Contribution:

OOB
UKM Literasi Informasi \& Perpustakaan Unsyiah

Electromechanical Dynamics

James R. Melcher

Herbert H. Woodson

MIT OpenCourseWare http://ocw.mit.edu

Electromechanical Dynamics

For any use or distribution of this textbook, please cite as follows:
Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics. 3 vols. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-NonCommercial-Share Alike

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

ELECTROMECHANICAL DYNAMICS

Part I: Discrete Systems

ELECTROMECHANICAL DYNAMICS

Part I: Discrete Systems

HERBERT H. WOODSON
Philip Sporn Professor of Energy Processing
Departments of Electrical and Mechanical Engineering

JAMES R. MELCHER
Associate Professor of Electrical Engineering
Department of Electrical Engineering
both of Massachusetts Institute of Technology

To our parents

PREFACE

Part I: Discrete Systems

In the early 1950's the option structure was abandoned and a common core curriculum was instituted for all electrical engineering students at M.I.T. The objective of the core curriculum was then, and is now, to provide a foundation in mathematics and science on which a student can build in his professional growth, regardless of the many opportunities in electrical engineering from which he may choose. In meeting this objective, core curriculum subjects cannot serve the needs of any professional area with respect to nomenclature, techniques, and problems unique to that area. Specialization comes in elective subjects, graduate study, and professional activities.

To be effective a core curriculum subject must be broad enough to be germane to the many directions an electrical engineer may go professionally, yet it must have adequate depth to be of lasting value. At the same time, the subject must be related to the real world by examples of application. This is true because students learn by seeing material in a familiar context, and engineering students are motivated largely by the relevance of the material to the realities of the world around them.

In the organization of the core curriculum in electrical engineering at M.I.T. electromechanics is one major component. As our core curriculum has evolved, there have been changes in emphasis and a broadening of the topic. The basic text in electromechanics until 1954, when a new departure was made, was Electric Machinery by Fitzgerald and Kingsley. This change produced Electromechanical Energy Conversion by White and Woodson, which was used until 1961. At that time we started the revision that resulted in the present book. During this period we went through many versions of notes while teaching the material three semesters a year.

Our objective has always been to teach a subject that combines classical mechanics with the fundamentals of electricity and magnetism. Thus the subject offers the opportunity to teach both mechanics and electromagnetic theory in a context vital to much of the electrical engineering community.

Our choice of material was to some extent determined by a desire to give the student a breadth of background sufficient for further study of almost any type of electromechanical interaction, whether in rotating machinery,
plasma dynamics, the electromechanics of biological systems, or magnetoelasticity. It was also chosen to achieve adequate depth while maintaining suitable unity, but, most important, examples were chosen that could be enlivened for the engineering student interested in the interplay of physical reality and the analytical model. There were many examples from which to choose, but only a few satisfied the requirement of being both mathematically lucid and physically demonstrable, so that the student could "push it or see it" and directly associate his observations with symbolic models. Among the areas of electrical engineering, electromechanics excels in offering the opportunity to establish that all-important "feel" for a physical phenomenon. Properly selected electromechanical examples can be the basis for discerning phenomena that are remote from human abilities to observe.

Before discussing how the material can be used to achieve these ends, a review of the contents is in order. The student who uses this book is assumed to have a background in electrostatics and magnetostatics. Consequently, Chapter 1 and Appendix B are essentially a review to define our starting point.

Chapter 2 is a generalization of the concepts of inductance and capacitance that are necessary to the treatment of electromechanical systems; it also provides a brief introduction to rigid-body mechanics. This treatment is included because many curricula no longer cover mechanics, other than particle mechanics in freshman physics. The basic ideas of Chapter 2 are repeated in Chapter 3 to establish some properties of electromechanical coupling in lumped-parameter systems and to obtain differential equations that describe the dynamics of lumped-parameter systems.

Next, the techniques of Chapters 2 and 3 are used to study rotating machines in Chapter 4. Physical models are defined, differential equations are written, machine types are classified, and steady-state characteristics are obtained and discussed. A separate chapter on rotating machines has been included not only because of the technological importance of machines but also because rotating machines are rich in examples of the kinds of phenomena that can be found in lumped-parameter electromechanical systems.

