Pre-Algebra

Angela Milano
3rd Edition
American River College

This Page was intentionally left Blank

Table of Contents

Unit 1 Integers
Unit 1 Objective Overview 1
Section 1 - Introduction to Integers 5
Section 2 - Adding and Subtracting Integers 13
Section 3 - Multiplying and Dividing Integers 23
Section 4 - Exponents and Order of Operations 33
Unit 1 Review 41
Unit 2 Fractions
Unit 2 Objective Overview 43
Section 1 - Fraction Review 47
Section 2 - Multiplying and Dividing Fractions 57
Mid-Unit Review 69
Section 3 - Adding and Subtracting Fractions 71
Section 4 - Exponents and Order of Operations 83
Unit 2 Review 93
Unit 3 Decimals
Unit 3 Objective Overview 97
Section 1 - Introduction to Decimals 101
Section 2 - Adding and Subtracting Decimals 111
Section 3 - Multiplying and Dividing Decimals 117
Mid - Unit Review 129
Section 4 - Exponents, Order of Operations and Square Roots 131
Unit 3 Review 141
Unit 4 Equations
Unit 4 Objective Overview 147
Section 1 - Variables and Combining Like Terms 151
Section 2 - Solving One-Step Equations 163
Section 3 - Solving Two-Step Equations 175
Section 4 - Solving Multi-step Equations 183
Mid- Unit Review 191
Section 5 - Equations with Fractions 193
Section 6 - Equations with Decimals 201
Unit 4 Review 209
Unit 5 Proportions and Percents
Unit 5 Objective Overview 213
Section 1 - Ratios 217
Section 2 - Rates 227
Section 3 - Proportions 235
Section 4 - Percents 247
Mid- Unit Review 257
Section 5 - Solving Percents with Proportions 259
Section 6 - Solving Percents with Equations 269
Section 7 - Solving Percentage Problems 279
Unit 5 Review 285
Unit 6 Coordinate Plane and Geometry Unit 6 Objective Overview 291
Section 1 - Graphing in the Coordinate Plane 297
Section 2 - Area and Perimeter 307
Section 3 - Volume 327
Section 4 -Pythagorean Theorem 335
Formula Sheet 343
Unit 6 Review 345
Course Review
Unit 1-3 Review 347
Unit 4-6 Review 359
Answers to "first column" At end of book

This page was intentionally left blank.

Unit 1 - Integers

Objective Overview

The following is a small subset of possible problems that could represent each objective. Refer to notes, homework and reviews for a more complete picture.

Section 1 - Introduction to Integers

By the end of section 1 you should be able to:

- Use integers to describe real life situations

A submarine is 50 feet below sea level.

Sam has \$125 in his account.

- Plot numbers on a number line

Plot -2, 0, 3 on a number line.

- Order numbers by placing < or > in between them
-5 7
$-7 \quad-4$
- Order numbers from least to greatest
$5,-7,4,-4,0$
- Find the absolute value of a number

$$
|-7|=
$$

$|4|=$
$-|-2|=$

Section 2 - Adding and Subtracting Integers

By the end of section 2 you should be able to:

- Add Integers with the same sign
$5+7=$
$-6+(-4)=$
- Add integers with different signs
$-7+3=$
- Subtract integers
$-15-7=$
$2-(-3)=$
- Evaluate an expression involving addition or subtraction

Evaluate $a+b-c$, for $a=2, b=-12$, and $c=-5$

Section 3 - Multiplying and Dividing Integers

By the end of section 3 you should be able to:

- Multiply integers
$-7 \cdot-2=$
$-3 \cdot 8=$
- Divide integers
$\frac{-55}{5}=$
$-36 \div-4=$
- Find the area of a rectangle

If the base of a rectangle is $6 f t$ and the height is $8 f t$ find the area of the rectangle.

- Evaluate an expression involving multiplication or division

Evaluate $x y$, for $x=17$ and $y=-2$

Section 4 - Exponents and Order of Operations

By the end of section 4 you should be able to:

- Write repeated multiplication as an exponent

Write the following using exponents
$2 \cdot 2 \cdot 2 \cdot x \cdot x \cdot x \cdot x \cdot x$

- Evaluate exponents
$3^{4}=$
$-2^{4}=$
$(-4)^{2}=$
- Use the order of operations to evaluate expressions $16 \div 2 \cdot 3$
$2+7 \cdot 4$
$\frac{2^{2}-1}{3}$

This page was intentionally left blank.
\qquad

Activity 1.1-Integers

PART A

You are going to the movies with a friend. You have $\$ 20$ with you and the movie cost $\$ 9$. After paying, How much money do you have left? Is there anything strange about your answer?

How would you describe your answer to a friend?

PART B

You are going to a show and currently have $\$ 12$. The show cost $\$ 23$. After paying for the show, how much money do you have left? Is there anything strange about your answer?

How would you describe your answer to a friend?

PART C

What is similar between the answers to part A and part B ?

What is different?

This page has been intentionally left blank.

Unit 1 - Integers

Section 1 - Introduction to Integers (Signed numbers)

Integers

Integers include the Whole numbers we are use to counting with ($0,1,2,3,4, \ldots$) as well as the "opposites" of the natural number ($-1,-2,-3,-4, \ldots$)

Why do we need signed numbers?
Is there a difference between being $\$ 300$ in debt and having $\$ 300$ to spend?
Is there a difference between being 500 ft below sea level and being 500 ft . above sea level?
Integers give us a way to describe thing above and below a "zero" (sea level, \$0, etc)

Example 1)

Write an integer to represent 50 feet below sea level.
-50 feet We use a negative sign since it is "below " sea level. We would have used a positive number if it was above sea level.

Number line

The number line we see from Arithmetic

Gets extended to represent negative numbers as well

Negative numbers can be used to represent debt, numbers below zero, sea level, Temperatures below freezing (0 degrees Celsius) .

Positive numbers fall to the right of zero on a number line.
Negative numbers fall to the left of zero on the number line.

Example 2)

Plot 2, -2, 0 on a number line.

Negative numbers can be used to represent debt, sea level, temperatures below zero, as well as many other things.

Comparing Integers

We will speak of numbers being "less than" another number or "greater than" another a number
We use < to mean less than

We use > to mean greater than
We use \leq to mean less than or equal to
We use \geq to mean greater than or equal to

The number that falls to the right on the number line is the greater number - The arrow points at the "lesser number"

A fun way to think of the arrows - They are like really hungry alligators and will always eat the bigger number.

Example 3)

Order 5 and 4 by placing a > or < sign between them.

Since on the number line 5 falls to the right of 4,5 is the greater number.
5
$>$
4

Example 4)

Order -3 and -2 by placing a > or < sign between them.
Since on the number line -2 falls to the right of $-3,-2$ is the greater number.
-3
$<$
-2

Note: $3>2$ but on the negative side of the number line the "negative" number that are larger in absolute value are actually the "lesser number"

Example 5)

Order -5 and 1 by placing $\mathrm{a}>$ or < sign between them.
Since on the number line 1 falls to the right of $-5,1$ is the greater number.
-5
$<$
1

Note: Negative numbers are always less than positive numbers.

Example 6)

Put the numbers in order from least to greatest: $-7,2,-5,11,0,-6$
$-7,-6,-5,0,2,11 \quad$ We put them in the order they would appear on the number line.

Absolute Value

Absolute value is the distance a number is from zero. It is always a positive number.
If Fred is $\$ 500$ in debt, in other words he has -500 dollars, the absolute value of his debt is $\$ 500$.

We use | to symbolically ask for the absolute value of a number.

Example 7)

Evaluate |3|

$|3|=3 \quad$ Positive numbers stay positive.

Example 8)

Evaluate |-2|

$|-2|=2 \quad$ Negative number turn positive.

Example 9)

Evaluate |0|
$|0|=0$

Example 10)

Evaluate - |-5|

The absolute value only applies to what is inside of the absolute value bars.

Exercise 1.1
NAME:
For problems 1-9 Write the positive or negative number that best represents the given information.

1. $\$ 35$ overdrawn
2. \$36 in your account
3. 48 ft above sea level
4. 250 ft . above sea level
5. 13° below zero
6. \$21 overdrawn
7. 72° above zero
8. 51 ft . below sea level
9. 7° below zero

Plot the following on a number line, label each point
10. $3,-2,0$
11. $5,2,-5$
12. $6,-2,-7$

Evaluate the following absolute values
13. |3|
14. $|-7|$
15. $|8|$
16. $|-9|$
17. $-|12|$
18. $|0|$

Order the following numbers by placing a > or < in between them.
19. 0
-8
20. 0
4
21. 3
-2
22. -4
7
23. -6
-8
24. -11
-2

Put the following in order from least to greatest
25. $-3,3,0$
26. $-5,-3,-9$
27. $6,7,-11$
28. $|-3|,-4,-|-5|$
29. $|0|,-2,|-2|$
30. $-|3|, 0,|3|$
31. What temperature is colder -21 degrees or -15 degrees?
32. Is it better if sally is overdrawn by $\$ 10$, or overdrawn by $\$ 30$? (Which case is she in less debt?)
33. You are in a submarine and are at a depth of 75 feet below sea level. Your depth changes to 25 feet below sea level. Did you go up or down?
\qquad

Activity 1.2-Adding and Subtracting Integers

Part A

Billy Joe has $\$ 30$ in his account, he writes a check for $\$ 50$. How much money is in Billy Joe's account?

How could you write this problem as a math expression?

Part B

Sally sue has overdraft her account by $\$ 7$. She deposits a check for $\$ 68$ in to her account. How much does she have in her account?

How could you write this problem as a math expression?

Part C

A submarine is on a boat 25 feet above sea level. The sub is lowered to sea level and continues to a depth of 100 feet below sea level.

What number can represents the 25 feet above sea level?
What number can represent the 100 feet below sea level?

How far does the submarine travel total?

Write a math problem that represents this.

Part D
The temperature outside is 25 degrees and then it falls 35 degrees over night.
How far below 0 degrees is it?

Write a math problem that represents this.

Unit 1 - Integers

Section 2 - Adding and Subtracting Integers

If you have money, you can think of it as having a positive amount. If you pay or owe money youcan think of it as having a negative amount.

If you have $\$ 20$ and someone gives you $\$ 30$, you all together have $\$ 50$. Both values are positive and when you combine them you end up with a larger positive number.

$$
20+30=50
$$

If you owe $\$ 45(-45)$ and then borrow an additional $\$ 40(-40)$, you all together owe $\$ 85(-85)$. Both values are negative and when you combine them you end up with a negative number with an even larger absolute value.

$$
-45+-40=-85
$$

In both of these cases both values have the same sign, and in both cases we add the absolute values and keep the sign.

Example 1)

Add (-5) + (-3)
The signs are the same so we add the absolute values and keep the sign. $(5+3=8$ and they were both negative so the answer is negative.)
-8

If you have $\$ 55$ and pay someone $\$ 32(-32)$ then you have $\$ 23$ left. Since you started out with more money than you owed, you still have money left. In other words if you have opposite signs and the number with the larger absolute value is positive, then adding the numbers together will give a positive result.

$$
55+(-32)=23
$$

If you have $\$ 40$ and need to pay someone $\$ 65(-65)$, you would be in debt $\$ 25(-25)$. Since the negative amount is larger than the positive amount, we end up owing in the end. In other words when the
numbers have opposite signs and the number with the largest absolute value is negative the end result is negative.

$$
40+(-65)=-25
$$

In both cases both values have opposite signs, and in both cases we find the difference between the two numbers and keep the sign of the number with the larger absolute value.

Example 2)

Add (-7) +3

The signs are opposite so we subtract (larger absolute value - smaller absolute value) and keep the sign of the number with the largest absolute value. ($7-3=4$, and -7 has the larger absolute value so the answer is negative)
$(-7)+3=-4$

Example 3)

Add -3 +15

The signs are opposite so we subtract (larger absolute value - smaller absolute value) and keep the sign of the number with the largest absolute value. ($15-3=12$, and 15 has the larger absolute value so the answer is positive)
$-3+15=12$

RULE:

If you add two numbers with the same sign, then you add the numbers and keep the sign.

If you add two numbers with different signs the subtract the absolute values and then keep the sign of the number with the larger absolute value.

Example 4)

Add 5 + (-16)

The signs are opposite so we subtract (larger absolute value - smaller absolute value) and keep the sign of the number with the largest absolute value. ($16-5=11$, and -16 has the larger absolute value so the answer is negative)
$5+(-16)=-11$

Example 5)

Add -2 + 11+(-7)

Start by adding the first two numbers
$-2+11+(-7)$
$=9+(-7)$
Then combine that result with the last number

Recall:
If you add two numbers with the same sign, then you add the numbers and keep the sign.

If you add two numbers with different signs the subtract the absolute values and then keep the sign of the number with the larger absolute value.

$$
=2
$$

Subtraction

In order to subtract add the opposite. Every subtraction problem can be handled like the above examples.

Example 6)

Subtract -13-(-7)

To minus a negative we add
$-13-(-7)$
$\begin{array}{ll}=-13+7 & \text { Since they are opposite signs we subtract the } \\ =-6 & \text { numbers and keep the larger numbers sign. }\end{array}$

Example 7)

Subtract 3-(-4)
$3-(-4)$
$=3+4 \quad$ We " add the opposite of a -4 ", so we add +4 .
$=7$

Example 8)

Subtract -6-3

To minus a positive we add a negative
$-6-3$
$=-6+(-3) \quad$ Since both numbers are negative combining them
$=-9 \quad$ makes the answer a larger negative number.

Example 9)

Subtract 7-10
$7-10$
$=7+(-10)$
"if you have \$7 and pay owe someone \$10, you can pay
$=-3$ them the $\$ 7$, but you owe the $\$ 3(-\$ 3)^{\prime \prime}$

Example 10)

Subtract -7-4-(-11)
$-7-4-(-11)$
$=-7+-4+11$
Recall subtracting a negative is addition.
$=-11+11$
Combing -7 +-4, you get -11.
$=0$

A few helpful properties of addition... " a " can be any number. It is a variable - we are using it in place of a number because the following are true for all numbers.
The Addition
Property of Zero
$a+0=a$

Example 11)

Add $3+0$
$3+0=3$

Example 12)

Rewrite $7+3$ using the commutative property of Addition

$$
7+3=3+7
$$

The Associative Property
of Addition
$(a+b)+c=a+(b+c)$

Example 13)

Rewrite (5+2) + 3 using the Associative Property of Addition
$(5+2)+3=5+(2+3)$

Example 14)

Add 3 + (-3)
$3+(-3)=0$

Expressions with Variables
Variables can be used as place holders in expressions. For example if we wanted to evaluate

$$
a-b \text { for } a=-2 \text { and } b=7
$$

We would replace a with -2 and replace b with 7 , so

$$
\begin{aligned}
& a-b=-2-7 \\
& =-2+-7 \\
& =-9
\end{aligned}
$$

Example 15)

Evaluate $\mathrm{a}+\mathrm{b}$, for $\mathrm{a}=\mathbf{- 5}$ and $\mathrm{b}=\mathbf{- 1 7}$

Exercise 1.2

1. $-3+4$
2. $6+(-3)$
3. $-4+9$
4. $7+(-11)$
5. $-15+7$
6. $-13+8$
7. $6+-6$
8. $5+5$
9. $-12+-12$
10. $-23+7$
11. $-16+(-11)$
12. $13+-11$
13. $3-5$
14. $8-15$
15. $9-12$
16. $-4-5$
17. $-7-12$
18. $-6-11$
19. $-3-(-2)$
20. $7-(-5)$
21. $-3-(-4)$
22. $3-4+(-12)$
23. $2-9-(-4)$
24. $-5+(-4)-7$

Evaluate the following for the given values
25. $a+b$, for $a=-3$ and $b=-2$
26. $a-b$, for $a=4$ and $b=-5$
27. $a+b$ for $a=7$ and $b=-10$
28. If Joe had a checking account balance of $\$ 35$ and need to pay a bill for $\$ 57$. If he writes a check for the bill, what would his account balance be?
29. If you are in a submarine and are at a depth of 55 feet below sea level and rise 15 feet, what depth are you at?
30. It is $32^{\circ} \mathrm{F}$ and the temperature is expected to drop 50° in the next month, what is the temperature expected to be?
\qquad

Activity 1.3 - Multiplying and Dividing Integers

What does it mean to have $3 \cdot 5$?

Can you write $3 \cdot 5$ using only addition?

What does it mean to have $3 \cdot-5$?

Can you write $3 \cdot-5$ using only addition?

Find the following

- $2 \cdot-6$
- $\quad-3 \cdot 2$

Using the above examples can determine a rule for the sign of a product when the two numbers being multiplied have opposite signs?

This page was intentionally left blank.

Unit 1 - Integers

Section 3 - Multiplying and Dividing Integers

MULTIPLICATION

Consider the product $3 \cdot-5$
Remember that means that you have three (-5) added together, in other words

$$
\begin{gathered}
(-5)+(-5)+(-5) \\
=-10+-5 \\
=-15
\end{gathered}
$$

We know that $3 \cdot 5=15$. From the above we can see that if one number is a negative the answer will become negative. Since multiplication in commutative (we can change the order and get the same result) $-5 \cdot 3=-15$ as well.

When you multiply two numbers that have opposite signs, the result is negative.
Remember that a negative sign means opposite. Therefore if you have two negatives you can think of it as taking the opposite of a number and then take the opposite of that which leaves you with the original number. For example

$$
-2 \cdot-5=10
$$

When you multiply two numbers that have the same sign, the result is positive.

One fun way to remember that multiplying two negatives makes a positive is to think of one of the negative signs turning vertical to combine with the second negative to make the plus sign.

RULE:

When you multiply two numbers that have opposite signs, the results is negative.
When you multiply two numbers with the same sign, the result is positive.

Example 1)

Multiply $8 \cdot 7$
$8 \cdot 7$
$=56$
Same sign so the answer is positive

Example 2)

Multiply - $4 \cdot 8$
$-4 \cdot 8$
$=-32 \quad$ Opposite signs so the answer is negative

Example 3)

Multiply 9-4
9. -4
$=-36 \quad$ Opposite signs so the answer is negative

Example 4)

Multiply - 6- -7
$-6 \cdot-7$
$=42$
Same sign so the answer is positive

Properties of Multiplication

Let a be any real number, then the following properties are true.

So what do you do if there are more than 2 numbers? The following is an example of that.

Example 5)

$3(-2)(6)(-4)$
We will start with the first two numbers $3(-2)$ which means $3 \cdot-2$, which is -6 , so the problems changes from

$$
3(-2)(6)(-4)
$$

$=-6(6)(-4)$	
$=-36(-4)$	
$=144$	
and the last two combine the next two	
$=$	is the final answer

Evaluating expressions with Multiplication

We can also evaluate expressions that contain multiplication.

Example 6)

Evaluate $4 x$, for $x=-9$
$4 x$ means $4 \cdot x$

Therefore replacing x with the -9 gives
$4 \cdot x$
$=4 \cdot-9$
$=-36 \quad$ which is the final answer.

DIVISION

Every Division problem can be rewritten as a multiplication problem. Therefore the rules of multiplication can be extended to division as well.

Notice the similarities between the following

$$
-2 \cdot 3=-6 \quad \text { and } \quad-6 \div 3=-2
$$

We can even goes as far as saying $-6 \div 3=-2$ because $-2 \cdot 3=-6$. Therefore it makes sense the rules will be the same as well.

RULE:

When you Divide two numbers that have opposite signs, the results is negative.
When you Divide two numbers with the same sign, the result is positive.

Example7)

$$
\begin{aligned}
& -55 \div 5 \\
& -55 \div 5=-11
\end{aligned}
$$

Example 8)

$-72 \div-8$
$-72 \div-8=9$

Example 9)

$\frac{142}{-2}$
$\frac{142}{-2}$ is the same as $142 \div-2$
$142 \div-2=-71$

Example 10)

$\frac{-81}{-9}$
$\frac{-81}{-9}=9$

Properties of Division

When dividing it is important to remember you cannot divide by zero!

- $\frac{a}{0}$ is undefined
- $\frac{a}{1}=a$
- if $a \neq 0$, then $\frac{a}{a}=1$ and $\frac{0}{a}=0$

Evaluating expressions with division

We can evaluate expressions that contain division in the same way we have evaluated other expressions.

Example 11)

Evaluate $\frac{x}{y}$, for $x=-125$ and $y=5$.
$\frac{x}{y}$
Replacing x with -125 and y with 5 gives
$=\frac{-125}{5}$
$=-25$

Area of a rectangle
The area of a rectangle can be found by multiplying the base times the height.

$$
A=b \cdot h \text { or } A=l \cdot w
$$

Example 12)

Find the area of a rectangle whose bas is 10 cm and Height is $\mathbf{3 c m}$.

4 cm
$A=b \cdot h$
$A=5 \mathrm{~cm} \cdot 4 \mathrm{~cm}$
$A=20 \mathrm{~cm}^{2}$

The area in 20 square cm .

Multiply

1. $3(-4)$
2. $-4 \cdot 6$
3. $-4 \cdot 7$
4. $-3(-5)$
5. $-8(-8)$
6. $-11(-7)$
7. $-8 \cdot 3(-2)$
8. $6 \cdot(-2) \cdot 5$
9. $(-5)(-6)(-2)$
10. Find the product of 8 and -13 .
11. Find the product of -6 and 9
12. Evaluate 6ab, for $a=-3$ and $b=-7$
13. Evaluate $-7 x y$, for $x=-1$ and $y=6$

Dividing
16. $-33 \div 3$
17. $-95 \div-5$
18. $240 \div-12$
19. $\frac{-36}{-12}$
20. $\frac{-28}{7}$
21. $\frac{64}{-8}$
22. Evaluate $\frac{-a}{b}$, for $a=72$, and $b=-4$.
23. Evaluate $\frac{a}{b}$, for $a=22$ and $b=-2$.
24. Evaluate $a \div b$, for $a=56$, and $b=8$.

For problem 25-27, consider the following rectangle.

Find the area of the rectangle with dimensions below.
25. $b=3 m, h=4 m$
$26 . b=7 f t, h=5 f t$
27. $b=11 \mathrm{~cm}, h=4 \mathrm{~cm}$
\qquad

Activity 1.4 - Exponents and Order of Operations

Solve the following and when prompted compare answers with your neighbors.

- $3+5 \cdot 4$

Did you get the same answers as your neighbor? Why or Why not? What was done differently? Can they both be right? How do we know what the right answer is?

- $18 \div 2 \cdot 3$

Did you get the same answers as your neighbor? Why or Why not? What was done differently? Can they both be right? How do we know what the right answer is?

This page was intentionally left blank.

Unit 1 - Integers

Section 4 - Exponents and Order of Operations

Exponents

Multiplication is a simplified was to write repeated Addition. For example:

$$
4 \cdot 5=5+5+5+5
$$

So is there a similar way to write repeated multiplication? Something like

$$
3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3
$$

We can use something called an EXPONENT in this case. We have a base - the number being multiplied, and the exponent - how many times we multiply it. So

$3=3^{1}$	Three to the first power		
$3 \cdot 3=3^{2}$	Three to the second power	or	Three squared
$3 \cdot 3 \cdot 3=3^{3}$	Three to the third power	or	Three cubed
$3 \cdot 3 \cdot 3 \cdot 3=3^{4}$	Three to the fourth power		
$3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=3^{5}$	Three to the fifth power		

Example 1)

2^{4}
2^{4}
$=2 \cdot 2 \cdot 2 \cdot 2 \quad 2^{4}$ means there are four twos multiplied together
$=4 \cdot 2 \cdot 2 \quad$ Multiply the first two numbers $2 \cdot 2=4$
$=8 \cdot 2 \quad$ Multiply that answer with the next number $4 \cdot 2=8$
$=16 \quad$ Multiply that product with the remaining 2

Example 2)

$$
\begin{array}{ll}
\mathbf{3}^{\mathbf{3}} \cdot \mathbf{4}^{\mathbf{2}} & \text { recall } 3^{3}=3 \cdot 3 \cdot 3 \text { and } 4^{2}=4 \cdot 4 \\
3^{3} \cdot 4^{2} & \\
=3 \cdot 3 \cdot 3 \cdot 4 \cdot 4 & \text { Since } 3^{3}=27 \text { and } 4^{2}=16, \text { we could use } \\
=27 \cdot 16 & \text { the associative property of addition and } \\
=432 & \text { turn } \\
3^{3} \cdot 4^{2}=27 \cdot 16=432
\end{array}
$$

Example 3)

$(-2)^{4}$
$(-2)^{4}$
$=(-2)(-2)(-2)(-2)$
$=4(-2)(-2)$
$=-8(-2)$
$=16$

Example 4)

-2^{4}
-2^{4}
$=-2 \cdot 2 \cdot 2 \cdot 2$
$=-4 \cdot 2 \cdot 2$
$=-8 \cdot 2$
$=-16$

Is this the same problem as example 3?

What repeats? Why?

Why is this answer negative but the problem above is positive?

In example 3 the exponent belong on the parentheses, In example 4 the exponent applied only to the number it touched not to the negative.

$$
\left(-2^{4} \quad \text { would be the same as }-(2)^{4}\right)
$$

Order of Operations

Consider the following problem:

$$
2+3 \cdot 4
$$

If we multiply first		If we add first
	$2+3 \cdot 4$	$2+3 \cdot 4$
$2+12$	$5 \cdot 4$	
	14	20

ONLY ONE ANSWER CAN BE CORRECT! SO WHICH ONE IS IT??

It is possible to complete the problem and get different answers - However only one answer is correct. We need to be able to agree on what the right answer is and how to go about getting it.

The order that we are expected to follow in called The order of operations

1. Start with grouping symbols (parenthesis, etc)
2. Simplify any exponents
3. Complete any multiplication and Division - going from left to right.
4. Complete and addition and subtraction - going from left to right.

You may have heard the phrase "리ease Excuse $\underline{\mathbf{M} y} \underline{\text { Dear }} \underline{\text { Aunt }} \underline{\text { Sally", or the acronym "PEMDAS" as ways }}$ of helping you remember this order. You can write PEMDAS like

P E

Keeping the M and D on the same level emphasizes that multiplication and division are on the same level and have the same priority.
The same is true for addition and subtraction.

Example 5)

$2+3 \cdot 4$
$2+3 \cdot 4 \quad$ According to PEMDAS the multiplication out ranks the addition.
$=2+12$
$=14$

Example 6)

$4^{2}+3 \cdot 5$
$4^{2}+3 \cdot 5 \quad$ There are no Parentheses or other grouping symbols.
$=16+3 \cdot 5 \quad$ There is an exponent $4^{2}=16$
$=16+15 \quad$ Multiplication comes before Addition.
$=31$

> Example 7)
> $\mathbf{4 + 6 (2 - 7) \div \mathbf { 1 0 }}$
> $4+6(2-7) \div 10$
> $=4+6(-5) \div 10$
> $=4+(-30) \div 10$
> $=4+(-3)$
> $=1$

According to PEMDAS, the inside of the parentheses goes first.
Then the Multiplication and Division (left to right)

$$
\begin{aligned}
& \text { Example 8) } \\
& \frac{1-\mathbf{4}^{2}}{-5} \\
& \frac{1-4^{2}}{-5} \\
& =\frac{1-16}{-5} \\
& =\frac{-15}{-5} \\
& =3
\end{aligned}
$$

Even though you do not see parentheses - the top is grouped together. So we work the top first.

Exercise 1.4

Write the following in exponential form

1. $2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 3$
2. $-5 \cdot 5 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7$
3. $(-3) \cdot(-3) \cdot(-3) \cdot 4 \cdot 4$
4. $-x \cdot x \cdot x$
5. $x \cdot x \cdot x \cdot(-y) \cdot(-y)$
6. $a \cdot b \cdot b \cdot b \cdot b \cdot b$

Evaluate the following
7. 3^{4}
8. 2^{3}
9. 5^{2}
10. $(-2)^{2}$
11. -4^{4}
12. $-(5)^{2}$
13. a^{2}, for $a=9$
14. $a^{2} b^{3}$, for $a=-2$ and $b=3$
15. Why is the answer different between -2^{4} and $(-2)^{4}$?

Simplify the following
16. $3+2 \cdot 7$
17. $-4-6 \div 3$
18. $-2^{3} \cdot 3+2$
19. $7+(-6)-4$
20. $12 \div 4 \cdot 6$
21. $7 \cdot 4+6-3$
22. $(2+7)^{2}-7$
23. $-3^{2}-(7-8)$
24. $4-7+3(5-3)^{3}$
25. $\frac{2^{4}-1}{7-2}$
26. $5 \cdot(2-3)+7^{2}-5 \cdot 4+3$
27. Evaluate $a b^{2}-2 b$, for $a=-3$ and $b=-2$

1. Plot the following on a number line, label each point

$$
3,-5,-3
$$

Find the absolute value of the following
2. $|-50|$
3. $|14|$
4. $-|-7|$
5. Put the following in order from least to greatest

$$
6,7,-11,4,-2
$$

6. $2+(-2)$
7. $6-21$
8. $-4-11$
9. $-5-(-12)$
10. $3-4-(-3)$
11. Evaluate $a-b$, for $a=2$ and $b=-4$
12. $-5 \cdot 8$
13. $-7(-9)$
14. $-2 \cdot 7(-3)$
15. $121 \div-11$
16. $\frac{-70}{-7}$

Write the following in exponential form
17. $6 \cdot 6 \cdot 6 \cdot 6 \cdot 11 \cdot 11$
18. $x \cdot x \cdot x \cdot x \cdot(-y) \cdot(-y)$

Evaluate the following
19. 5^{3}
20. $(-3)^{2}$
21. -2^{4}

Simplify the following
22. $3+2 \cdot 6$
23. $3 \cdot 4+7-3$
24. $-4^{2}-(16-8)$
25. $4-11+2(8-3)^{2}$
26. $16 \div 2 \cdot 3$
27. Evaluate $a b^{4}-b$, for $a=7$ and $b=-2$
28. What is warmer -31 degrees or -57 degrees?
29. Sam is in debt $\$ 30$ to Jill and then gets his pay check for $\$ 151$. After paying off Jill how much money does he have?
30. Bob owes 5 people $\$ 4$ each, how much money is he in debt? (use a signed number to represent debt.)

Unit 2 - Fractions

Objective Overview

The following is a small subset of possible problems that could represent each objective. Refer to notes, homework and reviews for a more complete picture.

Section 1 - Fraction Review

By the end of section 1 you should be able to:
a) Write a fraction that represents the shaded area.

b) Turn a fraction into a mixed number.

$$
\frac{36}{5}=
$$

c) Turn a mixed number into a fraction.
$2 \frac{1}{3}=$
d) Write equivalent form of a fraction.
$\frac{4}{10}=\frac{?}{5}$
e) Write fractions in simplest form.

$$
\frac{14}{12}=
$$

f) Order fractions by placing a>or < in between them.

$$
-\frac{1}{3} \quad-\frac{1}{2}
$$

Section 2 - Multiplying and Dividing Fractions

By the end of section 2 you should be able to:
a) Multiply fractions.

$$
-\frac{10}{3} \cdot-\frac{1}{5}=
$$

b) Multiply mixed numbers.

$$
-1 \frac{1}{3} \cdot 2 \frac{1}{4}=
$$

c) Divide fractions.
$\frac{1}{3} \div \frac{2}{5}=$
d) Divide mixed numbers.
$2 \frac{1}{2} \div \frac{5}{8}=$
e) Complete application problems involving multiplication and division.

- Find the Area of the triangle whose base is $\mathbf{3}$ and height is 2.
- How many $\frac{1}{2}$ oz servings fit inside a 32 oz bag of chips?

Section 3 - Adding and Subtracting Fractions

By the end of section 3 you should be able to:
a) Add/ Subtract fractions with a common denominator.
$\frac{1}{5}+\frac{2}{5}=$
b) Add / Subtract fractions with uncommon denominator.
$-\frac{1}{3}+\frac{1}{2}=$
c) Add/Subtract Mixed numbers
$-3 \frac{1}{2}-2 \frac{1}{3}=$
d) Complete applications involving adding or subtracting fractions. Find the perimeter of the triangle below.

Section 4 - Exponents and Order of Operations

By the end of section 4 you should be able to:
a) Apply exponents to fractions.

- $\left(-\frac{2}{3}\right)^{2}=$
- $-\left(\frac{2}{3}\right)^{2}=$
- $-\frac{2}{3}^{2}=$
b) Apply Order of Operations to fractions.
- $\frac{1}{3}+\frac{2}{3} \cdot \frac{1}{2}=$
- $\left(\frac{3}{2}\right)^{2}-2 \cdot \frac{1}{3}=$
c) Simplify complex fractions.
- $\frac{\frac{3}{5}}{-\frac{1}{3}}=$
- $\frac{5-\frac{1}{2}}{\frac{2}{3}}=$

This page was intentionally left blank
\qquad

Activity 2.1 - Fractions

Write a fraction for the shaded area in the following shape.
\square

Are there other fractions that can represent the same shaded area?

Write a fraction for the following shapes combined.

Consider $\frac{1}{3}$ and $\frac{1}{2}$, which is greater? Draw a picture to help support your view.

Consider $-\frac{1}{3}$ and $-\frac{1}{2}$, which is greater? Why ?

This page was intentionally left blank.

Unit 2 - Fractions

Section 1 - Fraction Review

What is a fraction?

A fraction is part of a whole. In this case the whole is divided into 6 pieces. Five of the six pieces are shaded in. Therefore we can use the fraction $\frac{5}{6}$ to represent the shaded region.

In the following notice we have two separate bars - each bar makes up one unit.
\square
\square

Each whole unit consists of 6 pieces. There are seven shaded pieces total. Therefore the numerator is 7 and the denominator is 6 . In other words $\frac{7}{6}$. When the numerator is bigger than the denominator a fraction can be called an "improper" fraction.

This can also be seen as a mixed number $1 \frac{1}{6}$. This is because there is 1 whole bar and 1 piece out of 6 of the next.

Fractions can be seen as Division!

Fractions \Longleftrightarrow Mixed numbers

Consider the fraction $\frac{9}{4}$. This means you have 9 pieces but it only takes 4 pieces to make a whole. You can arrange the pieces in the following way.

Notice there are 2 wholes and $\frac{1}{4}$ of another circle. That means the fraction $\frac{9}{4}$ is the same as the mixed number $2 \frac{1}{4}$.

An easy way to turn a fraction into a mixed number is to divide the denominator into the numerator, For example with the fraction $\frac{9}{4}$ we could do $9 \div 4$.

Notice the
denominator stays
the same.

Example1)

Turn $\frac{21}{5}$ into a mixed number.
$21 \div 5=4$ with 1 left over.
Therefore $\frac{21}{5}=4 \frac{1}{5}$.

Mixed numbers \Rightarrow Improper Fraction

Consider $1 \frac{1}{2}$

Example2)

Write $3 \frac{1}{4}$ as a improper fraction.
$3 \frac{1}{4}$ means you have 3 full circles and 1 out of 4 pieces of another.
If all the circles are broke into four pieces then the three whole circles are made up of ($3 \cdot 4=12$) 12 pieces. Add in the one in the additional circle you get 13 total pieces. Notice we did not change the size of the piece. Therefore $3 \frac{1}{4}$ becomes $\frac{13}{4}$.

Example 3)

Write $-2 \frac{3}{5}$ as an improper fraction.
$2 \cdot 5=10 \quad$ The whole number times the denominator gives you the number of pieces that make up the whole circles.
$10+3=13 \quad$ Add in the numerator, now you have the total number of pieces. This number becomes the numerator.
$-\frac{13}{5} \quad$ Keep the same sign and the same denominator.

Equivalent Fractions

Consider the following

All of the above have exactly half of the circle shaded. The first has 2 out of the four pieces shaded in other words $\frac{2}{4}$. The second is $\frac{4}{8}$ and the final circle is $\frac{1}{2}$.

$$
\frac{2}{4}=\frac{4}{8}=\frac{1}{2}
$$

These are equivalent fractions - fractions that represent the same amount.
Equivalent fractions can be found by multiplying or dividing both the numerator and denominator of a fraction by the same number.

$$
\frac{a}{b}=\frac{a \cdot c}{b \cdot c} \text { or } \frac{a}{b}=\frac{a \div d}{b \div d}
$$

Example 4)

Find an equivalent fraction with the given denominator

$$
\frac{6}{20}=\frac{?}{10}
$$

Since the original denominator (20) can be divided by 2 to get the new denominator (10) - We can divide the original numerator by the same number to get the new numerator.

Therefore the equivalent fraction to $\frac{6}{20}$, with a denominator of 10 is $\frac{3}{10}$.

Example5)

Find an equivalent fraction with the given denominator

$$
-\frac{3}{8}=\frac{?}{40}
$$

Since $8 \cdot \mathbf{5}=40$, we can calculate $-3 \cdot \mathbf{5}=-15$ to be our new numerator. In other words the answer
is $\quad-\frac{3}{8}=-\frac{15}{40}$

Writing fractions in simplest form

We often want our answers in Simplest form - the numerator and denominator do not share any common factor other than 1.

