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Introduction  

               In this book, I wrote five chapters: The Laplace 

Transform, Systems of Homogenous Linear Differential 

Equations (HLDE), Methods of First and Higher Orders 

Differential Equations, Extended Methods of First and 

Higher Orders Differential Equations, and Applications of 

Differential Equations. I also added exercises at the end of 

each chapter above to let students practice additional sets of 

problems other than examples, and they can also check 

their solutions to some of these exercises by looking at 

“Answers to Odd-Numbered Exercises” section at the end of 

this book. This book is a very useful for college students who 

studied Calculus II, and other students who want to review 

some concepts of differential equations before studying 

courses such as partial differential equations, applied 

mathematics, and electric circuits II. According to my 

experience as a math tutor, I follow the steps of my 

Professor Ayman Badawi who taught me Differential 

Equations and Linear Algebra at the American University 

of Sharjah, and I will start with laplace transforms as the 

first chapter of this book [3]. I used what I learned from Dr. 

Badawi to write the content of this book depending on his 

class notes as my main reference [3]. If you have any 

comments related to the contents of this book, please email 

your comments to mkaabar@math.wsu.edu. 

               I wish to express my gratitude and appreciation to 

my father, my mother, and my only lovely 13-year old 

brother who is sick, and I want to spend every dollar in his 

heath care. I would also like to give a special thanks to my 

Professor Dr. Ayman Badawi who supported me in every 

successful achievement I made, and I would like to thank 

all administrators and professors of mathematics at WSU 

for their educational support. In conclusion, I would 

appreciate to consider this book as a milestone for 

developing more math books that can serve our 

mathematical society in the area of differential equations. 

Mohammed K A Kaabar 

mailto:mkaabar@math.wsu.edu
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Table of Laplace Transform 

1 
ℒ{𝑓(𝑡)} = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡

∞

0

 

2 ℒ{1} =
1

𝑠
 ℒ{𝑡𝑚} =

𝑚!

𝑠𝑚+1
 where m is a 

positive integer (whole 

number) 

3 ℒ{sin 𝑐𝑡} =
𝑐

𝑠2 + 𝑐2
 ℒ{cos 𝑐𝑡} =

𝑠

𝑠2 + 𝑐2
 

4 ℒ{𝑒𝑏𝑡} =
1

𝑠 − 𝑏
 

5 ℒ{𝑒𝑏𝑡𝑓(𝑡)} = 𝐹(𝑠) |𝑠 → 𝑠 − 𝑏  ℒ−1{𝐹(𝑠) |𝑠 → 𝑠 − 𝑏 } = 𝑒𝑏𝑡𝑓(𝑡) 

6 ℒ{ℎ(𝑡)𝑈(𝑡 − 𝑏)} = 𝑒−𝑏𝑠ℒ{ℎ(𝑡 + 𝑏)} 

ℒ−1{𝑒−𝑏𝑠𝐹(𝑠)} = 𝑓(𝑡 − 𝑏)𝑈(𝑡 − 𝑏) 

7 
ℒ{𝑈(𝑡 − 𝑏)} =

𝑒−𝑏𝑠

𝑠
 ℒ−1 {

𝑒−𝑏𝑠

𝑠
} = 𝑈(𝑡 − 𝑏) 

8 ℒ{𝑓(𝑚)(𝑡)} = 𝑠𝑚𝐹(𝑠) − 𝑠𝑚−1𝑓(0) − 𝑠𝑚−2𝑓′(𝑠) − ⋯− 𝑓(𝑚−1)(𝑠) 

where m is a positive integer 

9 ℒ{𝑡𝑚𝑓(𝑡)}(𝑠) = (−1)𝑚
𝑑𝑚𝐹(𝑠)

𝑑𝑠𝑚
 

where m is a positive 

integer 

ℒ−1 {
𝑑𝑚𝐹(𝑠)

𝑑𝑠𝑚
} = (−1)𝑚𝑡𝑚𝑓(𝑡) 

where m is a positive integer 

10  
ℒ{𝑓(𝑡) ∗ ℎ(𝑡)} = 𝐹(𝑠) ∙ 𝐻(𝑠) 𝑓(𝑡) ∗ ℎ(𝑡) = ∫𝑓(𝜓)ℎ(𝑡 − 𝜓)𝑑𝜓

𝑡

0

 

11 
ℒ {∫𝑓(𝜓)𝑑𝜓

𝑡

0

} =
𝐹(𝑠)

𝑠
 

 

ℒ−1{𝐹(𝑠) ∙  𝐻(𝑠)} = 𝑓(𝑡) ∗ ℎ(𝑡) 

12 ℒ{𝛿(𝑡)} = 1 ℒ{𝛿(𝑡 − 𝑏)} = 𝑒−𝑏𝑠 

13 Assume that 𝑓(𝑡) is periodic with period 𝑃, then: 

ℒ{𝑓(𝑡)} =
1

1 − 𝑒−𝑃𝑠
∫𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡

𝑃

0

 

Table 1.1.1: Laplace Transform 
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Chapter 1 

The Laplace Transform 

In this chapter, we start with an introduction to 

Differential Equations (DEs) including linear DEs, 

nonlinear DEs, independent variables, dependent 

variables, and the order of DEs. Then, we define the 

laplace transforms, and we give some examples of 

Initial Value Problems (IVPs). In addition, we discuss 

the inverse laplace transforms. We cover in the 

remaining sections an important concept known as the 

laplace transforms of derivatives, and we mention 

some properties of laplace transforms. Finally, we 

learn how to solve systems of linear equations (LEs) 

using Cramer’s Rule. 

1.1 Introductions to 

Differential Equations

In this section, we are going to discuss how to 

determine whether the differential equation is linear 

or nonlinear, and we will find the order of differential 

equations. At the end of this section, we will show the 

purpose of differential equations. 
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let’s start with the definition of differential equation 

and with a simple example about differential equation.  

Definition 1.1.1 A mathematical equation is called 

differential equation if it has two types of variables: 

dependent and independent variables where the 

dependent variable can be written in terms of 

independent variable. 

Example 1.1.1 Given that 𝑦′ = 15𝑥. 

a) Find 𝑦. (Hint: Find the general solution of 𝑦′) 

b) Determine whether 𝑦′ = 15𝑥 is a linear 

differential equation or nonlinear differential 

equation. Why? 

c) What is the order of this differential equation?   

Solution: Part a: To find 𝑦, we need to find the general 

solution of 𝑦′ by taking the integral of both sides as 

follows: 

∫𝑦′ 𝑑𝑦 = ∫15𝑥 𝑑𝑥 

Since ∫𝑦′ 𝑑𝑦 = 𝑦 because the integral of derivative 

function is the original function itself (In general, 

∫𝑓′(𝑥) 𝑑𝑥 = 𝑓(𝑥)), then 𝑦 = ∫15𝑥 𝑑𝑥 =
15

2
𝑥2 + 𝑐 =

7.5𝑥2 + 𝑐. Thus, the general solution is the following: 

𝑦(𝑥) = 7.5𝑥2 + 𝑐 where 𝑐 is constant. This means that 𝑦 

is called dependent variable because it depends on 𝑥, 

and 𝑥 is called independent variable because it is 

independent from 𝑦. 

Part b: To determine whether 𝑦′ = 15𝑥 is a linear 

differential equation or nonlinear differential equation, 

we need to introduce the following definition: 
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Definition 1.1.2 The differential equation is called 

linear if the dependent variable and all its derivatives 

are to the power 1. Otherwise, the differential equation 

is nonlinear. 

According to the above question, we have the following: 

𝑦(𝑥) = 7.5𝑥2 + 𝑐 where 𝑐 is constant. Since the 

dependent variable 𝑦 and all its derivatives are to the 

power 1, then using definition 1.1.2, this differential 

equation is linear. 

Part c: To find the order of this differential equation, 

we need to introduce the following definition: 

Definition 1.1.3 The order of differential equation is 

the highest derivative in the equation (i.e. The order of 

𝑦′′′ + 3𝑦′′ + 2𝑦′ = 12𝑥2 + 22 is 3). 

Using definition 1.1.3, the order of 𝑦′ = 15𝑥 is 1. 

Example 1.1.2 Given that 𝑧′′′ + 2𝑧′′ + 𝑧′ = 2𝑥3 + 22. 

a) Determine whether 𝑧′′′ + 2𝑧′′ + 𝑧′ = 2𝑥3 + 22  is 

a linear differential equation or nonlinear 

differential equation. Why? 

b) What is the order of this differential equation?   

Solution: Part a: Since 𝑧 is called dependent variable 

because it depends on 𝑥, and 𝑥 is called independent 

variable because it is independent from 𝑧, then to 

determine whether 𝑧′′′ + 2𝑧′′ + 𝑧′ = 2𝑥3 + 22  is a 

linear differential equation or nonlinear differential 

equation, we need to use definition 1.1.2 as follows:  

Since the dependent variable 𝑧 and all its derivatives 

are to the power 1, then this differential equation is 

linear. 

Part b: To find the order of 𝑧′′′ + 2𝑧′′ + 𝑧′ = 2𝑥3 + 22, 

we use definition 1.1.3 which implies that the order is 

3 because the highest derivative is 3. 
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Example 1.1.3 Given that 𝑚(4) + (3𝑚′′)3 −𝑚 = √𝑥 + 1. 

(Hint: Do not confuse between 𝑚(4) and 𝑚4 because 

𝑚(4) means the fourth derivative of 𝑚, while 𝑚4 means 

the fourth power of m). 

a) Determine whether 𝑚(4) + (3𝑚′′)3 −𝑚 = √𝑥 + 1  

is a linear differential equation or nonlinear 

differential equation. Why? 

b) What is the order of this differential equation?   

Solution: Part a: Since 𝑚 is called dependent variable 

because it depends on 𝑥, and 𝑥 is called independent 

variable because it is independent from 𝑚, then to 

determine whether 𝑚(4) + (3𝑚′′)3 −𝑚 = √𝑥 + 1 is a 

linear differential equation or nonlinear differential 

equation, we need to use definition 1.1.2 as follows:  

Since the dependent variable 𝑚 and all its derivatives 

are not to the power 1, then this differential equation 

is nonlinear. 

Part b: To find the order of 𝑚(4) + (3𝑚′′)3 −𝑚 = √𝑥 + 1, 

we use definition 1.1.3 which implies that the order is 

4 because the highest derivative is 4. 

The following are some useful notations about 

differential equations: 

𝑧(𝑚) is the 𝑚th derivative of 𝑧. 

𝑧𝑚 is the 𝑚th power of 𝑧. 

The following two examples are a summary of this 

section: 

Example 1.1.4 Given that  

2𝑥𝑏(3) + (𝑥 + 1)𝑏(2) + 3𝑏 = 𝑥2𝑒𝑥. Determine whether it 

is a linear differential equation or nonlinear 

differential equation. 
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Solution: To determine whether it is a linear 

differential equation or nonlinear differential equation,  

We need to apply what we have learned from the 

previous examples in the following five steps: 

Step 1: 𝑏 is a dependent variable, and 𝑥 is an 

independent variable.  

Step 2: Since 𝑏 and all its derivatives are to the power 

1, then the above differential equation is linear. 

Step 3: Coefficients of 𝑏 and all its derivatives are in 

terms of the independent variable 𝑥. 

Step 4: Assume that 𝐶(𝑥) = 𝑥2𝑒𝑥.  Then, 𝐶(𝑥) must be 

in terms of 𝑥. 

Step 5: Our purpose from the above differential 

equation is to find a solution where 𝑏 can be written in 

term of 𝑥. 

Thus, the above differential equation is a linear 

differential equation of order 3. 

Example 1.1.5 Given that  

(𝑤2 + 1)ℎ(4) − 3𝑤ℎ′ = 𝑤2 + 1. Determine whether it is a 

linear differential equation or nonlinear differential 

equation. 

Solution: To determine whether it is a linear 

differential equation or nonlinear differential equation,  

We need to apply what we have learned from the 

previous examples in the following five steps: 

Step 1: ℎ is a dependent variable, and 𝑤 is an 

independent variable.  

Step 2: Since ℎ and all its derivatives are to the power 

1, then the above differential equation is linear. 

Step 3: Coefficients of ℎ and all its derivatives are in 

terms of the independent variable 𝑤. 
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Step 4: Assume that 𝐶(𝑤) = 𝑤2 + 1.  Then, 𝐶(𝑤) must 

be in terms of 𝑤. 

Step 5: Our purpose from the above differential 

equation is to find a solution where ℎ can be written in 

term of 𝑤. 

Thus, the above differential equation is a linear 

differential equation of order 4. 

1.2 Introductions to the 

Laplace Transforms

In this section, we are going to introduce the definition 

of the laplace transforms in general, and how can we 

use this definition to find the laplace transform of any 

function. Then, we will give several examples about 

the laplace transforms, and we will show how the table 

1.1.1 is helpful to find laplace transforms. 

Definition 1.2.1 the laplace transform, denoted by ℒ, is 

defined in general as follows:  

ℒ{𝑓(𝑥)} = ∫ 𝑓(𝑥)𝑒−𝑠𝑥𝑑𝑥

∞

0

 

Example 1.2.1 Using definition 1.2.1, find ℒ{1}. 

Solution: To find ℒ{1} using definition 1.2.1, we need to 

do the following steps: 

Step 1: We write the general definition of laplace 

transform as follows: 

ℒ{𝑓(𝑥)} = ∫ 𝑓(𝑥)𝑒−𝑠𝑥𝑑𝑥

∞

0
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Step 2: Here in this example, 𝑓(𝑥) = 1 because ℒ{𝑓(𝑥)} =

ℒ{1}. 

Step 3:  

ℒ{1} = ∫(1)𝑒−𝑠𝑥𝑑𝑥

∞

0

 

By the definition of integral, we substitute ∫ (1)𝑒−𝑠𝑥𝑑𝑥
∞

0
 

with lim
𝑏→∞

∫ (1)𝑒−𝑠𝑥𝑑𝑥
𝑏

0
. 

Step 4: We need to find lim
𝑏→∞

∫ 𝑒−𝑠𝑥𝑑𝑥
𝑏

0
 as follows: 

It is easier to find what it is inside the above box 

(∫ 𝑒−𝑠𝑥𝑑𝑥
𝑏

0
), and after that we can find the limit of 

∫ 𝑒−𝑠𝑥𝑑𝑥
𝑏

0
. 

Thus, ∫ 𝑒−𝑠𝑥𝑑𝑥
𝑏

0
= −

1

𝑠
𝑒−𝑠𝑥| 𝑥=𝑏

𝑥=0
= −

1

𝑠
𝑒−𝑠𝑏 +

1

𝑠
𝑒−𝑠(0) =

−
1

𝑠
𝑒−𝑠𝑏 +

1

𝑠
 . 

Step 5: We need find the limit of −
1

𝑠
𝑒−𝑠𝑏 +

1

𝑠
 as follows: 

lim
𝑏→∞

(−
1

𝑠
𝑒−𝑠𝑏 +

1

𝑠
) =

1

𝑠
 where 𝑠 > 0.  

To check if our answer is right, we need to look at table 

1.1.1 at the beginning of this book. According to table 

1.1.1 section 2, we found ℒ{1} =
1

𝑠
 which is the same 

answer we got. Thus, we can conclude our example with the 

following fact: 

Fact 1.2.1 ℒ{𝑎𝑛𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑠𝑎𝑦 𝑚} =
𝑚

𝑠
. 

Example 1.2.2 Using definition 1.2.1, find ℒ{𝑒7𝑥}. 

Solution: To find ℒ{𝑒7𝑥} using definition 1.2.1, we need 

to do the following steps: 

Step 1: We write the general definition of laplace 

transform as follows: 



Copyright © 2015 Mohammed K A Kaabar                       All Rights Reserved 

 

18  M. Kaabar 
 

ℒ{𝑓(𝑥)} = ∫ 𝑓(𝑥)𝑒−𝑠𝑥𝑑𝑥

∞

0

 

Step 2: Here in this example, 𝑓(𝑥) = 𝑒7𝑥 because 

ℒ{𝑓(𝑥)} = ℒ{𝑒7𝑥}. 

Step 3:  

ℒ{𝑒7𝑥} = ∫(𝑒7𝑥 )𝑒−𝑠𝑥𝑑𝑥

∞

0

 

By the definition of integral, we substitute 

∫ (𝑒7𝑥)𝑒−𝑠𝑥𝑑𝑥
∞

0
 with lim

𝑏→∞
∫ (𝑒7𝑥)𝑒−𝑠𝑥𝑑𝑥
𝑏

0
. 

Step 4: We need to find lim
𝑏→∞

∫ (𝑒7𝑥)𝑒−𝑠𝑥𝑑𝑥
𝑏

0
 as follows: 

It is easier to find what it is inside the above box 

(∫ (𝑒7𝑥)𝑒−𝑠𝑥𝑑𝑥
𝑏

0
), and after that we can find the limit of 

∫ (𝑒7𝑥)𝑒−𝑠𝑥𝑑𝑥
𝑏

0
. 

Thus, ∫ (𝑒7𝑥)𝑒−𝑠𝑥𝑑𝑥
𝑏

0
= ∫ 𝑒(7−𝑠)𝑥𝑑𝑥

𝑏

0
=

1

(7−𝑠)
𝑒(7−𝑠)𝑥| 𝑥=𝑏

𝑥=0
=

1

(7−𝑠)
𝑒(7−𝑠)𝑏 −

1

(7−𝑠)
𝑒(7−𝑠)(0) =

1

(7−𝑠)
𝑒(7−𝑠)𝑏 −

1

(7−𝑠)
 . 

Step 5: We need find the limit of 
1

(7−𝑠)
𝑒(7−𝑠)𝑏 −

1

(7−𝑠)
  as 

follows: 

lim
𝑏→∞

(
1

(7−𝑠)
𝑒(7−𝑠)𝑏 −

1

(7−𝑠)
) = −

1

(7−𝑠)
=

1

(𝑠−7)
 where 𝑠 > 7.  

To check if our answer is right, we need to look at table 

1.1.1 at the beginning of this book. According to table 

1.1.1 section 4, we found ℒ{𝑒7𝑥} =
1

𝑠−7
 which is the same 

answer we got. 

The following examples are two examples about finding the 

integrals to review some concepts that will help us finding 

the laplace transforms. 

Example 1.2.3 Find ∫𝑥3𝑒2𝑥𝑑𝑥. 
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Solution: To find ∫𝑥3𝑒2𝑥𝑑𝑥, it is easier to use a method 

known as the table method than using integration by parts. 

In the table method, we need to create two columns: one for 

derivatives of 𝑥3, and the other one for integrations of 𝑒2𝑥. 

Then, we need to keep deriving 𝑥3 till we get zero, and we 

stop integrating when the corresponding row is zero. The 

following table shows the table method to find ∫𝑥3𝑒2𝑥𝑑𝑥: 

Derivatives Part Integration Part 

𝑥3 𝑒2𝑥 

3𝑥2 1

2
𝑒2𝑥 

6𝑥 1

4
𝑒2𝑥 

6 1

8
𝑒2𝑥 

0 1

16
𝑒2𝑥 

Table 1.2.1: Table Method for ∫𝑥3𝑒2𝑥𝑑𝑥 

We always start with positive sign, followed by negative 

sign, and so on as we can see in the above table 1.2.1. 

Now, from the above table 1.2.1, we can find ∫𝑥3𝑒2𝑥𝑑𝑥 as 

follows:  

∫𝑥3𝑒2𝑥𝑑𝑥 =
1

2
𝑥3𝑒2𝑥 −

1

4
(3)𝑥2𝑒2𝑥 +

1

8
(6)𝑥𝑒2𝑥 −

1

16
(6)𝑒2𝑥 + 𝐶 

 

Thus, ∫ 𝑥3𝑒2𝑥𝑑𝑥 =
1

2
𝑥3𝑒2𝑥 −

3

4
𝑥2𝑒2𝑥 +

3

4
𝑥𝑒2𝑥 −

3

8
𝑒2𝑥 + 𝐶. 

In conclusion, we can always use the table method to 

find integrals like ∫(𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙)𝑒𝑎𝑥𝑑𝑥 and 

∫(𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙)sin (𝑎𝑥)𝑑𝑥. 

Example 1.2.4 Find ∫3𝑥2sin (4𝑥)𝑑𝑥. 

Solution: To find ∫3𝑥2sin (4𝑥)𝑑𝑥, it is easier to use the 

table method than using integration by parts. In the table 

method, we need to create two columns: one for derivatives 

of 3𝑥2, and the other one for integrations of sin (4𝑥). Then, 
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we need to keep deriving 3𝑥2 till we get zero, and we stop 

integrating when the corresponding row is zero. The 

following table shows the table method to find 

∫3𝑥2sin (4𝑥)𝑑𝑥: 

Derivatives Part Integration Part 

3𝑥2 sin (4𝑥) 

6𝑥 −
1

4
cos (4𝑥) 

6 
−
1

16
sin (4𝑥) 

0 1

64
cos (4𝑥) 

Table 1.2.2: Table Method for ∫3𝑥2sin (4𝑥)𝑑𝑥 

We always start with positive sign, followed by negative 

sign, and so on as we can see in the above table 1.2.2. 

Now, from the above table 1.2.2, we can find ∫3𝑥2sin (4𝑥)𝑑𝑥 

as follows:  

∫3𝑥2sin (4𝑥)𝑑𝑥

= −
1

4
(3)𝑥2 cos(4𝑥) − (−

1

16
)6𝑥 sin(4𝑥)

+ (
1

64
)6 cos(4𝑥) + 𝐶 

 

Thus, ∫ 3𝑥2sin (4𝑥)𝑑𝑥 = −
3

4
𝑥2 cos(4𝑥) +

3

8
𝑥 sin(4𝑥) +

3

32
cos(4𝑥) + 𝐶. 

Example 1.2.5 Using definition 1.2.1, find ℒ{𝑥2}. 

Solution: To find ℒ{𝑥2} using definition 1.2.1, we need 

to do the following steps: 

Step 1: We write the general definition of laplace 

transform as follows: 

ℒ{𝑓(𝑥)} = ∫ 𝑓(𝑥)𝑒−𝑠𝑥𝑑𝑥

∞

0
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Step 2: Here in this example, 𝑓(𝑥) = 𝑥2 because 

ℒ{𝑓(𝑥)} = ℒ{𝑥2}. 

Step 3: ℒ{𝑥2} = ∫ (𝑥2 )𝑒−𝑠𝑥𝑑𝑥
∞

0
 

By the definition of integral, we substitute ∫ (𝑥2 )𝑒−𝑠𝑥𝑑𝑥∞

0
 

with lim
𝑏→∞

∫ (𝑥2 )𝑒−𝑠𝑥𝑑𝑥
𝑏

0
. 

Step 4: We need to find lim
𝑏→∞

∫ (𝑥2 )𝑒−𝑠𝑥𝑑𝑥
𝑏

0
 as follows: 

It is easier to find what it is inside the above box 

(∫ (𝑥2 )𝑒−𝑠𝑥𝑑𝑥
𝑏

0
), and after that we can find the limit of 

∫ (𝑥2 )𝑒−𝑠𝑥𝑑𝑥
𝑏

0
. 

Now, we need to find ∫ (𝑥2 )𝑒−𝑠𝑥𝑑𝑥
𝑏

0
 using the table 

method. In the table method, we need to create two 

columns: one for derivatives of 𝑥2, and the other one for 

integrations of 𝑒−𝑠𝑥. Then, we need to keep deriving 𝑥2 till 

we get zero, and we stop integrating when the 

corresponding row is zero. The following table shows the 

table method to find ∫(𝑥2 )𝑒−𝑠𝑥𝑑𝑥: 

Derivatives Part Integration Part 

𝑥2 𝑒−𝑠𝑥 

2𝑥 −
1

𝑠
𝑒−𝑠𝑥 

2 1

𝑠2
𝑒−𝑠𝑥 

0 −
1

𝑠3
𝑒−𝑠𝑥 

Table 1.2.3: Table Method for ∫(𝑥2 )𝑒−𝑠𝑥𝑑𝑥 

We always start with positive sign, followed by negative 

sign, and so on as we can see in the above table 1.2.3. 

Now, from the above table 1.2.3, we can find ∫3𝑥2sin (4𝑥)𝑑𝑥 

as follows:  

Thus, ∫(𝑥2 )𝑒−𝑠𝑥𝑑𝑥 = −
1

𝑠
𝑥2𝑒−𝑠𝑥 −

2

𝑠2
𝑥𝑒−𝑠𝑥−

2

𝑠3
𝑒−𝑠𝑥 + 𝐶. 

Now, we need to evaluate the above integral from 0 to 𝑏 as 

follows: 
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∫ (𝑥2 )𝑒−𝑠𝑥𝑑𝑥
𝑏

0
= −

1

𝑠
𝑥2𝑒

−𝑠𝑥
−

2

𝑠2
𝑥𝑒

−𝑠𝑥
−

2

𝑠3
𝑒
−𝑠𝑥
| 𝑥=𝑏
𝑥=0

=

(−
1

𝑠
𝑏2𝑒

−𝑠𝑏
−

2

𝑠2
𝑏𝑒

−𝑠𝑏
−

2

𝑠3
𝑒
−𝑠𝑏

+
2

𝑠3
) . 

Step 5: We need find the limit of (−
1

𝑠
𝑏2𝑒−𝑠𝑏 −

2

𝑠2
𝑏𝑒−𝑠𝑏−

2

𝑠3
𝑒−𝑠𝑏 +

2

𝑠3
) as follows: 

lim
𝑏→∞

(−
1

𝑠
𝑏2𝑒

−𝑠𝑏
−

2

𝑠2
𝑏𝑒

−𝑠𝑏
−

2

𝑠3
𝑒
−𝑠𝑏

+
2

𝑠3
) = lim

𝑏→∞
(0 +

2

𝑠3
) =

2

𝑠3
 where 𝑠 > 0.  

To check if our answer is right, we need to look at table 

1.1.1 at the beginning of this book. According to table 

1.1.1 section 2 at the right side, we found ℒ{𝑥2} =
2!

𝑠2+1
=

2

𝑠3
 which is the same answer we got. 

Example 1.2.6 Using table 1.1.1, find ℒ{sin(5𝑥)}. 

Solution: To find ℒ{sin(5𝑥)} using table 1.1.1, we need to 

do the following steps: 

Step 1: We look at the transform table (table 1.1.1). 

Step 2: We look at which section in table 1.1.1 contains 

𝑠𝑖𝑛 function. 

Step 3: We write down what we get from table 1.1.1 

(Section 3 at the left side) as follows:  

ℒ{sin 𝑐𝑡} =
𝑐

𝑠2 + 𝑐2
 

Step 4: We change what we got from step 3 to make it 

look like ℒ{sin(5𝑥)} as follows: 

ℒ{sin 5𝑥} =
5

𝑠2+52
=

5

𝑠2+25
. 

Thus, ℒ{sin 5𝑥} =
5

𝑠2+52
=

5

𝑠2+25
. 

Example 1.2.7 Using table 1.1.1, find ℒ{cos(−8𝑥)}. 

Solution: To find ℒ{cos(−8𝑥)} using table 1.1.1, we need 

to do the following steps: 

Step 1: We look at the transform table (table 1.1.1). 
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Step 2: We look at which section in table 1.1.1 contains 

𝑐𝑜𝑠 function. 

Step 3: We write down what we get from table 1.1.1 

(Section 3 at the right side) as follows:  

ℒ{cos 𝑐𝑡} =
𝑠

𝑠2 + 𝑐2
 

Step 4: We change what we got from step 3 to make it 

look like ℒ{cos(−8𝑥)} as follows: 

ℒ{cos(−8𝑥)} =
𝑠

𝑠2+(−8)2
=

𝑠

𝑠2+64
. 

Thus, ℒ{cos(−8𝑥)} =
𝑠

𝑠2+(−8)2
=

𝑠

𝑠2+64
. 

We will give some important mathematical results 

about laplace transforms. 

Result 1.2.1 Assume that 𝑐 is a constant, and 𝑓(𝑥), 

𝑔(𝑥) are functions. Then, we have the following: 

(Hint: 𝐹(𝑠) and 𝐺(𝑠) are the laplace transforms of 𝑓(𝑥) and  

𝑔(𝑥), respectively). 

a) ℒ{𝑔(𝑥)} = 𝐺(𝑠) (i.e. ℒ{8} =
8

𝑠
= 𝐺(𝑠) where 𝑔(𝑥) = 8). 

b) ℒ{𝑐 ∙ 𝑔(𝑥)} = 𝑐 ∙ ℒ{𝑔(𝑥)} = 𝑐 ∙ 𝐺(𝑠). 

c) ℒ{𝑓(𝑥) ∓ 𝑔(𝑥)} = 𝐹(𝑠) ∓ 𝐺(𝑠). 

d) ℒ{𝑓(𝑥) ∙ 𝑔(𝑥)} is not necessary equal to 𝐹(𝑠) ∙ 𝐺(𝑠). 

 

Example 1.2.8 Using definition 1.2.1, find ℒ{𝑦′}.  

Solution: To find ℒ{𝑦′} using definition 1.2.1, we need to 

do the following steps: 

Step 1: We write the general definition of laplace 

transform as follows: 

ℒ{𝑓(𝑥)} = ∫ 𝑓(𝑥)𝑒−𝑠𝑥𝑑𝑥

∞

0

 

Step 2: Here in this example, 𝑓(𝑥) = 𝑦′ because 

ℒ{𝑓(𝑥)} = ℒ{𝑦′}. 

Step 3: ℒ{𝑦′} = ∫ (𝑦′)𝑒−𝑠𝑥𝑑𝑥
∞

0
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By the definition of integral, we substitute ∫ (𝑦′)𝑒−𝑠𝑥𝑑𝑥
∞

0
 

with lim
𝑏→∞

∫ (𝑦′)𝑒−𝑠𝑥𝑑𝑥
𝑏

0
. 

Step 4: We need to find lim
𝑏→∞

∫ 𝑦′𝑒−𝑠𝑥𝑑𝑥
𝑏

0
 as follows: 

It is easier to find what it is inside the above box 

(∫ 𝑦′𝑒−𝑠𝑥𝑑𝑥
𝑏

0
), and after that we can find the limit of 

∫ 𝑦′𝑒−𝑠𝑥𝑑𝑥
𝑏

0
. 

To find ∫ 𝑦′𝑒−𝑠𝑥𝑑𝑥
𝑏

0
, we need to use integration by parts 

as follows: 

𝑢 = 𝑒−𝑠𝑥                                                 𝑑𝑣 = 𝑦′𝑑𝑥 

𝑑𝑢 = −𝑠𝑒−𝑠𝑥𝑑𝑥                                      𝑣 = ∫𝑑𝑣 = ∫𝑦′ 𝑑𝑥 = 𝑦 

∫𝑢𝑑𝑣 = 𝑢𝑣 −∫𝑣𝑑𝑢 

∫𝑦′𝑒−𝑠𝑥𝑑𝑥 = 𝑦𝑒−𝑠𝑥 −∫𝑦(−𝑠𝑒−𝑠𝑥) 𝑑𝑥 

Now, we can find the limit as follows: 

lim
𝑏→∞

∫ 𝑦′𝑒−𝑠𝑥𝑑𝑥

𝑏

0

= lim
𝑏→∞

𝑦𝑒−𝑠𝑥 − lim
𝑏→∞

∫ 𝑦(−𝑠𝑒−𝑠𝑥)

𝑏

0

𝑑𝑥 

lim
𝑏→∞

∫ 𝑦′𝑒−𝑠𝑥𝑑𝑥

𝑏

0

= lim
𝑏→∞

𝑦𝑒−𝑠𝑥|
𝑥 = 𝑏

𝑥 = 0
+∫ 𝑦(𝑠𝑒−𝑠𝑥)

∞

0

𝑑𝑥 

Because ∫ 𝑦(𝑠𝑒−𝑠𝑥)
∞

0
𝑑𝑥 = lim

𝑏→∞
∫ 𝑦(−𝑠𝑒−𝑠𝑥)
𝑏

0
𝑑𝑥. 

lim
𝑏→∞

∫ 𝑦′𝑒−𝑠𝑥𝑑𝑥

𝑏

0

= lim
𝑏→∞

(𝑦𝑒−𝑠𝑏 − 𝑦𝑒−𝑠(0)) +∫ 𝑦(𝑠𝑒−𝑠𝑥)

∞

0

𝑑𝑥 

lim
𝑏→∞

∫ 𝑦′𝑒−𝑠𝑥𝑑𝑥

𝑏

0

= lim
𝑏→∞

(𝑦(𝑏)𝑒−𝑠𝑏 − 𝑦(0)𝑒−𝑠(0)) + 𝑠∫ 𝑦𝑒−𝑠𝑥

∞

0

𝑑𝑥 

Since we have∫ 𝑦𝑒−𝑠𝑥
∞

0
𝑑𝑥, then using result 1.2.1 

(∫ 𝑦𝑒−𝑠𝑥
∞

0
𝑑𝑥 = 𝑌(𝑠)), we obtain the following: 
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lim
𝑏→∞

∫ 𝑦′𝑒−𝑠𝑥𝑑𝑥

𝑏

0

= lim
𝑏→∞

(𝑦(𝑏)𝑒−𝑠𝑏 − 𝑦(0)) + 𝑠∫ 𝑦𝑒−𝑠𝑥

∞

0

𝑑𝑥 

∫ 𝑦′𝑒−𝑠𝑥𝑑𝑥

𝑏

0

= lim
𝑏→∞

(𝑦(𝑏)𝑒−𝑠𝑏 − 𝑦(0)) + 𝑠𝑌(𝑠) 

∫ 𝑦′𝑒−𝑠𝑥𝑑𝑥

𝑏

0

= (𝑦(𝑏)𝑒−𝑠(∞) − 𝑦(0)) + 𝑠𝑌(𝑠) 

∫ 𝑦′𝑒−𝑠𝑥𝑑𝑥

𝑏

0

= (0 − 𝑦(0)) + 𝑠𝑌(𝑠) 

∫ 𝑦′𝑒−𝑠𝑥𝑑𝑥

𝑏

0

= 𝑠𝑌(𝑠) − 𝑦(0) 

Thus, ℒ{𝑦′} = 𝑠𝑌(𝑠) − 𝑦(0). 

 

We conclude this example with the following results: 

Result 1.2.2 Assume that 𝑓(𝑥) is a function, and 𝐹(𝑠) is 

the laplace transform of 𝑓(𝑥). Then, we have the 

following: 

a) ℒ{𝑓′(𝑥)} = ℒ{𝑓(1)(𝑥)} = 𝑠𝐹(𝑠) − 𝑓(0). 

b) ℒ{𝑓′′(𝑥)} = ℒ{𝑓(2)(𝑥)} = 𝑠2𝐹(𝑠) − 𝑠𝑓(0) − 𝑓′(0). 

c) ℒ{𝑓′′′(𝑥)} = ℒ{𝑓(3)(𝑥)} = 𝑠3𝐹(𝑠) − 𝑠2𝑓(0) − 𝑠𝑓′(0) −

𝑓′′(0). 

d) ℒ{𝑓(4)(𝑥)} = 𝑠4𝐹(𝑠) − 𝑠3𝑓(0) − 𝑠2𝑓′(0) − 𝑠𝑓′′(0) −

𝑓′′′(0). 