Chapter 5 is devoted to the study, with examples, of the dynamic behavior of lumped-parameter systems. Virtually all electromechanical systems are mathematically nonlinear; nonetheless, linear incremental models are useful for studying the stability of equilibria and the nature of the dynamical behavior in the vicinity of an equilibrium. The second half of this chapter develops the classic potential-well motions and loss-dominated dynamics in the context of electromechanics. These studies of nonlinear dynamics afford an opportunity to place linear models in perspective while forming further insights on the physical significance of, for example, flux conservation and state functions.

Chapter 6 represents our first departure from lumped-parameter systems into continuum systems with a discussion of how observers in relative motion will define and measure field quantities and the related effects of material motion on electromagnetic fields. It is our belief that dc rotating machines are most easily understood in this context. Certainly they are a good demonstration of field transformations at work.
As part of any continuum electromechanics problem, one must know how the electric and magnetic fields are influenced by excitations and motion. In quasi-static systems the distribution of charge and current are controlled by magnetic diffusion and charge relaxation, the subjects of Chapter 7. In Chapter 7 simple examples isolate significant cases of magnetic diffusion or charge relaxation, so that the physical processes involved can be better understood.

Chapters 6 and 7 describe the electrical side of a continuum electromechanical system with the material motion predetermined. The mechanical side of the subject is undertaken in Chapter 8 in a study of force densities of electric and magnetic origin. Because it is a useful concept in the analysis of many systems, we introduce the Maxwell stress tensor. The study of useful properties of tensors sets the stage for later use of mechanical stress tensors in elastic and fluid media.
At this point the additional ingredient necessary to the study of continuum electromechanics is the mechanical medium. In Chapter 9 we introduce simple elastic continua-longitudinal motion of a thin rod and transverse motion of wires and membranes. These models are used to study simple continuum mechanical motions (nondispersive waves) as excited electromechanically at boundaries.
Next, in Chapter 10 a string or membrane is coupled on a continuum basis to electric and magnetic fields and the variety of resulting dynamic behavior is studied. The unifying thread of this treatment is the dispersion equation that relates complex frequency ω with complex wavenumber k. Without material convection there can be simple nondispersive waves, cut off or evanescent waves, absolute instabilities, and diffusion waves. The effect of material convection on evanescent waves and oscillations and on wave amplification are topics that make a strong connection with electron beam and plasma dynamics. The method of characteristics is introduced as a convenient tool in the study of wave propagation.

In Chapter 11 the concepts and techniques of Chapters 9 and 10 are extended to three-dimensional systems. Strain displacement and stress-strain relations are introduced, with tensor concepts, and simple electromechanical examples of three-dimensional elasticity are given.
In Chapter 12 we turn to a different mechanical medium, a fluid. We first study electromechanical interactions with inviscid, incompressible
fluids to establish essential phenomena in the simplest context. It is here that we introduce the basic notions of MHD energy conversion that can result when a conducting fluid flows through a transverse magnetic field. We also bring in electric-field interactions with fluids, in which ion drag phenomena are used as an example. In addition to these basically conducting processes, we treat the electromechanical consequences of polarization and magnetization in fluids. We demonstrate how highly conducting fluids immersed in magnetic fields can propagate Alfvén waves.

In Chapter 13 we introduce compressibility to the fluid model. This can have a marked effect on electromechanical behavior, as demonstrated with the MHD conduction machine. With compressibility, a fluid will propagate longitudinal disturbances (acoustic waves). A transverse magnetic field and high electrical conductivity modify these disturbances to magnetoacoustic waves.

Finally, in Chapter 14 we add viscosity to the fluid model and study the consequences in electromechanical interactions with steady flow. Hartmann flow demonstrates the effect of viscosity on the dc magnetohydrodynamic machine.

To be successful a text must have a theme; the material must be interrelated. Our philosophy has been to get into the subject where the student is most comfortable, with lumped-parameter (circuit) concepts. Thus many of the subtle approximations associated with quasi-statics are made naturally, and the student is faced with the implications of what he has assumed only after having become thoroughly familiar with the physical significance and usefulness of his approximations. By the time he reaches Chapter 4 he will have drawn a circle around at least a class of problems in which electromagnetic fields interact usefully with media in motion.