Example 6)

Write $\frac{32}{12}$ in simplest form.
One way is to look at the prime factors of the numerator and denominator.
$32=2 \cdot 16=2 \cdot 2 \cdot 8=2 \cdot 2 \cdot 2 \cdot 4=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$
$12=2 \cdot 6=2 \cdot 2 \cdot 3$
$\frac{32}{12}=\frac{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 3} \quad$ If there are any common factors on top and bottom we can cancel..
$=\frac{2 \cdot 2 \cdot 2}{3}=\frac{8}{3}$
Therefore $\frac{8}{3}$ is our fraction in simplest form.

Example 7)

Write $\frac{12 x^{2}}{21 x}$ in simplest form.
We start by looking at the prime factors in the numerator and denominator

$$
\begin{gathered}
12 x^{2}=2 \cdot 2 \cdot 3 \cdot x \cdot x \\
21 x=3 \cdot 7 \cdot x
\end{gathered}
$$

$\frac{12 x^{2}}{21 x}=\frac{2 \cdot 2 \cdot 3 \cdot x \cdot x}{3 \cdot 7 \cdot x}$.
$=\frac{2 \cdot 2 \cdot x}{7}=\frac{4 x}{7}$

So the fraction in simplest form is $\frac{4 x}{7}$.

Ordering signed fractions

Consider the number line. Since $\frac{1}{6}$ falls to the left of $\frac{5}{6}$ on the number line, we know $\frac{1}{6}<\frac{5}{6}$.

Since the numbers on the negative side of the number line get larger in absolute value as you move to the left we know $-\frac{1}{6}$ falls to the right of $-\frac{5}{6}$ on the number line, and therefore $-\frac{1}{6}>-\frac{5}{6}$.

Example8)

Order the following by using the > or < symbols

$$
-\frac{1}{3} \quad-\frac{2}{5}
$$

First we need to make the pieces the same size (Find a common denominator).

$-\frac{1 \cdot 5}{3 \cdot 5}$	$-\frac{2 \cdot 3}{5 \cdot 3}$		
$-\frac{5}{15}$		$-\frac{6}{15}$	Six is larger than five, however they are both negative.
$-\frac{5}{15}$	$>$	$-\frac{6}{15}$	
$-\frac{1}{3}$	$>$	$-\frac{2}{5}$	Rewriting the numbers in their original form.

Exercise 2.1

\square

Write a fraction that can represent the shaded area in the following. If the answer can be written as a mixed number, write the mixed number answer as well.
1.

2.

3.

Write the following Mixed numbers as fractions
4. $-4 \frac{2}{3}$
5. $5 \frac{3}{8}$
6. $-3 \frac{3}{4}$
7. -3
8. -4
9. 7

Write the following improper fractions as Mixed numbers.
10. $-\frac{17}{4}$
11. $\frac{13}{5}$
12. $-\frac{7}{6}$
13. $\frac{9}{1}$
14. $-\frac{12}{1}$
15. $\frac{7}{1}$

Write an equivalent fraction with the given denominator.
16. $-\frac{2}{8}=\frac{?}{4}$
17. $\frac{3}{4}=\frac{?}{32}$
18. $-\frac{5}{7}=\frac{?}{35}$
19. $-4=\frac{?}{3}$
20. $-2=\frac{?}{7}$
21. $6=\frac{?}{8}$

Write the fractions in simplest form.
22. $\frac{15}{45}$
23. $-\frac{48}{28}$
24. $\frac{42}{21}$
25. $\frac{26 x^{3}}{6 x^{2}}$
26. $-\frac{10 a}{14}$
27. $\frac{42 x}{36 x^{2}}$

Order the following by using the > or < symbols
28. $\frac{3}{5} \quad \frac{2}{5}$
29. $-\frac{7}{8} \quad-\frac{3}{8}$
30. $-\frac{1}{7} \quad-\frac{3}{7}$
$31 .-\frac{1}{4}$
$-\frac{2}{5}$
32. $\frac{4}{9} \quad \frac{10}{21}$
33. $\frac{7}{10} \quad \frac{13}{25}$
\qquad

Activity 2.2 - Multiplying and Dividing Fractions

PART A
Draw a picture that shows what $\frac{1}{3}$ looks like.

What would half of that look like?

So what is half of $\frac{1}{3}$?

Can you write a mathematical statement that represents what we did above?

PART B

Draw a picture of $\frac{1}{2}$?

How many $\frac{1}{4}$ can fit inside $\frac{1}{2}$?

Can you write a mathematical statement that represents the math behind part B?

This page was intentionally left blank.

Unit 2 - Fractions

Section 2 - Multiplying and Dividing

Multiplying Fractions

Consider $\frac{1}{2} \cdot \frac{1}{3}$. In words this is read "half of a third". So lets think of a shape that is broke into thirds

Now lets cut it in half.

Notice the resulting size. It now takes 6 pieces to make a whole.

$$
\frac{1}{2} \cdot \frac{1}{3}=\frac{1}{6}
$$

Multiplication of fractions

$$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d}, \quad \text { note } b \neq 0 \text { and } d \neq 0
$$

Example 1)

Multiply $-\frac{2}{5} \cdot \frac{\mathbf{3}}{5}$
$-\frac{2}{5} \cdot \frac{3}{5}=-\frac{2 \cdot 3}{5 \cdot 5}=-\frac{6}{25}$

Recall: A negative times a positive will give you a negative answer

Example 2)

Multiply $-\frac{4}{5} \cdot\left(-\frac{10}{3}\right)$
$-\frac{4}{5} \cdot\left(-\frac{10}{3}\right)$
$=\frac{-4(-10)}{5 \cdot 3}$
$=\frac{40}{15}$
We need to reduce to lowest terms.
$=\frac{2 \cdot 2 \cdot 2 \cdot 5}{3 \cdot 5}$
Here we use the prime factorization to help us.
$=\frac{2 \cdot 2 \cdot 2}{3}$
Cancel common factors.
$=\frac{8}{3}$

Example 2) Revisted with cross canceling.

Another way to get to the answer in lowest terms is to cross cancel - This keeps the numbers smaller and easier to work with!
$-\frac{4}{5} \cdot\left(-\frac{10}{3}\right) \quad$ Notice that both fractions are in lowest terms.
$-\frac{4}{5} \cdot\left(-\frac{2 \cdot 5}{3}\right) \quad$ There is a factor of 5 on the top and on the bottom - they cancel.
$-\frac{4}{1} \cdot\left(-\frac{2}{3}\right) \quad$ Notice there is a 1 left behind when we canceled the 5.
$\frac{-4 \cdot-2}{1 \cdot 3}=\frac{8}{3}$

Canceling common factors can shorten the work - I showed every step however the "work" can be much more condensed.

We did get the same answer. Notice we left the answer as an "improper" fraction in both cases. We could have also given the mixed number answer $2 \frac{2}{3}$.

Multiplying with Mixed Numbers
When multiplying with mixed numbers we begin by making them improper fractions so we can multiply the same as in the previous examples.

Example 3)

Multiply $-2 \frac{2}{3} \cdot 3 \frac{4}{5}$
$-2 \frac{2}{3} \cdot 3 \frac{4}{5}=-\frac{8}{3} \cdot \frac{19}{5} \quad$ We must turn mixed numbers in to improper fractions.
$=-\frac{8 \cdot 19}{3 \cdot 5}=-\frac{152}{15} \quad$ Multiplying straight across.
$=-10 \frac{2}{15}$

Example 4)

Multiply $-2 \frac{2}{3} \cdot\left(-3 \frac{3}{4}\right)$
$-2 \frac{2}{3} \cdot\left(-3 \frac{3}{4}\right)$
$=-\frac{8}{3} \cdot-\frac{15}{4} \quad$ We must make mixed numbers improper fractions.
$=-\frac{2 \cdot 4}{3} \cdot-\frac{3 \cdot 5}{4} \quad$ We can cross cancel common factors.
$=-\frac{2}{1} \cdot-\frac{5}{1}$
$=-2 \cdot-5$
$=10$

Example 5)

Multiply $6 \cdot \frac{5}{21}$

$6 \cdot \frac{5}{21}$
$=\frac{6}{1} \cdot \frac{5}{21}$
We begin by writing 6 as a fraction.
$=\frac{2 \cdot 3}{1} \cdot \frac{5}{3 \cdot 7} \quad$ Then cross cancel any common factors.
$=\frac{2}{1} \cdot \frac{5}{7}$
$=\frac{2.5}{1.7}$
Multiply straight across.
$=\frac{10}{7}$

Example 6)

Multiply $\frac{2}{x} \cdot \frac{3}{x}$
Even though there are variables we still follow the same rules - we still multiply across the top for the numerator and across the bottom for the new denominator.
$\frac{2}{x} \cdot \frac{3}{x}$
$=\frac{2 \cdot 3}{x \cdot x}$
Multiplying straight across.
$=\frac{6}{x^{2}}$

Dividing Fractions

Division means to multiply by the reciprocal

$$
\frac{a}{b} \div \frac{c}{d}=\frac{a}{\mathrm{~b}} \cdot \frac{\mathrm{~d}}{\mathrm{c}}=\frac{a \cdot \mathrm{~d}}{b \cdot c}, \quad \text { note } b \neq 0, d \neq 0 \text { and } c \neq 0
$$

Example 7)

Divide $\frac{3}{4} \div \frac{9}{32}$
$\frac{3}{4} \div \frac{9}{32}$
To divide we multiply by the reciprocal.
$=\frac{3}{4} \cdot \frac{32}{9}$
Notice it is the second fraction that flips.
$=\frac{3 \cdot 1}{4 \cdot 1} \cdot \frac{4 \cdot 8}{3 \cdot 3}$
Look for common factors to cross cancel.
$=\frac{1}{1} \cdot \frac{8}{3}$
Multiply straight across.
$=\frac{8}{3}$

Example 8)

Divide $2 \frac{1}{2} \div 3$
$2 \frac{1}{2} \div 3$
$=\frac{5}{2} \div \frac{3}{1} \quad$ We need to turn all numbers into improper fractions.
$=\frac{5}{2} \cdot \frac{1}{3}$
$=\frac{5}{6}$

Applications

A triangle can be formed by cutting a rectangle(or parallelogram) in half - so it has exactly half the area of a rectangle.
h

$$
A=\frac{1}{2} b \cdot h
$$

$$
A=\frac{1}{2} b \cdot h
$$

Notice the b and h have to meet at a 90 degree angle.

Example 9)

Find the Area of a triangle whose base is 10 m and whose height is 3 m .
$A=\frac{1}{2} b \cdot h$
$A=\frac{1}{2} \cdot 10 \cdot 3$
$A=5 \cdot 3$
$A=15$

The area is $15 m^{2}$

Example 10)

How big of a serving would 5 people get if they split a 7 oz bag of potato chips?
This is a division problem because we need to divide up the chips, so
$7 \div 5$
$=\frac{7}{1} \div \frac{5}{1}$
$=\frac{7}{1} \cdot \frac{1}{5}$
$=\frac{7}{5}$
Each person gets $\frac{7}{5} \mathrm{Oz}$.

Exercise 2.2

:

Multiply

1. $\frac{2}{3} \cdot \frac{1}{5}$
2. $-\frac{2}{5} \cdot \frac{1}{3}$
3. $\frac{7}{9} \cdot \frac{4}{5}$
4. $-\frac{4}{5} \cdot-\frac{1}{2}$
5. $\frac{9}{11} \cdot-\frac{2}{3}$
6. $\frac{7}{12} \cdot \frac{3}{14}$
7. $\frac{4}{5} \cdot-\frac{10}{2}$
8. $-\frac{5}{2} \cdot \frac{1}{10}$
9. $-\frac{15}{2} \cdot-\frac{2}{5}$
10. $\frac{12}{35} \cdot \frac{20}{3}$
11. $-\frac{32}{7} \cdot \frac{21}{20}$
12. $-\frac{10}{3} \cdot \frac{1}{3}$
13. $-3 \frac{1}{2} \cdot-\frac{2}{3}$
14. $-1 \frac{4}{5} \cdot-3 \frac{1}{3}$
15. $2 \frac{2}{5} \cdot-1 \frac{1}{4}$
16. $1 \frac{1}{2} \cdot-4$
17. $-2 \cdot-\frac{2}{5}$
18. $-5 \cdot 3 \frac{2}{7}$

Divide
19. $\frac{2}{5} \div \frac{1}{3}$
20. $-\frac{3}{7} \div \frac{2}{3}$
21. $\frac{7}{11} \div \frac{2}{5}$
22. $-\frac{4}{5} \div\left(-\frac{1}{7}\right)$
23. $\frac{9}{11} \div\left(-\frac{2}{3}\right)$
24. $\frac{7}{3} \div \frac{35}{18}$
25. $-\frac{15}{2} \div \frac{10}{3}$
26. $-\frac{18}{5} \div \frac{81}{20}$
27. $-\frac{10}{3} \div \frac{1}{3}$
28. $-2 \frac{1}{5} \div-3 \frac{1}{3}$
29. $1 \frac{3}{5} \div-2$
30. $-5 \div 3 \frac{2}{7}$

Multiply
31. $\frac{x}{3} \cdot \frac{x}{6}$
32. $\frac{x^{2}}{4} \cdot \frac{6}{x}$
33. $\frac{2}{x} \cdot \frac{3}{x}$

The area of a triangle can be found by the formula $A=\frac{1}{2} b h$.
Find the area of the shape with the given base (b) and height (h)
34. $b=10 \mathrm{in}$ and $\mathrm{h}=4 \mathrm{in}$
h

b
35. $b=3 f t$ and $h=5 f t$

Complete the following by using fractions and leaving your answer as a mixed number.

36. A bottle of Ketch up contains 40 oz of Ketchup. How many $\frac{1}{2}$ oz servings can you get out of one bottle?
37. A recipe that serves 6 people needs to be doubled to serve a dinner party of 12. The original recipe calls for $1 \frac{2}{3}$ cups of flour. How much flour should you use to double the recipe?
38. A bag of pretzels contains 16 oz . If you want to give 20 people equal servings how many ounces should you give each person?
39. A recipe for 15 servings calls for $2 \frac{1}{3}$ cups of sugar. If you are cutting the recipe in half, how much sugar should you use?

This page was intentionally left blank.
\qquad
Mid-Unit Quick Review 2.1 and 2.2

1. Write a fraction that represents the following

2. Write $-\frac{15}{4}$ as a mixed number.
3. Write $-2 \frac{3}{8}$ as an improper fraction.
4. Find an equivalent fraction with the given denominator.
$-\frac{2}{5}=\frac{?}{40}$
5. Simplify the following
$-\frac{72}{42}$

Multiply or Divide
6. $-\frac{3}{5} \cdot \frac{7}{4}$
7. $-\frac{2}{15} \cdot-\frac{35}{4}$

Pre Algebra
8. $3 \frac{2}{5} \cdot-10$
9. $-\frac{5}{8} \div-\frac{15}{16}$
10. $-1 \frac{2}{9} \div 3$
\qquad

Activity 2.3 - Adding and Subtracting Fractions
PART A
Draw a picture that represent $\frac{1}{3}$.
Draw a picture that represents $\frac{1}{2}$.

Draw a picture that illustrates $\frac{1}{3}+\frac{1}{2}$

Are you able to describe your answer as a number? What do you have to do to be able to do that?

This page was intentionally left blank.

Unit 2 - Fractions

Section 3 - Adding and Subtracting

Adding and Subtracting with common denominators

If you have the same denominator then you have fractions that are describing the same size pieces. You can add or subtract the numerators to get your answers.

Adding $\quad \frac{3}{7}$
\square

To
$\frac{2}{7}$

Is as easy as adding $2+3$

The answer is $\frac{5}{7}$.

Example 1)

Add $\frac{1}{12}+\frac{7}{12}$
$\frac{1}{12}+\frac{7}{12} \quad$ adding $1+7$ you get the new numerator of 8
$=\frac{8}{12} \quad$ This answer needs to be reduced
$=\frac{2 \cdot 4}{3 \cdot 4} \quad$ The common factor is 4
$=\frac{2}{3}$

Example 2)

Subtract $\frac{7}{12}-\frac{5}{12}$
$\frac{7}{12}-\frac{5}{12} \quad$ Subtracting the numerators $7-5=2$ gives the new numerator
$=\frac{2}{12} \quad$ This answer needs to be written in lowest terms.
$=\frac{1}{6}$

Example 3)

Subtract $-\frac{3}{4}-\frac{1}{4}$
$-\frac{3}{4}-\frac{1}{4}$
$=\frac{-3-1}{4}$
$=\frac{-4}{4}$
$=-1$

This problem can also be seen as

$$
-\frac{3}{4}+\left(-\frac{1}{4}\right)
$$

So the math becomes
$-3+(-1)=-4$

Example 4)

$$
\begin{aligned}
& -\frac{8}{9}-\left(-\frac{2}{9}\right) \\
& -\frac{8}{9}-\left(-\frac{2}{9}\right) \\
& =-\frac{8}{9}+\frac{2}{9} \\
& =-\frac{6}{9} \\
& =-\frac{2}{3}
\end{aligned}
$$

Recall subtracting a negative numbers becomes adding a positive.

Reduce to lowest terms.

Mixed numbers

If the problem begins with mixed numbers there are a few ways you can handle it. You can leave them as mixed numbers - add the whole numbers to the other whole numbers and the fraction parts to the other fraction parts. This method might require you adjust your answer if you end up with an incorrect form for a fraction.

Or you could change both mixed numbers into improper fractions then add. We will complete the next example both ways

Example 5) Using Mixed numbers

$3 \frac{1}{5}+6 \frac{2}{5}$
Adding the whole number $3+6=9$ so the new whole number is 9 , adding the numerators $1+2=3$ and keeping the common denominator of 5 gives us a new fraction part of $\frac{3}{5}$.
$3 \frac{1}{5}+6 \frac{2}{5}$
$=(3+6)+\left(\frac{1}{5}+\frac{2}{5}\right)$
$=(9)+\left(\frac{3}{5}\right)$
$=9 \frac{3}{5} \quad$ is the answer as a mixed number.

Example 5) Using improper fractions

$3 \frac{1}{5}+6 \frac{2}{5}$
$3 \frac{1}{5}+6 \frac{2}{5}$
$=\frac{16}{5}+\frac{32}{5}$
$=\frac{48}{5}$ is the answer as an improper fraction.

Notice that since 5 goes into 489 times with 3 left over.
$\frac{48}{5}=9 \frac{3}{5}$. Unless you are asked to write your answer a specific way either answer is correct.

Example 6) Using Mixed Numbers

$-4 \frac{1}{3}+2 \frac{2}{3}$
$-4 \frac{1}{3}+2 \frac{2}{3} \quad$ Since the signs are different this is a subtraction problem.
We always do the number with the largest absolute value minus the smaller absolute value. So we need to do $4 \frac{1}{3}-2 \frac{2}{3}$. However the fraction we are taking away from must be larger. So we must borrow from the whole number 4 . So

$$
4 \frac{1}{3}=4+\frac{1}{3}=3+1+\frac{1}{3}=3+\frac{3}{3}+\frac{1}{3}=3+\frac{4}{3}=3 \frac{4}{3}
$$

Therefore $4 \frac{1}{3}-2 \frac{2}{3}$ becomes $3 \frac{4}{3}-2 \frac{2}{3}$.
$3 \frac{4}{3}-2 \frac{2}{3}=1 \frac{2}{3}$
However the original problem was $-4 \frac{1}{3}+2 \frac{2}{3}$, so the negative number was larger making the end answer negative.
$-4 \frac{1}{3}+2 \frac{2}{3}=-1 \frac{2}{3}$

Example 6) Using improper fractions

$-4 \frac{1}{3}+2 \frac{2}{3}$
$-4 \frac{1}{3}+2 \frac{2}{3} \quad$ Write both fractions as improper fractions
$=-\frac{13}{3}+\frac{8}{3} \quad$ Recall $-13+8=-5$
$=-\frac{5}{3}$ or $-1 \frac{2}{3}$

Adding and subtracting with uncommon denominators

In order to add or subtract fractions they must have the same denominator. So if they do not we must create the common denominator.

Example 7)

$$
\begin{aligned}
& \frac{1}{6}+\frac{5}{8} \\
& \frac{1}{6}+\frac{5}{8} \\
& =\frac{1 \cdot 4}{6 \cdot 4}+\frac{5 \cdot 3}{8 \cdot 3} \\
& =\frac{4}{24}+\frac{15}{24} \\
& =\frac{19}{24}
\end{aligned}
$$

The LCD or Lowest Common Denominator is the Least Common Multiple between 6 and 8. The smallest number we can turn them both into is 24 . In other words we need to add a factor of 4 to the 6 , and a factor of 3 to the 8.

Example 8)

$-\frac{5}{12}-\frac{7}{18}$
$-\frac{5}{12}-\frac{7}{18}$
$=-\frac{5 \cdot 3}{12 \cdot 3}-\frac{7 \cdot 2}{18 \cdot 2}$
$=-\frac{15}{36}-\frac{14}{36}$
$=-\frac{29}{36}$
Sometimes it helps to look at the prime factors when looking for the LCD

$$
\begin{aligned}
& 12=2 \cdot 2 \cdot 3 \\
& 18=2 \cdot 3 \cdot 3
\end{aligned}
$$

The LCD needs to contain every factor above two 2's and two 3's.

Example 9)

$$
\begin{aligned}
& -\frac{5}{21}+\frac{1}{6} \\
& -\frac{5}{21}+\frac{1}{6} \\
& =-\frac{5}{3 \cdot 7}+\frac{1}{2 \cdot 3} \\
& =-\frac{5 \cdot 2}{3 \cdot 7 \cdot 2}+\frac{1 \cdot 7}{2 \cdot 3 \cdot 7} \\
& =-\frac{10}{42}+\frac{7}{42} \\
& =-\frac{3}{42} \\
& =-\frac{1}{14}
\end{aligned}
$$

Always reduce if you can.

Example 10)

$6-3 \frac{4}{11}$
$6-3 \frac{4}{11}$
$=5 \frac{11}{11}-3 \frac{4}{11}$
$=2 \frac{7}{11}$
$1=\frac{11}{11}$ So $6=5 \frac{11}{11}$.
We need to borrow 1 from the 6 to get a fraction to take away from.

Example 11)

$\frac{3}{x}-\frac{1}{2}$
$\frac{3}{x}-\frac{1}{2}$
$=\frac{3 \cdot 2}{x \cdot 2}-\frac{1 \cdot x}{2 \cdot x}$
$=\frac{6}{2 x}-\frac{x}{2 x}$
$=\frac{6-x}{2 x}$

The LCD has to have an x because the first fraction has a denominator of x. It also must have a 2 since the second fraction
has a denominator of 2.
The LCD is $2 x$.
We multiply in the factor that is missing.

Perimeter

The perimeter of a shape can be found by adding together all the sides. The perimeter is the distance around a shape.

Example 12)

Find the Perimeter of the triangle below

Perimeter $=$ add up all 3 sides $=1 \frac{3}{4}+2+\frac{2}{3}$
$1 \frac{3}{4}+\frac{2}{1}+\frac{2}{3}$
$=\frac{7}{4}+\frac{2}{1}+\frac{2}{3}$
$=\frac{7 \cdot 3}{4 \cdot 3}+\frac{2 \cdot 12}{1 \cdot 12}+\frac{2 \cdot 4}{3 \cdot 4}$
$=\frac{21}{12}+\frac{24}{12}+\frac{8}{12}$
$=\frac{53}{12}$
The Perimeter is $\frac{53}{12}$ in or $4 \frac{5}{12} \mathrm{in}$.

This Page was intentionally left Blank.

Exercise 2.3 NAME:

Add or subtract

1. $\frac{1}{5}-\frac{3}{5}$
2. $-\frac{3}{7}+\frac{2}{7}$
3. $-\frac{5}{9}-\frac{2}{9}$
4. $\frac{3}{4}-\frac{1}{4}$
5. $\frac{2}{9}+\frac{1}{9}$
6. $\frac{1}{12}-\left(-\frac{5}{12}\right)$
7. $3 \frac{1}{3}+2 \frac{1}{3}$
8. $2 \frac{3}{4}-1 \frac{1}{4}$
9. $3 \frac{4}{5}-1 \frac{2}{5}$
10. $-2 \frac{1}{5}-3 \frac{3}{5}$
11. $2 \frac{1}{4}-7 \frac{3}{4}$
12. $-3 \frac{1}{6}-\left(-4 \frac{5}{6}\right)$
13. $\frac{1}{3}-\frac{1}{4}$
14. $-\frac{4}{5}-\frac{1}{3}$
15. $\frac{3}{4}-\left(-\frac{1}{5}\right)$
16. $\frac{3}{4}-\left(-\frac{1}{6}\right)$
17. $-\frac{2}{5}+\frac{1}{12}$
18. $\frac{2}{3}-\frac{1}{6}$
19. $5+3 \frac{2}{5}$
20. $3-5 \frac{2}{3}$
21. $6 \frac{2}{5}+2 \frac{2}{3}$
22. $-5 \frac{1}{2}+2 \frac{3}{5}$
23. $2 \frac{1}{5}-6$
24. $-2 \frac{2}{7}-4 \frac{5}{6}$

Find the perimeter of the following shapes
25.
26.

$5 \frac{1}{4} i n$

\qquad

Activity 2.4 - Exponents and Order of Operations

Write each of the following as an exponent and solve
$\left(-\frac{2}{3}\right) \cdot\left(-\frac{2}{3}\right) \cdot\left(-\frac{2}{3}\right) \cdot\left(-\frac{2}{3}\right)$
$-\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}$
$\frac{-2 \cdot 2 \cdot 2 \cdot 2}{3}$

Are you answers different? Should they be?

Complete the following
$\frac{2}{3}+\frac{1}{2} \cdot \frac{8}{9}$
$\frac{4}{5} \div \frac{1}{2} \cdot \frac{4}{7}$

What do you do first? Why?

This page was intentionally left blank.

Unit 2 - Fractions

Section 4 - Exponents and Order of operations

Exponents

Exponents work the same with fractions as they did with Integers. There are a few things we need to be aware of.

Notice the exponent is on the parentheses, that is why the entire parentheses repeats.

Example 1)

Simplify $\left(-\frac{2}{3}\right)^{2}$
$\left(-\frac{2}{3}\right)^{2}=\left(-\frac{2}{3}\right) \cdot\left(-\frac{2}{3}\right) \quad$ Notice the entire parentheses repeats 2 times.
$=\frac{4}{9}$

Example 2)

Simplify $-\left(\frac{4}{5}\right)^{2}$
$-\left(\frac{4}{5}\right)^{2}=-\left(\frac{4}{5}\right) \cdot\left(\frac{4}{5}\right) \quad$ Notice the parentheses repeats but the negative does not.
$=-\frac{16}{25}$

In both Example 1 and 2 there are parentheses. Notice that in both examples the parentheses are what is repeated. In example 2 the negative sign did not get repeated because it was not "caught" by the parentheses.

Example 3)

Simplify $-\frac{3^{2}}{4}$
$-\frac{3^{2}}{4}=-\frac{3 \cdot 3}{4}$
$=-\frac{9}{4}$

Notice the only thing that repeats is the 3! Why?
The exponent is touching just the 3.

Order of Operations

Order of Operations work the same with fractions as it did with Integers. We can use PEMDAS to help us remember the order.

Example 4)

Simplify $\frac{2}{7}+\frac{3}{4} \cdot \frac{6}{7}$
$\frac{2}{7}+\frac{3}{4} \cdot \frac{6}{7} \quad$ Multiplication comes before addition.
$=\frac{2}{7}+\frac{3}{2} \cdot \frac{3}{7} \quad$ Cross cancelling before you multiply.
$=\frac{2}{7}+\frac{9}{14} \quad$ Multiplying straight across.
$=\frac{4}{14}+\frac{9}{14} \quad$ Find a common denominator.
$=\frac{13}{14} \quad$ Adding the fractions.

Example 5)

Simplify $\frac{1}{4} \div \frac{3}{8} \cdot \frac{9}{4}$
$\frac{1}{4} \div \frac{3}{8} \cdot \frac{9}{4}$
Remember that multiplication and division have the same priority.
$=\frac{1}{4} \cdot \frac{8}{3} \cdot \frac{9}{4}$
Division is done first and turns into multiply in the first step.
$=\frac{1}{1} \cdot \frac{2}{3} \cdot \frac{9}{4} \quad$ Cross cancel with the first 2 numbers.
$=\frac{2}{3} \cdot \frac{9}{4} \quad$ Multiply the first 2 numbers.

Example 5) continued...

$\frac{2}{3} \cdot \frac{9}{4}=\frac{1}{1} \cdot \frac{3}{2}$
$=\frac{3}{2}$
The answer as an improper fraction is $\frac{3}{2}$, a mixed number answer would be $1 \frac{1}{2}$.

Example 6)

Simplify $-\frac{5}{6}+\frac{3}{4}\left(\frac{1}{2}+\frac{2}{3}\right)$
$-\frac{5}{6}+\frac{3}{4}\left(\frac{1}{2}+\frac{2}{3}\right)$
Using order of operations we begin inside the Parentheses.
$=-\frac{5}{6}+\frac{3}{4}\left(\frac{1 \cdot 3}{2 \cdot 3}+\frac{2 \cdot 2}{3 \cdot 2}\right) \quad$ We need a common denominator to add fractions.
$=-\frac{5}{6}+\frac{3}{4}\left(\frac{3}{6}+\frac{4}{6}\right)$
$=-\frac{5}{6}+\frac{3}{4}\left(\frac{7}{6}\right)$
$=-\frac{5}{6}+\frac{3}{4} \cdot \frac{7}{6}$
$=-\frac{5}{6}+\frac{1}{4} \cdot \frac{7}{2}$
$=-\frac{5}{6}+\frac{7}{8}$
$=-\frac{5 \cdot 4}{6 \cdot 4}+\frac{7 \cdot 3}{8 \cdot 3}$
$=-\frac{20}{24}+\frac{21}{24}$
$=\frac{1}{24}$

Complex Fractions

Recall that fractions are really division.
Consider $\frac{-\frac{2}{3}}{-\frac{15}{6}}$

Since fractions are really division we can rewrite this as
$=-\frac{2}{3} \div-\frac{15}{6}$
To divide we multiply by the reciprocal,
$=-\frac{2}{3} \cdot-\frac{6}{15}$

Cross canceling leaves
$=-\frac{2}{1} \cdot-\frac{2}{15}$
Multiplying
$=\frac{4}{15}$

Example 7)

Simplify $\frac{-\frac{3}{4}}{\frac{15}{8}}$

$\frac{-\frac{3}{4}}{\frac{15}{8}}$	
$=-\frac{3}{4} \div \frac{15}{8}$	Rewrite as division.
$=-\frac{3}{4} \cdot \frac{8}{15}$	Multiply by the reciprocal.
$=-\frac{1}{1} \cdot \frac{2}{5}$	
$=-\frac{2}{5}$	Cross cancel to simplify.

Example 8)

Simplify $\frac{4}{3-\frac{1}{2}}$

Example 8) continued...

$\frac{4}{3-\frac{1}{2}}$
The fraction bar separates this into 2 grouping.
$=\frac{4}{\frac{6}{2}-\frac{1}{2}}$
$=\frac{4}{\frac{5}{2}}$
$=4 \div \frac{5}{2}$
$=\frac{4}{1} \cdot \frac{2}{5}$
$=\frac{8}{5}$

This Page was intentionally left blank.

Exercise 2.4 NAME:

Simplify

1. $\left(\frac{2}{3}\right)^{2}$
2. $\left(\frac{1}{5}\right)^{3}$
3. $\left(-\frac{4}{7}\right)^{2}$
4. $-\frac{5}{6}^{2}$
5. $-\left(\frac{2}{7}\right)^{2}$
6. $-\frac{4^{3}}{12}$
7. $\left(\frac{3}{5}\right)^{2}\left(\frac{1}{2}\right)^{3}$
8. $\left(-\frac{2}{3}^{2}\right)\left(\frac{5}{3}\right)^{2}$
9. $-\left(\frac{7}{8}\right)^{2}\left(\frac{1}{2}\right)$
10. $\frac{2}{3} \div \frac{1}{4} \cdot \frac{5}{6}$
11. $\frac{1}{4}+\frac{2}{5} \cdot \frac{10}{3}$
12. $\frac{1}{3}-\frac{2}{5} \div \frac{3}{5}$
13. $\frac{4}{5} \cdot\left(\frac{1}{5}+\frac{2}{3}\right)-\frac{3}{5}$
14. $-\frac{1}{2}+\frac{1}{3}\left(\frac{1}{4}+\frac{1}{2}\right)$
15. $\left(\frac{1}{8}-\frac{1}{3}\right) \div \frac{19}{24}$
16. $\left(\frac{2}{3}-\frac{1}{6}\right)^{2}+\frac{1}{18}$
17. $-\frac{2}{3}+\left(\frac{1}{2}-\frac{3}{4}\right)^{3}$
18. $\frac{4}{5}\left(\frac{1}{3}+\frac{1}{2}\right)^{2}-\frac{3}{5}$
19. $\frac{\frac{3}{5}}{\frac{2}{7}}$
20. $\frac{\frac{6}{5}}{\frac{2}{15}}$
21. $\frac{\frac{4}{11}}{\frac{9}{22}}$
22. $\frac{\frac{1}{2}+\frac{3}{5}}{\frac{2}{7}}$
23. $\frac{\frac{2}{5}}{1-\frac{2}{3}}$
24. $\frac{\frac{1}{8}-\frac{3}{2}}{\frac{1}{3}}$
25. Write a fraction that represents the following.
\square
26. Write an IMPROPER FRACTION and a MIXED NUMBER that represents the following.

27. Draw a number line, clearly label $0,-\frac{2}{3}$, and $\frac{2}{3}$.

Find the absolute value of the following.
4. $\left|\frac{2}{3}\right|$
5. $\left|-\frac{5}{8}\right|$
6. $-\left|-\frac{6}{11}\right|$

Rewrite the following fractions to have the given denominator
7. $\frac{4}{7}=\frac{?}{28}$
8. $-\frac{35}{40}=\frac{?}{8}$
9. $-6=\frac{?}{9}$

Write the following in lowest terms
10. $-\frac{15}{60}$
11. $-\frac{21}{70}$
12. $\frac{3 x^{2}}{15 x}$

Complete the following - show all steps.
13. $-\frac{2}{3} \cdot \frac{7}{9}$
14. $\left(-\frac{15}{28}\right) \cdot\left(-\frac{35}{3}\right)$
15. $2 \frac{1}{3} \cdot\left(-3 \frac{1}{2}\right)$
16. $\frac{4}{7} \div \frac{20}{21}$
17. $\left(-\frac{2}{3}\right) \div 4$
18. $5 \frac{1}{3} \div\left(-4 \frac{1}{3}\right)$
19. If you have a 32 oz . bag of pretzels and the serving size is $\frac{1}{3} \mathrm{oz}$, How many servings are in the bag?
20. If you can fit 78 people in a restaurant and the restaurant is $\frac{1}{2}$ full, how many people are in the restaurant?
21. If the equation to find area of a rectangle is $A=b \cdot h$, and you know that $b=\frac{5}{7}$ in and $h=\frac{3}{10}$ in find the Area.
22. $-\frac{3}{5}-\frac{2}{5}$
23. $-\frac{4}{7}-\left(-\frac{1}{7}\right)$
24. $-\frac{5}{8}+\frac{1}{8}$
25. $\frac{1}{4}-\frac{3}{8}$
26. $-\frac{2}{3}+\frac{1}{6}$
27. $-4+\frac{2}{3}$
28. $-3 \frac{1}{4}-7 \frac{7}{8}$
29. $3 \frac{1}{8}-2 \frac{1}{12}$
30. $2-\left(-\frac{2}{3}\right)$
31. You are putting in a new counter in your kitchen, You must first put in a padding that is $\frac{1}{8}$ in thick and the counter it self is $\frac{3}{4}$ in thick. How much thickness are you adding to the counter?
32. $\left(\frac{2}{3}\right)^{3}$
33. $\left(-\frac{5}{6}\right)^{2}$
34. $-\frac{7}{3}^{2}$
35. $\frac{1}{2} \div \frac{3}{4} \cdot \frac{3}{7}$
36. $\frac{5}{7}+\frac{1}{7} \cdot \frac{5}{3}$
37. $\left(\frac{3}{8}-\frac{3}{4}\right)^{2}+\frac{1}{2} \cdot 6$
38. $\frac{\frac{2}{5}}{\frac{3}{10}}$
39. $\frac{\frac{3}{2}+\frac{1}{4}}{3}$
40. $\frac{\frac{1}{4}}{3-\frac{1}{3}}$

Unit 3 - Decimals

Objective Overview

The following is a small subset of possible problems that could represent each objective. Refer to notes, homework and reviews for a more complete picture.

Section 1 - Introduction to Decimals

By the end of section 1 you should be able to:

- Identify place value

Consider the number -21.123. Identify the number in the hundredths place.

Consider the number 25.23456. What place value is the 4 in ?

- Write a decimal in words

Write 312.1258

- Translate words into numbers

Write "Two and thirty six ten-thousandths" as a number.

- Find the absolute value of a number
$|-2.23|=$
|4.256| $=$
$-|-0.2|=$
- Order the following by placing a < or > in between them.
$12.0234 \quad 12.0324$
$-1.203 \quad-1.23$
- Write a Decimal as a fraction

Write 2.12 as a Fraction.

- Round to the nearest given place value

Round 2.12458 to the nearest thousandths place.