For more information about this result, it is 

recommended to look at section 8 in table 1.1.1. If you 

look at it, you will find the following: 

ℒ{𝑓(𝑚)(𝑡)} = 𝑠𝑚𝐹(𝑠) − 𝑠𝑚−1𝑓(0) − 𝑠𝑚−2𝑓′(𝑠) − ⋯− 𝑓(𝑚−1)(𝑠). 

Result 1.2.3 Assume that 𝑐 is a constant, and 𝑓(𝑥) is a 

function where 𝐹(𝑠) is the laplace transform of 𝑓(𝑥). 

Then, we have the following: ℒ{𝑐𝑓(𝑥)} = 𝑐ℒ{𝑓(𝑥)} = 𝑐𝐹(𝑠). 
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1.3 Inverse Laplace 

Transforms

In this section, we will discuss how to find the inverse 

laplace transforms of different types of mathematical 

functions, and we will use table 1.1.1 to refer to the 

laplace transforms. 

Definition 1.3.1 The inverse laplace transform, denoted 

by ℒ−1, is defined as a reverse laplace transform, and to 

find the inverse laplace transform, we need to think 

about which function has a laplace transform that 

equals to the function in the inverse laplace transform. 

For example, suppose that 𝑓(𝑥) is a function where 

𝐹(𝑠) is the laplace transform of 𝑓(𝑥). Then, the inverse 

laplace transform is ℒ−1{𝐹(𝑠)} = 𝑓(𝑥). (i.e. ℒ−1 {
1

𝑠
} we need 

to think which function has a laplace transform that 

equals to 
1

𝑠
 , in this case the answer is 1). 

Example 1.3.1 Find ℒ−1 {
34

𝑠
}. 

Solution: First of all, ℒ−1 {
34

𝑠
} = ℒ−1 {34 (

1

𝑠
)}. 

Using definition 1.3.1 and table 1.1.1, the answer is 34. 

Example 1.3.2 Find ℒ−1 {
𝑠

𝑠2+2
}. 

Solution: Using definition 1.3.1 and the right side of 

section 3 in table 1.1.1, we find the following: 
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ℒ{cos 𝑐𝑡} =
𝑠

𝑠2 + 𝑐2
 

𝑠

𝑠2+2
 is an equivalent to 

𝑠

𝑠2+(√2)2
 

Since ℒ{cos√2𝑡} =
𝑠

𝑠2+(√2)2
 , then this means that 

ℒ−1 {
𝑠

𝑠2+2
} = cos√2𝑡. 

Example 1.3.3 Find ℒ−1 {
−3

𝑠2+9
}. 

Solution: Using definition 1.3.1 and the left side of 

section 3 in table 1.1.1, we find the following: 

ℒ{sin 𝑐𝑡} =
𝑐

𝑠2 + 𝑐2
 

−3

𝑠2+9
 is an equivalent to 

−3

𝑠2+(−3)2
 

Since ℒ{sin(−3)𝑡} = ℒ{sin(−3𝑡)} =
−3

𝑠2+(−3)2
 , then this 

means that ℒ−1 {
−3

𝑠2+9
} = sin(−3𝑡). 

Example 1.3.4 Find ℒ−1 {
1

𝑠+8
}. 

Solution: Using definition 1.3.1 and section 4 in table 

1.1.1, we find the following: 

ℒ{𝑒𝑏𝑡} =
1

𝑠−𝑏
 . 

1

𝑠+8
 is an equivalent to 

1

𝑠−(−8)
 

Since ℒ{𝑒−8𝑡} =
1

𝑠+8
 , then this means that ℒ−1 {

1

𝑠+8
} =

𝑒−8𝑡. 

Result 1.3.1 Assume that 𝑐 is a constant, and 𝑓(𝑥) is a 

function where 𝐹(𝑠) and 𝐺(𝑠) are the laplace transforms of 

𝑓(𝑥), and 𝑔(𝑥), respectively.  

a) ℒ−1{𝑐𝐹(𝑠)} = 𝑐ℒ−1{𝐹(𝑠)} = 𝑐𝑓(𝑥). 

b) ℒ−1{𝐹(𝑠) ∓ 𝐺(𝑠)} = ℒ−1{𝐹(𝑠)} ∓ ℒ−1{𝐺(𝑠)} = 𝑓(𝑥) ∓

𝑔(𝑥). 

Example 1.3.5 Find ℒ−1 {
5

𝑠2+4
}. 
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Solution: Using result 1.3.1, ℒ−1 {
5

𝑠2+4
} = 5ℒ−1 {

1

𝑠2+4
}. Now, 

by using the left side of section 3 in table 1.1.1, we need 

to make it look like 
𝑐

𝑠2+𝑐2
 because ℒ{sin 𝑐𝑡} =

𝑐

𝑠2+𝑐2
. 

Therefore, we do the following: 
5

2
ℒ−1 {(2)

1

𝑠2+4
} =

5

2
ℒ−1 {

2

𝑠2+4
}, 

and 
2

𝑠2+4
 is an equivalent to 

2

𝑠2+(2)2
.  

Since 
5

2
ℒ{sin(2)𝑡} = ℒ {

5

2
sin(2𝑡)} =

5

2
(

2

𝑠2+(2)2
) =

5

𝑠2+4
 , then by 

using definition 1.3.1, this means that ℒ−1 {
5

𝑠2+4
 } =

5

2
sin(2𝑡). 

Example 1.3.6 Find ℒ−1 {
7

2𝑠−3
}. 

Solution: Using result 1.3.1, ℒ−1 {
7

2𝑠−3
} = 7ℒ−1 {

1

2𝑠−3
}. 

Now, by using section 4 in table 1.1.1, we need to make it 

look like 
1

𝑠−𝑏
 because ℒ{𝑒𝑏𝑡} =

1

𝑠−𝑏
. 

Therefore, we do the following: 7ℒ−1 {
1

2𝑠−3
} = 7ℒ−1 {

1

2(𝑠−
3

2
)
} =

7

2
ℒ−1 {

1

(𝑠−
3

2
)
}. 

Since 
7

2
ℒ {𝑒

3

2
𝑡
} = ℒ {

7

2
𝑒
3

2
𝑡
} =

7

2
(

1

(𝑠−
3

2
)
) =

7

2𝑠−3
 , then by using 

definition 1.3.1, this means that ℒ−1 {
7

2𝑠−3
 } =

7

2
𝑒
3

2
𝑡
. 

Example 1.3.7 Find ℒ−1 {
1+3𝑠

𝑠2+9
}. 

Solution: ℒ−1 {
1+3𝑠

𝑠2+9
} = ℒ−1 {

1

𝑠2+9
+

3𝑠

𝑠2+9
}. Now, by using 

section 3 in table 1.1.1, we need to make it look like 
𝑐

𝑠2+𝑐2
 

and 
𝑠

𝑠2+𝑐2
 because ℒ{sin 𝑐𝑡} =

𝑐

𝑠2+𝑐2
 and ℒ{cos 𝑐𝑡} =

𝑠

𝑠2+𝑐2
 . 

Therefore, we do the following: 

 ℒ−1 {
1

𝑠2+9
+

3𝑠

𝑠2+9
} = 

1

3
ℒ−1 {

1(3)

𝑠2+9
} + 3ℒ−1 {

𝑠

𝑠2+9
}. 
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Since 
1

3
ℒ{sin(3𝑡)} + 3ℒ{cos(3𝑡)} = (

1

𝑠2+9
+

3𝑠

𝑠2+9
) , then by 

using definition 1.3.1, this means that ℒ−1 {
1+3𝑠

𝑠2+9
} =

ℒ−1 {
1

𝑠2+9
} + ℒ−1 {

3𝑠

𝑠2+9
} =

1

3
sin(3𝑡) + 3 cos(3𝑡). 

Example 1.3.8 Find ℒ−1 {
6

𝑠4
}. 

Solution: Using definition 1.3.1 and the right side of 

section 2 in table 1.1.1, we find the following: 

ℒ{𝑡𝑚} =
𝑚!

𝑠𝑚+1
 where 𝑚 is a positive integer. 

6

𝑠4
 is an equivalent to 

3!

𝑠3+1
 

Since ℒ{𝑡3} =
3!

𝑠3+1
=

6

𝑠4
 , then this means that ℒ−1 {

6

𝑠4
} = 𝑡3. 

 

1.4 Initial Value Problems

In this section, we will introduce the main theorem of 

differential equations known as Initial Value Problems 

(IVP), and we will use it with what we have learned 

from sections 1.2 and 1.3 to find the largest interval on 

the x-axis. 

Definition 1.4.1 Given 𝑎𝑛(𝑥)𝑦
(𝑛) + 𝑎𝑛−1(𝑥)𝑦

(𝑛−1) +⋯+

𝑎0(𝑥)𝑦(𝑥) = 𝐾(𝑥). Assume that 𝑎𝑛(𝑚) ≠ 0 for every 𝑚 ∈

𝐼 where 𝐼 is some interval, and 

𝑎𝑛(𝑥), 𝑎𝑛−1(𝑥), … , 𝑎0(𝑥), 𝐾(𝑥) are continuous on 𝐼. 

Suppose that 𝑦(𝑤), 𝑦′(𝑤),… , 𝑦(𝑛−1)(𝑤) for some 𝑤 ∈ 𝐼. 

Then, the solution to the differential equations is 

unique which means that there exists exactly one 𝑦(𝑥) 

in terms of 𝑥, and this type of mathematical problems 

is called Initial Value Problems (IVP). 
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Example 1.4.1 Find the largest interval on the 𝑥 − 𝑎𝑥𝑖𝑠 

so that 
𝑥−3

𝑥+2
𝑦(3)(𝑥) + 2𝑦(2)(𝑥) + √𝑥 + 1𝑦′(𝑥) = 5𝑥 + 7 has 

a solution. Given 𝑦′(5) = 10, 𝑦(5) = 2, 𝑦(2)(5) = −5. 

Solution: Finding largest interval on the 𝑥 − 𝑎𝑥𝑖𝑠 

means that we need to find the domain for the solution 

of the above differential equation in other words we 

need to find for what values of 𝑥 the solution of the 

above differential equation holds. Therefore, we do the 

following: 
𝑥−3

𝑥+2
𝑦(3)(𝑥) + 2𝑦(2)(𝑥) + √𝑥 + 1𝑦′(𝑥) = 5𝑥 + 7 

Using definition 1.4.1, we also suppose the following: 

𝑎3(𝑥) =
𝑥 − 3

𝑥 + 2
 

𝑎2(𝑥) = 2 

𝑎1(𝑥) = √𝑥 + 1 

𝐾(𝑥) = 5𝑥 + 7 

Now, we need to determine the interval of each 

coefficient above as follows: 

𝑎3(𝑥) =
𝑥−3

𝑥+2
  has a solution which is continuous 

everywhere (ℜ) except 𝑥 = −2 and 𝑥 = 3.  

𝑎2(𝑥) = 2  has a solution which is continuous 

everywhere (ℜ). 

𝑎1(𝑥) = √𝑥 + 1  has a solution which is continuous on 

the interval [−1, ∞). 

𝐾(𝑥) = 5𝑥 + 7 has a solution which is continuous 

everywhere (ℜ). 

Thus, the largest interval on the 𝑥 − 𝑎𝑥𝑖𝑠 is (3,∞). 
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Example 1.4.2 Find the largest interval on the 𝑥 − 𝑎𝑥𝑖𝑠 

so that (𝑥2 + 2𝑥 − 3)𝑦(2)(𝑥) +
1

𝑥+3
𝑦(𝑥) = 10 has a 

solution. Given 𝑦′(2) = 10, 𝑦(2) = 4. 

Solution: Finding largest interval on the 𝑥 − 𝑎𝑥𝑖𝑠 

means that we need to find the domain for the solution 

of the above differential equation in other words we 

need to find for what values of 𝑥 the solution of the 

above differential equation holds. Therefore, we do the 

following: 

(𝑥2 + 2𝑥 − 3)𝑦(2)(𝑥) +
1

𝑥+3
𝑦(𝑥) = 10  

Using definition 1.4.1, we also suppose the following: 

𝑎2(𝑥) = (𝑥
2 + 2𝑥 − 3) 

𝑎1(𝑥) = 0 

𝑎0(𝑥) =
1

𝑥 + 3
 

𝐾(𝑥) = 10 

Now, we need to determine the interval of each 

coefficient above as follows: 

𝑎2(𝑥) = (𝑥
2 + 2𝑥 − 3) = (𝑥 − 1)(𝑥 + 3) has a solution 

which is continuous everywhere (ℜ) except 𝑥 = 1 and 

𝑥 = −3. 

𝑎0(𝑥) =
1

𝑥+3
  has a solution which is continuous 

everywhere (ℜ) except 𝑥 = −3. 

𝐾(𝑥) = 10 has a solution which is continuous 

everywhere (ℜ). 

Thus, the largest interval on the 𝑥 − 𝑎𝑥𝑖𝑠 is (1,∞). 



Copyright © 2015 Mohammed K A Kaabar                       All Rights Reserved 

 

32  M. Kaabar 
 

Example 1.4.3 Solve the following Initial Value 

Problem (IVP): 𝑦′(𝑥) + 3𝑦(𝑥) = 0. Given 𝑦(0) = 3. 

Solution: 𝑦′(𝑥) + 3𝑦(𝑥) = 0 is a linear differential 

equation of order 1. First, we need to find the domain 

for the solution of the above differential equation in 

other words we need to find for what values of 𝑥 the 

solution of the above differential equation holds. 

Therefore, we do the following: 

1𝑦′(𝑥) + 3𝑦(𝑥) = 0 

Using definition 1.4.1, we also suppose the following: 

𝑎1(𝑥) = 1 

𝑎0(𝑥) = 3 

𝐾(𝑥) = 0 

The domain of solution is (−∞,∞). 

Now, to find the solution of the above differential 

equation, we need to take the laplace transform for 

both sides as follows 

ℒ{𝑦′(𝑥)} + ℒ{3𝑦(𝑥)} = ℒ{0} 

ℒ{𝑦′(𝑥)} + 3ℒ{𝑦(𝑥)} = 0 because (ℒ{0} = 0). 

(𝑠𝑌(𝑠) − 𝑦(0)) + 3𝑌(𝑠) = 0      from result 1.2.2. 

𝑠𝑌(𝑠) − 𝑦(0) + 3𝑌(𝑠) = 0       

𝑌(𝑠)(𝑠 + 3) = 𝑦(0)   

We substitute 𝑦(0) = 3 because it is given in the 

question itself. 

𝑌(𝑠)(𝑠 + 3) = 3   

𝑌(𝑠) =
3

(𝑠+3)
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To find a solution, we need to find the inverse laplace 

transform as follows: 

ℒ−1{𝑌(𝑠)} = ℒ−1 {
3

(𝑠+3)
} = 3ℒ−1 {

1

(𝑠+3)
} and we use table 

1.1.1 section 4. 

𝑦(𝑥) = 3𝑒−3𝑥 (It is written in terms of 𝑥 instead of 𝑡 

because we need it in terms of 𝑥). 

Then, we will find 𝑦′(𝑥) by finding the derivative of 

what we got above (𝑦(𝑥) = 3𝑒−3𝑥) as follows: 

𝑦′(𝑥) = (3𝑒−3𝑥)′ = (3)(−3)𝑒−3𝑥 = −9𝑒−3𝑥. 

Finally, to check our solution if it is right, we 

substitute what we got from 𝑦(𝑥) = 3𝑒−3𝑥 and 𝑦′(𝑥) =

−9𝑒−3𝑥 in  

𝑦′(𝑥) + 3𝑦(𝑥) = 0 as follows: 

−9𝑒−3𝑥 + 3(3𝑒−3𝑥) = −9𝑒−3𝑥 + (9𝑒−3𝑥) = 0 

Thus, our solution is correct which is 𝑦(𝑥) = 3𝑒−3𝑥 and 

𝑦′(𝑥) = −9𝑒−3𝑥. 

Example 1.4.4 Solve the following Initial Value 

Problem (IVP): 𝑦(2)(𝑥) + 3𝑦(𝑥) = 0. Given 𝑦(0) = 0, and 

𝑦′(0) = 1. 

Solution: 𝑦(2)(𝑥) + 3𝑦(𝑥) = 0 is a linear differential 

equation of order 2. First, we need to find the domain 

for the solution of the above differential equation in 

other words we need to find for what values of 𝑥 the 

solution of the above differential equation holds. 

Therefore, we do the following: 

1𝑦(2)(𝑥) + 3𝑦(𝑥) = 0  

Using definition 1.4.1, we also suppose the following: 
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𝑎2(𝑥) = 1 

𝑎1(𝑥) = 0 

𝑎0(𝑥) = 3 

𝐾(𝑥) = 0 

The domain of solution is (−∞,∞). 

Now, to find the solution of the above differential 

equation, we need to take the laplace transform for 

both sides as follows 

ℒ{𝑦(2)(𝑥)} + ℒ{3𝑦(𝑥)} = ℒ{0} 

ℒ{𝑦(2)(𝑥)} + 3ℒ{𝑦(𝑥)} = 0 because (ℒ{0} = 0). 

(𝑠2𝑌(𝑠) − 𝑠𝑦(0) − 𝑦′(0)) + 3𝑌(𝑠) = 0   from result 1.2.2. 

𝑠2𝑌(𝑠) − 𝑠𝑦(0) − 𝑦′(0) + 3𝑌(𝑠) = 0       

𝑌(𝑠)(𝑠2 + 3) = 𝑠𝑦(0) + 𝑦′(0)   

We substitute 𝑦(0) = 0, and 𝑦′(0) = 1 because it is 

given in the question itself. 

𝑌(𝑠)(𝑠2 + 3) = (𝑠)(0) + 1   

𝑌(𝑠)(𝑠2 + 3) = 0 + 1   

𝑌(𝑠)(𝑠2 + 3) = 1   

𝑌(𝑠) =
1

(𝑠2 + 3)
 

To find a solution, we need to find the inverse laplace 

transform as follows: 

ℒ−1{𝑌(𝑠)} = ℒ−1 {
1

(𝑠2+3)
} =

1

√3
ℒ−1 {

1

(𝑠2+(√3)
2
)
} and we use 

table 1.1.1 at the left side of section 3. 
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𝑦(𝑥) =
1

√3
sin(√3𝑥) (It is written in terms of 𝑥 instead of 

𝑡 because we need it in terms of 𝑥). 

Then, we will find 𝑦′(𝑥) by finding the derivative of 

what we got above (𝑦(𝑥) =
1

√3
sin(√3𝑥)) as follows: 

𝑦′(𝑥) = (
1

√3
sin(√3 𝑥))

′

=
1

√3
(√3) cos(√3 𝑥) = cos(√3 𝑥) 

Now, we will find 𝑦(2)(𝑥) by finding the derivative of 

what we got above as follows: 

𝑦(2)(𝑥) = (cos(√3 𝑥))
′
= −√3 sin(√3𝑥) 

Finally, to check our solution if it is right, we 

substitute what we got from 𝑦(𝑥) and 𝑦(2)(𝑥) in  

𝑦(2)(𝑥) + 3𝑦(𝑥) = 0 as follows: 

−√3sin(√3𝑥) + √3 𝑠𝑖𝑛(√3 𝑥) = 0 

Thus, our solution is correct which is  

𝑦(𝑥) =
1

√3
sin(√3𝑥) and 𝑦(2)(𝑥) = −√3 sin(√3𝑥). 

1.5 Properties of Laplace 

Transforms

In this section, we discuss several properties of laplace 

transforms such as shifting, unit step function, 

periodic function, and convolution.  

We start with some examples of shifting property. 

Example 1.5.1 Find ℒ{𝑒3𝑥𝑥3}. 
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Solution: By using shifting property at the left side of 

section 5 in table 1.1.1, we obtain: 

ℒ{𝑒𝑏𝑥𝑓(𝑥)} = 𝐹(𝑠) |𝑠 → 𝑠 − 𝑏  

Let 𝑏 = 3, and 𝑓(𝑥) = 𝑥3. 

𝐹(𝑠) = ℒ{𝑥3}. 

Hence, ℒ{𝑒3𝑥𝑥3} = ℒ{𝑥3} |𝑠 → 𝑠 − 3 =
3! 

(𝑠)3+1 
|𝑠 → 𝑠 − 3 = 

3! 

(𝑠)4 
|𝑠 → 𝑠 − 3. 

Now, we need to substitute 𝑠 with 𝑠 − 3 as follows: 

3! 

(𝑠 − 3)4 
=

6

(𝑠 − 3)4
 

Thus, ℒ{𝑒3𝑥𝑥3} =
3! 

(𝑠−3)4 
=

6

(𝑠−3)4
. 

Example 1.5.2 Find ℒ{𝑒−2𝑥sin (4𝑥)}. 

Solution: By using shifting property at the left side of 

section 5 in table 1.1.1, we obtain: 

ℒ{𝑒𝑏𝑥𝑓(𝑥)} = 𝐹(𝑠) |𝑠 → 𝑠 − 𝑏  

Let 𝑏 = −2, and 𝑓(𝑥) = sin (4𝑥). 

𝐹(𝑠) = ℒ{sin (4𝑥)}. 

Hence, ℒ{𝑒−2𝑥 sin(4𝑥)} = ℒ{sin(4𝑥)} |𝑠 → 𝑠 + 2 = 

4

𝑠2 + 16 
|𝑠 → 𝑠 + 2 

Now, we need to substitute 𝑠 with 𝑠 + 2 as follows: 

4

(𝑠 + 2)2 + 16 
 

Thus, ℒ{𝑒−2𝑥sin (4𝑥)} =
4

(𝑠+2)2+16 
. 

Example 1.5.3 Find ℒ−1 {
𝑠

(𝑠−2)2+4 
}. 
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Solution: Since we have a shift such as 𝑠 − 2, we need 

to do the following: 

ℒ−1 {
𝑠

(𝑠 − 2)2 + 4 
} = ℒ−1 {

𝑠 − 2 + 2

(𝑠 − 2)2 + 4 
}

= ℒ−1 {
𝑠 − 2

(𝑠 − 2)2 + 4 
+

2

(𝑠 − 2)2 + 4 
} 

ℒ−1 {
𝑠

(𝑠 − 2)2 + 4 
} = ℒ−1 {

𝑠 − 2

(𝑠 − 2)2 + 4 
} + ℒ−1 {

2

(𝑠 − 2)2 + 4 
} 

By using shifting property at the right side of section 5 

in table 1.1.1, we obtain: 

ℒ−1{𝐹(𝑠) |𝑠 → 𝑠 − 𝑏 } = 𝑒𝑏𝑥𝑓(𝑥) 

Let 𝑏 = 2, 𝐹1(𝑠) = ℒ
−1 {

𝑠−2

(𝑠−2)2+4 
}, and 𝐹2(𝑠) = ℒ

−1 {
2

(𝑠−2)2+4 
}. 

ℒ−1 {
𝑠

(𝑠−2)2+4 
} = ℒ−1{𝐹1(𝑠) |𝑠 → 𝑠 − 2 } + ℒ−1{𝐹2(𝑠) |𝑠 → 𝑠 − 2 } 

Thus, ℒ−1 {
𝑠

(𝑠−2)2+4 
} = 𝑒2𝑥 cos(2𝑥) + 𝑒2𝑥 sin(2𝑥). 

Example 1.5.4 Find ℒ−1 {
𝑠

(𝑠+2)3 
}. 

Solution: Since we have a shift such as 𝑠 + 2, we need 

to do the following: 

ℒ−1 {
𝑠

(𝑠 + 2)3 
} = ℒ−1 {

𝑠 + 2 − 2

(𝑠 + 2)3 
} = ℒ−1 {

𝑠 + 2

(𝑠 + 2)3 
−

2

(𝑠 + 2)3
} 

ℒ−1 {
𝑠

(𝑠 + 2)3 
} = ℒ−1 {

𝑠 + 2

(𝑠 + 2)3 
} + ℒ−1 {

−2

(𝑠 + 2)3
} 

ℒ−1 {
𝑠

(𝑠 + 2)3 
} = ℒ−1 {

1

(𝑠 + 2)2 
} + ℒ−1 {

−2

(𝑠 + 2)3
} 

By using shifting property at the right side of section 5 

in table 1.1.1, we obtain: 

ℒ−1{𝐹(𝑠) |𝑠 → 𝑠 − 𝑏 } = 𝑒𝑏𝑥𝑓(𝑥) 
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Let 𝑏 = −2, 𝐹1(𝑠) = ℒ
−1 {

1

(𝑠+2)2 
}, and 𝐹2(𝑠) = ℒ

−1 {
−2

(𝑠+2)3
}. 

ℒ−1 {
𝑠

(𝑠+2)3 
} = ℒ−1{𝐹1(𝑠) |𝑠 → 𝑠 + 2 } + ℒ−1{𝐹2(𝑠) |𝑠 → 𝑠 + 2 } 

Thus, ℒ−1 {
𝑠

(𝑠+2)3 
} = 𝑒−2𝑥𝑥 − 𝑒−2𝑥𝑥2. 

Example 1.5.5 Find ℒ−1 {
1

𝑠2−4 
}. 

Solution: ℒ−1 {
1

𝑠2−4 
} = ℒ−1 {

1

(𝑠−2)(𝑠+2) 
}. 

Since the numerator has a polynomial of degree 0 (𝑥0 =

1), and the denominator a polynomial of degree 2, then 

this means the degree of numerator is less than the 

degree of denominator. Thus, in this case, we need to 

use the partial fraction as follows: 

1

(𝑠 − 2)(𝑠 + 2) 
=

𝑎

(𝑠 − 2) 
+

𝑏

(𝑠 + 2) 
 

It is easier to use a method known as cover method 

than using the traditional method that takes long time 

to finish it. In the cover method, we cover the original, 

say (𝑠 − 2), and substitute 𝑠 = 2 in 
1

(𝑠−2)(𝑠+2) 
 to find the 

value of 𝑎. Then, we cover the original, say (𝑠 + 2), and 

substitute 𝑠 = −2 in 
1

(𝑠−2)(𝑠+2) 
 to find the value of 𝑏. 

Thus, 𝑎 =
1

4
 and 𝑏 = −

1

4
. This implies that  

1

(𝑠 − 2)(𝑠 + 2) 
=

1
4

(𝑠 − 2) 
+

−
1
4

(𝑠 + 2) 
 

Now, we need to do the following: 



Copyright © 2015 Mohammed K A Kaabar                       All Rights Reserved 

 
 

39 
 

ℒ−1 {
1

𝑠2 − 4 
} = ℒ−1 {

1
4

(𝑠 − 2) 
+

−
1
4

(𝑠 + 2) 
} 

ℒ−1 {
1

𝑠2 − 4 
} = ℒ−1 {

1
4

(𝑠 − 2) 
} + ℒ−1 {

−
1
4

(𝑠 + 2) 
} 

ℒ−1 {
1

𝑠2 − 4 
} =

1

4
ℒ−1 {

1

(𝑠 − 2) 
} −

1

4
ℒ−1 {

1

(𝑠 + 2) 
} 

Thus, ℒ−1 {
1

𝑠2−4 
} =

1

4
𝑒2𝑥 −

1

4
𝑒−2𝑥. 

Now, we will introduce a new property from table 1.1.1 

in the following two examples. 

Example 1.5.6 Find ℒ{𝑥𝑒𝑥}. 

Solution: By using the left side of section 9 in table 

1.1.1, we obtain: 

ℒ{𝑡𝑚𝑓(𝑡)}(𝑠) = (−1)𝑚
𝑑𝑚𝐹(𝑠)

𝑑𝑠𝑚
= (−1)𝑚𝐹(𝑚)(𝑠) 

where ℒ{𝑓(𝑥)} = 𝐹(𝑠), and 𝑓(𝑥) = 𝑒𝑥. 

Hence, ℒ{𝑥𝑒𝑥} = (−1)1𝐹(1)(𝑠) = −𝐹(1)(𝑠) 

Now, we need to find 𝐹(1)(𝑠) as follows: This means 

that we first need to find the laplace transform of 𝑓(𝑥), 

and then we need to find the first derivative of the 

result from the laplace transform. 

𝐹(1)(𝑠) = 𝐹′(𝑠) = (ℒ{𝑓(𝑥)})′ = (ℒ{𝑒𝑥})′ = (
1

𝑠−1
)
′
= −

1

(𝑠−1)2
  

Thus, ℒ{𝑥𝑒𝑥} = (−1)1𝐹(1)(𝑠) = −𝐹(1)(𝑠) = −(−
1

(𝑠−1)2
) =

1

(𝑠−1)2
. 

Example 1.5.7 Find ℒ{𝑥2sin (𝑥)}. 
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Solution: By using the left side of section 9 in table 

1.1.1, we obtain: 

ℒ{𝑡𝑚𝑓(𝑡)}(𝑠) = (−1)𝑚
𝑑𝑚𝐹(𝑠)

𝑑𝑠𝑚
= (−1)𝑚𝐹(𝑚)(𝑠) 

where ℒ{𝑓(𝑥)} = 𝐹(𝑠), and 𝑓(𝑥) = sin (𝑥). 

Hence, ℒ{𝑥2sin (𝑥)} = (−1)2𝐹(2)(𝑠) = 𝐹(2)(𝑠) 

Now, we need to find 𝐹(2)(𝑠) as follows: This means 

that we first need to find the laplace transform of 𝑓(𝑥), 

and then we need to find the second derivative of the 

result from the laplace transform. 

𝐹(2)(𝑠) = 𝐹′′(𝑠) = (ℒ{𝑓(𝑥)})′′ = (ℒ{sin (𝑥)})′′ = (
1

𝑠2+1
)
′′
=

(
−2𝑠

(𝑠2+1)2
)
′
=

−2(𝑠2+1)2+8𝑠2(𝑠2+1)

(𝑠2+1)4
  

Thus, ℒ{𝑥2sin (𝑥)} =
−2(𝑠2+1)2+8𝑠2(𝑠2+1)

(𝑠2+1)4
 . 

Example 1.5.8 Solve the following Initial Value 

Problem (IVP): 𝑦(2)(𝑥) + 5𝑦(1)(𝑥) + 6𝑦(𝑥) = 1. Given 

𝑦(0) = 𝑦′(0) = 0. 

Solution: 𝑦(2)(𝑥) + 5𝑦(1)(𝑥) + 6𝑦(𝑥) = 1 is a linear 

differential equation of order 2. First, we need to find 

the domain for the solution of the above differential 

equation in other words we need to find for what 

values of 𝑥 the solution of the above differential 

equation holds. Therefore, we do the following: 

1𝑦(2)(𝑥) + 5𝑦(1)(𝑥) + 6𝑦(𝑥) = 1  

Using definition 1.4.1, we also suppose the following: 

𝑎2(𝑥) = 1 

𝑎1(𝑥) = 5 

𝑎0(𝑥) = 6 
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𝐾(𝑥) = 1 

The domain of solution is (−∞,∞). 

Now, to find the solution of the above differential 

equation, we need to take the laplace transform for 

both sides as follows 

ℒ{𝑦(2)(𝑥)} + ℒ{5𝑦(1)(𝑥)} + ℒ{6𝑦(𝑥)} = ℒ{1} 

ℒ{𝑦(2)(𝑥)} + 5ℒ{𝑦(1)(𝑥)} + 6ℒ{𝑦(𝑥)} =
1

𝑠
 

because (ℒ{1} =
1

𝑠
). 

(𝑠2𝑌(𝑠) − 𝑠𝑦(0) − 𝑦′(0)) + 5(𝑠𝑌(𝑠) − 𝑦(0)) + 6𝑌(𝑠) =
1

𝑠
   

from result 1.2.2. We substitute 𝑦(0) = 0, and 𝑦′(0) = 0 

because it is given in the question itself. 

(𝑠2𝑌(𝑠) − 0 − 0) + 5(𝑠𝑌(𝑠) − 0) + 6𝑌(𝑠) =
1

𝑠
    

𝑠2𝑌(𝑠) + 5𝑠𝑌(𝑠) + 6𝑌(𝑠) =
1

𝑠
    

𝑌(𝑠)(𝑠2 + 5𝑠 + 6) =
1

𝑠
   

𝑌(𝑠) =
1

𝑠(𝑠2 + 5𝑠 + 6)
=

1

𝑠(𝑠 + 3)(𝑠 + 2)
 

To find a solution, we need to find the inverse laplace 

transform as follows: 

𝑦(𝑥) = ℒ−1{𝑌(𝑠)} = ℒ−1 {
1

𝑠(𝑠+3)(𝑠+2)
}  

Since the numerator has a polynomial of degree 0 (𝑥0 =

1), and the denominator a polynomial of degree 3, then 

this means the degree of numerator is less than the 

degree of denominator. Thus, in this case, we need to 

use the partial fraction as follows: 
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1

𝑠(𝑠 + 3)(𝑠 + 2)
=
𝑎

𝑠
+

𝑏

(𝑠 + 3) 
+

𝑐

(𝑠 + 2) 
 

Now, we use the cover method. In the cover method, 

we cover the original, say 𝑠, and substitute 𝑠 = 0 in 

1

𝑠(𝑠+3)(𝑠+2)
 to find the value of 𝑎. We cover the original, 

say (𝑠 + 3), and substitute 𝑠 = −3 in 
1

𝑠(𝑠+3)(𝑠+2)
 to find 

the value of 𝑏. Then, we cover the original, say (𝑠 + 2), 

and substitute 𝑠 = −2 in 
1

𝑠(𝑠+3)(𝑠+2)
 to find the value of 

𝑐. Thus, =
1

6
 , 𝑏 =

1

3
 and 𝑐 = −

1

2
 . This implies that  

1

𝑠(𝑠 + 3)(𝑠 + 2)
=

1
6 

𝑠
+

1
3

(𝑠 + 3) 
+

−
1
2

(𝑠 + 2) 
 

Now, we need to do the following: 

ℒ−1 {
1

𝑠(𝑠 + 3)(𝑠 + 2)
} = ℒ−1 {

1
6 

𝑠
+

1
3

(𝑠 + 3) 
+

−
1
2

(𝑠 + 2) 
} 

ℒ−1 {
1

𝑠(𝑠 + 3)(𝑠 + 2)
} =

1

6
ℒ−1 {

1

𝑠 
} +

1

3
ℒ−1 {

1

(𝑠 + 3) 
}

−
1

2
ℒ−1 {

1

(𝑠 + 2) 
} 

Thus, 𝑦(𝑥) = ℒ−1 {
1

𝑠(𝑠+3)(𝑠+2)
} =

1

6
+
1

3
𝑒−3𝑥 −

1

2
𝑒−2𝑥. 

