.

The quotient
a C bi

c C di
of the complex numbers a C bi and c C di is the

complex number

a C bi

c C di
D ac C bd

c2 C d2
C bc � ad

c2 C d2
i;

provided c C di ¤ 0.

Progress Check 5.3 (Dividing Complex Numbers)

Let z D 3C 4i and w D 5 � i .

1. Write
w

z
D 5 � i

3C 4i
as a complex number in the form r C si where r and

s are some real numbers. Check the result by multiplying the quotient by

3C 4i . Is this product equal to 5 � i?

2. Find the solution to the equation .3C 4i/x D 5� i as a complex number in

the form x D uC vi where u and v are some real numbers.

Geometric Representations of Complex Numbers

Each ordered pair .a; b/ of real numbers determines:

� A point in the coordinate plane with coordinates .a; b/.

� A complex number aC bi .

� A vector aiC bj D ha; bi.
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This means that we can geometrically represent the complex number a C bi with

a vector in standard position with terminal point .a; b/. Therefore, we can draw

pictures of complex numbers in the plane. When we do this, the horizontal axis is

called the real axis, and the vertical axis is called the imaginary axis. In addition,

the coordinate plane is then referred to as the complex plane. That is, if z D aCbi

we can think of z as a directed line segment from the origin to the point .a; b/,

where the terminal point of the segment is a units from the imaginary axis and b

units from the real axis. For example, the complex numbers 3C 4i and �8C 3i

are shown in Figure 5.1.

x

y

3+4i
-8+3i

Figure 5.1: Two complex numbers.

In addition, the sum of two complex numbers can be represented geometrically

using the vector forms of the complex numbers. Draw the parallelogram defined by

w D aCbi and z D cCdi . The sum of w and z is the complex number represented

by the vector from the origin to the vertex on the parallelogram opposite the origin

as illustrated with the vectors w D 3C 4i and z D �8C 3i in Figure 5.2.

Progress Check 5.4 (Visualizing Complex Addition)

Let w D 2C 3i and z D �1C 5i .

1. Write the complex sum w C z in standard form.

2. Draw a picture to illustrate the sum using vectors to represent w and z.

We now extend our use of the representation of a complex number as a vector

in standard position to include the notion of the length of a vector. Recall from

Section 3.6 (page 234) that the length of a vector v D aiC bj is jvj D
p

a2 C b2.
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x

y

3+4i
-8+3i

-5+7i

Figure 5.2: The Sum of Two Complex Numbers.

When we use this idea with complex numbers, we call it the norm or modulus of

the complex number.

Definition. The norm (or modulus) of the complex number z D a C bi is

the distance from the origin to the point .a; b/ and is denoted by jzj. We see

that

jzj D jaC bi j D
p

a2 C b2:

There is another concept related to complex number that is based on the fol-

lowing bit of algebra.

.a C bi/.a� bi/ D a2 � .bi/2

D a2 � b2i2

D a2 C b2

The complex number a � bi is called the complex conjugate of aC bi . If we let

z D aC bi , we denote the complex conjugate of z as z. So

z D aC bi D a � bi:

We also notice that

zz D .aC bi/.a � bi/ D a2 C b2;
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and so the product of a complex number with its conjugate is a real number. In

fact,

zz D a2 C b2 D jzj2; and so

jzj D
p

zz

Progress Check 5.5 (Operations on Complex Numbers)

Let w D 2C 3i and z D �1C 5i .

1. Find w and z.

2. Compute jwj and jzj.

3. Compute ww and zz.

4. What is z if z is a real number?

Summary of Section 5.1

In this section, we studied the following important concepts and ideas:

� A complex number is an object of the form a C bi , where a and b are

real numbers and i2 D �1. When we have a complex number of the form

z D a C bi , the number a is called the real part of the complex number z

and the number b is called the imaginary part of z.

� We can add, subtract, multiply, and divide complex numbers as follows:

.aC bi/C .c C di/ D .aC c/C .b C d/i

.aC bi/C .c C di/ D .aC c/C .b C d/i

.aC bi/.c C di/ D .ac � bd/C .ad C bc/i

a C bi

c C di
D ac C bd

c2 C d2
C bc � ad

c2 C d2
i; provided c C di ¤ 0

� A complex number aC bi can be represented geometrically with a vector in

standard position with terminal point .a; b/. When we do this, the horizontal

axis is called the real axis, and the vertical axis is called the imaginary axis.

In addition, the coordinate plane is then referred to as the complex plane.

That is, if z D a C bi we can think of z as a directed line segment from the

origin to the point .a; b/, where the terminal point of the segment is a units

from the imaginary axis and b units from the real axis.
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� The norm (or modulus) of the complex number z D a C bi is the distance

from the origin to the point .a; b/ and is denoted by jzj. We see that

jzj D jaC bi j D
p

a2 C b2:

� The complex number a�bi is called the complex conjugate of aCbi . Note

that

.aC bi/.a � bi/ D a2 C b2 D ja C bi j2 :

Exercises for Section 5.1

? 1. Write each of the following as a complex number in standard form.

(a) .4C i /C .3� 3i/

(b) 5.2 � i /C i.3 � 2i/

(c) .4C 2i/.5� 3i/

(d) .2C 3i/.1C i /C .4 � 3i/

2. Use the quadratic formula to write the two solutions of each of the following

quadratic equations in standard form.

? (a) x2 � 3x C 5 D 0 (b) 2x2 D x � 7

3. For each of the following pairs of complex numbers w and z, determine the

sum w C z and illustrate the sum with a diagram.

? (a) w D 3C 2i; z D 5 � 4i .

? (b) w D 4i; z D �3C 2i .

(c) w D 5; z D �7C 2i .

(d) w D 6� 3i; z D �1C 7i .

4. For each of the following complex numbers z, determine z, jzj, and zz.

? (a) z D 5C 2i

? (b) z D 3i

(c) z D 3 � 4i

(d) z D 7C i

5. Write each of the following quotients in standard form.

? (a)
5C i

3C 2i
? (b)

3C 3i

i
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(c)
i

2 � i
(d)

4C 2i

1� i

6. We know that i1 D i and i2 D �1. We can then see that

i3 D i2 � i D .�1/i D �i:

(a) Show that i4 D 1.

(b) Now determine i5, i6, i7, and i8. Note: Each power of i will equal 1,

�1, i , or �i .

(c) Notice that 13 D 4 � 3C 1. We will use this to determine i13.

i13 D i4�3C1 D i4�3i1 D
�

i4
�3 � i

So what is i13?

(d) Using 39 D 4 � 9C 3, determine i39.

(e) Determine i54.

7. (a) Write the complex number i.2C2i/ in standard form. Plot the complex

numbers 2C 2i and i.2C 2i/ in the complex plane. What appears to

be the angle between these two complex numbers?

(b) Repeat part (a) for the complex numbers 2� 3i and i.2� 3i/.

(c) Repeat part (a) for the complex numbers 3i and i.3i/.

(d) Describe what happens when the complex number aC bi is multiplied

by the complex number i .
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5.2 The Trigonometric Form of a Complex Number

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� What is the polar (trigonometric) form of a complex number?

� How do we multiply two complex numbers in polar form?

� How do we divide one complex number in polar form by a nonzero

complex number in polar form?

Multiplication of complex numbers is more complicated than addition of com-

plex numbers. To better understand the product of complex numbers, we first inves-

tigate the trigonometric (or polar) form of a complex number. This trigonometric

form connects algebra to trigonometry and will be useful for quickly and easily

finding powers and roots of complex numbers.

Beginning Activity

If z D a C bi is a complex number, then we can plot z in the plane as shown

in Figure 5.3. In this situation, we will let r be the magnitude of z (that is, the

distance from z to the origin) and � the angle z makes with the positive real axis

as shown in Figure 5.3.

1. Use right triangle trigonometry to write a and b in terms of r and � .

2. Explain why we can write z as

z D r.cos.�/C i sin.�//: (1)

When we write z in the form given in Equation (1), we say that z is written in

trigonometric form (or polar form).2 The angle � is called the argument of the

2The word polar here comes from the fact that this process can be viewed as occurring with polar

coordinates.
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θ

b

a

r

z

Figure 5.3: Trigonometric form of a complex number.

complex number z and the real number r is the modulus or norm of z. To find the

polar representation of a complex number z D aC bi , we first notice that

r D jzj D
p

a2 C b2

a D r cos.�/

b D r sin.�/

To find � , we have to consider cases.

� If z D 0 D 0C 0i , then r D 0 and � can have any real value.

� If z ¤ 0 and a ¤ 0, then tan.�/ D b

a
.

� If z ¤ 0 and a D 0 (so b ¤ 0), then

* � D �

2
if b > 0

* � D ��

2
if b < 0.

Progress Check 5.6 (The Polar Form of a Complex Number)

1. Determine the polar form of the complex numbers w D 4 C 4
p

3i and

z D 1 � i .
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2. Determine real numbers a and b so that aCbi D 3
�

cos
��

6

�

C i sin
��

6

��

.

There is an alternate representation that you will often see for the polar form of

a complex number using a complex exponential. We won’t go into the details, but

only consider this as notation. When we write ei� (where i is the complex number

with i2 D �1) we mean

ei� D cos.�/C i sin.�/:

So the polar form r.cos.�/C i sin.�// can also be written as rei� :

rei� D r.cos.�/C i sin.�//:

Products of Complex Numbers in Polar Form

There is an important product formula for complex numbers that the polar form

provides. We illustrate with an example.

Example 5.7 (Products of Complex Numbers in Polar Form)

Let w D �1

2
C
p

3

2
i and z D

p
3 C i . Using our definition of the product of

complex numbers we see that

wz D
�p

3C i
�

 

�1

2
C
p

3

2
i

!

D �
p

3C i:

Now we write w and z in polar form. Note that jwj D

v

u

u

t

�

�1

2

�2

C
 p

3

2

!2

D

1 and the argument of w satisfies tan.�/ D �
p

3. Since w is in the second quad-

rant, we see that � D 2�

3
, so the polar form of w is

w D cos

�

2�

3

�

C i sin

�

2�

3

�

:

Also, jzj D
r

�p
3
�2
C 12 D 2 and the argument of z satisfies tan.�/ D 1p

3
.

Since z is in the first quadrant, we know that � D �
6

and the polar form of z is

z D 2
h

cos
��

6

�

C i sin
��

6

�i

:
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We can also find the polar form of the complex product wz. Here we have

jwzj D 2, and the argument of zw satisfies tan.�/ D � 1p
3

. Since wz is in

quadrant II, we see that � D 5�

6
and the polar form of wz is

wz D 2

�

cos

�

5�

6

�

C i sin

�

5�

6

��

:

When we compare the polar forms of w, z, and wz we might notice that jwzj D
jwj jzj and that the argument of zw is

2�

3
C �

6
or the sum of the arguments of w

and z. This turns out to be true in general.

The result of Example 5.7 is no coincidence, as we will show. In general, we

have the following important result about the product of two complex numbers.

Muliplication of Complex Numbers in Polar Form

Let w D r.cos.˛/ C i sin.˛// and z D s.cos.ˇ/ C i sin.ˇ// be complex

numbers in polar form. Then the polar form of the complex product wz is

given by

wz D rs .cos.˛ C ˇ/C i sin.˛ C ˇ// :

This states that to multiply two complex numbers in polar form, we multiply

their norms and add their arguments.

To understand why this result it true in general, let w D r.cos.˛/C i sin.˛//

and z D s.cos.ˇ/ C i sin.ˇ// be complex numbers in polar form. We will use

cosine and sine of sums of angles identities to find wz:

wz D Œr.cos.˛/C i sin.˛//�Œs.cos.ˇ/C i sin.ˇ//�

D rs.Œcos.˛/ cos.ˇ/ � sin.˛/ sin.ˇ/�C i Œcos.˛/ sin.ˇ/C cos.ˇ/ sin.˛/�

(1)

We now use the cosine and sum identities (see page 291) and see that

cos.˛C ˇ/ D cos.˛/ cos.ˇ/ � sin.˛/ sin.ˇ/ and

sin.˛C ˇ/ D cos.˛/ sin.ˇ/C cos.ˇ/ sin.˛/

Using equation (1) and these identities, we see that

wz D rs.Œcos.˛/ cos.ˇ/ � sin.˛/ sin.ˇ/�C i Œcos.˛/ sin.ˇ/C cos.ˇ/ sin.˛/�

D rs.cos.˛ C ˇ/C i sin.˛ C ˇ//



5.2. The Trigonometric Form of a Complex Number 309

as expected.

An illustration of this is given in Figure 5.4. The formula for multiplying com-

plex numbers in polar form tells us that to multiply two complex numbers, we add

their arguments and multiply their norms.

α

w

β

z

α+β

wz

Figure 5.4: A Geometric Interpretation of Multiplication of Complex Numbers.

Progress Check 5.8 (Visualizing the Product of Complex Numbers)

Let w D 3

�

cos

�

5�

3

�

C i sin

�

5�

3

��

and z D 2
h

cos
�

��

4

�

C i sin
�

��

4

�i

.

1. What is jwzj?

2. What is the argument of wz?

3. In which quadrant is wz? Explain.

4. Determine the polar form of wz.

5. Draw a picture of w, z, and wz that illustrates the action of the complex

product.
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Quotients of Complex Numbers in Polar Form

We have seen that we multiply complex numbers in polar form by multiplying

their norms and adding their arguments. There is a similar method to divide one

complex number in polar form by another complex number in polar form.

Division of Complex Numbers in Polar Form

Let w D r.cos.˛/ C i sin.˛// and z D s.cos.ˇ/ C i sin.ˇ// be complex

numbers in polar form with z ¤ 0. Then the polar form of the complex

quotient
w

z
is given by

w

z
D r

s
.cos.˛ � ˇ/C i sin.˛ � ˇ// :

So to divide complex numbers in polar form, we divide the norm of the

complex number in the numerator by the norm of the complex number in

the denominator and subtract the argument of the complex number in the

denominator from the argument of the complex number in the numerator.

The proof of this is similar to the proof for multiplying complex numbers and

is included as a supplement to this section.

Progress Check 5.9 (Visualizing the Quotient of Two Complex Numbers)

Let w D 3

�

cos

�

5�

3

�

C i sin

�

5�

3

��

and z D 2
h

cos
�

��

4

�

C i sin
�

��

4

�i

.

1. What is

ˇ

ˇ

ˇ

w

z

ˇ

ˇ

ˇ
?

2. What is the argument of

ˇ

ˇ

ˇ

w

z

ˇ

ˇ

ˇ?

3. In which quadrant is

ˇ

ˇ

ˇ

w

z

ˇ

ˇ

ˇ? Explain.

4. Determine the polar form of

ˇ

ˇ

ˇ

w

z

ˇ

ˇ

ˇ.

5. Draw a picture of w, z, and

ˇ

ˇ

ˇ

w

z

ˇ

ˇ

ˇ that illustrates the action of the complex

product.
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Proof of the Rule for Dividing Complex Numbers in Polar Form

Let w D r.cos.˛/C i sin.˛// and z D s.cos.ˇ/C i sin.ˇ// be complex numbers

in polar form with z ¤ 0. So

w

z
D r.cos.˛/C i sin.˛//

s.cos.ˇ/C i sin.ˇ//
D r

s

�

cos.˛/C i sin.˛/

cos.ˇ/C i sin.ˇ/

�

:

We will work with the fraction
cos.˛/C i sin.˛/

cos.ˇ/C i sin.ˇ/
and follow the usual practice of

multiplying the numerator and denominator by cos.ˇ/ � i sin.ˇ/. So

w

z
D r

s

�

cos.˛/C i sin.˛/

cos.ˇ/C i sin.ˇ/

�

D r

s

�

cos.˛/C i sin.˛/

cos.ˇ/C i sin.ˇ/
� cos.ˇ/ � i sin.ˇ/

cos.ˇ/ � i sin.ˇ/

�

D r

s

�

.cos.˛/ cos.ˇ/C sin.˛/ sin.ˇ//C i.sin.˛/ cos.ˇ/ � cos.˛/ sin.ˇ//

cos2.ˇ/C sin2.ˇ/

�

We now use the following identities with the last equation:

� cos.˛/ cos.ˇ/C sin.˛/ sin.ˇ/ D cos.˛ � ˇ/.

� sin.˛/ cos.ˇ/ � cos.˛/ sin.ˇ/ D sin.˛ � ˇ/.

� cos2.ˇ/C sin2.ˇ/ D 1.

Using these identities with the last equation for
w

z
, we see that

w

z
D r

s

�

cos.˛ � ˇ/C i sin.˛ � ˇ/

1

�

D r

s
Œcos.˛ � ˇ/C i sin.˛ � ˇ/�:

Summary of Section 5.2

In this section, we studied the following important concepts and ideas:

� If z D a C bi is a complex number, then we can plot z in the plane. If r is

the magnitude of z (that is, the distance from z to the origin) and � the angle

z makes with the positive real axis, then the trigonomtric form (or polar

form) of z is z D r.cos.�/C i sin.theta/, where

r D
p

a2 D b2; cos.�/ D a

r
; and sin.�/ D b

r
:

The angle � is called the argument of the complex number z and the real

number r is the modulus or norm of z.
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� If w D r.cos.˛/ C i sin.˛// and z D s.cos.ˇ/ C i sin.ˇ// are complex

numbers in polar form, then the polar form of the complex product wz is

given by

wz D rs .cos.˛C ˇ/C i sin.˛ C ˇ// ;

and f z ¤ 0, the polar form of the complex quotient
w

z
is

w

z
D r

s
.cos.˛ � ˇ/C i sin.˛ � ˇ// ;

This states that to multiply two complex numbers in polar form, we multiply

their norms and add their arguments, and to divide two complex numbers,

we divide their norms and subtract their arguments.

Exercises for Section 5.2

1. Determine the polar (trigonometric) form of each of the following complex

numbers.

? (a) 3C 3i

(b) 3 � 3i

(c) �3C 3i

(d) 5i

? (e) 4
p

3C 4i

(f) �4
p

3 � 4i

2. In each of the following a complex number z is given. In each case, de-

termine real numbers a and b so that z D a C bi . If it is not possible to

determine exact values for a and b, determine the values of a and b correct

to four decimal places.

? (a) z D 5
�

cos
��

2

�

C i sin
��

2

��

? (b) z D 2:5
�

cos
��

4

�

C i sin
��

4

��

(c) z D 2:5

�

cos

�

3�

4

�

C i sin

�

3�

4

��

(d) z D 3

�

cos

�

7�

6

�

C i sin

�

7�

6

��

(e) z D 8

�

cos

�

7�

10

�

C i sin

�

7�

10

��
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3. For each of the following, write the product wz in polar (trigonometric

form). When it is possible, write the product in form a C bi , where a and b

are real numbers and do not involve a trigonometric function.