- Rounding with money.

Round \$2.1235 to the nearest cent.

Round \$325.25 to the nearest dollar.

Section 2 - Adding and Subtracting Decimals

By the end of section 2 you should be able to:

- Add decimals with the same sign

$$
5.235+7.2=
$$

$-6.235+(-4.1)=$

- Add decimals with different signs
$-7.32+3.2567=$
- Subtract signed decimals
$-15.23-7=$
$2.23-3.2564=$

Section 3 - Multiplying and Dividing Decimals

By the end of section 3 you should be able to:

- Multiply decimals
$-7.213 \cdot-2.2=$
$-3.25 \cdot 8.23=$
- Multiply decimals by a power of 10.
$-2.356 \cdot 100$
$-54.356 \cdot 0.01$
- \quad Find the Circumference of a circle.

Find the circumference of a circle with radius 2 cm .

Find the circumference of a circle with diameter 6 m .

- Divide decimals
$\frac{-5.5}{5}=$
$-3.6 \div-0.04=$

Divdide and round answer to nearest hundredth $-3.62 \div-0.3=$

- Write the following fractions as decimals (using repeating bare when necessary.) $\frac{1}{8}$
$-\frac{2}{9}$
- Order fractions and decimals by placing > or < in between them.
$-\frac{3}{8} \quad-0.37$

Section 4 - Exponents, Order of Operations, and Square roots

By the end of section 4 you should be able to:

- Evaluate exponents
$-2.2^{4}=$
$(-1.2)^{2}=$
- Use the order of operations to evaluate expressions
$1.6 \div 2 \cdot 3.3$
$2.27+7.1 \cdot 4$
$2(1.1)^{2}+4.2 \cdot 0.3$
- Find the Area of a circle with the given dimensions

Find the area of a circle with radius 2 cm .

Find the area of a circle with diameter 6 m .

- Find an average.

Find the mean of $22,26,27$

- Compute a square root
$\sqrt{49}$
$-\sqrt{144}$
\qquad

Activity 3.1 - Decimals

Part A

What number is smaller 2.301 or 2.31 ? Why?

What number is smaller -2.301 or -2.31 ? Why?

Part B
At the gas station the board says that gas cost $\$ 3.89 \frac{9}{10}$. What does that mean?

After pumping gas the pump says you owe $\$ 56.67890$. How much do you actually pay?

After pumping gas the pump says you owe $\$ 79.99998$. How much do you pay?

This page was intentionally left blank.

Unit 3 - Decimals

Section 1 - Introduction to Decimals

Place Value

Consider the number $526,351,346.15136785$

Example 1)

Consider the number - 3.124567

What number is in the hundredths place?

2
The number to the right of the decimal is the tenths place, the next one over is the hundredths.

Example 2)

Consider the number - 432.64853

What place value is the 5 in ?

The 5 is in the Ten-thousandths places.

The order after the Decimal point is tenths, hundredths, thousandths, ten-thousandths, hundredthousandths, etc..

Writing Decimals in Words

The word "and" is used to represent the decimal point in a number.

So the number 4.5 is said "Four and five tenths."

Consider the number 23.345.
We start by saying the number before the decimal, then the word "and" followed by the number after the decimal, followed by the place value of the last digit.

So we would say "Twenty-three and three hundred forty-five thousandths."

Example 3)

Write 34.5678 in words.

Thirty-four and five thousand six hundred seventy-eight ten-thousandths

Example 4)

Write -2.045678 in words.

Negative two and forty-five thousand six hundred seventy-eight millionths.

Example 5)

Write Thirty-four and two hundred three thousandths as a number.
34.203

Example 6)

Write Four hundred thirteen and twenty-three ten-thousandths.
413.__-_
413._-_ 23
413.0023 $\quad \begin{gathered}\text { Notice the } 23 \text { must end in the } \\ \text { ten-thousandths place. }\end{gathered}$

Absolute Value

We handle absolute value the same as with integers and fractions. Remember absolute value is the distance from zero. It is the number disregarding the sign. What is inside the absolute value bars becomes positive.

Example 7)

|2.34|
$=2.34 \quad$ This number is already positive so the absolute value is the same as the number itself.

Example 8)

$|-34.678|$
$=34.678 \quad$ Notice the number is the same, we took away the negative sign.

Example 9)

$-|-24.987|$
$=-24.987 \quad$ Note: The negative sign on the outside of the absolute value is unaffected.

Ordering Decimals

When ordering decimals it is important to remember that place value is important.
Consider 5.23 and 5.203, at first glance it may be easy to order these incorrectly.
One strategy is to add the zero to 5.23 so the place value matches the other number.

$$
5.23=5.230 . \quad \text { Since } 230>203,5.230>5.203
$$

We could also compare digits in place values. The first number that is different can help you determine which number is larger.

Both numbers begin in the ones place with a 5.
Both numbers have a 2 in the tenths place.
One number has a 3 in the hundredths place the other has a 0.
Since $3>0,5.2 \underline{3}>5.2 \underline{0} 3$.

Example 10)

Compare the following:

$23.045 \quad 23.0123$

Since the first place value that is different is the hundredths place we compare 4 and 1.
Since $4>1$
$23.045>23.0123$

Converting Decimals to Fractions

Converting terminating decimals to fractions can be done by placing the number in the decimal section of a number in the numerator and making the denominator equal the fractional equivalent to the place value the decimal ends in.

$$
2.341
$$

$$
2 \frac{341}{1000}
$$

Notice 2.341 ended in the thousandths place, that is why we wrote the decimal over 1000.
We always reduce the fraction to the lowest terms.

Example 11)

Write 2.35 as a fraction.

$2.35=-2 \frac{35}{100}$	This fraction ends in the hundredths place, so we write the decimal
portion over 100.	
$=-2 \frac{7}{20}$	Top and bottom shared a factor of 5 , so we reduce to lowest terms.

Rounding Decimals

Different fields of study may round in different ways, in math we tend to round up if a number is 5 or higher.

Example 12)

Round 34.5637 to the nearest hundredth.

34.5637

34.56

First we locate the hundredth place.
Next we look at the number to the right of it. (In this case the thousandths place.)

Since $3<5$ we will keep the number a 6 and drop the numbers after the hundredth place.

Example 13)

Round 23.45654 to the nearest thousandth.

23.45654	First we locate the thousandth place.
Next we look at the number to the right of it. (In this case the ten-	
thousandths place.)	
23.457	Since $5 \geq 5$ we round up changing the 6 into a 7.

Example 14)

Round $\mathbf{- 2 5 6 . 9 6 7 8 9}$ to the nearest tenths place.

-256.96789	First we locate the tenths place.		
Next we look at the number to the right of it. (In this case the			
hundredths place.		\quad	Since $6>5$ we round up, but 9 cannot become 10 without moving the
:---			
one over to the next place - the ones place.			

In this example 256.9 become $256+1.0=257.0$

Example 15)

You just got gas and the pump reads that you owe $\$ \mathbf{5 6 . 7 1 5 6 3}$. How much money do you have to pay?
\$56.72
The smallest unit of money is cents. This is the equivalent to the hundredths place.

Example 16)

A television cost $\boldsymbol{\$ 2 3 4 1 . 6 7}$. Round this number to the nearest dollar.
\$2342 The nearest dollar is equivalent to the ones place.

This page was intentionally left Blank.

Consider the number - 23.345678 . For the following state the digit that is in the requested place value.

1. Hundredths
2. Ten-Thousandths
3. Thousandths

What place value is the 5 in ?
4. 128.5689
5. -98.889567
6. -3.98527

Write the following in words.
7. 34.567
8. 2.5689
9. 12.98

Write the following as a number.
10. Two and thirty two hundredths
11. Thirty three and five hundred thirty two ten-thousandths
12. Five and sixty two thousandths

Evaluate the following absolute values
13. |2.46|
14. $-|-34.678|$
15. |-21.787|

Order the following by inserting < or >
16. 32.24
32.2041
17. 7.2123
7.212
18. 5.213
5.21
19. -1.23
-1.203
20. -21.134 -21.1342
21. $-2.34 \quad-2.034$

Write the following as a fraction
22. -23.457
23. -15.7
24. -13.49
25. 13.25
26. -19.222
27. 1.125

Round the following to the nearest thousandths place
28. 1.23556
29. - 13.11118
30. 2.12342

Round to the nearest Hundredth.
31. 36.5555
32. 8.99999
33. 21.1599
34. You fill up with gas and the pump reads $\$ 59.34568$, how much do you pay?
35. A computer cost $\$ 1229.88$. How much does it cost to the nearest dollar?
36. When you calculated sales tax the calculator said 12.34567 , How much did you pay in sales tax?
\qquad

Activity 3.2-Adding and Subtracting Decimals

Part A

You go to the store to pick up 3 items. They cost $\$ 4.89, \$ 3.67$, and $\$ 7.22$. You have $\$ 15$ with you. Do you have enough for all 3 items if there is no tax?

Part B

Your account has $\$ 346.21$. You pay rent for $\$ 450$. What is the status of your account? If the payment goes through what would the bank say your balance is?

This page was intentionally left blank.

Unit 3 - Decimals

Section 2 - Adding and Subtracting Decimals

Adding Signed Decimals
The most important thing about adding Decimals is making sure you are adding the same place values together.

Be sure you stack the decimals so place values line up!

Example 1)

Add $23.456+1.45$
23.456
+1.45 \quad Start by lining up the decimal point.
23.456
$+1.450$
24.906

Example 2)

Add $-7.1+(-1.236)$
-7.1
-1.236 \quad Start by lining up the decimal point.
-7.100
-1.236
-8.336

$$
-8.336
$$

Since both numbers are negative, we add the numbers and keep the sign.

Adding zeros for any missing place values can keep things in line.

Example 3)

Add $-35.67+4.578$
-35.67
4.578
-35.670
$+4.578$
-31.092

Start by lining up the decimal point.

Since the numbers are opposite signs, we subtract and keep the larger numbers sign.

Subtracting Signed Decimals

Remember subtraction is adding the opposite.

Example 4)

Add 3.46 - 4.271

This is the same as $3.46+(-4.271)$
-4.271
3.46
-4.271
$+3.460$
-0.811

Start by lining up the decimal point.

Example 5)

Add - 2.3434 - (-34)
$-2.3434-(-34)=-2.3434+34$
34.

Start by lining up the decimal point. The decimal is after the 4 in 34.

Exercise 3.2

NAME:

:

Add or Subtract

1. $23.56+23.4$
2. $-34.789+(-23.4)$
3. $54.7+(-23.45)$
4. $-4+54.33$
5. $4.565+9.7568$
6. $-3.45+(-2.945)$
7. $-3.456+(-54.78)$
8. $567.21+(-23)$
9. $7.23+667.1$
10. $24.21-54.671$
11. $45.34-(-12.374)$
12. $-4-7.21$
13. $-7.21-(-12.1)$
14. $12-14.124$
15. $-4.361-(-21)$
16. $21-7.219$
17. $-3.214-(-2.7874)$
18. $36.21-107.521$
19. You have $\$ 345.65$ in your account and then use your debit card to get gas. The total was 45.89 . What is the balance on your account when your transaction clears?
20. You got paid twice this month. One check was for $\$ 341$ and the other was for $\$ 299.58$. How much did you get paid all together?
21. You need to buy three items at the store. They cost $\$ 3.41, \$ 7.11$, and $\$ 22.89$ (no tax). You have $\$ 33$ cash, do you have enough money?
\qquad

Activity 3.3-Multiplying and Dividing Fractions

Part A - Complete the following
$(-0.23)(-1.23)$
$-27.72 \div 12$

How did you decide on the sign of your answer?

Part B - Order the following by placing > or < between the numbers.
$\begin{array}{llll}\frac{7}{9} & .78 & -\frac{2}{3} & -0.6\end{array}$

What thought process did you use to determine which number is greater?

This page was intentionally left blank.

Unit 3 - Decimals

Section 3 - Multiplying and Dividing Decimals

Multiplying Decimals

When multiplying decimals we multiply the numbers normally, then we add together the number of decimal places in our original problem and add that many decimal places to our answer.

$3.45 \cdot 2.3$

3.45	2 decimals places
$\times 2.3$	
1035	1 decimal places
6900	
7.935	3 decimal places

Since there are 3 decimal places in the original numbers, we add in three decimal points to the answer

Example1)

(-2.67)(5.3)
First we write the problem vertically
-2.67
$\times 5.3$
801
-13350

The original problem is a negative times a positive, therefore our answer is negative. The original problem had 2 decimal places in one number and 1 decimal place in the second, so the answer has 3 decimal places

Example 2)

$0.00034(0.00023)$

In this problem we had to add zeros in front of the 782 so we could ensure we have 10 decimal places in your answer.

Multiplying Decimals by a power of 10

Consider the following problems and their solutions

$$
\begin{gathered}
2.34567 \times 10=23.4567 \\
2.34567 \times 100=234.567 \\
2.34567 \times 1000=2345.67 \\
2.34567 \times 10000=23456.7 \\
2.34567 \times 100000=234567 \\
2.34567 \times 1000000=2345670
\end{gathered}
$$

Notice in each case the numbers stayed the same, but the number of places the decimal place moved to the right matched the number of 0 's in the power of 10 you are multiplying by.

The pattern continues in the opposite direction as well

$$
\begin{aligned}
2.34567 \times .1 & =0.234567 \\
2.34567 \times .01 & =0.0234567 \\
2.34567 \times .001 & =0.00234567 \\
2.34567 \times .0001 & =0.000234567
\end{aligned}
$$

:

In this case the number the decimal places you move the decimal to the left matches the number of decimal places the 1 is over.

Example 3)

(-56.789)(100)
$(-56.789)(100) \quad$ Notice that in this problem we are multiplying by 100
-5678.9 Two zeros, moves the decimal place 2 places

Example 4)

$-245.6 \cdot 0.0001$

$-245.6 \cdot 0.0001$	0.0001 will move the decimal 4 places to the left.
-0.02456	The leading zero is not necessary

Circumference of a circle

A circle is a set of points a set distance(radius) from a given point (center). The diameter of a circle is the distance across the entire circle.

Where r is the radius.

Where d is the diameter. Notice $d=2 r$ or $r=\frac{d}{2}$.

The Circumference of a circle is like perimeter of a rectangle.
To calculate Circumference we use the formula

$$
C=2 \pi r \text { or } C=d \pi \quad \text { Where } \pi=3.14159265 \ldots, r=\text { radius, and } d=\text { diameter }
$$

For this class we will use the approximation $\pi \approx 3.14$.

Example 5)

Find the circumference of the circle whose radius is 7 cm .
$C=2 \pi r$
$C \approx 2 \cdot 3.14 \cdot 7 \mathrm{~cm}$
$C \approx 6.28 \cdot 7 \mathrm{~cm}$

$C \approx 43.96 \mathrm{~cm}$

Example 6) Find the Circumference of the following circle.

In this example we are given the diameter so we will use the formula $C=d \pi$.

$$
\begin{aligned}
& C=d \pi \\
& C \approx 7 f t \cdot 3.14 \\
& C \approx 21.98 \mathrm{ft}
\end{aligned}
$$

Dividing Decimals
Consider the following

12.345
34419.730
$34 \downarrow{ }^{2}$
79
$68 \downarrow$
117
$102 \downarrow$
153
$136 \downarrow$
170
170
0

The number your are dividing by(the divisor) cannot have a decimal. If there is a decimal you must move the decimal over in both the Divisor and the Dividend so that the divisor does not contain one.

Example 7)

$8.135 \div(-.25)$

Notice that the answer is - 32.54 Since a positive divided by a negative is a negative.

Example 8)

$-1 \div 3$
Notice that the process is
-0.333 repeating. We could continue forever.
$-0.33333 \ldots=-. \overline{3}$
So the answer is.$- \overline{3}$

Dividing Decimals by a Power of 10

Notice the following pattern

$$
\begin{aligned}
& 2.34567 \div 10=0.234567 \\
& 2.34567 \div 100=0.0234567 \\
& 2.34567 \div 1000=0.00234567 \\
& 2.34567 \div 10000=0.000234567 \\
& 2.34567 \div 100000=0.0000234567 \\
& 2.34567 \div 1000000=0.000002345670 \\
& \vdots
\end{aligned}
$$

The pattern continues the other way as well

$$
\begin{gathered}
2.34567 \div 0.1=23.4567 \\
2.34567 \div 0.01=234.567 \\
2.34567 \div 0.001=2345.67 \\
2.34567 \div 0.0001=23456.7
\end{gathered}
$$

Writing fractions as Decimals
We can rewrite fractions as decimals by treating the fraction as division.

Example9)

Rewrite $\frac{5}{11}$ as a Decimal.
$0.454 \ldots$
$1 1 \longdiv { 5 . 0 0 9 0 }$
44v
60
55 근
50
44*
60
Since the 4 and the 5 both repeat the answer is written $0 . \overline{45}$

Comparing Number

If you are asked to order two numbers such as $\frac{2}{9}$ and 0.23 . You may find it easier to turn them into decimals.

Since $\frac{2}{9}=0 . \overline{2}$, or $0.22222222 \ldots$,
It is easy to see $0.23>.222 \ldots$, Therefore $0.23>\frac{2}{9} \quad$ OR $\frac{2}{9}<0.23$.

Exercise 3.3

NAME:

:

Multiply

1. $0.24(5.23)$
2. $23 \cdot 13.26$
3. 12.45 (3.1)
4. $-12.1 \cdot 5.2$
5. $0.45(-22.1)$
6. $-7.1 \cdot .3$
7. $-5.2(-3.34)$
8. $(-2.1)(-1.38)$
9. $-0.3(-0.7)$
10. $(-0.00023)(-0.0012)$
11. $(-0.000235)(0.0012)$
12.0.003(-2.1)
13.1.23 0.00001
12. $-2.135 \cdot 1000$
13. $-13.3 \cdot 10$

For the following calculate the Circumference.
16. $r=3 m$
17. $d=7 i n$
18. $d=6 f t$

Divide
19. $45.36 \div 36$
20. $27.048 \div(-12)$
$21 .-2.55 \div 15$
$22 .-0.27 \div 0.12$
23. $-25.83 \div(-2.1)$
24. $-3.9 \div 1.2$

In the following round your answers to the nearest thousandths place.
$25.7 .2 \div 3.1$
$26 .-5.23 \div 6$
27. $-1.23 \div(-0.23)$

Write the following fractions as a decimal, If answer repeats show that in your answer using the bar above the repeating portion.
28. $\frac{4}{9}$
29. $-\frac{2}{5}$
30. $-\frac{2}{3}$

Order the following by adding < or >
$31 \cdot \frac{2}{5} \quad 0.46$
32.0.21 $\frac{1}{8}$
33. $-\frac{1}{7} \quad-.14$

This page was intentionally left blank.

Unit 3 Mid-Unit Quick Review $3.1-3.3$	NAME:_

1. Write 2.035 in words
2. Write the number

Three and twenty-one ten-thousandths
3. $|-2.5|$
4. $-|-2.1|$
5. Write 3.42 as a fraction in lowest terms.
6. Write $\frac{3}{8}$ as a decimal.

Perform the indicated operation
7. $-3.462-2.1431$
8. $2.13+3.4$
9. $-2.75-(-2.1)$
10. $3(-2.25)$
11. $-115 \div(-0.25)$

Order the following by placing $\mathrm{a}<$ or $>$ in between the numbers.
12. $\frac{2}{3} .67 \quad$ 13. $-\frac{4}{9} \quad-0.4$
14. Round -3.42563 to the nearest hundredths place.
15. Circumference can be found by the formula $C=2 \pi r$. Find the circumference of the circle whose radius is 4 m , using $\pi \approx 3.14$.
\qquad

Activity 3.4 - Exponents, Order of operations, Square roots

Part A - Complete the following $(-3.1)^{2}$ -4.6^{2}
$2(1.1)^{3}+3$
$4.2 \div 0.2 \cdot 3.1$
3.4-2(3.1)

Part B

What number times itself is 9 ?

What number times itself is 64 ?

This page was intentionally left blank.

Unit 3 - Decimals

Section 4 - Exponents, Order of Operations , Square Roots

Decimals with Exponents
Exponents work the same way with decimals as they do with Integers and Fractions.

Example 1)

2.3^{2}
2.3^{2}
$=2.3 \cdot 2.3$
$=5.29$

Example 2)

$(-3.4)^{2}$
Notice everything in the parentheses repeats, including the negative.
$(-3.4)^{2}$
$=(-3.4)(-3.4)$
$=11.56$

Example 3)

-1.5^{2}
-1.5^{2}
$=-1.5 \cdot 1.5$
Notice only the number itself repeats, not the negative.
$=-2.25$

Example 4)

$(-1.4)^{3}$
$(-1.4)^{3}$
$=(-1.4)(-1.4)(-1.4) \quad$ Notice everything in the parentheses repeats 3 times.
$=1.96(-1.4) \quad$ Multiply the first two numbers.
$=-2.744 \quad$ Multiply the remaining numbers.

Example 5)

$-(-1.2)^{2}(3.3)^{3}$
$-(-1.2)^{2}(3.3)^{3}$
$=-[(-1.2)(-1.2)][(3.3)(3.3)(3.3)] \quad$ Following PEMDAS, we evaluate both exponents first.
$=-(1.44)(35.937) \quad$ Notice the negative in front had no exponent applied.
$=-51.74928$

Order of Operations

Order of operations are applied the same way to decimals as they were to Integers and fractions. We can use PEMDAS to remind us of the order.

Recall from 1.4
The order that we are expected to follow in called The order of operations

1. Start with grouping symbols (parenthesis, etc)
2. Simplify any exponents
3. Complete any multiplication and Division - going from left to right.
4. Complete and addition and subtraction - going from left to right.

Example 6)

$0.25+0.13(4.3)$
$0.25+0.13(4.3)$
$=0.25+0.559 \quad$ We multiply before we add.
$=0.809$

Example 7)

$2.25 \div 0.5 \cdot 6.23$
$2.25 \div 0.5 \cdot 6.23$
$=4.5 \cdot 6.23$
$=28.035$

We divide before we multiply because Multiplication and division have the Multiplication and division have the same priority and we work left to right.

Example 8)

$2(2.03)^{2}-3 \cdot 0.5$
$2(2.03)^{2}-3 \cdot 0.5$
$=2 \cdot 4.1209-3 \cdot 0.5 \quad$ First we compute the exponent.
$=8.2418-1.5 \quad$ Then both multiplications.
$=6.7418$
Last we subtract.

Finding the Area of a circle

To Find the Area of a circle we use the formula

$$
A=\pi r^{2} \quad \text { Where } \pi=3.14159265 \ldots \text { and } r=\text { radius }
$$

For this class we will use the approximation $\pi \approx 3.14$.

Example 9)

Find the area of the following circle

In this example we are given the radius so we will use the formula $A=\pi r^{2}$
$A=\pi r^{2}$
$A=\pi(2 m)^{2}$
$A \approx 3.14 \cdot(2 m)^{2}$
$A \approx 3.14 \cdot 4 m^{2} \quad$ Using PEMDAS
$A \approx 12.56 \mathrm{~m}^{2}$

Example 10)

Find the area of a circle whose diameter is 5 in.
We will still use $A=\pi r^{2}$, how ever we have to find r first. Since $=\frac{\boldsymbol{d}}{2}, \boldsymbol{r}=\frac{\mathbf{5}}{2} \boldsymbol{i n}=\mathbf{2} . \mathbf{5 i n}$.
$A=\pi r^{2}$
$A \approx 3.14(2.5 \mathrm{in})^{2} \quad 2.5 \mathrm{in} \cdot 2.5 \mathrm{in}=2.5 \cdot 2.5 \cdot \mathrm{in} \cdot \mathrm{in}=6.25 \mathrm{in}^{2}$
$A \approx 3.14 \cdot 6.25$ in 2
$A \approx 19.625 \mathrm{in}^{2}$

Calculating a Mean

One application of order of operations is calculating an average, called the mean. Say you took 3 tests and scored 77,81 , and 84 . If all the tests were out of 100 , then to calculate your average you will add the 3 test scores together and divide by the number of test scores.

```
77+81+84 We divide by 3 because we are averaging 3 scores
= 242
= 80.666666666...
=80.\overline{6}}\quad\mathrm{ Or rounded to the nearest whole 81.
```


Example 11)

Find the average of 77,88, 78 , and 81.
$\frac{77+88+78+81}{4}$
We divide by 4 because we are averaging 4 scores.
$=\frac{324}{4} \quad$ Following PEMDAS, first we add since the top is grouped together. $=81$

Square roots

Perfect squares are numbers that are the product of a number and itself. They are $1,4,9,16,25,36$, 49,...

$$
\begin{aligned}
1 & =1 \cdot 1 \\
4 & =2 \cdot 2 \\
9 & =3 \cdot 3 \\
16 & =4 \cdot 4 \\
25 & =5 \cdot 5 \\
36 & =6 \cdot 6 \\
49 & =7 \cdot 7 \\
64 & =8 \cdot 8 \\
81 & =9 \cdot 9 \\
100 & =10 \cdot 10 \\
121 & =11 \cdot 11 \\
144 & =12 \cdot 12 \\
169 & =13 \cdot 13 \\
196 & =14 \cdot 14 \\
225 & =15 \cdot 15 \\
& \vdots \\
400 & =20 \cdot 20 \\
& \vdots \\
900 & =30 \cdot 30 \\
& \vdots
\end{aligned}
$$

The square root of a number is the number that you would times itself by to get the number. For perfect squares the numbers are nice and clean.
$\sqrt{9}=3 \quad$ This is read "The square root of 9 is 3 ". Note $9=3 \cdot 3$

Example 12)

$\sqrt{100}$
$\sqrt{100}$
$=\sqrt{10 \cdot 10}$
$=10$

Example 13)

$\sqrt{25}$
$\sqrt{25}$
$=\sqrt{5 \cdot 5}$
$=5$

If I were to ask $x^{2}=9$, then there would be two answers. Notice $3 \cdot 3=9$ and $-3 \cdot-3=9$. So there are two square roots of 9 . One is 3 and the other is -3 . In the above we found the positive root. To obtain the negative root we need to add a negative sign in front of the root.

Example 14)

$-\sqrt{36}$
$-\sqrt{36} \quad$ Notice this example has the negative in front of the root.
$=-\sqrt{6 \cdot 6}$
$=-6 \quad$ Therefore the answer is negative.

Exercise 3.4 NAME: \qquad

Simplify the following

1. $(-2.1)^{2}$
2. $(-0.9)^{3}$
3. -1.5^{2}
4. $1.5(3.2)^{3}$
5. $(-1.2)^{2}(1.1)^{3}$
6. $-2.1^{2}(0.2)^{2}$
7. $1.1-5.6(1.3)$
$8.2 .4-3.2+4.5$
$9.7 .2 \div 0.5 \cdot 1.1$
$10.2(0.8)^{2}-6.3 \div 0.3$
8. $(4.1-3.6)^{2}+4 \cdot .02$
9. $(4.7-1.2)^{2}+4 \div 0.2$

For the following calculate the Area of each circle with the given dimension.
13. $r=3 m$
14. $d=7 i n$
15. $d=6 f t$

For problems 13-15 compute the mean of the scores listed, round to the nearest hundredth if necessary.
16. $62,77,75,81$
17. $88,81,85$
18. $90,82,98$

Find the following Square roots
19. $\sqrt{121}$
20. $\sqrt{64}$
$21 . \sqrt{225}$
22. $-\sqrt{144}$
$23 .-\sqrt{196}$
24. $-\sqrt{1600}$

Unit 3 Review

1. Write 34.78266 in words.
2. Write 2.00067 in words.
3. Write the following as a number.

Twenty-three and fifty-six thousandths
4. Write the following as a number.

Thirty-five ten-thousandths

Find the absolute value of the following.
5. $|-21.1|$
6. |5.23|
7. $-|-4.25|$

Order the following by placing < or > between the numbers.
8. 32.1234
32.123
9. 2.301
2.31
10. -25.34
-25.304
11. Write -3.63 as a fraction.
12. Write 5.625 as a fraction.
13. Round -34.56782 to the nearest thousandth.
14. Round -2.34567 to the nearest hundredth.
15. Round 2.34723 to the nearest ten-thousandth.
16. Round to the nearest dollar : \$ 34.76
17. You calculate the cost of a single item bought in bulk as $\$ 4.34567$. How much would you pay for it?

Perform the indicated operation
18. $-23.11+34.786$
19. $-78.123+(-34.27)$
20. $-275.1-43.213$
21. $-25.75-(-344.678)$
22. $8.375-6.4$
23. $-345.1+34.345$
24. Sue has $\$ 34.44$ in an account and writes a check for $\$ 50$. If the check clears, what is Sues account balance?

Perform the indicated operation.
25. $-23.45(-3.2)$
26. $-2.324 \cdot 5.5$
27. $(-3.7)(-2.54)$
28. $-23.456(10000)$
29.5.678(-10)
30. $3.234 \cdot 0.001$
31. Given the formula for circumference is $C=2 \pi r$ with $\pi \approx 3.14$. find the circumference of a circle whose radius, r, equal to 3 m .
32. $31.8 \div 15$
33. $385.5 \div 12$
34. $25 \div 6$
35. $12.56 \div 0.2$
36. $5 \div 0.9$
37. $1495.56 \div 1.21$

Round the following to the nearest Thousandth.
38. $456 \div 2.3$
39. $23 \div 7$
40. $4.23 \div 0.7$
41. Write $\frac{7}{9}$ as a decimal.
42. Write $\frac{1}{8}$ as a decimal.

Order the following by placing a < or > in between the numbers
43. 0.85
$\frac{6}{7}$
44. $\frac{3}{8} \quad 0.4$

Complete the following
45. $(-2.1)^{2}$
46. -1.2^{2}
47. $-(0.4)^{3}$
48. $2.1(0.2)^{4}$
49. $3.1(-1.1)^{3}$
50. $2.3+1.2(0.2)$
52. $2(0.2)^{2}+3.2(4.1)$
53. $3.25 \div 0.05+3.2 \cdot 1.25$
54. Find the average of 77,75 , and 70 .

This page was intentionally left blank.

Unit 4 - Equations

Objective Overview

The following is a small subset of possible problems that could represent each objective. Refer to notes, homework and reviews for a more complete picture.

Section 1 - Variables and Combining Like Terms

By the end of section 1 you should be able to:

- Evaluate an expression

Evaluate $x-3$, for $x=5$

- Combine like terms

$$
3 x-x+7
$$

- $\quad 5 a^{2} b-4 a b-3 a^{2} b+7 a b^{2}$
- Distribute

$$
3(x-4)
$$

- Distribute and Combine like terms

$$
7 x-3(x+2)
$$

Section 2 - Solving One-Step Equations

By the end of section 2 you should be able to:

- Solve equations of the form $\boldsymbol{x}+\boldsymbol{a}=\boldsymbol{b}$
$x+2=9$
$3+x=7$
- Solve equations of the form $\boldsymbol{x}-\boldsymbol{a}=\boldsymbol{b}$

$$
x-4=-3
$$

- Solve equations of the form $a x=b$
$-2 x=18$
- Simplify then Solve equations
$2 x-6 x=12$
- Set up and Solve equations

The sum of a number and 7 is 10 .

Section 3 - Solving Two-Step Equations

By the end of section 3 you should be able to:

- Solve equations of the form $a x+b=c$
$3 x-6=18$
- Simplify and Solve
$5 x-2(x-3)=21$

Section 4 - Solve Multi-Step Equations

By the end of section 4 you should be able to:

- Solve equations of the form $a x+b=c x+d$ $7 x-3=2 x+12$
- Simplify and Solve
$4(x-1)-3(x+2)=-4(x+1)+9$

Section 5 - Solve Equations involving Fractions

By the end of section 5 you should be able to:

- Solve One-step Equations
$\frac{3}{2} x=7$

$$
x-\frac{1}{2}=\frac{2}{3}
$$

- Solve Two Step Equations
$\frac{2}{3} x-6=\frac{7}{2}$
- Solve Multi-step Equations
$\frac{4}{5} x-3=\frac{1}{5} x+2$

Section 6 - Solve Equations involving Decimals

By the end of section 6 you should be able to:

- Solve One-step Equations
$2.3 x=-2.53$
$3.1+x=-0.023$
- Solve Two Step Equations
$3 x+0.2=.263$
- Solve Multi-step Equations
$0.4 x-3=0.2 x+2.63$
\qquad

Activity 4.1 - Variables and Combining Like Terms

In each of the following describe the result in words.

If you have 7 boxes and add on 4 more boxes to your load, how many boxes do you have?

If you have 7 boxes and add on 12 crates to your load, how many boxes do you have?

If you have $7 x$ and add on $9 x$, how many do you have total?

If you have $7 x$ and $9 y$, what do you have total?

If you have 9 boxes of apples that hold x many apples each and 7 more apples, how many apples do you have? (Write an expression using math symbols and variables.)

What is the simplest way to write your answer? Why?

This page was intentionally left blank.

Unit 4 - Equations

Section 1 - Variables and Combining Like terms

Variables

As stated before, variables are place holders. They can represent the part of a formula that changes.
We have evaluated expressions before, for example:

Example 1)

Evaluate $\quad x+25$, for $x=5$
$x+25$
$=5+25$
$=30$

Simplifying Expressions

When the variables match you can combine two terms by adding (or subtracting) the coefficients.

Example 2)

Simplify $5 x+3 x$

$5 x+3 x$	$5+3=8$
$=8 x$	

Note: $1 x=x$ and $-1 x=-x$.

Example 4)

Simplify $7 x-8 x$
$7 x-8 x$
$=-1 x$
$=-x$

You can combine multiple terms as long as the variables match.

Example 5)

Simplify $10 s-3 s+4 s$

$$
10 s-3 s+4 s
$$

$$
=7 s+4 s
$$

$$
=11 s
$$

You can combine terms were the variables match, if you have a number by itself, a constant, it can only combine with other constants.

Example 6)

Simplify $4 x+2+3 x$

$$
\begin{aligned}
& 4 x+2+3 x \\
& =4 x+3 x+2 \\
& =7 x+2
\end{aligned} \quad \text { The constant } 2 \text { stays separate from the term with the Variable. }
$$

Example 7)

Simplify $2 x+3 y-4+5 x-6 y$
$2 x+3 y-4+5 x-6 y$
$=2 x+5 x+3 y-6 y-4$
$=7 x-3 y-4$

Notice only the terms with exactly the same variables and exponents combine.

When the variables have exponents, the exponents must match as well to be "like terms".

Example 8)

Simplify $3 x^{2}-2 x+3-4 x^{2}-8 x$
$3 x^{2}-2 x+3-4 x^{2}-8 x$
$=3 x^{2}-4 x^{2}-2 x-8 x+3 \quad$ The terms with x^{2} combine together,
$=-1 x^{2}-10 x+3 \quad$ the terms with that have an x combine.
$=-x^{2}-10 x+3$

Example 9)

Simplify $3 a b^{2}+4 a b-7 a^{2} b+2 a b^{2}$
$3 a b^{2}+4 a b-7 a^{2} b+2 a b^{2}$
$=3 a b^{2}+2 a b^{2}+4 \mathrm{ab}-7 \mathrm{a}^{2} \mathrm{~b} \quad$ Notice $a b^{2}$ and $a^{2} b$ are not like terms.
$=5 a b^{2}+4 a b-7 a^{2} b$
$=-7 a^{2} b+5 a b^{2}+4 a b$

Distributive Property

If there is a number on the outside of pair of parentheses and then the number gets multiplied to each term on the inside of the parentheses - this is called the Distributive Property.

Example 10)

Distribute $3(x-7)$
$3(x-7)$
$=3 \cdot x-3 \cdot 7$
$=3 x-21$

Example 11)

Distribute $6(2 x+5)$
$6(2 x+5)$
$=6 \cdot 2 x+6 \cdot 5$
$=12 x+30$

Distributing a negative changes all signs inside the parentheses.

Example 12)

Distribute $-2(x+4)$
$-2(x+4)$
$=-2 \cdot x-2 \cdot 4$
$=-2 x-8$

Distributing the negative changes the addition in the parentheses into subtraction.

Example 13)

Distribute $-3(4 x-7)$
$-3(4 x-7)$
$=-3 \cdot 4 x-(-3) \cdot 7 \quad$ Distributing the -3 to the -7 turns it into +21 .
$=-12 x+21$

If there are more terms outside the parentheses, we can continue to simplify by combining like terms.

Example 14)

Distribute and Simplify $3(x-2)+3$
$3(x-2)+3$
$=3 \cdot x-3 \cdot 2+3 \quad$ Distribute to drop the parentheses.
$=3 x-6+3$
$=3 x-3 \quad$ Combine like terms.