Definition 1.5.1 Given 𝑎 > 0. Unit Step Function is 

defined as follows: 𝑈(𝑥 − 𝑎) = {
0          𝑖𝑓  0 ≤ 𝑥 < 𝑎
1         𝑖𝑓  𝑎 ≤ 𝑥 < ∞

 

Result 1.5.1 Given 𝑎 ≥ 0. Then, we obtain: 

a) 𝑈(𝑥 − 0) = 𝑈(𝑥) = 1 for every 0 ≤ 𝑥 ≤ ∞. 

b) 𝑈(𝑥 −∞) = 0 for every 0 ≤ 𝑥 ≤ ∞. 
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Example 1.5.9 Find 𝑈(𝑥 − 7)|𝑥 = 8. 

Solution: Since 𝑥 = 8 is between 𝑎 = 7 and ∞, then by 

using definition 1.5.1, we obtain: 

𝑈(𝑥 − 7)|𝑥 = 8 = 𝑈(8 − 7) = 1. 

Example 1.5.10 Find 𝑈(𝑥 − 3)|𝑥 = 1. 

Solution: Since 𝑥 = 1 is between 0 and = 3 , then by 

using definition 1.5.1, we obtain: 

𝑈(𝑥 − 3)|𝑥 = 1 = 𝑈(1 − 7) = 0. 

Example 1.5.11 Find ℒ{𝑈(𝑥 − 3)}. 

Solution: By using the left side of section 7 in table 

1.1.1, we obtain: 

ℒ{𝑈(𝑡 − 𝑏)} =
𝑒−𝑏𝑠

𝑠
 

Thus, ℒ{𝑈(𝑥− 3)} =
𝑒−3𝑠

𝑠
. 

Example 1.5.12 Find ℒ−1 {
𝑒−2𝑠

𝑠
}. 

Solution: By using the right side of section 7 in table 

1.1.1, we obtain: 

ℒ−1 {
𝑒−𝑏𝑠

𝑠
} = 𝑈(𝑡 − 𝑏) 

Thus, ℒ−1 {
𝑒−2𝑠

𝑠
} = 𝑈(𝑥 − 2) = {

0          𝑖𝑓  0 ≤ 𝑥 < 2
1         𝑖𝑓  2 ≤ 𝑥 < ∞

 

Example 1.5.13 Given 𝑓(𝑥) = {

3 𝑖𝑓  1 ≤ 𝑥 < 4
−𝑥 𝑖𝑓  4 ≤ 𝑥 < 10

(𝑥 + 1) 𝑖𝑓 10 ≤ 𝑥 < ∞
 

Rewrite 𝑓(𝑥) in terms of 𝑈𝑛𝑖𝑡 𝑆𝑡𝑒𝑝 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 
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Solution: To re-write 𝑓(𝑥) in terms of 

𝑈𝑛𝑖𝑡 𝑆𝑡𝑒𝑝 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, we do the following: 

𝑓(𝑥) = 3(𝑈(𝑥 − 1) − 𝑈(𝑥 − 4))

+ (−𝑥)(𝑈(𝑥 − 4) − 𝑈(𝑥 − 10))

+ (𝑥 + 1)(𝑈(𝑥 − 10) − 0). 

Now, we need to check our unit step functions as 

follows: We choose 𝑥 = 9. 

𝑓(9) = 3(𝑈(9 − 1) − 𝑈(9 − 4))

+ (−9)(𝑈(9 − 4) − 𝑈(9 − 10))

+ (9 + 1)(𝑈(9 − 10) − 0) 

𝑓(9) = 3(1 − 1) + (−9)(1 − 0) + (10)(0 − 0) 

𝑓(9) = 3(0) + (−9)(1) + (10)(0) 

𝑓(9) = 0 + (−9)(1) + 0 = −9. 

Thus, our unit step functions are correct. 

Example 1.5.14 Find ℒ{𝑥𝑈(𝑥 − 2)}. 

Solution: By using the upper side of section 6 in table 

1.1.1, we obtain: 

ℒ{ℎ(𝑥)𝑈(𝑥 − 𝑏)} = 𝑒−𝑏𝑠ℒ{ℎ(𝑥 + 𝑏)} 

where 𝑏 = 2, and ℎ(𝑥) = 𝑥. 

Hence, ℒ{𝑥𝑈(𝑥 − 2)} = 𝑒−2𝑠ℒ{ℎ(𝑥 + 2)} = 𝑒−2𝑠ℒ{𝑥 + 2} =

𝑒−2𝑠 (
1

𝑠2
+
2

𝑠
). 

Definition 1.5.2 Convolution, denoted by ∗, is defined 

as follows:  

𝑓(𝑥) ∗ ℎ(𝑥) = ∫𝑓(𝜓)ℎ(𝑥 − 𝜓)𝑑𝜓

𝑥

0
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where 𝑓(𝑥) and ℎ(𝑥) are functions. (Note: do not 

confuse between multiplication and convolution). 

Result 1.5.2 ℒ{𝑓(𝑥) ∗ ℎ(𝑥)} = ℒ{ℎ(𝑥) ∗ 𝑓(𝑥)} = 

𝐹(𝑠) ∙ 𝐻(𝑠) where 𝑓(𝑥) and ℎ(𝑥) are functions. (The proof 

of this result left as an exercise 16 in section 1.7).   

Result 1.5.3 ℒ{𝑓(𝑥) ∙ ℎ(𝑥)} ≠ ℒ{ℎ(𝑥)} ∙ ℒ{𝑓(𝑥)}.    

Example 1.5.15 Use definition 1.5.2 to find 

ℒ{∫ 𝑠𝑖𝑛(𝜓)𝑑𝜓
𝑥

0
}. 

Solution: By using definition 1.5.2  and section 10 in 

table 1.1.1, we obtain: 

ℒ {∫𝑠𝑖𝑛(𝜓)𝑑𝜓

𝑥

0

} = ℒ{1 ∗ sin (𝑥)} = ℒ{1} ∙ ℒ{sin(𝑥)} =
1

𝑠
∙

1

(𝑠2 + 1)

=
1

𝑠(𝑠2 + 1)
 

Thus, ℒ{∫ 𝑠𝑖𝑛(𝜓)𝑑𝜓
𝑥

0
} =

1

𝑠(𝑠2+1)
. 

Definition 1.5.3 𝑓(𝑥) is a periodic function on [0,∞) if 

𝑓(𝑥) has a period 𝑃 such that 𝑓(𝑏) = 𝑓(𝑏 − 𝑃) for every 

𝑏 ≥ 𝑃. 

Example 1.5.16 Given 𝑓(𝑥) is periodic on [0,∞) such 

that the first period of 𝑓(𝑥) is given by the following 

piece-wise continuous function: 

{
3          𝑖𝑓  0 ≤ 𝑥 < 2
−2         𝑖𝑓  2 ≤ 𝑥 < 8

 

a) Find the 8th period of this function. 

b) Suppose 𝑃 = 8. Find 𝑓(10). 
c) Suppose 𝑃 = 8. Find 𝑓(30). 

Solution: Part a: By using section 13 in table 1.1.1, we 

obtain:  
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ℒ{𝑓(𝑥)} =
1

1 − 𝑒−𝑃𝑠
∫𝑒−𝑠𝑡𝑓(𝑥)𝑑𝑥

𝑃

0

 

Since we need find the 8th period, then this means that 

𝑃 = 8, and we can apply what we got above as follows:  

ℒ{𝑓(𝑥)} =
1

1 − 𝑒−8𝑠
∫𝑒−𝑠𝑡𝑓(𝑥)𝑑𝑥

8

0

=
1

1 − 𝑒−8𝑠
∫𝑓(𝑥)𝑒−𝑠𝑡𝑑𝑥

8

0

 

Using the given first period function, we obtain: 

ℒ{𝑓(𝑥)} =
1

1 − 𝑒−8𝑠
∫𝑓(𝑥)𝑒−𝑠𝑡𝑑𝑥

8

0

=
1

1 − 𝑒−8𝑠
[3∫𝑒−𝑠𝑡𝑑𝑥 − 2∫𝑒−𝑠𝑡𝑑𝑥

8

2

2

0

] 

=
1

1 − 𝑒−8𝑠
[−
3

𝑠
𝑒−𝑠𝑡 |

𝑥 = 2

𝑥 = 0
+
2

𝑠
𝑒−𝑠𝑡 |

𝑥 = 8

𝑥 = 2
] 

=
1

1 − 𝑒−8𝑠
[−
3

𝑠
(𝑒−2𝑡 − 1) +

2

𝑠
(𝑒−8𝑡 − 𝑒−2𝑡)] 

Part b: By using definition 1.5.3, we obtain: 

𝑓(10) = 𝑓(10 − 8) = 𝑓(2) = −2 from the given first 

period function. 

Part c: By using definition 1.5.3, we obtain: 

𝑓(30) = 𝑓(30 − 8) = 𝑓(22). 

𝑓(22) = 𝑓(22 − 8) = 𝑓(14). 

𝑓(14) = 𝑓(14 − 8) = 𝑓(6) = −2 from the given first 

period function. 

Definition 1.5.4 Suppose that 𝑖 > 0 is fixed, and 𝛿 < 𝑗 <

𝑖 is chosen arbitrary. Then, we obtain: 
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𝛿𝑗(𝑡 − 𝑖) =

{
 

 
0 𝑖𝑓 0 ≤ 𝑡 < (𝑖 − 𝑗)
1

2𝑗
𝑖𝑓 (𝑖 − 𝑗) ≤ 𝑡 < (𝑖 + 𝑗)

0 𝑡 ≥ (𝑖 + 𝑗)

 

𝛿𝑗(𝑡 − 𝑖) is called Dirac Delta Function. 

Result 1.5.4 𝛿(𝑡 − 𝑖) = lim
𝑖→0+

𝛿𝑗(𝑡 − 𝑖). 

Example 1.5.17 Find ℒ{𝛿(𝑡 + 12)}. 

Solution: By using the right side of section 12 in table 

1.1.1, we obtain: ℒ{𝛿(𝑡 − 𝑏)} = 𝑒−𝑏𝑠 

Thus, ℒ{𝛿(𝑡 + 12)} = 𝑒12𝑠. 

1.6 Systems of Linear 

Equations

Most of the materials of this section are taken from 

section 1.8 in my published book titled A First Course 

in Linear Algebra: Study Guide for the Undergraduate 

Linear Algebra Course, First Edition1, because it is 

very important to give a review from linear algebra 

about Cramer’s rule, and how some concepts of linear 

algebra can be used to solve some problems in 

differential equations. In this section, we discuss how 

to use what we have learned from previous sections 

such as initial value problems (IVP), and how to use 

Cramer’s rule to solve systems of linear equations. 
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Definition 1.6.1 Given 𝑛 × 𝑛 system of linear equations. 

Let WX = A be the matrix form of the given system:  

W

[
 
 
 
 
𝑥1
𝑥2
𝑥3
⋮
𝑥𝑛]
 
 
 
 

=

[
 
 
 
 
𝑎1
𝑎2
𝑎3
⋮
𝑎𝑛]
 
 
 
 

 

The system has a unique solution if and only if 

det(W) ≠ 0. Cramer’s Rule tells us how to 

find 𝑥1, 𝑥2 , … , 𝑥𝑛 as follows: 

Let W = [
1 3 4
1 2 1
7 4 3

] Then, the solutions for the system of 

linear equations are: 

 𝑥1 =

det [
𝑎1 3 4
⋮ 2 1
𝑎𝑛 4 3

]

det (W)
 

 𝑥2 =

det [
1 𝑎1 4
1 ⋮ 1
7 𝑎𝑛 3

]

det (W)
 

 𝑥3 =

det [
1 3 𝑎1
1 2 ⋮
7 4 𝑎𝑛

]

det (W)
 

Example 1.6.1 Solve the following system of linear 

equations using Cramer’s Rule: 

{
2𝑥1 + 7𝑥2 = 13

−10𝑥1 + 3𝑥2 = −4
 

Solution: First of all, we write 2 × 2 system in the form 

WX = A according to definition 1.6.1. 
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[
2 7
−10 3

] [
𝑥1
𝑥2
] = [

13
−4
] 

Since W in this form is [
2 7
−10 3

], then 

det(W) = (2 ∙ 3) − (7 ∙ (−10)) = 6 − (−70) = 76 ≠ 0. 

The solutions for this system of linear equations are: 

 𝑥1 =
det [

13 7
−4 3

]

det (W)
=
det [

13 7
−4 3

]

76
=
67

76
 

 𝑥2 =
det [

2 13
−10 −4

]

det (W)
=
det [

2 13
−10 −4

]

76
=
122

76
 

Thus, the solutions are  𝑥1 =
67

76
 and  𝑥2 =

122

76
 . 

Example 1.6.2 Solve for 𝑛(𝑡) and 𝑚(𝑡): 

{
𝑛′′(𝑡) − 4𝑚(𝑡) = 0………………𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1

𝑛(𝑡) + 2𝑚′(𝑡) = 5𝑒2𝑡 ……… . . …𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2
 

Given that 𝑛(0) = 1, 𝑛′(0) = 2, and 𝑚(0) = 1.  

Solution: First, we need to take the laplace transform 

of both sides for each of the above two equations. 

For 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1: We take the laplace transform of both 

sides: 

ℒ{𝑛′′(𝑡)} + ℒ{−4𝑚(𝑡)} = ℒ{0} 

ℒ{𝑛′′(𝑡)} − 4ℒ{𝑚(𝑡)} = ℒ{0} 

(𝑠2𝑁(𝑠) − 𝑠𝑛(0) − 𝑛′(0)) − 4𝑀(𝑠) = 0 

Now, we substitute what is given in this question to 

obtain the following: 

(𝑠2𝑁(𝑠) − 𝑠 − 2) − 4𝑀(𝑠) = 0 

Thus, 𝑠2𝑁(𝑠) − 4𝑀(𝑠) = 𝑠 + 2. 

For 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2: We take the laplace transform of both 

sides: 
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ℒ{𝑛(𝑡)} + ℒ{2𝑚′(𝑡)} = ℒ{5𝑒2𝑡} 

ℒ{𝑛(𝑡)} + 2ℒ{𝑚′(𝑡)} = 5ℒ{𝑒2𝑡} 

𝑁(𝑠) + 2(𝑠𝑀(𝑠) − 𝑚(0)) =
5

𝑠 − 2
 

Now, we substitute what is given in this question to 

obtain the following: 

𝑁(𝑠) + 2(𝑠𝑀(𝑠) − 1) =
5

𝑠 − 2
 

𝑁(𝑠) + 2𝑠𝑀(𝑠) =
5

𝑠 − 2
+ 2 =

2𝑠 + 1

𝑠 − 2
 

Thus, 𝑁(𝑠) + 2𝑠𝑀(𝑠) =
2𝑠+1

𝑠−2
. 

From what we got from Equation 1 and Equation 2, we 

need to find 𝑁(𝑠) and 𝑀(𝑠) as follows: 

{
𝑠2𝑁(𝑠) − 4𝑀(𝑠) = 𝑠 + 2

𝑁(𝑠) + 2𝑠𝑀(𝑠) =
2𝑠 + 1

𝑠 − 2

 

Now, we use Cramer’s rule as follows: 

𝑁(𝑠) =

det [
𝑠 + 2 −4
2𝑠 + 1
𝑠 − 2 2𝑠

]

det [
𝑠2 −4
1 2𝑠

]
=

2𝑠2 + 4𝑠
1 +

8𝑠 + 4
𝑠 − 2

2𝑠3 + 4

=
(𝑠 − 2)(2𝑠2 + 4𝑠) + 8𝑠 + 4

(𝑠 − 2)(2𝑠3 + 4)

=
2𝑠3 + 4𝑠2 − 4𝑠2 − 8𝑠 + 8𝑠 + 4

(𝑠 − 2)(2𝑠3 + 4)
=

1

𝑠 − 2
 

Hence, 𝑛(𝑡) = ℒ−1{𝑁(𝑠)} = ℒ−1 {
1

𝑠−2
} = 𝑒2𝑡.  

Further, we can use one of the given equations to find 

𝑚(𝑡) as follows: 𝑛′′(𝑡) − 4𝑚(𝑡) = 0 

We need to find the second derivative of 𝑛(𝑡). 



Copyright © 2015 Mohammed K A Kaabar                       All Rights Reserved 

 
 

51 
 

𝑛′(𝑡) = 2𝑒2𝑡. 

𝑛′′(𝑡) = 4𝑒2𝑡. 

Now, we can find 𝑚(𝑡) as follows: 

𝑛′′(𝑡) − 4𝑚(𝑡) = 0 → 𝑚(𝑡) =
𝑛′′(𝑡)

4
=
4𝑒2𝑡

4
= 𝑒2𝑡. 

Thus, 𝑚(𝑡) = 𝑒2𝑡 . 

1.7 Exercises 

1.  Find ℒ−1 {
10

(𝑠−4)4
}. 

2.  Find ℒ−1 {
𝑠+5

(𝑠−1)2+16
}. 

3.  Find ℒ−1 {
𝑠+5

(𝑠+3)4
}. 

4.  Find ℒ−1 {
5

3𝑠−10
}. 

5.  Find ℒ−1 {
2

𝑠2−6𝑠+13
}. 

6.  Find ℒ−1 {
5

𝑠2−7𝑠−8
}. 

7.  Solve the following Initial Value Problem (IVP): 

2𝑦′(𝑥) + 6𝑦(𝑥) = 0. Given 𝑦(0) = −4. 

8.  Solve the following Initial Value Problem (IVP): 

𝑦′′(𝑥) + 4𝑦(𝑥) = 0. Given 𝑦(0) = 2, and 𝑦′(0) = 0. 

9.  Find ℒ−1 {
4

(𝑠−1)2(𝑠+3)
}. 

10. Find ℒ{𝑈 (𝑥 −
𝜋

2
) sin (𝑥)}. 

11. Find ℒ{𝑈(𝑥 − 2)𝑒3𝑥}. 

12. Given 𝑓(𝑥) = {
4          𝑖𝑓  0 ≤ 𝑥 < 3

𝑒2𝑥         𝑖𝑓  3 ≤ 𝑥 < ∞
  

Rewrite 𝑓(𝑥) in terms of 𝑈𝑛𝑖𝑡 𝑆𝑡𝑒𝑝 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 

13. Find ℒ−1 {
𝑠𝑒−4𝑥

𝑠2+4
}. 
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14. Solve the following Initial Value Problem (IVP): 

𝑦′′(𝑥)+3𝑦′(𝑥) − 4𝑦(𝑥) = 𝑓(0). Given 𝑓(𝑥) =

{
1          𝑖𝑓  0 ≤ 𝑥 < 3
0         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

  

𝑦(0) = 𝑦′(0) = 0. 

15. Solve the following Initial Value Problem (IVP): 

𝑦′′(𝑥)+7𝑦′(𝑥) − 8𝑦(𝑥) = 𝑓(𝑥) where 𝑓(𝑥) =

{
3          𝑖𝑓  0 ≤ 𝑥 < 5
−2        𝑖𝑓  5 ≤ 𝑥 < ∞ 

  

𝑦(0) = 𝑦′(0) = 0. 

16. Prove result 1.5.2. 

17. Solve the following Initial Value Problem (IVP): 

𝑦(3)(𝑥)+𝑦′(𝑥) = 𝑈(𝑥 − 3). Given 𝑦(0) = 𝑦′(0) = 𝑦′′(0) =

0. 

18. Find ℒ{∫ 𝑐𝑜𝑠(2𝜓)𝑒(3𝑥+2𝜓)𝑑𝜓
𝑥

0
}. 

19. Find ℒ−1 {
2𝑠

(𝑠2+4)2
}. 

20. Solve for 𝑟(𝑡) and 𝑘(𝑡): 

{
𝑟′(𝑡) − 2𝑘(𝑡) = 0…………… .… . 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1

𝑟′′(𝑡) − 2𝑘′(𝑡) = 0…………… .…𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2
 

Given that 𝑘(0) = 1, 𝑟′(0) = 2, and 𝑟(0) = 0.  

21. Solve for 𝑤(𝑡) and ℎ(𝑡): 

{
𝑤(𝑡) − ∫ ℎ(𝜓)𝑑𝜓

𝑡

0

= 1…………… . 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1

𝑤′′(𝑡) + ℎ′(𝑡) = 4… .………… .…𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2

 

Given that 𝑤(0) = 1,𝑤′(0) = ℎ(0) = 0.  

22. Find 𝑓(𝑡) such that 𝑓(𝑡) = 𝑒−3𝑠 + ∫ 𝑓(𝜓)𝑑𝜓
𝑡

0
. 

(Hint: Use laplace transform to solve this problem) 
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Chapter 2 

Systems of Homogeneous 

Linear Differential 

Equations (HLDE) 

In this chapter, we start introducing the homogeneous 

linear differential equations (HLDE) with constant 

coefficients. In addition, we discuss how to find the 

general solution of HLDE. At the end of this chapter, 

we introduce a new method called Undetermined 

Coefficient Method. 

2.1 HLDE with Constant 

Coefficients

In this section, we discuss how to find the general 

solution of the homogeneous linear differential 

equations (HLDE) with constant coefficients. 

To give an introduction about HLDE, it is important to 

start with the definition of homogeneous system. 

*Definition 2.1.1 Homogeneous System is defined as a 

𝑚 × 𝑛 system of linear equations that has all zero 

constants. (i.e. the following is an example of 
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homogeneous system): {
2𝑎 + 𝑏 − 𝑐 + 𝑑 = 0

3𝑎 + 5𝑏 + 3𝑐 + 4𝑑 = 0
−𝑏 + 𝑐 − 𝑑 = 0

 

*Definition 2.1.1 is taken from section 3.1 in my 

published book titled A First Course in Linear Algebra: 

Study Guide for the Undergraduate Linear Algebra 

Course, First Edition1. 

Example 2.1.1 Describe the following differential 

equation: 𝑦′′(𝑥)+3𝑦′(𝑥) = 0. 

Solution: Since the above differential equation has a 

zero constant, then according to definition 2.1.1, it is a 

homogeneous differential equation. In addition, it is 

linear because the dependent variable 𝑦 and all its 

derivatives are to the power 1. For the order of this 

homogeneous differential equation, since the highest 

derivative is 2, then the order is 2. Thus, 

𝑦′′(𝑥)+3𝑦′(𝑥) = 0 is a homogeneous linear differential 

equation of order 2. 

Example 2.1.2 Describe the following differential 

equation: 3𝑦(3)(𝑥)−2𝑦′(𝑥) + 7𝑦(𝑥) = 0. 

Solution: Since the above differential equation has a 

zero constant, then according to definition 2.1.1, it is a 

homogeneous differential equation. In addition, it is 

linear because the dependent variable 𝑦 and all its 

derivatives are to the power 1. For the order of this 

homogeneous differential equation, since the highest 

derivative is 3, then the order is 3.  
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Thus, 3𝑦(3)(𝑥)−2𝑦′(𝑥) + 7𝑦(𝑥) = 0 is a homogeneous 

linear differential equation of order 3. 

Example 2.1.3 Describe the following differential 

equation: 3𝑦(2)(𝑥)−2𝑦′(𝑥) = 12. 

Solution: Since the above differential equation has a 

nonzero constant, then according to definition 2.1.1, it 

is a non-homogeneous differential equation. In 

addition, it is linear because the dependent variable 𝑦 

and all its derivatives are to the power 1. For the order 

of this non-homogeneous differential equation, since 

the highest derivative is 2, then the order is 2.  

Thus, 3𝑦(2)(𝑥)−2𝑦′(𝑥) = 12 is a non-homogeneous 

linear differential equation of order 2. 

Example 2.1.4 Find the general solution the following 

Initial Value Problem (IVP): 2𝑦′(𝑥) + 4𝑦(𝑥) = 0. Given: 

𝑦′(0) = 1. (Hint: Use the concepts of section 1.4) 

Solution: 2𝑦′(𝑥) + 4𝑦(𝑥) = 0 is a homogeneous linear 

differential equation of order 1. First, we need to find 

the domain for the solution of the above differential 

equation in other words we need to find for what 

values of 𝑥 the solution of the above differential 

equation holds. Therefore, we do the following: 

2𝑦′(𝑥) + 4𝑦(𝑥) = 0 

Using definition 1.4.1, we also suppose the following: 

𝑎1(𝑥) = 2 

𝑎0(𝑥) = 4 

𝐾(𝑥) = 0 

The domain of solution is (−∞,∞). 



Copyright © 2015 Mohammed K A Kaabar                       All Rights Reserved 

 

56  M. Kaabar 
 

Now, to find the solution of the above differential 

equation, we need to take the laplace transform for 

both sides as follows 

ℒ{2𝑦′(𝑥)} + ℒ{4𝑦(𝑥)} = ℒ{0} 

2ℒ{𝑦′(𝑥)} + 4ℒ{𝑦(𝑥)} = 0 because (ℒ{0} = 0). 

2(𝑠𝑌(𝑠) − 𝑦′(0)) + 4𝑌(𝑠) = 0   from result 1.2.2. 

2𝑠𝑌(𝑠) − 2𝑦′(0) + 4𝑌(𝑠) = 0  

𝑌(𝑠)(2𝑠 + 4) = 2𝑦′(0)   

𝑌(𝑠)(2𝑠 + 4) = 2(1)   

𝑌(𝑠) =
2

2𝑠 + 4
=

2

2(𝑠 + 2)
=

1

𝑠 + 2
 

To find a solution, we need to find the inverse laplace 

transform as follows: 

𝑦(𝑥) = ℒ−1{𝑌(𝑠)} = ℒ−1 {
1

𝑠+2
} = 𝑒−2𝑥.  

Thus, the general solution 𝑦(𝑥) = 𝑐𝑒−2𝑥, for some 

constant 𝑐. Here, 𝑐 = 1. 

Result 2.1.1 Assume that 𝑚1𝑦
(𝑛)(𝑥) + 𝑚2𝑦(𝑥) = 0 is a 

homogeneous linear differential equation of order 𝑛  

with constant coefficients 𝑚1 and 𝑚2. Then,  

a) 𝑚1𝑦
(𝑛)(𝑥) + 𝑚2𝑦(𝑥) = 0 must have exactly 𝑛 

independent solutions, say 𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑛(𝑥). 

b) Every solution of 𝑚1𝑦
(𝑛)(𝑥) + 𝑚2𝑦(𝑥) = 0 is of 

the form: 𝑐1𝑓1(𝑥) + 𝑐2𝑓2(𝑥) + ⋯+ 𝑐𝑛𝑓𝑛(𝑥), for 

some constants 𝑐1, 𝑐2, … , 𝑐𝑛. 
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Result 2.1.2 Assume that 𝑦1 = 𝑒𝑘1𝑥, 𝑦2 = 𝑒𝑘2𝑥, …, 𝑦𝑛 =

𝑒𝑘𝑛𝑥 are independent if and only if 𝑘1, 𝑘2, … , 𝑘𝑛 are 

distinct real numbers. 

Example 2.1.5 Given 𝑦′′(𝑥) − 4𝑦(𝑥) = 0,   

𝑦(0) = 4, 𝑦′(0) =  10. Find the general solution for 𝑦(𝑥). 

(Hint: Use results 2.1.1 and 2.1.2) 

Solution: 𝑦′′(𝑥) − 4𝑦(𝑥) = 0 is a homogeneous linear 

differential equation of order 2. In this example, we 

will use a different approach from example 2.1.4 

(laplace transform approach) to solve it. Since  

𝑦′′(𝑥) − 4𝑦(𝑥) = 0 is HLDE with constant coefficients, 

then we will do the following: Let 𝑦(𝑥) = 𝑒𝑘𝑥, we need 

to find 𝑘. 

First of all, we will find the first and second derivatives 

as follows: 

𝑦′(𝑥) = 𝑘𝑒𝑘𝑥 

𝑦′′(𝑥) = 𝑘2𝑒𝑘𝑥 

Now, we substitute 𝑦(𝑥) = 𝑒𝑘𝑥 and 𝑦′(𝑥) = 𝑘𝑒𝑘𝑥 in 

𝑦′′(𝑥) − 4𝑦(𝑥) = 0 as follows: 

𝑘2𝑒𝑘𝑥 − 4𝑒𝑘𝑥 = 0 

𝑒𝑘𝑥(𝑘2 − 4) = 0 

𝑒𝑘𝑥(𝑘 − 2)(𝑘 + 2) = 0 

Thus, 𝑘 = 2 𝑜𝑟 𝑘 = −2. Then, we use our values to 

substitute 𝑘 in our assumption which is 𝑦(𝑥) = 𝑒𝑘𝑥: 

at 𝑘 = 2, 𝑦1(𝑥) = 𝑒2𝑥 
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at 𝑘 = −2, 𝑦2(𝑥) = 𝑒−2𝑥 

Hence, using result 2.1.1, the general solution for 𝑦(𝑥) 

is: 𝑦ℎ𝑜𝑚𝑜(𝑥) = 𝑐1𝑒
2𝑥 + 𝑐2𝑒

−2𝑥, for some 𝑐1, 𝑐2 ∈ ℜ. (Note: 

ℎ𝑜𝑚𝑜 denotes to homogeneous). Now, we need to find 

the values of 𝑐1 and 𝑐2 as follows: 

at 𝑥 = 0,         𝑦ℎ𝑜𝑚𝑜(0) = 𝑐1𝑒
2(0) + 𝑐2𝑒

−2(0) 

𝑦ℎ𝑜𝑚𝑜(0) = 𝑐1𝑒
0 + 𝑐2𝑒

0 

𝑦ℎ𝑜𝑚𝑜(0) = 𝑐1 + 𝑐2 

Since 𝑦(0) = 4, then 𝑐1 + 𝑐2 = 4………………………… . (1) 

𝑦ℎ𝑜𝑚𝑜
′(𝑥) = 2𝑐1𝑒

2𝑥 − 2𝑐2𝑒
−2𝑥 

at 𝑥 = 0,         𝑦ℎ𝑜𝑚𝑜
′(0) = 2𝑐1𝑒

2(0) − 2𝑐2𝑒
−2(0) 

𝑦ℎ𝑜𝑚𝑜
′(0) = 2𝑐1𝑒

0 − 2𝑐2𝑒
0 

𝑦ℎ𝑜𝑚𝑜
′(0) = 2𝑐1 − 2𝑐2 

Since 𝑦′(0) =  10, then 2𝑐1 − 2𝑐2 = 10………………… . (2) 

From (1) and (2),  𝑐1 = 4.5 and  𝑐2 = −0.5. 

Thus, the general solution is: 

 𝑦ℎ𝑜𝑚𝑜(𝑥) = 4.5𝑒2𝑥 − 0.5𝑒−2𝑥. 

Example 2.1.6 Given 𝑦(3)(𝑥) − 5𝑦(2)(𝑥) + 6𝑦′(𝑥) = 0. 

Find the general solution for 𝑦(𝑥). (Hint: Use results 

2.1.1 and 2.1.2, and in this example, no need to find 

the values of 𝑐1, 𝑐2, and 𝑐3) 

Solution: 𝑦(3)(𝑥) − 5𝑦(2)(𝑥) + 6𝑦′(𝑥) = 0 is a 

homogeneous linear differential equation of order 3. 

Since 𝑦(3)(𝑥) − 5𝑦(2)(𝑥) + 6𝑦′(𝑥) = 0 is HLDE with 
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constant coefficients, then we will do the following: Let 

𝑦(𝑥) = 𝑒𝑘𝑥, we need to find 𝑘. 

First of all, we will find the first, second, and third 

derivatives as follows: 

𝑦′(𝑥) = 𝑘𝑒𝑘𝑥 

𝑦′′(𝑥) = 𝑘2𝑒𝑘𝑥 

𝑦(3)(𝑥) = 𝑘3𝑒𝑘𝑥 

Now, we substitute 𝑦′(𝑥) = 𝑘𝑒𝑘𝑥, 𝑦′′(𝑥) = 𝑘2𝑒𝑘𝑥, and 

𝑦(3)(𝑥) = 𝑘3𝑒𝑘𝑥  in 𝑦(3)(𝑥) − 5𝑦(2)(𝑥) + 6𝑦′(𝑥) = 0 as 

follows: 

𝑘3𝑒𝑘𝑥 − 5𝑘2𝑒𝑘𝑥 + 6𝑘𝑒𝑘𝑥 = 0 

𝑒𝑘𝑥(𝑘3 − 5𝑘2 + 6𝑘) = 0 

𝑒𝑘𝑥(𝑘(𝑘2 − 5𝑘 + 6)) = 0 

𝑒𝑘𝑥(𝑘(𝑘 − 2)(𝑘 − 3)) = 0 

Thus, 𝑘 = 0, 𝑘 = 2 𝑜𝑟 𝑘 = 3. Then, we use our values to 

substitute 𝑘 in our assumption which is 𝑦(𝑥) = 𝑒𝑘𝑥: 

at 𝑘 = 0, 𝑦1(𝑥) = 𝑒(0)𝑥 = 1 

at 𝑘 = 2, 𝑦2(𝑥) = 𝑒
2𝑥 

at 𝑘 = 3, 𝑦3(𝑥) = 𝑒
3𝑥 

Thus, using result 2.1.1, the general solution for 𝑦(𝑥) 

is: 𝑦ℎ𝑜𝑚𝑜(𝑥) = 𝑐1 + 𝑐2𝑒
2𝑥 + 𝑐3𝑒

3𝑥, for some 𝑐1, 𝑐2, 𝑐3 ∈ ℜ. 

(Note: ℎ𝑜𝑚𝑜 denotes to homogeneous).  

Example 2.1.7 Given 𝑦(5)(𝑥) − 𝑦(4)(𝑥) − 2𝑦(3)(𝑥) = 0. 
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Find the general solution for 𝑦(𝑥). (Hint: Use results 

2.1.1 and 2.1.2, and in this example, no need to find 

the values of 𝑐1, 𝑐2, 𝑐3, 𝑐4 and 𝑐5) 

Solution: 𝑦(5)(𝑥) − 𝑦(4)(𝑥) − 2𝑦(3)(𝑥) = 0 is a 

homogeneous linear differential equation of order 5. 

Since 𝑦(5)(𝑥) − 𝑦(4)(𝑥) − 2𝑦(3)(𝑥) = 0 is HLDE with 

constant coefficients, then we will do the following: Let 

𝑦(𝑥) = 𝑒𝑘𝑥, we need to find 𝑘. 