? (a) w D 5
�

cos
� �

12

�

C i sin
� �

12

��

; z D 2

�

cos

�

5�

12

�

C i sin

�

5�

12

��

? (b) w D 2:3
�

cos
��

3

�

C i sin
��

3

��

; z D 3

�

cos

�

5�

4

�

C i sin

�

5�

4

��

(c) w D 2

�

cos

�

7�

10

�

C i sin

�

7�

10

��

; z D 2

�

cos

�

2�

5

�

C i sin

�

2�

5

��

(d) w D .cos .24ı/C i sin .24ı// ; z D 2 .cos .33ı/C i sin .33ı//

(e) w D 2 .cos .72ı/C i sin .72ı// ; z D 2 .cos .78ı/C i sin .78ı//

? 4. For the complex numbers in Exercise (3), write the quotient
w

z
in polar

(trigonometric form). When it is possible, write the quotient in form aC bi ,

where a and b are real numbers and do not involve a trigonometric function.

5. (a) Write the complex number i in polar form.

(b) Let z D r .cos.�/C i sin.�//. Determine the product i � z in polar

form. Use this to explain why the complex number i � z and z will be

perpendicualr when both are plotted in the complex plane.
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5.3 DeMoivre’s Theorem and Powers of Complex Num-

bers

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� What is de Moivre’s Theorem and why is it useful?

� If n is a positive integer, what is an nth root of a complex number? How

many nth roots does a complex number have? How do we find all of the

nth roots of a complex number?

The trigonometric form of a complex number provides a relatively quick and

easy way to compute products of complex numbers. As a consequence, we will be

able to quickly calculate powers of complex numbers, and even roots of complex

numbers.

Beginning Activity

Let z D r.cos.�/C i sin.�//. Use the trigonometric form of z to show that

z2 D r2 .cos.2�/C i sin.2�// : (1)

De Moivre’s Theorem

The result of Equation (1) is not restricted to only squares of a complex number. If

z D r.cos.�/C i sin.�//, then it is also true that

z3 D zz2

D .r/.r2/ .cos.� C 2�/C i sin.� C 2�//

D r3 .cos.3�/C i sin.3�// :

We can continue this pattern to see that

z4 D zz3

D .r/.r3/ .cos.� C 3�/C i sin.� C 3�//

D r4 .cos.4�/C i sin.4�// :
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The equations for z2, z3, and z4 establish a pattern that is true in general. The

result is called de Moivre’s Theorem.

DeMoivre’s Theorem

Let z D r.cos.�/C i sin.�// be a complex number and n any integer. Then

zn D rn.cos.n�/C i sin.n�//:

It turns out that DeMoivre’s Theorem also works for negative integer powers

as well.

Progress Check 5.10 (DeMoivre’s Theorem)

Write the complex number 1 � i in polar form. Then use DeMoivre’s Theorem to

write .1 � i /10 in the complex form a C bi , where a and b are real numbers and

do not involve the use of a trigonometric function.

Roots of Complex Numbers

DeMoivre’s Theorem is very useful in calculating powers of complex numbers,

even fractional powers. We illustrate with an example.

Example 5.11 (Roots of Complex Numbers)

We will find all of the solutions to the equation x3 � 1 D 0. These solutions are

also called the roots of the polynomial x3 � 1. To solve the equation x3 � 1 D 0,

we add 1 to both sides to rewrite the equation in the form x3 D 1. Recall that to

solve a polynomial equation like x3 D 1 means to find all of the numbers (real or

complex) that satisfy the equation. We can take the real cube root of both sides

of this equation to obtain the solution x0 D 1, but every cubic polynomial should

have three solutions. How can we find the other two? If we draw the graph of

y D x3 � 1 we see that the graph intersects the x-axis at only one point, so there

is only one real solution to x3 D 1. That means the other two solutions must be

complex and we can use DeMoivre’s Theorem to find them. To do this, suppose

z D r Œcos.�/C i sin.�/�

is a solution to x3 D 1. Then

1 D z3 D r3.cos.3�/C i sin.3�//:

This implies that r D 1 (or r D �1, but we can incorporate the latter case into our

choice of angle). We then reduce the equation x3 D 1 to the equation

1 D cos.3�/C i sin.3�/: (2)
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Equation (2) has solutions when cos.3�/ D 1 and sin.3�/ D 0. This will occur

when 3� D 2�k, or � D 2�k

3
, where k is any integer. The distinct integer

multiples of
2�k

3
on the unit circle occur when k D 0 and � D 0, k D 1 and

� D 2�

3
, and k D 2 with � D 4�

3
. In other words, the solutions to x3 D 1 should

be

x0 D cos.0/C i sin.0/ D 1

x1 D cos

�

2�

3

�

C i sin

�

2�

3

�

D �1

2
C
p

3

2
i

x2 D cos

�

4�

3

�

C i sin

�

4�

3

�

D �1

2
�
p

3

2
i:

We already know that x3
0 D 13 D 1, so x0 actually is a solution to x3 D 1. To

check that x1 and x2 are also solutions to x3 D 1, we apply DeMoivre’s Theorem:

x3
1 D

�

cos

�

2�

3

�

C i sin

�

2�

3

��3

D cos

�

3

�

2�

3

��

C i sin

�

3

�

2�

3

��

D cos.2�/C i sin.2�/

D 1;

and

x3
2 D

�

cos

�

4�

3

�

C i sin

�

4�

3

��3

D cos

�

3

�

4�

3

��

C i sin

�

3

�

4�

3

��

D cos.4�/C i sin.4�/

D 1:

Thus, x3
1 D 1 and x3

2 D 1 and we have found three solutions to the equation

x3 D 1. Since a cubic can have only three solutions, we have found them all.

The general process of solving an equation of the form xn D aC bi , where n

is a positive integer and a C bi is a complex number works the same way. Write

aC bi in trigonometric form

aC bi D r Œcos.�/C i sin.�/� ;
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and suppose that z D s Œcos.˛/C i sin.˛/� is a solution to xn D aC bi . Then

aC bi D zn

r Œcos.�/C i sin.�/� D .s Œcos.˛/C i sin.˛/�/n

r Œcos.�/C i sin.�/� D sn Œcos.n˛/C i sin.n˛/�

Using the last equation, we see that

sn D r and cos.�/C i sin.�/ D cos.n˛/C i sin.n˛/:

Therefore,

sn D r and n˛ D � C 2�k

where k is any integer. This give us

s D n
p

r and ˛ D � C 2�k

n
:

We will get n different solutions for k D 0, 1, 2, : : :, n � 1, and these will be all

of the solutions. These solutions are called the nth roots of the complex number

a C bi . We summarize the results.

Roots of Complex Numbers

Let n be a positive integer. The nth roots of the complex number

r Œcos.�/C i sin.�/� are given by

n
p

r

�

cos

�

� C 2�k

n

�

C i sin

�

� C 2�k

n

��

for k D 0, 1, 2, : : :, .n � 1/.

If we want to represent the nth roots of r Œcos.�/C i sin.�/� using degrees

instead of radians, the roots will have the form

n
p

r

�

cos

�

� C 360ık

n

�

C i sin

�

� C 360ık

n

��

for k D 0, 1, 2, : : :, .n� 1/.

Example 5.12 (Square Roots of 1)

As another example, we find the complex square roots of 1. In other words, we find

the solutions to the equation z2 D 1. Of course, we already know that the square

roots of 1 are 1 and �1, but it will be instructive to utilize our general result and

see that it gives the same result. Note that the trigonometric form of 1 is

1 D cos.0/C i sin.0/;



318 Chapter 5. Complex Numbers and Polar Coordinates

so the two square roots of 1 are

p
1

�

cos

�

0C 2�.0/

2

�

C i sin

�

0C 2�.0/

2

��

D cos.0/C i sin.0/ D 1

and

p
1

�

cos

�

0C 2�.1/

2

�

C i sin

�

0C 2�.1/

2

��

D cos.pi/C i sin.�/ D �1

as expected.

Progress Check 5.13 (Roots of Unity)

1. Find all solutions to x4 D 1. (The solutions to xn D 1 are called the nth

roots of unity, with unity being the number 1.)

2. Find all sixth roots of unity.

Now let’s apply our result to find roots of complex numbers other than 1.

Example 5.14 (Roots of Other Complex Numbers)

We will find the solutions to the equation

x4 D �8C 8
p

3i:

Note that we can write the right hand side of this equation in trigonometric form as

�8C 8
p

3i D 16

�

cos

�

2�

3

�

C i sin

�

2�

3

��

:

The fourth roots of �8C 8
p

3i are then

x0 D 4
p

16

2

6

4
cos

0

B

@

2�

3
C 2�.0/

4

1

C

A
C i sin

0

B

@

2�

3
C 2�.0/

4

1

C

A

3

7

5

D 2
h

cos
��

6

�

C i sin
��

6

�i

D 2

 p
3

2
C 1

2
i

!

D
p

3C i;
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x1 D 4
p

16

2

6

4
cos

0

B

@

2�

3
C 2�.1/

4

1

C

A
C i sin

0

B

@

2�

3
C 2�.1/

4

1

C

A

3

7

5

D 2

�

cos

�

2�

3

�

C i sin

�

2�

3

��

D 2

 

�1

2
C
p

3

2
i

!

D �1C
p

3i;

x2 D 4
p

16

2

6

4
cos

0

B

@

2�

3
C 2�.2/

4

1

C

A
C i sin

 

2�
3
C 2�.2/

4

!

3

7

5

D 2

�

cos

�

7�

6

�

C i sin

�

7�

6

��

D 2

 

�
p

3

2
� 1

2
i

!

D �
p

3 � i;

and

x3 D 4
p

16

2

6

4
cos

0

B

@

2�

3
C 2�.3/

4

1

C

A
C i sin

0

B

@

2�

3
C 2�.3/

4

1

C

A

3

7

5

D 2

�

cos

�

5�

3

�

C i sin

�

5�

3

��

D 2

 

1

2
�
p

3

2
i

!

D 1 �
p

3i:

Progress Check 5.15 (Fourth Roots of �256)

Find all fourth roots of �256, that is find all solutions of the equation x4 D �256.

Summary of Section 5.3

In this section, we studied the following important concepts and ideas:
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� DeMoivre’s Theorem. Let z D r.cos.�/C i sin.�// be a complex number

and n any integer. Then

zn D rn.cos.n�/C i sin.n�//:

� Roots of Complex Numbers. Let n be a positive integer. The nth roots of

the complex number r Œcos.�/C i sin.�/� are given by

n
p

r

�

cos

�

� C 2�k

n

�

C i sin

�

� C 2�k

n

��

for k D 0, 1, 2, : : :, .n � 1/.

Exercises for Section 5.3

1. Use DeMoivre’s Theorem to determine each of the following powers of a

complex number. Write the answer in the form a C bi , where a and b are

real numbers and do not involve the use of a trigonometric function.

? (a) .2C 2i/6

? (b)
�p

3C i
�8

(c)

 

1

2
C
p

3

2
i

!3

(d) 2
�

cos
� �

15

�

C i sin
� �

15

��10

(e)
�

1C i
p

3
��4

(f) .�3C 3i/�3

2. In each of the following, determine the indicated roots of the given complex

number. When it is possible, write the roots in the form aC bi , where a and

b are real numbers and do not involve the use of a trigonometric function.

Otherwise, leave the roots in polar form.

? (a) The two square roots of 16i .

(b) The two square roots of 2C 2i
p

3.

? (c) The three cube roots of 5

�

cos

�

3�

4

�

C i sin

�

3�

4

��

.

(d) The five fifth roots of unity.

(e) The four fourth roots of

 

1

2
�
p

3

2
i

!

.

(f) The three cube roots of 1C
p

3i .
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5.4 The Polar Coordinate System

Focus Questions

The following questions are meant to guide our study of the material in this

section. After studying this section, we should understand the concepts mo-

tivated by these questions and be able to write precise, coherent answers to

these questions.

� How are the polar coordinates of a point in the plane determined?

� How do we convert from polar coordinates to rectangular coordinates?

� How do we convert from rectangular to polar coordinates?

� How doe we correctly graph polar equations both by hand and with a

calculator?

Beginning Activity

In the diagram to the right, the point with

coordinates .
p

3; 1/ has been plotted. De-

termine the value of r and the angle � in

radians and degrees.

x

y

1

3, 1( )

θ

r

Introduction

In our study of trigonometry so far, whenever we graphed an equation or located a

point in the plane, we have used rectangular (or Cartesian 3) coordinates. The use

of this type of coordinate system revolutionized mathematics since it provided the

first systematic link between geometry and algebra. Even though the rectangular

coordinate system is very important, there are other methods of locating points in

the plane. We will study one such system in this section.

Rectangular coordinates use two numbers (in the form of an ordered pair) to

determine the loction of a point in the plane. These numbers give the position of a

3Named after the 17
th century mathematician, René Descartes)
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point relative to a pair of perpendicular axes. In the beginning activity, to reach the

point that corresponds to the ordered pair
�p

3; 1
�

, we start at the origin and travel
p

3 units to the right and then travel 1 unit up. The idea of the polar coordinate

system is to give a distance to travel and an angle in which direction to travel.

We reach the same point as the one given by the rectangular coordinates
�p

3; 1
�

by saying we will travel 2 units at an angle of 30ı from the x-axis. These values

correspond to the values of r and � in the diagram for the beginning activity. Using

the Pythagorean Theorem, we can obtain r D 2 and using the fact that sin.�/ D 1

2
,

we see that � D �

6
radians or 30ı.

The Polar Coordinate System

For the rectangular coordinate system, we use two numbers, in the form of an

ordered pair, to locate a point in the plane. We do the same thing for polar coordi-

nates, but now the first number represents a distance from a point and the second

number represents an angle. In the polar coordinate system, we start with a point

O , called the pole and from this point, we draw a horizontal ray (directed half-line)

called the polar axis. We can then assign polar coordinates .r; �/ to a point P in

the plane as follows (see Figure 5.5):

� The number r , called the radial distance, is the directed distance from the

pole to the point P .

� The number � , called the polar angle, is the measure of the angle from the

polar axis to the line segment OP . (Either radians or degrees can be used for

the measure of the angle.)

Conventions for Polar Coordinates

� The polar angle � is considered positive if measured in a counterclockwise

direction from the polar axis.

� The polar angle � is considered negative if measured in a clockwise direction

from the polar axis.

� If the radial distance r is positive, then the point P is r units from O along

the terminal side of � .
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P(r, θ)

O
pole polar

axis

θ

Figure 5.5: Polar Coordinates

� If the radial distance r is negative, then the point P is jrj units from O along

the ray in the opposite direction as the terminal side of � .

� If the radial distance r is zero, then the point P is the point O .

To illustrate some of these conventions, consider the point P

�

3;
4�

3

�

shown on

the left in Figure 5.6. (Notice that the circle of radius 3 with center at the pole has

been drawn.)

Figure 5.6: A Point with Two Different Sets of Polar Coordinates

The diagram on the right in Figure 5.6 illustrates that this point P also has polar

coordinates P
�

�3;
�

3

�

. This is because when we use the polar angle � D �

3
and

the radial distance r D �3, then the point P is 3 units from the pole along the ray

in the opposite direction as the terminal side of � .
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Progress Check 5.16 (Plotting Points in Polar Coordinates)

Since a point with polar coordinates .r; �/ must lie on a circle of radius r with

center at the pole, it is reasonable to locate points on a grid of concentric circles

and rays whose initial point is at the pole as shown in Figure 5.7. On this polar

graph paper, each angle increment is
�

12
radians. For example, the point

�

4;
�

6

�

is

plotted in Figure 5.7.

Plot the following points with the specified polar coordinates.

�

1;
�

4

� �

5;
�

4

� �

2;
�

3

�

�

3;
5�

4

�

�

4;��

4

�

�

4;
7�

4

�

�

6;
5�

6

� �

5;
9�

4

� �

�5;
5�

4

�

Figure 5.7: Polar Graph Paper

In Progress Check 5.16, we noticed that the polar coordinates
�

5;
�

4

�

,

�

5;
9�

4

�

,

and

�

�5;
5�

4

�

all determined the same point in the plane. This illustrates a major

difference between rectangular coordinates and polar coordinates. Whereas each

point has a unique representation in rectangular coordinates, a given point can have
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many different representations in polar coordinates. This is primarily due to the

fact that the polar coordinate system uses concentric cirlces for its grid, and we can

start at a point on a circle and travel around the circle and end at the point from

which we started. Since one wrap around a circle corresponds to an angle of 2�

radians or 360ı, we have the following:

Polar Coordinates of a Point

A point P , other than the pole, determined by the polar coordinates .r; �/ is

also determined by the following polar coordinates:

In radians W .r; � C k.2�// .�r;C� C .2k C 1/�/

In degrees W
�

r; � C k
�

360ı�� �

�r; � C .2k C 1/180ı�

where k can be any integer.

If the point P is the pole, the its polar coordinates are .0; �/ for any polar

angle � .

Progress Check 5.17 (Different Polar Coordinates for a Point)

Find four different representations in polar coordinates for the point with polar

coordinates .3; 110ı/. Use a positive value for the radial distance r for two of

the representations and a negative value for the radial distance r for the other two

representations.

Conversions Between Polar and Rectangular Coordinates

We now have two ways to locate points in the plane. One is the usual rectangular

(Cartesian) coordinate system and the other is the polar coordinate system. The

rectangular coordinate system uses two distances to locate a point, whereas the

polar coordinate system uses a distance and an angle to locate a point. Although

these two systems can be studied indpendently of each other, we can set them up

so that there is a relationship between the two types of coordinates. We do this as

follows:

� We place the pole of the polar coordinate system at the origin of the rectan-

gular coordinate system.

� We have the polar axis of the polar coordinate system coincide with the pos-

itive x-axis of the rectangular coordinate system as shown in Figure 5.8

Using right triangle trigonometry and the Pythagorean Theorem, we obtain the

following relationships between the rectangular coordinates .x; y/ and the polar
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P(r, θ) = P(x, y)

θ

O polar axis

x axis

r

y axis

y

x

Figure 5.8: Polar and Rectangular Coordinates

coordinates .r; �/:

cos.�/ D x

r
x D r cos.�/

sin.�/ D y

r
y D r sin.�/

tan.�/ D y

x
if x ¤ 0 x2 C y2 D r2

Coordinate Conversion

To determine the rectangular coorinates .x; y/ of a point whose polar coordi-

nates .r; �/ are known, use the equations

x D r cos.�/ y D r sin.�/:

To determine the polar coordinates .r; �/ of a point whose rectangular coor-

dinates .x; y/ are known, use the equation r2 D x2 C y2 to determine r and

determine an angle � so that

tan.�/ D y

x
if x ¤ 0 cos.�/ D x

r
sin.�/ D y

r
:
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When determining the polar coordinates of a point, we usually choose the pos-

itive value for r . We can use an inverse trigonometric function to help determine

� but we must be careful to place � in the proper quadrant by using the signs of x

and y. Note that if x D 0, we can use � D �

2
or � D 3�

2
.

Progress Check 5.18 (Converting from Polar to Rectangular Coordinates)

Determine rectangular coordinates for each of the following points in polar coor-

dinates:

1.
�

3;
�

3

�

2.