Example 15)

Distribute and simplify $5-(x+3)$
$5-(x+3)$
$=5-x-3$
$=2-x$
$=-x+2$

Example 16)

Distribute and Simplify $5(2 x-7)-3(x-4)$
$5(2 x-7)-3(x-4)$
$=5 \cdot 2 x-5 \cdot 7-3 \cdot x-(-3) \cdot 4 \quad$ Distribute both sets of parentheses.
$=10 x-35-3 x+12$
$=10 x-3 x-35+12 \quad$ Combine both sets of like terms.
$=7 x-23$

Exercise 4.1

NAME:
Evaluate the following

1. $x+5$, for $x=4$
2. $4 y$, for $y=7$
3. $a-7$, for $a=5$
4. $-2 b$, for $b=8$
5. $10-x$, for $x=9$
6. $8 z$, for $z=12$

Simplify the following
7. $6 x-x$
8. $-12 a+3 a$
9. $-2 z-5 z$
10. $5 t-3 t+7 t$
11. $-6 r-r-7 r$
12. $-6 v-7 v+15 v$
13. $13 s-5-s$
14. $7 x-3+x$
15. $-8 d-4-4 d$
16. $7 m-4 n+5 m$
17. $4 s+7 t-9 s$
$18.4 k+6 k-8 p$
19. $21 m+m-2 n+5$
20. $-12 k-j-7 j+4$
21. $5 h+4-3 h+2 f$
22. $3 x^{2}-2 x+4 x^{2}+5$
23. $-4 x^{2}+6 x-7 x-x^{2}$
24. $3 x^{2}+2 x-4$
25. $2 a b^{2}-a b+3 a b^{2}$
26. $2 a b^{2}-3 a^{2} b+a b^{2}$
27. $5 x y^{2}-x y+3 x y^{2}$
28. $45 x y^{2}+4 x y-12 x^{2} y-7 x y^{2}$
29. $5 a b^{2}-3 a b+4 a^{2} b-7$
30. $5 x y-2 x+5 y+12-8 x y$

Distribute
31. $6(x+5)$
32. $3(x-2)$
33. $7(x+3)$
34. $-2(x+4)$
35. $-3(x+2)$
36. $-6(x+5)$
37. $-4(3 x-2)$
38. $-2(-2 x-7)$
39. $-3(5 x-7)$

Distribute then simplify
42. $3(x-8)-4$
43. $6+3(2 x-7)$
44. $3 x+2(x+3)$
45. $5+5(2 x+1)$
46. $5-2(x+1)$
47. $3-5(x-2)$
48. $-x-4(x-1)$
49. $4(x-2)-3(2 x+2)$
50. $5(2 x+3)-4(5 x-5)$
51. $3(x-2)-(-3 x+7)$

This page was intentionally left blank.
\qquad

Activity 4.2 - Solving One-Step Equations

Part A

Consider the following

If $x=4$, does $x+2=6$? Why or why not?

If $y=4$, can $y+7=8$? Why or why not?

Part B

If $a+3=7$, can you determine what a equals? Why or why not? What "math" do you do with the 3 and the 7 ?

If $5 x=35$, can you determine what x equals? Why or why not? What "math" do you do with the 5 and the 35 ?
\qquad

Part C
Consider the equation
$x+9=13$ Can I subtract 3 from both sides of this equation? Does it get me closer to the value of x ?

Consider the equation
$x+9=13$ Can I subtract 9 from both sides of this equation? Does it get me closer to the value of x ?

Part D
A number increased by 15 is 22 , find the number.

Can you write a math equation that might represent this? What would you use to represent "a number"?

Unit 4 - Equations

Section 2 - Solving One-Step Equations

In this section we will be looking for solutions to equations.

A solution is a number that can be plugged into an equation that keeps the equation true.

Is $x=3$ a solution to $x+7=10$?
$x+7=10$
$3+7=10$
$10=10$

Since this is a true statement, $\boldsymbol{x}=\mathbf{3}$ is a solution to $\boldsymbol{x}+\mathbf{7}=\mathbf{1 0}$.

Is $x=2$ a solution to $x+7=10$?
$x+7=10$
$2+7=10$
$9=10$
Since $9 \neq 10, \boldsymbol{x}=\mathbf{2}$ is NOT a solution of $\boldsymbol{x}+\mathbf{7}=\mathbf{1 0}$.

We can solve equations and find solutions as long as we keep the equations balanced as we work the problem. Think of the " $=$ " a the tip of a balance or a scale. Adding pebbles to one side of a scale would through it off balance. In order to not change the balance you have to add pebbles to the other side of the scale as well.

When I solve equations the first thing I do is look for my variable and think about how the numbers are attached. I then do the opposite to "unattach" them.

Solving Equations of the Form $x+a=b$

For problems that have a number added to the variable - I do the opposite of add - I subtract the number from both sides.

Example 1)

Solve $x+4=15$
$x+4=15$

$-4-4$
$x+0=11$

$x=11$

We can Subtract 4 to get x by itself, but we must do it to both sides of the $=$ sign.

The Solution is 11 .

We can check to be sure this is correct by plugging $x=11$ into the original problem.

$$
x+4=15
$$

$$
11+4=15
$$

$$
15=15
$$

Since the result is the same on both sides the solution is correct.

For problems that have a number subtracted from the variable - I do the opposite of subtract - I add the number to both sides.

Example 2)

Solve $y-7=12$
$y-7=12$
$\begin{array}{r}+7 \quad+7 \\ \hline y+0=19\end{array}$
$y=19$
Check: This solution is correct since 19-7=12.

Example 3)

$b-3=-15$
$b-3=-15$
$+3+3$
$b+0=-12$
$b=-12$

We can add 3 to get b by itself, but we must do it to both sides of the = sign.

Check: This solution is correct since $-12-3=-15$.

Solving Equations of the Form $a x=b$

For problems that have a number multiplied to the variable - I do the opposite of multiply - I divide by the number on both sides.

Example 4)

$5 x=25$
$\frac{5 x}{5}=\frac{25}{5}$
$1 x=5$
$x=5$

We can divide by 5 to get x by itself, but we must do it to both sides of the = sign.

Check: The solution is correct since 5•5 $=25$.

Example 5)

$-7 y=42$
$-7 y=42$
$-7 \quad-7$
We can divide by -7 to get y by itself, but we must do it to both sides of the $=$ sign.
$1 y=-6$
$y=-6$
Check: The solution is correct since $-7 \cdot-6=42$.

Example 6)

$-3 a=-36$
$-3 a=-36$
$-3 \quad-3$
$a=12$

We can divide by 5 to get a by itself, but we must do it to both sides of the = sign.

Check: The solution is correct since $-3 \cdot 12=-36$.

What do you do to get x by itself?

Example 7) Consider the following problems

a) $2 x=-10$
b) $x-10=-15$
a) $2 x=-10$

Since the 2 is held to the x by multiply - I will do the opposite of multiply and divide.

$$
2 x=-10
$$

$\frac{2 x}{2}=\frac{-10}{2}$
$1 x=-5$
$x=-5$
b) $x-10=-15$

Since the 10 is being subtracted from the $\mathrm{x}-\mathrm{I}$ will do the opposite of subtract and add.
$x-10=-15$
$x-10=-15$
$+10+10$
$x+0=-5$
$x=-5$

If there are like terms on the same side of the " $=$ ", we begin by combining them before considering what operation to do to both sides.

Example 8)

$x+8=12-5$
$x+8=12-5 \quad$ We combine like terms before getting x by itself.
$x+8=7$
$-8-8$
$x+0=-1$
$x=-1$
Check: The solution is correct since $-1+8=12-5$.

Example 9)

$7 x-3 x=70-46$
$7 x-3 x=70-46 \quad$ First combine like terms.
$\frac{4 x}{4}=\frac{24}{4}$
$x=6$
Check: The solution is correct since $7 \cdot 6-3 \cdot 6=70-46$.

Words to Equations

It is essential to understand how words can build equations. Consider the following:

Words that mean math - add to the list as you come across new words!

Add to Increased by	Decreased by
X	\div
Product of	Quotient Divided Among
Twice (X 2)	Half ($\div 2$)

$=$ is

Example10)

The product of a number and three is twenty - seven, find the number.
Equation: $3 \cdot n=27 \quad$ Product means multiply 3 and the number " n ".
$\frac{3 n}{3}=\frac{27}{3}$
$n=9$
The number is 9 .
Check: $3 \cdot 9=27$

Exercise 4.2

NAME:

Solve the following.

1. $x+4=7$
2. $x+7=17$
3. $x+8=22$

Check:
Check:
Check:
4. $x-13=10$
5. $x-4=15$
6. $x-3=7$

Check:
7. $x+10=-15$
8. $x-3=-10$
9. $x-1=-12$

Check:
Check:
Check:
10. $2 x=12$
11. $3 x=24$
12. $5 x=45$

Check:

Check:

14. $-7 x=42$
15. $-3 x=-15$
16. $-4 x=16$

Check:

Check:
Check:
Check:
16. $-4 x=-24$
17. $-9 x=-72$
18. $-8 x=32$

Check:

Check:

Solve
19. $x-3=-13$
20. $-4 x=-16$
21. $-2 x=-18$
22. $5 x-3 x=10$
23. $-4 x-7 x=-33$
24. $-5 x+8 x=27$
25. $5 x=-72+47$
26. $9 x=-42-3$
27. $-3 x=25-16$
28. $x-10 x+12 x=13-7$
29. $4 x+3 x-5 x=54-12$
30. $15 x-7 x=-12-52$

Write an equation for the following and then solve.
31. Twice a number is 16 , find the number. Equation:
32. A number increased by 20 is 35 , find the number. Equation:
33. The product of a number and 5 is 55 , find the number. Equation:
\qquad

Activity 4.3 - Solving Two-Step Equations

Is $x=3$ a solution to $2 x+7=13$? Show all steps clearly.

What did you do first? Why?

What did you do $2^{\text {nd }}$? Why?

If you wanted to "undo" what you did, what would you have to do first?

Consider $2 x+7=13$. Can you divide both sides by 2 ? Should you? What would it look like?

Consider $2 x+7=13$. Can you subtract 7 from both sides? Should you? What would it look like?

This page was intentionally left blank.

Unit 4 - Equations

Section 3 - Solving Two-Step Equations

When solving equations with more than one thing attached to the variable, it helps to think about how each thing is attached and how order of operations would be applied. We need to "undo" the order of operations so we will work backwards.

Think about putting on socks and shoes. You must put on your socks before your shoes.
However you have to take off your shoes before you take off your socks.

Example 1) Solve

$5 x+7=37$
If we were to use order of operations while evaluating this example we would multiply before we add. Reversing this to get x by itself, we must get rid of the addition before the multiplication.

Step 1)
$5 x+7=37$
$\begin{array}{r}-7 \quad-7 \\ \hline 5 x+0=30\end{array}$
To get rid of the " +7 " we " -7 "from both sides.
$5 x=30$
Step 2)
$\frac{5 x}{5}=\frac{30}{5} \quad$ To get rid of the multiply by 5 , we divide by 5.
$x=6$
The Solution is $x=6$. As before we can plug is this solution for x in the original problem and we should get a true statement.

Check: $5(6)+7=30+7=37$

Example 2)

$2 x-3=-15$

Step 1) We move the - 3 before the times by 2. Subtraction is weaker than multiply.
$2 x-3=-15$
$\frac{+3+3}{2 x+0=-12}$
$2 x=-12$

Step 2)
$\frac{2 x}{2}=\frac{-12}{2}$
$x=-6$

Check: $2(-6)-3=-12-3=-15$

Example 3)

$-7+2 x=-9$

Step 1)
$-7+2 x=-9$

$+7 \quad+7$
$0+2 x=-2$

$2 x=-2$

Step 2)
$\frac{2 x}{2}=\frac{-2}{2}$
$x=-1$

$$
\text { Check: }-7+2(-1)=-7-2=-9
$$

Example 4)

$15-(-5)=7 x-4 x-1$

Step 1) Combine like terms on both sides of the equal sign.
$15-(-5)=7 x-4 x-1$
$20=3 x-1$

Step 2)
$20=3 x-1$

$+1 \quad+1$
$21=3 x+0$

$21=3 x$

Step 3)
$\frac{21}{3}=\frac{3 x}{3}$
$7=x$

$$
\text { Check: } \begin{aligned}
15-(-5) & =7(7)-4(7)-1 \\
20 & =49-28-1 \\
20 & =21-1
\end{aligned}
$$

If there are parentheses, you can distribute first and then solve the same way.

Example 5)

$5(x-2)=30$

Step 1)
$5(x-2)=30$
$5 x-10=30$
Distribute.

Step 2)
$5 x-10=30$
$\frac{+10+10}{5 x+0=40}$

Example 5) continued...

Step 3)
$\frac{5 x}{5}=\frac{40}{5}$
$x=8$

$$
\text { Check }: 5(8-2)=5(6)=30
$$

Example 6)

$2(x-4)+4 x=40$

Step 1)
$2(x-4)+4 x=40$
$2 x-8+4 x=40$
Distribute to drop the parentheses.
$6 x-8=40$
Combine Like Terms.

Step 2)
$6 x-8=40$
$\begin{array}{r}+8+8 \\ \hline 6 x+0=48\end{array}$
$6 x=48$

Step 3)
$\frac{6 x}{6}=\frac{48}{6}$
$x=8$

Check: $2(8-4)+4(8)=2(4)+4(8)=8+32=40$

Exercise 4.3

NAME:

Solve the following.

1. $3 x-2=10$
2. $22=5 x+7$
3. $7 x-2=40$

Check
Check
Check
4. $-50=8 x-10$
5. $-4 x+6=-6$
6. $-41=9 x-5$

Check
9. $3-8 x=-53$

Check
8. $4-3 x=22$
7. $7-2 x=-15$

Check
Check
Check
10. $6(x-3)=-54$
11. $12=4(x-1)$
12. $3(2 x-5)=15$

Check

13. $5 x-3 x+2=18$

Check
14. $-7 x-2 x+7=-11$

Check

15. $5-(-2)=-3 x-5 x-9$
16. $6-2(x+7)=10-24$
\qquad

Activity 4.4 - Multi-Step Equations

Is $x=2$ a solution to $3 x+5=5 x+1$? Show all steps clearly. (Do not solve it - plug it in to check.)

Can you get x by itself by solving this? Which x would you try to isolate?

Consider $3 x+5=5 x+1$, can you divide both sides by $3 x$? Should you? What would it look like?

Consider $3 x+5=5 x+1$, can you subtract $3 x$ from both sides? Should you? What would it look like?

What should you do first to solve $3 x+5=5 x+1$ for $x ?$

This page was intentionally left blank.

Unit 4 - Equations

Section 4 - Solving Multi-Step Equations

If there is an x on both sides of the equal sign, we must find away to combine them by first getting them on the same side of the equation.

Example 1) Solve

$2 x+7=-3 x+22$
There is an x on both sides of the equal sign. The first step is to move them to the same side.
Step 1)

$2 x+7=-3 x+22$
$+3 x \quad+3 x$
$5 x+7=0+22$

To move the "- $3 x$ " to the other side we do the opposite and " $+3 x$ " to both sides.
$5 x+7=22$
Step 2)
$5 x+7=22$
$-7-7$
$5 x+0=15$ To get rid of the " +7 " we " -7 " from both sides.
$5 x+0=15$
$5 x=15$
Step 3)
$\frac{5 x}{5}=\frac{15}{5} \quad$ To get rid of the multiply by 5 , we divide by 5 on both sides.
$x=3$
The Solution is $=3$. As before we can plug is this solution for x in the original problem and we should get a true statement.

$$
\text { Check: } \quad \begin{aligned}
2(3)+7 & =-3(3)+22 \\
6+7 & =-9+22 \\
13 & =13
\end{aligned}
$$

If you are working a problem with like terms that can be combined on the SAME SIDE of the equal sign, it makes the problem significantly easier to begin by combining them.

Example 2)

$2 x+7-6 x=7 x-19+4$
We need to combine like terms ON THE SAME SIDE of the "=" before doing anything else.

Step 1)
$2 x+7-6 x=7 x-19+4$
$-4 x+7=7 x-15$

Step 2)
$-4 x+7=7 x-15$
$-7 x-7 x \quad$ Move the variable to one side.
$-11 x+7=0-15$
$-11 x+7=-15$
Step 3)
$-11 x+7=-15$
-7
$-11 x+0=-22$
Get rid of the addition, then the multiplication.
$-11 x=-22$

Step 4)
$\frac{-11 x}{-11}=\frac{-22}{-11}$
$x=2$

The solution is $x=2$. We can verify the solution by plugging 2 in for x in the original problem.
Check:

$$
\begin{aligned}
2(2)+7-6(2) & =7(2)-19+4 \\
4+7-12 & =14-19+4 \\
11-12 & =-5+4 \\
-1 & =-1
\end{aligned}
$$

Sometimes it is necessary to distribute so you can simplify both sides of an equation.

Example 3)

$3(2 x-4)+7=5 x-15$

Step 1)
$3(2 x-4)+7=5 x-15$
$6 x-12+7=5 x-15 \quad$ Begin by distributing to drop the parentheses.
$6 x-5=5 x-15 \quad$ Combine like terms on the same side of the equal sign.

Step 2)

$6 x-5$	$=5 x-15$
$-5 x$	$-5 x$
$x-5$	$=0-15$

$x-5=-15$

Step 3)
$x-5=-15$
$\frac{+5+5}{x+0=-10}$
Move the -5 by adding 5 to both sides.
$x=-10$
The Solution is $x=-10$.

$$
\text { Check: } \begin{aligned}
3(2(-10)-4)+7 & =5(-10)-15 \\
3(-20-4)+7 & =-50-15 \\
3(-24)+7 & =-65 \\
-72+7 & =-65 \\
-65 & =-65
\end{aligned}
$$

This page was intentionally left blank.

Exercise 4.4 NAME:

Solve the following.

1. $5 x-6=-2 x+15$
2. $4 x-3=8 x+9$
3. $4-3 x=2 x-36$
4. $7 x-3 x+2=5-2 x+9$
5. $6 x-3+2 x=7 x-x+15$
6. $-2 x+7-12+3 x=5 x-7 x+10$
7. $5(x-3)+3=3 x-(4+2 x)$
8. $3(x-2)+7 x=2(x+3)-4$

Unit 4 Mid Unit Review 4.1-4.4	NAME:-

Simplify

1. $12 y-3 y$
2. $5 x+2 y-x$
3. $-3(x-2)$
4. $2-5(x+1)$

Solve
5. $x+5=-7$
6. $4=x-10$
7. $3 x=-24$
8. $-12=-2 x$
9. $3 x-x=7-(-3)$
10. $4 x+1=-15$
11. $2 x+2=5 x+17$
12. $4(x-1)+10=3 x+4(-x-1)$

How comfortable are you feeling solving equations?
\qquad

Activity 4.5 - Solving Equations with Fractions

Solve the following

1. $x-\frac{3}{4}=-\frac{1}{2}$
2. $\frac{2}{5} x=\frac{6}{25}$
3. $\frac{1}{6} x-\frac{2}{3}=-\frac{1}{2}$
4. $\frac{1}{2} x-2=\frac{2}{3} x+\frac{1}{5}$

This page was intentionally left blank.

Unit 4 - Equations

Section 5 - Solving Equations with Fractions

We solve equations with Fractions the same way as equations with integers.
One- step equations are solved by considering how the number is attached to the variable as in 4.2.

Example 1) Solve

$\frac{2}{3} x=\frac{7}{6} \quad$ Since the $\frac{2}{3}$ is held by multiplication we will divide to isolate the x.
$\frac{2}{3} x=\frac{7}{6}$
$\frac{3}{2} \cdot \frac{2}{3} x=\frac{3}{2} \cdot \frac{7}{6}$
$x=\frac{7}{4}$
The solution is $=\frac{7}{4}$. Remember we can double check this by plugging it in to the original equation.

$$
\text { Check: } \frac{2}{3}\left(\frac{7}{4}\right)=\frac{7}{6}
$$

Example 2) Solve

$x-\frac{2}{3}=\frac{1}{6}$
Since the $\frac{2}{3}$ is held by subtraction, we will add it to both sides.
$x-\frac{2}{3}=\frac{1}{6}$
$+\frac{2}{3}+\frac{2}{3}$
$x+0=\left(\frac{1}{6}+\frac{2}{3}\right)$
We need to find a common denominator to add $\frac{1}{6}+\frac{2}{3}$.
$x=\frac{1}{6}+\frac{2}{3}=\frac{1}{6}+\frac{4}{6}$

Example 2) continued....

$x=\frac{5}{6}$
The solution is $x=\frac{5}{6}$.
Check: $\frac{5}{6}-\frac{2}{3}=\frac{5}{6}-\frac{4}{6}=\frac{1}{6}$

With two step equations we handle it by peeling off things the opposite way as the order of operations would be applied as in 4.3.

Example 3)

$\frac{5}{3} x-\frac{1}{6}=\frac{1}{2}$
We have to decide if we will move the $\frac{5}{3}$ or the $\frac{1}{6}$ first.
Step 1)
$\frac{5}{3} x-\frac{1}{6}=\frac{1}{2}$
$\frac{+\frac{1}{6}+\frac{1}{6}}{5}$ We add $\frac{1}{6}$ to both sides first.
$\frac{5}{3} x=\frac{2}{3}$
Step 2)
$\frac{3}{5} \cdot \frac{5}{3} x=\frac{3}{5} \cdot \frac{2}{3}$
We then move the $\frac{5}{3}$ by multiplying by the reciprocal.
$x=\frac{2}{5}$
The solution is $=\frac{2}{5}$.
Check: $\quad \frac{5}{3}\left(\frac{2}{5}\right)-\frac{1}{6}=\frac{1}{2}$

$$
\begin{aligned}
\frac{2}{3}-\frac{1}{6} & =\frac{1}{2} \\
\frac{4}{6}-\frac{1}{6} & =\frac{1}{2} \\
\frac{3}{6} & =\frac{1}{2}
\end{aligned}
$$

Just as with equations with integers, it is possible to simplify before combining like terms.

Example 4)

$\frac{1}{8}-\frac{1}{4}\left(x-\frac{1}{2}\right)=\frac{3}{4}$
Step 1) Distribute and combine like terms.
$\frac{1}{8}-\frac{1}{4}\left(x-\frac{1}{2}\right)=\frac{3}{4}$
$\frac{1}{8}-\frac{1}{4} x+\frac{1}{8}=\frac{3}{4}$
$-\frac{1}{4} x+\frac{1}{4}=\frac{3}{4}$
We can combine
$\frac{1}{8}+\frac{1}{8}=\frac{2}{8}=\frac{1}{4}$

Step 2) \quad Remove the term added to the variable.
$-\frac{1}{4} x+\frac{1}{4}=\frac{3}{4}$
$-\frac{1}{4}-\frac{1}{4}$
$-\frac{1}{4} x+0=\frac{1}{2}$
Note: $\frac{3}{4}-\frac{1}{4}=\frac{2}{4}=\frac{1}{2}$
$-\frac{1}{4} x=\frac{1}{2}$
Step 3) Remove the multiply by $-\frac{1}{4}$ by multiplying by the reciprocal $\left(-\frac{4}{1}\right)$.
$\left(-\frac{4}{1}\right) \cdot-\frac{1}{4} x=\left(-\frac{4}{1}\right) \cdot \frac{1}{2}$
$x=-2$

The solution is $x=-2$.

$$
\text { Check: } \quad \begin{aligned}
\frac{1}{8}-\frac{1}{4}\left(-2-\frac{1}{2}\right) & =\frac{3}{4} \\
\frac{1}{8}-\frac{1}{4}\left(-\frac{5}{2}\right) & =\frac{3}{4} \\
\frac{1}{8}+\frac{5}{8} & =\frac{3}{4} \\
\frac{6}{8} & =\frac{3}{4}
\end{aligned}
$$

When there is a variable on both sides of the equal sign, we must move them to one side to combine like terms and isolate the variable as in 4.4.

Example 5)

$\frac{1}{3} x-1=\frac{2}{5} x+\frac{1}{3}$
Step 1) We move the terms with x to one side.

$$
\begin{aligned}
& \frac{1}{3} x-1=\frac{2}{5} x+\frac{1}{3} \\
& -\frac{2}{5} x \quad-\frac{2}{5} x \\
& \hline-\frac{1}{15} x-1=0+\frac{1}{3} \\
& -\frac{1}{15} x-1=\frac{1}{3}
\end{aligned}
$$

Step2) Next we move the -1 by adding 1.
$-\frac{1}{15} x-1=\frac{1}{3}$
$+1+1$
$-\frac{1}{15} x+0=\frac{4}{3}$
$-\frac{1}{15} x=\frac{4}{3}$
Step 3) \quad Remove the $-\frac{1}{15}$.
$\left(-\frac{15}{1}\right) \cdot-\frac{1}{15} x=\left(-\frac{15}{1}\right) \cdot \frac{4}{3}$
$x=-20$
Check: $\quad \frac{1}{3}(-20)-1=\frac{2}{5}(-20)+\frac{1}{3}$

$$
\begin{aligned}
-\frac{20}{3}-1 & =-8+\frac{1}{3} \\
-\frac{20}{3}-\frac{3}{3} & =-\frac{24}{3}+\frac{1}{3} \\
-\frac{23}{3} & =-\frac{23}{3}
\end{aligned}
$$

Exercise 4.5

Solve the following.

1. $\frac{1}{2} x=\frac{3}{4}$
2. $\frac{3}{2} x=-\frac{9}{5}$
3. $\frac{5}{3} x=\frac{7}{10}$
4. $x+\frac{1}{2}=\frac{3}{4}$
5. $x-\frac{1}{3}=\frac{2}{3}$
6. $x-\frac{1}{8}=\frac{1}{4}$
7. $\frac{1}{2} x-\frac{1}{6}=\frac{1}{3}$
8. $\frac{3}{4} x-1=-\frac{2}{3}$
9. $\frac{2}{3} x-\frac{1}{3}=\frac{1}{3}$
10. $\frac{1}{2}(x-1)+2=1$
11. $\frac{2}{3}(x+1)-2 x=\frac{1}{3}$
12. $\frac{1}{4}-\frac{1}{12}(x+1)=\frac{1}{3}$
13. $\frac{1}{3} x-2=\frac{2}{3} x+1$
14. $\frac{1}{6} x-\frac{2}{3}=\frac{1}{3} x+\frac{1}{2}$
15. $\frac{5}{6} x-\frac{1}{3}=\frac{1}{2} x+1$
\qquad

Activity 4.6-Equations with Decimals

Solve the following

1. $x-4.2=0.25$
2. $1.2 x=1.44$
3. $0.2 x-1.68=-0.25$
4. $0.25 x-3=.5 x+2.2$

This page was intentionally left blank.

Unit 4 - Equations

Section 6 - Solving Equations with Decimals

We solve equations with Decimals the same way as equations with integers.
One- step equations are solved by considering how the number is attached to the variable as in 4.2.

Example 1)

$0.5 x=-1.2$
$\frac{0.5 x}{0.5}=\frac{-1.2}{0.5} \quad$ Since the 0.5 is held on by multiplication we divide on both sides.
$x=-2.4$
As before we can check to verify this solution by plugging the answer into the original problem.

Check: $0.5(-2.4)=-1.2$

Example 2)

$x-3.1=-7.025$
$x-3.1=-7.025$
$+3.1+3.1 \quad$ Since the 3.1 is held to the variable by subtraction, we add to both sides.
$x+0=-3.925$
$x=-3.925$

$$
\text { Check: }-3.925-3.1=-7.025
$$

With two step equations we handle it by peeling off things the opposite way as the order of operations would be applied as in 4.3.

Example 3)

$0.25 x-3=4.1$

Step 1) First we remove the subtraction.
$0.25 x-3=4.1$
$+3+3$
$0.25 x+0=7.1$
$0.25 x=7.1$

Step 2) Next we remove the multiplication.
$\frac{0.25 x}{0.25}=\frac{7.1}{0.25}$
$x=28.4$

$$
\text { Check: } 0.25(28.4)-3=4.1
$$

$$
7.1-3=4.1
$$

When there is a variable on both sides of the equal sign, we must move them to one side to combine like terms and isolate the variable as in 4.4.

Example 4)

$0.2 x+0.2=0.5 x+1.7$
Step 1)

$$
0.2 x+0.2=0.5 x+1.7
$$

$\frac{-0.5 x-0.5 x}{-0.3 x+0.2=0+1.7}$
$-0.3 x+0.2=1.7$

Step 2)

$$
\begin{array}{r}
-0.3 x+0.2=1.7 \\
-0.2-0.2 \\
\hline-0.3 x+0=1.5 \\
-0.3 x=1.5
\end{array}
$$

Example 4) Continued...

Step 3)
$\frac{-0.3 x}{-0.3}=\frac{1.5}{-0.3}$
$x=-5$

$$
\text { Check: } \begin{aligned}
0.2 \cdot-5+0.2 & =0.5 \cdot-5+1.7 \\
-1+0.2 & =-2.5+1.7 \\
-0.8 & =-0.8
\end{aligned}
$$

This page was intentionally left blank.

Exercise 4.6

NAME:

Solve the following.

1. $0.2 x=0.82$
2. $-1.2 x=1.44$
3. $-1.6 x=-0.48$
4. $x-1.52=4.63$
5. $x+7.06=2.1$
6. $x+4.1=-3.275$
7. $0.3 x-2=0.1$
8. $0.4 x-7=2.5$
9. $1.3 x+0.20=-1.49$
10. $0.3 x-0.5=0.2 x+0.3$
11. $0.7 x-1.2=0.3 x+3.24$
12. $2.1 x+7.45=1.1 x-3.2$
13. $0.2(0.1 x+2)-0.6=5.2$
14. $4.1(x-0.2)+3.3 x=0.4(x-1)+2.1$

Evaluate the following

1. $x+5$, for $x=-6$
2. $3 b+4$, for $b=-7$

Simplify
3. $4 x-3 x+x$
4. $2 x+5 y-3 x$
5. $15 k-5 j+2 k+j$
6. $5 x^{2}-3 x+2$
7. $2 x^{2} y-5 x y+5 x y^{2}+3 x y$

Distribute and simplify
8. $3(x+2)$
9. $5(x-7)$
10. $-2(x-4)$
11. $-2(3 x+6)$
12. $2+3(x-4)$
13. $5 x-2(x-4)$

Solve
14. $x+7=-13$
15. $x-4=-22$
16. $-4=x+22$

Solve
17. $4 x=24$
18. $-11 x=55$
19. $-7 x=-49$
20. $3 x+7 x=15-(-5)$
21. $2 x+5-x=14$
22. A number increased by five is twenty. Find the number.
23.The product of a number and 7 is 28 . Find the number.

Solve
24. $2 x-7=9$
25. $4-3 x=31$

Solve
26. $3(x-1)+2=5$
27. $4-2(x+1)=7-(-3)$
28. $4 x-5=2 x+17$
29. $3 x-5=2(x+7)-3$
30. $\frac{2}{7} x=\frac{5}{7}$
31. $x-\frac{7}{3}=\frac{2}{3}$
32. $\frac{4}{5} x-\frac{1}{3}=\frac{1}{6}$
33. $\frac{1}{2} x-\frac{2}{3}=\frac{5}{2} x-\frac{1}{3}$
34. $0.4 x=0.64$
35. $x-2.5=3.65$
36. $0.25 x+4.1=-2.55$

Unit 5 - Proportions and Percents Objective Overview

The following is a small subset of possible problems that could represent each objective. Refer to notes, homework and reviews for a more complete picture.

Section 1 - Ratios

By the end of section 1 you should be able to:

- Write a ratio in lowest terms

26 in. to 39 in.
$1 \frac{3}{4} \mathrm{~m}$ to $\frac{1}{2} \mathrm{~m}$
1.4 ft to 7 ft

- Write a ratio in lowest terms that require unit conversions.

2 weeks to 6 days

Section 2 - Rates

By the end of section 2 you should be able to:

- Find the rate.

There are 90 ornaments to decorate and 20 children doing the decorating. Find the rate of ornaments to children.

- Find the unit rate

If you drove 300 miles in 5 hours, what speed were you traveling (Miles per Hour)?

- Find the best deal.

You are looking to buy honey at a local market - which of the following options are the best deal?
A 12 oz bottle for 1.20
A 24 oz bottle for 2.64
A 32 oz bottle for 3.24

Section 3 - Proportions

By the end of section 3 you should be able to:

- Solve proportion

$$
\frac{x}{3}=\frac{9}{27}
$$

$$
\frac{1 \frac{1}{2}}{x}=\frac{6}{35}
$$

$$
\frac{3.2}{2}=\frac{x}{4.1}
$$

- Set up and then solve proportions.

You have a recipe that serves 4 but want to make it for a party of 10. If the recipe calls for 1 cup of flour, how much should you use to make it for 10 ?

Section 4 - Percents

By the end of section 4 you should be able to:

- Convert a percent in to a decimal.

Write 34% as a decimal.

- Convert a decimal in to a percent. Write 0.232 as a percent.
- Convert a percent in to a fraction. Write 24% as a fraction.
- Convert a fraction in to a percent. Write $\frac{1}{8}$ as a percent.

Section 5 - Solving Percents using Proportions

By the end of section 5 you should be able to:

- Set up a proportion and solve a proportion

What is 30% of 200 ?

What percent of 30 is 300 ?

10 is what 30% of what number?

- Set up and solve a word problem.

If a stereo normally cost $\$ 250$, and today it is on sale for 80% the normal cost. How much would you pay if you bought it today?

Section 6 - Solving Percents with Equations

By the end of section 6 you should be able to:

- Set up an equation and solve.

What is 30% of 200 ?

What percent of 30 is 300 ?

10 is what 30% of what number?

- Set up and solve a word problem.

If a stereo normally cost $\$ 250$, and today it is on sale for 80% the normal cost. How much would you pay if you bought it today?

Section 7 - Solving Percents Problems

By the end of section 7 you should be able to:

- Finding Percent increase/decrease.

If a book was $\$ 150$ last year and $\$ 200$ this year, what was the percent increase?

If there were 15 sections of Math 32 this semester but only 12 next year what was the percent decrease?

- Calculate a tip.

How much tip should you leave on a $\$ 34.26$ bill if you wanted to leave a 10% tip? What about 15\%?
\qquad

Activity 5.1-Ratios

A RATIO is a comparison of two whole numbers with the same units. We do not use Decimals or mixed numbers to represent a ratio. A ratio can look like a reduced fraction when you are done simplifying it.
Examples: $\quad \frac{2}{1}, \frac{7}{4}, \frac{4}{5}$ or $2: 1, \quad 7: 4, \quad 4: 5$

1. Write a ratio that represents 4 feet to 6 feet
2. Write a ratio to represents 2 cm to 4 cm .
3. Write a ratio the represents 0.5 in to 0.25 in.
4. How would you write the ratio of 5 feet to 10 inches? Does this follow the description above?

This page was intentionally left blank.

Unit 5 - Proportions and Percents

Section 1 -Ratios

A ratio compares two whole numbers with the same units.

Writing Ratios

If you wanted to write $\$ 5$ to $\$ 2$ as a ratio we would write
$\frac{\$ 5}{\$ 2}$ Since the units are the same - they cancel and the ratio is:

$$
\frac{5}{2}
$$

Notice we leave this as a "improper" fraction so it is a whole number to a whole number.

If we asked for the ratio $\$ 2$ to $\$ 5$, we would write the 2 on top and the 5 on bottom, in other words:

$$
\frac{2}{5}
$$

Whichever one is written first gets written on top.

Example 1)

Write $\$ 15$ to $\$ 21$ as a ratio
\$15 to \$21
$=\frac{15}{21}$
$=\frac{3 \cdot 5}{3 \cdot 7} \quad$ We reduce by canceling the common factor of 3.
$=\frac{5}{7}$

Lowest terms

Every ratio needs two numbers one written in the numerator and one written in the denominator.

Example 2)

20 feet to 4 feet

20 feet to 4 feet
$=\frac{20}{4}$
$=\frac{5}{1} \quad$ Note: we need to keep it over 1 to have a ratio.

We might need to manipulate the ratio following the rules of fractions to get the ratio to in proper form.

Example 3)

$2 \frac{1}{2} m$ to $3 m$
$2 \frac{1}{2}$ to 3
$=\frac{2 \frac{1}{2}}{3}$
We cannot leave it here. We need a whole number in the numerator not a fraction.
$=\frac{\frac{5}{2}}{\frac{3}{1}}$
We treat it as a fraction to simplify - make both improper fractions.
$=\frac{5}{2} \div \frac{3}{1}$
$=\frac{5}{2} \cdot \frac{1}{3}$
$=\frac{5}{6}$
The fraction bar can be read as division.

If the ratio begins with decimals, we must eliminate the decimals. One way is to multiply both numbers by the same power of 10 so all the decimals are removed.

Example 4)

1.25 cm to 3.5 cm

1.25 cm to 3.5 cm
$=\frac{1.25}{3.5}$
$=\frac{1.25 \cdot 100}{3.5 \cdot 100} \quad$ We choose to multiply by 100 to get rid of all the decimals.
$=\frac{125}{350} \quad$ It is still necessary to reduce the fraction.
$=\frac{5 \cdot 5 \cdot 5}{2 \cdot 5 \cdot 5 \cdot 7} \quad$ We can use the prime factorization to reduce .
$=\frac{5}{2 \cdot 7}$
$=\frac{5}{14}$

Unit Analysis

We find often in real life situations that we need to compare items that were measured in different ways. To be a ratio and get a clearer picture at the difference between numbers we need to get them all in the same units.

Example 5)

3 days to 2 weeks

We need to turn days to weeks or weeks to days. It is often easier to replace the larger unit.
3 days to 2 weeks
Note: There are 7 days in 1 week.
$=3$ days to 2 (7 days)
$=3$ days to 14 days
$=\frac{3}{14} \quad$ Since the units are now the same they cancel out.