In dealing with physical and mathematical subjects, as we are here, in which the job is incomplete unless the student sees the physical laws put to work in some kind of physical embodiment, it is necessary for the thread of continuity to be woven into the material in diverse and subtle ways. A number of attempts have been made, to which we can add our early versions of notes, to write texts with one obvious, pedagogically logical basis for evolving the material; for example, it can be recognized that classes of physical phenomena could be grouped according to the differential equation that describes the pertinent dynamics. Thus we could treat magnetic diffusion, diffusion waves on elastic continua, and viscous diffusion waves in one chapter, even though the physical embodiments are entirely different. Alternatively, we could devise a subject limited to certain technological applications or cover superficially a wide range of basically unrelated topics such as "energy conversion" under one heading. This was the prevalent approach in engineering education a decade or so ago, even at the
undergraduate level. It seems clear to us that organizing material in a teachable and meaningful fashion is far more demanding than this. To confess our own mistakes, our material went originally from the general to the specific; it began with the relativistic form of Maxwell's equations, including the effects of motion, and ended with lumped-parameter devices as special cases. Even if this were a pedagogically tenable approach, which we found it was not, what a bad example to set for students who should be learning to distinguish between the essential and the superfluous! Ideas connected with the propagation of electromagnetic waves (relativistic ideas) must be included in the curriculum, but their connection with media in motion should be made after the student is aware of the first-order issues.

A meaningful presentation to engineers must interweave and interrelate mathematical concepts, physical characteristics, the modeling process, and the establishment of a physical "feel" for the world of reality. Our approach is to come to grips with each of these goals as quickly as possible (let the student "get wet" within the first two weeks) and then, while reinforcing what he has learned, continually add something new. Thus, if one looks, he will see the same ideas coming into the flow of material over and over again.

For the organization of this book one should look for many threads of different types. We can list here only a few, in the hope that the subtle reinforcing interplay of mathematical and physical threads will be made evident. Probably the essential theme is Maxwell's equations and the ideas of quasi-statics. The material introduced in Chapter 1 is completely abstract, but it is reinforced in the first few chapters with material that is close to home for the student. By the time he reaches Chapter 10 he will have learned that waves exist which intimately involve electric and magnetic fields that are altogether quasistatic. (This is something that comes as a surprise to many late in life.) Lumped-parameter ideas are based on the integral forms of Maxwell's equations, so that the dynamical effects found with lumpedparameter time constants L / R and $R C$ in Chapter 5 are easily associated with the subjects of magnetic diffusion and charge relaxation. A close tie is made between the "speed voltage" of Chapter 5 and the effects of motion on magnetic fields, as described by field transformations in Chapters 6 to 14. Constant flux dynamics of a lumped coil in Chapter 5 are strongly associated with the dynamics of perfectly conducting continuous media; for example, Alfvén waves in Chapter 12.

Consider another thread of continuity. The book begins with the mathematics of circuit theory. The machines of Chapter 4 are essentially circuits in the sinusoidal steady state. In Chapter 5 we linearize to pursue lumpedparameter ideas of stability and other transient responses and then proceed to nonlinear dynamics, potential-well theory, and other approaches that should form a part of any engineer's mathematical background. By the time
the end of Chapter 10 is reached these ideas will have been carried into the continuum with the addition of tensor concepts, simple cases of the method of characteristics, and eigenvalue theory. The $\omega-k$ plot and its implication for all sorts of subjects in modern electrical engineering can be considered as a mathematical or a physical objective. The ideas of stability introduced with ordinary differential equations ($\exp s t$) in Chapter 5 evolve into the continuum stability studies of Chapter $10[\exp j(\omega t-k x)]$ and can be regarded as a mathematical or a physical thread in our treatment. We could list many other threads: witness the evolution of energy and thermodynamic notions from Chapters 3 to 5,5 to 8 , and 8 to 13 .

We hope that this book is not just one more in the mathematics of electrical engineering or the technical aspects of rotating machines, transducers, delay lines, MHD converters, and so on, but rather that it is the mathematics, the physics, and, most of all, the engineering combined into one.