�

5;
11�

6

�

3.

�

�5;
3�

4

�

When we convert from rectangular coordinates to polar coordinates, we must

be careful and use the signs of x and y to determine the proper quadrant for the

angle � . In many situations, it might be easier to first determine the reference angle

for the angle � and then use the signs of x and y to determine � .

Example 5.19 (Converting from Rectangular to Polar Coordinates)
To determine polar coordinates for the

the point .�2; 2/ in rectangular coordi-

nates, we first draw a picture and note

that

r2 D .�2/2 C 22 D 8:

Since it is usually easier to work with

a positive value for r , we will use r Dp
8.

(−2, 2)

r
2

−2

θ

We also see that tan.�/ D 3

�3
D �1. We can use many different values for �

but to keep it easy, we use � as shown in the diagram. For the reference angle O� ,

we have tan. O�/ D 1 and so O� D �

4
. Since �2 < 0 and 2 > 0, � is in the second

quadrant, and we have

� D � � �

4
D 3�

4
:

So the point .�2; 2/ in rectangular coordinates has polar coordinates

�p
8;

3�

4

�

.

Progress Check 5.20 (Converting from Rectangular to Polar Coordinates)
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Determine polar coordinates for each of the following points in rectangular coor-

dinates:

1.
�

6; 6
p

3
�

2. .0;�4/ 3. .�4; 5/

In each case, use a positive radial distance r and a polar angle � with 0 � � < 2� .

An inverse trigonometric function will need to be used for (3).

The Graph of a Polar Equation

The graph an equation on the rectangular coordinate system consists of all points

.x; y/ that satisfy the equation. The equation can often be written in the form of

a function such as y D f .x/. In this case, a point .a; b/ is on the graph of this

function if and only if b D f .a/. In a similar manner,

An equation whose variables are polar coordinates (usually r and � ) is called

a polar equation. The graph of a polar equation is the set of all points

whose polar coordinates .r; �/ satisfy the given equation.

An example of a polar equation is r D 4 sin.�/. For this equation, notice that

� If � D 0, then r D 4 sin.0/ D 0 and so the point .0; 0/ (in polar coordinates)

is on the graph of this equation.

� If � D �

6
, then r D 4 sin

��

6

�

D 4 � 1
2
D 2 and so

�

2;
�

6

�

is on the graph

of this equation. (Remember: for polar coordinates, the value of r is the first

coordinate.)

The most basic method for drawing the graph of a polar equation is to plot the

points that satisfy the polar equation on polar graph paper as shown in Figure 5.7

and then connect the points with a smooth curve.

Progress Check 5.21 (Graphing a Polar Equation)

The following table shows the values of r and � for points that are on the graph of

the polar equation r D 4 sin.�/.
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r D 4 sin.�/ �

0 0

2
�

6

2
p

2
�

4

2
p

3
�

3

4
�

2

r D 4 sin.�/ �

2
p

3
2�

3

2
p

2
3�

4

2
5�

6

0 �

Plot these points on polar graph paper and draw a smooth curve through the points

for the graph of the equation r D 4 sin.�/.

Depending on how carefully we plot the points and how well we draw the

curve, the graph in Progress Check 5.21 could be a circle. We can, of course,

plot more points. In fact, in Progress Check 5.21, we only used values for � with

0 � � � � . The following table shows the values of r and � for points that are on

the graph of the polar equation r D 4 sin.�/ with � � � � 2� .
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r D 4 sin.�/ �

0 �

�2
7�

6

�2
p

2 5
�

4

�2
p

3 4
�

3

�4
3�

2

r D 4 sin.�/ �

�2
p

3
5�

3

�2
p

2
7�

4

�2
11�

6

0 �

Because of the negative values for r , if we plot these points, we will get the same

points we did in Progress Check 5.21. So a good question to ask is, “Do these

points really lie on a circle?” We can answer this question by converting the equa-

tion r D 4 sin.�/ into an equivalent equation with rectangular coordinates.

Transforming an Equation from Polar Form to Rectangular Form

The formulas that we used to convert a point in polar coordinates to rectangular

coordinates can also be used to convert an equation in polar form to rectangular

form. These equations are given in the box on page 326. So let us look at the

equation r D 4 sin.�/ from Progress Check 5.21.

Progress Check 5.22 (Transforming a Polar Equation into Rectangular Form)

We start with the equation r D 4 sin.�/. We want to transform this into an equation

involving x and y. Since r2 D x2 C y2, it might be easier to work with r2 rather

than r .

1. Multiply both sides of the equation r D 4 sin.�/ by r .

2. Now use the equations r2 D x2 C y2 and y D r sin.�/ to obtain an equiva-

lent equation in x and y.

The graph of the equation the graph of r D 4 sin.�/ in polar coordinates will

be the same as the graph of x2C y2 D 4y in rectangular coordinates. We can now

use some algebra from previous mathematics courses to show that this is the graph

of a circle. The idea is to collect all terms on the left side of the equation and use

completing the square for the terms involving y.

As a reminder, if we have the expression t2C at D 0, we complete the square

by adding
�a

2

�2

to both sides of the equation. We will then have a perfect square
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on the left side of the equation.

t2 C at C
�a

2

�2

D
�a

2

�2

t2 C at C a2

4
D a2

4
�

t C a

2

�2

D a2

4

So for the equation x2 C y2 D 4y, we have

x2 C y2 � 4y D 0

x2 C y2 � 4y C 4 D 4

x2 C .y � 2/2 D 22

This is the equation (in rectangular coordinates) of a circle with radius 2 and center

at the point .0; 2/. We see that this is consistent with the graph we obtained in

Progress Check 5.22.

Progress Check 5.23 (Transforming a Polar Equation into Rectangular Form)

Transform the equation r D 6 cos.�/ into an equation in rectangular coordinates

and then explain why the graph of r D 6 cos.�/ is a circle. What is the radius of

this circle and what is its center?

The Polar Grid

We introduced polar graph paper in Figure 5.7. Notice that this consists of concen-

tric circles centered at the pole and lines that pass through the pole. These circles

and lines have very simple equations in polar coordinates. For example:

� Consider the equation r D 3. In order for a point to be on the graph of this

equation, it must lie on a circle of radius 3 whose center is the pole. So the

graph of this equation is a circle of radius 3 whose center is the pole. We

can also show this by converting the equation r D 3 to rectangular form as

follows:

r D 3

r2 D 32

x2 C y2 D 9

In rectangular coordinates, this is the equation of a circle of radius 3 centered

at the origin.
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� Now consider the equation � D �

4
. In order for a point to be on the graph

of this equation, the line through the pole and this point must make an angle

of
�

4
radians with the polar axis. If we only allow positive values for r ,

the graph will be a ray with initial point at the pole that makes an angle of
�

4
with the polar axis. However, if we allow r to be any real number, then

we obtain the line through the pole that makes an angle of
�

4
radians with

the polar axis. We can convert this equation to rectangular coordinates as

follows:

� D �

4

tan.�/ D tan
��

4

�

y

x
D 1

y D x

This is an equation for a straight line through the origin with a slope of 1.

In general:

The Polar Grid

� If a is a positive real number, then the graph of r D a is a circle of

radius a whose center is the pole.

� If b is a real number, then the graph of � D b is a line through the pole

that makes an angle of b radians with the polar axis.

Concluding Remarks

We have studied just a few graphs of polar equations. There are many interesting

graphs that can be generated using polar equations that are very difficult to accom-

plish in rectangular coordinates. Since the polar coordinate system is based on

concentric circles, it should not be surprising that circles with center at the pole

would have “simple” equations like r D a.

In Progress Checks 5.21 and 5.23, we saw polar equations whose graphs were

circles with centers not at the pole. These were special cases of the following:
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Polar Equations Whose Graphs Are Circles

If a is a positive real number, then

� The graph of r D 2a sin.�/ is a circle of radius a with center at the

point .0; a/ in rectangular coordinates or
�

a;
�

2

�

in polar coordinates.

� The graph of r D 2a cos.�/ is a circle of radius a with center at the

point .a; 0/ in rectangular coordinates or .a; 0/ in polar coordinates.

We will explore this and the graphs of other polar equations in the exercises.

Exercises for Section 5.4

? 1. Plot the following points with the specified polar coordinates.

�

7;
�

6

�

�

3;
3�

4

�

�

2;
��

3

�

�

3;
7�

4

�

�

5;��

4

�

�

4;
11�

4

�

�

6;
11�

6

� �

�3;
2�

3

� �

�5;
5�

6

�

2. For each of the following points in polar coordinates, determine three differ-

ent representations in polar coordinates for the point. Use a positive value
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for the radial distance r for two of the representations and a negative value

for the radial distance r for the other representation.

? (a) .5; 30ı/
? (b) .4; 100ı/

(c) .�2; 50ı/

(d) .7;�60ı/

3. For each of the following points in polar coordinates, determine three differ-

ent representations in polar coordinates for the point. Use a positive value

for the radial distance r for two of the representations and a negative value

for the radial distance r for the other representation. Note: The angles are

measured in radians.

? (a)
�

5;
�

6

�

? (b)

�

4;
5�

9

�

(c)

�

�2;
5�

18

�

(d)
�

7;��

3

�

4. Determine rectangular coordinates for each of the following points in polar

coordinates:

? (a)

�

10;
2�

3

�

(b)

�

8;
7�

6

�

? (c)

�

�5;
5�

4

�

(d)

�

10;�2�

3

�

(e)

�

3;
5�

3

�

(f)
�

6;��

6

�

5. Determine polar coordinates for each of the following points in rectangular

coordinates. Use a positive radial distance r and a polar angle with 0 � � <

2� . When necessary, use an inverse trigonometric function and round the

angle (in radians) to the nearest thousandth.

? (a)

 

�5
p

3

2
;
5

2

!

? (b) .3; 5/

(c)
�p

2;�
p

2
�

(d) .�3;�4/

6. Convert each of the following polar equations into a rectangular equation. If

possible, write the rectangular equation with y as a function of x.
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? (a) r D 5

? (b) � D �

3
(c) r D 8 cos.�/

? (d) r D 1 � sin.�/

(e) r2 sin.2�/D 1

(f) r D 1 � 2 cos.�/

(g) r D 3

sin.�/C 4 cos.�/

7. Convert each of the following rectangular equations into a polar equation. If

possible, write the polar equation with r as a function of � .

(a) x2 C y2 D 36

? (b) y D 4

(c) x D 7

(d) x2 � 6x C y2 D 0

? (e) x C y D 4

(f) y D x2

8. Let a be a positive real number.

(a) Convert the polar equation r D 2a sin.�/ to rectangular coordinates

and then explain why the graph of this equation is a circle. What is the

radius of the circle and what is the center of the circle in rectangular

coordinates?

(b) Convert the polar equation r D 2a cos.�/ to rectangular coordinates

and then explain why the graph of this equation is a circle. What is the

radius of the circle and what is the center of the circle in rectangular

coordinates?
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Answers for the Progress Checks

Section 1.1

Progress Check 1.1

1. Some positive numbers that are wrapped to the point .�1; 0/ are �; 3�; 5� .

Some negative numbers that are wrapped to the point .�1; 0/ are��;�3�;�5� .

2. The numbers that get wrapped to .�1; 0/ are the odd integer multiples of � .

3. Some positive numbers that are wrapped to the point .0; 1/ are
�

2
;
5�

2
;
9�

2
.

Some negative numbers that are wrapped to the point .0; 1/ are��

2
;�5�

2
;�9�

2
.

4. Some positive numbers that are wrapped to the point .0;�1/ are
3�

2
;

7�

2
;

11�

2
.

Some negative numbers that are wrapped to the point .0; 1/ are�3�

2
;�7�

2
;�11�

2
.

336
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Progress Check 1.2

π

12

π

6

π

4

3

π

12

7

π

3

5

π

4

5

π

6

7

π

12

5

π

6

11

π

12

23

π

4

π

3

π

2
π

3

2

π

4

7

π

3

4

π

6

5

π

12

11

π

12

13

π

12

17 π

12

19π

2

3

p 0

1. For t D �

3
, the point is approx-

imately .0:5; 0:87/.

2. For t D 2�

3
, the point is ap-

proximately .�0:5; 0:87/.

3. For t D 4�

3
, the point is ap-

proximately .�0:5;�0:87/.

4. For t D 5�

3
, the point is ap-

proximately .0:5;�0:87/.

5. For t D �

4
, the point is approximately .0:71; 0:71/.

6. For t D 7�

4
, the point is approximately .0:71;�0:71/.

Progress Check 1.3

1. 2. 3.

Progress Check 1.4

1. We substitute y D 1

2
into x2 C y2 D 1.

x2 C
�

1

2

�2

D 1

x2 D 3

4

x D ˙
p

3

2
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The two points are

 p
3

2
;
1

2

!

and

 

�
p

3

2
;
1

2

!

.

1. We substitute x D
p

5

4
into x2 C y2 D 1.

 p
5

4

!2

C y2 D 1

y2 D 11

16

y D ˙
p

11

4

The two points are

 p
5

4
;

p
11

4

!

and

 p
5

4
;�
p

11

4

!

.

Section 1.2

Progress Check 1.5

1. cos
��

2

�

D 0

sin
��

2

�

D 1.

2. cos

�

3�

2

�

D 0

sin

�

3�

2

�

D �1.

3. cos.0/ D 1

sin.0/ D 1.

4. cos
�

��

2

�

D 0

sin
�

��

2

�

D �1.

5. cos.2�/ D 1

sin.2�/ D 1.

6. cos.��/ D �1

sin.��/ D 0.

Progress Check 1.6

1. cos.1/ � 0:5403,

sin.1/ � 0:8415.

2. cos.2/ � �0:4161

sin.2/ � 0:9093.
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3. cos.�4/ � �0:6536

sin.�4/ � 0:7568.

4. cos.5:5/ � 0:7807

sin.5:5/ � �0:7055.

5. cos.15/ � �0:7597

sin.15/ � 0:6503.

6. cos.�15/� �0:7597

sin.�15/ � �0:6503.

Progress Check 1.7

1. Since we can wrap any number onto the unit circle, we can always find the

terminal point of an arc that corresponds to any number. So the cosine of

any real number is defined and the domain of the cosine function is the set

of all of the real numbers.

2. For the same reason as for the cosine function, the domain of the sine func-

tion is the set of all real numbers.

3. On the unit circle, the largest x-coordinate a point can have is 1 and the

smallest x-coordinate a point can have is �1. Since the output of the cosine

function is the x-coordinate of a point on the unit circle, the range of the

cosine function is the closed interval Œ�1; 1�. That means �1 � cos.t/ � 1

for any real number t .

4. On the unit circle, the largest y-coordinate a point can have is 1 and the

smallest y-coordinate a point can have is �1. Since the output of the sine

function is the y-coordinate of a point on the unit circle, the range of the sine

function is the closed interval Œ�1; 1�. That means �1 � sin.t/ � 1 for any

real number t .

Progress Check 1.8

1. If
�

2
< t < � , then the terminal point of the arc t is in the second quadrant

and so cos.t/ < 0 and sin.t/ > 0.

2. If � < t <
3�

2
, then the terminal point of the arc t is in the third quadrant

and so cos.t/ < 0 and sin.t/ < 0.

3. If
3�

2
< t < 2� , then the terminal point of the arc t is in the fourth quadrant

and so cos.t/ > 0 and sin.t/ < 0.

4. If
5�

2
< t < 3� , then the terminal point of the arc t is in the second quadrant

and so cos.t/ < 0 and sin.t/ > 0.
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5. Note that cos.t/ D 0 at t D �

2
and t D 3�

2
. Since cos.t/ is the x-coordinate

of the terminal point of the arc t , the previous response shows that cos.t/ is

positive when t is in one of the intervals
h

0;
�

2

�

or

�

3�

2
; 2�

�

.

6. Note that sin.t/ D 0 at t D 0 and t D � . Since sin.t/ is the y-coordinate

of the terminal point of the arc t , the previous response shows that sin.t/ is

positive when t is in the interval .0; �/.

7. Note that cos.t/ D 0 at t D �

2
and t D 3�

2
. Since cos.t/ is the x-coordinate

of the terminal point of the arc t , the previous response shows that cos.t/ is

negative when t is in the interval

�

�

2
;

3�

2

�

.

8. Note that sin.t/ D 0 at t D � and t D 2� . Since sin.t/ is the y-coordinate

of the terminal point of the arc t , the previous response shows that sin.t/ is

positive when t is in the interval .�; 2�/.

Progress Check 1.9

1. Since 0 <
�

5
<

�

2
, the terminal point of the arc

�

5
is in the first quadrant.

Therefore, cos
��

5

�

is positive.

2. Using the information about t in (1), sin
��

5

�

is positive.

3. We can write
�

2
as

4�

8
and � as

8�

8
, so

�

2
<

5�

8
< � . This puts the

terminal point of the arc
5�

8
in the second quadrant. Therefore, cos

�

5�

8

�

is negative.

4. Using the information about t in (3), sin

�

5�

8

�

is negative.

5. We can write ��

2
as
�8�

16
and �� as

�16�

16
, so �� <

�9�

16
< ��

2
. This

puts the terminal point of the arc
�9�

16
in the third quadrant. Therefore,

cos

��9�

16

�

is negative.
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6. Using the information about t in (5), sin

��9�

16

�

is negative.

7. We can write �2� as
�24�

12
and �5�

2
as
�30�

12
, so �5�

2
<
�25�

12
<

�2� . This puts the terminal point of the arc
�25�

12
in the fourth quadrant.

Therefore, cos

��25�

12

�

is positive.

8. Using the information about the arc t in (7), sin

��25�

12

�

is negative.

Progress Check 1.10

Any point on the unit circle satisfies the equation x2Cy2 D 1. Since .cos.t/; sin.t//

is a point on the unit circle, it follows that .cos.t//2 C .sin.t//2 D 1 or

cos2.t/C sin2.t/ D 1:

Progress Check 1.12

1. Since cos.t/ D 1

2
, we can use the Pythagorean Identity to obtain

�

1

2

�2

C sin2.t/ D 1

1

4
C sin2.t/ D 1

sin2.t/ D 3

4

sin.t/ D ˙
r

3

4

Notice that we cannot determine the sign of sin.t/ using only the Pythagorean

Identity. We need further information about the arc t . In this case, we are

given that the terminal point of the arc t is in the fourth quadrant, and hence,

sin.t/ < 0. Consequently,

sin.t/ D �
r

3

4
D �
p

3

2
:
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2. Since sin.t/ D �2

3
, we can use the Pythagorean Identity to obtain

cos2.t/C
�

�2

3

�2

D 1

cos2.t/C 4

9
D 1

cos2.t/ D 5

9

cos.t/ D ˙
r

5

9

Once again, we need information about the arc t to determine the sign of

cos.t/. In this case, we are given that � < t <
3�

2
. Hence, the terminal

point of the arc t is in the third quadrant and so, cos.t/ < 0. Therefore,

cos.t/ D
r

5

9
D
p

5

3
:

Section 1.3

Progress Check 1.13

These graphs show positive angles in standard position. The one on the left has

its terminal point in the first quadrant, the one in the middle has its terminal point

in the third quadrant, and the one on the right has its terminal point in the fourth

quadrant.

x

y

x

y

x

y
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Progress Check 1.14

1.

x

y

x

y

x

y

x

y

(a)

(b)

(c)

(d)

2. (a) 90ı

(b) 180ı
(c) 270ı

(d) �270ı

Progress Check 1.15

Angle in radians Angle in degrees

0 0ı

�

6
30ı

�

4
45ı

�

3
60ı

�

2
90ı

Angle in radians Angle in degrees

7�

6
210ı

5�

4
225ı

4�

3
240ı

3�

2
270ı

5�

3
300ı
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Angle in radians Angle in degrees

2�

3
120ı

3�

4
135ı

5�

6
150ı

� 180ı

Angle in radians Angle in degrees

7�

4
315ı

11�

6
330ı

2� 360ı

Progress Check 1.16

Using a calculator, we obtain the following results correct to ten decimal places.