Example 6)

5 feet to 2 yards

5 feet to 2 yards
$=5$ feet to 2 (3 feet)
$=5$ feet to 6 feet
$=\frac{5}{6}$

Example 7)

6 hours to 1 day

6 hours to 1 day
$=6$ hours to 1 (24 hours)
$=6$ hours to 24 hours
$=\frac{6}{24}$
$=\frac{1}{4} \quad$ We always reduce to lowest terms.

Note: There are 24 hours in 1 day.

Since the units are the same they cancel out.

Example 8)

2 gallons to 2 quarts
2 gallons to 2 quarts
$=2$ (4 quarts) to 2 quarts
= 8 quarts to 2 quarts
$=\frac{8}{2}$
$=\frac{4}{1}$
4

Note: There are 4 quarts in a gallon.

Notice when we reduce to lowest terms we keep the 1 in the denominator so it is a ratio.

Helpful Conversions

Lengths	
1 foot	12 inches
1 yard	3 feet
1 mile	5,280 feet
1 meter	100 centimeters
1 decimeter	10 centimeters
1 kilometer	1000 meters
Fluids	2 cups
1 pint	2 pints
1 quart	4 quarts
1 gallon	1,000 liters
1 kiloliter	
	60 seconds
Time	60 minutes
1 minute	24 hours
1 hour	7 days
1 day	
1 week	
	16 ounces
Weight	2,000 pounds
1 pound	
1 ton	1,000 grams
	100 grams
Mass	10 grams
1 kilogram	144
1 hectogram	
1 decagram	
Counts	
1 dozen	
1 gross	

This page was intentionally left blank.

Exercise 5.1
NAME:

Write each ratio as a fraction in lowest terms.

1. $\$ 3$ to $\$ 11$
2. 5 days to 7 days
3. 2 hours to 9 hours
4. 3 days to 12 days
5. 25 minutes to 5 minutes
6. $\$ 14$ to $\$ 21$
7. $\$ 4.50$ to $\$ 2.50$
8. 2.5 days to 4.25 days
9. 1.5 feet to 2 feet
10. $1 \frac{1}{2}$. m to $2 m$
11. $1 \frac{1}{4}$ hours to $2 \frac{1}{2}$ hours
12. 3 feet to $1 \frac{1}{2}$ feet

Write each ratio as a fraction in lowest terms, begin by converting units.
13. 3 feet to 30 inches
14. 20 ounces to 1 pound
15. 50 minutes to 2 hours
16. 2 quarts to 6 cups
17. 8 days to 2 weeks
18. 1 mile to 2000 feet
19. Consider the rectangle with width 10 cm and length 15 cm , write a ratio of the length to the width.

20. Using the rectangle in number 19. Write the ratio of the width to the length.
21. If you spend 4 hours a week studying for English and 5.5 hours studying for math what is the ratio of time spent studying in math to studying for English?
22. An employee plays $\$ 125$ towards health insurance, while the employer pays $\$ 550$. What is the ratio of the employers contribution to the employees contribution?
\qquad

Activity 5.2-Rates

Part A

If you travel 200 miles in 3 hours at what rate did you travel?

If it takes you 4 hours to travel 250 miles at what was your miles per hour?

Part B

You are at the store and see three different packages of flour, what is the better deal?

30 oz for $\$ 6.60$

20 oz for $\$ 4.20$

16 oz for \$3.68

This page was intentionally left blank.

Unit 5 - Proportions and Percents

Section 2 - Rates

A Rate is a comparison with different units, such as miles per gallon, money per hour, and miles per hour.

Rates

You will notice that with rates the units do not cancel.

Example 1)

We drove 430 miles on 13 gallons of gas. Write a fraction that represents that rate.
$\frac{430 \text { miles }}{13 \text { gallons }} \quad$ We cannot reduce or simplify this answer.

Example 2)

We made $\$ 120$ for finishing a project that took 18 hours to complete. Write a fraction that represents that rate.
$\frac{\$ 120}{18 \text { hours }}$
$\frac{\$ 120 \div 6}{18 \text { hours } \div 6} \quad$ We always reduce to get the rate in lowest terms.
$\frac{\$ 20}{3 \text { hours }} \quad$ Note the units are part of the answer.

Example 3)

We drove 400 miles in 6 hours. Write the fraction that represents that rate.

$$
\frac{400 \text { miles } \div 2}{6 \text { hours } \div 2}
$$

$\frac{200 \text { miles }}{3 \text { hours }}$

Unit Rate

If you find a rate and turn the denominator into a decimal, you get that "unit rate".

When you purchase a car one thing you may take in to consideration is how many miles per gallon it gets. You can calculate the miles per gallon your car gets by taking the miles you traveled and dividing it by the amount of gas you use.

Example 4)

Calculate you miles per gallon if you traveled 320 miles on 13 gallons of gas. (round your answer to the nearest hundredths place.)

If you traveled 320 miles on 13 gallons of gas your rate is

$$
\frac{320 \text { miles }}{13 \text { gallons }}
$$

Your "Unit rate" or "price per gallon" can be found by finding $320 \div 13$, we will round to the nearest hundredth.

13 \begin{tabular}{l}
24.615

320.000
26

$\frac{60}{52}$

$\frac{80}{78}$

$\frac{13}{20}$

$\frac{70}{7}$

$\frac{65}{5}$
\end{tabular}

So the car got 24.62 mpg (miles per gallon).

This is per single gallon, in other words we made the denominator 1 (a single "unit").

Another real life application is finding the cheapest item at a grocery store. We can calculate the cost per unit of items sold in bulk to determine what is the best deal.

Example 5)

You are trying to decide on which pancake mix to buy for your family. There are 3 options on the shelf:

10 oz package cost \$5.36
24 oz package cost \$12.20

30 oz package cost $\$ \mathbf{1 5 . 6 0}$

What is the best deal?

To find the truly best deal we need to calculate the cost per ounce. We take each cost and divide it by the number of ounces.

$$
\begin{gathered}
\$ 5.36 \div 10 \mathrm{oz}=\$ 0.536 / \mathrm{oz} \\
\$ 12.20 \div 24 \mathrm{oz}=\$ 0.508 \overline{3} / \mathrm{oz} \\
\$ 15.60 \div 30 \mathrm{oz}=\$ 0.52 / \mathrm{oz}
\end{gathered}
$$

The best deal is the lowest cost per ounce, so the 24 oz package for $\$ 12.20$ is the best deal.
Note: $\$ 0.536 /$ oz is read " 0.536 dollars per ounce."

This page was intentionally left blank.

Exercise 5.2

NAME:
Write the following rates as a fraction in lowest terms.

1. 200 miles in 7 hours
2. 323 miles on 11 gallons
3. 14 cars for 15 people
4. 214 pieces for 10 people
5. $\$ 300$ for 25 hours
6. 12 teachers for 280 students

Find the unit rate for each of the following.
7. $\$ 1600$ for 4 weeks
8. 180 miles in 3hours
9. $\$ 12$ for 4 dozen
10. $\$ 250$ for 4 people
11. $\$ 12.50$ for 2 hours
12. 35 sacks for 2 acres
13. You are buying black beans for a burrito recipe. Which of the following would be the best value? 16 oz for $\$ 1.28$

32 oz for $\$ 2.40$
14. You are at a grocery store and need to buy flour for holiday baking. You know you will be able to any size before it goes bad so you are looking for the best buy. There are 4 options with some of the sizes on sale : a 10 oz bag for $\$ 2.50$, a 16 oz bag for $\$ 3.25$, a 30 oz bag for $\$ 6.10$, or a 48 oz bag for $\$ 10.08$. Which is the best value?
15. You are going to go skiing the winter and are trying to decide whether or not to buy single day passes, a value pack or a season pass. You know that you will be able to go 3 times for sure and no more. What is the best deal?

A single day pass $\$ 30$
A 3 visit pass for \$ 81
An season pass for $\$ 120$
16. You are renting a house in Cancun for a week at $\$ 3600$, what is the cost per day?
17. You are going on a long trip and want to calculate your Miles per gallon. When you start your trip your odometer read 87,256 miles. At the end of your trip your odometer reads 87,820 miles. You started with a full tank and to return to a full tank you put in 25.64 gallons of gas total. What is your miles per gallon?
18. Someone offers you $\$ 1200$ to work for 2-40 hour weeks. How much would you make per hour?
\qquad

Activity 5.3 - Proportions

1. If it takes 2 cups of flour to make 3 dozen cookies, how much flour do you need to make 9 dozen?
2. If it takes 3 tablespoons of butter to make 3 dozen cookies, how much butter do you need to make 5 dozen cookies?
3. If it takes 60 minutes to drive 45 miles on a curvy road, how long will it take to drive 60 miles?
4. In problems 1-3 what made it possible to find the answer?
5. Describe what a proportion is in your own words.

This page was intentionally left blank.

Unit 5 - Proportions and Percents

Section 3 -Proportions

When we say things are proportional we are saying they have the same rate or ratio.
Checking for Proportionality Method 1) Write as fractions in lowest terms.

So we can check to see if things are proportion but turning them into proper ratios - fractions in lowest terms

Consider the proportion
$\frac{3.5}{7}=\frac{1}{2}$
We need to make $\frac{3.5}{7}$ a proper ratio, starting by getting rid of the decimal point by multiplying by 10.
$\frac{3.5}{7}=\frac{3.5 \cdot 10}{7 \cdot 10}=\frac{35}{70}=\frac{1}{2}$
Since both fraction written in lowest terms are the same , $\frac{3.5}{7}=\frac{1}{2}$ is a true proportion.
Checking for Proportionality Method 2) Cross-Multiplying

Another option is to cross-multiply.
$\frac{3.5}{7}=\frac{1}{2}$
Becomes
$3.5 \cdot 2=7 \cdot 1$
$7=7$

Since we ended with the same number on both sides the proportion is true.
Solving proportions
We can use the idea of cross multiplying to solve proportion equations for a variable.

Example 1)

$\frac{x}{2}=\frac{4}{7}$

Cross Multiply.

$x \cdot 7=2 \cdot 4$
$7 x=8$
$\frac{7 x}{7}=\frac{8}{7} \quad$ Then Divide to get rid of the multiplication.
$x=\frac{8}{7}$

Using cross multiply allows us to solve proportions where x is on the bottom as well.

Example 2)

$\frac{2}{3}=\frac{8}{x}$
$\frac{2}{3}=\frac{8}{x}$
$2 \cdot x=3 \cdot 8$
Cross multiply.
$2 x=24$
$\frac{2 x}{2}=\frac{24}{2}$
Then divide.
$x=12$

It is important to remember that even if the problem starts off looking more complicated, If it is a proportion you can still Cross multiply.

Example 3)

$\frac{1 \frac{1}{2}}{3}=\frac{x}{2 \frac{1}{3}}$
$\frac{1 \frac{1}{2}}{3}=\frac{x}{2 \frac{1}{3}}$
We begin by turning the mixed numbers into fractions.
$\frac{\frac{3}{2}}{3}=\frac{x}{\frac{7}{3}}$
$\frac{3}{2} \cdot \frac{7}{3}=3 \cdot x$
We cross-multiply.
$\frac{7}{2}=3 x$
$\frac{1}{3} \cdot \frac{7}{2}=\frac{1}{3} \cdot \frac{3}{1} x$
Then "divide" by multiplying by the reciprocal.
$\frac{7}{6}=x$

Example 4)

$\frac{7.2}{x}=\frac{2}{1 \frac{1}{2}}$
$\frac{7.2}{x}=\frac{2}{1 \frac{1}{2}}$
We begin by turning the fraction into a decimal.
$\frac{7.2}{x}=\frac{2}{1.5}$
$7.2 \cdot 1.5=x \cdot 2$
$10.8=2 x$
$\frac{10.8}{2}=\frac{2 x}{2}$
$5.4=x$

Then Cross multiply.

And divide.

Applications

When things happen at a constant rate or in the same ratio, it may possible to up a proportion to solve problems involving them.

Example 5)

You travelled 312 miles in 5 hours. Assuming you are able to maintain this rate, how long would it take to travel 450 miles more? (Round to the nearest tenth of an hour, if necessary)

You were traveling at a rate of $\frac{312 \text { miles }}{5 \text { hours }}$. Your rate for the next 450 miles will be $\frac{450 \text { miles }}{x \text { hours }}$, Where x is the number of hours it will take to drive the 450 miles. We are assuming the rate was maintained, so these two rates are equal to each other.
$\frac{312 \text { miles }}{5 \text { hours }}=\frac{450 \text { miles }}{x \text { hours }}$
$\frac{312}{5}=\frac{450}{x}$

Notice the units match - miles is

 on top in both rates and hours is$312 \cdot x=5 \cdot 450$
on bottom. We can cancel the units before proceeding.
$312 x=2250$
$\frac{312 x}{312}=\frac{2250}{312}$
$x=7.21 \ldots$

It would take 7.2 hours to travel 450 miles.

Example 6)

You have a recipe that serves $\mathbf{2 0}$ people that you want to make for your family of 4. The Original recipe calls for $1 \frac{1}{2}$ cups of flour. How much flour should you use to scale the recipe down to serve 4 ?

Since the amount of flour needed is proportional to the number of servings you are making, the rate of servings to cups will be the same.

$$
\frac{20 \text { servings }}{1 \frac{1}{2} \text { cups }}=\frac{4 \text { servings }}{x \text { cups }}
$$

$$
\frac{20}{1 \frac{1}{2}}=\frac{4}{x}
$$

Example 6) Continued...
$\frac{20}{\frac{3}{2}}=\frac{4}{x}$
$20 x=\frac{3}{2} \cdot 4$
$20 x=6$
$\frac{20 x}{20}=\frac{6}{20}$
$x=\frac{3}{10}$
You need $\frac{3}{10}$ cup of flour - which is just less than a third of a cup.

Using shadows to find height

The height of objects and their shadows are proportional. So we can use the shadow of an object with a known height to find the height of another object.

Example7)

Joe wants to find out how tall the light post is outside his house. He knows he is $\mathbf{6}$ feet tall and measures his shadow to be $\mathbf{4}$ feet long. The shadow of the light post is $\mathbf{1 1}$ feet long. Set up a proportion and then find the height of the lamp post.

$\frac{6}{4}=\frac{x}{11}$	Notice the length of the shadows are both in the denominator.
$6 \cdot 11=4 \cdot x$	Cross multiplying.
$66=4 x$	
$\frac{66}{4}=\frac{4 x}{4}$	Then divide.
$x=\frac{66}{4}=16.5$	

The lamp post is 16.5 feet tall.

This page was intentionally left blank.

Exercise 5.3

Solve the following proportions

1. $\frac{2}{3}=\frac{x}{9}$
2. $\frac{x}{7}=\frac{6}{14}$
3. $\frac{3}{2}=\frac{x}{9}$
4. $\frac{4}{x}=\frac{7}{3}$
5. $\frac{2}{3}=\frac{13}{x}$
6. $\frac{2}{5}=\frac{5}{x}$
7. $\frac{\frac{1}{2}}{1 \frac{2}{3}}=\frac{x}{\frac{2}{5}}$
8. $\frac{2}{1 \frac{3}{5}}=\frac{\frac{2}{3}}{x}$
9. $\frac{x}{\frac{1}{5}}=\frac{2 \frac{1}{4}}{3 \frac{2}{3}}$
10. $\frac{0.25}{1.4}=\frac{3}{x}$
11. $\frac{1.5}{2.4}=\frac{x}{3}$
12. $\frac{x}{1.2}=\frac{5}{3.3}$

For the following set up a proportion and solve.
13. A model is built that has a scale of 1 inch to every 2.5 feet. If the length of the actual structure is 15 feet, what is the length of the model?
14. You are walking with a group of friends down a creek, you know that the pace you are walking is roughly 3 miles per hour. After you have been walking $1 \frac{1}{2}$ hours, how far have you walked?
15. You are baking for the next holiday and are expecting 18 people. You have a new recipe that you want to try out but it only serves 6 . If the recipe calls for $1 \frac{1}{2}$ cups of milk, how much will you add to make enough for all 18 people?
16. If 13 gallons of gas can get you 250 miles, how much gas will you need to travel 1200 miles?
17. You are cooking Thanks giving at your house this year and are expecting 12 people. You do some research on line and find a website that suggests 3 pounds of turkey for every 4 people. How big of a turkey should you buy?
18. A study shows 2 out of every 5 people prefer a certain type of soda. If there is a group of 250 people, how many of them would you expect to prefer that soda?
19. Sally is trying to determine how tall the tree in your front yard is. Since she knows that a shadow is proportional to an objects height, she measures her shadow and find it is 3.5 feet tall. Sally is 5.5 feet tall. If the trees shadow is 7 feet tall, how tall is the tree?
20. In math classes 1 out of every 6 use the tutoring services, how many out of a class of 36 use tutoring?
21. You buy a bulk bag of toys knowing that 1 out of every 5 is defective, if there was 145 how many toys can you assume are good?
22. It cost $\$ 5$ for 2 hotdog meals, How much will it cost for 9 ?
23. A cup of rice has 10 grams of fiber, How much fiber is in $2 \frac{1}{2}$ cups of rice?
24. One out of every four car owners have not followed up on a recent recall, if the company has sold 2300 cars that are affected by the recall, how many people have not followed up on the recall?
\qquad

Activity 5.4-Percents

Part A - Individually read the following questions and write your best idea of an answer down.

1. What do we call 100 years?
2. How many pennies are in a dollar? How much money is 1 penny?
3. What does the word "per" often signify in math?
4. If I said " 21 per cent", what would that look like?

Part B - Do not begin until instructed to do so.

1. Can you write 56% as a fraction? Use the definition of "percent" we discussed from above.
2. Recall dividing by a power of 10 moves the decimal, compute the following
a. $52 \div 10$
b. $575 \div 100$
c. $34.25 \div 1000$
3. If I say to write 45% as a decimal what am I asking you to divide 45 by? How many times and in what direction do we move the decimal?

This page was intentionally left blank.

Unit 5 - Proportions and Percents

Section 4 -Percents

What is a percent?

We often translate the word "per" to division. "Cent" as in Century (100 years) or cent (100 cents makes a dollar) means 100 .

Or

$$
\text { So } 56 \%=56 \div 100=\frac{56}{100}
$$

Percents to Decimals

Since dividing by 100 moves the decimal to the left two places, we can turn a percent into a decimal by moving the decimal two places to the left.

Example 1)

Write 125.75\% as a decimal.
125.75\%

$=125.75 \div 100$	We replace the " $\%$ " with $\div 100$.
$=1.25 .75$	Dividing by 100 , moves the decimal 2 places to the left.
$=1.2575$	
$125.75 \%=1.2575$	

Example 2)

Write 26% as a decimal.
26\%
$=26 . \%$
$=26 . \div 100$
$=0.26$ Dividing by 100, moves the decimal 2 places to the left.
$=0.26$

Example 3)

Write 3\% as a decimal.
3\%
$=3 . \% \quad$ We are still dividing by 100.
$=0.03$.
We move the decimal 2 places to the left.
$=0.03$

Example 4)

Write $\mathbf{0 . 2 5 \%}$ as a decimal.
Even though this already looks like a decimal, we still need to move the decimal two places to the left.
So
0.25\%
$=0.00 .25$
We move the decimal 2 places to the left.
$=0.0025$

Decimals to Percents

To turn a decimal into a percent we have to do exactly the opposite - we need to multiply the decimal by 100 - so we can add the $\%(\div 100)$ without changing the number.

Example 5)

Write 1.25 as a percent.
1.25
$=1.25 \cdot 100 \%$
$=(1.25 \cdot 100) \% \quad$ Multiplying by 100, moves the decimal 2 places to the right.
$=1.25 . \%$
M
$=125 \%$

Example 6)

Write 0.6 as a percent.

0.6
$=0.6 \cdot 100 \% \quad$ Multiplying by 100, moves the decimal 2 places to the right.
$=0.60 . \%$
\square
$=60 \%$

Example 7)

Write 4 as a percent.

4
$=4 . \cdot 100 \%$
$=400 \%$
Notice 400% is the same as 4 times the quantity.

Percents to Fractions

If we want to turn a percent into a fraction we can write the "percent" as a denominator and reduce the fraction.

Example 8)

Write $\mathbf{3 2 \%}$ as a fraction.
32%
$=\frac{32}{100}$
32 "per" cent = 32 / 100
$=\frac{8}{25}$
Always reduce to lowest terms

Example 9)

Write 125% as a fraction.

125\%
$=\frac{125}{100}$
$=\frac{5}{4} \quad$ Notice that since $125 \%>100 \%$, our answer is greater than 1.

Even when the percent includes a decimal or a fraction, we still write it over 100 and then clean it up by getting rid of the decimals and double-decker fractions.

Example 10)

Write $\mathbf{2 2 . 5 \%}$ as a fraction.

22.5\%
$=\frac{22.5}{100} \quad$ We still write the number over 100.
$=\frac{225}{1000} \quad$ Multiply top and bottom by 10 to eliminate the decimal.
$=\frac{9}{40} \quad$ Reduce the fraction.

Example 11)

Write $20 \frac{1}{5} \%$ as a fraction.
$20 \frac{1}{5} \%$
$=\frac{20 \frac{1}{5}}{100}$
Remember fractions are division!
$=\frac{\frac{101}{5}}{\frac{100}{1}}$
Make them "improper" fractions.
$=\frac{101}{5} \div \frac{100}{1}$
$=\frac{101}{5} \cdot \frac{1}{100}$
Multiply by the reciprocal.
$=\frac{101}{500}$

Fractions to Percent

Turning any number into a Percent can be done by multiplying by 100%. Even if the number is a fraction, we still proceed the same way.

Example 12)

Write $\frac{3}{8}$ as a percent.
$\frac{3}{8}$
$=\frac{3}{8} \cdot 100 \% \quad$ To turn it into a \% we multiply by 100%.
$=\frac{3}{8} \cdot \frac{100}{1} \%$
$=\frac{3}{2} \cdot \frac{25}{1} \%$
$=\frac{75}{2} \% \quad$ We will convert to a mixed number.
$=37 \frac{1}{2} \%$

This page was intentionally left blank.

Exercise 5.4
NAME:
Write the following Percents as Decimals.

1. 32%
2. 34%
3. 45%
4. 132.4%
5. 342.56%
6. 673.12\%
7. 0.12%
8. 0.2\%
9. 0.22%
10. 3\%
11. 9\%
12. 1\%

Write the following Decimals as a Percent.
13. 0.21
14. 0.33
15. 0.21
14. 2.25
16. 3.12
17. 5.12
18. 3
19. 4
20. 8

Write the following Percents as a Fraction
21. 25%
22. 40%
23. 75%

24. 21.2%

25. 54.2\%
26. 30.5\%
27. 120%
28. 452\%
29. 350%
30. $22 \frac{1}{2} \%$
31. $40 \frac{1}{3} \%$
32. $31 \frac{1}{5} \%$

Write the following Fractions as Percents
33. $\frac{2}{3}$
34. $\frac{1}{8}$
35. $\frac{3}{5}$

Unit 5	NAME:_
Mid-Unit Review 5.1-5.4	

1. Write the ratio of dogs to cats in lowest terms, if the number of cats is 26 and the number of dogs is 10.
2. Using the appropriate conversions, write the ratio for 3 inches to 2 feet.
3. You are thinking about renting a house in Tahoe for $\$ 531$ for 3 days. What is the daily rate?
4. You are buying flour and are looking for the best deal. You can buy a 16 oz bag for $\$ 1.28$, or a 32 oz bag for $\$ 2.40$. Which is the better deal? Be sure to use math to support your answer - no credit will be given without work being shown.
5. Solve for x
$\frac{12}{7}=\frac{48}{x}$
6. You are walking down a creek for $2 \frac{1}{2}$ hours. Knowing that you walk about 3 miles per hour, how far have you walked? Set up a proportion and solve.
7. Write 10.3% as a Decimal.
8. Write 4.2% as a Fraction.
9. Write 0.3 as a Percent.
10. Write $\frac{3}{8}$ as a Percent.
\qquad

Activity 5.5 - Solving Percents with Proportions

1. Write 23% as a fraction.
2. If 46 out of 200 was written as a ratio, what would it look like
3. What do you notice about your answers to 1 and 2 ?
4. Can you write a proportion that represents 50% of 70 is 35 ?
5. Can you set up a proportion that would help find the answer to the following problems? 25% of 40 is what number?
40% of what number is 32 ?

This page was intentionally left blank.

Unit 5 - Proportions and Percents

Section 5 -Solving Percents using Proportions

Percent Proportion

A percent is the rate out of 100 , we can use a proportion to find the missing value following the rules of proportions.
$\frac{\text { Percent }}{100}=\frac{\text { part }}{\text { whole or original or base }}$
Finding the percent
Once we identify the part and the whole, we can set up the percent portion to find the percent.

Example1)

What percent of 100 is $\mathbf{3 0}$?

The " whole" is what we are finding the percent of. Usually we can find the whole after the key word "of". The 30 is the part.
$\frac{x}{100}=\frac{30}{100} \quad$ Since it is already out of $100-$ it is 30%.
$x=30$

The answer is 30%.

Example 2)

What Percent of $\mathbf{2 5 0}$ cars is $\mathbf{9 0}$ cars?

Here we are looking for a percent "of" the whole. So the whole is 250.
$\frac{x}{100}=\frac{90}{250}$
$250 x=9000$
$x=36$

The answer is 36%.

Sometimes the "part" is larger the "whole", using the words in the problem can help you decide which number is the whole.

Example 3)

A store sells an item for $\mathbf{\$} \mathbf{6 0 0}$, What percent is that of $\mathbf{\$ 3 0 0}$?

The whole is the $\$ 300$ even thought the $\$ 600$ is the larger number. Notice we are still using the rule we want to know the percent "of" the whole.
$\frac{x}{100}=\frac{600}{300}$
$\frac{x}{100}=\frac{2}{1}$
Her we reduced to keep the numbers small.
$x=200$
Cross multiplying give the answer.

So the answer is 200%. It makes sense to get an answer larger than 100% because the part was more than the whole.

Finding the part

If we are given the percent and asked to find the part we will still set up the problem the same way. We will just use our variable in a different part of the percent equation.

Example 4)

What is 20\% of 200 people?

Using the key word "of" helps us identify 200 as the whole.
$\frac{20}{100}=\frac{x}{200}$
$4000=100 x$
$X=40$
Cross Multiply.

Then Divide.

The answer is 40 people - that is the "part" we were looking for.

Example 5)

Tax in a certain state to 7.5%. You are trying to calculate tax on a Television that cost $\$ 1325$. What is 7.5\% of \$1325?
$\frac{7.5}{100}=\frac{x}{1325}$
$9937.5=100 x$
Cross Multiply.
$99.375=x$
Then Divide.

Since we are talking a money amount that we need to pay - we should round our answers to the nearest cent.
$\$ 99.38$ is the Tax.

Example 6)

If you Pre order a book you can get a discounted price of \$24. If you buy it after its release date the price is $\mathbf{1 2 5 \%}$ of that price. What is the price after the release date?

$\frac{125}{100}=\frac{x}{24}$	24 is the whole- it was 125% "of" \$24.
$3000=100 x$	Cross Multiply.
$30=x$	Then Divide.

The answer is $\$ 30$.

Finding the whole
When it is the whole that we are looking for we will use the variable where the "whole" is in the equation.

Example 7)

$\mathbf{5 0 \%}$ of what number is $\mathbf{7 0}$?
$\frac{50}{100}=\frac{70}{x}$
$7000=50 x \quad$ Cross multiply , then divde.
$140=x \quad$ The number is 140.

Example 8)

You are out with 5 friends and split a bill 5 ways. You are asked to pay $\mathbf{\$ 3 2}$. That is $\mathbf{2 0 \%}$ of what amount?
$\frac{20}{100}=\frac{32}{x} \quad \$ 32$ is the part you pay of the whole.
$3200=20 x$
$160=x$

The bill was $\$ 160$.

Example 9)

You need to buy books for the next semester. You get reimbursed for the books but not the tax. If tax is $\mathbf{8 . 5 \%}$ - That means your bill is $\mathbf{1 0 8 . 5 \%}$ of the price of just your books. If the total including tax was 216.32 , what was the total?
$\frac{108.5}{100}=\frac{216.32}{x} \quad$ The total including tax is the part, without tax matches up with the 100%.
$21632=108.5 x$
$199.373 \ldots=x$

The books cost \$199.37.

You will have to decide which information is given to determine how to set up your proportion equation. Use the words in the problem to decide which values are the whole, the part and the percent. The key word "of" often comes before the whole. The "is" often separates the part from the whole and the percent.
\square
Solve each of the following using the Percent Proportion.

1. What is 20% of 15 ?
2. What is 36% of 200 ?
3. What is 128% of 30 ?
4. 300 is what percent of 15 ?
5. 2 is 15% of what number?
6. 4 is what percent of 20 ?
7. 10 is 20% of what number?
8. 20 is 15% of what number?
9. 320 is 120% of what number?
10. If you currently eat 1800 calories in a day and your doctor tells you to reduce the calories you take in by 20% - how many calories is he asking you to cut back?
11. Sacramento normally get 17.93 inches of rain a year. If it rains 15 inches this year, what percent of normal is that?
12. I saw 23 boats on the river last weekend. They said that was only 20% of normal. How many boats are normally on the river?
13. There were 15 tornados in the county last year; there is usually an average of 10 . What percent of the average was there?
14. A local fundraiser is held every year. This year only 120 people showed up. That is only 80% the regular attendance in the past. What number of people have shown up in the past?
15. Your apartment manager has told you that your rent is going up 5\%. If you currently pay \$560, how much more money will you need to pay with the increase?

This page was intentionally left blank.
\qquad

Activity 5.6-Solving Percents with Equations.

PART A

Consider the following:

13% of 50 is what number?

How can you write 13% as a decimal?

What does the word "of" often mean in mathematics?

What does the word "is" often mean in mathematics?

What do we use to represent a "number" we do not know?

_— _ _ - _ _ _

Part B - Use the above strategy to translate into an equation then solve.

1. What Percent of 200 is 80 ?
2. 20% of what number is 100 ?

This page was intentionally left blank.

Unit 5 - Proportions and Percents
Section 6 -Solving Percents using equations

Another way to solve Percent problems is to translate them into equations.
Consider the following:

The word "is" is the equivalent of "=" and "of" often refers to multiply. We build our equation by translating into math symbols in the same order.

Example 1)

What is $\mathbf{2 5 \%}$ of $\mathbf{3 2 0}$?

80 is 25% of 320 .

Example 2)

Forty is 16% of what number?

$\frac{40}{0.16}=\frac{0.16 x}{0.16}$
$250=x$

Forty is 16% of 250.

Example 3)

What Percent of 500 is $\mathbf{5 0}$?

What percent of 500 is 50 ?
$x \cdot 500=50$
$500 x=50$
$\frac{500 x}{500}=\frac{50}{500}$
$x=0.1$
$x=0.1 \cdot 100 \%$
$x=10 \%$

Example 4)

For the last 7 years the attendance at a conference has averaged 2500 people. This year attendance is up about 20\%. How many more people attended this year?

The number " 2500 " is the number we are trying to find the percent of. In other words:
What is 20% of 2500 people?
$x=0.20 \cdot 2500$
$x=500$

There are 500 more people this year.
\square

1. What is 15% of 120 ?
2. What is 112% of 130 ?
3.What is 25% of 700 ?

4. 20 is what percent of 4 ?

5. What percent of 120 is 6 ?
6. What percent of 300 is 15 ?
7. 3 is 12% of what number?
8. 250 is 80% of what number?
9. 20 is 10% of what number?
10. You are buying a $\$ 20$ item from your neighbor's son for a fundraiser. You have to calculate 8.75% sales tax. What is 8.75% of $\$ 20$?
11. Sacramento normally gets 17.93 inches of rain a year. If it rains 15 inches this year, what percent of normal is that?
12. A car dealer ship sold 52 cars last month. That is 120% of an average month. How many cars do they normally sell?
13. If today's snow level of 10 feet was 20% of normal for this time of year, what is normal for this time of year?
14. A stereo is normally $\$ 540$, and today is on sale for 25% off. How much do you save buying it today?
15. I ate 12 oz of a 16 oz bag of chips. What percent did I eat?

This page was intentionally left blank.
\qquad

Activity 5.7 - More Percent Problems

PART A

You are at a Restaurant and are about to pay the bill. The total is $\$ 62.45$. How much would you tip if: You wanted to leave a 10\% tip?

You wanted to leave a 15% tip?

You wanted to leave a 20% tip?

PART B

1. Gas has increased from $\$ 3.50 /$ gal to $\$ 3.99 /$ gal. in a 3 month period of time. What is the percent increase?
2. Home prices fell in one neighborhood from $\$ 320,000$ to $\$ 190,000$. What was the Percent decrease?

This page was intentionally left blank.

Unit 5 - Proportions and Percents

Section 7 - Solving Percentage Problems

Finding the Percent Increase/Decrease

When we find the percent increase (or decrease) we always are finding the percent increase (or decrease) of the original "base" amount.

The Percentage proportion from 5.5 becomes

$$
\frac{\text { amount of increase }(\text { or decrease })}{\text { original amount }}=\frac{\%}{100}
$$

The percentage equation from 5.6 becomes

$$
\% \cdot(\text { original amount })=(\text { amount of increase or decrease })
$$

Using either method will result in the same answer.

Example 1)

The price on a certain model of television has decreased since its release. Originally it cost $\mathbf{\$ 3 5 0 0}$, However now you can find it for $\mathbf{\$ 2 0 0 0}$. What is the percent decrease in price?

Since the price decreased from $\$ 3500$ to $\$ 2000$, the decrease was $\$ 3500-\$ 2000=\$ 1500$. Here we will use the percent proportion from section 5.5.
$\frac{1500}{3500}=\frac{x}{100}$
$150000=3500 x$
$\frac{150000}{3500}=\frac{3500 x}{3500}$
$42 \frac{3}{35}=x$
The percent decrease is $42 \frac{3}{35} \%$.

Example 2)

You work a job at the local coffee shop, you made $\mathbf{\$ 8 . 5 0}$ but just received a raise to $\boldsymbol{\$ 9 . 2 5}$. What is the percent increase in pay(round to the nearest hundredth of a percent)?

The "original" amount was $\$ 8.50$. The "increase" is $9.25-8.50=0.75$.
$\frac{x}{100}=\frac{0.75}{8.50}$
$8.5 x=75$
$x \approx 8.82$

It was a 8.82% increase in pay.

Calculating Quick Tips

If you went out to dinner with your family and the bill was $\$ 52.63$, calculating a tip quickly can be useful.

If you want to leave a 10\% tip:
$52.63 \cdot 10 \%=5.263$
To find 10% - move the decimal to the left 1 place.
You would leave $\$ 5.26$ on top of the bill.

If you wanted to leave a 20\% tip:
You would double 10\%
$52.63 \cdot 10 \%=5.263$
$5.26 \cdot 2=10.52$

You would leave $\$ 10.52$ on top of the bill.

If you wanted to leave a 15% tip:
$52.63 \cdot 10 \%=5.263$
$5.26 \div 2=2.63$
$5.26+2.63=7.89$

You would leave $\$ 7.89$ on top of the bill.

Calculate 10\% first.

Double that to get 20\%

Calculate 10\% first.

Divide that in half to find 5\%

Add the 10\% to the 5\%

Exercise 5.7

NAME:
Compute the following rounding to the nearest hundredth or hundredth of a percent where necessary.

1. The governor is proposing to increase fees for community college students from $\$ 26$ a unit to $\$ 36 \mathrm{a}$ unit beginning July 2011. What percent increase is that?
2. The university of California could increase by 8\% for the 2011-2012 school year, In 2010-2011 tuition was $\$ 10,152$. What would it be in 2011-2012 school year with this increase?
3. The state legislative office is supporting a bill that would increase fees for community college from $\$ 26$ to $\$ 40$ per unit for the 2011-2012 school year. What percent increase is that?
4. An average class attrition rate is roughly 28%. In other words the percent decrease is roughly 28%. If a class starts with 42 students, how many fewer students do you expect at the end of the semester?
5. At the beginning of the semester a math 100 class had 42 students; at the end it had 35 . What percent decrease it that?
6. Sally works at a local coffee shop. She has had her hours decreased by 20% this week. If she was working 36 hours a week, what is she be working this week?
7. There were 20 vendors at a local craft fair last year, this year you were told there will 30 . What is the percent increase in vendors?
8. Joe had to put his daughter in childcare for 40 hours a week last semester, because of changes in his schedule he only needs 30 hours of childcare this year. What is the percent decrease in childcare needed?
9. Marie noticed she was eating 2100 calories a day, she began a diet and limited herself to 1300 calories a day What is the percent decrease?

For Problems 10-12 consider the following scenario.
You are at a restaurant and receive a bill from $\$ 65.82$. How much tip should you leave if you wanted to leave the following percentage? What is the total with tip?
10. $20 \% \mathrm{tip}$
11. 15% tip
12. 10% tip

This page was intentionally left blank.

Unit 5 Review NAME:

1. If there are 7 dogs and 14 cats, write a ratio of cats to dogs.

Write a ratio for the following in lowest terms.
2. $2 \frac{1}{3} \mathrm{~cm}$ to 4 cm
3.5 .25 m to 2.25 m
4. 8 days to 2 weeks
5. If you drove 400 miles on 25 gallons of gas, what is your miles per gallon?
6. You need to buy a special seasoning for your holiday meal and have several options to choose from. What is the best deal?