First of all, we will find the first, second, third, fourth, 

and fifth derivatives as follows: 

𝑦′(𝑥) = 𝑘𝑒𝑘𝑥 

𝑦′′(𝑥) = 𝑘2𝑒𝑘𝑥 

𝑦(3)(𝑥) = 𝑘3𝑒𝑘𝑥 

𝑦(4)(𝑥) = 𝑘4𝑒𝑘𝑥 

𝑦(5)(𝑥) = 𝑘5𝑒𝑘𝑥 

Now, we substitute 𝑦(5)(𝑥) = 𝑘5𝑒𝑘𝑥, 𝑦(4)(𝑥) = 𝑘4𝑒𝑘𝑥, 

and 𝑦(3)(𝑥) = 𝑘3𝑒𝑘𝑥  in 𝑦(5)(𝑥) − 𝑦(4)(𝑥) − 2𝑦(3)(𝑥) = 0 

as follows: 

𝑘5𝑒𝑘𝑥 − 𝑘4𝑒𝑘𝑥 − 2𝑘3𝑒𝑘𝑥 = 0 

𝑒𝑘𝑥(𝑘5 − 𝑘4 − 2𝑘3) = 0 

𝑒𝑘𝑥(𝑘3(𝑘2 − 𝑘 − 2)) = 0 

𝑒𝑘𝑥(𝑘3(𝑘 − 2)(𝑘 + 1)) = 0 

Thus, 𝑘 = 0, 𝑘 = 0, 𝑘 = 0, 𝑘 = 2 𝑜𝑟 𝑘 = −1. Then, we use 

our values to substitute 𝑘 in our assumption which is 

𝑦(𝑥) = 𝑒𝑘𝑥: 
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at 𝑘 = 0, 𝑦1(𝑥) = 𝑒(0)𝑥 = 1 

at 𝑘 = 0, 𝑦2(𝑥) = 𝑒
(0)𝑥 = 1 ∙ 𝑥 

at 𝑘 = 0, 𝑦3(𝑥) = 𝑒
(0)𝑥 = 1 ∙ 𝑥2 

because 𝑘3 = 𝑆𝑝𝑎𝑛{1, 𝑥, 𝑥2} = 0 (Note: 𝑆𝑝𝑎𝑛{1, 𝑥, 𝑥2} = 0 

means 𝑎 ∙ 1 + 𝑏 ∙ 𝑥 + 𝑐 ∙ 𝑥2 = 0) 

In other words 𝑆𝑝𝑎𝑛{1, 𝑥, 𝑥2} is the set of all linear 

combinations of 1, 𝑥, and 𝑥2. 

at 𝑘 = 2, 𝑦4(𝑥) = 𝑒
2𝑥 

at 𝑘 = −1, 𝑦5(𝑥) = 𝑒−𝑥 

Thus, using result 2.1.1, the general solution for 𝑦(𝑥) 

is: 𝑦ℎ𝑜𝑚𝑜(𝑥) = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑥
2+𝑐4𝑒

2𝑥 + 𝑐5𝑒
−𝑥, for some 

𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5 ∈ ℜ. (Note: ℎ𝑜𝑚𝑜 denotes to 

homogeneous).  

Example 2.1.8 Given 𝑦1(𝑥) = 𝑒
3𝑥, 𝑦2(𝑥) = 𝑒−3𝑥, and 

𝑦3(𝑥) = 𝑒𝑥 . Are 𝑦1(𝑥), 𝑦3(𝑥), and 𝑦3(𝑥) independent? 

Solution: We cannot write 𝑦3(𝑥) as a linear 

combination of 𝑦1(𝑥) and 𝑦2(𝑥) as follows: 

𝑒𝑥 ≠ (𝐹𝑖𝑥𝑒𝑑 𝑁𝑢𝑚𝑏𝑒𝑟) ∙ 𝑒3𝑥 + (𝐹𝑖𝑥𝑒𝑑 𝑁𝑢𝑚𝑏𝑒𝑟) ∙ 𝑒−3𝑥 

Thus, 𝑦1(𝑥), 𝑦3(𝑥), and 𝑦3(𝑥) are independent. 

Example 2.1.9 Given 𝑦1(𝑥) = 𝑒
(𝑥+3), 𝑦2(𝑥) = 𝑒

3, and 

𝑦3(𝑥) = 𝑒𝑥 . Are 𝑦1(𝑥), 𝑦3(𝑥), and 𝑦3(𝑥) independent? 

Solution: We can write 𝑦1(𝑥) as a linear combination of 

𝑦2(𝑥) and 𝑦3(𝑥) as follows: 

𝑒(𝑥+3) = 𝑒𝑥 ∙ 𝑒3. Thus, 𝑦1(𝑥), 𝑦3(𝑥), and 𝑦3(𝑥) are 

dependent (not independent). 
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2.2 Method of Undetermined 

Coefficients

In this section, we discuss how to use what we have 

learned from section 2.1 to combine it with what we 

will learn from section 2.2 in order to find the general 

solution using a method known as undetermined 

coefficients method. In this method, we will find a 

general solution consisting of homogeneous solution 

and particular solution together. 

We give the following examples to introduce the 

undetermined coefficient method. 

Example 2.2.1 Given 𝑦′(𝑥) + 3𝑦(𝑥) = 𝑥, 𝑦(0) = 1. Find 

the general solution for 𝑦(𝑥). (Hint: No need to find the 

value of 𝑐1) 

Solution: Since 𝑦′(𝑥) + 3𝑦(𝑥) = 𝑥 does not have a 

constant coefficient, then we need to use the 

undetermined coefficients method as follows: 

Step 1: We need to find the homogeneous solution by 

letting 𝑦′(𝑥) + 3𝑦(𝑥) equal to zero as follows: 

𝑦′(𝑥) + 3𝑦(𝑥) = 0. Now, it is a homogeneous linear 

differential equation of order 1.  

Since 𝑦′(𝑥) + 3𝑦(𝑥) = 0 is a HLDE with constant 

coefficients, then we will do the following:  
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Let 𝑦(𝑥) = 𝑒𝑘𝑥, we need to find 𝑘. 

First of all, we will find the first, second, third, fourth, 

and fifth derivatives as follows: 

𝑦′(𝑥) = 𝑘𝑒𝑘𝑥 

Now, we substitute 𝑦′(𝑥) = 𝑘𝑒𝑘𝑥 in 𝑦′(𝑥) + 3𝑦(𝑥) = 0 as 

follows: 

𝑘𝑒𝑘𝑥 + 3𝑒𝑘𝑥 = 0 

𝑒𝑘𝑥(𝑘 + 3) = 0 

Thus, 𝑘 = −3. Then, we use our value to substitute 𝑘 in 

our assumption which is 𝑦(𝑥) = 𝑒𝑘𝑥: 

at 𝑘 = −3, 𝑦1(𝑥) = 𝑒(−3)𝑥 = 𝑒−3𝑥 

Thus, using result 2.1.1, the general solution for 𝑦(𝑥) 

is: 𝑦ℎ𝑜𝑚𝑜(𝑥) = 𝑐1𝑒
−3𝑥, for some 𝑐1 ∈ ℜ. (Note: ℎ𝑜𝑚𝑜 

denotes to homogeneous).  

Step 2: We need to find the particular solution as 

follows: Since 𝑦′(𝑥) + 3𝑦(𝑥) equals 𝑥, then the 

particular solution should be in the following form: 

𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) = 𝑎 + 𝑏𝑥 because 𝑥 is a polynomial of the 

first degree, and the general form for first degree 

polynomial is 𝑎 + 𝑏𝑥. 

Now, we need to find 𝑎 and 𝑏 as follows: 

𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟
′(𝑥) = 𝑏 

We substitute 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟
′(𝑥) = 𝑏 in 𝑦′(𝑥) + 3𝑦(𝑥) = 𝑥. 

𝑏 + 3(𝑎 + 𝑏𝑥) = 𝑥 

𝑏 + 3𝑎 + 3𝑏𝑥 = 𝑥 
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at 𝑥 = 0, we obtain: 𝑏 + 3𝑎 + (3𝑏)(0) = 0 

𝑏 + 3𝑎 + 0 = 0 

𝑏 + 3𝑎 = 0………………………………………………………(1) 

at 𝑥 = 1, we obtain: 𝑏 + 3𝑎 + (3𝑏)(1) = 1 

𝑏 + 3𝑎 + 3𝑏 = 1 

4𝑏 + 3𝑎 = 1………………………… .…………………………(2) 

From (1) and (2), we get: 𝑎 = −
1

9
 and 𝑏 =

1

3
 . 

Thus, 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) = −
1

9
+
1

3
𝑥. 

Step 3: We need to find the general solution as follows: 

𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑙(𝑥) = 𝑦ℎ𝑜𝑚𝑜(𝑥) + 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) 

Thus, 𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑙(𝑥) = 𝑐1𝑒
−3𝑥 + (−

1

9
+
1

3
𝑥). 

Example 2.2.2 Given 𝑦′(𝑥) + 3𝑦(𝑥) = 𝑒−3𝑥, 𝑦(0) = 1. 

Find the general solution for 𝑦(𝑥). (Hint: No need to 

find the value of 𝑐1) 

Solution: In this example, we will have the same 

homogeneous solution as we did in example 2.2.1 but 

the only difference is the particular solution. We will 

repeat some steps in case you did not read example 

2.2.1. Since 𝑦′(𝑥) + 3𝑦(𝑥) = 𝑒−3𝑥 does not have a 

constant coefficient, then we need to use the 

undetermined coefficients method as follows:  

Step 1: We need to find the homogeneous solution by 

letting 𝑦′(𝑥) + 3𝑦(𝑥) equal to zero as follows: 

𝑦′(𝑥) + 3𝑦(𝑥) = 0. Now, it is a homogeneous linear 

differential equation of order 1.  
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Since 𝑦′(𝑥) + 3𝑦(𝑥) = 0 is a HLDE with constant 

coefficients, then we will do the following:  

Let 𝑦(𝑥) = 𝑒𝑘𝑥, we need to find 𝑘. 

First of all, we will find the first, second, third, fourth, 

and fifth derivatives as follows: 

𝑦′(𝑥) = 𝑘𝑒𝑘𝑥 

Now, we substitute 𝑦′(𝑥) = 𝑘𝑒𝑘𝑥 in 𝑦′(𝑥) + 3𝑦(𝑥) = 0 as 

follows: 

𝑘𝑒𝑘𝑥 + 3𝑒𝑘𝑥 = 0 

𝑒𝑘𝑥(𝑘 + 3) = 0 

Thus, 𝑘 = −3. Then, we use our value to substitute 𝑘 in 

our assumption which is 𝑦(𝑥) = 𝑒𝑘𝑥: 

at 𝑘 = −3, 𝑦1(𝑥) = 𝑒(−3)𝑥 = 𝑒−3𝑥 

Thus, using result 2.1.1, the general solution for 𝑦(𝑥) 

is: 𝑦ℎ𝑜𝑚𝑜(𝑥) = 𝑐1𝑒
−3𝑥, for some 𝑐1 ∈ ℜ. (Note: ℎ𝑜𝑚𝑜 

denotes to homogeneous).  

Step 2: We need to find the particular solution as 

follows: Since 𝑦′(𝑥) + 3𝑦(𝑥) equals 𝑒−3𝑥, then the 

particular solution should be in the following form: 

𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) = (𝑎𝑒−3𝑥)𝑥 

Now, we need to find 𝑎 as follows: 

𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟
′(𝑥) = (𝑎𝑒−3𝑥) − 3(𝑎𝑥𝑒−3𝑥) 

We substitute 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟
′(𝑥) = (𝑎𝑒−3𝑥) − 3(𝑎𝑥𝑒−3𝑥) in 

𝑦′(𝑥) + 3𝑦(𝑥) = 𝑒−3𝑥. 

[(𝑎𝑒−3𝑥) − 3(𝑎𝑥𝑒−3𝑥)] + 3(𝑎𝑒−3𝑥)𝑥 = 𝑒−3𝑥 
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𝑎𝑒−3𝑥 = 𝑒−3𝑥 

𝑎 = 1 

Thus, 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) = (1𝑒
−3𝑥)𝑥 = 𝑥𝑒−3𝑥. 

Step 3: We need to find the general solution as follows: 

𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑙(𝑥) = 𝑦ℎ𝑜𝑚𝑜(𝑥) + 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) 

Thus, 𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑙(𝑥) = 𝑐1𝑒
−3𝑥 + 𝑥𝑒−3𝑥. 

Result 2.2.1 Suppose that you have a linear differential 

equation with the least derivative, say 𝑚, and this 

differential equation equals to a polynomial of degree 

𝑤. Then, we obtain the following: 

𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 = [𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑓 𝐷𝑒𝑔𝑟𝑒𝑒 𝑤]𝑥
𝑚 . 

Result 2.2.2 Suppose that you have a linear differential 

equation, then the general solution is always written 

as: 𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑙(𝑥) = 𝑦ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠(𝑥) + 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥). 

Example 2.2.3 Given 𝑦(4)(𝑥) − 7𝑦(3)(𝑥) = 𝑥2. Describe 

𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) but do not find it. 

Solution: To describe 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥), we do the following: 

By using result 2.2.1, we obtain the following:  

𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 = [𝑎 + 𝑏𝑥 + 𝑐𝑥
2]𝑥3. 

Example 2.2.4 Given 𝑦(4)(𝑥) − 7𝑦(3)(𝑥) = 3. Describe 

𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) but do not find it. 

Solution: To describe 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥), we do the following: 

By using result 2.2.1, we obtain the following:  

𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 = [𝑎]𝑥
3 = 𝑎𝑥3. 
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Example 2.2.5 Given 𝑦(2)(𝑥) − 3𝑦(𝑥) = 𝑥2𝑒𝑥 . Describe 

𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) but do not find it. 

Solution: To describe 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥), we do the following: 

In this example, we look at 𝑥2, and we write it as: 𝑎 +

𝑏𝑥 + 𝑐𝑥2, and then we multiply it by 𝑒𝑥. 

𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 = [𝑎 + 𝑏𝑥 + 𝑐𝑥
2]𝑒𝑥. 

Example 2.2.6 Given 𝑦(2)(𝑥) − 3𝑦(𝑥) = sin (3𝑥)𝑒𝑥. 

Describe 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) but do not find it. 

Solution: To describe 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥), we do the following: 

In this example, we look at sin (3𝑥), and we write it as: 

(𝑎 sin(3𝑥) + 𝑏sin (3𝑥)), and then we multiply it by 𝑒𝑥. 

𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 = [𝑎 sin(3𝑥) + 𝑏sin (3𝑥)]𝑒
𝑥. 

2.3 Exercises 

1.  Given 𝑦(2)(𝑥) + 2𝑦′(𝑥) + 𝑦(𝑥) = 0. Find the general 

solution for 𝑦(𝑥). (Hint: Use results 2.1.1 and 2.1.2, 

and in this exercise, no need to find the values of 

𝑐1, and 𝑐2) 

2.  Given 𝑦(3)(𝑥) − 𝑦(2)(𝑥) = 3𝑥. Find the general 

solution for 𝑦(𝑥). (Hint: No need to find the value of 

𝑐1, 𝑐2, and 𝑐3) 

3.  Given 𝑦(4)(𝑥) − 𝑦(3)(𝑥) = 3𝑥2. Find the general 

solution for 𝑦(𝑥). (Hint: No need to find the value of 

𝑐1, 𝑐2, 𝑐3, and 𝑐4) 
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4.  Given 𝑦(3)(𝑥) − 𝑦(2)(𝑥) = 𝑒𝑥 . Find the general 

solution for 𝑦(𝑥). (Hint: No need to find the value of 

𝑐1, 𝑐2, and 𝑐3) 

5.  Given 𝑦(3)(𝑥) − 𝑦(2)(𝑥) = sin (2𝑥). Find the general 

solution for 𝑦(𝑥). (Hint: No need to find the value of 

𝑐1, 𝑐2, and 𝑐3) 

6.  Given 𝑦(2)(𝑥) − 3𝑦(𝑥) = 3𝑥sin (5𝑥). Describe 

𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) but do not find it. 

7.  Given 𝑦(2)(𝑥) − 3𝑦(𝑥) = 𝑒𝑥
2
. Describe 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) 

but do not find it. 
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Chapter 3 

Methods of First and 

Higher Orders Differential 

Equations 

In this chapter, we introduce two new methods called 

Variation Method and Cauchy-Euler Method in order 

to solve first and higher orders differential equations. 

In addition, we give several examples about these 

methods, and the difference between them and the 

previous methods in chapter 2. 

3.1 Variation Method

In this section, we discuss how to find the particular 

solution using Variation Method. For the homogeneous 

solution, it will be similar to what we learned in 

chapter 2. 

Definition 3.1.1 Given 𝑎2(𝑥)𝑦
(2) + 𝑎1(𝑥)𝑦

′ = 𝐾(𝑥) is a 

linear differential equation of order 2. Assume that 

𝑦1(𝑥) and 𝑦2(𝑥) are independent solution to the 

homogeneous solution. Then, the particular solution 

using Variation Method is written as: 



Copyright © 2015 Mohammed K A Kaabar                       All Rights Reserved 

 

70  M. Kaabar 
 

 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) = ℎ1(𝑥)𝑦1(𝑥) + ℎ2(𝑥)𝑦2(𝑥). To find ℎ1(𝑥) 

and ℎ2(𝑥), we need to solve the following two 

equations: 

ℎ1
′(𝑥)𝑦1(𝑥) + ℎ2

′(𝑥)𝑦2(𝑥) = 0

ℎ1
′(𝑥)𝑦1

′(𝑥) + ℎ2
′(𝑥)𝑦2

′(𝑥) =
𝐾(𝑥)

𝑎2(𝑥)

 

Definition 3.1.2 Given 𝑎3(𝑥)𝑦
(3) +⋯+ 𝑎1(𝑥)𝑦

′ = 𝐾(𝑥) is 

a linear differential equation of order 3. Assume that 

𝑦1(𝑥), 𝑦2(𝑥) and 𝑦3(𝑥) are independent solution to the 

homogeneous solution. Then, the particular solution 

using Variation Method is written as: 

 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) = ℎ1(𝑥)𝑦1(𝑥) + ℎ2(𝑥)𝑦2(𝑥) + ℎ3(𝑥)𝑦3(𝑥). 

To find ℎ1(𝑥), ℎ2(𝑥) and ℎ3(𝑥), we need to solve the 

following three equations: 

ℎ1
′(𝑥)𝑦1(𝑥) + ℎ2

′(𝑥)𝑦2(𝑥) + ℎ3
′(𝑥)𝑦3(𝑥) = 0

ℎ1
′(𝑥)𝑦1

′(𝑥) + ℎ2
′(𝑥)𝑦2

′(𝑥) + ℎ3
′(𝑥)𝑦3

′(𝑥) = 0

ℎ1
(2)(𝑥)𝑦1

(2)(𝑥) + ℎ2
(2)(𝑥)𝑦2

(2)(𝑥) + ℎ3
(2)(𝑥)𝑦3

(2)(𝑥) =
𝐾(𝑥)

𝑎3(𝑥)

 

Example 3.1.1 Given 𝑦(2) + 3𝑦′ =
1

𝑥
 . Find the general 

solution for 𝑦(𝑥). (Hint: No need to find the values of 

𝑐1and 𝑐2) 

Solution: Since 𝑦(2) + 3𝑦′ =
1

𝑥
 does not have a constant 

coefficient, then we need to use the variation method 

as follows:  

Step 1: We need to find the homogeneous solution by 

letting 𝑦(2) + 3𝑦′ equal to zero as follows: 

𝑦(2) + 3𝑦′ = 0. Now, it is a homogeneous linear 

differential equation of order 2.  
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Since 𝑦(2) + 3𝑦′ = 0 is a HLDE with constant 

coefficients, then we will do the following:  

Let 𝑦(𝑥) = 𝑒𝑘𝑥, we need to find 𝑘. 

First of all, we will find the first and second derivatives 

as follows: 

𝑦′(𝑥) = 𝑘𝑒𝑘𝑥 

𝑦′′(𝑥) = 𝑘2𝑒𝑘𝑥 

Now, we substitute 𝑦′(𝑥) = 𝑘𝑒𝑘𝑥 and 𝑦′′(𝑥) = 𝑘2𝑒𝑘𝑥 in 

𝑦(2) + 3𝑦′ = 0 as follows: 

𝑘2𝑒𝑘𝑥 + 3𝑘𝑒𝑘𝑥 = 0  

𝑒𝑘𝑥(𝑘2 + 3𝑘) = 0 

𝑒𝑘𝑥(𝑘(𝑘 + 3)) = 0 

Thus, 𝑘 = 0 and 𝑘 = −3. Then, we use our values to 

substitute 𝑘 in our assumption which is 𝑦(𝑥) = 𝑒𝑘𝑥: 

at 𝑘 = 0, 𝑦1(𝑥) = 𝑒(0)𝑥 = 𝑒0 = 1 

at 𝑘 = −3, 𝑦2(𝑥) = 𝑒(−3)𝑥 = 𝑒−3𝑥 

Notice that 𝑦1(𝑥) and 𝑦2(𝑥) are independent. 

Thus, using result 2.1.1, the general homogenous 

solution for 𝑦(𝑥) is: 𝑦ℎ𝑜𝑚𝑜(𝑥) = 𝑐1 + 𝑐2𝑒
−3𝑥, for some 

𝑐1and 𝑐2 ∈ ℜ. (Note: ℎ𝑜𝑚𝑜 denotes to homogeneous).  

Step 2: We need to find the particular solution using 

definition 3.1.1 as follows: Since 𝑦(2) + 3𝑦′ equals 
1

𝑥
 , 

then the particular solution should be in the following 

form: 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) = ℎ1(𝑥)𝑦1(𝑥) + ℎ2(𝑥)𝑦2(𝑥). To find 

ℎ1(𝑥) and ℎ2(𝑥), we need to solve the following two 

equations: 



Copyright © 2015 Mohammed K A Kaabar                       All Rights Reserved 

 

72  M. Kaabar 
 

ℎ1
′(𝑥)𝑦1(𝑥) + ℎ2

′(𝑥)𝑦2(𝑥) = 0

ℎ1
′(𝑥)𝑦1

′(𝑥) + ℎ2
′(𝑥)𝑦2

′(𝑥) =
𝐾(𝑥)

𝑎2(𝑥)

 

𝑦1(𝑥) = 1       ------ 𝑦1
′(𝑥) = 0 

𝑦2(𝑥) = 𝑒−3𝑥  ------ 𝑦2
′(𝑥) = −3𝑒−3𝑥 

Now, we substitute what we got above in the particular 

solution form as follows: 

ℎ1
′(𝑥)(1) + ℎ2

′(𝑥)(𝑒−3𝑥) = 0

ℎ1
′(𝑥)(0) + ℎ2

′(𝑥)(−3𝑒−3𝑥) =

1
𝑥
1

 

 

ℎ1
′(𝑥)(1) + ℎ2

′(𝑥)(𝑒−3𝑥) = 0……………… . . …………(1)

ℎ2
′(𝑥)(−3𝑒−3𝑥) =

1

𝑥
……………………… . . …………… . (2)

 

By solving (1) and (2), ℎ2
′(𝑥) = −

1

3𝑥
𝑒3𝑥 and 

 ℎ1
′(𝑥) =

1

3𝑥
𝑒3𝑥(𝑒−3𝑥) =

1

3𝑥
. 

Since it is impossible to integrate ℎ2
′(𝑥) = −

1

3𝑥
𝑒3𝑥 to 

find ℎ2(𝑥), then it is enough to write as: 

 ℎ2(𝑥) = ∫ −
1

3𝑡
𝑒3𝑡

𝑥

0
𝑑𝑡. 

Since it is possible to integrate ℎ1
′(𝑥) =

1

3𝑥
 to find ℎ1(𝑥), 

then we do the following: 

 ℎ1(𝑥) = ∫
1

3𝑥
𝑑𝑥 =

1

3
(ln|𝑥|), 𝑥 > 0. 

Thus, we write the particular solution  as follows: 

𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) =
1

3
(ln|𝑥|) + 𝑒−3𝑥 (∫−

1

3𝑡
𝑒3𝑡

𝑥

0

𝑑𝑡) 

Step 3: We need to find the general solution as follows: 
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𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑙(𝑥) = 𝑦ℎ𝑜𝑚𝑜(𝑥) + 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) 

Thus, 𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑙(𝑥) = (𝑐1 + 𝑐2𝑒
−3𝑥) +

1

3
(ln|𝑥|) +

𝑒−3𝑥 (∫ −
1

3𝑡
𝑒3𝑡

𝑥

0
𝑑𝑡), for some 𝑐1and 𝑐2 ∈ ℜ. 

Example 3.1.2 Given 𝑦(2) + 6𝑦′ + 8𝑦 = 𝑒−4𝑥 . Find the 

general solution for 𝑦(𝑥). (Hint: No need to find the 

values of 𝑐1and 𝑐2) 

Solution: Since 𝑦(2) + 6𝑦′ + 8𝑦 = 𝑒−4𝑥 does not have a 

constant coefficient, then we need to use the variation 

method as follows:  

Step 1: We need to find the homogeneous solution by 

letting 𝑦(2) + 6𝑦′ + 8𝑦 equal to zero as follows: 

𝑦(2) + 6𝑦′ + 8𝑦 = 0. Now, it is a homogeneous linear 

differential equation of order 2.  

Since 𝑦(2) + 6𝑦′ + 8𝑦 = 0 is a HLDE with constant 

coefficients, then we will do the following:  

Let 𝑦(𝑥) = 𝑒𝑘𝑥, we need to find 𝑘. 

First of all, we will find the first and second derivatives 

as follows: 

𝑦′(𝑥) = 𝑘𝑒𝑘𝑥 

𝑦′′(𝑥) = 𝑘2𝑒𝑘𝑥 

Now, we substitute𝑦(𝑥) = 𝑒𝑘𝑥, 𝑦′(𝑥) = 𝑘𝑒𝑘𝑥 and 

𝑦′′(𝑥) = 𝑘2𝑒𝑘𝑥 in 𝑦(2) + 6𝑦′ + 8𝑦 = 0  as follows: 

𝑘2𝑒𝑘𝑥 + 6𝑘𝑒𝑘𝑥 + 8𝑒𝑘𝑥 = 0  

𝑒𝑘𝑥(𝑘2 + 6𝑘 + 8) = 0 

𝑒𝑘𝑥((𝑘 + 2)(𝑘 + 4)) = 0 
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Thus, 𝑘 = −2 and 𝑘 = −4. Then, we use our values to 

substitute 𝑘 in our assumption which is 𝑦(𝑥) = 𝑒𝑘𝑥: 

at 𝑘 = −2, 𝑦1(𝑥) = 𝑒(−2)𝑥 = 𝑒−2𝑥 

at 𝑘 = −4, 𝑦2(𝑥) = 𝑒(−4)𝑥 = 𝑒−4𝑥 

Notice that 𝑦1(𝑥) and 𝑦2(𝑥) are independent. 

Thus, using result 2.1.1, the general homogenous 

solution for 𝑦(𝑥) is: 𝑦ℎ𝑜𝑚𝑜(𝑥) = 𝑐1𝑒
−2𝑥 + 𝑐2𝑒

−4𝑥, for 

some 𝑐1and 𝑐2 ∈ ℜ. (Note: ℎ𝑜𝑚𝑜 denotes to 

homogeneous).  

Step 2: We need to find the particular solution using 

definition 3.1.1 as follows: Since 𝑦(2) + 6𝑦′ + 8𝑦  equals 

𝑒−4𝑥, then the particular solution should be in the 

following form: 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) = ℎ1(𝑥)𝑦1(𝑥) + ℎ2(𝑥)𝑦2(𝑥). 

To find ℎ1(𝑥) and ℎ2(𝑥), we need to solve the following 

two equations: 

ℎ1
′(𝑥)𝑦1(𝑥) + ℎ2

′(𝑥)𝑦2(𝑥) = 0

ℎ1
′(𝑥)𝑦1

′(𝑥) + ℎ2
′(𝑥)𝑦2

′(𝑥) =
𝐾(𝑥)

𝑎2(𝑥)

 

𝑦1(𝑥) = 𝑒
−2𝑥  ------ 𝑦1

′(𝑥) = −2𝑒−2𝑥 

𝑦2(𝑥) = 𝑒−4𝑥  ------ 𝑦2
′(𝑥) = −4𝑒−4𝑥 

Now, we substitute what we got above in the particular 

solution form as follows: 

ℎ1
′(𝑥)(𝑒−2𝑥) + ℎ2

′(𝑥)(𝑒−4𝑥) = 0

ℎ1
′(𝑥)(−2𝑒−2𝑥) + ℎ2

′(𝑥)(−4𝑒−4𝑥) =
𝑒−4𝑥

1

 

 

ℎ1
′(𝑥)(𝑒−2𝑥) + ℎ2

′(𝑥)(𝑒−4𝑥) = 0……………… . . ……… . . … (1)

ℎ1
′(𝑥)(−2𝑒−2𝑥) + ℎ2

′(𝑥)(−4𝑒−4𝑥) = 𝑒−4𝑥………………… . (2)
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By solving (1) and (2), and using Cramer’s rule, we 

obtain: 

 ℎ1
′(𝑥) =  𝑥1 =

det[ 0 𝑒−4𝑥

𝑒−4𝑥 −4𝑒−4𝑥
]

det[ 𝑒
−2𝑥 𝑒−4𝑥

−2𝑒−2𝑥 −4𝑒−4𝑥
]
 

=
−𝑒−8𝑥

−4𝑒−6𝑥 + 2𝑒−6𝑥
=
−𝑒−8𝑥

−2𝑒−6𝑥
 

=
1

2
𝑒−2𝑥 

By substituting ℎ1
′(𝑥) in (1) to find ℎ2

′(𝑥) as follows: 

(
1

2
𝑒−2𝑥) (𝑒−2𝑥) + ℎ2

′(𝑥)(𝑒−4𝑥) = 0 

ℎ2
′(𝑥) = −

1

2
 

Since it is possible to integrate ℎ1
′(𝑥) =

1

2
𝑒−2𝑥 to find 

ℎ1(𝑥), then we do the following: 

ℎ1(𝑥) = ∫
1

2
𝑒−2𝑥 𝑑𝑥 = −

1

4
𝑒−2𝑥. 

Since it is possible to integrate ℎ2
′(𝑥) = −

1

2
 to find 

ℎ2(𝑥), then we do the following: 

ℎ2(𝑥) = ∫−
1

2
𝑑𝑥 = −

1

2
𝑥. 

Thus, we write the particular solution as follows: 

𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) = −
1

4
𝑒−2𝑥(𝑒−2𝑥) −

1

2
𝑥(𝑒−4𝑥) 

Step 3: We need to find the general solution as follows: 

𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑙(𝑥) = 𝑦ℎ𝑜𝑚𝑜(𝑥) + 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) 

Thus, 𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑙(𝑥) = (𝑐1𝑒
−2𝑥 + 𝑐2𝑒

−4𝑥) + (−
1

4
𝑒−2𝑥(𝑒−2𝑥) −

1

2
𝑥(𝑒−4𝑥)), for some 𝑐1and 𝑐2 ∈ ℜ. 
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3.2 Cauchy-Euler Method

In this section, we will show how to use Cauchy-Euler 

Method to find the general solution for differential 

equations that do not have constant coefficients. 

To introduce this method, we start with some examples 

as follows: 

Example 3.2.1 Given 𝑥𝑦(2) − 𝑦′ +
1

𝑥
𝑦 = 0. Find the 

general solution for 𝑦(𝑥). (Hint: No need to find the 

values of 𝑐1and 𝑐2) 

Solution: Since 𝑥𝑦(2) − 𝑦′ +
1

𝑥
𝑦 = 0 does not have 

constant coefficients, then we need to use the Cauchy-

Euler method by letting 𝑦 = 𝑥𝑘, and after substitution 

all terms must be of the same degree as follows: 

First of all, we will find the first and second derivatives 

as follows: 

𝑦′ = 𝑘𝑥𝑘−1 

𝑦′′ = 𝑘(𝑘 − 1)𝑥𝑘−2 

Now, we substitute 𝑦 = 𝑥𝑘, 𝑦′ = 𝑘𝑥𝑘−1 and 

𝑦′′ = 𝑘(𝑘 − 1)𝑥𝑘−2 in 𝑥𝑦(2) − 𝑦′ +
1

𝑥
𝑦 = 0 as follows: 

𝑥𝑘(𝑘 − 1)𝑥𝑘−2 − 𝑘𝑥𝑘−1 +
1

𝑥
𝑥𝑘 = 0  

𝑘(𝑘 − 1)𝑥𝑘−1 − 𝑘𝑥𝑘−1 + 𝑥𝑘−1 = 0  

𝑥𝑘−1(𝑘(𝑘 − 1) − 𝑘 + 1) = 0  

𝑥𝑘−1(𝑘2 − 𝑘 − 𝑘 + 1) = 0  
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𝑥𝑘−1(𝑘2 − 2𝑘 + 1) = 0  

𝑥𝑘−1((𝑘 − 1)(𝑘 − 1)) = 0  

Thus, 𝑘 = 1 and 𝑘 = 1. Then, we use our values to 

substitute 𝑘 in our assumption which is 𝑦 = 𝑥𝑘: 

at 𝑘 = 1, 𝑦1 = 𝑥1 = 𝑥 

at 𝑘 = 1, 𝑦2 = 𝑥1 = 𝑥 ∙ ln (𝑥) 

In the above case, we multiplied 𝑥 by ln (𝑥) because we 

had a repeating for 𝑥, and in Cauchy-Euler Method, we 

should multiply any repeating by natural logarithm. 

Thus, the general solution for 𝑦(𝑥) is: 

𝑦(𝑥) = 𝑐1𝑥 + 𝑐2𝑥𝑙𝑛(𝑥), for some 𝑐1and 𝑐2 ∈ ℜ. 

Example 3.2.2 Given 𝑥3𝑦(2) − 𝑥2𝑦′ + 𝑥𝑦 = 0. Find the 

general solution for 𝑦(𝑥). (Hint: No need to find the 

values of 𝑐1and 𝑐2) 

Solution: Since 𝑥3𝑦(2) + 𝑥2𝑦′ + 𝑥𝑦 = 0 does not have 

constant coefficients, then we need to use the Cauchy-

Euler method by letting 𝑦 = 𝑥𝑘, and after substitution 

all terms must be of the same degree as follows: 

First of all, we will find the first, second and third 

derivatives as follows: 

𝑦′ = 𝑘𝑥𝑘−1 

𝑦′′ = 𝑘(𝑘 − 1)𝑥𝑘−2 

𝑦′′′ = 𝑘(𝑘 − 1)(𝑘 − 2)𝑥𝑘−3 

Now, we substitute 𝑦 = 𝑥𝑘, 𝑦′ = 𝑘𝑥𝑘−1, and  

𝑦′′ = 𝑘(𝑘 − 1)𝑥𝑘−2  in 𝑥3𝑦(2) + 𝑥2𝑦′ + 𝑥𝑦 = 0 as follows: 
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𝑥3(𝑘(𝑘 − 1)𝑥𝑘−2) + 𝑥2(𝑘𝑥𝑘−1) + 𝑥(𝑥𝑘) = 0  

(𝑘(𝑘 − 1)𝑥𝑘+1) + (𝑘𝑥𝑘+1) + (𝑥𝑘+1) = 0  

𝑥𝑘+1(𝑘2 − 𝑘 + 𝑘 + 1) = 0  

𝑥𝑘+1(𝑘2 + 1) = 0 

Thus, 𝑘 = ±√1 = ±𝑖 = 0 ± (1)(𝑖).  