� cos.1/ � 0:5403023059,

sin.1/ � 0:8414709848.

� cos.2/ � �0:4161468365

sin.2/ � 0:9092974268.

� cos.�4/ � �0:6536436209

sin.�4/ � 0:7568024953.

� cos.�15/ � �0:7596879129

sin.�15/ � �0:6502878402.

The difference between these values and those obtained in Progress Check 1.6

is that these values are correct to 10 decimal places (and the others are correct to 4

decimal places). If we round off each of the values above to 4 decimal places, we

get the same results we obtained in Progress Check 1.6.

Section 1.4

Progress Check 1.17

1. Use the formula s D r� .

s D r� D .10ft/
�

2

s D 5�

The arc length is 5� feet.
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2. Use the formula s D r� .

s D r� D .20ft/
�

2

s D 10�

The arc length is 10� feet.

3. First convert 22ı to radians. So � D 22ı �
�

� rad

180ı

�

D 11�

90
, and

s D r� D .3ft/
11�

90

s D 11�

30

The arc length is
11�

30
feet or about 1.1519 feet.

Progress Check 1.18

1. We see that

! D 40
rev

min
� 2� rad

rev

! D 80�
rad

min

2. The result from part (a) gives

v D r

�

�

t

�

D r!

v D .3 ft/ � 80�
rad

min

v D 240�
ft

min

3. We now convert feet per minute to feet per second.

v D 240�
ft

min
� 1 min

60 sec

v D 4�
ft

sec
� 12:566

ft

sec
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Progress Check 1.20

1. One revolution corresponds to 2� radians. So

! D 2� rad

24 hr
D �

12

rad

hr
:

2. To determine the linear velocity, we use the formula v D r!.

v D r! D .3959 mi/

�

�

12

rad

hr

�

D 3959�

12

mi

hr

The linear velocity is approximately 1036.5 miles per hour.

3. To determine the linear velocity, we use the formula v D r!.

v D r! D .2800 mi/

�

�

12

rad

hr

�

D 2800�

12

mi

hr

The linear velocity is approximately 733.04 miles per hour. To convert this

to feet per second, we use the facts that there are 5280 feet in one mile, 60

minutes in an hour, and 60 seconds in a minute. So

v D
�

2800�

12

mi

hr

��

5280 ft

1 mi

��

1 hr

60 min

��

1 min

60 sec

�

D .2800�/.5280/

12 � 60 � 60

ft

sec

So the linear velocity is approximately 1075.1 feet per second.

Section 1.5

Progress Check 1.21

1. cos

�

5�

6

�

D �
p

3

2
and sin

�

5�

6

�

D 1

2
.

2. cos

�

7�

6

�

�
p

3

2
and sin

�

7�

6

�

D �1

2
.

3. cos

�

11�

6

�

D �
p

3

2
and sin

�

11�

6

�

D �1

2
.
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Progress Check 1.22

1. cos

�

3�

4

�

D �
p

2

2
and sin

�

3�

4

�

D
p

2

2
.

2. cos

�

5�

4

�

D �
p

2

2
and sin

�

5�

4

�

D �
p

2

2
.

3. cos

�

7�

4

�

D
p

2

2
and sin

�

7�

4

�

D �
p

2

2
.

Progress Check 1.23

As shown in the following diagram:

1. The reference arc is
5�

4
� � D �

4
.

2. The reference arc is � � 4�

5
D �

5
.

3. The reference arc is 2� � 5�

3
D �

3
.

x

y

x

y

x

y

(cos(5π/4), sin(5π/4))

π/4

(cos(4π/5), sin(4π/5))

π/5

(cos(5π/3), sin(5π/3))

π/3

1. 2. 3.

Progress Check 1.24

1. cos

�

2�

3

�

D �1

2
and sin

�

2�

3

�

D
p

3

2
.

2. cos

�

4�

3

�

D �1

2
and sin

�

4�

3

�

D �
p

3

2
.

3. cos

�

5�

3

�

D 1

2
and sin

�

5�

3

�

D �
p

3

2
.
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Progress Check 1.25

1. The terminal point of t D ��

6
is in the fourth quadrant and the reference arc

for t D ��

6
is Ot D �

6
. So

cos
�

��

6

�

D
p

3

2
and sin

�

��

6

�

D �1

2
:

2. The terminal point of t D �2�

3
is in the third quadrant and the reference arc

for t D �2�

3
is Ot D �

3
. So

cos

�

�2�

3

�

D �1

2
and sin

�

�2�

3

�

D �
p

3

2
:

3. The terminal point of t D �5�

4
is in the second quadrant and the reference

arc for t D �5�

4
is Ot D �

4
. So

cos

�

�5�

4

�

D �
p

2

2
and sin

�

�5�

4

�

D
p

2

2
:

Progress Check 1.27

1. We know that � � t is in the second quadrant with reference arc t . So

cos.� � t / D � cos.t/ D
p

5

3
:

2. The arc � C t is in the third quadrant with reference arc t . So

sin.� C t / D � sin.t/ D �2

3
:

3. The arc � C t is in the third quadrant with reference arc t . So

cos.� C t / D � cos.t/ D �
p

5

3
:

4. The arc 2� � t is in the fourth quadrant with reference arc t . So

sin.2� � t / D � sin.t/ D �2

3
:
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Section 1.6

Progress Check 1.28

1. Since tan.t/ D sin.t/

cos.t/
, tan.t/ positive when both sin.t/ and cos.t/ have the

same sign. So tan.t/ > 0 in the first and third quadrants.

2. We see that tan.t/ negative whensin.t/ and cos.t/ have opposite signs. So

tan.t/ < 0 in the second and fourth quadrants.

3. tan.t/ will be zero when sin.t/ D 0 and cos.t/ ¤ 0. So tan.t/ D 0 when

the terminal point of t is on the x-axis. That is, tan.t/ D 0 when t D k� for

some integer k.

4. Following is a completed version of Table 1.4.

t cos.t/ sin.t/ tan.t/

0 1 0 0

�

6

p
3

2

1

2

1p
3

�

4

p
2

2

p
2

2
1

�

4

1

2

p
3

2

p
3

�

2
0 1 undefined

Progress Check1.29

1.

tan

�

5�

4

�

D tan
��

4

�

D
p

2

2
:

tan

�

5�

6

�

D � tan
��

6

�

D � 1p
3

:
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2. We first use the Pythagorean Identity.

cos2.t/C sin2.t/ D 1

cos2.t/C
�

1

3

�2

D 1

cos2.t/ D 8

9

Since sin.t/ > 0 and tan.t/ < 0, we conclude that the terminal point of t

must be in the second quadrant, and hence, cos.t/ < 0. Therefore,

cos.t/ D �
p

8

3

tan.t/ D
1

3

�
p

8

3

D � 1p
8

Progress Check 1.30

1.

sec

�

7�

4

�

D 1

cos

�

7�

4

�

D 1

cos
��

4

�

D 2p
2
D
p

2

2.

csc
���

4

�

D 1

sin
���

4

�

D 1

sin
�

��

4

�

D � 2p
2
D �
p

2

3. tan

�

7�

8

�

� �0:4142

4.

cot

�

4�

3

�

D cot
��

3

�

D 1

tan
��

3

�

D 1p
3

5. csc.5/ D 1

sin.5/
� �1:0428
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Progress Check 1.31

1. If cos.x/ D 1

3
and sin.x/ < 0, we use the Pythagorean Identity to determine

that sin.x/ D �
p

8

3
. We can then determine that

tan.x/ D �
p

8 csc.x/ D � 3p
8

cot.x/ D � 1p
8

2. If sin.x/ D �0:7 and tan.x/ > 0, we can use the Pythagorean Identity to

obtain

cos2.x/C .�0:7/2 D 1

cos2.x/ D 0:51

Since we are also given that tan.x/ > 0, we know that the terminal point of

x is in the third quadrant. Therefore, cos.x/ < 0 and cos.x/ D �
p

0:51.

Hence,

tan.x/ D �0:7

�
p

0:51

cot.x/ D
p

0:51

0:7

3. We can use the definition of tan.x/ to obtain

.tan.x//.cos.x// D sin.x/

cos.x/
� cos.x/

D sin.x/

So tan.x/ cos.x/ D sin.x/, but it should be noted that this equation is only

valid for those values of x for which tan.x/ is defined. That is, this equation

is only valid if x is not an integer multiple of � .

Section 2.1

Progress Check 2.1

Not all of the points are plotted, but the following is a graph of one complete period

of y D cos.t/ for 0 � t � 2� .
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Progress Check 2.2

1. The difference is that the graph in Figure 2.2 shows three complete periods

of y D cos.t/ over the interval Œ�2�; 4��.

2. The graph of y D cos.t/ has t -intercepts at t D �3�

2
, t D ��

2
, t D �

2
,

t D 3�

2
, t D 5�

2
, and t D 7�

2
.

3. The maximum value of y D cos.t/ is 1. The graph attains this maximum at

t D �2� , t D 0, t D 2� , and t D 4� .

4. The minimum value of y D cos.t/ is �1. The graph attains this minimum at

t D �� , t D � , and t D 3� .

Progress Check 2.4

� The graph of y D sin.t/ has t -intercepts of t D 0, t D � , and t D 2� in the

interval Œ0; 2��.

� If we add the period of 2� to each of these t -intercepts and subtract the

period of 2� from each of these t -intercepts, we see that the graph of y D
sin.t/ has t -intercepts of t D �2� , t D �� , t D 0, t D � , t D 2� , t D 3� ,

and t D 4� in the interval Œ�2�; 4��.

We can determine other t -intercepts of y D sin.t/ by repeatedly adding or sub-

tracting the period of 2� . For example, there is a t -intercept at:

� t D 3� C 2� D 5� ;
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� t D 5� C 2� D 7� .

However, if we look more carefully at the graph of y D sin.t/, we see that the

t -intercepts are spaced � units apart. This means that we can say that t D 0C k� ,

where k is some integer, is a t -intercept of y D sin.t/.

Progress Check 2.6

(0, A)

(0, A)(π, −A)

(π, −A)(2π, A)

(2π, A)

, 0π
2

( )

, 0π
2

)(
3π

2
, 0( )

3π

2
, 0( )

y = A cos(t), A > 0 y = A cos(t), A < 0

Progress Check 2.7

1. 2.

Section 2.2

Progress Check 2.9

1. (a) For y D 3 cos

�

1

3
t

�

, the amplitude is 3 and the period is
2�

1

3

D 6� .
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(b) For y D �2 sin
��

2
t
�

, the amplitude is 2 and the period is
2�
�

2

D 4.

2. From the graph, the amplitude is 2.5 and the period is 2. Using a cosine

function, we have A D 2:5 and
2�

B
D 2. Solving for B gives B D � . So an

equation is y D 2:5 cos.�t/.

Progress Check 2.11

1. (a) For y D 3:2
�

sin.t � �

3

�

, the amplitude is 3.2 and the phase shift is

�

3
.

(b) For y D 4 cos
�

t C �

6

�

, notice that y D 4 cos
�

t �
�

��

6

��

. So the

amplitude is 4 and the phase shift is ��

6
.

2. There are several possible equations for this sinusoid. Some of these equa-

tions are:

y D 3 sin

�

t C 3�

4

�

y D 3 cos
�

t C �

4

�

y D �3 sin
�

t � �

4

�

y D �3 cos

�

t � 3�

4

�

A graphing utility can be used to verify that any of these equations produce

the given graph.

Progress Check 2.14

1. The amplitude is 6.3.

2. The period is
2�

50�
D 1

25
.

3. We write y D 6:3 cos.50�.t � .�0:01///C 2 and see that the phase shift is

�0:01 or 0.01 units to the left.

4. The vertical shift is 2.

5. Because we are using a cosine and the phase shift is�0:01, we can use�0:01

as the t -coordinate of Q. The y-coordinate will be the vertical shift plus the

amplitude. So the y-coordinate is 8.3. Point Q has coordinates .�0:01; 8:3/.
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6. We now use the fact that the horizontal distance between P and Q is one-

quarter of a period. Since the period is
1

25
D 0:04, we see that one-quarter

of a period is 0.01. The point P also lies on the center line, which is y D 2.

So the coordinates of P are .�0:02; 2/.

We now use the fact that the horizontal distance between Q and R is one-

quarter of a period. The point R is on the center line of the sinusoid and so

R has coordinates .0; 2/.

The point S is a low point on the sinusoid. So its y-coordinate will be

D minus the amplitude, which is 2 � 6:3 D �4:3. Using the fact that the

horizontal distance from R to S is one-quarter of a period, the coordinates of

S are .0:01;�4:3/. Since the point T is on the center line and the horizontal

distance from S to T is one-quarter of a period, the coordinates of T are

.0:03; 2/.

7. We will use a viewing win-

dow that is one-quarter of a

period to the left of P and

one-quarter of a period to

the right of T . So we will

use �0:03 � t � 0:03.

Since the maximum value is

8.3 and the minimum value

is �4:3, we will use �5 �
y � 9.

P

Q

R

S

T

Progress Check 2.15

7π

12

π

4

13π

12

2

4

6

8

P

Q

R

1. The coordinates of Q are
�

7�

12
; 7

�

and the coordinates of

R are

�

13�

12
; 1

�

. So two times

the amplitude is 7 � 1 D 6 and

the amplitude is 3.

2. We add the amplitude to the lowest y-value to determine D. This gives

D D 1C 3 D 4 and the center line is y D 4.

3. The horizontal distance between Q and R is
13�

12
� 7�

12
D 6�

12
. So we see
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that one-half of a period is
�

2
and the period is � . So B D 2�

�
D 2.

4. For y D A cos.B.t �C //CD, we can use the point Q to determine a phase

shift of
7�

12
. So an equation for this sinusoid is

y D 3 cos

�

2

�

t � 7�

12

��

C 4:

5. The point P is on the center line and so the horizontal distance between P

and Q is one-quarter of a period. So this horizontal distance is
�

4
and the

t -coordinate of P is
7�

12
� �

4
D 4�

12
D �

3
:

This can be the phase shift for y D A sin.B.t � C 0// C D. So another

equation for this sinusoid is

y D 3 sin
�

2
�

t � �

3

��

C 4:

Section 2.3

Progress Check 2.16

1. The maximum value of V.t/ is 140 ml and the minimum value of V.t/ is 70

ml. So the difference (140 � 70 D 70) is twice the amplitude. Hence, the

amplitude is 35 and we will use A D 35. The center line will then be 35

units below the maximum. That is, D D 140� 35 D 105.

2. Since there are 50 beats per minute, the period is
1

50
of a minute. Since

we are using seconds for time, the period is
60

50
seconds or

6

5
sec. We can

determine B by solving the equation

2�

B
D 6

5

for B . This gives B D 10�

6
D 5�

3
. Our function is

V.t/ D 35 cos

�

5�

3
t

�

C 105:
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Progress Check 2.18

1. Since we have the coordinates for a high and low point, we first do the fol-

lowing computations:

� 2.amp/ D 15:35� 9:02 D 6:33. Hence, the amplitude is 3.165.

� D D 9:02C 3:165D 12:185.

� 1

2
period D 355 � 172 D 183. So the period is 366. Please note that

we usually say that there are 365 days in a year. So it would also be

reasonable to use a period of 365 days. Using a period of 366 days, we

find that
2�

B
D 366;

and hence B D �

183
.

We must now decide whether to use a sine function or a cosine function to

get the phase shift. Since we have the coordinates of a high point, we will

use a cosine function. For this, the phase shift will be 172. So our function

is

y D 3:165 cos
� �

183
.t � 172/

�

C 12:185:

We can check this by verifying that when t D 155, y D 15:135 and that

when t D 355, y D 9:02.

(a) March 10 is day number 69. So we use t D 69 and get

y D 3:165 cos
� �

183
.69 � 172/C

�

C 12:125� 11:5642:

So on March 10, 2014, there were about 11.564 hours of daylight.

(b) We use a graphing utility to approxi-

mate the points of intersection of

y D 3:165 cos
� �

183
.69� 172/C

�

C
12:125 and y D 13. The results

are shown to the right. So on day

96 (April 6, 2014) and on day 248

(September 5), there were about 13

hours of daylight.

(172, 15.135)

(355, 9.02)

(95.671,13)

(248.329, 13)
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Progress Check 2.20

1.

(a) The amplitude is 2.5.

The period is
2�

3
.

The phase shift is ��

9
.

The vertical shift is 2.

(b) The amplitude is 4.

The period is
1

50
.

The phase shift is
1

400
.

The vertical shift is 0.

(−π/9, −0.5)

(2π/9, 4.5)

π/6 π/3

π/2

2π/3

2

4

−1

(π/18, 2)

(7π/18, 2)

4

−4

1/400

5/400

(3/400, 5)

(7/400, −5)

2.

first equation second equation

5.22 amplitude 5.153

12 period 12.30

3.7 phase shift 3.58

12.28 vertical shift 12.174

Section 2.4

Progress Check 2.21

The graphs for (1) and (2) are shown below.
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y

t
t

y

3. In both graphs, the graph just to the left of t D �

2
and just to the right of

t D ��

2
is consistent with the information in Table 2.4. The graph on the

right is also consistent with the information in this table on both sides of

t D �

2
and t D ��

2
.

4. The range of the tangent function is the set of all real numbers.

5. Based on the graph in (2), the period of the tangent function appears to be � .

The period is actually equal to � , and more information about this is given

in Exercise (1).

Progress Check 2.23

The equation for the function is y D 3 tan
�

2
�

x � �

8

��

C 1.

1. The period of this function is
�

2
.

2. The effect of the parameter 3 is to vertically stretch the graph of the tangent

function.

3. The effect of the parameter
�

8
is to shift the graph of y D 3 tan .2 .x//C 1

to the right by
�

8
units.