4 oz for $\$ 5.89$
$4.5 o z$ for $\$ 6.61$
$50 z$ for $\$ 7.40$
7. $\frac{2}{3}=\frac{7}{x}$
8. $\frac{3.5}{7}=\frac{x}{1.5}$
9. $\frac{1 \frac{1}{3}}{x}=\frac{4 \frac{1}{2}}{9}$
10. If it takes 4 cups of flour to make a recipe for 6 people, How much flour do you need to make enough for 9 people?
11. A study showed that 2 out of every 5 people voted in an election, how many people out of 750 can you assume voted?
12. You were able to drive 350 miles on $17 \frac{1}{2}$ gallons. How many gallons would you need to drive 725 miles?

Write the following a s a decimal
13. 12%
14. 34.34\%
15. 0.01%

Write each of the following a s a percent
16. 2.25
17. 0.58
18. 0.3

Write each of the following as a fraction
19. 22%
20. 15.5%
21. $11 \frac{1}{2} \%$
22. Write $\frac{5}{8}$ as a percent.
23. What is 50% of 80 ?
24. What is 100% of 75 ?
25. What is 10% of 64 ?
26. What is 4% of 80 ?
27. 35 is 55% of what number?
28. 70 is 150% of what number?
29. 15 is what percent of 150 ?
30. 34 is what percent of 17 ?
31.You currently pay $\$ 650$ for rent and were just told by your manager to expect a 8% increase next month. How much will the increase be?
32. The parks and recreation department just announced they will only have 80% of the budget they had last year. If they had a budget of $\$ 450,000$ last year, how much will they have this year?
33. A certain class has 23 females out of 40 students. What percent females are there?
34. If Bob had $\$ 120$ in his account at the end of the month and that was only 75% of what he had last month, how much did he have last month?
35. If a school had 700 parking places at 200 of them were filled up, what percent are full?
36. If the school raised its tuition from $\$ 26$ to $\$ 42$ what would the percent increase be?
37. If you paid your credit card down to $\$ 450$ from $\$ 675$, what is the percent decrease?

If you went to a restaurant and had a bill for $\$ 75.36$, how much would you leave for a tip if you want to leave:
38. 10% tip?
39. 15% tip?
40. 20% tip ?

Unit 6 - Coordinate Plane and Geometry Objective Overview

The following is a small subset of possible problems that could represent each objective. Refer to notes, homework and reviews for a more complete picture.

Section 1 - Graphing in the Coordinate Plane

By the end of section 1 you should be able to:

- Identify coordinates of point on a Coordinate plane

Find the coordinates for each point below.

A \qquad _)

B \qquad
\qquad

C \qquad ___)
$A(3,-4)$
$B(5,0)$
$C(-2,-6)$

- Evaluate an equation and plot the points on the graph.

F ill out the chart below, then plot each point on the grid.

$$
y=4 x-8
$$

x	y
0	
1	
2	
3	

Section 2 - Area and Perimeter

By the end of section 2 you should be able to:

- Find the Area of different Geometric Shapes.

Find the area of a rectangle whose bas is 10 cm and Height is 3 cm .

10 cm

Find the Area of a square with side length of 5 m .

Find the area of the Parallelogram below

Find the Area of a triangle whose base is 8 m and whose height is 3 m .

Find the area of the circle whose radius is 3 m .

Find the area of the composite shape below

10in

- Find the Perimeter or Circumference of different shapes

Find the perimeter of a rectangle whose length is 5 cm and width is 10 cm .

Find the Perimeter of the square whose side length is 6 ft .

If the length of a Parallelogram is 7 cm , and the width is 5 cm , find the Perimeter.

Find the Perimeter of the triangle below.

If the radius of a circle is 2 m , find the circumference.

- Solve for the unknown side given the Area or Perimeter.

If the Area of a square is $81 \mathrm{~m}^{2}$, what is the side length?

The perimeter of a parallelogram is 32 m , and the width is 4 m . Find the length.

Section 3 - Volume

By the end of section 3 you should be able to:

- Find the Volume of different geometric shapes.

Find the Volume of the rectangular prism below.

Find the volume of the cylinder.

Find the Volume of the Pyramid below.

Find the Volume of the cone below

Find the Volume of the sphere below.

Section 4 - Square Roots and the Pythagorean Theorem
By the end of section 4 you should be able to:

- Calculate Square Roots.

$$
\sqrt{121}
$$

- Determine what whole numbers a square root falls between.

What whole numbers does $\sqrt{17}$ fall between?

- Use the Pythagorean Theorem to find the missing side of the triangle.

Find the missing side of the triangle.

Find the missing side of the triangle.

\qquad

Activity 6.1 - Graphing in the Coordinate Plane

Complete part A and B, and compare answers with neighbors.

PART A

Below is a grid that is labeled with the "Cartesian Coordinate System". Can you describe the location of the points A-F that have been placed on the grid?

Describe the location of each point

A \qquad
B \qquad

C \qquad

D \qquad

E \qquad

F \qquad

PART B

Think about the following equation
$y=2 x-1$
If $x=2$ can you find y ? What would it have to be to keep the equation a true statement?

If $x=0$ can you find y ? What would it have to be to keep the equation a true statement?

If $x=4$ can you find y ? What would it have to be to keep the equation a true statement?
\qquad

PART C - Only complete this after being told to.
Complete the following chart by evaluating the equation for each given x value.

x	y
0	
1	
2	
3	

$$
y=2 x-2
$$

Plot each of the above points on the grid below

What do you notice about these points? Do they behave in a special way?

Unit 6 - Coordinate Plane and Geometry
 Section 1 -Graphing in the Coordinate Plane

Finding Coordinates of Given Points

We can describe the location of a point by listing what are called its coordinates, The dark Horizontal line is called the " \mathbf{x} - axis", The dark Vertical line is the " \mathbf{y}-axis".

We can describe a points location by listing the x - coordinate - its horizontal position, and then it's y coordinate - it's vertical position.

Example 1) Find the coordinates for each point below.

Point \mathbf{A} is above the 7 in the x direction and level with the 3 in the y direction. So it is located at $(7,3)$.

Point \mathbf{B} is below the 2 on the x-axis, and at the same vertical level as the -3 on the y-axis. (2, -3).

Point \mathbf{C} is above the 0 in the x direction and on the 7 in the y direction $(0,7)$
Point D (-6, 4)
Point E (-6, -4)
Point F $(-3,0)$

Plotting Points on a Graph

If you were asked to plot the point $(4,5)$ on a graph. You would locate the 4 on the x axis, Locate the 5 on the y axis and see where they meet.

Example 2)

Plot the point (-5, 3).

We begin by finding -5 on the x-axis and 3 on the y-axis.

Extending the lines out helps us see where they cross.

Where they meet is the location of the point.

Evaluating Equations and Plotting the Results
Consider $y=2 x-3$
If $x=1$, then it becomes $y=2(1)-3=2-3=-1$.
In other words when $x=1, y=-1$. We could write this as an ordered pair $(1,-1)$.
If $x=2$, then it becomes $y=2(2)-3=4-3=1$.
This is the ordered pair $(2,1)$
If $x=3$, then it becomes $y=2(3)-3=6-3=3$.
This is the ordered pair $(3,3)$

If we plot $(1,-1),(2,1)$ and $(3,3)$ on the same graph this is what it looks like

If we connect them what do they seem to form? They all seem to "line" up.

In fact any other pair we get from evaluating $y=2 x-3$ will also fall on the line.
If $x=-1, y=2 x-3$ becomes $y=2(-1)-3=-2-3=-5$.
So $(-1,-5)$ should also be on the line.

And it is.
\qquad

Graph the following on the given coordinate grid, clearly label each point.

1. $A(5,8)$
2. $B(-5,-9)$
3. $C(3,-8)$
4. $D(-5,7)$
5. $E(4,0)$
6. $F(0,-3)$

Identify the coordinates for each of the following points.

7. A (\qquad , \qquad)
8. B (\qquad , \qquad)
9. $\mathrm{C}($ \qquad , \qquad)
10. D (\qquad , \qquad)
11. E (\qquad , \qquad)
12. F(\qquad , \qquad)
13. Fill out the chart below, then plot each point on the grid.
$y=3 x-4$

x	y
0	
1	
2	
3	

14. . Fill out the chart below, then plot each point on the grid.
$y=-2 x+3$

x	y
0	
1	
2	
3	

15. Fill out the chart below, then plot each point on the grid.
$y=x-5$

x	y
-1	
0	
1	
2	

16. Fill out the chart below, then plot each point on the grid.
$y=5 x-2$

x	y
-1	
0	
1	
2	

17. Fill out the chart below, then plot each point on the grid.

$$
y=-3 x
$$

x	y
-2	
0	
2	
3	

18. Fill out the chart below, then plot each point on the grid.
$y=-2 x+5$

x	y
-2	
0	
2	
4	

19. Do you see a pattern when you plot the points that work in these equations? How many points do you need to create the pattern or path they will fall on?
\qquad

Activity 6.2 - Area and Perimeter

1. Find the area and Perimeter for the rectangle below.

2. Find the area and perimeter for the triangle below.

3. Find the Area and Circumference of the circle below

\qquad
4. Find the Area and Perimeter for the parallelogram below... (hint: Can you make the pieces a rectangle to find the area?)

5. Find the area and perimeter of the composite shape below.

Unit 6 - Coordinate Plane and Geometry

Section 2 -Area and Perimeter

AREA

When we find the area of a shape we are looking for the number of 1 unit $X 1$ unit squares that will fit into the shape.

Consider a rectangle that is 3 inches wide and 2 inches tall.

Notice that it is made up of $2 \times 3=6$ boxes that are exactly 1 inch on each side. So we say the rectangle has an area of $6 i n^{2}$, or 6 square inches.

Rectangle

As seen above the area of a rectangle can be found by multiplying the base times the height.

$$
A=b \cdot h \text { or } A=l \cdot w
$$

Example 1)

Find the area of a rectangle whose has is 10 cm and Height is $\mathbf{3} \mathbf{~ c m}$.

10 cm
$A=b \cdot h$
$A=10 \mathrm{~cm} \cdot 3 \mathrm{~cm}$
$A=30 \mathrm{~cm}^{2}$
The area in 30 square cm .

Example 2)

If the Area of a rectangle is $\mathbf{3 2 m}{ }^{\mathbf{2}}$, and we know the length is 4 m . Find the width.

To simplify the way this looks I am going to take out the units m and m^{2}. Then it is easy to see the one variable w, that we need to solve for.
$32=4 w$
$\frac{32}{4}=\frac{4 w}{4}$
$8=w$

So the width is $8 m$.

Square

Since in a square the base and the height are the same we can use the formula:

S

$$
\begin{aligned}
& A=b \cdot h \\
& A=s^{2}
\end{aligned}
$$

Example 3)

Find the area of a square whose side length is 4 cm .
$s=4 \mathrm{~cm}$
$A=s^{2}$
$A=(4 \mathrm{~cm})^{2}$
$A=16 \mathrm{~cm}^{2}$

Example 4)

If the area of a square is $25 \boldsymbol{f t}^{\mathbf{2}}$, what is the length of the side?
$A=25 f t^{2}$
$A=s^{2}$
$s^{2}=25 f t^{2}$
Note : $\quad 5 f t \cdot 5 f t=25 f t^{2}$
$s=5 f t$

Parallelogram

$A=b \cdot h$
NOTICE $A=l \cdot w$ does not work since the length and width are not perpendicular to each other.

Example 5)

Find the area of the Parallelogram below

The area formula for a Parallelogram is $A=b \cdot h$. The base is 5 m and the height is perpendicular to the base, so the height is 2 m .

$$
\begin{aligned}
& A=b \cdot h \\
& A=5 m \cdot 2 m \\
& A=10 \mathrm{~m}^{2}
\end{aligned}
$$

Example 6)

If the area of a Parallelogram is $\mathbf{3 0 i n}{ }^{2}$, and the height if 5 in , find the base.

```
A=b}\cdot
|
30=b
30
6 = b
```

The base is 6 inches.

Triangle

A triangle can be formed by cutting a rectangle(or parallelogram) in half - so it has exactly half the area of a rectangle.

$$
A=\frac{1}{2} b \cdot h
$$

$A=\frac{1}{2} b \cdot h$
Notice the b and h have to meet at a degree angle.

Example 7)

Find the Area of a triangle whose base is 10 m and whose height is 3 m .
$A=\frac{1}{2} b \cdot h$
$A=\frac{1}{2} \cdot 10 \cdot 3$
$A=5 \cdot 3$
$A=15$
The area is $15 m^{2}$

Example 8) Find the area of the Triangle below

The Formula for the area of a triangle is $A=\frac{1}{2} b \cdot h$.
The base and height meet at a 90° angle (a perfect corner)
So the base is the 3in and the height must be 4 in .
$A=\frac{1}{2} b \cdot h$
$A=\frac{1}{2} \cdot 3 \cdot 4$
$A=\frac{3}{2} \cdot 4$
$A=6$

The area is $6 i n^{2}$.

Example 9)

If the Area of a triangle is $14 \mathrm{~cm}^{2}$, and the base is 7 cm , find the height.
$A=\frac{1}{2} b \cdot h$
$14=\frac{1}{2} \cdot 7 \cdot h$
$2 \cdot 14=2 \cdot \frac{1}{2} \cdot 7 \cdot h$
$28=7 \cdot h$
$\frac{28}{7}=\frac{7 h}{7}$
$4=h$

The height is 4 cm .

Circle

$$
A=\pi r^{2}
$$

Example 10)

If a circle has a radius of 5 mi , Find the Area of the circle.
$A=\pi r^{2}$
$A \approx 3.14 \cdot 5^{2}$
$A \approx 3.14 \cdot 25$
$A \approx 78.5$

The Area is approximately $78.5 m i^{2}$.

Example 11)

Find the area of the circle below.

In this example we are given the diameter not the radius. Recall the radius is half the diameter. So if the diameter is 12 in , the radius in 6 in .
$A=\pi r^{2}$
$A \approx 3.14 \cdot 6^{2}$
$A \approx 3.14 \cdot 36$
$A \approx 113.04$
The area is approximately $113.04 \mathrm{in}^{2}$

Composite shapes

If a shape can be broken down in to other shapes we know how to find the area of we can find the area of the known shapes and add them together to get the area of the composite shape.

(Area of the triangle) $+($ Area of the rectangle $)=$ Area of the composite shape.
$\left(\frac{1}{2} b \cdot h\right)+(b \cdot h)=\left(\frac{1}{2} 8 \cdot 2\right)+(8 \cdot 3)=8+24=32$
The area above is $32 m^{2}$

PEREMETER

Perimeter is the distance around the shape. We can add up all the lengths of each side to find the total length around the shape.

Rectangle

Since the opposite sides of a rectangle are the same we can use the formula:
\square

$$
P=2 l+2 w
$$

Example 12)

Find the perimeter of a rectangle whose length is 2 cm and width is 5 cm .
$P=2 l+2 w$
$P=2 \cdot 2+2 \cdot 5$
$P=4+10$
$P=14$
The perimeter is 114 cm .

Example 13)

If the Perimeter of a rectangle is $\mathbf{2 4 f t}$ and the length is $\mathbf{7 f t}$, find the Width of the rectangle.
$P=2 l+2 w$
$24=2 \cdot 7+2 w$
$24=14+2 w$
$10=2 w$
$5=w$
The width of the rectangle is 5 ft .

Square

Since all 4 sides of a square are the same we can condense the formula even more.

$$
P=4 s
$$

Example 14)

Find the Perimeter of the square whose side length is Sin.
$P=4 s$
$P=4 \cdot 5$
$P=20$

The perimeter is 20 in .

Example 15)

If the Perimeter of a square is 36 mm , find the side length.
$P=4 s$
$36=4 s$
$9=s$
The side length of the square is 9 mm .

Parallelogram

In a parallelogram the opposite sides are the same, so the formula is the same as a rectangle.

$$
P=2 l+2 w
$$

Example 16)

If the Perimeter of a Parallelogram is 100 cm , and the width is $\mathbf{7 c m}$, find the length.
$P=2 l+2 w$
$100=2 l+2 \cdot 7$
$100=2 l+14$
$86=2 l$
$43=l$

The length is 43 cm .

Triangle

In a triangle all sides can be different so we find the perimeter by adding all the sides together.

Example 17)

Find the Perimeter of the triangle below.

The perimeter can be found by adding up all the sides.
$5+2+7=14$

The Perimeter is 14 in .

Circle

The distance around a circle is actually called the circumference.

$$
C=2 \pi r
$$

Example 18)

If the radius of a circle is 7 cm , find the circumference.
$C=2 \pi r$
$\approx 2 \cdot 3.14 \cdot 7 \mathrm{~cm}$
$C \approx 6.28 \cdot 7 \mathrm{~cm}$
$C \approx 43.96 \mathrm{~cm}$

Example 19)

If the diameter of a circle is $\mathbf{1 2 f t}$, find its circumference.

$C \approx 3.14 \cdot 12 f t$
$C \approx 37.68 f t$

Other Shapes

Remember we can find the Perimeter of any shape by adding up all the sides. So no matter how unusually the shape looks you can still find the perimeter by adding all the sides together.

$5+4+4.5+4.1+5.5=23.1$
The Perimeter is 23.1 m .

This page was intentionally left blank.
\square
For problem 1-6, consider the following rectangle.

Find the area of the rectangle with dimensions below.

1. $b=3 m, h=4 m$
$2 . b=7 f t, h=5 f t$
2. $b=11 \mathrm{~cm}, h=4 \mathrm{~cm}$

Use the given information to find the missing information.(A stands for Area.)
4. $A=27 i^{2}, b=3 i n, h=$?
5. $A=54 m^{2}, b=9 m, h=$?
6. $A=72 m i^{2}, h=4 m i, b=$?

For Problems 7-12, consider the square:

Find the area of the square with dimensions below.
7. $s=7 m m$
8. $s=15 f t$
9. $s=8 m$

Determine the length of the side of the square with the given Area.
10. $A=36 i n^{2}$
11. $A=49 \mathrm{~cm}^{2}$
12. $A=9 \mathrm{~km}^{2}$

For problem 13-18, consider the following parallelogram.

Find the area of the parallelogram with dimensions below.
13. $b=4 m, h=10 m$
14. $b=2 f t, h=7 f t$
15. $b=12 \mathrm{~cm}, h=5 \mathrm{~cm}$

Use the given information to find the missing information.(A stands for Area.)
16. $A=22 i n^{2}, b=2 i n$
17. $A=56 m^{2}, b=7 m$
18.. $A=144 m i^{2}, h=36 m i$
$h=$?
$h=$?
$b=$?

Find the area of the triangles below
19.

20.

21.

For problems 22-24, find the missing dimension for the triangle.
22. $A=15$ in $^{2}, b=3$ in
23. $A=20 m^{2}, b=4 m$
24. $A=17 m i^{2}, h=2 m i$
$h=$?
$h=$?
$b=$?

For Problems 25-27 find the area of the circle with the given dimensions.
25. $r=7 \mathrm{~cm}$
26. $d=10$ in
27. $r=5 m$

Find the area of the shapes below
28.

8in
29.

9ft

Find the Perimeter (or circumference) of the shapes below
31. Rectangle

$4 m$
34. Triangle

3 ft

32. Square

33. Parallelogram

36. Hexagon

37. If the base of a rectangle is 5 m and the Perimeter is 40 m , what is the Height?
38. If the Perimeter of a square is 28 cm , what is the length of each side?
39. If the width of a Parallelogram is 6 in , and its perimeter is 38 in , find the length.
40. Find the Area and perimeter of the rectangle below:

41. Find the Area and Perimeter of the Parallelogram below.

42. Find the Area and Circumference for the Circle Below.

This page was intentionally left blank.
\qquad

Activity 6.3 - Volume

How many 1 mX 1 mX 1 m boxes would fit inside this prism?

The formula to find Volume of a prism is : \qquad .

A cylinder is similar, the formula is : \qquad .

In fact no matter what the shape of the base the formula for a prism is: \qquad .

Consider a Pyramid:

Volume $=50 f t^{3}$

Notice it only has a fraction of the area of the prism with the same base.

The formula for the volume of a Pyramid is \qquad .
\qquad

After being told what the equation for the volume of a pyramid is can you make a guess about the formula for a cone?

A sphere is round - the formula will include π just like the Area and Circumference formulas for circles.

Unit 6 - Coordinate Plane and Geometry

Section 3 -Volume

Volume

When we find the Volume of a shape, we are finding the number of 1 unit X 1 unit X 1 units boxes fit in the shape.

Volume of a Rectangular Prism

$$
\begin{aligned}
& \text { Volume }=(\text { Area of the Base }) \cdot \text { Hieght } \\
& V=B \cdot H \\
& V=(b \cdot h) \cdot H \\
& V=l \cdot w \cdot H
\end{aligned}
$$

Example 1)

Find the Volume of the rectangular prism below.

$V=l \cdot w \cdot H$
$V=10 \mathrm{~cm} \cdot 4 \mathrm{~cm} \cdot 2 \mathrm{~cm}$
$V=80$
The Volume is $80 \mathrm{~cm}^{3}$.

Notice the units are to the $3^{\text {rd }}$ power - we increase a power for each dimension.

Volume of a cylinder

$$
\begin{aligned}
& \text { Volume }=(\text { Area of the Base }) \cdot \text { Height } \\
& V=B \cdot H \\
& V=\left(\pi r^{2}\right) \cdot H
\end{aligned}
$$

Example 2) Find the volume of the cylinder below.

The Volume is $87.92 m^{3}$.

> Volume $=\frac{1}{3}($ Area of the Base $) \cdot$ Hieght
> $V=\frac{1}{3} B \cdot H$
> $V=\frac{1}{3}(b \cdot h) \cdot H$
> $V=\frac{1}{3} l \cdot w \cdot H$

Example 3) Find the Volume of the Pyramid below.

$$
\begin{aligned}
& V=\frac{1}{3} l \cdot w \cdot H \\
& V=\frac{1}{3} \cdot 4 \cdot 6 \cdot 10 \\
& V=80
\end{aligned}
$$

The Volume is $80 \mathrm{in}^{3}$

Volume of a Cone

> Volume $=\frac{1}{3}($ Area of the Base $) \cdot$ Hieght
> $V=\frac{1}{3} B \cdot H$
> $V=\frac{1}{3}\left(\pi r^{2}\right) \cdot H$

Example 4) Find the Volume of the cone below.

$$
\begin{aligned}
& V=\frac{1}{3}\left(\pi r^{2}\right) \cdot H \\
& V \approx \frac{1}{3}\left(3.14 \cdot 3^{2}\right) \cdot 7 \\
& V \approx \frac{1}{3} \cdot 3.14 \cdot 9 \cdot 7 \\
& V \approx 65.94
\end{aligned}
$$

Multiplying $\frac{1}{3} \cdot 9$ eliminates the fraction.

The Volume is approximately $65.94 \mathrm{~m}^{3}$

Volume of a Sphere

Example 5) Find the Volume of the sphere below.

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& V \approx \frac{4}{3} \cdot 3.14 \cdot 3^{3} \\
& V \approx \frac{4}{3} \cdot 3.14 \cdot 27 \\
& V \approx 113.04
\end{aligned}
$$

The Volume of the sphere is $113.04 f t^{3}$

Exercise 6.3
NAME:

Calculate the volume of each of the following.
For problems 1-3 consider the rectangular prism below.

1. $l=2 f t, w=3 f t, H=4 f t$

2. $l=\frac{2}{3} m, w=5 m, H=\frac{1}{2} m$
3. $l=2.5 \operatorname{in}, w=1.2 i n, H=4 i n$

For problems 4-6 consider the cylinder below.
4. $r=2.1 \mathrm{~cm}, H=3 \mathrm{~cm}$

5. $r=5 i n, H=4 i n$
6. $r=\frac{1}{3} f t, H=5 f t$

For Problems 7-9 consider the Rectangular pyramid below
7. $l=\frac{1}{2} \mathrm{~cm}, w=3 \mathrm{~cm}, H=4 \mathrm{~cm}$

8. $l=2.1 m, w=3 m, H=4 m$

For Problems 10-12 consider the cone below
10. $r=2.5 \mathrm{~cm}, H=4 \mathrm{~cm}$
11. $r=\frac{1}{5} f t, H=4 f t$

For Problems 13-15 consider the sphere below
13. $r=5 m$
14. $r=\frac{1}{2} c m$
9. $l=5 f t, w=2 f t, H=6 f t$

12. $r=6 m, H=2 m$

15. $r=2.2 f t$
\qquad

Activity 6.4-Square Roots \&Pythagorean Theorem

Complete the pattern below

$$
\begin{aligned}
& \sqrt{4}=2 \\
& \sqrt{9}=3 \\
& \sqrt{16}= \\
& \sqrt{1}=5 \\
& \sqrt{36}= \\
& \sqrt{1}=7 \\
& \sqrt{64}= \\
& \sqrt{ }=9 \\
& \sqrt{100}= \\
& \sqrt{ }= 11 \\
& \sqrt{144}= \\
& \sqrt{2}=13 \\
& \sqrt{196}= \\
& \sqrt{2}=15
\end{aligned}
$$

What about $\sqrt{1600}=$

Consider what numbers the following square roots fall between $\sqrt{8}$ $\sqrt{18}$
\qquad

Consider the formula $a^{2}+b^{2}=c^{2}$. This formula holds true for any right triangle - a triangle who has two sides that make a right angle - a "perfect corner". It is called the Pythagorean Theorem.

Do the sides of the following triangles work in this formula?

Does $a+b=c$?

Unit 6 - Coordinate Plane and Geometry
Section 4 - Pythagorean Theorem

Square Roots Revisited

In Chapter 3 Section 4 we discussed square roots - we will review a few more examples here.

Example 1)

$\sqrt{49}$
$\sqrt{49}$

What number times itself is 49 ?
$7 \cdot 7=49$
$\sqrt{49}=7$

Example 2)

$\sqrt{64}$
$\sqrt{64}=\sqrt{8 \cdot 8}=8$

Example 3)

What numbers does $\sqrt{8}$ fall between?

Since $4<8<9$,
$\sqrt{4}<\sqrt{8}<\sqrt{9}$
$2<\sqrt{8}<3$

So $\sqrt{8}$ falls between 2 and 3.

Challenge:

Simplify $\sqrt{\mathbf{8}}$.
$\sqrt{8}$
$=\sqrt{4 \cdot 2}$

$=\sqrt{4} \cdot \sqrt{2}$

We begin by looking for the perfect square in 8 .
$4 \cdot 2=8$

Pythagorean Theorem

In a right triangle -there is a special relationship between the sides of the triangle.

$a^{2}+b^{2}=c^{2}$

Where c is the hypotenuse (the longest side) and a and b are the legs of the triangle.

Example 4)

If $a=9 \mathrm{~cm}$ and $b=12 \mathrm{~cm}$, find c .

$$
225=c^{2}
$$

225 is a perfect square since $15 \times 15=225$ - length is always positive.
c must be 15 , so the Hypotenuse is 15 cm .

Example 5)

If $c=39 f t$ and $a=36 f t$, find b.

$1296+b^{2}=1521$
$b^{2}=225$

We need to subtract 1296 from both sides

Then think of the square root of 225 .

Since b is the side of a triangle is must be positive - So $b=15 \mathrm{ft}$

This page was intentionally left blank.

Exercise 6.4

Find the following square roots

1. $\sqrt{4}$
2. $\sqrt{9}$
3. $\sqrt{25}$
4. $\sqrt{144}$
5. $\sqrt{900}$
6. $\sqrt{196}$

What whole numbers do the following square roots fall between?
7. $\sqrt{7}$
8. $\sqrt{22}$
9. $\sqrt{120}$

For Problems 10-15, refer to the triangle below.

10. $a=3 \operatorname{in}, b=4 i n, c=$?
11. $a=5 m, b=12 m, c=$?
12. $a=6 f t, b=8 f t, c=$?
13. $c=26 f t, a=24 f t, b=$?
14. $c=5 m, a=3 m, b=$?
15. $c=15 \mathrm{in}, b=12$ in, $a=$?
16. A wheel chair ramp raises a wheel chair a vertical distance of 3 feet, in a horizontal distance of 4 feet. How long is the ramp the wheel chair travels on?

Challenge: break the following into simplified roots
a. $\sqrt{20}$
b. $\sqrt{18}$
c. $\sqrt{32}$

Formulas

$$
\begin{aligned}
& \pi \approx 3.14 \\
& r=\frac{d}{2} \\
& d=2 r \\
& P=2 l+2 w \\
& P=4 s \\
& C=2 \pi r \\
& C=d \pi \\
& A=\pi r^{2} \\
& A=b h \\
& A=s^{2} \\
& A=l w \\
& V=B h \\
& V=l w h \\
& V=\pi r^{2} h \\
& A=\frac{1}{2} b h \quad A=\frac{b h}{2} \\
& V y p=\frac{l w h}{3} \quad V=\frac{4}{3} \pi r^{3} \\
& V=\frac{1}{3} \pi r^{2} h \\
& a^{2}+b^{2}+l^{2}=c^{2} \\
& l e g=\sqrt{h y p^{2}-l^{2}} \quad \\
& V g^{2} \\
& 3
\end{aligned}
$$

Pre Algebra

This page was intentionally left blank.

Unit 6

\qquad
Review 6.1-6.4

1. Complete the chart below by evaluating
$y=2 x+1 \quad$ Then plot the points on the graph.

x	y
0	
1	
2	
3	

2. Find the area of a rectangle whose base is 3 cm and hieght is 7 cm .
3. Find the Perimeter of a parallelogram below

4. Find the area of a circle with a radius of 7feet.
5. If the Perimeter of a recantgle is 26 ft , and the width is 7 ft , find the length.
6. Find the area of the triangle below

7. Find the volume of the rectangular prism below.

8. Find the Volume of the cone below

For problems 9 and 10 consider the triangle
9. If $a=3 f t$ and $b=4 f t$, find c

10. If $c=13$ ft and $b=5 f t$, find a

UNIT 1

1. Plot the following on a number line, label each point

$$
7,-4,-10
$$

Find the absolute value of the following
2. $|-21|$
3. $|50|$
4. $-|-10|$
5. Put the following in order from least to greatest

$$
7,4,-2,0,-10,8
$$

6. $-7+(-5)$
7. $-5-(-3)$
8. $4-7$
9. $-10-(-21)$
10. $65-5-(-20)$
11. Evaluate $a-b$, for $a=7$ and $b=-7$
12. $-2 \cdot(-11)$
13. $-3 \cdot 4$
14. $-5(-2)(-6)$
15. $-156 \div-3$
16. $\frac{54}{-9}$

Write the following in exponential form
17. $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 7$
18. $x \cdot x \cdot y \cdot y \cdot y$

Evaluate the following
19. 6^{2}
20. $(-3)^{2}$
21. -2^{4}

Simplify the following
22. $4-2 \cdot 13$
23. $6 \cdot 4-12 \div 3 \cdot 4$
24. $5 \cdot 4-(6-9)^{2}$
25. $2-4+5\left(3^{3}-2 \cdot 7\right)$
26. $18 \div 3 \cdot 5$
27. Evaluate $a b^{2}+2 b$, for $a=-2$ and $b=-3$
28. What is colder -25 degrees or -30 degrees?
29. Sam account is overdrawn by $\$ 21$. He deposits a paycheck for $\$ 231$. What is his new balance?
30. You owe $\$ 5$ for each day you leave your car parked at a car lot. If you leave your car for 6 days how much will you owe?

Unit 2

1. Write a fraction that represents the following.

2. Write an IMPROPER FRACTION and a MIXED NUMBER that represents the following.

3. Draw a number line, clearly label $0,-\frac{3}{5}, \frac{3}{5}, 1$ and -1 .

Find the absolute value of the following.
4. $\left|-\frac{4}{3}\right|$
5. $\left|\frac{3}{7}\right|$
6. $-\left|-\frac{2}{11}\right|$

Rewrite the following fractions to have the given denominator
7. $\frac{3}{5}=\frac{?}{15}$
8. $-\frac{35}{20}=\frac{?}{4}$
9. $-3=\frac{?}{2}$

Write the following in lowest terms
10. $-\frac{24}{60}$
11. $-\frac{36}{90}$
12. $\frac{4 x^{2}}{20 x}$

Complete the following - show all steps.
13. $-\frac{5}{7} \cdot \frac{2}{9}$
14. $\left(-\frac{12}{25}\right) \cdot\left(-\frac{35}{8}\right)$
15. $1 \frac{2}{3} \cdot\left(-2 \frac{2}{3}\right)$
16. $\frac{3}{5} \div \frac{4}{15}$
17. $\left(-\frac{1}{3}\right) \div 9$
18. $3 \frac{1}{3} \div\left(-2 \frac{1}{2}\right)$
19. If you have a 32 oz . bag of chips and the serving size is $\frac{1}{2} o z$, How many servings are in the bag?
20. You are renting a bus to go to Reno, the bus can hold 66 people and currently you have reserved $\frac{1}{3}$ the seats. How many seats have you reserved?
21. If the equation to find area of a rectangle is $A=b \cdot h$, and you know that $b=\frac{1}{2}$ in and $h=\frac{5}{8}$ in find the Area.
22. $-\frac{2}{7}-\frac{1}{7}$
23. $-\frac{3}{5}-\left(-\frac{1}{5}\right)$
24. $-\frac{3}{8}+\frac{1}{8}$
25. $\frac{3}{4}-\frac{1}{8}$
26. $-\frac{1}{3}+\frac{5}{6}$
27. $-5+\frac{1}{3}$
28. $-4 \frac{1}{5}-7 \frac{3}{10}$
29. $8 \frac{1}{6}-4 \frac{5}{12}$
30. $5-\left(-\frac{2}{5}\right)$
31. You are putting in a new counter in your kitchen, You must first put in a padding that is $\frac{1}{3}$ in thick and the counter it self is $\frac{3}{4}$ in thick. How much thickness are you adding to the counter?
32. $\left(\frac{2}{5}\right)^{3}$
33. $\left(-\frac{3}{11}\right)^{2}$
34. $-\frac{4}{5}^{2}$
35. $\frac{4}{5} \div \frac{14}{15} \cdot \frac{3}{7}$
36. $\frac{2}{3}+\frac{1}{3} \cdot \frac{5}{3}$
37. $\left(\frac{3}{12}-\frac{3}{4}\right)^{2}+\frac{1}{2} \cdot 10$
38. $\frac{\frac{1}{5}}{\frac{7}{10}}$
39. $\frac{\frac{5}{6}+\frac{1}{3}}{3}$
40. $\frac{\frac{1}{2}}{2-\frac{1}{3}}$

Unit 3

1. Write 4.786 in words.
2. Write 5.00671 in words.
3. Write the following as a number.

Three and four hundred twenty-one thousandths
4. Write the following as a number.

Seven hundred-thousandths

Find the absolute value of the following.
5. $|-0.251|$
6. |7.123|
7. $-|-0.235|$

Order the following by placing < or > between the numbers.
8. 4.0256
4.025
9. 3.715
3.0715
10. -5.26
-5.206
11. Write -5.47 as a fraction.
12. Write 3.255 as a fraction.
13. Round -42.23715 to the nearest thousandth.
14. Round -0.025467 to the nearest hundredth.
15. Round 235.45678948 to the nearest ten-thousandth.
16. Round to the nearest dollar : $\$ 25.86$
17. You calculate the cost of a single item bought in bulk as $\$ 3.2655478$. How much would you pay for it?

Perform the indicated operation
18. $-2.36+1.369$
19. $-523.365+(-21.1)$
20. $-2.251-5.33$
21. $-2.4-5.232$
22. $43.52-6.4253$
23. $-35.1+234.34$
24. Sue has $\$ 236$ in an account and writes a check for $\$ 250$. If the check clears, what is Sues account balance?

Perform the indicated operation.
25. $-23.45(-5.2)$
26. $-4.34 \cdot 5.5$
27. $(-3.7)(-7)$
28. $-23.4556(100)$
29.5.238(-10000)
30. $3.2234 \cdot 0.01$
31. Given the formula for circumference is $C=2 \pi r$ with $\pi \approx 3.14$. find the circumference of a circle whose radius, r, equal to 2 in .
32. $27.56 \div 13$
33. $106.7 \div 5$
34. $28 \div 3$
35. $12.588 \div 0.2$
36. $7 \div 0.9$
37. $5.2756 \div 1.21$

Round the following to the nearest Thousandth.
38. $423 \div 2.3$
39. $20 \div 7$
40. $536 \div 0.7$
41. Write $\frac{5}{9}$ as a decimal.
42. Write $\frac{3}{8}$ as a decimal.

Order the following by placing a < or > in between the numbers
43. $0.67 \quad \frac{2}{3}$

Complete the following
45. $(-3.5)^{2}$
46. -0.5^{2}
47. $-(0.2)^{3}$
44. $\frac{4}{5} \quad 0.81$
49. $4(-0.3)^{3}$
50. $5.8+12.3(0.2)$
52. $2(0.3)^{2}+3.2(5.1)$
53. $4.25 \div 0.05+3.3 \cdot 4.123$
54. Find the average of 87,75 , and 81 .
55. $\sqrt{196}$
$56 . \sqrt{900}$
$57 .-\sqrt{36}$

This page was intentionally left blank.