Then, we use our values to substitute 𝑘 in our 

assumption which is 𝑦 = 𝑥𝑘: 

Since we have two parts (real and imaginary), then by 

using the Cauchy-Euler Method, we need to write our 

solution as follows: 

𝑦1 = 𝑥
(𝑟𝑒𝑎𝑙 𝑝𝑎𝑟𝑡)cos (𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡 ∙ ln(𝑥)

= 𝑥(0) cos(1 ∙ ln(𝑥)) = cos(ln(𝑥)) 

𝑦2 = 𝑥
(𝑟𝑒𝑎𝑙 𝑝𝑎𝑟𝑡)sin (𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡 ∙ ln(𝑥)

= 𝑥(0) sin(1 ∙ ln(𝑥)) = sin(ln(𝑥)) 

Thus, the general solution for 𝑦(𝑥) is: 

 𝑦(𝑥) = 𝑐1 cos(ln(𝑥)) + 𝑐2 sin(ln(𝑥)), for some 

𝑐1and 𝑐2 ∈ ℜ. 

3.3 Exercises 

1.  Given 𝑦(2) + 𝑦′ + 4𝑦 = 0. Find the general solution 

for 𝑦(𝑥). (Hint: No need to find the values of 𝑐1and 𝑐2) 

2.  Given 𝑦(2) + 5𝑦′ + 7𝑦 = 0. Find the general solution 

for 𝑦(𝑥). (Hint: No need to find the values of 𝑐1and 𝑐2) 

3.  Given 𝑥3𝑦(3) + 𝑥𝑦′ = 0. Find the general solution for 

𝑦(𝑥). (Hint: No need to find the values of 𝑐1, 𝑐2 and 𝑐3) 
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4.  Given 𝑥3𝑦(3) − 2𝑥𝑦′ = 0. Find the general solution 

for 𝑦(𝑥). (Hint: No need to find the values of 𝑐1, 𝑐2 and 

𝑐3) 

5.  Given 𝑥2𝑦(2) + 𝑦′ = 2𝑥2. Is it possible to find the 

general solution for 𝑦(𝑥) using Cauchy-Euler Method? 

Why? 
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Chapter 4 

Extended Methods of First 

and Higher Orders 

Differential Equations 

In this chapter, we discuss some new methods such as 

Bernulli Method, Separable Method, Exact Method, 

Reduced to Separable Method and Reduction of Order 

Method. We use  these methods to solve first and 

higher orders linear and non-linear differential 

equations. In addition, we give examples about these 

methods, and the differences between them and the 

previous methods in chapter 2 and chapter 3. 

4.1 Bernoulli Method

In this section, we start with two examples about using 

integral factor to solve first order linear differential 

equations. Then, we introduce Bernulli Method to solve 

some examples of first order non-linear differential 

equations. 

Definition 4.1.1 Given 𝑎1(𝑥)𝑦
′ + 𝑎2(𝑥)𝑦 = 𝐾(𝑥),  

where 𝑎1(𝑥) ≠ 0 is a linear differential equation of 

order 1. Dividing both sides by 𝑎1(𝑥), we obtain: 
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𝑎1(𝑥)

𝑎1(𝑥)
𝑦′ +

𝑎2(𝑥)

𝑎1(𝑥)
𝑦 =

𝐾(𝑥)

𝑎1(𝑥)
 

𝑦′ +
𝑎2(𝑥)

𝑎1(𝑥)
𝑦 =

𝐾(𝑥)

𝑎1(𝑥)
 

Assume that 𝑔(𝑥) =
𝑎2(𝑥)

𝑎1(𝑥)
 and 𝐹(𝑥) =

𝐾(𝑥)

𝑎1(𝑥)
, then: 

𝑦′ + 𝑔(𝑥)𝑦 = 𝐹(𝑥)………………… . (1) 

Thus, the solution using Integral Factor Method is 

written in the following steps: 

Step 1: Multiply both sides of (1) by letting 

𝐼 = 𝑒∫𝑔(𝑥)𝑑𝑥: 

𝑦′𝑒∫𝑔(𝑥)𝑑𝑥 + 𝑔(𝑥)𝑦𝑒∫𝑔(𝑥)𝑑𝑥 = 𝐹(𝑥)𝑒∫𝑔(𝑥)𝑑𝑥 

Step 2: 𝑦′𝑒∫𝑔(𝑥)𝑑𝑥 + 𝑔(𝑥)𝑦𝑒∫𝑔(𝑥)𝑑𝑥 = [𝑦 ∙ 𝑒∫𝑔(𝑥)𝑑𝑥]
′
…(2) 

Step 3: [𝑦 ∙ 𝑒∫𝑔(𝑥)𝑑𝑥]
′
= 𝐹(𝑥)𝑒∫𝑔(𝑥)𝑑𝑥 ………………… . . (3) 

Step 4: Integrate both sides of (3), we obtain: 

∫[𝑦 ∙ 𝑒∫𝑔(𝑥)𝑑𝑥]
′
𝑑𝑥 = ∫(𝐹(𝑥)𝑒∫𝑔(𝑥)𝑑𝑥) 𝑑𝑥 

𝑦 ∙ 𝑒∫𝑔(𝑥)𝑑𝑥 = ∫(𝐹(𝑥)𝑒∫𝑔(𝑥)𝑑𝑥) 𝑑𝑥 

Step 5: By solving for 𝑦, and substituting 𝐼 = 𝑒∫𝑔(𝑥)𝑑𝑥  

we obtain: 

𝑦 ∙ 𝐼 = ∫(𝐹(𝑥))(𝐼) 𝑑𝑥 

𝑦 =
∫(𝐹(𝑥))(𝐼) 𝑑𝑥

𝐼
 

𝑦 =
∫ 𝐼 ∙ 𝐹(𝑥) 𝑑𝑥

𝐼
 

Thus, the final solution is:  

𝑦 =
∫ 𝐼 ∙ 𝐹(𝑥) 𝑑𝑥

𝐼
 

Example 4.1.1 Given 𝑥2𝑦′ − 2𝑥𝑦 = 4𝑥3. Find the 

general solution for 𝑦(𝑥). (Hint: Use integral factor 

method and no need to find the value of 𝑐) 
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Solution: Since 𝑥2𝑦′ − 2𝑥𝑦 = 4𝑥3 does not have 

constant coefficients, and it is a first order non-linear 

differential equation, then by using definition 4.1.1, we 

need to use the integral factor method by letting 

𝐼 = 𝑒∫𝑔(𝑥)𝑑𝑥, where 𝑔(𝑥) =
𝑎2(𝑥)

𝑎1(𝑥)
= −

2𝑥

𝑥2
= −

2

𝑥
 and 𝐹(𝑥) =

𝐾(𝑥)

𝑎1(𝑥)
=

4𝑥3

𝑥2
= 4𝑥 

Hence, 𝐼 = 𝑒∫𝑔(𝑥)𝑑𝑥 = 𝑒∫−
2

𝑥
𝑑𝑥 = 𝑒−2ln (𝑥) = 𝑒ln (𝑥

−2) =
1

𝑥2
 

The general solution is written as follows: 

𝑦 =
∫ 𝐼 ∙ 𝐹(𝑥) 𝑑𝑥

𝐼
 

𝑦 =
∫
1
𝑥2
∙ 4𝑥 𝑑𝑥

1
𝑥2

 

𝑦 =
∫
4
𝑥 𝑑𝑥

1
𝑥2

 

𝑦 =
4 ln(𝑥) + 𝑐

1
𝑥2

 

𝑦 = 4𝑥2 ln(𝑥) + 𝑐𝑥2 

Thus, the general solution is: 𝑦 = 4𝑥2 ln(𝑥) + 𝑐𝑥2 

for some 𝑐 ∈ ℜ. 

Example 4.1.2 Given (𝑥 + 1)𝑦′ + 𝑦 = 5. Find the 

general solution for 𝑦(𝑥). (Hint: Use integral factor 

method and no need to find the value of 𝑐) 
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Solution: Since (𝑥 + 1)𝑦′ + 𝑦 = 5 does not have 

constant coefficients, and it is a first order non-linear 

differential equation, then by using definition 4.1.1, we 

need to use the integral factor method by letting 

𝐼 = 𝑒∫𝑔(𝑥)𝑑𝑥, where 𝑔(𝑥) =
𝑎2(𝑥)

𝑎1(𝑥)
=

1

(𝑥+1)
 and 

𝐹(𝑥) =
𝐾(𝑥)

𝑎1(𝑥)
=

5

(𝑥 + 1)
 

Hence, 𝐼 = 𝑒∫𝑔(𝑥)𝑑𝑥 = 𝑒
∫

1

(𝑥+1)
 𝑑𝑥

= 𝑒ln(𝑥+1) = (𝑥 + 1) 

The general solution is written as follows: 

𝑦 =
∫ 𝐼 ∙ 𝐹(𝑥) 𝑑𝑥

𝐼
 

𝑦 =
∫(𝑥 + 1) ∙

5
(𝑥 + 1)

𝑑𝑥

(𝑥 + 1)
 

𝑦 =
∫5𝑑𝑥

(𝑥 + 1)
 

𝑦 =
5𝑥 + 𝑐

(𝑥 + 1)
 

𝑦 =
5𝑥

(𝑥 + 1)
+

𝑐

(𝑥 + 1)
 

Thus, the general solution is: 𝑦 =
5𝑥

(𝑥+1)
+

𝑐

(𝑥+1)
 

for some 𝑐 ∈ ℜ. 

Definition 4.1.2 Given 𝑦′ + 𝑔(𝑥)𝑦 = 𝑓(𝑥)𝑦𝑛 where 𝑛 ∈ ℜ 

and 𝑛 ≠ 0 and 𝑛 ≠ 1 is a non-linear differential 

equation of order 1. Thus, the solution using Bernoulli 

Method is written in the following steps: 

Step 1: Change it to first order linear differential 

equation by letting 𝑤 = 𝑦1−𝑛. 
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Step 2: Find the derivative of both sides for 𝑤 = 𝑦1−𝑛 

as follows: 

𝑑𝑤

𝑑𝑥
= (1 − 𝑛)𝑦1−𝑛−1 ∙

𝑑𝑦

𝑑𝑥
 

𝑑𝑤

𝑑𝑥
= (1 − 𝑛)𝑦−𝑛 ∙

𝑑𝑦

𝑑𝑥
…………………………………… .… . (1) 

Step 3: Solve (1) for 
𝑑𝑦

𝑑𝑥
 as follows: 

𝑑𝑦

𝑑𝑥
=

1

1 − 𝑛
𝑦𝑛 ∙

𝑑𝑤

𝑑𝑥
……………………………………………(2) 

Step 4: Since we assumed that 𝑤 = 𝑦1−𝑛, then 

𝑦 = 𝑤(
1

1−𝑛
)
, and hence 𝑦𝑛 = 𝑤(

𝑛

1−𝑛
)
. 

Step 5: Substitute what we got above in 
𝑑𝑦

𝑑𝑥
+ 𝑔(𝑥)𝑦 = 𝑓(𝑥)𝑦𝑛 as follows: 

1

1 − 𝑛
𝑦𝑛 ∙

𝑑𝑤

𝑑𝑥
+ 𝑔(𝑥)𝑤

(
1

1−𝑛
)
= 𝑓(𝑥)𝑤

(
𝑛
1−𝑛

)
…… .……… . . (3) 

Step 6: Divide (3) by 
1

1−𝑛
𝑦𝑛 as follows: 

𝑑𝑤

𝑑𝑥
+
𝑔(𝑥)𝑤(

1
1−𝑛

)

1
1 − 𝑛 𝑦

𝑛
=
𝑓(𝑥)𝑤(

𝑛
1−𝑛

)

1
1 − 𝑛 𝑦

𝑛
 

𝑑𝑤

𝑑𝑥
+ 𝑔(𝑥)(1 − 𝑛)𝑤(

1
1−𝑛

)𝑦−𝑛 = 𝑓(𝑥)(1 − 𝑛)𝑤(
𝑛
1−𝑛

)𝑦−𝑛 

Step 7: After substitution, we obtain: 

𝑑𝑤

𝑑𝑥
+ 𝑔(𝑥)(1 − 𝑛)𝑦𝑦−𝑛 = 𝑓(𝑥)(1 − 𝑛)𝑦𝑛𝑦−𝑛 

𝑑𝑤

𝑑𝑥
+ 𝑔(𝑥)(1 − 𝑛)𝑦1−𝑛 = 𝑓(𝑥)(1 − 𝑛)𝑦𝑛−𝑛 

𝑑𝑤

𝑑𝑥
+ 𝑔(𝑥)(1 − 𝑛)𝑦1−𝑛 = 𝑓(𝑥)(1 − 𝑛)𝑦0 

𝑑𝑤

𝑑𝑥
+ 𝑔(𝑥)(1 − 𝑛)𝑦1−𝑛 = 𝑓(𝑥)(1 − 𝑛) 

Step 8: We substitute 𝑤 = 𝑦1−𝑛 in the above equation 

as follows: 

𝑑𝑤

𝑑𝑥
+ 𝑔(𝑥)(1 − 𝑛)𝑤 = 𝑓(𝑥)(1 − 𝑛) 
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Thus, the final solution is:  

𝑑𝑤

𝑑𝑥
+ (1 − 𝑛)𝑔(𝑥)𝑤 = (1 − 𝑛)𝑓(𝑥) 

In the following example, we will show how to use 

Bernoulli Method, and we will explore the relationship 

between Bernoulli Method and Integral Factor 

Method. 

Example 4.1.3 Given 𝑥𝑦′ + 3𝑥2𝑦 = (6𝑥2)𝑦3. Find the 

general solution for 𝑦(𝑥). (Hint: Use Bernoulli method 

and no need to find the value of 𝑐) 

Solution: Since 𝑥𝑦′ + 3𝑥2𝑦 = (6𝑥2)𝑦3 does not have 

constant coefficients, and it is a first order non-linear 

differential equation, then by using definition 4.1.2, we 

need to do the following by letting 𝑤 = 𝑦1−𝑛, where in 

this example 𝑛 = 3, and 𝑔(𝑥) = 3𝑥2 and 𝑓(𝑥) = 6𝑥2. 

Since we assumed that 𝑤 = 𝑦1−3 = 𝑦−2, then 

𝑦 = 𝑤(
1

1−𝑛
) = 𝑤(

1

1−3
) = 𝑤−

1

2 =
1

√𝑤
 , and 

𝑑𝑦

𝑑𝑥
= −

1

2
𝑦3 ∙

𝑑𝑤

𝑑𝑥
 

We substitute what we got above in 𝑥𝑦′ + 3𝑥2𝑦 =

(6𝑥2)𝑦3 as follows: 

𝑥 (−
1

2
𝑦3 ∙

𝑑𝑤

𝑑𝑥
) + 3𝑥2 (

1

√𝑤
) = (6𝑥2) (

1

𝑤√𝑤
)………… .… (1) 

Now, we divide (1) by −
1

2
𝑥𝑦3 as follows: 

𝑑𝑤

𝑑𝑥
+

3𝑥2 (
1

√𝑤
)

−
1
2𝑥𝑦

3
=
(6𝑥2)𝑦3

−
1
2𝑥𝑦

3
 

𝑑𝑤

𝑑𝑥
+ (−2)3𝑥 (

1

√𝑤
)𝑦−3 = (−2)6𝑥 ……………………… . (2) 
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Then, we substitute 𝑦 =
1

√𝑤
  in (2) as follows: 

𝑑𝑤

𝑑𝑥
+ (−2)3𝑥(𝑦)𝑦−3 = (−2)6𝑥 

𝑑𝑤

𝑑𝑥
+ (−2)3𝑥𝑦1−3 = (−2)6𝑥 

𝑑𝑤

𝑑𝑥
+ (−2)3𝑥𝑦−2 = (−2)6𝑥…………………………………(3) 

Now, we substitute 𝑤 = 𝑦−2 in (3) as follows: 

𝑑𝑤

𝑑𝑥
+ (−2)3𝑥𝑤 = (−2)6𝑥 

𝑑𝑤

𝑑𝑥
− 6𝑥𝑤 = −12𝑥 …………………………………… . . …… . (4) 

Then, we solve (4) for 𝑤(𝑥) as follows: 

To solve (4), we need to use the integral factor method: 

Hence, 𝐼 = 𝑒∫𝑔(𝑥)𝑑𝑥 = 𝑒∫−6𝑥 𝑑𝑥 = 𝑒−
6𝑥2

2 = 𝑒−3𝑥
2
 

The general solution for 𝑤(𝑥) is written as follows: 

𝑤 =
∫ 𝐼 ∙ 𝐹(𝑥) 𝑑𝑥

𝐼
 

𝑤 =
∫ 𝐼 ∙ (−12𝑥) 𝑑𝑥

𝐼
 

𝑤 =
∫𝑒−3𝑥

2
∙ (−12𝑥) 𝑑𝑥

𝑒−3𝑥
2  

𝑤 =
2∫𝑒−3𝑥

2
∙ (−6𝑥) 𝑑𝑥

𝑒−3𝑥
2  

𝑤 =
2𝑒−3𝑥

2
+ 𝑐

𝑒−3𝑥
2  

𝑤 =
2𝑒−3𝑥

2

𝑒−3𝑥
2 +

𝑐

𝑒−3𝑥
2 
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𝑤 = 2 +
𝑐

𝑒−3𝑥
2 

𝑤 = 2 + 𝑐𝑒3𝑥
2
 

The general solution for 𝑤(𝑥) is: 𝑤(𝑥) = 2 + 𝑐𝑒3𝑥
2
. 

Thus, the general solution for 𝑦(𝑥) is: 

𝑦(𝑥) =
1

√𝑤(𝑥)
=

1

√2 + 𝑐𝑒3𝑥
2
 

for some 𝑐 ∈ ℜ. 

4.2 Separable Method

In this section, we will solve some differential 

equations using a method known as Separable Method. 

This method is called separable because we separate 

two different terms from each other.   

Definition 4.2.1 The standard form of Separable 

Method  is written as follows: 

(𝐴𝑙𝑙 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑥)𝑑𝑥 − (𝐴𝑙𝑙 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑦)𝑑𝑦 = 0 

Note: it does not matter whether it is the above form or 

in the following form:   

(𝐴𝑙𝑙 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑦)𝑑𝑦 − (𝐴𝑙𝑙 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑥)𝑑𝑥 = 0 

Example 4.2.1 Solve the following differential 

equation: 
𝑑𝑦

𝑑𝑥
=

𝑦3

(𝑥+3)
 

Solution: By using definition 4.2.1, we need to rewrite 

the above equation in a way that each term is 

separated from the other term as follows: 
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𝑑𝑦

𝑑𝑥
=

𝑦3

(𝑥 + 3)
=

1
(𝑥 + 3)
1
𝑦3

…………………………………… . (1) 

Now, we need to do a cross multiplication for (1) as 

follows: 

1

𝑦3
𝑑𝑦 =

1

(𝑥 + 3)
𝑑𝑥 

1

𝑦3
𝑑𝑦 −

1

(𝑥 + 3)
𝑑𝑥 = 0…………………………… .…………(2) 

Then, we integrate both sides of (2) as follows: 

∫(
1

𝑦3
𝑑𝑦 −

1

(𝑥 + 3)
𝑑𝑥) = ∫0 

∫(
1

𝑦3
) 𝑑𝑦 − ∫(

1

(𝑥 + 3)
) 𝑑𝑥 = 𝑐 

∫(𝑦−3)𝑑𝑦 −∫(
1

(𝑥 + 3)
) 𝑑𝑥 = 𝑐 

−
1

2
𝑦−2 − ln (|(𝑥 + 3)|) = 𝑐 

Thus, the general solution is :  

−
1

2
𝑦−2 − ln (|(𝑥 + 3)|) = 𝑐 

Example 4.2.2 Solve the following differential 

equation: 
𝑑𝑦

𝑑𝑥
= 𝑒3𝑦+2𝑥 

Solution: By using definition 4.2.1, we need to rewrite 

the above equation in a way that each term is 

separated from the other term as follows: 
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𝑑𝑦

𝑑𝑥
= 𝑒3𝑦+2𝑥 = 𝑒3𝑦 ∙ 𝑒2𝑥 =

𝑒2𝑥

𝑒−3𝑦
…………………………… . (1) 

Now, we need to do a cross multiplication for (1) as 

follows: 

𝑒−3𝑦𝑑𝑦 = 𝑒2𝑥𝑑𝑥 

𝑒−3𝑦𝑑𝑦 − 𝑒2𝑥𝑑𝑥 = 0………………………………… .………(2) 

Then, we integrate both sides of (2) as follows: 

∫(𝑒−3𝑦𝑑𝑦 − 𝑒2𝑥𝑑𝑥) = ∫0 

∫(𝑒−3𝑦)𝑑𝑦 − ∫(𝑒2𝑥) 𝑑𝑥 = 𝑐 

−
1

3
𝑒−3𝑦 −

1

2
𝑒2𝑥 = 𝑐 

Thus, the general solution is :  

−
1

3
𝑒−3𝑦 −

1

2
𝑒2𝑥 = 𝑐 

4.3 Exact Method 

In this section, we will solve some differential 

equations using a method known as Exact Method. In 

other words, this method is called the Anti-Implicit 

Derivative Method. 

Definition 4.3.1 The standard form of Exact Method  is 

written as follows: 

𝑑𝑦

𝑑𝑥
= −

𝐹𝑥
𝐹𝑦
………………………………………………… .…… (1) 
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Then, we solve  (1) to find 𝐹(𝑥, 𝑦), and our general 

solution will be as follows: 𝐹(𝑥, 𝑦) = 𝑐 for some constant 

𝑐 ∈ ℜ. In other words, the standard form for exact first 

order differential equation is: 𝐹𝑦𝑑𝑦 + 𝐹𝑥𝑑𝑥 = 0, and it is 

considered exact if 𝐹𝑥𝑦 = 𝐹𝑦𝑥. 

Note: 𝐹𝑥(𝑥, 𝑦) is defined as the first derivative with 

respect to 𝑥 and considering 𝑦 as a constant, while 

𝐹𝑦(𝑥, 𝑦) is defined as the first derivative with respect to 

𝑦 and considering 𝑥 as a constant. 

Example 4.3.1 Given 𝑥2 + 𝑦2 − 4 = 0. Find 
𝑑𝑦

𝑑𝑥
 . 

Solution: By using definition 4.3.1, we first find 𝐹𝑥(𝑥, 𝑦) 

by finding the first derivative with respect to 𝑥 and 

considering 𝑦 as a constant as follows: 𝐹𝑥(𝑥, 𝑦) = 2𝑥. 

Then, we find 𝐹𝑦(𝑥, 𝑦) by finding the first derivative 

with respect to 𝑦 and considering 𝑥 as a constant as 

follows: 𝐹𝑦(𝑥, 𝑦) = 2𝑦.  

Thus, 
𝑑𝑦

𝑑𝑥
= −

𝐹𝑥

𝐹𝑦
= −

2𝑥

2𝑦
= −

𝑥

𝑦
 . 

Example 4.3.2 Given 𝑦3𝑒𝑥 + 3𝑥𝑦2 − 𝑥3 + 𝑥𝑦 − 13 = 0. 

Find 
𝑑𝑦

𝑑𝑥
 . 

Solution: By using definition 4.3.1, we first find 𝐹𝑥(𝑥, 𝑦) 

by finding the first derivative with respect to 𝑥 and 

considering 𝑦 as a constant as follows: 

𝐹𝑥(𝑥, 𝑦) = 𝑦3𝑒𝑥 + 3𝑦2 − 3𝑥2 + 𝑦. 

Then, we find 𝐹𝑦(𝑥, 𝑦) by finding the first derivative 

with respect to 𝑦 and considering 𝑥 as a constant as 

follows: 𝐹𝑦(𝑥, 𝑦) = 3𝑦2𝑒𝑥 + 6𝑥𝑦 + 𝑥.  

Thus, 
𝑑𝑦

𝑑𝑥
= −

𝐹𝑥

𝐹𝑦
= −

(𝑦3𝑒𝑥+3𝑦2−3𝑥2+𝑦)

(3𝑦2𝑒𝑥+6𝑥𝑦+𝑥)
 . 
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Example 4.3.3 Solve the following differential 

equation: (−3𝑥 + 𝑦)𝑑𝑦 − (5𝑥 + 3𝑦)𝑑𝑥 = 0 

Solution: First of all, we need to check for the exact 

method as follows: We rewrite the above differential 

equation according to definition 4.3.1: 

(−3𝑥 + 𝑦)𝑑𝑦 + −(5𝑥 + 3𝑦)𝑑𝑥 = 0 

(−3𝑥 + 𝑦)𝑑𝑦 + (−5𝑥 − 3𝑦)𝑑𝑥 = 0………………… .…… . (1) 

Thus, from the above differential equation, we obtain:  

𝐹𝑥(𝑥, 𝑦) = (−5𝑥 − 3𝑦) and 𝐹𝑦(𝑥, 𝑦) = (−3𝑥 + 𝑦) 

Now, we need to check for the exact method by finding 

𝐹𝑥𝑦(𝑥, 𝑦) = 𝐹𝑦𝑥(𝑥, 𝑦) as follows: 
We first find 𝐹𝑥𝑦(𝑥, 𝑦) by finding the first derivative of 

𝐹𝑥(𝑥, 𝑦) with respect to 𝑦 and considering 𝑥 as a 

constant as follows:  

𝐹𝑥𝑦(𝑥, 𝑦) = −3 

Then, we find 𝐹𝑦𝑥(𝑥, 𝑦) by finding the first derivative of 

𝐹𝑦(𝑥, 𝑦) with respect to 𝑥 and considering 𝑦 as a 

constant as follows:  

𝐹𝑦𝑥(𝑥, 𝑦) = −3 

Since 𝐹𝑥𝑦(𝑥, 𝑦) = 𝐹𝑦𝑥(𝑥, 𝑦) = −3, then we can use the 

exact method. 

Now, we choose either 𝐹𝑥(𝑥, 𝑦) = (−5𝑥 − 3𝑦) or 

𝐹𝑦(𝑥, 𝑦) = (−3𝑥 + 𝑦), and then we integrate. We will 

choose 𝐹𝑦(𝑥, 𝑦) = (−3𝑥 + 𝑦) and we will integrate it as 

follows: 

∫𝐹𝑦(𝑥, 𝑦)𝑑𝑦 = ∫(−3𝑥 + 𝑦)𝑑𝑦 = −3𝑥𝑦 +
1

2
𝑦2 + 𝐷(𝑥)… (2) 

𝐹(𝑥, 𝑦) = −3𝑥𝑦 +
1

2
𝑦2 + 𝐷(𝑥) 

We need to find 𝐷(𝑥) as follows: 
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Since we selected 𝐹𝑦(𝑥, 𝑦) = (−3𝑥 + 𝑦) previously for 

integration, then we need to find 𝐹𝑥(𝑥, 𝑦) for (2) as 

follows: 

𝐹𝑥(𝑥, 𝑦) = −3𝑦 + 𝐷′(𝑥)……………………… . . …………… . (3) 

Now, we substitute 𝐹𝑥(𝑥, 𝑦) = (−5𝑥 − 3𝑦) in (3) as 

follows: 

(−5𝑥 − 3𝑦) = −3𝑦 + 𝐷′(𝑥) 

𝐷′(𝑥) = −5𝑥 − 3𝑦 + 3𝑦 = −5𝑥…………………………… . (4) 

Then, we integrate both sides of (4) as follows: 

∫𝐷′(𝑥)𝑑𝑥 = ∫−5𝑥𝑑𝑥 

𝐷(𝑥) = ∫−5𝑥𝑑𝑥 = −
5

2
𝑥2 

Thus, the general solution of the exact method is : 

𝐹(𝑥, 𝑦) = 𝑐 

−3𝑥𝑦 +
1

2
𝑦2 +−

5

2
𝑥2 = 𝑐 

4.4 Reduced to Separable 

Method 

In this section, we will solve some differential 

equations using a method known as Reduced to 

Separable Method.  

Definition 4.4.1 The standard form of Reduced to 

Separable Method is written as follows: 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑎𝑥 + 𝑏𝑦 + 𝑐) where 𝑎, 𝑏 ≠ 0. 

Example 4.4.1 Solve the following differential 

equation: 
𝑑𝑦

𝑑𝑥
=

sin (5𝑥+𝑦)

𝑐𝑜𝑠(5𝑥+𝑦)−2sin (5𝑥+𝑦)
− 5.  



Copyright © 2015 Mohammed K A Kaabar                       All Rights Reserved 

 
 

93 
 

Solution: By using definition 4.4.1, we first let 𝑢 = 5𝑥 +

𝑦, and then, we need to find the first derivative of both 

sides of 𝑢 = 5𝑥 + 𝑦. 

𝑑𝑢

𝑑𝑥
= 5 +

𝑑𝑦

𝑑𝑥
……………………………………………………(1) 

Now, we solve (1) for 
𝑑𝑦

𝑑𝑥
 as follows: 

𝑑𝑦

𝑑𝑥
=
𝑑𝑢

𝑑𝑥
− 5……………………………………………………(2) 

Then, we substitute 𝑢 = 5𝑥 + 𝑦 and (2) in 
𝑑𝑦

𝑑𝑥
=

sin (5𝑥+𝑦)

𝑐𝑜𝑠(5𝑥+𝑦)−2sin (5𝑥+𝑦)
− 5 as follows: 

𝑑𝑢

𝑑𝑥
− 5 =

sin (𝑢)

𝑐𝑜𝑠(𝑢) − 2sin (𝑢)
− 5 

𝑑𝑢

𝑑𝑥
=

sin (𝑢)

𝑐𝑜𝑠(𝑢) − 2sin (𝑢)
………………………………………(3) 

Now, we can use the separable method to solve (3) as 

follows: 

By using definition 4.2.1, we need to rewrite (3) in a 

way that each term is separated from the other term 

as follows: 

𝑑𝑢

𝑑𝑥
=

sin (𝑢)

𝑐𝑜𝑠(𝑢) − 2sin (𝑢)
=

1

𝑐𝑜𝑠(𝑢) − 2sin (𝑢)
sin (𝑢)

………… .… . (4) 

Now, we need to do a cross multiplication for (4) as 

follows: 

𝑐𝑜𝑠(𝑢) − 2sin (𝑢)

sin (𝑢)
𝑑𝑢 = 1𝑑𝑥 

𝑐𝑜𝑠(𝑢) − 2sin (𝑢)

sin (𝑢)
𝑑𝑢 − 1𝑑𝑥 = 0……………………………(5) 

Then, we integrate both sides of (5) as follows: 

∫(
𝑐𝑜𝑠(𝑢) − 2sin (𝑢)

sin (𝑢)
𝑑𝑢 − 1𝑑𝑥) = ∫0 
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∫(
𝑐𝑜𝑠(𝑢) − 2sin (𝑢)

sin (𝑢)
) 𝑑𝑢 − ∫(1) 𝑑𝑥 = 𝑐 

∫(
𝑐𝑜𝑠(𝑢)

sin (𝑢)
−
2 sin(𝑢)

sin (𝑢)
)𝑑𝑢 − 𝑥 = 𝑐 

∫(
𝑐𝑜𝑠(𝑢)

sin (𝑢)
− 2)𝑑𝑢 − 𝑥 = 𝑐 

ln(|sin(𝑢)|) − 2𝑢 − 𝑥 = 𝑐 …………………………… . . …… . (6) 

Now, we substitute 𝑢 = 5𝑥 + 𝑦 in (6) as follows: 

ln(|sin(5𝑥 + 𝑦)|) − 2(5𝑥 + 𝑦) − 𝑥 = 𝑐 

Thus, the general solution is :  

ln(|sin(5𝑥 + 𝑦)|) − 2(5𝑥 + 𝑦) − 𝑥 = 𝑐 

4.5 Reduction of Order 

Method

In this section, we will solve differential equations 

using a method called Reduction of Order Method.  

Definition 4.5.1 Reduction of Order Method is valid 

method only for second order differential equations, 

and one solution to the homogenous part must be 

given. For example, given (𝑥 + 1)𝑦(2)(𝑥) − 𝑦′(𝑥) = 0, 

and 𝑦1(𝑥) = 1. To find 𝑦2(𝑥), the differential equation 

must be written in the standard form (Coefficient of 

𝑦(2) must be 1) as follows: 
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(𝑥 + 1)

(𝑥 + 1)
𝑦(2)(𝑥) −

𝑦′(𝑥)

(𝑥 + 1)
=

0

(𝑥 + 1)
 

1𝑦(2)(𝑥) −
𝑦′(𝑥)

(𝑥 + 1)
= 0 

𝑦(2)(𝑥) +
−1

(𝑥 + 1)
𝑦′(𝑥) = 0…………………………………(1) 

Now, let 𝑀(𝑥) =
−1

(𝑥+1)
 , and substitute it in (1) as 

follows: 

𝑦(2)(𝑥) + 𝑀(𝑥)𝑦′(𝑥) = 0 

Hence, 𝑦2(𝑥) is written as follows: 

𝑦2(𝑥) = 𝑦1(𝑥) ∙ ∫
𝑒∫−𝑀(𝑥)𝑑𝑥

𝑦12(𝑥)
𝑑𝑥 

In our example, 𝑦2(𝑥) = 1 ∙ ∫
𝑒
∫

1
(𝑥+1)

𝑑𝑥

(1)2
𝑑𝑥 = 

1 ∙ ∫
𝑒ln(𝑥+1)

1
𝑑𝑥 = ∫𝑒ln(𝑥+1) 𝑑𝑥 = ∫(𝑥 + 1) 𝑑𝑥 =

1

2
𝑥2 + 𝑥. 

Thus, the homogenous solution is written as follows: 

𝑦ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠(𝑥) = 𝑐1 + 𝑐2 (
1

2
𝑥2 + 𝑥), for some 𝑐1, 𝑐2 ∈ ℜ. 