4. Following is a graph of one period of this function using ��

8
< x �<

3�

8

and �20 � y � 20. The vertical asymptotes at x D ��

8
and x D 3�

8
are

shown as well as the horizontal line y D 1.
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Progress Check 2.24

1. The secant function is the reciprocal of the cosine function. That is, sec.t/ D
1

cos.t/
.

2. The domain of the secant function is the set of all real numbers t for which

t ¤ �

2
C k� for every integer k.

3. The graph of the secant function will have a vertical asymptote at those val-

ues of t that are not in the domain. So there will be a vertical asymptote

when t D �

2
C k� for some integer k.

4. Since sec.t/ D 1

cos.t/
, and the period of the cosine function is 2� , we

conclude that the period of the secant function is also 2� .

Progress Check 2.26

1. All of the graphs are consistent.

2. Since sec.x/ D 1

cos.x/
, we see that sec.x/ > 0 if and only if cos.x/ > 0.

So the graph of y D sec.x/ is above the x-axis if and only if the graph of

y D cos.x/ is above the x-axis.

3. Since sec.x/ D 1

cos.x/
, we see that sec.x/ < 0 if and only if cos.x/ < 0.

So the graph of y D sec.x/ is below the x-axis if and only if the graph of

y D cos.x/ is below the x-axis.
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4. The key is that sec.x/ D 1

cos.x/
. Since �1 � cos.x/ � 1, we conclude that

sec.x/ � 1 when cos.x/ > 0 and sec.x/ � �1 when cos.x/ < 0. Since the

graph of the secant function has vertical asymptotes, we see that the range

of the secant function consists of all real numbers y for which y � 1 or

y � �1. This can also be seen on the graph of y D sec.x/.

Section 2.5

Progress Check 2.28

1. arcsin

 

�
p

3

2

!

D ��

3
since sin

�

��

3

�

D �
p

3

2
and ��

2
� ��

3
� �

2
.

2. sin�1

�

1

2

�

D �

6
since sin

��

6

�

D �1

2
and ��

2
� �

6
� �

2
.

3. arcsin .�1/ D ��

2
since sin

�

��

2

�

D �1 and ��

2
� ��

2
� �

2
.

4. arcsin

 

�
p

2

2

!

D ��

4
since sin

�

��

4

�

D �
p

2

2
and ��

2
� ��

4
� �

2
.

Progress Check 2.29

1. Since sin�1

�

1

2

�

D �

6
, we see that sin

�

sin�1

�

1

2

��

D sin
��

6

�

D 1

2
.

2. arcsin
�

sin
��

4

��

D arcsin

 p
2

2

!

. In addition, arcsin

 p
2

2

!

D �

4
since

sin
��

4

�

D
p

2

2
and ��

2
� �

4
� �

2
. So we see that

arcsin
�

sin
��

4

��

D arcsin

 p
2

2

!

D �

4
:

3. We do not know an exact value for sin�1

�

2

5

�

. So we let t D sin�1

�

2

5

�

.
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We then know that sin.t/ D 2

5
and ��

2
� t � �

2
. So

sin

�

sin�1

�

2

5

��

D sin.t/ D 2

5
:

4. arcsin

�

sin

�

3�

4

��

D arcsin

 p
2

2

!

. In addition, arcsin

 p
2

2

!

D �

4
since

sin
��

4

�

D
p

2

2
and ��

2
� �

4
� �

2
. So we see that

arcsin

�

sin

�

3�

4

��

D arcsin

 p
2

2

!

D �

4
:

Progress Check 2.31

1. Since cos�1

�

1

2

�

D �

3
, we see that cos

�

cos�1

�

1

2

��

D cos
��

3

�

D 1

2
.

2. arccos
�

cos
��

4

��

D arccos

 p
2

2

!

. In addition, arccos

 p
2

2

!

D �

4
since

cos
��

4

�

D
p

2

2
and 0 � �

4
� � . So we see that

arccos
�

cos
��

4

��

D arccos

 p
2

2

!

D �

4
:

3. arccos
�

cos
�

��

4

��

D arccos

 p
2

2

!

. In addition, arccos

 p
2

2

!

D �

4

since cos
��

4

�

D
p

2

2
and 0 � 3�

4
� � . So we see that

arccos
�

cos
�

��

4

��

D arccos

 p
2

2

!

D �

4
:

4. tan�1

�

tan

�

5�

4

��

D tan�1 .1/. In addition, tan�1 .1/ D �

4
since tan

��

4

�

D

1 and ��

2
<

�

4
<

�

2
. So we see that

tan�1

�

tan

�

5�

4

��

D tan�1 .1/ D �

4
:
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Progress Check 2.32

1. y D arccos.1/ D 0

2. y D tan�1
�p

3
�

D �

3

3. y D arctan .�1/ D ��

4

4. y D cos�1

 

�
p

2

2

!

D 3�

4

5. sin

�

arccos

�

1

2

��

D
p

3

2

6. tan

 

arcsin

 

�
p

3

2

!!

D �
p

3

7. arccos
�

sin
��

6

��

D �

3

Progress Check 2.33

1. Let t D arccos

�

1

3

�

. We then know that

cos.t/ D 1

3
and 0 � t � �:

Using the Pytagorean Identity, we see that

�

1

3

�2

C sin2.t/ D 1 and this

implies that sin2.t/ D 8

9
. Since 0 � t � � , t is in the second quadrant and

in both of these quadrants, sin.t/ > 0. So, sin.t/ D
p

8
3

. That is,

sin

�

arccos

�

1

3

��

D
p

8

3
:

2. For cos

�

arcsin

�

�4

7

��

, we let t D arcsin

�

�4

7

�

. This means that

sin.t/ D �4

7
and � �

2
� t � �

2
:

We can use the Pythagorean Identity to obtain cos2.t/C
�

�4

7

�2

D 1. This

gives cos2.t/ D 33

49
. We also have the restriction ��

2
� t � �

2
and we

know sin.t/ < 0. This means that t must be in QIV and so cos.t/ > 0.

Hence, cos.t/ D
p

33

7
. That is,

cos

�

arcsin

�

�4

7

��

D
p

33

7
:
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Note: You can use your calculator to check this work. Use your calculator

to approximate both cos

�

arcsin

�

�4

7

��

and

p
33

7
. Both results should be

0:8206518066.

Section 2.6

Progress Check 2.34

Any solution of the equation sin.x/ D �0:6 may be approximated with one of the

following:

x � �0:64350C k.2�/ or x � �2:49809C k.2�/:

Progress Check 2.36

We first rewrite the equation 4 cos.x/C 3 D 2 as follows:

4 cos.x/C 3 D 2

4 cos.x/ D �1

cos.x/ D �1

4

So in the interval Œ��; ��, the solutions are x1 D arccos

�

�1

4

�

and

x2 D � arccos

�

�1

4

�

. So any solution of the equation 4 cos.x/C 3 D 2 is of the

form

x D arccos

�

�1

4

�

C k.2�/ or x D � arccos

�

�1

4

�

C k.2�/:

Progress Check 2.38

We first use algebra to rewrite the equation 2 sin.x/C 1:2 D 2:5 in the form

sin.x/ D 0:65:

So in the interval Œ��; ��, the solutions are x1 D arcsin .0:65/ and

x2 D � � arcsin .0:65/. So any solution of the equation 2 sin.x/C 1:2 D 2:5 is of

the form

x D arcsin .0:65/C k.2�/ or x D � � arcsin .0:65/C k.2�/:
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Progress Check 2.39

1.

3 cos.2x C 1/C 6 D 5

3 cos.2xC 1/ D �1

cos.2xC 1/ D �1

3

2. t D cos�1

�

�1

3

�

or t D � cos�1

�

�1

3

�

.

3.

2x C 1 D cos�1

�

�1

3

�

2x C 1 D � cos�1

�

�1

3

�

2x D cos�1

�

�1

3

�

� 1 2x D � cos�1

�

�1

3

�

� 1

x D 1

2
cos�1

�

�1

3

�

� 1

2
x D �1

2
cos�1

�

�1

3

�

� 1

2

4. The period of the function y D cos.2xC 1/ is � . So the following formulas

can be used to generate the solutions for the equation.

x D
�

1

2
cos�1

�

�1

3

�

� 1

2

�

Ck� or x D
�

�1

2
cos�1

�

�1

3

�

� 1

2

�

Ck�;

where k is some integer. Notice that we added an integer multiple of the

period, which is � , to the solutions in (3).

Progress Check 2.40

We first write the equation 4 tan.x/C 1 D 10 in the form tan.x/ D 9

4
. So the only

solution of the equation in the interval
�

��

2
� x � �

2

�

is

x D arctan

�

9

4

�

:

Since the period of the tangent function is � , any solution of this equation can be

written in the form

x D arctan

�

9

4

�

C k�;

where k is some integer.
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Section 3.1

Progress Check 3.1

1.

P(−3, 7)

2. r D
p

.�3/2 C 72 D
p

58

3.

cos.�/ D � 3p
58

tan.�/D �7

3
sec.�/ D �

p
58

3

sin.�/ D 7p
58

cot.�/D �3

7
csc.�/ D

p
58

7

Progress Check 3.2

1.

(3, 2)

2. Since tan.˛/ D 2

3
, we can conclude that the point .3; 2/ lies on the terminal

side of ˛.

3. Since .3; 2/ is on the terminal side of ˛, we can use x D 3, y D 2, and

r D
p

32 C 22 D
p

13. So

cos.�/ D 2p
13

tan.�/ D 2

3
sec.�/ D

p
13

2

sin.�/ D 3p
13

cot.�/ D 3

2
csc.�/ D

p
13

3
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Progress Check 3.3

The completed work should look something like the following:

cos2.�/C sin2.�/ D
�x

r

�2

C
�y

r

�2

D x2

r2
C y2

r2

D x2 C y2

r2

D r2

r2

D 1

Progress Check 3.4

1. Using the Pythagorean Identity, we see that cos2.�/ C
�

1

3

�2

D 1 and so

cos2.�/ D 8

9
. Since

�

2
< � < � , cos.�/ < 0. Hence, cos.�/ D �

p
8

3
.

2. tan.�/D
1

3

�
p

8

3

D � 1p
8

.

3. cot.�/D �
p

8, csc.�/ D 3, and sec.�/ D � 3p
8

.

Progress Check 3.5

2. tan�1.�2:5/ � �68:199ı.

3. � � �68:199ıC 180ı � 111:801ı.
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Section 3.2

Progress Check 3.9

We let ˛ be the angle opposite the side of length 5 feet and let ˇ be the angle

adjacent to that side. We then see that

sin.˛/ D 5

17
cos.ˇ/ D 5

17

˛ D arcsin

�

5

17

�

ˇ D arccos

�

5

17

�

˛ � 17:1046ı ˇ D 72:8954ı

As a check, we notice that ˛ C ˇ D 90ı. We can use the Pythagorean theorem to

determine the third side, which using our notation, is b. So

52 C b2 D 172;

and so we see that b D
p

264 � 16:2481 feet.

Progress Check 3.11

With a rise of 1 foot for every 12 feet of run, we see if we let � be the angle of

elevation, then

tan.�/D 1

12

� D arctan

�

1

12

�

� � 4:7636ı

The length of the ramp will be the hypotenuse of the right triangle. So if we let h

be the length of the hypotenuse, then

sin.�/ D 7:5

h

h D 7:5

sin.�/

h � 90:3120

The length of the hypotenuse is approximately 90.3 feet. We can check our result

by determining the length of the third side, which is 7:5 � 12 or 90 feet and then

verifying the result of the Pythagorean theorem. We can verify that

7:52 C 902 � 90:31202:
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Progress Check 3.12

1. h D x tan.˛/. So

tan.ˇ/ D x tan.˛/

d C x
: (3)

2. tan.ˇ/.d C x/ D x tan.˛/.

3. We can proceed to solve for x as follows:

d tan.ˇ/C x tan.ˇ/ D x tan.˛/

d tan.ˇ/ D x tan.˛/ � x tan.ˇ/

d tan.ˇ/ D x.tan.˛/� tan.ˇ//

d tan.ˇ/

tan.˛/ � tan.ˇ/
D x

So we see that x D 22:75 tan .34:7ı/

tan .43:2ı/ � tan .34:7ı/
� 63:872. Using this value

for x, we obtain h D x tan .43:2ı/ � 59:980. So the top of the flagpole is

about 59.98 feet above the ground.

4. There are several ways to check this result. One is to use the values for d , h,

and x and the inverse tangent function to determine the values for ˛ and ˇ.

If we use approximate values for d , h, and x, these checks may not be exact.

For example,

˛ D arctan

�

h

x

�

� arctan

�

59:98

63:872

�

� 43:2ı

ˇ D arctan

�

h

d C x

�

� arctan

�

59:980

22:75C 63:872

�

� 34:7ı

Another method to check the results is to use the sine of ˛ or ˇ to determine

the length of the hypotenuse of one of the right triangles and then check

using the Pythagorean Theorem.

Section 3.3

Progress Check 3.14

We first note that the third angle in the triangle is 30ı since the sum of the two

given angles is 150ı. We let x be the length of the side opposite the 15ı angle and
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let y be the length of the side opposite the 135ı angle. We then see that

x

sin .15ı/
D 71

sin .30ı/

y

sin .135ı/
D 71

sin .30ı/

x D 71 sin .15ı/

sin .30ı/
y D 71 sin .135ı/

sin .30ı/

x � 36:752 y � 100:409

So the length of the side opposite the 15ı angle is about 36.75 inches, and the

length of the side opposite the 135ı angle is about 100.41 inches.

Progress Check 3.15

1. The side opposite the angle of 40ı has length 1.7 feet. So we get

sin.�/

2
D sin .40ı/

1:7

sin.�/ D 2 sin .40ı/

1:7
� 0:75622

2. We see that

�1 D sin�1

�

2 sin .40ı/

1:7

�

� 49:132ı:

3. �2 D 180ı � �1 � 130:868ı. Using reference angles instead of reference

arcs, �1 is the reference angle for �2, which is in the second quadrant. Hence,

sin .�2/ D sin .�1/.

4. The third angle ˛ can be determined using the sum of the angles of a triangle.

˛C �1 C 40ı D 180ı

˛ � 180ı � 40ı � 49:132ı

˛ � 90:868ı

We use the Law of Sines to determine

the length x of the side opposite ˛.

The resulting triangle is shown on the

right.

x

sin.˛/
D 1:7

sin .40ı/

x D 1:7 sin.˛/

sin .40ı/

x � 2:644 ft

40

2 f
t

1
.7

 ft

2.64 ft

θ

α
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5. Using the same procedure that we did

in part (4), we obtain

�2 � 130:868ı

˛2 � 9:132ı

x2 � 0:420 ft

The triangle is shown on the right.

40

2 f
t

1
.7

 f
t

0.42 ft

9.13

130.87

Progress Check 3.17

1. Using the Law of Cosines, we obtain

c2 D 3:52 C 2:52 � 2.3:5/.2:5/ cos
�

60ı�

D 9:75

So c D
p

9:75 � 3:12250 ft.

2. Using the Law of Sines, we obtain

sin.˛/

2:5
D sin .60ı/

c

sin.˛/ D 2:5 sin .60ı/

c
� 0:69338

From this, we get ˛ � 43:898ı or ˛ � 136:102ı. However, since the given

angle in 60ı, the second value is not possible since 136:102ıC 60ı < 180ı.

So ˛ � 43:898ı.

3. Since the sum of the angles of a triangle must be 180ı, we have

60ı C 43:898ıC ˇ D 180ı

ˇ � 76:102ı

4. With the values we have determined, we can check our work by showing that

sin .60ı/

c
D sin.˛/

2:5
D sin.ˇ/

3:5
� 0:27735:
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Progress Check 3.18

The first step is to draw a reasonably

accurate diagram and label the angles.

We will use the diagram on the right.
6 ft

3
 f
t

5 ft

α

β

γ

Using the

Law of Cosines, we obtain

52 D 32 C 62 � 2.3/.6/ cos.˛/ 62 D 32 C 52 � 2.3/.5/ cos.ˇ/

cos.˛/ D 20

36
cos.ˇ/ D �2

30

˛ � 56:251ı ˇ � 98:823ı

32 D 52 C 62 � 2.5/.6/ cos.
/

cos.
/ D 52

60


 � 29:926ı

We check these results by verifying that ˛ C ˇ C 
 D 180ı.

Section 3.4

Progress Check 3.20

We first note that†BAC D 180ı�94:2ı�48:5ı and so †BAC D 37:3ı. We can

then use the Law of Sines to determine the length from A to B as follows:

AB

sin .48:5ı/
D 98:5

sin .37:3ı/

AB D 98:5 sin .48:5ı/

sin .37:3ı/

AB � 121:7

The bridge from point B to point A will be approximately 121.7 feet long.
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Progress Check 3.21

Using the right triangle, we see that sin .26:5ı/ D h

5
. So h D 5 sin .26:5ı/, and

the area of the triangle is

A D 1

2
.7/

�

5 sin
�

26:5ı��

D 35

2
sin
�

26:5ı� � 7:8085

The area of the triangle is approximately 7.8085 square meters.

Progress Check 3.22

Using the right triangle, we see that sin.�/ D h

a
. So h D a sin.�/, and the area of

the triangle is

A D 1

2
b .a sin.�//

D 1

2
ab sin.�/

Progress Check 3.23

1. Using the Law of Cosines, we see that

c2 D a2 C b2 � 2ab cos.
/

2ab cos.
/ D a2 C b2 � c2

cos.
/ D a2 C b2 � c2

2ab

2. We see that

sin2.
/ D 1 � cos2.
/:

Since 
 is between 0ı and 180ı, we know that sin.
/ > 0 and so

sin.
/ D

s

a2 C b2 � c2

2ab
:
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3. Substituting the equation in part (2) into the formula A D 1

ab
sin.
/, we

obtain

A D 1

2
ab sin.
/

D 1

2
ab

s

1 �
�

a2 C b2 � c2

2ab

�2

Section 3.5

Progress Check 3.24

The vector w is the only vector that is equal to the vector v. Vector u has the same

direction as v but a different magnitude. Vector a has the same magnitude as v

but a different direction (note that the direction of a is the opposite direction of v).

Vector b has a different direction and a different magnitude than v.

Progress Check 3.25

(c
) 2

v +
 w

v
w

(a) v
 + w

(b) 2v

w

(d) -2w

v
(e) -2w

 +
 v

w
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Progress Check 3.26

v
w

(a) v
 + w

w

v

(a) −w

(b
) v

 - w

w

(c
) 
−
v

(d
) w

 −
 v

Progress Check 3.27

1. †ABC D 180ı � � D 127ı.

2. Using the Law of Cosines, we see that

jaC bj2 D jaj2 C jbj2 � 2jaj � jbj cos.†ABC /

D 802 C 602 � 2 � 60 � 80 cos
�

127ı�

D 10000� 9600 cos
�

127ı�

� 15777:42422

So we see that jaC bj � 125:61.