Review unit 4-6
 NAME:

Unit 4
Evaluate the following

1. $x-7$, for $x=-5$
2. $2 b+4$, for $b=-2$

Simplify
3. $47 x-3 x+4 x$
4. $12 x+4 y-3 y$
5. $22 k+j-12 k-j$
6. $4 x^{2}+3 x-12$
7. $3 x^{2} y+x y+8 x y^{2}-5 x y$

Distribute and simplify
8. $4(x-3)$
9. $8(x+2)$
10. $-5(x-4)$
11. $-3(2 x+6)$
12. $2+5(x-2)$
13. $3 x-6(x-4)$

Solve
14. $x+4=-10$
15. $x-5=-14$
16. $-3=x+28$

Solve
17. $6 x=-24$
18. $-7 x=-42$
19. $-8 x=72$
20. $-2 x+7 x=72-(-3)$
21. $8 x+10-7 x=4$
22. A number decreased by thirty is twenty-two. Find the number.
23.The product of a number and 4 is 32 . Find the number.

Solve
24. $-3 x-7=8$
25. $-2-3 x=31$

Solve
26. $2(x-1)+12=-10$
27. $5-2(x+1)=12-(-3)$
28. $8 x-5=2 x+13$
29. $5 x-5=4(x+7)-3$
30. $\frac{1}{5} x=\frac{3}{7}$
31. $x-\frac{1}{2}=\frac{2}{3}$
32. $\frac{2}{3} x-\frac{1}{3}=\frac{1}{6}$
33. $\frac{1}{2} x-2=\frac{3}{2} x-\frac{1}{2}$
34. $0.3 x=3.9$
35. $x+1.3=-2.23$
36. $0.25 x-3.2=-2.55$

Unit 5

1. If you spend 6 hours studying to every 2 hours in class, what is the ratio of hours in class to hours studying?

Write a ratio for the following in lowest terms.
2. $1 \frac{1}{2} \mathrm{~cm}$ to 2 cm
$3.4 .2 m$ to $3.22 m$
4. 20 hours to 2 days
5. If you drove 300 miles on 25 gallons of gas, what is your miles per gallon?
6. You need to by a special seasoning for your holiday meal and have several options to choose from. What is the best deal?

4 oz for $\$ 10.21$
4.5oz for $\$ 11.50$
$50 z$ for $\$ 12.00$
7. $\frac{3}{5}=\frac{8}{x}$
8. $\frac{2.5}{7}=\frac{x}{1.4}$
9. $\frac{2 \frac{1}{3}}{x}=\frac{4 \frac{1}{2}}{6}$
10. If it takes 2 cups of flour to make a recipe for 6 people, How much flour do you need to make enough for 8 people?
11. A study showed that 3 out of every 5 people voted in an election, how many people out of 1250 can you assume voted?
12. You were able to drive 400 miles on $18 \frac{1}{2}$ gallons. How many gallons would you need to drive 800 miles?

Write the following a s a decimal
13. 36%
14. 25.42%
15. 0.0008\%

Write each of the following as a percent
16. 3.10
17. 0.46
18. 0.5

Write each of the following as a fraction
19. 96%
20. 21.5%
21. $15 \frac{1}{2} \%$
22. Write $\frac{5}{6}$ as a percent.
23. What is 50% of 150 ?
24. What is 100% of 300 ?
25. What is 10% of 28 ?
26. What is 4% of 30 ?
27. 33 is 60% of what number?
28. 90 is 150% of what number?
29. 15 is what percent of 180 ?
30. 560 is what percent of 56 ?
31.You currently pay $\$ 700$ for rent and were just told by your manager to expect a 5% increase next month. How much will the increase be?
32. The parks and recreation department just announced they will only have 75% of the budget they had last year. If they had a budget of $\$ 400,000$ last year, how much will they have this year?
33. A certain class has 26 females out of 42 students. What percent females are there?
34. If Bob had $\$ 320$ in his account at the end of the month and that was only 25% of what he had last month, how much did he have last month?
35. If the school raised its tuition from $\$ 32$ to $\$ 40$ what would the percent increase be?
36. If you paid your credit card down to $\$ 250$ from $\$ 450$, what is the percent decrease?

If you went to a restaurant and had a bill for $\$ 58.63$, how much would you leave for a tip if you want to leave:
37. 10% tip?
38. 15% tip?
39. 20% tip ?

Unit 6

1. Complete the chart below by evaluating
$y=4 x-3 \quad$ Then plot the points on the graph.

x	y
0	
1	
2	
3	

2. Find the area of a rectangle whose base is 15 cm and hieght is 4 cm .
3. Find the Perimeter of a parallelogram below

4. Find the area of a circle with a radius of 3 feet.
5. If the Perimeter of a recantgle is 36 ft , and the length is 5 ft , find the width.
6. Find the area of the triangle below

7. Find the volume of the rectangular prism below.

8. Find the Volume of the cone below

For problems 9 and 10 consider the triangle
9. If $a=5 f t$ and $b=12 f t$, find c

10. If $c=5 f t$ and $b=3 f t$, find a

Unit 1 Answers

14. $|-7|$
15. |8|
16. $|3|$
17. $-|12|$
18. |0|

9
Order the following numbers by placing $\mathrm{a}>$ or $<$ in between them
19. $0>-8$
20. 0
4
21. $3 \quad-2$
22. $-4<7$
23. -6
-8
24. $-11 \quad-2$

Pre Algebra

Unit 1

Put the following in order from least to greatest
25. $-3,3,0$
26. $-5,-3,-9$
27. $6,7,-11$
$-3,0,3$
28. $|-3|,-4,-|-5|$
29. $|0|,-2,|-2|$
30. $-|3|, 0,|3|$
$-|-5|,-4,|-3|$
31. What temperature is colder -21 degrees or -15 degrees?
-21 degrees is colder
32. Is it better if sally is overdrawn by $\$ 10$, or overdrawn by $\$ 30$? (Which case is she in less debt?)
33. You are in a submarine and are at a depth of 75 feet below sea level. Your depth changes to 25 feet below sea level. Did you go up or down?

Pre Algebra
Exercise 1.2 NAME:

1. $-3+4$	2. $6+(-3)$	3. $-4+9$
1		
4. $7+(-11)$	5. $-15+7$	6. $-13+8$
-4		
7. $6+-6$	8. $5+5$	9. $-12+-12$
0		
10. -23+7	11. $-16+(-11)$	12. $13+-11$
-16		
13. 3-5	14. $8-15$	15. 9-12
-2		
16. -4-5	17. -7-12	18. -6-11
-9		
19. $-3-(-2)$	20. $7-(-5)$	21. $-3-(-4)$
-1		
22. $3-4+(-12)$	23. $2-9-(-4)$	24. $-5+(-4)-7$

Evaluate the following for the given values
25. $a+b$, for $a=-3$ and $b=-2$ 26. $a-b$, for $a=4$ and $b=-5$
-5
27. $\mathrm{a}+\mathrm{b}$ for $\mathrm{a}=7$ and $\mathrm{b}=-10$
28. If Joe had a checking account balance of $\$ 35$ and need to pay a bill for $\$ 57$. If he writes a check for the bill, what would his account balance be?
-22 dollars
29. If you are in a submarine and are at a depth of 55 feet below sea level and rise 15 feet, what depth are you at?
. It is $32^{\circ} \mathrm{F}$ and the temperature is expected to drop 50° in the next month, what is the temperature expected to be?

Exercise 1.3	NAME:
Multiply	
$1.3(-4)$ $2 .-4 \cdot 6$ $3 .-4 \cdot 7$ -12	

4. $-3(-5)$
5. $-8(-8)$
6. $-11(-7)$

15
7. $-8 \cdot 3(-2)$
8. $6 \cdot(-2) \cdot 5$
9. $(-5)(-6)(-2)$

48
10. Find the product of 8 and -13
11. Find the product of -7 and -4
-104
12. Find the product of -6 and 9
13. Evaluate $x y$, for $x=-6$ and $y=9$
-54
14. Evaluate $6 a b$, for $a=-3$ and $b=-7$ 15. Evaluate $-7 x y$, for $x=-1$ and $y=6$

American River College
Pre Algebra Unit 1

Unit 1

Dividing
16. $-33 \div 3$
17. $-95 \div-5$
18. $240 \div-12$
-11
19. $\frac{-36}{-12}$
20. $\frac{-28}{7}$
21. $\frac{64}{-8}$

3
22. Evaluate $\frac{-a}{b}$, for $a=72$, and $b=-4$. Evaluate $\frac{a}{b}$, for $a=22$ and $b=-2$. 18
24. Evaluate $a \div b$, for $a=56$, and $b=8$.

For problem 25-27, consider the following rectangle.

Find the area of the rectangle with dimensions below.
25. $b=3 m, h=4 m$
26. $b=7 \mathrm{ft}, h=5 \mathrm{ft}$
27. $b=11 \mathrm{~cm}, h=4 \mathrm{~cm}$
$12 m^{2}$

Simplify the following
16. $3+2 \cdot 7$
17. $-4-6 \div 3$
18. $-2^{3} \cdot 3+2$

17
19. $7+(-6)-4$
20. $12 \div 4 \cdot 6$
21. $7 \cdot 4+6-3$
-3
22. $(2+7)^{2}-7 \quad$ 23. $-3^{2}-(7-8) \quad$ 24. $4-7+3(5-3)^{3}$

74
25. $\frac{2^{4}-1}{7-2}$
26. $5 \cdot(2-3)+7^{2}-5 \cdot 4+3$

3
27. Evaluate $a b^{2}-2 b$, for $a=-3$ and $b=-2$

American River College

Exercise 2.1	NAME:

Unit 2 Answers

Write a fraction that can represent the shaded area in the following. If the answer can be written as a mixed number, write the mixed number answer as well.

2.

3.

Write the following Mixed numbers as fractions
4. $-4 \frac{2}{3}$
5. $5 \frac{3}{8}$
6. $-3 \frac{3}{4}$
$-\frac{14}{3}$
7. -3
8. -4
9. 7
$-\frac{3}{1}$

Write the following improper fractions as Mixed numbers.

American River College
Pre Algebra Unit 2

Unit 2
10. $-\frac{17}{4}$
11. $\frac{13}{5}$
12. $-\frac{7}{6}$
$-4 \frac{1}{4}$
13. $\frac{9}{1} \quad 9$
14. $-\frac{12}{1}$
15. $\frac{7}{1}$

Write an equivalent fraction with the given denominator.
16. $-\frac{2}{8}=\frac{?}{4}$
17. $\frac{3}{4}=\frac{?}{32}$
18. $-\frac{5}{7}=\frac{?}{35}$
$-\frac{1}{4}$
19. $-4=\frac{?}{3}$
20. $-2=\frac{?}{7}$
$21.6=\frac{?}{8}$
$-\frac{12}{3}$
Write the fractions in simplest form.
22. $\frac{15}{45}$
23. $-\frac{48}{28}$
24. $\frac{42}{21}$
$\frac{1}{3}$
25. $\frac{26 x^{3}}{6 x^{2}}$
26. $-\frac{10 a}{14}$
27. $\frac{42 x}{36 x^{2}}$
$\frac{13 x}{3}$

Order the following by using the > or < symbols
28. $\frac{3}{5} \quad \frac{2}{5}$
29. $-\frac{7}{8} ~-\frac{3}{8} ~ 30 .-\frac{1}{7} \quad-\frac{3}{7}$
$\begin{array}{llllll}31 .-\frac{1}{4} & -\frac{2}{5} & \text { 32. } \frac{4}{9} & \frac{10}{21} & \text { 33. } \frac{7}{10} & \frac{13}{25}\end{array}$
$>$

Divide
19. $\frac{2}{5} \div \frac{1}{3}$
20. $-\frac{3}{7} \div \frac{2}{3}$
21. $\frac{7}{11} \div \frac{2}{5}$
$\frac{6}{5}$
22. $\begin{aligned} & -\frac{4}{5} \div\left(-\frac{1}{7}\right) \\ & \frac{28}{5}\end{aligned}$
23. $\frac{9}{11} \div\left(-\frac{2}{3}\right)$
24. $\frac{7}{3} \div \frac{35}{18}$

Complete the following by using fractions and leaving your answer as a mixed number.
26. $-\frac{18}{5} \div \frac{81}{20}$
27. $-\frac{10}{3} \div \frac{1}{3}$
25. $-\frac{15}{2} \div \frac{10}{3}$
$-\frac{9}{4}$
28. $-2 \frac{1}{5} \div-3 \frac{1}{3}$
29. $1 \frac{3}{5} \div-2$
30. $-5 \div 3 \frac{2}{7}$
$\frac{33}{50}$

Multiply
31. $\frac{x}{3} \cdot \frac{x}{6}$
32. $\frac{x^{2}}{4} \cdot \frac{6}{x}$
33. $\frac{2}{x} \cdot \frac{3}{x}$
$\frac{x^{2}}{18}$

The area of a triangle can be found by the formula $A=\frac{1}{2} b h$.
Find the area of the shape with the given base (b) and height (h)
34. $\mathrm{b}=10$ in and $\mathrm{h}=4 \mathrm{in}$

$20 \mathrm{in}^{2}$
35. $\mathrm{b}=3 \mathrm{ft}$ and $\mathrm{h}=5 \mathrm{ft}$
36. A bottle of Ketch up contains 40 oz of Ketchup. How many $\frac{1}{2}$ oz servings can you get out of one bottle?
37. A recipe that serves 6 people needs to be doubled to serve a dinner party of 12. The original recipe calls for $1 \frac{2}{3}$ cups of flour. How much flour should you use to double the recipe?
$3 \frac{1}{3}$ cups
38. A bag of pretzels contains 16 oz . If you want to give 20 people equal servings how many ounces should you give each person?
39. A recipe for 15 servings calls for $2 \frac{1}{3}$ cups of sugar. If you are cutting the recipe in half, how much sugar should you use?

Pre Algebra

Unit 2

Mid-Chapter Quick Review 2.1 and 2.2 \qquad

1. Write a fraction that represents the following
$\square \square$
$\square \square$
2. Write $-\frac{15}{4}$ as a mixed number.
3. Write $-2 \frac{3}{8}$ as an improper fraction. $\frac{-19}{8}$
4. Find an equivalent fraction with the given denominator.
$-\frac{2}{5}=\frac{7}{40}$
$-\frac{16}{40}$
5. Simplify the following
$-\frac{72}{42}$
$-\frac{12}{7}$

Multiply or Divide
$\begin{array}{ll}\text { 6. }-\frac{3}{5} \cdot \frac{7}{4} & \text { 7. }-\frac{2}{15} \cdot-\frac{35}{4} \\ -\frac{21}{20} & \frac{7}{6}\end{array}$

19. $5+3 \frac{2}{5}$
20. $3-5 \frac{2}{3}$
21. $6 \frac{2}{5}+2 \frac{2}{3}$
$8 \frac{2}{5}$
22. $-5 \frac{1}{2}+2 \frac{3}{5}$
23. $2 \frac{1}{5}-6$
24. $-2 \frac{2}{7}-4 \frac{5}{6}$
$-2 \frac{9}{10}$

Find the perimeter of the following shapes
25.

$5 m$
26.

American River College

Pre Algebra
16. $\left(\frac{2}{3}-\frac{1}{6}\right)^{2}+\frac{1}{18}$
17. $-\frac{2}{3}+\left(\frac{1}{2}-\frac{3}{4}\right)^{3}$
18. $\frac{4}{5}\left(\frac{1}{3}+\frac{1}{2}\right)^{2}-\frac{3}{5}$
$\frac{11}{36}$
$\frac{4}{9}$
4. $-\frac{5^{2}}{6}$
5. $-\left(\frac{2}{7}\right)^{2}$
6. $-\frac{4^{3}}{12}$
$-\frac{25}{6}$
7. $\left(\frac{3}{5}\right)^{2}\left(\frac{1}{2}\right)^{3}$
9 8. $\left(-\frac{2^{2}}{3}\right)\left(\frac{5}{3}\right)^{2} \quad$ 9. $-\left(\frac{7}{8}\right)^{2}\left(\frac{1}{2}\right)$
$\frac{9}{200}$
10. $\frac{2}{3}+\frac{1}{4}-\frac{5}{6}$
11. $\frac{1}{4}+\frac{2}{5} \cdot \frac{10}{3}$
12. $\frac{1}{3}-\frac{2}{5} \div \frac{3}{5}$
$\frac{20}{9}$
13. $\frac{4}{5} \cdot\left(\frac{1}{5}+\frac{2}{3}\right)-\frac{3}{5} \quad$ 14. $-\frac{1}{2}+\frac{1}{3}\left(\frac{1}{4}+\frac{1}{2}\right) \quad$ 15. $\left(\frac{1}{8}-\frac{1}{3}\right) \div \frac{19}{24}$
$\frac{7}{75}$

1. Write a fraction that represents the following.

2. Write an IMPROPER FRACTION and a MIXED NUMBER that represents the following.

Draw a number line, clearly label $0,-\frac{2}{3}$, and $\frac{2}{3}$.

Find the absolute value of the following.
4. $\left|\frac{2}{3}\right|$
5. $\left|-\frac{5}{8}\right|$
$\frac{5}{8}$
6. $-\left|-\frac{6}{11}\right|$
$-\frac{6}{11}$

Rewrite the following fractions to have the given denominator
7. $\frac{4}{7}=\frac{2}{28}$
8. $-\frac{35}{40}=\frac{7}{8}$
9. $-6=\frac{7}{9}$
$\frac{16}{28} \quad-\frac{7}{8} \quad-\frac{54}{9}$
Write the following in lowest terms
10. $-\frac{15}{60}$
$-\frac{1}{4}$
11. $-\frac{21}{70}$
$-\frac{3}{10}$
12. $\frac{3 x^{2}}{15 x}$
$\frac{x}{5}$

American River College

Complete the following - show all steps.
13. $-\frac{2}{3} \cdot \frac{7}{9}$
14. $\left(-\frac{15}{28}\right) \cdot\left(-\frac{35}{3}\right)$
15. $2 \frac{1}{3} \cdot\left(-3 \frac{1}{2}\right)$
$-\frac{14}{27}$
$\frac{25}{4}$
$-\frac{49}{6}$
16. $\frac{4}{7} \div \frac{20}{21}$
17. $\left(-\frac{2}{3}\right) \div 4$
18. $5 \frac{1}{3} \div\left(-4 \frac{1}{3}\right)$
$\frac{3}{5}$
$-\frac{1}{6}$
$-\frac{16}{13}$
19. If you have a 32 oz. bag of pretzels and the serving size is $\frac{1}{3} o z$, How many servings are in the bag? 96 servings
20. If you can fit 78 people in a restaurant and the restaurant is $\frac{1}{2}$ full, how many people are in the restaurant?

39 people
21. If the equation to find area of a rectangle is $A=b \cdot h$, and you know that $b=\frac{5}{7}$ in and $h=\frac{3}{10}$ in find the Area.
$\frac{3}{14} i n^{2}$

American River College

32. $\left(\frac{2}{3}\right)^{3}$	33. $\left(-\frac{5}{6}\right)^{2}$	34. $-\frac{7^{2}}{3}$
$\frac{8}{27}$	$\frac{25}{36}$	$-\frac{49}{3}$

35. $\frac{1}{2} \div \frac{3}{4} \cdot \frac{3}{7}$
36. $\frac{5}{7}+\frac{1}{7} \cdot \frac{5}{3}$
37. $\left(\frac{3}{8}-\frac{3}{4}\right)^{2}+\frac{1}{2} \cdot 6$
$\stackrel{2}{7}$
38. $\frac{\frac{2}{5}}{\frac{3}{10}}$
39. $\frac{\frac{3}{3}+\frac{1}{4}}{3}$
40. $\frac{\frac{1}{4}}{3-\frac{1}{3}}$
41. You are putting in a new counter in your kitchen, You must first put in a padding that is $\frac{1}{8}$ in thick
and the counter it self is $\frac{3}{4}$ in thick. How much thickness are you adding to the counter?
$\frac{7}{8}$ in thick

Exercise 3.1	NAME:_

Consider the number -23.345678 . For the following state the digit that is in the requested place value.

Unit 3 Answers

1. Hundredths
2. Ten-Thousandths
3. Thousandths

4
What place value is the 5 in ?
4. 128.5689
5. -98.889567
6. -3.98527
tenths
Write the following in words.
7. 34.567

Thirty-four and five hundred sixty-seven thousandths
8. 2.5689
9. 12.98

Write the following as a number.
10. Two and thirty two hundredths
2.32
11. Thirty three and five hundred thirty two ten-thousandths
12. Five and sixty two thousandths

Evaluate the following absolute values
13. $|2.46|$
14. $-|-34.678|$
15. |-21.787|
2.46

American River College

Pre Algebra Unit 3 Key

Order the following by inserting < or >

16. 32.24	32.2041	17. 7.2123	7.212	18. 5.213	5.21
>					
19. -1.23	-1.203	20. -21.134	-21.1342	21. -2.34	-2.034
<					
Write the following as a fraction					
22. -23.457		23. -15.7		24. -13.49	
$-23 \frac{457}{1000}$					
25. 13.25		26. -19.222		27. 1.125	
$13 \frac{1}{4}$					

Round the following to the nearest thousandths place
28. 1.23556
29. - 13.11118
1.236

Round to the nearest Hundredth.
31. 36.5555
32. 8.99999
33. 21.1599
36.56
34. You fill up with gas and the pump reads $\$ 59.34568$, how much do you pay? \$59.35
35. A computer cost $\$ 1229.88$. How much does it cost to the nearest dollar
36. When you calculated sales tax the calculator said 12.34567 , How much did you pay in sales tax?
Pre Algebra

Exercise 3.2	NAME:	
Add or Subtract		
$1.23 .56+23.4$	$2 .-34.789+(-23.4)$	$3.54 .7+(-23.45)$
46.96		

4. $-4+54.33$
5. $4.565+9.7568$
6. $-3.45+(-2.945)$
50.33

7. $-3.456+(-54.78)$	8. $567.21+(-23)$	$9.7 .23+667.1$
-58.236		

11. $45.34-(-12.374)$
12. $-4-7.21$

Pre Algebra

13. $-7.21-(-12.1)$	14. $12-14.124$	15. $-4.361-(-21)$
4.89		
$16.21-7.219$	17. $-3.214-(-2.7874)$	18. $36.21-107.521$
13.781		

19. You have $\$ 345.65$ in your account and then use your debit card to get gas. The total was 45.89 . What is the balance on your account when your transaction clears?
299.76
20. You got paid twice this month. One check was for $\$ 341$ and the other was for $\$ 299.58$. How much did you get paid all together?
21. You need to buy three items at the store. They cost $\$ 3.41, \$ 7.11$, and $\$ 22.89$ (no tax). You have $\$ 33$ cash , do you have enough money?

American River College
Milano

Pre Algebra

For the following calculate the Circumference.
16. $r=3 m$
17. $d=7$ in
18. $d=6 f t$
$C=18.84 m$

Divide
19. $45.36 \div 36$
20. $27.048 \div(-12)$
21. $-2.55 \div 15$
1.26
22. $-0.27 \div 0.12$
23. $-25.83 \div(-2.1)$
24. $-3.9 \div 1.2$
-2.25

| Exercise 3.3 NAME:__ |
| :--- | :--- |
| Multiply |

American River College
14. $-2.135 \cdot 1000$
15. $-13.3 \cdot 10$
13.1.23 0.00001
0.0000123
4. $-12.1 \cdot 5.2 \quad$ 5. $0.45(-22.1) \quad$ 6. $-7.1 \cdot 3$
-62.92
7. $-5.2(-3.34) \quad$ 8. $(-2.1)(-1.38) \quad$ 9. $-0.3(-0.7)$
17.368
10. $(-0.00023)(-0.0012) \quad 11 .(-0.000235)(0.0012) \quad 12.0 .003(-2.1)$
0.000000276

Pre Algebra
Unit 3 Key

In the following round your answers to the nearest thousandths place.
$25.7 .2 \div 3.1$
26. $-5.23 \div 6$
27. $-1.23 \div(-0.23)$
2.323

Write the following fractions as a decimal, If answer repeats show that in your answer using the bar above the repeating portion.
$28 . \frac{4}{9}$
29. $-\frac{2}{5}$
30. $-\frac{2}{3}$
$0 . \overline{4}$

Order the following by adding < or >

$31 . \frac{2}{5}$	0.46	32.0 .21	$\frac{1}{8}$	$33 .-\frac{1}{7}$	-.14

Pre Algebra	Unit 3 Key
Unit 3 Mid-Chapter Quick Review $3.1-3.3$	NAME:-

1. Write 2.035 in words

Two and Thirty-five thousandths
2. Write the number

Three and twenty-one ten-thousandths
3.0021
3. $|-2.5| \quad$ 4. $-|-2.1|$
2.5 -2.1
5. Write 3.42 as a fraction in lowest terms.
3_{50}^{21} or $\frac{171}{50}$
6. Write $\frac{3}{8}$ as a decimal.
0.375

Perform the indicated operation

7. $-3.462-2.1431$	$8.2 .13+3.4$
-5.6051	5.53
$9 .-2.75-(-2.1)$	$10.3(-2.25)$
-0.65	-6.75

-0.65 -6.75

American River College

Pre Algebra
11. $-115 \div(-0.25)$

460

Order the following by placing $\mathrm{a}<$ or $>$ in between the numbers.
12. $\frac{2}{3} \quad .67$
13. $-\frac{4}{9}$
-0.4
<
14. Round -3.42563 to the nearest hundredths place.
-3.43
15. Circumference can be found by the formula $C=2 \pi r$. Find the circumference of the circle whose radius is 4 m , using $\pi \approx 3.14$.
$25.12 m^{2}$

American River College
Milano

Unit 3 Key

For the following calculate the Area of each circle with the given dimension.
13. $r=3 m$
14. $d=7$ in
15. $d=6 f t$
$28.26 \mathrm{~m}^{2}$

For problems 13-15 compute the mean of the scores listed, round to the nearest hundredth if necessary.
16. $62,77,75,81$
17. $88,81,85$
18. $90,82,98$
73.75
7. $1.1-5.6(1.3)$
$8.2 .4-3.2+4.5$
$9.7 .2 \div 0.5 \cdot 1.1$
-6.18
$10.2(0.8)^{2}-6.3 \div 0.3$
11. $(4.1-3.6)^{2}+4 \cdot .02$
12. $(4.7-1.2)^{2}+4 \div 0.2$
Pre Algebra

Unit 3 Review	Unit 3 Key

1. Write 34.78266 in words.

Thirty-Four and Seventy-eight thousand two hundred sixty-six hundred-thousandths
2. Write 2.00067 in words.

Two and Sixty Seven hundred thousandths
3. Write the following as a number.

Twenty-three and fifty-six thousandths
23.056
4. Write the following as a number.

Thirty-five ten-thousandths
0.0035

Find the absolute value of the following.

5. $\|-21.1\|$	$6 .\|5.23\|$	$7 .-\|-4.25\|$
21.1	5.23	-4.25

Order the following by placing < or > between the numbers.

| 8. 32.1234 | 32.123 | 9. 2.301 | 2.31 |
| :--- | :--- | :--- | :--- |\quad 10. $-25.34<-25.304$

$>$

| 11. Write -3.63 as a fraction. | 12. Write 5.625 as a fraction. |
| :--- | :--- | :--- |
| $-3 \frac{63}{100}$ | $5 \frac{5}{8}$ |

13. Round -34.56782 to the nearest thousandth.
-34.568

American River College

Pre Algebra
14. Round -2.34567 to the nearest hundredth.
-2.35
15. Round 2.34723 to the nearest ten-thousandth.
2.3472
16. Round to the nearest dollar : \$ 34.76
\$35
17. You calculate the cost of a single item bought in bulk as $\$ 4.34567$. How much would you pay for it?
\$4.35
Perform the indicated operation
18. $-23.11+34.786$
19. $-78.123+(-34.27)$
20. $-275.1-43.213$
11.676
-112.393
-318.313
21. $-25.75-(-344.678)$
22. $8.375-6.4$
23. $-345.1+34.345$
318.928
1.975
-310.755
24. Sue has $\$ 34.44$ in an account and writes a check for $\$ 50$. If the check clears, what is Sues account balance?
-15.56

American River College
Pre Algebra Unit 3 Key

$35.12 .56 \div 0.2$	$36.5 \div 0.9$	37. $1495.56 \div 1.21$
62.8	$5 . \overline{5}$	1236

25. $-23.45(-3.2)$	26. $-2.324 \cdot 5.5$	27. $(-3.7)(-2.54)$
75.04	-12.782	9.398

28. $-23.456(10000)$	$29.5 .678(-10)$	$30.3 .234 \cdot 0.001$
-234560	-56.78	0.003234

31. Given the formula for circumference is $C=2 \pi r$ with $\pi \approx 3.14$. find the circumference of a circle whose radius, r, equal to 3 m .
$C=18.84 m$
32. $31.8 \div 15$
33. $385.5 \div 12$
34. $25 \div 6$
2.12
32.125
$4 . \overline{16}$

Complete the following

45. $(-2.1)^{2}$	46. -1.2^{2}	47. $-(0.4)^{3}$
4.41	-1.44	-0.064
48. $2.1(0.2)^{4}$		49. $3.1(-1.1)^{3}$
0.00336		4.1261
50. $2.3+1.2(0.2)$		51. $3.6 \div 0.3 \cdot 2.12$
2.54		25.44
52. $2(0.2)^{2}+3.2(4.1)$		53. $3.25 \div 0.05+3.2 \cdot 1.25$
13.2		69

69
54. Find the average of 77,75 , and 70 .

74
55. $\sqrt{36}$
$56 . \sqrt{121}$
57. $-\sqrt{49}$

6
11

Exercise 4.1	NAME:	
Evaluate the following		
1. $x+5$, for $x=4$ 2. $4 y, \quad$ for $y=7$ 3. $a-7, \quad$ for $a=5$		
9		

Unit 4 Key

Pre Algebra
22. $3 x^{2}-2 x+4 x^{2}+5 \quad$ 23. $-4 x^{2}+6 x-7 x-x^{2} \quad$ 24. $3 x^{2}+2 x-4$
$7 x^{2}-2 x+5$
25. $2 a b^{2}-a b+3 a b^{2}$
26. $2 a b^{2}-3 a^{2} b+a b^{2}$
27. $5 x y^{2}-x y+3 x y^{2}$
$5 a b^{2}-a b$
28. $45 x y^{2}+4 x y-12 x^{2} y-7 x y^{2}$
29. $5 a b^{2}-3 a b+4 a^{2} b-7$
$38 x y^{2}+4 x y-12 x^{2} y$
30. $5 x y-2 x+5 y+12-8 x y$

Distribute

31. $6(x+5)$
32. $3(x-2)$
33. $7(x+3)$
$6 x+30$
34. $-2(x+4)$
$-2 x-8$
35. $-4(3 x-2)$
36. $-2(-2 x-7)$
37. $-3(5 x-7)$
$-12 x+8$

Distribute then simplify

Pre Algebra Unit 4
Milano
American River College
13. $5 x-3 x+2=18$ 14. $-7 x-2 x+7=-11$ 15. $5-(-2)=-3 x-5 x-9$

$5 x-3 x+2=18$

14. $-7 x-2 x+7=-11$
15. $5-(-2)=-3 x-5 x-9$
$x=8$

$x=8$
10. $6(x-3)=-54$
11. $12=4(x-1)$
12. $3(2 x-5)=15$
$x=-6$CheckCheck
Check
16. $6-2(x+7)=10-23$
17. $5(x-2)+3 x-7=11-(-4)$
$x=3$
Pre Algebra Unit 4

Pre Algebra

6. $-2 x+7-12+3 x=5 x-7 x+10$
 7. $3(x-2)+7 x=2(x+3)-4$

$\mathrm{X}=1$
4. $7 x-3 x+2=5-2 x+9$
5. $6 x-3+2 x=7 x-x+15$
Pre Algebra

Unit 4	NAME:
Mid Chapter Review 4.1-4.4	

Pre Algebra
11. $2 x+2=5 x+17$
$-5=x$

Simplify

1. $12 y-3 y$
2. $5 x+2 y-x$
$9 y$
$4 x+2 y$
3. $-3(x-2)$
4. $2-5(x+1)$
$-3 x+6$
$-5 x-3$

Solve
5. $x+5=-7$
6. $4=x-10$
$X=-12$
$\mathrm{x}=14$
7. $3 x=-24$
8. $-12=-2 x$
$x=-8$
$x=6$
9. $3 x-x=7-(-3)$
10. $4 x+1=-15$
$\mathrm{X}=5$
$\mathrm{x}=-4$

American River College

Unit 4

| Exercise 4.5 NAME:__ |
| :--- | :--- |
| Solve the following. |

1. $\frac{1}{2} x=\frac{3}{4}$
2. $\frac{3}{2} x=-\frac{9}{5}$
3. $\frac{5}{3} x=\frac{7}{10}$
$x=\frac{3}{2}$
4. $x+\frac{1}{2}=\frac{3}{4}$
5. $x-\frac{1}{3}=\frac{2}{3}$
6. $x-\frac{1}{8}=\frac{1}{4}$
$x=\frac{1}{4}$
7. $\frac{1}{2} x-\frac{1}{6}=\frac{1}{3}$
8. $\frac{3}{4} x-1=-\frac{2}{3}$
9. $\frac{2}{3} x-\frac{1}{3}=\frac{1}{3}$
$x=1$
10. $\frac{1}{2}(x-1)+2=1$
11. $\frac{2}{3}(x+1)-2 x=\frac{1}{3}$
$x=-1$
12. $\frac{1}{4}-\frac{1}{12}(x+1)=\frac{1}{3} \quad 13 \cdot \frac{1}{3} x-2=\frac{2}{3} x+1$
$x=-9$
13. $\frac{1}{6} x-\frac{2}{3}=\frac{1}{3} x+\frac{1}{2} \quad$ 15. $\frac{5}{6} x-\frac{1}{3}=\frac{1}{2} x+1$

Pre Algebra

Exercise 4.6	NAME:
Solve the following.	
1. $0.2 x=0.82$ 2. $-1.2 x=1.44$ 3. $-1.6 x=-0.48$ $X=4.1$	

4. $x-1.52=4.63$
5. $x+7.06=2.1$
6. $x+4.1=-3.275$
$\mathrm{x}=6.15$
7. $0.3 x-2=0.1$
8. $0.4 x-7=2.5$
9. $1.3 x+0.20=-1.49$
$\mathrm{X}=7$
10. $4.1(x-0.2)+3.3 x=0.4(x-1)+2.1$

Pre Algebra

Unit 4 Review

Evaluate the following

1. $x+5$, for $x=-6$
2. $3 b+4$, for $b=-7$
-1
-17

Simplify

3. $4 x-3 x+x$	4. $2 x+5 y-3 x$	5. $15 k-5 j+2 k+j$
2 x	$-x+5 y$	$17 k-4 j$

6. $5 x^{2}-3 x+2$
$5 x^{2}-3 x+2$
Distribute and simplify

8. $3(x+2)$	$9.5(x-7)$	$10 .-2(x-4)$
$3 x+6$	$5 x-35$	$-2 x+8$
11. $-2(3 x+6)$	$12.2+3(x-4)$	$13.5 x-2(x-4)$
$-6 x-12$	$3 x-10$	$3 x+8$

Solve
14. $x+7=-13$
15. $x-4=-22$
16. $-4=x+22$
$x=-20$
$x=-18$
$-26=x$
13. $0.2(0.1 x+2)-0.6=5.2$
$x=270$

Pre Algebra
10. $0.3 x-0.5=0.2 x+0.3$
11. $2.1 x+7.45=1.1 x-3.2$
12. $0.7 x-1.2=0.3 x+3.24$

Solve
17. $4 x=24 \quad$ 18. $-11 x=55 \quad$ 19. $-7 x=-49$
$x=6 \quad x=-5 \quad x=7$
20. $3 x+7 x=15-(-5)$
21. $2 x+5-x=14$
$x=2$
$x=9$
22. A number increased by five is twenty. Find the number.
$x=15$
23.The product of a number and 7 is 28 . Find the number.
$x=4$

Solve
24. $2 x-7=9 \quad$ 25. $4-3 x=31$
$X=8$
$x=-9$
Pre Algebra Unit 4

Solve

26. $3(x-1)+2=5$	27. $4-2(x+1)=7-(-3)$
$x=2$	$x=-4$

28. $4 x-5=2 x+17$
$x=11$
29. $\frac{2}{7} x=\frac{5}{7}$
30. $x-\frac{7}{3}=\frac{2}{3}$
$x=\frac{5}{2}$
$x=3$

Pre Algebra
Unit 4
32. $\frac{4}{5} x-\frac{1}{3}=\frac{1}{6}$
33. $\frac{1}{2} x-\frac{2}{3}=\frac{5}{2} x-\frac{1}{3}$
$x=\frac{5}{8}$
$x=-\frac{1}{6}$
34. $0.4 x=0.64$
$x=1.6$
$x=6.15$
36. $0.25 x+4.1=-2.55$
$x=26.6$

Unit 5 Key

| Exercise 5.1 | NAME: |
| :--- | :--- | :--- |
| Write each ratio as a fraction in lowest terms. | |
| 1. $\$ 3$ to $\$ 11$ 2. 5 days to 7 days 3. 2 hours to 9 hours
 $\frac{3}{11}$
 4. 3 days to 12 days 5. 25 minutes to 5 minutes 6. $\$ 14$ to $\$ 21$
 $\frac{1}{4}$ | |

7. $\$ 4.50$ to $\$ 2.50 \quad$ 8. 2.5 days to 4.25 days 9.1 .5 feet to 2 feet
$\frac{9}{5}$
8. $1 \frac{1}{2}$. m to $2 m$
9. $1 \frac{1}{4}$ hours to $2 \frac{1}{2}$ hours
10. 3 feet to $1 \frac{1}{2}$ feet
$\frac{3}{4}$

American River College

Unit 5 Key

Write each ratio as a fraction in lowest terms, begin by converting units
13. 3 feet to 30 inches
14. 20 ounces to 1 pound
15. 50 minutes to 2 hours
$\frac{6}{5}$
16. 2 quarts to 6 cups
17. 8 days to 2 weeks
18. 1 mile to 2000 feet
$\frac{4}{3}$
19. Consider the rectangle with width 10 cm and length 15 cm , write a ratio of the length to the width.