Example 4.5.1 Given the following differential 

equation: 𝑥𝑦(2)(𝑥) + (𝑥 + 1)𝑦′(𝑥) − (2𝑥 + 1)𝑦 = 𝑥𝑒7𝑥, 

and 𝑦1(𝑥) = 𝑒
𝑥 is a solution to the associated 

homogenous part. Find 𝑦ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠(𝑥)? (Hint: Find first 

𝑦2(𝑥), and then write 𝑦ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠(𝑥)) 

Solution: By using definition 4.5.1, To find 𝑦2(𝑥), the 

differential equation must be equal to zero and must 
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also be written in the standard form (Coefficient of 𝑦(2) 

must be 1) as follows: 

We divide both sides of 

𝑥𝑦(2)(𝑥) + (𝑥 + 1)𝑦′(𝑥) − (2𝑥 + 1)𝑦 = 0 by 𝑥 as follows: 

𝑥

𝑥
𝑦(2)(𝑥) +

(𝑥 + 1)

𝑥
𝑦′(𝑥) −

2𝑥 + 1

𝑥
𝑦 =

0

𝑥
 

1𝑦(2)(𝑥) +
(𝑥 + 1)

𝑥
𝑦′(𝑥) −

2𝑥 + 1

𝑥
𝑦 = 0………… .………(1) 

Now, let (𝑥) =
(𝑥+1)

𝑥
= (1 +

1

𝑥
) , and substitute it in (1) 

as follows: 

𝑦(2)(𝑥) +𝑀(𝑥)𝑦′(𝑥) −
2𝑥 + 1

𝑥
𝑦 = 0 

Hence, 𝑦2(𝑥) is written as follows: 

𝑦2(𝑥) = 𝑦1(𝑥) ∙ ∫
𝑒∫−𝑀(𝑥)𝑑𝑥

𝑦12(𝑥)
𝑑𝑥 

In example 4.5.1, 𝑦2(𝑥) = 𝑒
𝑥 ∙ ∫

𝑒
∫(1+

1
𝑥
)𝑑𝑥

(𝑒𝑥)2
𝑑𝑥 = 

𝑒𝑥 ∙ ∫
𝑒−𝑥 ∙ 𝑒ln(

1
𝑥
) 

𝑒2𝑥
𝑑𝑥 = 𝑒𝑥 ∙ ∫

𝑒−3𝑥

𝑥
𝑑𝑥 

Since it is impossible to integrate 𝑒𝑥 ∙ ∫
𝑒−3𝑥

𝑥
𝑑𝑥, then it 

is enough to write it as: 𝑒𝑥 ∙ ∫
𝑒−3𝑡

𝑡

𝑥

0
𝑑𝑡. 

Therefore, 𝑦2(𝑥) = 𝑒
𝑥 ∙ ∫

𝑒−3𝑡

𝑡

𝑥

0
𝑑𝑡. 

Thus, the homogenous solution is written as follows: 

𝑦ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠(𝑥) = 𝑐1𝑒
𝑥 + 𝑐2 (𝑒

𝑥 ∙ ∫
𝑒−3𝑡

𝑡

𝑥

0
𝑑𝑡), for some 

𝑐1, 𝑐2 ∈ ℜ. 
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4.6 Exercises

1.  Given (𝑥 + 1)𝑦′ + 𝑥𝑦 =
(𝑥+1)4

𝑦2
. Find the general 

solution for 𝑦(𝑥). (Hint: Use Bernoulli method and no 

need to find the value of 𝑐) 

2.  Given 𝑥′ + 3𝑦𝑥 = 3𝑦3. Find the general solution for 

𝑦(𝑥). (Hint: Use Bernoulli method and no need to find 

the value of 𝑐) 

3.  Solve the following differential equation: 
𝑑𝑦

𝑑𝑥
=

1+𝑦2

1+𝑥2
 

4.  Solve the following differential equation: 
𝑑𝑦

𝑑𝑥
=

1

3𝑥+𝑥2𝑦
 

5.  Solve the following differential equation: 

𝑑𝑦

𝑑𝑥
= 3𝑥𝑒(𝑥+5𝑦) 

6.  Solve the following differential equation: 

(𝑒𝑥𝑦 + 3𝑦𝑥 − 2)𝑑𝑦 + (
1

2
𝑒𝑥𝑦2 +

3

2
𝑦2 + 𝑥2) 𝑑𝑥 = 0 

7.  Solve the following differential equation: 

𝑑𝑦

𝑑𝑥
=

sin (5𝑥 + 𝑦)

𝑐𝑜𝑠(5𝑥 + 𝑦) − 2sin (5𝑥 + 𝑦)
− 5 

8.  Given the following differential equation: 

(𝑥 + 1)𝑦(2)(𝑥) − 𝑦′(𝑥) = 10, and 𝑦1(𝑥) = 1 is a solution 

to the associated homogenous part. Find 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥)? 
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Chapter 5 

Applications of Differential 

Equations 

In this chapter, we give examples of three different 

applications of differential equations: temperature, 

growth and decay, and water tank. In each section, we 

give one example of each of the above applications, and 

we discuss how to use what we have learned previously 

in this book to solve each problem.  

5.1 Temperature Application

In this section, we give an example of temperature 

application, and we introduce how to use one of the 

differential equations methods to solve it. 

Example 5.1.1 Thomas drove his car from Pullman, 

WA to Olympia, WA, and the outside air temperature 

was constant 104℉. During his trip, he took a break at 

Othello, WA gas station, and then he switched off the 

engine of his car, and checked his car temperature 

gauge, and it was 144℉. After ten minutes, Thomas 

checked his car temperature gauge, and it was 136℉. 
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a) How long will it take for the temperature of the 

engine to cool to 117℉? 

b) What will be the temperature of the engine 30 

minutes from now? 

Solution: Part a: To determine how long will it take for 

the temperature of the engine to cool to 117℉, we need 

to do the following: 

Assume that 𝑇(𝑡) is the temperature of engine at the 

time 𝑡, and 𝑇0 is the constant outside air temperature.  

Now, we need to write the differential equation for this 

example as follows: 

𝑑𝑇

𝑑𝑡
= 𝛽(𝑇 − 𝑇0)……………………………… . . ………………(1) 

where 𝛽 is a constant. 

From (1), we can write as follows: 

𝑇′ = 𝛽𝑇 − 𝛽𝑇0 

𝑇′ − 𝛽𝑇 = −𝛽𝑇0……………………………………………… . (2) 

From this example, it is given the following: 

𝑇(0) = 144℉, 𝑇(10) = 136℉, and 𝑇0 = 104℉ 

From (2), −𝛽𝑇0 is constant, and the dependent variable 

is 𝑇, while the independent variable is the time 𝑡. 

By substituting 𝑇0 = 104℉ in (2), we obtain: 

𝑇′ − 𝛽𝑇 = −104𝛽 …………………………………………… . (3) 

Since (3) is a first order linear differential equation, 

then by using definition 4.1.1, we need to use the 
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integral factor method by letting 𝐼 = 𝑒∫𝑔(𝑡)𝑑𝑡, where 

𝑔(𝑡) = −𝛽 and 𝐹(𝑡) = −104𝛽. 

Hence, 𝐼 = 𝑒∫𝑔(𝑡)𝑑𝑡 = 𝑒∫−𝛽 𝑑𝑡 = 𝑒−𝛽𝑡. 

The general solution is written as follows: 

𝑇(𝑡) =
∫ 𝐼 ∙ 𝐹(𝑡) 𝑑𝑡

𝐼
 

𝑇(𝑡) =
∫ 𝑒−𝛽𝑡 ∙ (−104𝛽) 𝑑𝑡

𝑒−𝛽𝑡
 

𝑇(𝑡) =
∫(−104𝛽)𝑒−𝛽𝑡 𝑑𝑡

𝑒−𝛽𝑡
 

𝑇(𝑡) =
104𝑒−𝛽𝑡 + 𝑐

𝑒−𝛽𝑡
 

𝑇(𝑡) =
104𝑒−𝛽𝑡

𝑒−𝛽𝑡
+

𝑐

𝑒−𝛽𝑡
 

𝑇(𝑡) = 104 +
𝑐

𝑒−𝛽𝑡
 

𝑇(𝑡) = 104 + 𝑐𝑒𝛽𝑡…………………………………………… . (4) 

The general solution is: 𝑇(𝑡) = 104 + 𝑐𝑒𝛽𝑡 for some 𝑐 ∈

ℜ.  

Now, we need to find 𝑐 by substituting 𝑇(0) = 144℉ in 

(4) as follows: 

𝑇(0) = 104 + 𝑐𝑒𝛽(0) 

144 = 104 + 𝑐𝑒0 

144 = 104 + 𝑐(1) 

144 = 104 + 𝑐 

𝑐 = 144 − 104 = 40 

Thus, 𝑇(𝑡) = 104 + 40𝑒𝛽𝑡…………………… . . ………… . . (5) 
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By substituting 𝑇(10) = 136℉ in (5), we obtain: 

𝑇(10) = 104 + 40𝑒𝛽(10) 

136 = 104 + 40𝑒𝛽(10) 

136 − 104 = 40𝑒𝛽(10) 

32 = 40𝑒𝛽(10) 

𝑒𝛽(10) =
32

40
= 0.8…………………………………………… . (6) 

By taking the natural logarithm for both sides of (6), 

we obtain: 

𝑙𝑛( 𝑒𝛽(10)) = 𝑙𝑛 (0.8) 

𝛽(10) = 𝑙𝑛 (0.8) 

𝛽 =
𝑙 𝑛(0.8)

10
= −0.0223………………………… .………… . (7) 

Now, we substitute (7) in (5) as follows: 

𝑇(𝑡) = 104 + 40𝑒−0.0223𝑡……………… .………… .……… . (8) 

Then, we need to find the time 𝑡 when 𝑇(𝑡) = 117℉ by 

substituting it in (8) as follows: 

117 = 104 + 40𝑒−0.0223(t) 

117 − 104 = 40𝑒−0.0223(t) 

3 = 40𝑒−0.0223(t) 

𝑒−0.0223(t) =
3

40
= 0.075…………………………………… . . (9) 

By taking the natural logarithm for both sides of (9), 

we obtain: 

𝑙𝑛(𝑒−0.0223(𝑡)) = 𝑙𝑛 (0.075) 

−0.0223(𝑡) = 𝑙𝑛 (0.075) 
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𝑡 =
𝑙 𝑛(0.075)

−0.0223
≈ 116.16 minutes 

Thus, the temperature of the engine will take 

approximately 116.16 minutes to cool to 117℉  

Part b: To determine what will be the temperature of 

the engine 30 minutes from now, we need to do the 

following: 

We assume that 𝑡 = 30, and then we substitute it in 

(8) as follows: 

𝑇(30) = 104 + 40𝑒−0.0223(30) 

𝑇(30) ≈ 124.49℉ 

Thus, the temperature of the engine 30 minutes from 

now will be approximately 124.49℉. 

5.2 Growth and Decay 

Application 

In this section, we give an example of growth and 

decay application, and we introduce how to use one of 

the differential equations methods to solve it. 

Example 5.2.1 The rate change of number of students 

at Washington State University (WSU) is proportional 

to the square root of the number of students at any 

time 𝑡. If the number of WSU students in 2013 was 

28,686 students2, and suppose that the number of 

students at WSU after one year was 32,000 students. 
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a) How long will it take to double number of WSU 

students in 2013? 

b) What will be the number of WSU students in 

2018? 

Solution: Part a: To determine how long will it take to 

double number of WSU students in 2013, we need to do 

the following: 

Assume that 𝑊(𝑡) is the number of WSU students at 

any time 𝑡.  

Now, we need to write the differential equation for this 

example as follows: 

𝑑𝑊

𝑑𝑡
= 𝛽√𝑊(𝑡)…………… .… . . …………… . . ………………(1) 

where 𝛽 is a constant. 

From (1), we can write as follows: 

𝑊′ = 𝛽√𝑊(𝑡)………………………………………………… . (2) 

From this example, it is given the following: 

𝑊(0) = 28,686, and 𝑊(1) = 32,000. 

From (2), the dependent variable is 𝑊, while the 

independent variable is the time 𝑡. 

To solve (1), we need to use separable method as 

follows: 

By using definition 4.2.1, we need to rewrite (1) in a 

way that each term is separated from the other term 

as follows: 



Copyright © 2015 Mohammed K A Kaabar                       All Rights Reserved 

 

104  M. Kaabar 
 

𝑑𝑊

𝑑𝑡
= 𝛽√𝑊(𝑡) =

𝛽

𝑊−
1
2

……………………………………… . (3) 

Now, we need to do a cross multiplication for (3) as 

follows: 

(𝑊−
1
2) 𝑑𝑊 = 𝛽𝑑𝑡 

(𝑊−
1
2) 𝑑𝑊 − 𝛽𝑑𝑡 = 0…………………………… . . …………(4) 

Then, we integrate both sides of (4) as follows: 

∫((𝑊−
1
2)𝑑𝑊 − 𝛽𝑑𝑡) = ∫0 

∫(𝑊−
1
2)𝑑𝑊 −∫(𝛽)𝑑𝑡 = 𝑐 

2𝑊
1
2 − 𝛽𝑡 = 𝑐 

Thus, the general solution is :  

2𝑊
1
2 − 𝛽𝑡 = 𝑐………………………………………………… . (5) 

for some 𝑐 ∈ ℜ. 

Then, we rewrite (5) as follows: 

2𝑊
1
2 = 𝑐 + 𝛽𝑡 

𝑊
1
2 =

𝑐 + 𝛽𝑡

2
…………………………………………… . . …… . (6) 

We square both sides of (6) as follows: 

𝑊(𝑡) = (
𝑐 + 𝛽𝑡

2
)
2

………………………………… .……… .… (7) 
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Now, we need to find 𝑐 by substituting 𝑊(0) = 28,686 

in (7) as follows: 

𝑊(0) = (
𝑐 + 𝛽(0)

2
)
2

 

28,686 = (
𝑐 + 0

2
)
2

 

28,686 = (
𝑐

2
)
2

 

28,686 =
𝑐2

4
 

𝑐2 = 4(28,686) 

𝑐 = √4(28,686) 

𝑐 ≈ 338.74 

Thus, 𝑊(𝑡) = (
338.74+𝛽𝑡

2
)
2

…………………… . . ………… . . (8) 

By substituting 𝑊(1) = 32,000 in (8), we obtain: 

𝑊(𝑡) = (
338.74 + 𝛽

2
)
2

 

32,000 = (
(338.74)2 + 2(338.74)𝛽 + 𝛽2

4
) 

(338.74)2 + 2(338.74)𝛽 + 𝛽2 = 4(32,000) 

2(338.74)𝛽 + 𝛽2 = 4(32,000) − (338.74)2 

𝛽2 + 2(338.74)𝛽 − 13,255.2124 = 0 

Thus, 𝛽 ≈ 63,661.26…………………………… . . ………… . (9) 

Now, we substitute (9) in (8) as follows: 

𝑊(𝑡) = (
338.74 + (63,661.26)𝑡

2
)
2

…… .………… .…… . (10) 

 Then, we need to find the time 𝑡 when 
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𝑊(𝑡) = 2(28,686) = 57,372 by substituting it in (10) as 

follows: 

57,372 = (
338.74 + (63,661.26)𝑡

2
)
2

 

(338.74)2 + 2(338.74)(63,661.26)𝑡 + 𝑡2 = 4(57,372) 

𝑡2 + 2(338.74)(63,661.26)𝑡 − 114,743.2124 = 0 

𝑡 ≈ 0.00266 years 

Thus, it will take approximately 0.00266 years to 

double the number of WSU students in 2013. 

Part b: To determine what will be number of WSU 

students in 2018, we need to do the following: 

We assume that 𝑡 = 2018, and then we substitute it in 

(10) as follows: 

𝑊(2018) = (
338.74 + (63,661.26)(2018)

2
)

2

 

𝑊(2018) ≈ 4.126 × 1015 students 

Thus, the number of WSU students will be 

approximately 4.126 × 1015 students in 2018. 

5.3 Water Tank Application

In this section, we give an example of water tank 

application, and we introduce how to use one of the 

differential equations methods to solve it. 

Example 5.3.1 One of the most beautiful places at 

Washington State University campus is known as 

WSU Water Tower. Assume thatWSU Water Tower 
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has a tank that contains initially 350 gallons of 

purified water, given that when 𝑡 = 0, the amount of 

minerals is 5 bound. Suppose that there is a mixture of 

minerals containing 0.2 bound of minerals per gallon is 

poured into the tank at rate of 5 gallons per minute, 

while the mixture of minerals goes out of the tank at 

rate of 2 gallons per minute. 

a) What is the amount of minerals in the tank of 

WSU Water Tower at any time 𝑡? 

b) What is the concentration of minerals in the 

tank of WSU Water Tower at 𝑡 = 34 minutes? 

Solution: Part a: To determine the amount of minerals 

in the tank of WSU Water Tower at any time 𝑡, we 

need to do the following: 

Assume that 𝑊(𝑡) is the amount of minerals at any 

time 𝑡, and 𝑀(𝑡) is the concentration of minerals in the 

tank at any time 𝑡. 𝑀(𝑡) is written in the following 

form: 

𝑀(𝑡) =
𝑇ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑀𝑖𝑛𝑒𝑟𝑎𝑙𝑠

𝑇ℎ𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑃𝑢𝑟𝑖𝑓𝑖𝑒𝑑 𝑊𝑎𝑡𝑒𝑟

=
𝑊(𝑡)

𝑃𝑢𝑟𝑖𝑓𝑖𝑒𝑑 𝑊𝑎𝑡𝑒𝑟 + ((𝐼𝑛𝑛𝑒𝑟 𝑅𝑎𝑡𝑒 − 𝑂𝑢𝑡𝑒𝑟 𝑅𝑎𝑡𝑒)𝑡)
… (1) 

From this example, it is given the following: 

𝑊(0) = 5 𝑏𝑜𝑢𝑛𝑑𝑠, 𝐼𝑛𝑛𝑒𝑟 𝑅𝑎𝑡𝑒 = 5 gallons/minute, and 

𝑂𝑢𝑡𝑒𝑟 𝑅𝑎𝑡𝑒 = 2 gallons/minute. 
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Now, we need to rewrite our previous equation for this 

example by substituting what is given in the example 

itself in (1) as follows: 

𝑀(𝑡) =
𝑊(𝑡)

350 + ((5 − 3)𝑡)
=

𝑊(𝑡)

350 + 2𝑡
……………… . , ……(2) 

From (2), we can write the differential equation as 

follows: 

𝑑𝑊

𝑑𝑡
= 0.2 ∙ 𝐼𝑛𝑛𝑒𝑟 𝑅𝑎𝑡𝑒 − 𝑀(𝑡) ∙ 𝑂𝑢𝑡𝑒𝑟 𝑅𝑎𝑡𝑒 

𝑑𝑊

𝑑𝑡
= 0.2 ∙ (5) − (

𝑊(𝑡)

350 + 2𝑡
) ∙ (2)………………………… . (3) 

From (3), the dependent variable is 𝑊, while the 

independent variable is the time 𝑡. Then, we rewrite 

(3) as follows: 

𝑊′(𝑡) = 0.2 ∙ (5) − (
𝑊(𝑡)

350 + 2𝑡
) ∙ (2) 

𝑊′(𝑡) = 1 − (2) (
𝑊(𝑡)

350 + 2𝑡
) 

𝑊′(𝑡) + (
2

350 + 2𝑡
)𝑊(𝑡) = 1………………… . . ………… . (4) 

Since (4) is a first order linear differential equation, 

then by using definition 4.1.1, we need to use the 

integral factor method by letting 𝐼 = 𝑒∫𝑔(𝑡)𝑑𝑡, where 

𝑔(𝑡) = (
2

350+2𝑡
) and 𝐹(𝑡) = 1. 

𝐼 = 𝑒∫𝑔(𝑡)𝑑𝑡 = 𝑒∫(
2

350+2𝑡
) 𝑑𝑡 = 𝑒ln (350+2𝑡) = (350 + 2𝑡).  

The general solution is written as follows: 
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𝑊(𝑡) =
∫ 𝐼 ∙ 𝐹(𝑡) 𝑑𝑡

𝐼
 

𝑊(𝑡) =
∫(350 + 2𝑡) ∙ (1) 𝑑𝑡

(350 + 2𝑡)
 

𝑊(𝑡) =
∫(350 + 2𝑡) 𝑑𝑡

(350 + 2𝑡)
 

𝑊(𝑡) =
350𝑡 + 𝑡2 + 𝑐

(350 + 2𝑡)
 

𝑊(𝑡) = (
350𝑡

(350 + 2𝑡)
+

𝑡2

(350 + 2𝑡)
+

𝑐

(350 + 2𝑡)
) … . . . . . (5) 

The general solution is: 

𝑊(𝑡) = (
350𝑡

(350+2𝑡)
+

𝑡2

(350+2𝑡)
+

𝑐

(350+2𝑡)
) for some 𝑐 ∈ ℜ.  

Now, we need to find 𝑐 by substituting 

𝑊(0) = 5 bounds in (5) as follows: 

𝑊(0) = (
350(0)

(350 + 2(0))
+

(0)2

(350 + 2(0))
+

𝑐

(350 + 2(0))
) 

5 = (0 + 0 +
𝑐

(350 + 2(0))
) 

5 = (
𝑐

350
) 

𝑐 = (5)(350) = 1750 

Thus, 𝑊(𝑡) = (
350𝑡

(350+2𝑡)
+

𝑡2

(350+2𝑡)
+

1750

(350+2𝑡)
) . ………… . . (6) 

The amount of minerals in the tank of WSU Water 

Tower at any time 𝑡 is: 

𝑊(𝑡) = (
350𝑡

(350 + 2𝑡)
+

𝑡2

(350 + 2𝑡)
+

1750

(350 + 2𝑡)
) 
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Part b: To determine the concentration of minerals in 

the tank of WSU Water Tower at 𝑡 = 34 minutes, we 

need to do the following: 

We substitute 𝑡 = 34 minutes in (6) as follows: 

𝑊(34) = (
350(34) + (34)2 + 1750

(350 + 2(34))
) ≈ 35.42 

Thus, the concentration of minerals in the tank of 

WSU Water Tower at 𝑡 = 34 minutes is 

approximately 35.42 minutes. 
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Appendices 

Review of Linear Algebra 

Appendix A: Determinants*

*The materials of appendix A are taken from section 

1.7 in my published book titled A First Course in 

Linear Algebra: Study Guide for the Undergraduate 

Linear Algebra Course, First Edition1. 

In this section, we introduce step by step for finding 

determinant of a certain matrix. In addition, we 

discuss some important properties such as invertible 

and non-invertible. In addition, we talk about the 

effect of row-operations on determinants. 

Definition A.1 Determinant is a square matrix. Given 

M2(ℝ) = ℝ
𝟐×𝟐 = ℝ𝟐×𝟐, let A ∈ M2(ℝ) where A is 2 × 2 

matrix, A = [
𝑎11 𝑎12
𝑎21 𝑎22

]. The determinant of A is 

represented by det(A) or |A|.  

Hence, det(A) = |A| = 𝑎11𝑎22 − 𝑎12𝑎21 ∈ ℝ. (Warning: 

this definition works only for 2 × 2 matrices). 

Example A.1 Given the following matrix: 

A = [
3 2
5 7

]

Find the determinant of A. 

 

Solution: Using definition A.1, we do the following: 
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det(A) = |A| = (3)(7) − (2)(5) = 21 − 10 = 11. 

Thus, the determinant of A is 11. 

 

Example A.2 Given the following matrix: 

A = [
1 0 2
3 1 −1
1 2 4

]

Find the determinant of A. 

 

Solution: Since A is 3 × 3 matrix such that 

A ∈ M3(ℝ) = ℝ𝟑×𝟑, then we cannot use definition A.1 

because it is valid only for 2 × 2 matrices. Thus, we 

need to use the following method to find the 

determinant of A.  

Step 1: Choose any row or any column. It is 

recommended to choose the one that has more zeros. 

In this example, we prefer to choose the second column 

or the first row. Let’s choose the second column as 

follows: 

A = [
1 0 2
3 1 −1
1 2 4

]

𝑎12 = 0, 𝑎22 = 1 and 𝑎32 = 2. 

Step 2: To find the determinant of A, we do the 

following: For 𝑎12, since 𝑎12 is in the first row and 

second column, then we virtually remove the first row 

and second column. 

A = [
1 0 2
3 1 −1
1 2 4

]

(−1)1+2𝑎12det [
3 −1
1 4

] 

For 𝑎22, since 𝑎22 is in the second row and second 

column, then we virtually remove the second row and 

second column. 
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A = [
1 0 2
3 1 −1
1 2 4

]

(−1)2+2𝑎22det [
1 2
1 4

] 

For 𝑎32, since 𝑎32 is in the third row and second 

column, then we virtually remove the third row and 

second column. 

A = [
1 0 2
3 1 −1
1 2 4

]

(−1)3+2𝑎32det [
1 2
3 −1

] 

Step 3: Add all of them together as follows: 

det(A) = (−1)1+2𝑎12det [
3 −1
1 4

] + (−1)2+2𝑎22det [
1 2
1 4

]

+ (−1)3+2𝑎32det [
1 2
3 −1

] 

det(A) = (−1)3(0)det [
3 −1
1 4

] + (−1)4(1)det [
1 2
1 4

]

+ (−1)5(2)det [
1 2
3 −1

] 

det(A) = (−1)(0)det [
3 −1
1 4

] + (1)(1)det [
1 2
1 4

]

+ (−1)(2)det [
1 2
3 −1

] 

det(A) = (−1)(0)(12 − −1) + (1)(1)(4 − 2) + (−1)(2)(−1

− 6) 

det(A) = 0 + 2 + 14 = 16. 

Thus, the determinant of A is 16. 

Result A.1 Let A ∈ M𝑛(ℝ). Then, A is invertible  

(non-singular) if and only if det(A) ≠ 0.  



Copyright © 2015 Mohammed K A Kaabar                       All Rights Reserved 

 

114  M. Kaabar 
 

The above result means that if det(A) ≠ 0, then A is 

invertible (non-singular), and if A is invertible (non-

singular), then det(A) ≠ 0. 

Example A.3 Given the following matrix: 

A = [
2 3
4 6

]

Is A invertible (non-singular)? 

 

Solution: Using result A.1, we do the following: 

det(A) = |A| = (2)(6) − (3)(4) = 12 − 12 = 0. 

Since the determinant of A is 0, then A is non-

invertible (singular). 

Thus, the answer is No because A is non-invertible 

(singular). 

Definition A.2 Given A = [
𝑎11 𝑎12
𝑎21 𝑎22

]. Assume that 

det(A) ≠ 0 such that det(A) = 𝑎11𝑎22 − 𝑎12𝑎21. To find 

A−1 (the inverse of A), we use the following format that 

applies only for 2 × 2 matrices: 

A−1 =
1

det(𝐴)
[
𝑎22 −𝑎12
−𝑎21 𝑎11

] 

A−1 =
1

𝑎11𝑎22 − 𝑎12𝑎21
[
𝑎22 −𝑎12
−𝑎21 𝑎11

] 

Example A.4 Given the following matrix: 

A = [
3 2
−4 5

]

Is A invertible (non-singular)? If Yes, Find A−1. 

 

Solution: Using result A.1, we do the following: 

det(A) = |A| = (3)(5) − (2)(−4) = 15 + 8 = 23 ≠ 0. 

Since the determinant of A is not 0, then A is invertible 

(non-singular). 
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Thus, the answer is Yes, there exists A−1 according to 

definition 1.7.2 as follows: 

A−1 =
1

det(𝐴)
[
5 −2
4 3

] =
1

23
[
5 −2
4 3

] = [

5

23
−
2

23
4

23

3

23

] 

Result A.2 Let A ∈ M𝑛(ℝ) be a triangular matrix. Then, 

det(A) = multiplication of the numbers on the main 

diagonal of A. 

There are three types of triangular matrix: 

a) Upper Triangular Matrix: it has all zeros on the 

left side of the diagonal of 𝑛 × 𝑛 matrix. 

      (i.e. A = [
1 7 3
0 2 5
0 0 4

] is an Upper Triangular Matrix). 

b) Diagonal Matrix: it has all zeros on both left and 

right sides of the diagonal of 𝑛 × 𝑛 matrix. 

      (i.e. B = [
1 0 0
0 2 0
0 0 4

] is a Diagonal Matrix). 

c) Lower Triangular Matrix: it has all zeros on the 

right side of the diagonal of 𝑛 × 𝑛 matrix. 

      (i.e. C = [
1 0 0
5 2 0
1 9 4

] is a Diagonal Matrix). 

Fact A.1 Let A ∈ M𝑛(ℝ). Then, det(A) = det (AT). 

Fact A.2 Let A ∈ M𝑛(ℝ). If A is an invertible (non-

singular) matrix, then AT is also an invertible (non-

singular) matrix. (i.e. (AT)−1 = (A−1)T ). 

Proof of Fact A.2 We will show that (AT)−1 = (A−1)T. 
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We know from previous results that AA−1 = I𝑛.  

By taking the transpose of both sides, we obtain: 

(AA−1)T = (I𝑛)
T 

Then, (A−1)TAT = (I𝑛)
T 

Since (I𝑛)
T = I𝑛 , then (A−1)TAT = I𝑛. 

Similarly, (AT)−1AT = (I𝑛)
T = I𝑛. 

Thus, (AT)−1 = (A−1)T.  

The effect of Row-Operations on determinants: 

Suppose ∝ is a non-zero constant, and 𝑖 𝑎𝑛𝑑 𝑘 are row 

numbers in the augmented matrix.  

* ∝Ri ,  ∝≠ 0 (Multiply a row with a non-zero 

constant ∝). 

i.e. A = [
1 2 3
0 4 1
2 0 1

] 3R2 -- [
1 2 3
0 12 3
2 0 1

] = B 

Assume that det(A) = γ where γ is known, then 

det(B) = 3γ. 

Similarly, if det(B) = β where β is known, then 

det(A) =
1

3
β. 

* ∝Ri +Rk -- Rk (Multiply a row with a non-zero 

constant ∝, and add it to another row). 

i.e. A = [
1 2 3
0 4 1
2 0 1

]  ∝Ri +Rk -- Rk 

[
1 2 3
0 12 3
2 0 1

] = B 

Then, det(A) = det(B).  
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* Ri↔Rk (Interchange two rows). It has no effect on 

the determinants. 

In general, the effect of Column-Operations on 

determinants is the same as for Row-Operations. 

Example A.5 Given the following 4 × 4 matrix A with 

some Row-Operations: 

A 2R1 -- A1 3R3 -- A2 -2R4 -- A4 

If det(A) = 4, then find det(A3) 

 

Solution: Using what we have learned from the effect 

of determinants on Row-Operations:  

det(A1) = 2 ∗ det(A) = 2 ∗ 4 = 8 because A1 has the first 

row of A multiplied by 2. 

det(A2) = 3 ∗ det(A1) = 3 ∗ 8 = 24 because A2 has the 

third row of A1multiplied by 3. 

Similarly, det(A3) = −2 ∗ det(A2) = −2 ∗ 24 = −48 

because A3 has the fourth row of A2multiplied by -2. 

Result A.3 Assume A is 𝑛 × 𝑛 matrix with a given 

det(A) = 𝛾 . Let 𝛼 be a number. Then, det(𝛼A) = 𝛼𝑛 ∗ 𝛾. 

Result A.4 Assume A and B are 𝑛 × 𝑛 matrices.  

Then: a) det(A) = det(A) ∗ det(B). 

b) Assume A−1 exists and B−1 exists.  

Then, (AB)−1 = B−1A−1.   

c) det(AB) = det(BA). 

d) det(A) = det(AT). 

e) If A−1 exists, then det(A−1) =
1

det(A)
. 

Proof of Result A.4 (b) We will show that 

(AB)−1 = B−1A−1. 
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If we multiply (B−1A−1) by (AB), we obtain: 

B−1(A−1A)B = B−1(I𝑛)B = B−1B = I𝑛. 

Thus, (AB)−1 = B−1A−1.   

Proof of Result A.4 (e) We will show that 

det(A−1) =
1

det(A)
. 

Since AA−1 = I𝑛, then det(AA−1) = det(𝐼𝑛) = 1. 

det(AA−1) = det(A) ∗ det(A−1) = 1. 

Thus, det(A−1) =
1

det(A)
.   

Appendix B: Vector Spaces*

*The materials of appendix B are taken from chapter 2 

in my published book titled A First Course in Linear 

Algebra: Study Guide for the Undergraduate Linear 

Algebra Course, First Edition1. 

We start this chapter reviewing some concepts of set 

theory, and we discuss some important concepts of 

vector spaces including span and dimension. In the 

remaining sections we introduce the concept of linear 

independence. At the end of this chapter we discuss 

other concepts such as subspace and basis. 

B.1 Span and Vector Spaces

In this section, we review some concepts of set theory, 

and we give an introduction to span and vector spaces 

including some examples related to these concepts. 
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Before reviewing the concepts of set theory, it is 

recommended to revisit section 1.4, and read the 

notations of numbers and the representation of the 

three sets of numbers in figure 1.4.1. 

Let’s explain some symbols and notations of set theory: 

3 ∈ ℤ means that 3 is an element of ℤ. 

1

2
∉ ℤ means that 

1

2
 is not an element of ℤ. 

{ } means that it is a set. 

{5} means that 5 is an element of ℤ, and the set 

consists of exactly one element which is 5. 

Definition B.1.1 The span of a certain set is the set of 

all possible linear combinations of the subset of that 

set. 

Example B.1.1 Find Span{1}. 

Solution: According to definition B.1.1, then the span 

of the set {1} is the set of all possible linear 

combinations of the subset of {1} which is 1. 

Hence, Span{1} = ℝ. 

Example B.1.2 Find Span{(1,2),(2,3)}. 

Solution: According to definition B.1.1, then the span 

of the set {(1,2),(2,3)} is the set of all possible linear 

combinations of the subsets of {(1,2),(2,3)} which are 

(1,2) and (2,3). Thus, the following is some possible 

linear combinations: 

(1,2) = 1 ∗ (1,2) + 0 ∗ (2,3) 
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(2,3) = 0 ∗ (1,2) + 1 ∗ (2,3) 

(5,8) = 1 ∗ (1,2) + 2 ∗ (2,3) 

Hence, {(1,2), (2,3), (5,8)} ∈ Span{(1,2), (2,3)}. 

Example B.1.3 Find Span{0}. 

Solution: According to definition B.1.1, then the span 

of the set {0} is the set of all possible linear 

combinations of the subset of {0} which is 0. 

Hence, Span{0} = 0. 

Example B.1.4 Find Span{c} where c is a non-zero 

integer. 

Solution: Using definition B.1.1, the span of the set {c} 

is the set of all possible linear combinations of the 

subset of {c} which is 𝑐 ≠ 0. 

Thus, Span{c} = ℝ. 

Definition B.1.2 ℝ𝑛 = {(𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛)|𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 ∈ ℝ} 

is a set of all points where each point has exactly 𝑛 

coordinates.  

Definition B.1.3 (𝑉,+,∙) is a vector space if satisfies the 

following: 

a. For every 𝑣1, 𝑣2 ∈ 𝑉, 𝑣1 + 𝑣2 ∈ 𝑉. 

b. For every 𝛼 ∈ ℝ and 𝑣 ∈ 𝑉, 𝛼𝑣 ∈ 𝑉. 