3. The angle between the vectors a and aC b is †CAB . In4ABC , we know

that †ABC D 127ı, and so †CAB must be an acute angle. We will use the

Law of Sines to determine this angle.

sin.†CAB/

jbj D sin.†ABC /

jaC bj

sin.†CAB/ D 60 sin .127ı/

jaC bj
sin.†CAB/ � 0:38148341

So the angle between the vectors a and aC b is approximately 22:43ı.



376 Appendix A. Answers for Progress Checks

Progress Check 3.29

Using the Law of Sines, we see that

jaj
sin .20ı/

D 100

sin .140ı/

jaj D 100 sin .20ı/

sin .140ı/

jaj � 53:21

The magnitude of the vector a (and the vector b) is approximately 53.21 pounds.

Progress Check 3.30

Using the notation in Figure 3.26, we obtain the following:

jbj
jwj D cos

�

12ı� jaj
jwj D sin

�

12ı�

jbj D jwj cos
�

12ı� jaj D jwj sin
�

12ı�

jbj � 244:54 jaj � 51:98

The object exerts a force of about 244.54 pounds perpendicular to the plane and the

force of gravity down the plane on the object is about 51.98 pounds. So in order

to keep the object stationary, a force of about 51.98 pounds up the plane must be

applied to the object.

Section 3.6

Progress Check 3.31

1. v D 7iC .�3/j. So jvj D
p

72 C .�3/2 D
p

58. In addition,

cos.�/ D 7p
58

and sin.�/ D �3p
58

:

So the terminal side of � is in the fourth quadrant, and we can write

� D 360ı � arccos

�

7p
58

�

:

So � � 336:80ı.
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2. We are given jwj D 20 and the direction angle � of w is 200ı. So if we write

w D w1iCw2j, then

w1 D 20 cos
�

200ı� w2 D 20 sin
�

200ı�

� �1:794 � �6:840

Progress Check 3.32

v = <3, −2>

2v = <6, −4>

−2v = <−6, 4>1.  

2. For a vector a D ha1; a2i and a scalar c, we define the scalar multiple ca to

be

ca D hca1; ca2i:

Progress Check 3.33

Let u D h1;�2i, v D h0; 4i, and w D h�5; 7i.

1. 2u� 3v D h2;�4i � h0; 12i D h2;�16i.

2. j2u � 3vj D
p

22 C .�16/2 D
p

260. So now let � be the direction angle

of 2u� 3v. Then

cos.�/ D 2p
260

and sin.�/ D �16p
260

:

So the terminal side of � is in the fourth quadrant. We see that arcsin

� �16p
260

�

�
�82:87ı. Since the direction angle � must satisfy 0 � � < 360ı, we see that

� � �82:87ıC 360ı � 277:13ı.

3. uC 2v � 7w D h1;�2i C h0; 8i � h�35; 49i D h36;�43i.
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Progress Check 3.34

1. If � is the angle between u D 3iC j and v D �5iC 2j, then

cos.�/ D u�v
jujjvj D

�13p
10
p

29

� D cos�1

� �13p
10
p

29

�

so � � 139:764ı.

2. If v D ha; bi is perpendicular to u D h1; 3i, then the angle � between them

is 90ı and so cos.�/ D 0. So we must have u�v D 0 and this means that

aC 3b D 0. So any vector v D ha; bi where a D �3b will be perpendicular

to v, and there are infinitely many such vectors. One vector perpendicular to

u is h�3; 1i.

Progress Check 3.35

Let u D h7; 5i and v D h10;�2i. Then

projvu D u � v
jvj2 v D 60

104
v proj?vu D u� projvu

D
�

600

104
;
�120

104

�

D h7; 5i �
�

600

104
;
�120

104

�

� h5:769;�1:154i D
�

128

104
;
640

104

�

� h1:231; 6:154i

proj u
v

u

v

proj u
v
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Section 4.1

Progress Check 4.4

1. The graphs of both sides of the equation indicate that this is an indentity.

2. The graphs of both sides of the equation indicate that this is not an indentity.

For example, if we let x D �

2
, then

cos
��

2

�

sin
��

2

�

D 0 � 1 D 0 and 2 sin
��

2

�

D 2 � 1 D 2:

.

Section 4.2

Progress Check 4.6

We divide both sides of the equation 4 cos.x/ D 2
p

2 by 4 to get cos.x/ D
p

2

2
.

So

x D �

4
C k.2�/ or x D 7�

4
C k.2�/;

where k is an integer.

Progress Check 4.7

1. We divide both sides of the equation 5 sin.x/ D 2 by 5 to get sin.x/ D 0:4.

So

x D sin�1.0:4/C k.2�/ or x D .� � sin�1.0:4//C k.2�/;

where k is an integer.

2. We use ˛ D 40ı and
ca

cw
D 1:33 in the Law of Refraction.

sin .40ı/

sin.ˇ/
D 1:33

sin.ˇ/ D sin .40ı/

1:33
� 0:483299

ˇ � 28:90ı

The angle of refraction is approximately 28:90ı.
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Progress Check 4.9

We will use the identity cos2.x/ D 1� sin. x/. So we have

sin2.x/ D 3
�

1 � sin2.x/
�

sin2.x/ D 3

4

So we have sin.x/ D
p

3

2
or sin.x/ D �

p
3

2
. For the first equation, we see that

x D �

3
C 2�k or x D �

3
C 2�k;

where k is an integer, and for the second equation, we have

x D 4�

3
C 2�k or x D 5�

3
C 2�k;

where k is an integer. The graphs of y D sin2.x/ and y D 3 cos2.x/ will show 4

points of intersection on the interval Œ0; 2��.

Progress Check 4.11

We write the equation as sin2.x/� 4 sin.x/C 3 D 0 and factor the right side to get

.sin.x/ � 3/.sin.x/ � 1/ D 0. So we see that sin.x/ � 3 D 0 or sin.x/ � 1 D 0.

However, the equation sin.x/�3 D 0 is equivalent to sin.x/ D 3, and this equation

has no solution. We write sin.x/ � 1 D 0 as sin.x/ D 1 and so the solutions are

x D �

2
C 2�k;

where k is an integer.



Appendix A. Answers for Progress Checks 381

Section 4.3

Progress Check 4.13

1. We first note that
7�

12
D 9�

12
� 2�

6
D 3�

4
� �

6
.

cos

�

7�

12

�

D cos

�

3�

4
� �

6

�

D cos

�

3�

4

�

cos
��

6

�

C sin

�

3�

4

�

sin
��

6

�

D
 

�
p

2

2

! p
3

2

!

C
 p

2

2

!

�

1

2

�

D �
p

6C
p

2

4
:

2.

cos

�

5�

12

�

D cos
��

6
�
�

��

4

��

D cos
��

6

�

cos
�

��

4

�

C sin
��

6

�

sin
�

��

4

�

D
 p

3

2

! p
2

2

!

C
�

1

2

�

 

�
p

2

2

!

D
p

6 �
p

2

4
:

Progress Check 4.14

1. cos.� C x/ D cos.�/ cos.x/ � sin.�/.sin.x/ D � cos.x/. The graphs of

y D cos.� C x/ and y D cos.x/ are indentical.

2. cos
��

2
� x

�

D cos
��

2

�

cos.x/C sin.
��

2

�

sin.x/ D 0 � cos.x/C 1 � sin.x/.

So we see that cos
��

2
� x

�

D sin.x/
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Progress Check 4.15

We will use the identity tan.y/ D sin.y/

cos.y/
.

tan
��

2
� x

�

D
sin
��

2
� x

�

cos
��

2
� x

�

D cos.x/

sin.x/

D cot.x/

Progress Check 4.16

1. We note that
�

12
D �

3
� �

4
.

sin
� �

12

�

D sin
��

3
� �

4

�

D sin
��

3

�

cos
��

4

�

� cos
��

3

�

sin
��

4

�

D
p

3

2
�
p

2

2
� 1

2
�
p

2

2

D
p

6 �
p

2

4

2. We note that
5�

12
D �

4
C �

6
.

sin

�

5�

12

�

D sin
��

4
C �

6

�

D sin
��

4

�

cos
��

6

�

C cos
��

4

�

sin
��

6

�

D
p

2

2
�
p

3

2
C
p

2

2
� 1
2

D
p

6C
p

2

4

Progress Check 4.18

We first use the Sine Sum Identity to rewrite the equation as sin.x C 1/ D 0:2. If

we let t D x C 1, we see that for 0 � t < 2� ,

t D arcsin.0:2/ or t D .� � arcsin.0:2//:
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So we have x C 1 D arcsin.0:2/ or x C 1 D � � arcsin.0:2/. Since the period

of the functions we are working with is 2� , we see that

x D .�1C arcsin.0:2//C k.2�/ or x D .�1C � � arcsin.0:2//C k.2�/;

where k is an integer.

Section 4.4

Progress Check 4.19

We are assuming that cos.�/ D 5

13
and

3�

2
� � � 2� . To determine cos.2�/ and

sin.2�/, we will use the double angle indentities.

cos.2�/D cos2.�/ � sin2.�/ sin.2�/ D 2 cos.�/ sin.�/:

To use these identities, we also need to know sin.�/. So we use the Pythagorean

identity.

cos2.�/C sin2.�/ D 1

sin2.�/ D 1 � cos2.�/

D 1 �
�

5

13

�2

D 144

169

Since
3�

2
� � � 2� , we see that sin.�/ < 0 and so sin.�/ D �12

13
. Hence,

cos.2�/ D cos2.�/� sin2.�/ sin.2�/D 2 cos.�/ sin.�/

D
�

5

13

�2

�
�

�12

13

�2

D 2

�

5

13

��

�12

13

�

D �119

169
D �120

169
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Progress Check 4.20

We will prove alternate forms of the double angle identity for cosine.

cos.2A/ D cos2.A/� sin2.A/ cos.2A/ D cos2.A/ � sin2.A/

D
�

1 � sin2.A/
�

� sin2.A/ D cos2.A/ �
�

1 � cos2.A/
�

D 1 � sin2.A/ � sin2.A/ D cos2.A/ � 1C cos2.A/

D 1 � 2 sin2.A/ D 2 cos2.A/� 1

Progress Check 4.22

We will approximate the smallest positive solution in degrees, to two decimal

places, to the range equation

45000 sin.2�/D 1000:

Dividing both sides of the equation by 45000, we obtain

sin.2�/ D 1000

45000
D 1

45
:

So

2� D arcsin

�

1

45

�

� D 1

2
arcsin

�

1

45

�

Using a calculator in degree mode, we obtain � � 0:64ı.

Progress Check 4.24

1. We use the double angle identity cos.2�/ D 1 � 2 sin2.�/ to obtain

1 � 2 sin2.�/ D sin.�/

1� 2 sin2.�/ � sin.�/ D 0

2 sin2.�/C sin.�/� 1 D 0

2. Factoring gives .2 sin.�/ � 1/.sin.�/C 1/ D 0. Setting each factor equal to

0 and solving for sin.�/, we obtain

sin.�/ D 1

2
or sin.�/ D �1:
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So we have

� D �

6
C k.2�/ or � D 5�

6
C k.2�/ or � D �pi

2
C k.2pi/;

where k is an integer.

Progress Check 4.26

To determine the exact value of cos
��

8

�

, we use the Half Angle Identity for cosine

with A D �

4
.

cos
��

8

�

D ˙

v

u

u

t

1C cos
��

4

�

2

D ˙

v

u

u

u

t

1C
p

2

2
2

Since
�

8
is in the first quadrant, we will use the positive square root. We can also

rewrite the expression under the square root sign to obtain

cos
��

8

�

D

v

u

u

u

t

1C
p

2

2
2

D

v

u

u

u

t

2C
p

2

2
2

D

s

2C
p

2

4

D
p

2C
p

2

2

This result can be checked using a calculator.

Section 4.5

Progress Check 4.27

To determine the exact value of sin .52:5ı/ sin .7:5ı/, we will use the Product-to-

Sum identity

sin.A/ sin.B/ D
�

1

2

�

Œcos.A � B/ � cos.AC B/� :
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So we see that

sin.52:5ı/ sin.7:5ı/ D
�

1

2

�

�

cos.45ı/ � cos.60ı/
�

D
�

1

2

�

"p
2

2
� 1

2

#

D
p

2 � 1

4

Progress Check 4.28

To determine the exact value of cos.112:5ı/C cos.67:5ı/, we will use the Sum-to-

Product Identity

cos.A/C cos.B/ D 2 cos

�

AC B

2

�

cos

�

A � B

2

�

So we see that

cos.112:5ı/C cos.67:5ı/ D 2 cos

�

180ı

2

�

cos

�

45ı

2

�

D cos.90ı/ cos.22:5ı/

D 0 � cos.22:5ı/

D 0

Section 5.1

Progress Check 5.1

1. (a) .2C 3i/C .7 � 4i/D 9 � i

(b) .4 � 2i/.3C i / D .4 � 2i/3C .4 � 2i/i D 14� 2i

(c) .2C i /i � .3C 4i/D .2i � 1/ � 3 � 4i D �4 � 2i

2. We use the quadratice formula to solve the equation and obtain x D 1˙
p
�7

2
.

We can then write
p
�7 D i

p
7. So the two solutions of the quadratic equa-
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tion are:

x D 1C i
p

7

2
x D 1 � i

p
7

2

x D 1

2
C
p

7

2
i x D 1

2
�
p

7

2
i

Progress Check 5.3

1. Using our formula with a D 5, b D �1, c D 3, and d D 4 gives us

5 � i

3C 4i
D 15� 4

15
C �3 � 20

25
i D 11

25
� 23

25
i:

As a check, we see that

�

11

25
� 23

25
i

�

.3C 4i/ D
�

33

25
� 69

25
i

�

C 44

25
i � 92

25
i2

D
�

33

25
C 92

25

�

C
�

�69

25
i C 44

25
i

�

D 5� i

2. We can solve for x by dividing both sides of the equation by 3C 4i to see

that

x D 5� i

3C 4i
D 11

25
� 23

25
i:

Progress Check 5.4

1. The sum is w C z D .2 � 1/C .3C 5/i D 1C 8i .

2. A representation of the complex sum using vectors is shown in the figure

below.
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x

y

2+3i

-1+5i

1+8i

Progress Check 5.5

1. Using the definition of the conjugate of a complex number we find that w D
2 � 3i and z D �1 � 5i .

2. Using the definition of the norm of a complex number we find that jwj Dp
22 C 33 D

p
13 and jzj D

p

.�1/2 C 52 D
p

26.

3. Using the definition of the product of complex numbers we find that

ww D .2C 3i/.2� 3i/D 4C 9 D 13

zz D .�1C 5i/.�1� 5i/ D 1C 25 D 26:

4. Let z D a C 0i D a for some a 2 R. Then z D a � 0i D a. Thus, z D z

when z 2 R.

Section 5.2

Progress Check 5.6

1. Note that jwj D
q

42 C .4
p

3/2 D 4
p

4 D 8 and the argument of w is

arctan
�

4
p

3
4

�

D arctan
p

3 D �
3

. So

w D 8
�

cos
��

3

�

C sin
��

3

��

:
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Also, jzj D
p

12 C 12 D
p

2 and the argument of z is arctan
��1

1

�

D ��
4

.

So

z D
p

2
�

cos
�

��

4

�

C sin
�

��

4

��

D
p

2
�

cos
��

4

�

� sin
��

4

��

:

2. Recall that cos
�

�
6

�

D
p

3
2

and sin
�

�
6

�

D 1
2

. So

3
�

cos
��

6

�

C i sin
��

6

��

D 3

 p
3

2
C 1

2
i

!

D 3
p

3

2
C 3

2
i:

So a D 3
p

3
2

and b D 3
2

.

Progress Check 5.8

1. Since jwj D 3 and jzj D 2, we see that

jwzj D jwjjzj D .3/.2/ D 6:

2. The argument of w is
5�

3
and the argument of z is ��

4
, we see that the

argument of wz is

5�

3
� �

4
D 20� � 3�

12
D 17�

12
:

3. The terminal side of an angle of
17�

12
D � C 5�

12
radians is in the third

quadrant.

4. We know the magnitude and argument of wz, so the polar form of wz is

wz D 6

�

cos

�

17�

12

�

C sin

�

17�

12

��

:

5. Following is a picture of w, z, and wz that illustrates the action of the com-

plex product.
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x

y

5π/3

w

−π/4

z

17π/12

wz

Progress Check 5.9

1. Since jwj D 3 and jzj D 2, we see that

ˇ

ˇ

ˇ

w

z

ˇ

ˇ

ˇ D
jwj
jzj D

3

2
:

2. The argument of w is
5�

3
and the argument of z is ��

4
, we see that the

argument of
w

z
is

5�

3
�
�

��

4

�

D 20� C 3�

12
D 23�

12
:

3. The terminal side of an angle of
23�

12
D 2� � �

12
radians is in the fourth

quadrant.

4. We know the magnitude and argument of wz, so the polar form of wz is

w

z
D 3

2

�

cos

�

23�

12

�

C sin

�

23�

12

��

:

5. Following is a picture of w, z, and wz that illustrates the action of the com-

plex product.
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x

y

5π/3

w

−π/4

z

23π/12
w/z

Section 5.3

Progress Check 5.10

In polar form,

1� i D
p

2
�

cos
�

��

4

�

C sin
�

��

4

��

:

So

.1� i /10 D
�p

2
�10

�

cos

�

�10�

4

�

C sin

�

�10�

4

��

D 32

�

cos

�

�5�

2

�

C sin

�

�5�

2

��

D 32.0� i /

D �32i:

Progress Check 5.13

1. We find the solutions to the equation z4 D 1. Let ! D cos
�

2�
4

�

Ci sin
�

2�
4

�

D
cos

�

�
2

�

C i sin
�

�
2

�

. Then

� !0 D 1,

� ! D i ,

� !2 D cos
�

2�
2

�

C i sin
�

2�
2

�

D �1
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� !3 D cos
�

3�
2

�

C i sin
�

3�
2

�

D �i .

So the four fourth roots of unity are 1, i;�1, and �i .

2. We find the solutions to the equation z6 D 1. Let ! D cos
�

2�
6

�

Ci sin
�

2�
6

�

D
cos

�

�
3

�

C i sin
�

�
3

�

. Then

� !0 D 1,

� ! D 1
2
C
p

32i ,

� !2 D cos
�

2�
3

�

C i sin
�

2�
3

�

D �1
2
C
p

32i ,

� !3 D cos
�

3�
3

�

C i sin
�

3�
3

�

D �1,

� !4 D cos
�

4�
3

�

C i sin
�

4�
3

�

D �1
2
�
p

32i ,

� !5 D cos
�

5�
3

�

C i sin
�

5�
3

�

D 1
2
�
p

32i .

So the six fifth roots of unity are 1, 1
2
C
p

32i ,�1
2
C
p

32i ,�1,�1
2
�
p

32i ,

and 1
2
�
p

32i .