20. Using the rectangle in number 19. Write the ratio of the width to the length.
21. If you spend 4 hours a week studying for English and 5.5 hours studying for math what is the ratio of time spent studying in math to studying for English?
22. An employee plays $\$ 125$ towards health insurance, while the employer pays $\$ 550$. What is the ratio of the employers contribution to the employees contribution?
$\frac{22}{5}$
Pre Algebra

Exercise 5.2	NAME:	
Write the following rates as a fraction in lowest terms.		
1. 200 miles in 7 hours 2. 323 miles on 11 gallons 3. 14 cars for 15 people $\frac{200 \text { miles }}{7 \text { hours }}$ 4. 214 pieces for 10 people 5. $\$ 300$ for 25 hours $\frac{107 \text { pieces }}{5 \text { people }}$ 6. 12 teachers for 280 students		

Find the unit rate for each of the following.

7. $\$ 1600$ for 4 weeks	8. 180 miles in 3 hours	9. $\$ 12$ for 4 dozen
$\$ 400 /$ week		

10. $\$ 250$ for 4 people
11. $\$ 12.50$ for 2 hours
12. 35 sacks for 2 acres
\$62.50/person
13. You are buying black beans for a burrito recipe. Which of the following would be the best value?

16 oz for $\$ 1.28$
32 oz for $\$ 2.40$
32 oz is the better value.
14. You are at a grocery store and need to buy flour for holiday baking. You know you will be able to any size before it goes bad so you are looking for the best buy. There are 4 options with some of the sizes on sale : a 10 oz bag for $\$ 2.50$, a 16 oz bag for $\$ 3.25$, a 30 oz bag for $\$ 6.10$, or a 48 oz bag for $\$ 10.08$. Which is the best value?
15. You are going to go skiing the winter and are trying to decide whether or not to buy single day passes, a value pack or a season pass. You know that you will be able to go 3 times for sure and no more. What is the best deal?

A single day pass $\$ 30$
A 3 visit pass for $\$ 81$
An season pass for $\$ 120$
16. You are renting a house in Cancun for a week at $\$ 3600$, what is the cost per day?
\$514/day
17. You are going on a long trip and want to calculate your Miles per gallon. When you start your trip your odometer read 87,256 miles. At the end of your trip your odometer reads 87,820 miles. You started with a full tank and to return to a full tank you put in 25.64 gallons of gas total. What is your miles per gallon?
18. Someone offers you $\$ 1200$ to work for 2-40 hour weeks. How much would you make per hour? want to try out but it only serves 6 . If the recipe calls for $1 \frac{1}{2}$ cups of milk, how much will you add to make enough for all 18 people?
16. If 13 gallons of gas can get you 250 miles, how much gas will you need to travel 1200 miles? 62.4 gallons

For the following set up a proportion and solve.
13. A model is built that has a scale of 1 inch to every 2.5 feet. If the length of the actual structure is 15 feet, what is the length of the model?

6 in.
14. You are walking with a group of friends down a creek, you know that the pace you are walking is roughly 3 miles per hour. After you have been walking $1 \frac{1}{2}$ hours, how far have you walked?
Pre Algebra

| Exercise 5.3 | NAME: |
| :--- | :--- | :--- |
| Solve the following proportions | |
| 1. $\frac{2}{3}=\frac{x}{9}$ 2. $\frac{x}{7}=\frac{6}{14}$ 3. $\frac{3}{2}=\frac{x}{9}$
 $x=6$ | |

4. $\frac{4}{x}=\frac{7}{3} \quad 5 \cdot \frac{2}{3}=\frac{13}{x} \quad 6 \cdot \frac{2}{5}=\frac{5}{x}$
$x=\frac{12}{7}$
5. $\frac{\frac{1}{2}}{1 \frac{2}{3}}=\frac{x}{\frac{2}{5}}$
6. $\frac{2}{1 \frac{3}{5}}=\frac{\frac{2}{3}}{x}$
7. $\frac{x}{\frac{1}{5}}=\frac{2 \frac{1}{4}}{3 \frac{2}{3}}$
$x=\frac{3}{25}$
8. $\frac{0.25}{1.4}=\frac{3}{x}$
9. $\frac{1.5}{2.4}=\frac{x}{3}$
10. $\frac{x}{1.2}=\frac{5}{3.3}$
$x=16.8$

American River College
Milano

Pre Algebra
Unit 5 Key
17. You are cooking Thanks giving at your house this year and are expecting 12 people. You do some research on line and find a website that suggests 3 pounds of turkey for every 4 people. How big of a turkey should you buy?
18. A study shows 2 out of every 5 people prefer a certain type of soda. If there is a group of 250 people, how many of them would you expect to prefer that soda?
19. Sally is trying to determine how tall the tree in your front yard is. Since she knows that a shadow is proportional to an objects height, she measures her shadow and find it is 3.5 feet tall. Sally is 5.5 feet tall. If the trees shadow is 7 feet tall, how tall is the tree?

11 feet tal
20. In math classes 1 out of every 6 use the tutoring services, how many out of a class of 36 use tutoring?
21. You buy a bulk bag of toys knowing that 1 out of every 5 is defective, if there was 145 how many toys can you assume are good?

Pre Algebra

| Exercise 5.4 | NAME: |
| :--- | :---: | :--- |
| Write the following Percents as Decimals. | |
| 1. 32% 2.34%
 0.32 3.45%
 $4.132 .4 \%$ $5.342 .56 \%$
 1.324 $6.673 .12 \%$
 $7.0 .12 \%$
 0.0012 11.9% 9. 0.22%
 10.3% 12.1% | |

12. 1%
0.03

Write the following Decimals as a Percent.

13. 0.21	14. 0.33	15. 0.21
21%		
14.2 .25	16.3 .12	17. 5.12

14. 2.25
15. 3.12
16. 5.12
225%
17. 3
18. 4
19. 8
300%

Write the following Percents as a Fraction
21. 25%
22. 40%
23. 75%
24. One out of every four car owners have not followed up on a recent recall, if the company has sold 2300 cars that are affected by the recall, how many people have not followed up on the recall?
Pre Algebra Unit 5 K
24. 21.2%
25. 54.2%
26. 30.5\%
$\frac{53}{250}$
27. 120%
28. 452%
29. 350%
$\frac{6}{5}$
30. $22 \frac{1}{2} \%$
31. $40 \frac{1}{3} \%$
32. $31 \frac{1}{5} \%$
$\frac{9}{40}$

Write the following Fractions as Percents
33. $\frac{2}{3}$
34. $\frac{1}{8}$
35. $\frac{3}{5}$
$66 \frac{2}{3} \%$
5. Solve for x
$\frac{12}{7}=\frac{48}{x}$
$x=28$
4. You are buying flour and are looking for the best deal. You can buy a 16 oz bag for $\$ 1.28$, or a 32 oz bag for $\$ 2.40$. Which is the better deal? Be sure to use math to support your answer - no credit will be given without work being shown.

32 oz is the better deal.

1. Write the ratio of dogs to cats in lowest terms, if the number of cats is 26 and the number of dogs is
2.

$\frac{5}{13}$
2. Using the appropriate conversions, write the ratio for 3 inches to 2 feet.
$\frac{1}{8}$
3. You are thinking about renting a house in Tahoe for $\$ 531$ for 3 days. What is the daily rate?
$\$ 177 /$ day
4. You are buying flour and are looking for the best deal. You can buy a 16 oz bag for $\$ 1.28$, or a 32 oz
bag for $\$ 2.40$. Which is the better deal? Be sure to use math to support your answer - no credit will be
given without work being shown.
32 oz is the better deal.
Pre Algebra Unit 5 Key

Unit 5	NAME:
Mid- Chapter Review 5.1-5.4	

6. You are walking down a creek for $2 \frac{1}{2}$ hours. Knowing that you walk about 3 miles per hour, how far have you walked? Set up a proportion and solve.
7.5 miles
7. Write 10.3% as a Decimal.
8. Write 0.3 as a Percent.
0.103

30\%
9. Write 4.2% as a Fraction.
10. Write $\frac{3}{8}$ as a Percent.
$\frac{21}{500}$
37.5\%

Pre Algebra
Unit 5 Key

Exercise 5.5
Solve each of the following using the Percent Proportion.
1. What is 20% of 15 ? 2. What is 36% of 200 ? 3. What is 128% of 30 ?

3
4. 300 is what percent of 15 ? \quad 5. 2 is 15% of what number? 6.4 is what percent of 20 ?

2000\%
7. 10 is 20% of what number? $\quad 8.2$ is 15% of what number? $\quad 9.320$ is 120% of what number?

50

American River College
10. If you currently eat 1800 calories in a day and your doctor tells you to reduce the calories you take in by 20% - how many calories is he asking you to cut back?

360 calories
11. Sacramento normally get 17.93 inches of rain a year. If it rains 15 inches this year, what percent of normal is that?
12. I saw 23 boats on the river last weekend. They said that was only 20% of normal. How many boat are normally on the river?
15. Your apartment manager has told you that your rent is going up 5%. If you currently pay $\$ 560$, how much more money will you need to pay with the increase?
Pre Algebra

Exercise 5.6	Unit 5 Key

1. What is 15% of 120 ?	2. What is 112% of 130 ?

1. What is 15% of 120 ? What is 112% of 130 ? 3 .What is 25% of 700 ?

18
4. 20 is what percent of 4 ? What percent of 120 is 6 ? 6. What percent of 300 is 15 ?

500\%

25

Unit 5 Key
13. If today's snow level of 10 feet was 20% of normal for this time of year, what is normal for this time of year?

50
14. A stereo is normally $\$ 540$, and today is on sale for 25% off. How much do you save buying it today?
15. I ate 12 oz of a $160 z$ bag of chips. What percent did I eat?
10. You are buying a $\$ 20$ item from your neighbor's son for a fundraiser. You have to calculate 8.75% sales tax. What is 8.75% of $\$ 20$?
\$1.75
11. Sacramento normally gets 17.93 inches of rain a year. If it rains 15 inches this year, what percent of normal is that?
12. A car dealer ship sold 52 cars last month. That is 120% of an average month. How many cars do they normally sell?

American River College
Exercise 5.7 NAME:_

Compute the following rounding to the nearest hundredth or hundredth of a percent where necessary

1. The governor is proposing to increase fees for community college students from $\$ 26$ a unit to $\$ 36$ a unit beginning July 2011. What percent increase is that?
38.46\%
2. The university of California could increase by 8% for the 2011-2012 school year, In 2010-2011 tuition was $\$ 10,152$. What would it be in 2011-2012 school year with this increase?
3. The state legislative office is supporting a bill that would increase fees for community college from $\$ 26$ to $\$ 40$ per unit for the 2011-2012 school year. What percent increase is that?
4. An average class attrition rate is roughly 28%. In other words the percent decrease is roughly 28%. If a class starts with 42 students, how many fewer students do you expect at the end of the semester?
11.76
5. At the beginning of the semester a math 100 class had 42 students; at the end it had 35 . What percent decrease it that?
6. Marie noticed she was eating 2100 calories a day, she began a diet and limited herself to 1300 calories a day. What is the percent decrease?
7. Sally works at a local coffee shop. She has had her hours decreased by 20% this week. If she was working 36 hours a week, what is she be working this week?
8. There were 20 vendors at a local craft fair last year, this year you were told there will 30 . What is the percent increase in vendors?

50\%
8. Joe had to put his daughter in childcare for 40 hours a week last semester, because of changes in his schedule he only needs 30 hours of childcare this year. What is the percent decrease in childcare needed?
Pre Algebra Unit 5 Key

1. If there are 7 dogs and 14 cats, write a ratio of cats to dogs.
$\frac{2}{1}$

Write a ratio for the following in lowest terms.

2. $2 \frac{1}{3} \mathrm{~cm}$ to 4 cm	3.5 .25 m to 2.25 m	4.8 days to 2 weeks
$\frac{7}{12}$	$\frac{7}{3}$	$\frac{4}{7}$

5. If you drove 400 miles on 25 gallons of gas, what is your miles per gallon?

16 mpg
6. You need to by a special seasoning for your holiday meal and have several options to choose from. What is the best deal?

4 oz for $\$ 5.89$
4.5 oz for $\$ 6.61$
$4.50 z$ is the best deal
$50 z$ for $\$ 7.40$

Pre Algebra
7. $\frac{2}{3}=\frac{7}{x}$
$\mathrm{x}=10.5$
10. If it takes 4 cups of flour to make a recipe for 6 people, How much flour do you need to make enough for 9 people?

6 cups
11. A study showed that 2 out of every 5 people voted in an election, how many people out of 750 can you assume voted?

300 people voted
12. You were able to drive 350 miles on $17 \frac{1}{2}$ gallons. How many gallons would you need to drive 725 miles?

Write the following a s a decimal
13. 12\%
14. 34.34%
15. 0.01\%
0.12
0.3434
0.0001

Write each of the following a s a percent
16. 2.25
17. 0.58
18. 0.3
225\%
58\%
30\%

Write each of the following as a fraction

19. 22%	20. 15.5%	21. $11 \frac{1}{2} \%$
$\frac{11}{50}$	$\frac{31}{200}$	$\frac{23}{200}$
22. Write $\frac{5}{8}$ as a percent.		
62.5\%		
23. What is 50% of 80 ?		24. What is 100% of 75 ?
40		75

Pre Algebra
Unit 5 Key
25. What is 10% of 64 ?
26. What is 4% of 80 ?
6.4
3.2
27. 35 is 55% of what number?
28. 70 is 150% of what number?
63.63...
$46 \frac{2}{3}$
29. 15 is what percent of 150 ?
30. 34 is what percent of 17 ?

10\%
200\%
31.You currently pay $\$ 650$ for rent and were just told by your manager to expect a 8% increase next month. How much will the increase be?
\$52
32. The parks and recreation department just announced they will only have 80% of the budget they had last year. If they had a budget of $\$ 450,000$ last year, how much will they have this year?
\$360000

Unit 5 Key
33. A certain class has 23 females out of 40 students. What percent females are there?
57.5\%
34. If Bob had $\$ 120$ in his account at the end of the month and that was only 75% of what he had last month, how much did he have last month?
\$160
35. If a school had 700 parking places at 200 of them were filled up, what percent are full?
28.57\%
36. If the school raised its tuition from $\$ 26$ to $\$ 42$ what would the percent increase be?
61.54\%
Pre Algebra Unit 5 Key
37. If you paid your credit card down to $\$ 450$ from $\$ 675$, what is the percent decrease?
33.3\%

If you went to a restaurant and had a bill for $\$ 75.36$, how much would you leave for a tip if you want to leave:
38. 10% tip?
\$7.54
39. 15% tip?
\$11.31
40. 20% tip ?
\$15.08

Exercise 6.1	NAME:__

Graph the following on the given coordinate grid, clearly label each point.

1. $\mathrm{A}(5,8)$
2. $B(-5,-9)$
3. $C(3,-8)$
4. $D(-5,7)$
5. $E(4,0)$
6. $F(0,-3)$

Identify the coordinates for each of the following points.

7. $A(-6,6)$
8. $B(\ldots, \quad, \quad)$
9. $\mathrm{C}(\ldots, \quad$, \quad) ()
10. D (_4 , , 2)
11. E (____)
12. F(\qquad _)

Milano

Pre Algebra
Unit 6 Key
15. Fill out the chart below, then plot each point on the grid.
$y=x-5$

x	y
-1	
0	
1	
2	

16. Fill out the chart below, then plot each point on the grid.
$y=5 x-2$

x	y
-1	-7
0	-2
1	3
2	8

17. Fill out the chart below, then plot each point on the grid.
$y=-3 x$

x	y
-2	
0	
2	
3	

18. Fill out the chart below, then plot each point on the grid.
$y=-2 x+5$

x	y
-2	
0	
2	
4	

19. Do you see a pattern when you plot the points that work in these equations? How many points do you need to create the pattern or path they will fall on? The create a line -2 points will be enough.

American River College

Pre Algebra

Exercise 6.2	NAME:
For problem 1-6, consider the following rectangle.	

Find the area of the rectangle with dimensions below.

1. $b=3 \mathrm{~m}, h=4 \mathrm{~m}$	2. $b=7 \mathrm{ft}, h=5 \mathrm{ft}$	3. $b=11 \mathrm{~cm}, h=4 \mathrm{~cm}$
$12 \mathrm{~m}^{2}$		

Use the given information to find the missing information.(A stands for Area.)
4. $A=27 i n^{2}, b=3 i n, h=$? \quad 5. $A=54 m^{2}, b=9 m, h=$? \quad 6. $A=72 m i^{2}, h=4 m i, b=$? 9 in

For Problems 7-12, consider the square

Find the area of the square with dimensions below.
7. $s=7 \mathrm{~mm}$
8. $s=15 f t$
9. $s=8 m$
$49 \mathrm{~mm}^{2}$

Determine the length of the side of the square with the given Area.
10. $A=36 \mathrm{in}^{2}$
$11 . A=46 \mathrm{~cm}^{2}$
12. $A=9 \mathrm{~km}^{2}$
$6 i n$

American River College

Pre Algebra
Unit 6 Key

For problems 22-24, find the missing dimension for the triangle.
22. $A=15$ in $^{2}, b=3$ in
23. $A=20 m^{2}, b=4 m$
$h=$?
$h=$? $\quad b=$?
10 in

For Problems 25-27 find the area of the circle with the given dimensions.
25. $r=7 \mathrm{~cm}$
26. $d=10$ in
27. $r=5 m$
$153.86 \mathrm{~cm}^{2}$

Find the area of the shapes below
28.

29.

$35 m^{2}$

$$
\text { 17. } A=56 m^{2}, b=7 m \quad \text { 18.. } A=144 m i^{2}, h=36 m i
$$

16. $A=22 \mathrm{in}^{2}, b=2 \mathrm{in}$
$h=$?
$b=$?
11in

Find the area of the triangles below
19.

20.
21.

Find the Perimeter (or circumference)of the shapes below
31. Rectangle
 $2 m$
32. Square

33. Parallelogram

12 m
34. Triangle
35. Circle

Radius 3 mm
36. Hexagon

12 ft .
37. If the base of a rectangle is 5 m and the Perimeter is 40 m , what is the Height?

15 m
38. If the Perimeter of a square is 28 cm , what is the length of each side?
39. If the width of a Parallelogram is 6 in , and its perimeter is 38 in , find the length.

American River College

Exercise 6.3
NAME:
Calculate the volume of each of the following
For problems 1-3 consider the rectangular prism below.

1. $l=2 f t, w=3 f t, H=4 f t$
$V=24 f t^{3}$
2. $l=\frac{2}{3} m, w=5 m, H=\frac{1}{2} m$
3. $l=2.5 i n, w=1.2 i n, H=4 i n$

For problems 4-6 consider the cylinder below.
4. $r=2.1 \mathrm{~cm}, \mathrm{H}=3 \mathrm{~cm}$
$V=41.5422 \mathrm{~cm}^{3}$
41.5422 cm

5. $r=5 i n, H=4 i n$
6. $r=\frac{1}{3} f t, H=5 f t$

For Problems 7-9 consider the Rectangular pyramid below
7. $l=\frac{1}{2} c m, w=3 \mathrm{~cm}, H=4 \mathrm{~cm} \quad V=2 \mathrm{~cm}^{3}$

Pre Algebra
Unit 6 Key
8. $l=2.1 m, w=3 m, H=4 m$
9. $l=5 f t, w=2 f t, H=6 f t$
40. Find the Area and perimeter of the rectangle below:

$A=15 \mathrm{~m}^{2}$
$P=16 m$
41. Find the Area and Perimeter of the Parallelogram below.

42. Find the Area and Circumference for the Circle Below.

For Problems 10-12 consider the cone below
10. $r=2.5 \mathrm{~cm}, H=4 \mathrm{~cm}$
$V=26 \frac{1}{6} \mathrm{~cm}^{3}$

11. $r=\frac{1}{5} f t, H=4 f t$
12. $r=6 m, H=2 m$

For Problems 13-15 consider the sphere below
13. $r=5 m$
$V=523 \frac{1}{3} m^{3}$

14. $r=\frac{1}{2} c m$
15. $r=2.2 f t$
Pre Algebra Unit 6 Key

Exercise 6.4	NAME:	
Find the following square roots		
1. $\sqrt{4}$	2. $\sqrt{9}$	3. $\sqrt{25}$
2		
4. $\sqrt{144}$	5. $\sqrt{900}$	6. $\sqrt{196}$
12		
What whole numbers do the following square roots fall between?		
7. $\sqrt{7}$	8. $\sqrt{22}$	$9 . \sqrt{120}$
2 and 3		

For Problems 10-15, refer to the triangle below.

10. $a=3 i n, b=4 i n, c=$? \quad 11. $a=5 m, b=12 m, c=? \quad$ 12. $a=6 \mathrm{ft}, b=8 \mathrm{ft}, c=$?

5in

Unit 6	NAME:_
Review $6.1-6.4$	

1. Complete the chart below by evaluating
$y=2 x+1 \quad$ Then plot the points on the graph.

x	y
0	1
1	3
2	5
3	7

2. Find the area of a rectangle whose base is 3 cm and hieght is 7 cm .
$21 \mathrm{~cm}^{2}$
3. Find the Perimeter of a parallelogram below

14 m
4. Find the area of a circle with a radius of 7feet
$153.86 f t^{2}$

6ft

For problems 9 and 10 consider the triangle
9. If $a=3 f t$ and $b=4 f t$, find c

5 ft
10. If $c=13 f$ t and $b=5 f t$, find a

12 ft
13. $c=26 f t, a=24 f t, b=$?
14. $c=5 m, a=3 m, b=$?

5ft
15. $c=15 \mathrm{in}, b=12$ in, $a=$?
16. A wheel chair ramp raises a wheel chair a vertical distance of 3 feet, in a horizontal distance of 4 feet. How long is the ramp the wheel chair travels on?

Challenge: break the following into simplified roots
$\begin{array}{lll}\text { a. } \sqrt{20} & 2 \sqrt{5} & \text { b. } \sqrt{18}\end{array}$
c. $\sqrt{32}$

American River College
Milano

Pre Algebra
Unit 6 Key
6. Find the area of the triangle below

$6 m^{2}$
7. Find the volume of the rectangular prism below.

$20 i n^{3}$
8. Find the Volume of the cone below

$65.94 m^{3}$

UNIT 1

1. Plot the following on a number line, tabel each point

Find the absolute value of the following

5. Put the following in order from least to greatest
$\left(\begin{array}{l}7,4,-2,0,-10,8 \\ -10,-2,0,4,7,8\end{array}\right.$

$$
\begin{aligned}
& a, \text { tor } a=\text { and } b=-1 \\
& 7-(-7)=7+7=14
\end{aligned}
$$

Write the following in exponential form

Pre Algebra
Course Review Unit 1-3

Unit 2

1. Write a fraction that represents the following.

2. Write an IMPROPER FRACTION and a MIXED NUMBER that represents the following.

3. Draw a number line, cleariy label $0,-\frac{3}{5}, \frac{3}{5}, 1$ and -1 .

Find the absolute value of the following.

Rewrite the following fractions to have the given denominator

Write the following in lowest terms
10. $\left.-\frac{24}{60} \because \because-\frac{2}{5}\right)$

12. $\frac{4 x^{2}}{20 x}$

22. $-\frac{2}{7}-\frac{1}{7}=\frac{-2-1}{7}$

$$
23 .-\frac{3}{5}-\left(-\frac{1}{5}\right)
$$

$$
\text { 24. }-\frac{3}{B}+\frac{1}{8}=\frac{-3+1}{8}
$$

$=\frac{-3}{7}$

$=\frac{-2}{8}$

$=-\frac{1}{6}$
25. $\frac{3}{4}-\frac{1}{8}$ $\frac{6}{8}-\frac{1}{8}=\frac{5}{8}$

26. $-\frac{1}{3}+\frac{5}{6}$ $-\frac{2}{6}+\frac{5}{6}$ | $\frac{3}{6}$ |
| :--- |
| $\frac{1}{2}$ | 27.-5 $+\frac{1}{3}$ $\frac{-15}{3}+\frac{1}{3}$

$-\frac{14}{3}$

$$
\text { 29. } 8 \frac{1}{6}-4 \frac{5}{12}
$$

$$
30.5-\left(-\frac{2}{5}\right)
$$

31. You are putting in a new counter in your kitchen, You must first put in a padding that is $\frac{1}{3}$ in thick
and the counter it self is $\frac{3}{4}$ in thick. How much thickness are you adding to the counter?

$$
\begin{aligned}
& \frac{1}{3}+\frac{3}{4} \\
& \frac{4}{12}+\frac{9}{12} \\
& \frac{13}{12}=\frac{1}{12} \mathrm{in}
\end{aligned}
$$

re Algebra

Course Review Unit 1-3

Unit 3

1. Write 4.786 in words.
four and seven nundued eighty $-5, x$ thousandths.
2. Write 5. 00 git. in words
five and six mundud susenty-one hundud-thousantths 3. Write the following as a number

Three and four hundred twenty-one thousandths
3.421
4. Write the following as a number.

Seven hundred-thousandths
.00007

Find the absolute value of the following.

$5.1-0.251 \mid$	6.17 .1231	$7 .-1-0.2351$
0.251	7.123	-0.235

Order the following by placing < or > between the numbers.
8. $4.0256>4.025$
9. $3.715 / 3.0715$
10. $-5.26<-5.206$
11. Write -5.47 as a fraction.
$-\frac{547}{100}$
12. Write 3.255 as a fraction.
$\frac{3255}{1000}=\frac{651}{200}$
13. Round -42.23715 to the nearest thousandth.
-42.237
14. Round -0.025467 to the nearest hundredth.
-0.03

Pro Algebra
15. Round $235.456 \% 8948$ to the nearest ten-thousandth. 235.4568
16. Round to the nearest dollar : $\$ 25.86$
17. You calculate the cost of a single item bought in bulk as $\$ 3.2655478$. How much would you pay for
it? 17. Yo
it?

24. Sue has $\$ 236$ in an account and writes a check for $\$ 250$. If the check clears, what is Sues account balance?

$$
\begin{aligned}
& \frac{\substack{245 \\
236}}{-14} \\
& -814 \\
& \text { overdrawn } \frac{1}{4} 4 .
\end{aligned}
$$

42. Write $\frac{3}{8}$ as a decimal.

| Review unit 4-6 NAME: KQO |
| :--- | :--- |
| Unit 4 |

Evaluate the following

1. $x-7$, for $x=$
$-5-7$
-12

Simplify
2. $2 b+4$, for $b=-2$
$2 \cdot-2+4$
$-4+4$
0

3. $47 x-3 x+4 x$	4. $12 x+4 y-3 y$	5. $22 k+j-12 k-j$
$44 x+4 x$	$12 x+4$	

$\frac{7.3 x^{2} y+x y+8 x y^{2}-5 x y}{3 x^{2} y+8 x y^{2}-4 x y}$
8. $4(x-3)$
11. $-3(2 x+6)$
$-6 x-18$

Solve

12. $2+5(x-2)$

13. $3 x-6(x-4)$
$3 x-6 x+24$
$-3 x+24$

Pere Algebra

Solve
26. $2(x-1)+12=-10$
$2 x-2+12=-10$
$\begin{aligned} & 2 x+10=-10 \\ &-10\end{aligned}$

$$
\begin{aligned}
& 27.5-2(x+1)=12-(-3) \\
& 5-2 x-2=15 \\
& 3-2 x=15 \\
&-3 \\
&-3 \\
&-2 x=12 \\
& x=-6
\end{aligned}
$$

$29.5 x-5=4(x+7)-3$
28. $8 x-5=2 x+13$
$6 x-5=13$
$\frac{6 x+5+5}{\frac{6 x}{6}=\frac{18}{6}}$
$x=3$
$5 x-5=4 x+28-3$

$$
\begin{aligned}
5 x-5 & =4 x+25 \\
x & =30
\end{aligned}
$$

30. $\frac{1}{5} x=\frac{3}{7}$
31. $x-\frac{1}{2}=\frac{2}{3}$
$x=\frac{3}{7} \cdot \frac{5}{7}$
$x=\frac{15}{7}$

Pere Algebra
Solve
17. $\frac{6 x}{6}=\frac{-24}{6}$
18. $\frac{-7 x}{-7}=\frac{-42}{-7}$
19. $-8 x=72$
$-8=-8$
$x=-4$
$x=6$
$x=-9$
20. $-2 x+7 x=72-(-3)$
21. $8 x+10-7 x=4$

22. A number decreased by thirty is twenty-two. Find the number.

$$
\begin{array}{r}
n-30=22 \\
n=52
\end{array}
$$

23. The product of a number and 4 is 32 . Find the number.

$$
\begin{aligned}
& 4 x=32 \\
& x=8
\end{aligned}
$$

Solve
24. $\begin{aligned}-3 x-7 & =8 \\ +7 & +7\end{aligned}$
25. $\begin{gathered}-2-3 x= \\ +2\end{gathered}$
$\frac{-3 x}{-3}=-\frac{5}{-3}$
$x=-5$
$-3 x=33$
$x=-11$

American River College
Milan

Are Algebra

$-2+\frac{1}{2}$
$-\frac{4}{2}+\frac{1}{2}$
34. $\frac{0.3 x}{5}=\frac{3.9}{3}$
$x=13$

Are Algebra

Unit 5

1. If you spend 6 hours studying to every 2 hours in class, what is the ratio of hours in class to hours studying?

$$
\frac{2}{6} \quad \frac{1}{3}
$$

Write a ratio for the following in lowest terms.
2. $1 \frac{1}{2} \mathrm{~cm}$ to 2 cm
3.4.2m to $3.22 m$

$$
\frac{\frac{3}{2}}{\frac{2}{1}}=\frac{3}{2} \cdot \frac{1}{2}
$$

$\frac{420}{322}=$
4. 20 hours to 2 days
$\frac{20}{2.24}=\frac{20}{48}$

5. If you drove 300 miles on 25 gallons of gas, what is your miles per gallon?

6. You need to by a special seasoning for your hot day meal and have several options to choose from. What is the best deal?
4 oz for $\$ 10.21$
Boz for $\$ 12.00$
best dea

American River College

Are Algebra

Write the following a 5 a decimal
13. 36%

$\begin{array}{r}15.0 .00083 \% \\ \hline\end{array}$

Write each of the following as a percent

Write each of the following as a fraction

$/$ Pro Algebra
7. $\frac{3}{5}=\frac{9}{x}$
$3 x=40$
$x=\frac{40}{3}$

9. $\frac{2_{\frac{2}{3}}^{x}}{x}=\frac{4^{\frac{1}{7}}}{6}$
$\frac{7}{3} \cdot 6^{2}=\frac{9}{2} \cdot x$
$14=\frac{9}{2} x$
$2.14=x$
$\frac{28}{9}=x$
10. If it takes 2 cups of flour to make a recipe for 6 people, How much flourdoyou need to make enough for 8 people?

$$
\begin{aligned}
& \frac{2}{6}=\frac{x}{8} \\
& \frac{16}{6}=\frac{6 x}{6} \\
& 8 / 3=x
\end{aligned} \quad 2 \sqrt{2 / 3 \operatorname{cups}}
$$

11. A study showed that 3 out of every 5 people voted in an election, how many people out of 1250 can you assume voted?

$$
\frac{3}{5}=\frac{x}{1250}
$$

$$
\begin{gathered}
1250 \\
37550 \\
3550
\end{gathered}
$$

$$
\begin{aligned}
& \frac{3750}{5}=\frac{5 x}{5} \quad 1750 \text { popple } \\
& 750=x
\end{aligned}
$$

12. You were able to drive 400 miles on $18 \frac{1}{2}$ gallons. How many gallons would you need to drive 800 miles?

$$
\begin{aligned}
\frac{400}{18.5} & =\frac{800}{x} \\
400 x & =800.185 \\
x & =2.16 .5 \\
\text { American Rive college } x & =37
\end{aligned}
$$

$$
18.5
$$

Pry Algebra

32. The parks and recreation department just announced they will only have 75% of the budget they had last year. If they had a budget of $\$ 400,000$ last year, how much will they have this year?

Pro Algebra
33. A certain class has 26 females out of 42 students. What percent females are there?

$$
\begin{aligned}
\frac{26}{42} & =\frac{x}{100} \\
2600 & =42 x \\
61.90 & =x
\end{aligned}
$$

34. If Bob had $\$ 320$ in his account althe end of the month and that was only 2.5% of what he had last month, how much did he have last month?

$$
\begin{aligned}
& \frac{320}{25}=\frac{.25 \cdot x}{25} \\
& 1280=x
\end{aligned}
$$

herod \$1280 last month.
35. If the school raised its tuition from $\$ 32$ to $\$ 40$ what would the percent increase be?

$$
\begin{array}{ccc}
\frac{8}{32}=\frac{x}{100} & x=25 & 3 2 \longdiv { 2 0 5 } \\
800-32 x & -64 J \\
\hline 60 \\
\hline & & 0 \% \text { incuse }
\end{array}
$$

36. If you paid your credit card down to $\$ 250$ from $\$ 450$, what is the percent decrease?

$$
\begin{array}{r}
450 \\
-250 \\
\hline 200
\end{array}
$$

$$
\begin{aligned}
& \frac{200}{450}=\frac{x}{100} \\
& \frac{20000}{450}=\frac{450 x}{450} \\
& 44.4=x \\
& 44.5 \% \text { deculase }
\end{aligned}
$$

Are Algebra
Unit 6

1. Complete the chart below by evaluating
$y=4 x \cdot 3 \quad$ Then plot the points on the graph.

2. Find the area of a rectangle whose base is 35 cm and hieght is 4 cm .
$A=b i n$

$$
\begin{aligned}
& A=15.4 \\
& A=60 \mathrm{~cm}^{2}
\end{aligned}
$$

3. Find the Perimeter of a parallelogram below

$$
p=2 l+2 w
$$

$$
P=\begin{aligned}
& 2.7+2.5 \\
& 14+10=24 \mathrm{~m}
\end{aligned}
$$

4. Find the area of a circle with a radius of feet.

$$
\begin{aligned}
A= & \pi r^{2} \\
A= & 3.14 \cdot 3^{2} \\
& 3.14 \cdot 9=28.26 \mathrm{ft}^{2}
\end{aligned}
$$

Are Algebra
6. Find the area of the triangle below

$$
\frac{20 \mathrm{~m}}{2 \frac{1}{2}{ }_{2} 15 m}
$$

8. Find the Volume of the cone below

$$
\begin{aligned}
& A=\frac{1}{3} \pi r^{2} \cdot 1 \\
& =\frac{1}{3} \cdot 3.14(2)^{2} \cdot 9 \\
& =3.14 \cdot 12 \\
& =37.68 m^{3}
\end{aligned}
$$

For problems 9 and 10 consider the rectangle
9. If $a=5 \mathrm{ft}$ and $b=12 f t$, $\mathrm{find} c$

$$
5^{2}+12^{2}=c^{2}
$$

$$
\begin{gathered}
5+14=c \\
25+144=c^{2}
\end{gathered}
$$

$$
169=c^{2}
$$

$$
\begin{aligned}
& c= \pm 13 \\
& c=13 f t
\end{aligned}
$$

10. It $c=5 f t$ and $b=3 f t$, find a

$$
13 \mathrm{Ft}=\text { width }
$$

$$
\begin{aligned}
& 5^{2}=a^{2}+3^{2} \\
& 25=a^{2}+9 \\
& \frac{-9}{16}=a^{2} \\
& \hline \text { incan River college }
\end{aligned}
$$

$$
a= \pm 4
$$

$$
\begin{aligned}
& A=\frac{1}{2} \cdot 20 \cdot 12 \frac{1}{2} \\
& A=\frac{1}{2} \cdot 20 \cdot \frac{25}{2} \\
& \begin{array}{l}
A=\mathrm{m}_{\sin }^{25} \\
\text { 7. Find the volume of the } \\
\text { in }
\end{array} \\
& V=8 \cdot 2.4 \\
& V=164 \\
& \text { v-64 } \\
& 64 i^{3}
\end{aligned}
$$