(i.e. Given 𝑆𝑝𝑎𝑛{𝑥, 𝑦}and 𝑠𝑒𝑡 {𝑥, 𝑦}, then 

√10𝑥 + 2𝑦 ∈ 𝑆𝑝𝑎𝑛{𝑥, 𝑦}. Let’s assume that 

𝑣 ∈ 𝑆𝑝𝑎𝑛{𝑥, 𝑦}, then 𝑣 = 𝑐1𝑥 + 𝑐2𝑦 for some numbers 

𝑐1 and 𝑐2). 
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B.2 The Dimension of Vector 

Space

In this section, we discuss how to find the dimension of 

vector space, and how it is related to what we have 

learned in section B.1.  

Definition B.2.1 Given a vector space 𝑉, the dimension 

of 𝑉 is the number of minimum elements needed in 𝑉 

so that their 𝑆𝑝𝑎𝑛 is equal to 𝑉, and it is denoted by 

dim (𝑉). (i.e. dim(ℝ) = 1 and dim(ℝ2) = 2). 

Result B.2.1 dim(ℝ𝑛) = 𝑛. 

Proof of Result B.2.1 We will show that dim(ℝ𝑛) = 𝑛. 

Claim: 𝐷 = 𝑆𝑝𝑎𝑛{(1,0), (0.1)} = ℝ2  

𝛼1(1,0) + 𝛼2(0,1) = (𝛼1, 𝛼2) ∈ ℝ
2 

Thus, 𝐷 is a subset of ℝ2 (𝐷 ⊆  ℝ2). 

For every 𝑥1, 𝑦1 ∈ ℝ, (𝑥1, 𝑦1) ∈ ℝ
2. 

Therefore, (𝑥1, 𝑦1) = 𝑥1(1,0) + 𝑦1(0,1) ∈ 𝐷. 

We prove the above claim, and hence 

dim(ℝ𝑛) = 𝑛. 

Fact 2B.2.1  𝑆𝑝𝑎𝑛{(3,4)} ≠ ℝ2. 

Proof of Fact B.2.1 We will show that 𝑆𝑝𝑎𝑛{(3,4)} ≠ ℝ2. 

Claim: 𝐹 = 𝑆𝑝𝑎𝑛{(6,5)} ≠ ℝ2 where (6,5) ∈ ℝ2. 
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We cannot find a number 𝛼 such that (6,5) = 𝛼(3,4) 

We prove the above claim, and hence 𝑆𝑝𝑎𝑛{(3,4)} ≠ ℝ2. 

Fact B.2.2  𝑆𝑝𝑎𝑛{(1,0), (0,1)} = ℝ2. 

Fact B.2.3  𝑆𝑝𝑎𝑛{(2,1), (1,0.5)} ≠ ℝ2. 

B.3 Linear Independence

In this section, we learn how to determine whether 

vector spaces are linearly independent or not. 

Definition B.3.1 Given a vector space (𝑉, +,∙), we say  

𝑣1, 𝑣2, … , 𝑣𝑛 ∈ 𝑉 are linearly independent if none of 

them is a linear combination of the remaining 𝑣𝑖′𝑠.  

(i.e. (3,4), (2,0) ∈ ℝ are linearly independent because 

we cannot write them as a linear combination of each 

other, in other words, we cannot find a number 𝛼1, 𝛼2 

such that (3,4) = 𝛼1(2,0) and (2,0) = 𝛼2(3,4)). 

Definition B.3.2 Given a vector space (𝑉, +,∙), we say  

𝑣1, 𝑣2, … , 𝑣𝑛 ∈ 𝑉 are linearly dependent if at least one of 

𝑣𝑖′𝑠 is a linear combination of the others.  

Example B.3.1 Assume 𝑣1 and 𝑣2 are linearly 

independent. Show that 𝑣1 and 3𝑣1 + 𝑣2 are linearly 

independent. 

Solution: We will show that 𝑣1 and 3𝑣1 + 𝑣2 are 

linearly independent. Using proof by contradiction, we 

assume that 𝑣1 and 3𝑣1 + 𝑣2 are linearly dependent. 

For some non-zero number 𝑐1, 𝑣1 = 𝑐1(3𝑣1 + 𝑣2). 
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Using the distribution property and algebra, we obtain: 

𝑣1 = 3𝑣1𝑐1 + 𝑣2𝑐1 

𝑣1 − 3𝑣1𝑐1 = 𝑣2𝑐1 

𝑣1(1 − 3𝑐1) = 𝑣2𝑐1 

(1 − 3𝑐1)

𝑐1
𝑣1 = 𝑣2 

Thus, none of 𝑣1 and 3𝑣1 + 𝑣2 is a linear combination of 

the others which means that 𝑣1 and 3𝑣1 + 𝑣2 are 

linearly independent. This is a contradiction. 

Therefore, our assumption that 𝑣1 and 3𝑣1 + 𝑣2 were 

linearly dependent is false. Hence, 𝑣1 and 3𝑣1 + 𝑣2 are 

linearly independent. 

Example B.3.2 Given the following vectors: 

𝑣1 = (1,0, −2) 

𝑣2 = (−2,2,1) 

𝑣3 = (−1,0,5) 

Are these vectors independent elements? 

Solution: First of all, to determine whether these 

vectors are independent elements or not, we need to 

write these vectors as a matrix. 

[
1 0 −2
−2 2 1
−1 0 5

] Each point is a row-operation. We need to 

reduce this matrix to Semi-Reduced Matrix.  

Definition B.3.3 Semi-Reduced Matrix is a reduced-

matrix but the leader numbers can be any non-zero 

number. 
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Now, we apply the Row-Reduction Method to get the 

Semi-Reduced Matrix as follows: 

[
1 0 −2
−2 2 1
−1 0 5

] 
2𝑅1 + 𝑅2 → 𝑅2
𝑅1 + 𝑅3 → 𝑅3

[
1 0 −2
0 2 −3
0 0 3

] This is a Semi-

Reduced Matrix. 

Since none of the rows in the Semi-Reduced Matrix 

become zero-row, then the elements are independent 

because we cannot write at least one of them as a 

linear combination of the others. 

Example 2.3.3 Given the following vectors: 

𝑣1 = (1,−2,4,6) 

𝑣2 = (−1,2,0,2) 

𝑣3 = (1,−2,8,14) 

Are these vectors independent elements? 

Solution: First of all, to determine whether these 

vectors are independent elements or not, we need to 

write these vectors as a matrix. 

[
1 −2
−1 2
1 −2

4 6
0 2
8 14

] Each point is a row-operation. We 

need to reduce this matrix to Semi-Reduced Matrix.  

Now, we apply the Row-Reduction Method to get the 

Semi-Reduced Matrix as follows: 

[
1 −2
−1 2
1 −2

4 6
0 2
8 14

] 
𝑅1 + 𝑅2 → 𝑅2
−𝑅1 + 𝑅3 → 𝑅3

[
1 −2
0 0
0 0

4 6
4 8
4 8

] 
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−𝑅2 + 𝑅3 → 𝑅3 [
1 −2
0 0
0 0

4 6
4 8
0 0

] This is a Semi-Reduced 

Matrix. 

Since there is a zero-row in the Semi-Reduced Matrix, 

then the elements are dependent because we can write 

at least one of them as a linear combination of the 

others. 

B.4 Subspace and Basis

In this section, we discuss one of the most important 

concepts in linear algebra that is known as subspace. 

In addition, we give some examples explaining how to 

find the basis for subspace. 

Definition B.4.1 Subspace is a vector space but we call 

it a subspace because it lives inside a bigger vector 

space. (i.e. Given vector spaces 𝑉 and 𝐷, then according 

to the figure 2.4.1, 𝐷 is called a subspace of 𝑉). 

 

 

  

 

 

 

 

 

Figure B.4.1: Subspace of 𝑉 

V 
D 
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Fact B.4.1 Every vector space is a subspace of itself. 

Example B.4.1 Given a vector space 𝐿 = {(𝑐, 3𝑐)|𝑐 ∈ ℝ}.  

a. Does 𝐿 live in ℝ2? 

b. Does 𝐿 equal to ℝ2? 

c. Is 𝐿 a subspace of ℝ2? 

d. Does 𝐿 equal to 𝑆𝑝𝑎𝑛{(0,3)}? 

e. Does 𝐿 equal to 𝑆𝑝𝑎𝑛{(1,3), (2,6)}? 

Solution: To answer all these questions, we need first 

to draw an equation from this vector space, say 𝑦 = 3𝑥. 

The following figure represents the graph of the above 

equation, and it passes through a point (1,3).  

 

Figure B.4.2: Graph of 𝑦 = 3𝑥 

 

Now, we can answer the given questions as follows: 

Part a: Yes; 𝐿 lives in ℝ2. 
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Part b: No; 𝐿 does not equal to ℝ2. To show that we 

prove the following claim: 

Claim: 𝐿 = 𝑆𝑝𝑎𝑛{(5,15)} ≠ ℝ2 where (5,15) ∈ ℝ2. 

It is impossible to find a number 𝛼 = 3 such that 

(20,60) = 𝛼(5,15) 

because in this case 𝛼 = 4 where (20,60) = 4(5,15). 

We prove the above claim, and 𝑆𝑝𝑎𝑛{(5,15)} ≠ ℝ2.  

Thus, 𝐿 does not equal to ℝ2  

Part c: Yes; 𝐿 is a subspace of ℝ2 because 𝐿 lives inside 

a bigger vector space which is ℝ2. 

Part d: No; according to the graph in figure 2.4.2, (0,3) 

does not belong to 𝐿. 

Part e: Yes; because we can write (1,3) and (2,6) as a 

linear combination of each other.  

𝛼1(1,3) + 𝛼2(2,6) = {(𝛼1 + 2𝛼2), (3𝛼1 + 6𝛼2)} 

𝛼1(1,3) + 𝛼2(2,6) = {(𝛼1 + 2𝛼2), 3(𝛼1 + 2𝛼2)} 

Assume 𝑐 = (𝛼1 + 2𝛼2), then we obtain: 

𝛼1(1,3) + 𝛼2(2,6) = {(𝑐, 3𝑐)|𝑐 ∈ ℝ} = 𝐿. 

Thus, 𝐿 = 𝑆𝑝𝑎𝑛{(1,3), (2,6)}. 

Result B.4.1 𝐿 is a subspace of ℝ2 if satisfies the 

following: 

a. 𝐿 lives inside ℝ2. 

b. 𝐿 has only lines through the origin (0,0). 
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Example B.4.2 Given a vector space  

𝐷 = {(𝑎, 𝑏, 1)|𝑎, 𝑏 ∈ ℝ}.  

a. Does 𝐷 live in ℝ3? 

b. Is 𝐷 a subspace of ℝ3? 

Solution: Since the equation of the above vector space 

is a three-dimensional equation, there is no need to 

draw it because it is difficult to draw it exactly. Thus, 

we can answer the above questions immediately.  

Part a: Yes; 𝐷 lives inside ℝ3. 

Part b: No; since (0,0,0) ∉ 𝐷, then 𝐷 is not a subspace 

of ℝ3. 

Fact B.4.2 Assume 𝐷 lives inside ℝ𝑛. If we can write 𝐷 

as a 𝑆𝑝𝑎𝑛, then it is a subspace of ℝ𝑛. 

Fact B.4.3 Assume 𝐷 lives inside ℝ𝑛. If we cannot write 

𝐷 as a 𝑆𝑝𝑎𝑛, then it is not a subspace of ℝ𝑛. 

Fact B.4.4 Assume 𝐷 lives inside ℝ𝑛. If (0,0,0, … ,0) is in 

𝐷, then 𝐷 is a subspace of ℝ𝑛. 

Fact B.4.5 Assume 𝐷 lives inside ℝ𝑛. If (0,0,0, … ,0) is 

not in 𝐷, then 𝐷 is not a subspace of ℝ𝑛. 

Now, we list the main results on ℝ𝑛: 

Result B.4.2 Maximum number of independent points 

is 𝑛. 

Result B.4.3 Choosing any 𝑛 independent points in ℝ𝑛, 

say 𝑄1, 𝑄2, … , 𝑄𝑛, then ℝ𝑛 = 𝑆𝑝𝑎𝑛{𝑄1, 𝑄2, … , 𝑄𝑛}. 

Result B.4.4 dim(ℝ𝑛) = 𝑛.  
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Results B.4.3 and B.4.4 tell us the following: In order 

to get all ℝ𝑛, we need exactly 𝑛 independent points. 

Result B.4.5 Assume ℝ𝑛 = 𝑆𝑝𝑎𝑛{𝑄1, 𝑄2, … , 𝑄𝑘}, then 𝑘 ≥

𝑛 (𝑛 points of the 𝑄𝑘′𝑠 are independents). 

Definition B.4.2 Basis is the set of points that is 

needed to 𝑆𝑝𝑎𝑛 the vector space. 

Example B.4.3 Let 𝐷 = 𝑆𝑝𝑎𝑛{(1, −1,0), (2,2,1), (0,4,1)}.  

a. Find dim (𝐷). 

b. Find a basis for 𝐷. 

Solution: First of all, we have infinite set of points, and 

𝐷 lives inside ℝ3. Let’s assume the following: 

𝑣1 = (1,−1,0) 

𝑣2 = (2,2,1) 

𝑣3 = (0,4,1) 

Part a: To find dim (𝐷), we check whether 𝑣1, 𝑣2 and 𝑣3 

are dependent elements or not. Using what we have 

learned so far from section 2.3: We need to write these 

vectors as a matrix. 

[
1 −1 0
2 2 1
0 4 1

] Each point is a row-operation. We need to 

reduce this matrix to Semi-Reduced Matrix.  

Now, we apply the Row-Reduction Method to get the 

Semi-Reduced Matrix as follows: 

[
1 −1 0
2 2 1
0 4 1

] −2𝑅1 + 𝑅2 → 𝑅2 [
1 −1 0
0 4 1
0 4 1

]−𝑅2 + 𝑅3 → 𝑅3 
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[
1 −1 0
0 4 1
0 0 0

] This is a Semi-Reduced Matrix. 

Since there is a zero-row in the Semi-Reduced Matrix, 

then these elements are dependent because we can 

write at least one of them as a linear combination of 

the others. Only two points survived in the Semi-

Reduced Matrix. Thus, dim(𝐷) = 2. 

Part b: 𝐷 is a plane that passes through the origin 

(0,0,0). Since dim(𝐷) = 2, then any two independent 

points in 𝐷 will form a basis for 𝐷. Hence, the following 

are some possible bases for 𝐷: 

Basis for 𝐷 is {(1,−1,0), (2,2,1)}. 

Another basis for 𝐷 is {(1,−1,0), (0,4,1)}. 

Result B.4.6 It is always true that |𝐵𝑎𝑠𝑖𝑠| = 𝑑𝑖𝑚 (𝐷). 

Example B.4.4 Given the following: 

𝑀 = 𝑆𝑝𝑎𝑛{(−1,2,0,0), (1, −2,3,0), (−2,0,3,0)}.  

Find a basis for 𝑀. 

Solution: We have infinite set of points, and 𝑀 lives 

inside ℝ4. Let’s assume the following: 

𝑣1 = (−1,2,0,0) 

𝑣2 = (1,−2,3,0) 

𝑣3 = (−2,0,3,0) 

We check if 𝑣1, 𝑣2 and 𝑣3 are dependent elements. 

Using what we have learned so far from section 2.3 

and example 2.4.3: We need to write these vectors as a 

matrix. 
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[
−1 2
1 −2
−2 0

0 0
3 0
3 0

] Each point is a row-operation. We 

need to reduce this matrix to Semi-Reduced Matrix.  

Now, we apply the Row-Reduction Method to get the 

Semi-Reduced Matrix as follows: 

[
−1 2
1 −2
−2 0

0 0
3 0
3 0

] 
𝑅1 + 𝑅2 → 𝑅2
−2𝑅1 + 𝑅3 → 𝑅3

[
−1 2
0 0
0 −4

0 0
3 0
3 0

] 

−𝑅2 + 𝑅3 → 𝑅3 [
−1 2
0 0
0 −4

0 0
3 0
0 0

] This is a Semi-Reduced 

Matrix. 

Since there is no zero-row in the Semi-Reduced Matrix, 

then these elements are independent. All the three 

points survived in the Semi-Reduced Matrix. Thus, 

dim(𝑀) = 3. Since dim(𝑀) = 3, then any three 

independent points in 𝑀 from the above matrices will 

form a basis for 𝑀. Hence, the following are some 

possible bases for 𝑀: 

Basis for 𝑀 is {(−1,2,0,0), (0,0,3,0), (0, −4,0,0)}. 

Another basis for 𝑀 is {(−1,2,0,0), (0,0,3,0), (0, −4,3,0)}. 

Another basis for 𝑀 is {(−1,2,0,0), (1, −2,3,0), (−2,0,3,0)}. 

Example B.4.5 Given the following: 

𝑊 = 𝑆𝑝𝑎𝑛{(𝑎,−2𝑎 + 𝑏,−𝑎)|𝑎, 𝑏 ∈ ℝ}.  

a. Show that 𝑊 is a subspace of ℝ3. 

b. Find a basis for 𝑊. 

c. Rewrite 𝑊 as a 𝑆𝑝𝑎𝑛. 
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Solution: We have infinite set of points, and 𝑊 lives 

inside ℝ3.  

Part a: We write each coordinate of 𝑊 as a linear 

combination of the free variables 𝑎 and 𝑏. 

𝑎 = 1 ∙ 𝑎 + 0 ∙ 𝑏 

−2𝑎 + 𝑏 = −2 ∙ 𝑎 + 1 ∙ 𝑏 

−𝑎 = −1 ∙ 𝑎 + 0 ∙ 𝑏 

Since it is possible to write each coordinate of 𝑊 as a 

linear combination of the free variables 𝑎 and 𝑏, then 

we conclude that 𝑊 is a subspace of ℝ3. 

Part b: To find a basis for 𝑊, we first need to find 

dim (𝑊). To find dim (𝑊), let’s play a game called (ON-

OFF GAME) with the free variables 𝑎 and 𝑏.  

𝑎 𝑏 𝑃𝑜𝑖𝑛𝑡 
1 0 (1, −2,−1) 
0 1 (0,1,0) 

Now, we check for independency: We already have the 

Semi-Reduced Matrix: [
1 −2 −1
0 1 0

]. Thus, dim(𝑊) = 2. 

Hence, the basis for 𝑊 is {(1, −2,−1), (0,1,0)}. 

Part b: Since we found the basis for 𝑊, then it is easy 

to rewrite 𝑊 as a 𝑆𝑝𝑎𝑛 as follows: 

𝑊 = 𝑆𝑝𝑎𝑛{(1,−2, −1), (0,1,0)}. 

Fact B.4.6 dim(𝑊) ≤ 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝐹𝑟𝑒𝑒 − 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠. 

Example B.4.6 Given the following: 
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𝐻 = 𝑆𝑝𝑎𝑛{(𝑎2, 3𝑏 + 𝑎,−2𝑐, 𝑎 + 𝑏 + 𝑐)|𝑎, 𝑏, 𝑐 ∈ ℝ}.  

Is 𝐻 a subspace of ℝ4? 

Solution: We have infinite set of points, and 𝐻 lives 

inside ℝ4. We try write each coordinate of 𝐻 as a linear 

combination of the free variables 𝑎, 𝑏 and 𝑐. 

𝑎2 = 𝐹𝑖𝑥𝑒𝑑 𝑁𝑢𝑚𝑏𝑒𝑟 ∙ 𝑎 + 𝐹𝑖𝑥𝑒𝑑 𝑁𝑢𝑚𝑏𝑒𝑟 ∙ 𝑏 + 𝐹𝑖𝑥𝑒𝑑 𝑁𝑢𝑚𝑏𝑒𝑟 ∙ 𝑐 

𝑎2 is not a linear combination of 𝑎, 𝑏 and 𝑐. 

We assume that 𝑤 = (1,1,0,1) ∈ 𝐻, and 𝑎 = 1, 𝑏 = 𝑐 = 0. 

If 𝛼 = −2, then −2 ∙ 𝑤 = −2 ∙ (1,1,0,1) = (−2,−2,0,−2) ∉ 𝐻. 

Since it is impossible to write each coordinate of 𝐻 as a 

linear combination of the free variables 𝑎, 𝑏 and 𝑐, then 

we conclude that 𝐻 is not a subspace of ℝ4. 

Example B.4.7 Form a basis for ℝ4. 

Solution: We just need to select any random four 

independent points, and then we form a 4 × 4 matrix 

with four independent rows as follows: 

[

2 3
0 5

0 4
1 1

0 0
0 0

2 3
0 𝜋𝑒

] Note: 𝜋𝑒 is a number. 

Let’s assume the following: 

𝑣1 = (2,3,0,4) 

𝑣2 = (0,5,1,1) 

𝑣3 = (0,0,2,3) 

𝑣4 = (0,0,0, 𝜋𝑒) 

Thus, the basis for ℝ4 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, and 
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𝑆𝑝𝑎𝑛{𝑣1, 𝑣2, 𝑣3, 𝑣4} = ℝ4. 

Example B.4.8 Form a basis for ℝ4 that contains the 

following two independent points: 

(0,2,1,4) and (0,−2,3, −10). 

Solution: We need to add two more points to the given 

one so that all four points are independent. Let’s 

assume the following:  

𝑣1 = (0,2,1,4) 

𝑣2 = (0,−2,3, −10) 

𝑣3 = (0,0,4, −6) This is a random point. 

𝑣4 = (0,0,0,1000) This is a random point. 

Then, we need to write these vectors as a matrix. 

[

0    2
0 −2

1 4
3 −10

0   0
0   0

4 −6   
0 1000

] Each point is a row-operation. We 

need to reduce this matrix to Semi-Reduced Matrix.  

Now, we apply the Row-Reduction Method to get the 

Semi-Reduced Matrix as follows: 

[

0    2
0 −2

1 4
3 −10

0   0
0   0

4 −6   
0 1000

] 𝑅1 + 𝑅2 → 𝑅2 [

0    2
3    0

1     4
5     30

0   0
0   0

4 −6   
0 1000

] 

This is a Semi-Reduced Matrix. 

Thus, the basis for ℝ4 is  

{(0,2,1,4) , (0, −2,3, −10), (3,0,5,30), (0,0,0,1000)}. 

Example B.4.9 Given the following: 
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𝐷 = 𝑆𝑝𝑎𝑛{(1,1,1,1), (−1,−1,0,0), (0,0,1,1)} 

Is (1,1,2,2) ∈ 𝐷?  

Solution: We have infinite set of points, and 𝐷 lives 

inside ℝ4. There are two different to solve this 

example: 

The First Way: Let’s assume the following: 

𝑣1 = (1,1,1,1) 

𝑣2 = (−1,−1,0,0) 

𝑣3 = (0,0,1,1) 

We start asking ourselves the following question:  

Question: Can we find 𝛼1, 𝛼2 and 𝛼3 such that 

(1,1,2,2) = 𝛼1 ∙ 𝑣1 + 𝛼2 ∙ 𝑣2 + 𝛼3 ∙ 𝑣3? 

Answer: Yes but we need to solve the following system 

of linear equations: 

1 = 𝛼1 − 𝛼2 + 0 ∙ 𝛼3 

1 = 𝛼1 − 𝛼2 + 0 ∙ 𝛼3 

2 = 𝛼1 + 𝛼3 

2 = 𝛼1 + 𝛼3 

Using what we have learned from chapter 1 to solve 

the above system of linear equations, we obtain: 

𝛼1 = 𝛼2 = 𝛼3 = 1 

Hence, Yes: (1,1,2,2) ∈ 𝐷. 

The Second Way (Recommended): We first need to find 

𝑑𝑖𝑚 (𝐷), and then a basis for 𝐷. We have to write 

𝑣1, 𝑣2 and 𝑣3 as a matrix.  
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[
1 1
−1 −1
0 0

1 1
0 0
1 1

] Each point is a row-operation. We 

need to reduce this matrix to Semi-Reduced Matrix.  

Now, we apply the Row-Reduction Method to get the 

Semi-Reduced Matrix as follows: 

[
1 1
−1 −1
0 0

1 1
0 0
1 1

] 𝑅1 + 𝑅2 → 𝑅2 [
1 1
0 0
0 0

1 1
1 1
1 1

] 

−𝑅2 + 𝑅3 → 𝑅3 [
1 1
0 0
0 0

1 1
1 1
0 0

] This is a Semi-Reduced 

Matrix. 

Since there is a zero-row in the Semi-Reduced Matrix, 

then these elements are dependent. Thus, dim(𝐷) = 2.  

Thus, Basis for 𝐷 is {(1,1,1,1), (0,0,1,1)}, and 

𝐷 = 𝑆𝑝𝑎𝑛{(1,1,1,1), (0,0,1,1)}. 

Now, we ask ourselves the following question: 

Question: Can we find 𝛼1, 𝛼2 and 𝛼3 such that 

(1,1,2,2) = 𝛼1 ∙ (1,1,1,1) + 𝛼2 ∙ (0,0,1,1)? 

Answer: Yes: 

1 = 𝛼1 

1 = 𝛼1 

2 = 𝛼1 + 𝛼2 

2 = 𝛼1 + 𝛼2 

Thus, 𝛼1 = 𝛼2 = 𝛼3 = 1. Hence, Yes: (1,1,2,2) ∈ 𝐷. 



Copyright © 2015 Mohammed K A Kaabar                       All Rights Reserved 

 
 

137 
 

 

Appendix C: Homogenous 

Systems*

*The materials of appendix C are taken from chapter 3 

in my published book titled A First Course in Linear 

Algebra: Study Guide for the Undergraduate Linear 

Algebra Course, First Edition1. 

In this chapter, we introduce the homogeneous 

systems, and we discuss how they are related to what 

we have learned in chapter B. We start with an 

introduction to null space and rank. Then, we study 

one of the most important topics in linear algebra 

which is linear transformation. At the end of this 

chapter we discuss how to find range and kernel, and 

their relation to sections C.1 and C.2. 

C.1 Null Space and Rank

In this section, we first give an introduction to 

homogeneous systems, and we discuss how to find the 

null space and rank of homogeneous systems. In 

addition, we explain how to find row space and column  

space. 

Definition C.1.1 Homogeneous System is a 𝑚 × 𝑛 

system of linear equations that has all zero constants.  
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(i.e. the following is an example of homogeneous 

system): {

2𝑥1 + 𝑥2 − 𝑥3 + 𝑥4 = 0
3𝑥1 + 5𝑥2 + 3𝑥3 + 4𝑥4 = 0

−𝑥2 + 𝑥3 − 𝑥4 = 0
  

Imagine we have the following solution to the 

homogeneous system: 𝑥1 = 𝑥2 = 𝑥3 = 𝑥4 = 0. 

Then, this solution can be viewed as a point of ℝ𝑛 (here 

is ℝ4) : (0,0,0,0) 

Result C.1.1 The solution of a homogeneous system 

𝑚 × 𝑛 can be written as 

{(𝑎1, 𝑎2, 𝑎3, 𝑎4, … , 𝑎𝑛|𝑎1, 𝑎2, 𝑎3, 𝑎4, … , 𝑎𝑛 ∈ ℝ}. 

Result C.1.2 All solutions of a homogeneous system 

𝑚 × 𝑛 form a subset of ℝ𝑛, and it is equal to the 

number of variables. 

Result C.1.3 Given a homogeneous system 𝑚 × 𝑛. We 

write it in the matrix-form: 𝐶

[
 
 
 
 
𝑥1
𝑥2
𝑥3
⋮
𝑥𝑛]
 
 
 
 

=

[
 
 
 
 
0
0
0
⋮
0]
 
 
 
 

 where 𝐶 is a 

coefficient. Then, the set of all solutions in this system 

is a subspace of ℝ𝑛. 

Proof of Result C.1.3 We assume that 𝑀1 =

(𝑚1, 𝑚2, … ,𝑚𝑛) and 𝑊1 = (𝑤,𝑤2, … , 𝑤𝑛) are two 

solutions to the above system. We will show that 𝑀+



Copyright © 2015 Mohammed K A Kaabar                       All Rights Reserved 

 
 

139 
 

𝑊 is a solution. We write them in the matrix-form: 

𝐶

[
 
 
 
 
𝑚1

𝑚2
𝑚3

⋮
𝑚𝑛]
 
 
 
 

=

[
 
 
 
 
0
0
0
⋮
0]
 
 
 
 

 and 

[
 
 
 
 
𝑤1
𝑤2
𝑤3
⋮
𝑤𝑛]
 
 
 
 

=

[
 
 
 
 
0
0
0
⋮
0]
 
 
 
 

 

Now, using algebra: 𝑀 +𝑊 =  𝐶

[
 
 
 
 
𝑚1

𝑚2
𝑚3

⋮
𝑚𝑛]
 
 
 
 

+ 𝐶

[
 
 
 
 
𝑤1
𝑤2
𝑤3
⋮
𝑤𝑛]
 
 
 
 

=

[
 
 
 
 
0
0
0
⋮
0]
 
 
 
 

  

By taking 𝐶 as a common factor, we obtain: 

𝐶

(

 
 

[
 
 
 
 
𝑚1

𝑚2
𝑚3

⋮
𝑚𝑛]
 
 
 
 

+

[
 
 
 
 
𝑤1
𝑤2
𝑤3
⋮
𝑤𝑛]
 
 
 
 

)

 
 
=

[
 
 
 
 
0
0
0
⋮
0]
 
 
 
 

 

𝐶

[
 
 
 
 
𝑚1 + 𝑤1
𝑚2 + 𝑤2
𝑚3 + 𝑤3

⋮
𝑚𝑛 + 𝑤𝑛]

 
 
 
 

=

[
 
 
 
 
0
0
0
⋮
0]
 
 
 
 

 

Thus, 𝑀+𝑊 is a solution. 

Fact C.1.1 If 𝑀1 = (𝑚1,𝑚2, … ,𝑚𝑛) is a solution, and 𝛼 ∈

ℝ, then 𝛼𝑀 = (𝛼𝑚1, 𝛼𝑚2, … , 𝛼𝑚𝑛) is a solution. 

Fact C.1.2 The only system where the solutions form a 

vector space is the homogeneous system. 

Definition C.1.2 Null Space of a matrix, say 𝐴 is a set 

of all solutions to the homogeneous system, and it is 

denoted by 𝑁𝑢𝑙𝑙(𝐴) or 𝑁(𝐴).  
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Definition C.1.3 Rank of a matrix, say 𝐴 is the number 

of independent rows or columns of 𝐴, and it is denoted 

by 𝑅𝑎𝑛𝑘(𝐴). 

Definition C.1.4 Row Space of a matrix, say 𝐴 is the 

𝑆𝑝𝑎𝑛 of independent rows of 𝐴, and it is denoted by 

𝑅𝑜𝑤(𝐴). 

Definition C.1.5 Column Space of a matrix, say 𝐴 is the 

𝑆𝑝𝑎𝑛 of independent columns of 𝐴, and it is denoted by 

𝐶𝑜𝑙𝑢𝑚𝑛(𝐴). 

Example C.1.1 Given the following 3 × 5 matrix: 

𝐴 = [
1 −1 2 0 −1
0 1 2 0 2
0 0 0 1 0

].  

a. Find 𝑁𝑢𝑙𝑙(𝐴). 

b. Find 𝑑𝑖𝑚 (𝑁𝑢𝑙𝑙(𝐴)). 

c. Rewrite 𝑁𝑢𝑙𝑙(𝐴) as 𝑆𝑝𝑎𝑛.  

d. Find 𝑅𝑎𝑛𝑘(𝐴). 

e. Find 𝑅𝑜𝑤(𝐴). 

Solution: Part a: To find the null space of 𝐴, we need to 

find the solution of 𝐴 as follows: 

Step 1: Write the above matrix as an Augmented-

Matrix, and make all constants’ terms zeros. 

(
1 −1 2 0 −1
0 1 2 0 2
0 0 0 1 0

|
0
0
0
) 
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Step 2: Apply what we have learned from chapter 1 to 

solve systems of linear equations use Row-Operation 

Method. 

(
1 −1 2 0 −1
0 1 2 0 2
0 0 0 1 0

|
0
0
0
) 𝑅2 + 𝑅1 → 𝑅1 

(
1 0 4 0 1
0 1 2 0 2
0 0 0 1 0

|
0
0
0
) This is a Completely-Reduced 

Matrix. 

Step 3: Read the solution for the above system of linear 

equations after using Row-Operation. 

𝑥1 + 4𝑥3 + 𝑥5 = 0
𝑥2 + 2𝑥3 + 2𝑥5 = 0

𝑥4 = 0
 

Free variables are 𝑥3 and 𝑥5.  

Assuming that 𝑥3, 𝑥5 ∈ ℝ. Then, the solution of the 

above homogeneous system is as follows: 

𝑥1 = −4𝑥3 − 𝑥5
𝑥2 = −2𝑥3 − 2𝑥5

𝑥4 = 0
 

Thus, according to definition 3.1.2,  

𝑁𝑢𝑙𝑙(𝐴) = {(−4𝑥3 − 𝑥5, −2𝑥3 − 2𝑥5, 𝑥3, 0, 𝑥5)|𝑥3, 𝑥5 ∈ ℝ}. 

Part b: It is always true that 

 𝑑𝑖𝑚(𝑁𝑢𝑙𝑙(𝐴)) = 𝑑𝑖𝑚(𝑁(𝐴)) = 𝑇ℎ𝑒 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑟𝑒𝑒 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  

Here, 𝑑𝑖𝑚(𝑁𝑢𝑙𝑙(𝐴)) = 2. 
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Definition C.1.6 The nullity of a matrix, say 𝐴 is the 

dimension of the null space of 𝐴, and it is denoted by 

𝑑𝑖𝑚(𝑁𝑢𝑙𝑙(𝐴)) or 𝑑𝑖𝑚 (𝑁(𝐴)). 

Part c: We first need to find a basis for 𝑁𝑢𝑙𝑙(𝐴) as 

follows: To find a basis for 𝑁𝑢𝑙𝑙(𝐴), we play a game 

called (ON-OFF GAME) with the free variables 𝑥3 and 

𝑥5.  

𝑥3 𝑥5 𝑃𝑜𝑖𝑛𝑡 
1 0 (−4,−2,1,0,0) 
0 1 (−1,−2,0,0,1) 

The basis for 𝑁𝑢𝑙𝑙(𝐴) = {(−4,−2,1,0,0), (−1,−2,0,0,1)}. 

Thus, 𝑁𝑢𝑙𝑙(𝐴) = 𝑆𝑝𝑎𝑛{(−4,−2,1,0,0), (−1,−2,0,0,1)}. 

Part d: To find the rank of matrix 𝐴, we just need to 

change matrix 𝐴 to the Semi-Reduced Matrix. We 

already did that in part a. Thus, 𝑅𝑎𝑛𝑘(𝐴) = 3. 