Progress Check 5.15

Since �256 D 256 Œcos.�/C i sin.�/� we see that the fourth roots of �256 are

x0 D 4
p

256

�

cos

�

� C 2�.0/

4

�

C i sin

�

� C 2�.0/

4

��

D 4 cos
��

4

�

C i sin
��

4

�

D 4

"p
2

2
C
p

2

2
i

#

D 2
p

2C 2i
p

2;

x1 D 4
p

256

�

cos

�

� C 2�.1/

4

�

C i sin

�

� C 2�.1/

4

��

D 4 cos

�

3�

4

�

C i sin
�

3
�

4

�

D 4

"

�
p

2

2
C
p

2

2
i

#

D �2
p

2C 2i
p

2;
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x2 D 4
p

256

�

cos

�

� C 2�.2/

4

�

C i sin

�

� C 2�.2/

4

��

D 4 cos

�

5�

4

�

C i sin
�

5
�

4

�

D 4

"

�
p

2

2
�
p

2

2
i

#

D �2
p

2� 2i
p

2;

and

x3 D 4
p

256

�

cos

�

� C 2�.3/

4

�

C i sin

�

� C 2�.3/

4

��

D 4 cos

�

7�

4

�

C i sin
�

7
�

4

�

D 4

"p
2

2
�
p

2

2
i

#

D 2
p

2� 2i
p

2:

Section 5.4

Progress Check 5.16
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Progress Check 5.17

The left column shows some sets of polar coordinates with a positive value for r

and the right column shows some sets of polar coordinates with a negative value

for r .

�

3; 470ı� �

�3; 290ı�

�

3; 830ı� �

�3; 650ı�

�

3;�250ı� �

�3;�70ı�

�

3;�510ı� �

�3;�430ı�

�

3; 1190ı� �

�3; 1010ı�

Progress Check 5.18

For each point, we use the equations x D r cos.�/ and y D r sin.�/. In each of

these cases, we can determine the exact values for x and y.

Polar Coordinates Rectangular Coordinates

1.
�

3;
�

3

�

 

3

2
;
3
p

3

2

!

2.

�

5;
11�

6

�

 

5
p

3

2
;�5

2

!

3.

�

�5;
3�

4

�

 

5
p

2

2
;�5
p

2

2

!

Progress Check 5.20

1. For the point .6; 6
p

3/, r2 D 62 C
�

6
p

3
�2

D 144 and so r D 12. Since

the point is in the first quadrant, we can use tan.�/ D
p

3 or cos.�/ D 1

2
to

conclude that � D �

3
. So the polar coordinates are

�

12;
�

3

�

.

2. For the point .0;�4/, r2 D 02 C .�4/2 D 16 and so r D 4. Since the point

is on the y-axis, we can use cos.�/ D 0 and sin.�/ � 1 to conclude that

� D 3�

2
. So the polar coordinates are

�

4;
3�

2

�

.
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3. For the point .�4; 5
p

3/, r2 D .�4/2 C 52 D 41 and so r D
p

41. Since

the point is in the second quadrant, we can use tan.�/ D �1:25 to con-

clude that the reference angle is O� D tan�1.�1:25/. We cannot deter-

mine an exact value for � and so we can say that the polar coordinates are
�p

41; � � tan�1.1:25/
�

. We can also approximate the angle and see that

the approximate polar coordinates are
�p

41; 2:24554
�

. Note: There are

other ways to write the angle � . It is also true that � D ��cos�1

�

4p
21

�

D

cos�1

� �4p
21

�

.

Progress Check 5.21

Progress Check 5.22

1. r2 D 4r sin.�/.

2. x2 C y2 D 4y.

Progress Check 5.23

r2 D 6r sin.�/ x2 � 6x C 9C y2 D 9

x2 C y2 D 6x .x � 3/2 C y2 D 32
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So the graph of r D 3 cos.�/ is a circle with radius 3 and center at .3; 0/.



Appendix B

Answers and Hints for Selected

Exercises

Section 1.1

1. (b)

t point

1 .0:54; 0:84/

5 .0:28;�0:96/

9 .�0:91; 0:41/

4.

(a) (b) (d) (i) (j) (l) (m)

t
7�

4
�7�

4
�3�

5
2.5 �2:5 3C 2� 3� �

Quadrant IV I III II III II IV

5. (a) We substitute x D 1

3
into the equation x2Cy2 D 1. Solving for y, we

obtain y D ˙
p

8

3
. So the points are

 

1

3
;

p
8

3

!

and

 

1

3
;�
p

8

3

!

.

(b) We substitute y D �1

2
into the equation x2 C y2 D 1. Solving

for x, we obtain x D ˙
p

3

2
. So the points are

 p
3

2
;�1

2

!

and

397
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�
p

3

2
;�1

2

!

.

Section 1.2

1. (a) For a real number t , the value of cos.t/ is defined to be the x -

coordinate of the terminal point of an arc t whose initial point is

.1; 0/ on the unit circle whose equation is x2 C y2 D 1.

(b) The domain of the cosine function is the set of all real numbers .

(c) The maximum value of cos.t/ is 1 and this occurs at t D 0

for 0 � t < 2� . The minimum value of cos.t/ is �1 and this

occurs at t D � for 0 � t < 2� .

(d) The range of the cosine function is the closed interval Œ�1; 1� .

4. (a) cos.t/ D 4

5
or cos.t/ D �4

5
.

(c) sin.t/ D �
p

5

3
.

5. (a) 0 < cos2.t/ <
1

9
.

(b) �1

9
< � cos2.t/ < 0 and so

8

9
< 1 � cos2.t/ < 1

(c)
8

9
< sin2.t/ < 1

(d)

p
8

3
< sin.t/ < 1

Section 1.3

1. (a)
1

12
� � 0:2618

(b)
29

90
� � 1:0123

(e) �2

9
� � �0:6981
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2. (a) 67:5ı

(b) 231:4286ı

(d) 57:2958ı

4. (a) cos .10ı/ � 0:9848, sin .10ı/ � 0:1736

(d) cos .�10ı/ � 0:9848, sin .�10ı/ � �0:1736

Section 1.4

1. (a) The arc length is 4� feet, which is equal to
1

3
of the circumference of

the circle.

(b) The arc length is 200 miles.

(c) The arc length is 26� meters.

2. (a) � D 3�

5
radians.

(b) � D 18

5
radians = 3.6 radians.

3. (a) � D 108ı.

(b) � D
�

648

�

�ı
� 206:26ı.

8. (b) v D 720�
in

min
� 2261:95

in

min
.

9. (b) v D 3600�
cm

min
� 11309:73

cm

min
.

Section 1.5

1. (a) t D �

3
, cos.t/ D 1

2
, sin.t/ D

p
3

2
.

(b) t D �

2
, cos.t/ D 0, sin.t/ D 1.

(c) t D �

4
, cos.t/ D

p
2

2
, sin.t/ D

p
2

2
.

(d) t D �

6
, cos.t/ D

p
3

2
, sin.t/ D 1

2
.
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2. (a) cos2
��

6

�

D 3

2
.

(b) 2 sin2
��

4

�

C cos.�/ D 0.

3. (a) The reference arc is
�

3
.

(b) The reference arc is
3�

8
.

(d) The reference arc is
�

3
.

4. (a) The reference arc is
�

6
; cos

�

5�

6

�

D �
p

3

2
; sin

�

5�

6

�

D �1

2
.

(d) The reference arc is
�

3
; cos

�

�2�

3

�

D �1

2
; sin

�

�2�

3

�

D �
p

3

2
.

6. (a) cos.t/ D
p

24

5
. (d) sin.� C t / D �1

5
.

Section 1.6

1.
t cot.t/ sec.t/ csc.t/

0 undefined 1 undefined

�

6

p
3

2p
3

2

�

4
1

p
2

p
2

�

3

1p
3

2
2p
3

�

2
0 undefined 1

3. (a) The terminal point is in the fourth quadrant.

(b) The terminal point is in the third quadrant.

4.
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cos.t/ D �
p

8

3
tan.t/ D � 1p

8
csc.t/ D 3

sec.t/ D � 3p
8

cot.t/ D �
p

8

8. (a) t D 5�

4
(b) t D �

2

Section 2.1

1. (a) C.�;�1/ R.�; 0/

(b) B

�

�

3
;

1

2

�

Q

 

�

3
;

p
3

2

!

2. (a) y D 3 sin.x/ (b) y D 2 cos.x/

3. (a) t -intercepts: �2�;��; 0; �; 2� y-intercept: .0; 0/

The maximum value is 1. Maximum value occurs at the points

�

�3�

2
; 1

�

and
��

2
; 1
�

.

The minimum value is�1. Minimum value occurs at the points
�

��

2
;�1

�

and

�

3�

2
;�1

�

.

(b) t -intercepts: �3�

2
;��

2
;

�

2
;
3�

2
y-intercept: .0; 2/

The maximum value is 2. Maximum value occurs at the points .0; 2/

and .2�; 2/.

The minimum value is�2. Minimum value occurs at the points .��;�2/,

.�;�2/, and .3�;�2/.
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Section 2.2

1. (a) y D 2 sin.�x/. The amplitude is 2; the period is 2; the phase shift is

0; and the vertical shift is 0.

A.0; 0/ B
��

2
; 2
�

C.�; 0/

E

�

3�

2
;�2

�

F.2�; 0/ G

�

5�

2
; 2

�

(c) y D 3 sin
�

x � �

4

�

. The amplitude is 3; the period is 2� ; the phase

shift is
�

4
; and the vertical shift is 0.

A
��

4
; 0
�

B

�

3�

4
; 3

�

C

�

5�

4
; 0

�

E

�

7�

4
;�3

�

F

�

9�

4
; 0

�

G

�

11�

4
; 3

�

(g) y D 4 sin
�

2
�

x � �

4

��

C 1. The amplitude is 4; the period is � ; the

phase shift is
�

4
; and the vertical shift is 1.

A
��

4
; 1
�

B
��

2
; 5
�

C

�

3�

4
; 1

�

E .�;�3/ F

�

5�

4
; 1

�

G

�

3�

2
; 5

�

2. (a) The amplitude is 2; the period is
2�

3
; and there is no vertical shift.

�� For y D A sin .B .x � C // C D, there is no phase shift and so

C D 0. So

y D 2 sin .3x/ :

� For y D A cos .B .x � C // C D, the phase shift is
�

6
and so

C D �

6
. So

y D 2 cos
�

3
�

x � �

6

��

:

(d) The amplitude is 8; the period is 2; and the vertical shift is 1.
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�� For y D A sin .B .x � C // C D, the phase shift is �1

6
and so

C D �1

6
. So

y D 8 sin

�

�

�

x C 1

6

��

:

� For y D A cos .B .x � C //CD, the phase shift is
1

3
and so C D

1

3
. So

y D 8 cos

�

�

�

x � 1

3

��

C 1:

Section 2.3

1. (a) We write y D 4 sin
�

�x � �

8

�

D 4 sin

�

�

�

x � 1

8

��

. So the ampli-

tude is 4, the period is 2, the phase shift is
1

8
, and there is no vertical

shift.

�� Some high points on the graph:

�

5

8
; 4

�

,

�

21

8
; 4

�

.

� Some low points on the graph:

�

13

8
;�4

�

,

�

29

8
;�4

�

.

� Graph crosses the center line at:

�

1

8
; 0

�

,

�

9

8
; 0

�

,

�

17

8
; 0

�

.

(b) We write y D 5 cos
�

4xC �

2

�

C 2 D 5 cos
�

4
�

x C �

8

��

C 2. So the

amplitude is 5, the period is
�

2
, the phase shift is ��

8
, and the vertical

shift is 2.

�� Some high points on the graph:
�

��

8
; 7
�

,

�

3�

8
; 7

�

.

� Some low points on the graph:
��

8
;�3

�

,

�

5�

8
;�3

�

.

� Graph crosses the center line at: .0; 2/,
��

4
; 2
�

,
��

2
; 2
�

.

2. (b) The maximum value is 150 ml, and the minimum value is 81 ml. So

we can use A D 150� 81

2
D 34:5 and D D 150C 81

2
D 115:5.
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(c) The period is
1

75
min.

Section 2.4

1. (a) tan.t C 2�/ D sin.t C 2�/

cos.t C 2�/
D sin.t/

cos.t/
D tan.t/.

3. (a) csc.�t / D 1

sin.�t /
D 1

� sin.t/
D � 1

sin.t/
D �csc.t/.

Section 2.5

1. (a) t D arcsin

 p
2

2

!

means sin.t/ D
p

2

2
and ��

2
� t � �

2
. Since

sin
��

4

�

D
p

2

2
, we see that t D arcsin

 p
2

2

!

D �

4
.

(b) t D arcsin

 

�
p

2

2

!

means sin.t/ D �
p

2

2
and ��

2
� t � �

2
. Since

sin
���

4

�

D �
p

2

2
, we see that t D arcsin

 p
2

2

!

D ��

4
.

(d) t D arccos

 

�
p

2

2

!

means cos.t/ D �
p

2

2
and 0 � t � � . Since

cos

�

3�

4

�

D �
p

2

2
, we see that t D arccos

 p
2

2

!

D 3�

4
.

(f) y D tan�1

 

�
p

3

3

!

means tan.y/ D �
p

3

3
and ��

2
< y <

�

2
. Since

tan
�

��

6

�

D �
p

3

3
, we see that y D tan�1

 

�
p

3

3

!

D ��

6
.

(h) t D arctan.0/ D 0.

(j) y D cos�1

�

�1

2

�

D 2�

3
.



Appendix B. Answers and Hints for Selected Exercises 405

2. (a) sin
�

sin�1 .1/
�

D sin
��

2

�

D 1

(b) sin�1
�

sin
��

3

��

D sin�1

 p
3

2

!

D �

3

(e) cos�1
�

cos
�

��

3

��

D cos�1

�

1

2

�

D �

3

(f) arcsin

�

sin

�

2�

3

��

D arcsin

 p
3

2

!

D �

3

(i) arctan

�

tan

�

3�

4

��

D arctan .�1/ D ��

4

3. (a) Let t D arcsin

�

2

5

�

. Then sin.t/ D 2

5
and ��

2
� t � �

2
, and

cos2.t/C sin.t/2 D 1

cos2.t/C 4

25
D 1

cos2.t/ D 21

25

Since ��

2
� t � �

2
, we know that cos.t/ � 0. Hence, cos.t/ D

p
21

5

and cos

�

arcsin

�

2

5

��

D
p

21

5
.

(b) sin

�

arccos

�

�2

3

��

D
p

5

3
.

(c) tan

�

arcsin

�

1

3

��

D 1p
8

.

Section 2.6

1. (a) x D 0:848C k.2�/ or x D 2:294C k.2�/, where k is an integer.

(d) x D �0:848C k.2�/ or x D �2:294C k.2�/, where k is an integer.

2. (a) x D sin�1.0:75/C k.2�/ or x D
�

� � sin�1.0:75/
�

C k.2�/, where

k is an integer.
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(d) x D arcsin.�0:75/ C k.2�/ or x D .� � arcsin.�0:75// C k.2�/,

where k is an integer.

3. (a) x D sin�1.0:4/C k.2�/ or x D
�

� � sin�1.0:4/
�

C k.2�/, where k

is an integer.

(b) x D cos�1/

�

4

5

�

C k.2�/ or x D � cos�1/

�

4

5

�

C k.2�/, where k is

an integer.

4. (a) The period for the trigonometric function is � . We first solve the equa-

tion 4 sin.t/ D 3 with �� � t � � and obtain t D sin�1.0:75/ C
k.2�/ or t D

�

� � sin�1.0:75/
�

C k.2�/. We then use the substitu-

tion t D 2x to obtain

x D 1

2
sin�1.0:75/Ck.�/ or x D 1

2

�

� � sin�1.0:75/
�

Ck.�/, where

k is an integer.

(d) The period for the trigonometric function is 2. We first solve the equa-

tion sin.t/ D 0:2 with�� � t � � and obtain t D sin�1.0:2/Ck.2�/

or t D
�

� � sin�1.0:2/
�

C k.2�/. We now use the substitution t D
�x � �

4
to obtain

x D
�

1

�
sin�1.0:2/C 1

4

�

C 2k or x D
�

� 1

�
sin�1.0:2/C 5

4

�

C 2k,

where k is an integer.

Section 3.1

1. (a) We see that r D
p

32 C 32 D
p

18. So

cos.�/ D 3p
18
D 3

3
p

2
D 1p

2
sin.�/ D 3p

18
D 3

3
p

2
D 1p

2

tan.�/ D 3

3
D 1 cot.�/ D 3

3
D 1

sec.�/ D
p

18

3
D
p

2 csc.�/ D
p

18

3
D
p

2
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(b) We see that r D
p

52 C 82 D
p

89. So

cos.�/ D 5p
89

sin.�/ D 8p
89

tan.�/ D 8

5
cot.�/ D 5

8
D 1

sec.�/ D
p

89

5
csc.�/ D

p
89

8

(e) We see that r D
p

.�1/2 C .�4/2 D
p

26. So

cos.�/ D �4p
26

sin.�/ D �1p
26

tan.�/ D 4 cot.�/ D 1

4
D 1

sec.�/ D �
p

26

4
csc.�/ D �

p
26

2. (b) We first use the Pythagorean Identity and obtain sin2.ˇ/ D 5

9
. Since

the terminal side of ˇ is in the second quadrant, sin.ˇ/ D
p

5

3
. In

addition,

tan.ˇ/ D �
p

5

2
cot.ˇ/ D � 2p

5

sec.ˇ/ D �3

2
csc.ˇ/ D 3p

5

3. (c) Since the terminal side of � is in the second quadrant, � is not the

inverse sine of
2

3
. So we let ˛ D arcsin

�

2

3

�

. Using ˛ as the reference

angle, we then see that

� D 180ı � arcsin

�

2

3

�

� 138:190ı:

(e) � D arccos

�

�1

4

�

� 104:478ı, or use ˛ D arccos

�

1

4

�

for the refer-

ence angle.

� D 180ı � arccos

�

1

4

�

� 104:478ı:
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4. (c) � D � � arcsin

�

2

3

�

� 2:142.

(e) � D � � arccos

�

1

4

�

� 1:823.

5. (b) Let � D cos�1

�

2

3

�

. Then cos.�/ D 2

3
and 0 � � � � . So sin.�/ > 0

and sin2.�/ D 1 � cos2.�/ D 5

9
. So

tan

�

cos�1

�

2

3

��

D tan.�/

D sin.�/

cos.�/
D

p
5

3
2

3

D
p

5

2

Using a calculator, we obtain

tan

�

cos�1

�

2

3

��

� 1:11803 and

p
5

2
� 1:11803:

Section 3.2

1. (a) x D 6 tan .47ı/ � 6:434. (b) x D 3:1 cos .67ı/ � 1:211.

(c) x D tan�1

�

7

4:9

�

� 55:008ı.

(d) x D sin�1

�

7

9:5

�

� 47:463ı.

4. The other acute angle is 64ı480.

�� The side opposite the 27ı120 angle is 4 tan .27ı120/ � 2:056 feet.

� The hypotenuse is
4

cos .27ı120/
� 4:497 feet.
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Note that the Pythagorean Theorem can be used to check the results by show-

ing that 42 C 2:0562 � 4:4972. The check will not be exact because the

2.056 and 4.497 are approximations of the exact values.

7. We first note that � D 40ı. We use the following two equations to determine

x.

tan.˛/ D h

c C x
tan.�/ D h

x

Substituting h D x tan.�/ into the first equation and solving for x gives

x D c tan.˛/

tan.�/� tan.˛/
� 8:190:

We can then use right triangles to obtain h � 6:872 ft, a � 10:691 ft, and

b � 17:588 ft.

Section 3.3

1. The third angle is 65ı. The side opposite the 42ı angle is 4.548 feet long.

The side opposite the 65ı angle is 6.160 feet long.

3. There are two triangles that satisfy these conditions. The sine of the angle

opposite the 5 inch side is approximately 0.9717997.

5. The angle opposite the 9 foot long side is 95:739ı. The angle opposite the 7

foot long side is 50:704ı. The angle opposite the 5 foot long side is 33:557ı.

Section 3.4

1. The ski lift is about 1887.50 feet long.

2. (a) The boat is about 67.8 miles from Chicago.

(b) 
 � 142:4ı. So the boat should turn through an angle of about 180ı �
142:4ı D 37:6ı.

(c) The direct trip from Muskegon to Chicago would take
121

15
hours or

about 8.07 hours. By going off-course, the trip now will take
127:8

15
hours or about 8.52 hours.
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Section 3.5

1.

(a)

u

(b)

u

(c)

u

(d)

u

vu +
 v

u + v

u
 +

 v

u + v

v

v

v

2.

u

v

u +
 v

2u + v

2u - v

u
 - v

2u

3. The angle between the vectors a and a C b is approximately 9:075ı. In

addition, jbj � 4:416.

Section 3.6

1. (a) jvj D
p

34. The direction angle is approximately 59:036ı.

(b) jwj D
p

45. The direction angle is approximately 116:565ı.

2. (a) v D 12 cos .50ı/C 12 sin .50ı/ � 7:713iC 9:193j.

(b) u D
p

20 cos .125ı/C
p

20 sin .125ı/ � �2:565iC 3:663j.

3. (a) 5u� v D 11iC 10j.
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(c) uC vC w D 5iC 6j.

4. (a) v�w D �4.

(b) a�b D 9
p

3.

5. (a) The angle between v and w is cos�1

� �4p
29
p

13

�

� 101:89ı.

6. (a) projvw D w�v
v�v v D �4

29
.2iC 5j/ D � 8

29
i � 20

29
j.

proj?vw D w � projvw D 95

29
i � 38

29
j

Section 4.1

1. (a)

cos.x/ tan.x/ D cos.x/
sin.x/

cos.x/

D sin.x/

(b)

cot.x/

.x/
D

cos.x/

sin.x/

1

sin.x/

D cos.x/

sin.x/
� sin.x/

1

D cos.x/

(e) A graph will show that this is not an identity. In particular, we see that

sec2
��

4

�

C csc2
��

4

�

D
�p

2
�2

C
�p

2
�2

D 4

Section 4.2

1. (a) x D �

6
C k.2�/ or x D 5�

6
C k.2�/, where k is an integer.

(b) x D 2�

3
C k.2�/ or x D 4�

3
C k.2�/, where k is an integer.

(d) x D cos�1

�

3

4

�

C k.2�/ or x D cos�1

�

�3

4

�

C k.2�/, where k is

an integer.
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(f) x D k� , where k is an integer.

2. � D sin�1

�

2

3

�

� 41:81ı is one solution of the equation sin.�/C 1

3
D 1

with 0 � � � 360ı. There is another solution (in the second quadrant) for

this equation with 0 � � � 360ı.

Section 4.3

1. (a) cos .�10ı � 35ı/ D cos .�45ı/ D
p

2

2
.

(b) cos

�

7�

9
C 2�

9

�

D cos.�/ D �1.

2. We first use the Pythagorean Identity to determine cos.A/ and sin.B/. From

this, we get

cos.A/ D
p

3

2
and sin.B/ D �

p
7

4
:

(a)

cos.AC B/ D cos.A/ cos.B/ � sin.A/ sin.B/

D
p

3

2
� 3

4
� 1

2
�
 

�
p

7

4

!

D 3
p

3C
p

7

8

3. (a) cos .15ı/ D cos .45ı � 30ı/ D
p

6C
p

2

4
.

(d) We can use 345ı D 300ı C 45ı and first evaluate cos .345ı/. This

gives cos .345ı/ D
p

6C
p

2

4
and sec .345ı/ D 4p

6C
p

2
. We could

have also used the fact that cos .345ı/ D cos .15ı/ and the result in

part (a).
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5. (a)

cot
��

2
� x

�

D
cos

��

2
� x

�

sin
��

2
� x

�

D sin.x/

cos.x/

D tan.x/

Section 4.4

1. Use the Pythagorean Identity to obtain sin2.�/ D 5

9
. Since sin.�/ < 0, we

see that sin.�/ D �
p

5

3
. Now use appropriate double angle identities to get

sin.2�/ D �4
p

5

9
cos.2�/ D �1

9

Then use tan.2�/ D sin.2�/

cos.2�/
D 4
p

5.

2. (a) x D �

4
C k� , where k is an integer.

3. (a) This is an identity. Start with the left side of the equation and use

cot.t/ D cos.t/

sin.t/
and sin.2t/ D 2 sin.t/ cos.t/.

6. (a) sin .22:5ı/ D

v

u

u

t1 �
p

2

2
2

D 1

2

p

2 �
p

2.

(c) tan .22:5ı/ D

s

2�
p

2

2C
p

2
D
p

3 � 2
p

2.

(h) cos .195ı/ D �

v

u

u

t1C
p

3

2
2

D �1

2

p

2C
p

3.
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7. (a) sin

�

3�

8

�

D

v

u

u

t1C
p

2

2
2

D 1

2

p

2C
p

2.

(c) tan

�

3�

8

�

D

s

2C
p

2

2 �
p

2
D
p

3C 2
p

2.

(h) cos

�

11�

12

�

D �

v

u

u

t1C
p

3

2
2

D �1

2

p

2C
p

3.

8. (a) We note that since
3�

2
� x � 2� ,

3�

4
� x

2
� � .

sin
�x

2

�

D

v

u

u

t

1 � 2

3
2
D 1p

6
:

Section 4.5

1. (a) sin .37:5ı/ cos .7:5ı/ D 1

2
Œsin .45ı/C sin .30ı/� D

p
2C 1

4

(e) cos

�

5�

12

�

sin
� �

12

�

D 1

2

h

sin
��

2

�

� sin
��

3

�i

D 2 �
p

3

4

2. (a) sin .50ı/C sin .10ı/ D 2 sin .30ı/ cos .20ı/ D cos .20ı/

(e) cos

�

7�

12

�

C cos
� �

12

�

D 2 cos
��

3

�

cos
��

4

�

D
p

2

2

3. (a)

sin.2x/C sin.x/ D 0

2 sin

�

3x

2

�

cos
�x

2

�

D 0

So sin

�

3x

2

�

D 0 or cos
�x

2

�

D 0. This gives

x D k� or x D 2�

3
C k.2�/ or x D 4�

3
C k.2�/;

where k is an integer.
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Section 5.1

1. (a) .4C i /C .3� 3i/ D 7 � 2i

(b) 5.2 � i /C i.3 � 2i/D 12 � 2i

(c) .4C 2i/.5� 3i/ D 26 � 2i

(d) .2C 3i/.1C i /C .4� 3i/D 3C 2i

2. (a) x D 3

2
C
p

11

2
i , x D 3

2
�
p

11

2
i .

3. (a) w C z D 8 � 2i . (b) w C z D �3C 6i .

4. (a) z D 5C 2i , jzj D
p

29, zz D 29.

(b) z D �3i , jzj D 3, zz D 9.

5. (a)
5C i

3C 2i
D 17

13
� 7

13
i . (b)

3C 3i

i
D 3 � 3i .

Section 5.2

1. (a) 3C 3i D
p

18
�

cos
��

4

�

C i sin
��

4

��

(e) 4
p

3C 4i D 8
�

cos
��

6

�

C i sin
��

6

��

2. (a) 5
�

cos
��

2

�

C i sin
��

2

��

D 5i

(b) 2:5
�

cos
��

4

�

C i sin
��

4

��

D 1:25
p

2C 1:25
p

2i

3. (a) wz D 10

�

cos

�

6�

12

�

C i sin

�

6�

12

��

D 10i

(b) wz D 6:9

�

cos

�

19�

12

�

C i sin

�

19�

12

��

4. (a)
w

z
D 5

2

�

cos

��4�

12

�

C i sin

��4�

12

��

D 5

4
� 5
p

3

4
i

(b)
w

z
D 23

30

�

cos

��11�

12

�

C i sin

��11�

12

��
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Section 5.3

1. (a) .2C 2i/6 D
hp

8
�

cos
��

4

�

C i sin
��

4

��i6

D 512i

(b)
�p

3C i
�8

D
h

2
�

cos
��

6

�

C i sin
��

6

��i8

D �128� 128
p

3i

2. (a) Write 16i D 16
�

cos
��

2

�

C i sin.
��

2

��

. The two square roots of 16i

are

4
�

cos
��

4

�

C i sin
��

4

��

D 2
p

2C 2i
p

2

4

�

cos

�

5�

4

�

C i sin

�

5�

4

��

D �2
p

2 � 2i
p

2

(c) The three cube roots of 5

�

cos

�

3�

4

�

C i sin

�

3�

4

��

are

3
p

5
�

cos
��

4

�

C i sin
��

4

��

D 3
p

5

 p
2

2
C
p

2

2
i

!

3
p

5

�

cos

�

11�

12

�

C i sin

�

11�

12

��

3
p

5

�

cos

�

19�

12

�

C i sin

�

19�

12

��
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Section 5.4

1.

2. (a) Some correct answers are: .5; 390ı/, .5;�330ı/, and .�5; 210ı/.

(b) Some correct answers are: .4; 460ı/, .4;�260ı/, and .�4; 280ı/.

3. (a) Some correct answers are:

�

5;
13�

6

�

,

�

5;�11�

6

�

, and

�

�5;
7�

6

�

.

(b) Some correct answers are:

�

4;
23�

9

�

,

�

4;�13�

9

�

, and

�

�4;
14�

9

�

.

4. (a) .�5; 5
p

3/.
(c)

 

5
p

2

2
;

5
p

2

2

!

5. (a)

�

5;
5�

6

�

.

(b)

�p
34; tan�1

�

5

3

��

�
�p

34; 1:030
�

6. (a) x2 C y2 D 25

(b) y D
p

3

3
x

(d) x2 C y2 D
p

x2 C y2 � y
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7. (b) r sin.�/ D 4 or r D 4

sin.�/

(e) r cos.�/C r sin.�/ D 4 or r D 4

cos.�/C sin.�/



Appendix C

Some Geometric Facts about

Triangles and Parallelograms

This appendix contains some formulas and results from geometry that are impor-

tant in the study of trigonometry.

Circles

For a circle with radius r:

� Circumference: C D 2�r

� Area: A D �r2

r

Triangles

� The sum of the measures of the three angles of a triangle is 180ı.

� A triangle in which each angle has a measure of less that 90ı is called an

acute triangle.

� A triangle that has an angle whose measure is greater than 90ı is called an

obtuse triangle.

� A triangle that contains an angle whose measure is 90ı is called a right

triangle. The side of a right triangle that is opposite the right angle is called

419
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the hypotenuse, and the other two sides are called the legs.

� An isosceles triangle is a triangle in which two sides of the triangle have

equal length. In this case, the two angles across from the two sides of equal

length have equal measure.

� An equilateral triangle is a triangle in which all three sides have the same

length. Each angle of an equilateral triangle has a measure of 60ı.

Right Triangles
� The sum of the measures of the two acute angles of

a right triangle is 90ı. In the diagram on the right,

˛ C ˇ D 90ı.

� The Pythagorean Theorem. In a right triangle, the

square of the hypotenuse is equal to the sum of the

squares of the other two sides. In the diagram on the

right, c2 D a2 C b2.

a

b

c

α

β

γ

Special Right Triangles

� A right triangle in which both acute angles are 45ı. For this type of right

triangle, the lengths of the two legs are equal. So if c is the length of the

hypotenuse and x is the length of each of the legs, then by the Pythagorean

Theorem, c2 D x2 C x2. Solving this equation for x, we obtain

2x2 D c2

x2 D c2

2

x D

s

c2

2

x D cp
2
D c
p

2

2

45
o

45
o

c

x

x
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� A right triangle with acute angles of 30ı and 60ı.

We start with an equilateral tri-

angle with sides of length c.

By drawing an angle bisector

at one of the vertices, we cre-

ate two congruent right triangles

with acute angles of 30ı and 60ı.
60

o 60
o

3
0

o 3
0 o

c c

c
2

c
2

x

This means that the third side of

each of these right triangles will

have a length of
c

2
. If the length

of the altitude is x, then using the

Pythagorean Theorem, we obtain

c2 D x2 C
�c

2

�2

x2 D c2 � c2

4

x2 D 3c2

4

x D

s

3c2

4
D c
p

3

2

Similar Triangles

Two triangles are similar if the three angles of one triangle are equal in measure

to the three angles of the other triangle. The following diagram shows similar

triangles4ABC and4DEF . We write4ABC � 4DEF .

A B

C

D E

F

α

α

β

β

γ

γab

c

de

f

The sides of similar triangles do not have to have the same length but they will be

proportional. Using the notation in the diagram, this means that

a

d
D b

e
D c

f
:
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Parallelograms
We use some properties of parallelo-

grams in the study of vectors in Sec-

tion 3.5. A parallelogram is a quadri-

lateral with two pairs of parallel sides.

We will use the diagram on the right

to describe some properties of paral-

lelograms.
A B

CD

α

α

β

β

� Opposite sides are equal in length. In the diagram, this means that

AB D DC and AD D BC:

� As shown in the diagram, opposite angles are equal. That is,

†DAB D †BCD and †ABC D †CDA:

� The sum of two adjacent angles is 180ı. In the diagram, this means that

˛ C ˇ D 180ı:



Index

acute triangle, 419

amplitude, 79

angle, 25, 32

between vectors, 225, 229

of elevation, 179

standard position, 26, 32

vertex, 25, 32

angle of depression, 184

angle of elevation, 179, 184

angle of incidence, 253

angle of reflection, 253

angle of refraction, 253

angular velocity, 38, 41

arc, 7

on the unit circle, 7

reference, 52

arc length, 36, 41

argument

of a complex number, 305, 311

Babylonia, 24

center line

for a sinusoid, 103

circular functions, 14, 168

Cofunction Identities, 266

cofunction identities, 265

cofunctions, 266

complementary angles, 266

complex conjugate, 301, 303

complex number, 296, 302

imaginary part, 296, 302

polar form, 305, 311

real part, 296, 302

standard form, 296

trigonometric form, 305, 311

complex plane, 300, 302

components

of a vector, 233

cosecant

definition, 67

domain, 67

cosine

definition, 14

Cosine Difference Identity, 264

proof, 269

Cosine Sum Identity, 265, 267

cotangent

definition, 67

domain, 67

degree, 27, 32

degrees

conversion to radians, 29

DeMoivre’s Theorem, 315, 320

direction angle

of a vector, 233

displacement, 221

distance, 221

dot product, 237, 242

Double Angle Identities, 277

equal vectors, 220

equation

423



424 Index

polar, 328

equilateral triangle, 420

even function, 85

force, 226

frequency, 111, 121, 122

function

even, 85

odd, 85

periodic, 75

sinusoidal, 78

graph

of a polar equation, 328

Half Angle Identities, 281

hertz, 111

Hertz, Heinrich, 111

horizontal component

of a vector, 233

hypotenuse, 178, 420

identity, 18, 246

Pythagorean, 18

imaginary axis, 300, 302

imaginary number, 296

imaginary part

of a complex number, 296, 302

inclined plane, 227

initial point, 7, 9

inverse cosine function, 149, 152

properties, 150

inverse sine function, 145, 152

properties, 147

inverse tangent function, 149, 153

properties, 151

isosceles triangle, 420

Law of Cosines, 199, 200, 205

proof, 203

Law of Reflection, 253

Law of Refraction, 253

Law of Sines, 193, 205

proof, 201

linear velocity, 38, 41

magnitude of a vector, 220

mathematical model, 111, 121

modulus

of a complex number, 301, 303, 306,

311

negative arc identity

for cosine and sine, 82

for tangent, 139

norm

of a complex number, 301, 303, 306,

311

oblique triangle, 191

obtuse triangle, 419

odd function, 85

orthogonal vectors, 239

period of a sinusoid, 94

periodic function, 75

phase shift, 96, 97

polar angle, 322

polar axis, 322

polar coordinate system, 322

polar equation, 328

graph, 328

polar form

of a complex number, 305, 311

pole, 322

Product to Sum Identities, 288

projection

scalar, 240

vector, 240, 242

proof, 249

Pythagorean Identity, 18, 20, 171

Pythagorean Theorem, 420



Index 425

quotient

of complex numbers, 299

radial distance, 322

radian, 27, 32

radians, 37

conversion to degrees, 29

ray, 25

real axis, 300, 302

real part

of a complex number, 296, 302

reciprocal functions, 66

reference arc, 52, 57

resultant

of two vectors, 222, 229

revolutions per minute, 38

right triangle, 419

roots

of complex numbers, 317, 320

rpm, 38

scalar, 219, 228

scalar multiple, 221, 228

scalar projection, 240

secant

definition, 66

domain, 67

similar triangles, 421

sine

definition, 14

sine regression, 116

sinusoid

center line, 103

sinusoidal function, 78, 90

sinusoidal wave, 78, 90

solving a right triangle, 183

speed, 219

standard basis vectors, 233

standard form

for a complex number, 296

standard position

of a vector, 233

static equilibrium, 226

sum

of two vectors, 222, 229

Sum to Product Identities, 289

symmetric

about the y-axis, 83

about the origin, 83

tangent

definition, 64, 68

domain, 64, 68

terminal point, 7, 9

triangle

acute, 419

equilateral, 420

isosceles, 420

oblique, 191

obtuse, 419

right, 419

trigonometric equations, 156, 163

trigonometric form

of a complex number, 305, 311

trigonometric functions, 14, 168

uniform circular motion, 38

unit circle, 3, 9

vector, 219, 228

components, 233

direction angle, 233

equal vectors, 220

horizontal component, 233

magnitude, 220

projection, 240

scalar multiple, 221, 228

standard position, 233

vertical component, 233

zero, 221, 229

velocity, 219
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angular, 38

linear, 38

vertex of an angle, 25, 32

vertical component

of a vector, 233

vertical shift, 100

wrapping function, 3

zero vector, 221, 229
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