Part e: To find the row space of matrix 𝐴, we just need 

to write the 𝑆𝑝𝑎𝑛 of independent rows. Thus,  

𝑅𝑜𝑤(𝐴) = 𝑆𝑝𝑎𝑛{(1, −1,2,0, −1), (0,1,2,0,2), (0,0,0,1,0)}. 

It is also a subspace of ℝ5. 

Result C.1.4 Let 𝐴 be 𝑚 × 𝑛 matrix. Then,  

𝑅𝑎𝑛𝑘(𝐴) + 𝑑𝑖𝑚(𝑁(𝐴)) = 𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑙𝑢𝑚𝑛𝑠 𝑜𝑓 𝐴. 

Result C.1.5 Let 𝐴 be 𝑚 × 𝑛 matrix. The geometric 

meaning of 𝑅𝑜𝑤(𝐴) = 𝑆𝑝𝑎𝑛{𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑅𝑜𝑤𝑠} “lives”  

inside ℝ𝑛. 
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Result C.1.6 Let 𝐴 be 𝑚 × 𝑛 matrix. The geometric 

meaning of 𝐶𝑜𝑙𝑢𝑚𝑛(𝐴) = 𝑆𝑝𝑎𝑛{𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐶𝑜𝑙𝑢𝑚𝑛𝑠} 

“lives” inside ℝ𝑚. 

Result C.1.7 Let 𝐴 be 𝑚 × 𝑛 matrix. Then, 

𝑅𝑎𝑛𝑘(𝐴) = 𝑑𝑖𝑚(𝑅𝑜𝑤(𝐴)) = 𝑑𝑖𝑚 (𝐶𝑜𝑙𝑢𝑚𝑛(𝐴)). 

Example C.1.2 Given the following 3 × 5 matrix: 

𝐵 = [
1 1 1
−1 −1 −1
0 0 0

  
1 1
0 2
0 0

].  

a. Find 𝑅𝑜𝑤(𝐵). 

b. Find 𝐶𝑜𝑙𝑢𝑚𝑛(𝐵). 

c. Find 𝑅𝑎𝑛𝑘(𝐵). 

Solution: Part a: To find the row space of 𝐵, we need to 

change matrix 𝐵 to the Semi-Reduced Matrix as 

follows: 

[
1 1 1
−1 −1 −1
0 0 0

  
1 1
0 2
0 0

]
𝑅1 + 𝑅2 → 𝑅2
𝑅1 + 𝑅3 → 𝑅3

[
1 1 1
0 0 0
0 0 0

  
1 1
1 3
0 0

] 

This is a Semi-Reduced Matrix. To find the row space 

of matrix 𝐵, we just need to write the 𝑆𝑝𝑎𝑛 of 

independent rows. Thus, 𝑅𝑜𝑤(𝐵) =

𝑆𝑝𝑎𝑛{(1,1,1,1,1), (0,0,0,1,3)}. 

Part b: To find the column space of 𝐵, we need to 

change matrix 𝐵 to the Semi-Reduced Matrix. We 

already did that in part a. Now, we need to locate the 

columns in the Semi-Reduced Matrix of 𝐵 that contain  

the leaders, and then we should locate them to the 

original matrix 𝐵.  
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[
1 1 1
0 0 0
0 0 0

  
1 1
1 3
0 0

]  Semi-Reduced Matrix 

 

[
1 1 1
−1 −1 −1
0 0 0

  
1 1
0 2
0 0

]  Matrix 𝐵 

Each remaining columns is a linear combination of the 

first and fourth columns. 

Thus, 𝐶𝑜𝑙𝑢𝑚𝑛(𝐵) = 𝑆𝑝𝑎𝑛{(1,−1,0), (1,0,0)}. 

Part c: To find the rank of matrix 𝐵, we just need to 

change matrix 𝐴 to the Semi-Reduced Matrix. We 

already did that in part a. Thus, 

𝑅𝑎𝑛𝑘(𝐴) = 𝑑𝑖𝑚(𝑅𝑜𝑤(𝐵)) = 𝑑𝑖𝑚 (𝐶𝑜𝑙𝑢𝑚𝑛(𝐵)) = 2. 

C.2 Linear Transformation

We start this section with an introduction to 

polynomials, and we explain how they are similar to 

ℝ𝑛 as vector spaces. At the end of this section we 

discuss a new concept called linear transformation. 

Before discussing polynomials, we need to know the 

following mathematical facts: 

Fact C.2.1 ℝ𝑛×𝑚 = ℝ𝑛×𝑚 = 𝑀𝑛×𝑚(ℝ) is a vector space. 

Fact C.2.2 ℝ2×3 is equivalent to ℝ6 as a vector space. 



Copyright © 2015 Mohammed K A Kaabar                       All Rights Reserved 

 
 

145 
 

(i.e. [
1 2 3
0 1 1

]  is equivalent to (1,2,3,0,1,1) ). 

Fact C.2.3 ℝ3×2 is equivalent to ℝ6 as a vector space. 

(i.e. [
1 2
3 0
1 1

]  is equivalent to (1,2,3,0,1,1) ). 

After knowing the above facts, we introduce 

polynomials as follows: 

𝑃𝑛 = 𝑆𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 < 𝑛. 

The algebraic expression of polynomials is in the 

following from: 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥
1 + 𝑎0 

𝑎𝑛, 𝑎𝑛−1 and 𝑎1 are coefficients. 

𝑛 and 𝑛 − 1 are exponents that must be positive 

integers whole numbers. 

𝑎0 is a constant term. 

The degree of polynomial is determined by the highest 

power (exponent). 

We list the following examples of polynomials: 

 𝑃2 = 𝑆𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 < 2 (i.e. 

3𝑥 + 2 ∈ 𝑃2 , 0 ∈ 𝑃2, 10 ∈ 𝑃2, √3 ∈ 𝑃2 but 

 √3√𝑥 ∉ 𝑃2). 

 𝑃4 = 𝑆𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 < 4 (i.e. 

31𝑥2 + 4 ∈ 𝑃4). 

 If 𝑃(𝑥) = 3, then 𝑑𝑒𝑔(𝑃(𝑥)) = 0. 

 √𝑥 + 3 is not a polynomial. 

Result C.2.1 𝑃𝑛 is a vector space. 
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Fact C.2.4 ℝ2×3 = 𝑀2×3(ℝ)  as a vector space same as 

ℝ6. 

Result C.2.2 𝑃𝑛 is a vector space, and it is the same as 

ℝ𝑛. (i.e. 𝑎0 + 𝑎1𝑥
1 +⋯+ 𝑎𝑛−1𝑥

𝑛−1 ↔ (𝑎0, 𝑎1, … , 𝑎𝑛−1). 

Note: The above form is in an ascending order. 

Result C.2.3 𝑑𝑖𝑚 (𝑃𝑛) = 𝑛. 

Fact C.2.5 𝑃3 = 𝑆𝑝𝑎𝑛{3 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠, 𝑎𝑛𝑑 

 𝐸𝑎𝑐ℎ 𝑜𝑓 𝐷𝑒𝑔𝑟𝑒𝑒 < 3}. (i.e. 𝑃3 = 𝑆𝑝𝑎𝑛{1, 𝑥,𝑥
2}). 

Example C.2.1 Given the following polynomials: 

3𝑥2 − 2,−5𝑥, 6𝑥2 − 10𝑥 − 4. 

a. Are these polynomials independent? 

b. Let 𝐷 = 𝑆𝑝𝑎𝑛{3𝑥2 − 2,−5𝑥, 6𝑥2 − 10𝑥 − 4}. Find a 

basis for 𝐷. 

Solution: Part a: We know that these polynomial live 

in 𝑃3, and as a vector space 𝑃3 is the same as ℝ3. According 

to result 3.2.2, we need to make each polynomial 

equivalent to ℝ𝑛 as follows: 

 

3𝑥2 − 2 = −2 + 0𝑥 + 3𝑥2 ↔ (−2,0,3)  

−5𝑥 = 0 − 5𝑥 + 0𝑥2 ↔ (0,−5,0)  

6𝑥2 − 10𝑥 − 4 = −4 − 10𝑥 + 6𝑥2 ↔ (−4,−10,6)  

Now, we need to write these vectors as a matrix. 

[
−2 0 3
0 −5 0
−4 −10 6

] Each point is a row-operation. We need 

to reduce this matrix to Semi-Reduced Matrix.  
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Then, we apply the Row-Reduction Method to get the 

Semi-Reduced Matrix as follows: 

[
−2 0 3
0 −5 0
−4 −10 6

] −2𝑅1 + 𝑅3 → 𝑅3 [
−2 0 3
0 −5 0
0 −10 0

]  

−2𝑅2 + 𝑅3 → 𝑅3 [
−2 0 3
0 −5 0
0 0 0

] This is a Semi-Reduced 

Matrix. 

Since there is a zero-row in the Semi-Reduced Matrix, 

then these elements are dependent. Thus, the answer 

to this question is NO. 

Part b: Since there are only 2 vectors survived after 

checking for dependency in part a, then the basis for  

(0, −5,0) ↔ −5𝑥. 

Result C.2.4 Given 𝑣1, 𝑣2, … , 𝑣𝑘 points in ℝ𝑛 where 

 𝑘 < 𝑛. Choose one particular point, say 𝑄, such that 

𝑄 = 𝑐1𝑣1 + 𝑐2𝑣2 +⋯+ 𝑐𝑘𝑣𝑘 where 𝑐1, 𝑐2, … , 𝑐𝑘 are  

 

constants. If 𝑐1, 𝑐2, … , 𝑐𝑘 are unique, then 𝑣1, 𝑣2, … , 𝑣𝑘 

are independent.  

Note: The word “unique” in result 3.2.4 means that 

there is only one value for each of 𝑐1, 𝑐2, … , 𝑐𝑘. 

Proof of Result C.2.4 By using proof by contradiction, 

we assume that 𝑣1 = 𝛼2𝑣2 + 𝛼3𝑣3 +⋯+ 𝛼𝑘𝑣𝑘 where 

𝛼2, 𝛼3, … , 𝛼𝑘 are constants. Our assumption means that 

it is dependent. Using algebra, we obtain: 
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𝑄 = 𝑐1𝛼2𝑣2 + 𝑐1𝛼3𝑣3 +⋯+ 𝑐1𝛼𝑘𝑣𝑘 + 𝑐2𝑣2 +⋯+ 𝑐𝑘𝑣𝑘. 

𝑄 = (𝑐1𝛼2+𝑐2)𝑣2 + (𝑐1𝛼3 + 𝑐3)𝑣3 +⋯+ (𝑐1𝛼𝑘 + 𝑐𝑘)𝑣𝑘 +

0𝑣1. Thus, none of them is a linear combination of the 

others which means that they are linearly 

independent. This is a contradiction. Therefore, our 

assumption that 𝑣1, 𝑣2, … , and 𝑣𝑘 were linearly 

dependent is false. Hence, 𝑣1, 𝑣2, … , and 𝑣𝑘 are linearly 

independent. 

Result C.2.5 Assume 𝑣1, 𝑣2, … , 𝑣𝑘 are independent and 

𝑄 ∈ 𝑆𝑝𝑎𝑛{𝑣1, 𝑣2, … , 𝑣𝑘}. Then, there exists unique 

number 𝑐1, 𝑐2, … , 𝑐𝑘 such that 𝑄 = 𝑐1𝑣1 + 𝑐2𝑣2 +⋯+

𝑐𝑘𝑣𝑘. 

Linear Transformation: 

Definition C.2.1 𝑇: 𝑉 → 𝑊 where 𝑉 is a domain and 𝑊 

is a co-domain. 𝑇 is a linear transformation if for every 

𝑣1, 𝑣2 ∈ 𝑉 and 𝛼 ∈ ℝ, we have the following: 

𝑇(𝛼𝑣1 + 𝑣2) = 𝛼𝑇(𝑣1) + 𝑇(𝑣2). 

Example C.2.2 Given 𝑇: ℝ2 → ℝ3 where ℝ2 is a domain 

and ℝ3 is a co-domain. 𝑇((𝑎1, 𝑎2)) = (3𝑎1 + 𝑎2, 𝑎2, −𝑎1).  

a. Find 𝑇((1,1)). 

b. Find 𝑇((1,0)). 

c. Show that 𝑇 is a linear transformation. 

Solution: Part a: Since 𝑇((𝑎1, 𝑎2)) = (3𝑎1 + 𝑎2, 𝑎2, −𝑎1), 

then 𝑎1 = 𝑎2 = 1. Thus, 𝑇((1,1)) = (3(1) + 1,1, −1) =

(4,1, −1). 

Part b: Since 𝑇((𝑎1, 𝑎2)) = (3𝑎1 + 𝑎2, 𝑎2, −𝑎1), then 𝑎1 =

1 and 𝑎2 = 0. Thus, 𝑇((1,0)) = (3(1) + 0,0, −1) =

(3,0, −1). 
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Part c: Proof: We assume that 𝑣1 = (𝑎1, 𝑎2), 

𝑣2 = (𝑏1, 𝑏2), and 𝛼 ∈ ℝ. We will show that 𝑇 is a linear 

transformation. Using algebra, we start from the Left-

Hand-Side (LHS): 

𝛼𝑣1 + 𝑣2 = (𝛼𝑎1 + 𝑏1, 𝛼𝑎2 + 𝑏2) 

𝑇(𝛼𝑣1 + 𝑣2) = 𝑇((𝛼𝑎1 + 𝑏1, 𝛼𝑎2 + 𝑏2)) 

𝑇(𝛼𝑣1 + 𝑣2) = (3𝛼𝑎1 + 3𝑏1 + 𝛼𝑎2 + 𝑏2, 𝛼𝑎2 + 𝑏2, −𝛼𝑎1 − 𝑏1) 

Now, we start from the Right-Hand-Side (RHS): 

𝛼𝑇(𝑣1) + 𝑇(𝑣2) = 𝛼𝑇(𝑎1, 𝑎2) + 𝑇(𝑏1, 𝑏2) 

𝛼𝑇(𝑣1) + 𝑇(𝑣2) = 𝛼(3𝑎1 + 𝑎2, 𝑎2, −𝑎1) + (3𝑏1 + 𝑏2, 𝑏2, −𝑏1) 

= (3𝛼𝑎1 + 𝛼𝑎2, 𝛼𝑎2, −𝛼𝑎1) + (3𝑏1 + 𝑏2, 𝑏2, −𝑏1) 

= (3𝛼𝑎1 + 𝛼𝑎2 + 3𝑏1 + 𝑏2, 𝛼𝑎2 + 𝑏2, −𝛼𝑎1 − 𝑏1) 

Thus, 𝑇 is a linear transformation.  

 

Result C.2.6 Given 𝑇:ℝ𝑛 → ℝ𝑚. Then,  

𝑇((𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛)) = Each coordinate is a linear 

combination of the 𝑎𝑖′𝑠. 

Example C.2.3 Given 𝑇: ℝ3 → ℝ4 where ℝ3 is a domain 

and ℝ4 is a co-domain.  

a. If 𝑇((𝑥1, 𝑥2, 𝑥3)) = (−3𝑥3 + 6𝑥1, −10𝑥2, 13, −𝑥3), is 

𝑇 a linear transformation? 

b. If 𝑇((𝑥1, 𝑥2, 𝑥3)) = (−3𝑥3 + 6𝑥1, −10𝑥2, 0, −𝑥3), is 𝑇 

a linear transformation? 

Solution: Part a: Since 13 is not a linear combination of 

𝑥1, 𝑥2 and 𝑥3. Thus, 𝑇 is not a linear transformation. 

Part b: Since 0 is a linear combination of 𝑥1, 𝑥2 and 𝑥3. 

Thus, 𝑇 is a linear transformation. 



Copyright © 2015 Mohammed K A Kaabar                       All Rights Reserved 

 

150  M. Kaabar 
 

Example C.2.4 Given 𝑇: ℝ2 → ℝ3 where ℝ2 is a domain 

and ℝ3 is a co-domain. If 𝑇((𝑎1, 𝑎2)) = (𝑎1
2 + 𝑎2, −𝑎2), 

is 𝑇 a linear transformation? 

Solution: Since 𝑎1
2 + 𝑎2 is not a linear combination of 

𝑎1 and 𝑎2. Hence, 𝑇 is not a linear transformation. 

Example C.2.5 Given 𝑇: ℝ → ℝ. If 𝑇(𝑥) = 10𝑥, is 𝑇 a 

linear transformation? 

Solution: Since it is a linear combination of 𝑎1 such 

that 𝛼𝑎1 = 10𝑥. Hence, 𝑇 is a linear transformation. 

Example C.2.6 Find the standard basis for ℝ2. 

Solution: The standard basis for ℝ2 is the rows of 𝐼2. 

Since 𝐼2 = [
1 0
0 1

], then the standard basis for ℝ2 is 

{(1,0), (0,1)}. 

Example C.2.7 Find the standard basis for ℝ3. 

Solution: The standard basis for ℝ3 is the rows of 𝐼3. 

Since 𝐼3 = [
1 0 0
0 1 0
0 0 1

], then the standard basis for ℝ3 is 

{(1,0,0), (0,1,0), (0,0,1)}. 

Example C.2.8 Find the standard basis for 𝑃3. 

Solution: The standard basis for 𝑃3 is {1, 𝑥, 𝑥2}. 

Example C.2.9 Find the standard basis for 𝑃4. 

Solution: The standard basis for 𝑃4 is {1, 𝑥, 𝑥2, 𝑥3}. 
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Example C.2.10 Find the standard basis for ℝ2×2 =

𝑀2×2(ℝ). 

Solution: The standard basis for ℝ2×2 = 𝑀2×2(ℝ) is 

{[
1 0
0 0

] , [
0 1
0 0

] , [
0 0
1 0

] , [
0 0
0 1

]} because ℝ2×2 =

𝑀2×2(ℝ) = ℝ4 as a vector space where standard basis 

for ℝ2×2 = 𝑀2×2(ℝ) is the rows of 𝐼4 = [

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

]that 

are represented by 2 × 2 matrices. 

Example C.2.11 Let  𝑇: ℝ2 → ℝ3 be a linear 

transformation such that 

𝑇(2,0) = (0,1,4) 

𝑇(−1,1) = (2,1,5) 

Find 𝑇(3,5). 

Solution: The given points are (2,0) and (−1,1). These 

two points are independent because of the following: 

[
2 0
−1 1

]
1

2
𝑅1 + 𝑅2 → 𝑅2 [

2 0
0 1

] 

Every point in ℝ2 is a linear combination of (2,0) and 

(−1,1). There exists unique numbers 𝑐1and 𝑐2 such 

that (3,5) = 𝑐1(2,0) + 𝑐2(−1,1). 

3 = 2𝑐1 − 𝑐2 

5 = 𝑐2 

Now, we substitute 𝑐2 = 5 in 3 = 2𝑐1 − 𝑐2, we obtain: 

3 = 2𝑐1 − 5 

𝑐1 = 4 

Hence, (3,5) = 4(2,0) + 5(−1,1). 

𝑇(3,5) = 𝑇(4(2,0) + 5(−1,1)) 
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𝑇(3,5) = 4𝑇(2,0) + 5𝑇(−1,1) 

𝑇(3,5) = 4(0,1,4) + 5(2,1,5) = (10,9,41) 

Thus, 𝑇(3,5) = (10,9,41). 

Example C.2.12 Let  𝑇: ℝ → ℝ be a linear 

transformation such that 𝑇(1) = 3. Find 𝑇(5). 

Solution: Since it is a linear transformation, then 

𝑇(5) = 𝑇(5 ∙ 1) = 5𝑇(1) = 5(3) = 15. If it is not a linear 

transformation, then it is impossible to find 𝑇(5). 

C.3 Kernel and Range

In this section, we discuss how to find the standard 

matrix representation, and we give examples of how to 

find kernel and range.  

Definition C.3.1 Given 𝑇:ℝ𝑛 → ℝ𝑚 where ℝ𝑛 is a 

domain and ℝ𝑚 is a co-domain. Then, Standard Matrix 

Representation is a 𝑚 × 𝑛 matrix. This means that it is 

𝑑𝑖𝑚(𝐶𝑜 − 𝐷𝑜𝑚𝑎𝑖𝑛) × 𝑑𝑖𝑚 (𝐷𝑜𝑚𝑎𝑖𝑛) matrix. 

Definition C.3.2 Given 𝑇:ℝ𝑛 → ℝ𝑚 where ℝ𝑛 is a 

domain and ℝ𝑚 is a co-domain. Kernel is a set of all 

points in the domain that have image which equals to 

the origin point, and it is denoted by 𝐾𝑒𝑟(𝑇). This 

means that 𝐾𝑒𝑟(𝑇) = 𝑁𝑢𝑙𝑙 𝑆𝑝𝑎𝑐𝑒 𝑜𝑓 𝑇. 

Definition C.3.3 Range is the column space of standard 

matrix representation, and it is denoted by 𝑅𝑎𝑛𝑔𝑒(𝑇). 

Example C.3.1 Given  𝑇: ℝ3 → ℝ4 where ℝ3 is a domain 

and ℝ4 is a co-domain. 
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𝑇((𝑥1, 𝑥2, 𝑥3)) = (−5𝑥1, 2𝑥2 + 𝑥3, −𝑥1, 0) 

a. Find the Standard Matrix Representation. 

b. Find 𝑇((3,2,1)). 

c. Find  𝐾𝑒𝑟(𝑇). 

d. Find 𝑅𝑎𝑛𝑔𝑒(𝑇). 

 

Solution: Part a: According to definition 3.3.1, the 

Standard Matrix Representation, let’s call it 𝑀, here is  

 

4 × 3. We know from section 3.2 that the standard 

basis for domain (here is ℝ3) is {(1,0,0), (0,1,0), (0,0,1)}. 

We assume the following: 

𝑣1 = (1,0,0) 

𝑣2 = (0,1,0) 

𝑣3 = (0,0,1) 

Now, we substitute each point of the standard basis for 

domain in 𝑇((𝑥1, 𝑥2, 𝑥3)) = (−5𝑥1, 2𝑥2 + 𝑥3, −𝑥1, 0) as 

follows: 

𝑇((1,0,0)) = (−5,0, −1,0) 

𝑇((0,1,0)) = (0,2,0,0) 

𝑇((0,0,1)) = (0,1,0,0)      

Our goal is to find 𝑀 so that 𝑇((𝑥1, 𝑥2, 𝑥3)) = 𝑀 [

𝑥1
𝑥2
𝑥3
]. 

𝑀 = [

−5
0

0
2

0
1

−1 0 0
0 0 0

] This is the Standard Matrix 

Representation. The first, second and third columns 

represent 𝑇(𝑣1), 𝑇(𝑣2) and 𝑇(𝑣3). 
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Part b: Since ((𝑥1, 𝑥2, 𝑥3)) = 𝑀 [

𝑥1
𝑥2
𝑥3
] , then 

𝑇((3,2,1)) = [

−5
0

0
2

0
1

−1 0 0
0 0 0

] [
3
2
1
]  

𝑇((3,2,1)) = 3 ∙ [

−5
0
−1
0

] + 2 ∙ [

0
2
0
0

] + 1 ∙ [

0
1
0
0

] = [

−15
5
−3
0

] 

[

−15
5
−3
0

] is equivalent to (−15,5, −3,0). This lives in the 

co-domain. Thus, 𝑇((3,2,1)) = (−15,5, −3,0). 

Part c: According to definition 3.3.2, 𝐾𝑒𝑟(𝑇) is a set of 

all points in the domain that have image= (0,0,0,0). 

Hence, 𝑇((𝑥1, 𝑥2, 𝑥3)) = (0,0,0,0). This means the 

following: 𝑀 [

𝑥1
𝑥2
𝑥3
] = [

0
0
0
0

] 

[

−5
0

0
2

0
1

−1 0 0
0 0 0

] [

𝑥1
𝑥2
𝑥3
] = [

0
0
0
0

] 

Since 𝐾𝑒𝑟(𝑇) = 𝑁𝑢𝑙𝑙(𝑀), then we need to find 𝑁(𝑀) as 

follows: 

(

−5
0

0
2

0
1

−1 0 0
0 0 0

|

0
0
0
0

) −
1

5
𝑅1(

1
0

0
2

0
1

−1 0 0
0 0 0

|

0
0
0
0

)𝑅1 + 𝑅3 → 𝑅3 
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(

1
0

0
2

0
1

0 0 0
0 0 0

|

0
0
0
0

)
1

2
𝑅2 (

1
0

0
1

0
0.5

0 0 0
0 0 0

|

0
0
0
0

) This is a Completely-

Reduced Matrix. Now, we need to read the above 

matrix as follows: 

𝑥1 = 0 

𝑥2 +
1

2
𝑥3 = 0 

0 = 0 

0 = 0 

To write the solution, we need to assume that 

 𝑥3 ∈ ℝ (𝐹𝑟𝑒𝑒 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒).  

Hence, 𝑥1 = 0 and 𝑥2 = −
1

2
𝑥3. 

𝑁(𝑀) = {(0,−
1

2
𝑥3, 𝑥3)|𝑥3 ∈ ℝ}.  

By letting 𝑥3 = 1, we obtain: 

𝑁𝑢𝑙𝑙𝑖𝑡𝑦(𝑀) = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑟𝑒𝑒 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = 1, and 

𝐵𝑎𝑠𝑖𝑠 = {(0,−
1

2
, 1)} 

Thus, 𝐾𝑒𝑟(𝑇) = 𝑁(𝑀) = 𝑆𝑝𝑎𝑛{(0, −
1

2
, 1)}. 

Part d: According to definition 3.3.3, 𝑅𝑎𝑛𝑔𝑒(𝑇) is the 

column space of 𝑀. Now, we need to locate the columns 

in the Completely-Reduced Matrix in part c that 

contain the leaders, and then we should locate them to 

the original matrix as follows:  

 

(

1
0

0
1

0
0.5

0 0 0
0 0 0

|

0
0
0
0

)  Completely-Reduced Matrix 
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(

−5
0

0
2

0
1

−1 0 0
0 0 0

|

0
0
0
0

) Orignial Matrix 

Thus, 𝑅𝑎𝑛𝑔𝑒(𝑇) = 𝑆𝑝𝑎𝑛{(−5,0,−1,0), (0,2,0,0)}. 

Result C.3.1 Given 𝑇:ℝ𝑛 → ℝ𝑚 where ℝ𝑛 is a domain 

and ℝ𝑚 is a co-domain. Let 𝑀 be a standard matrix 

representation. Then, 

𝑅𝑎𝑛𝑔𝑒(𝑇) = 𝑆𝑝𝑎𝑛{𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝐶𝑜𝑙𝑢𝑚𝑛𝑠𝑜𝑓 𝑀}. 

Result C.3.2 Given 𝑇:ℝ𝑛 → ℝ𝑚 where ℝ𝑛 is a domain 

and ℝ𝑚 is a co-domain. Let 𝑀 be a standard matrix 

representation. Then, 𝑑𝑖𝑚(𝑅𝑎𝑛𝑔𝑒(𝑇)) = 𝑅𝑎𝑛𝑘(𝑀) = 

Number of Independent Columns. 

Result C.3.3 Given 𝑇:ℝ𝑛 → ℝ𝑚 where ℝ𝑛 is a domain 

and ℝ𝑚 is a co-domain. Let 𝑀 be a standard matrix 

representation. Then, 𝑑𝑖𝑚(𝐾𝑒𝑟(𝑇)) = 𝑁𝑢𝑙𝑙𝑖𝑡𝑦(𝑀). 

Result C.3.4 Given 𝑇:ℝ𝑛 → ℝ𝑚 where ℝ𝑛 is a domain 

and ℝ𝑚 is a co-domain. Let 𝑀 be a standard matrix 

representation. Then, 𝑑𝑖𝑚(𝑅𝑎𝑛𝑔𝑒(𝑇)) + 𝑑𝑖𝑚 (𝐾𝑒𝑟(𝑇)) =

𝑑𝑖𝑚 (𝐷𝑜𝑚𝑎𝑖𝑛). 

Example C.3.2 Given  𝑇: 𝑃2 → ℝ. 𝑇(𝑓(𝑥)) = ∫ 𝑓(𝑥)𝑑𝑥
1

0
 is 

a linear transformation. 

a. Find 𝑇(2𝑥 − 1). 

b. Find 𝐾𝑒𝑟(𝑇). 

c. Find 𝑅𝑎𝑛𝑔𝑒(𝑇). 
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Solution:  

Part a: 𝑇(2𝑥 − 1) = ∫ (2𝑥 − 1)𝑑𝑥 = 𝑥2 − 𝑥 |
𝑥 = 1
𝑥 = 0

1

0
= 0. 

Part b: To find 𝐾𝑒𝑟(𝑇), we set equation of 𝑇 = 0, and 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 ∈ 𝑃2.  

Thus, 𝑇(𝑓(𝑥)) = ∫ (𝑎0 + 𝑎1𝑥)𝑑𝑥 = 𝑎0𝑥 +
𝑎1

2
𝑥2 |

𝑥 = 1
𝑥 = 0

1

0
= 0 

𝑎0 +
𝑎1
2
− 0 = 0 

 𝑎0 = −
𝑎1

2
 

Hence, 𝐾𝑒𝑟(𝑇) = {−
𝑎1

2
+ 𝑎1𝑥|𝑎1 ∈ ℝ}. We also know that 

𝑑𝑖𝑚 (𝐾𝑒𝑟(𝑇) = 1 because there is one free variable. In 

addition, we can also find basis by letting 𝑎1 be any 

real number not equal to zero, say 𝑎1 = 1, as follows: 

𝐵𝑎𝑠𝑖𝑠 = {−
1

2
+ 𝑥} 

Thus, 𝐾𝑒𝑟(𝑇) = 𝑆𝑝𝑎𝑛{−
1

2
+ 𝑥}. 

Part c: It is very easy to find range here. 𝑅𝑎𝑛𝑔𝑒(𝑇) = ℝ 

because we linearly transform from a second degree 

polynomial to a real number. For example, if we 

linearly transform from a third degree polynomial to a 

second degree polynomial, then the range will be 𝑃2. 
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Answers to Odd-Numbered 

Exercises 

1.7 Exercises 

1.  ℒ−1 {
10

(𝑠−4)4
} =

10

6
𝑒4𝑥𝑥3 

3.  ℒ−1 {
𝑠+5

(𝑠+3)4
} =

1

2
𝑥2𝑒−3𝑥 + 6𝑥3𝑒−3𝑥 

5.  ℒ−1 {
2

𝑠2−6𝑠+13
} = 𝑒3𝑥sin (2𝑥) 

7.  𝑦(𝑥) = −4𝑒−3𝑥 

9.  ℒ−1 {
4

(𝑠−1)2(𝑠+3)
} =

1

4
𝑒𝑥 + 𝑥𝑒𝑥 +

1

4
𝑒−3𝑥 

11. ℒ{𝑈(𝑥 − 2)𝑒3𝑥} =
𝑒6−2𝑠

𝑠−3
 

13. ℒ−1 {
𝑠𝑒−4𝑥

𝑠2+4
} = 𝑈(𝑥 − 4)cos (2𝑥 − 8) 

15. Assume 𝑊(𝑥) = −
3

8
+
1

3
𝑒𝑥 +

1

24
𝑒−8𝑥. Then, we obtain: 

𝑦(𝑥) = 𝑊(𝑥) − 3𝑈(𝑥 − 5)𝑊(𝑥 − 5) − 2𝑈(𝑥 − 5)𝑊(𝑥 − 5) 

17. 𝑦(𝑥) = ℒ−1 {
𝑒−3𝑥

𝑠2(𝑠2+1)
} 

19. ℒ−1 {
2𝑠

(𝑠2+4)2
} =

4𝑠

(𝑠2+4)2
 

21. 𝑤(𝑡) = 1 + 𝑡2 and ℎ(𝑡) = 2𝑡 

2.3 Exercises 

1.  𝑦ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠(𝑥) = 𝑐1𝑒
−𝑥 + 𝑐2𝑥𝑒

−𝑥 for some 𝑐1, 𝑐2 ∈ ℜ 

3.  𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑙(𝑥) = (𝑐1 + 𝑐2𝑥 + 𝑐3𝑥
2 + 𝑐4𝑒

𝑥) + (𝑎0 + 𝑎1𝑥 +

𝑎2𝑥
2)𝑥3 for some 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑎0, 𝑎1, 𝑎2 ∈ ℜ 
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5.  𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑙(𝑥) = (𝑐1 + 𝑐2𝑥 + 𝑐3𝑒
𝑥) + 0.05 sin(2𝑥) +

0.1cos (2𝑥) for some 𝑐1, 𝑐2, 𝑐3 ∈ ℜ 

7. It is impossible to describe 𝑦𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑥) 

3.3 Exercises 

1.  𝑦ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠(𝑥) = 𝑒
−
1

2
𝑥 [𝑐1 cos (

√15

2
𝑥) + 𝑐2 sin (

√15

2
𝑥)]for 

some 𝑐1, 𝑐2 ∈ ℜ 

3.  𝑦ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠(𝑥) = 𝑐1 + 𝑐2𝑥
3

2 cos (
√3

2
ln (𝑥)) +

𝑐3𝑥
3

2 sin (
√3

2
ln (𝑥))for some 𝑐1, 𝑐2, 𝑐3 ∈ ℜ 

5.  It is impossible to use Cauchy-Euler Method 

because the degrees of 𝑦′ and 𝑦′′ are not equal to each 

other when you substitute them in the given 

differential equation. 

4.6 Exercises

1.  𝑦(𝑥) = √(𝑥 + 1)3 + (𝑥 + 1)𝑐𝑒−3𝑥
3

 

3.  𝑡𝑎𝑛−1(𝑦) − 𝑡𝑎𝑛−1(𝑥) = 𝑐 for some 𝑐 ∈ ℜ 

5.  −
1

5
𝑒−5𝑦 − 3𝑥𝑒𝑥 + 3𝑒𝑥 = 𝑐 for some 𝑐 ∈ ℜ 

7.  ln|sin(5𝑥 + 𝑦)| − 2(5𝑥 + 𝑦) − 𝑥 = 𝑐 for some 𝑐 ∈ ℜ 
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Determinants, 109 

Differential Equations, 9 

Dimension of Vector Spaces, 119 

E
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Inverse Laplace Transforms, 24 

K

Kernel and Range, 150 

L

Laplace Transforms, 9 

Linear Equations, 45 

Linear Independence, 120 

Linear Transformations, 142 



Copyright © 2015 Mohammed K A Kaabar                       All Rights Reserved 

 
 

163 
 

N

Null Space and Rank, 135 

P

Properties of Laplace Transforms, 33 

R

Reduced to Separable Method, 90 
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S

Separable Method, 85 

Subspace, 123 
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Temperature Application, 96 

U

Undetermined Coefficients Method, 60 
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Water Tank Application, 104 
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