The material brought together here can be used in a variety of ways. It has been used by Professors C. N. Weygandt and F. D. Ketterer at the University of Pennsylvania for two subjects. The first restricts attention to Chapters 1 to 6 and Appendix B for a course in lumped-parameter electromechanics that both supplants the traditional one on rotating machines in the electrical engineering curriculum and gives the background required for further study in a second term (elective) covering Chapter 7 and beyond. Professors C. D. Hendricks and J. M. Crowley at the University of Illinois have used the material to follow a format that covers up through Chapter 10 in one term but omits much of the material in Chapter 7. Professor W. D. Getty at the University of Michigan has used the material to follow a one-term subject in lumped-parameter electromechanics taught from a different set of notes. Thus he has been able to use the early chapters as a review and to get well into the later chapters in a one-term subject.

At M.I.T. our curriculum seems always to be in a state of change. It is clear that much of the material, Chapters 1 to 10 , will be part of our required (core) curriculum for the forseeable future, but the manner in which it is packaged is continually changing. During the fall term, 1967, we covered Chapters 1 to 10 in a one-semester subject taught to juniors and seniors. The material from Chapters 4 and 6 on rotating machines was used selectively, so that students had "a foot solidly in the door" on this important subject but also that the coverage could retain an orientation toward the needs of all the diverse areas found in electrical engineering today. We have found the material useful as the basis for early graduate work and as a starting point in several courses related to electromechanics.

Finally, to those who open this book and then close it with the benediction, "good material but unteachable," we apologize because to them we have not made our point. Perhaps not as presented here, but certainly as it is
represented here, this material is rich in teaching possibilities. The demands on the teacher to see the subject in its total context, especially the related problems that lie between the lines, are significant. We have taught this subject many times to undergraduates, yet each term has been more enjoyable than the last. There are so many ways in which drama can be added to the material, and we do not need to ask the students (bless them) when we have been successful in doing so.
In developing this material we have found lecture demonstrations and demonstration films to be most helpful, both for motivation and for developing understanding. We have learned that when we want a student to see a particular phenomenon it is far better for us to do the experiment and let the student focus his attention on what he should see rather than on the wrong connections and blown fuses that result when he tries to do the experiment himself. The most successful experiments are often the simplestthose that give the student an opportunity to handle the apparatus himself. Every student should "chop up some magnetic field lines" with a copper "axe" or he will never really appreciate the subject. We have also found that some of the more complex demonstrations that are difficult and expensive to store and resurrect each semester come through very well in films. In addition to our own short films, three films have been produced professionally in connection with this material for the National Committee on Electrical Engineering Films, under a grant from the National Science Foundation, by the Education Development Center, Newton, Mass.

> Synchronous Machines: Electromechanical Dynamics by H. H. Woodson
> Complex Waves I: Propagation, Evanescence and Instability by J. R. Melcher

> Complex Waves II: Instability, Convection and Amplification by J. R. Melcher

An additional film is in the early stages of production. Other films that are useful have been produced by the Education Development Center for the National Committee on Fluid Mechanics Films and for the College Physics Film Program. Of particular interest, from the former series, is Magnetohydrodynamics by Arthur Shercliff.
A book like this can be produced only with plenty of assistance. We gratefully acknowledge the help we received from many directions and hope we have forgotten no one after seven years of work. First of all we want to acknowledge our students with whom we worked as the material developed. They are the one most essential ingredient in an effort of this sort. Next we want to thank Dr. S. I. Freedman, Professor H. H. Richardson, and Dr. C. V. Smith, Jr., for their assistance in framing worthwhile approaches to several of our key topics. In seven years we have had the help of many able
teachers in presenting this material to students. Their discussions and advice have been most useful. In this category we want particularly to mention Professors H. A. Haus, P. L. Penfield, D. C. White, G. L. Wilson, R. Gallager, and E. Pierson and Doctors J. Reynolds, W. H. Heiser, and A. Kusko. Professor Ketterer, who has taught this material at M.I.T. and the University of Pennsylvania, Professors C. D. Hendricks and J. M. Crowley, who have taught it at M.I.T. and the University of Illinois, and Professor W. D. Getty, who has taught it at M.I.T. and the University of Michigan, have been most generous with their comments. Messrs. Edmund Devitt, John Dressler, and Dr. Kent Edwards have checked the correctness of many of the mathematical treatments. Such a task as typing a manuscript repeatedly is enough to try the patience of anyone. Our young ladies of the keyboard, Miss M. A. Daly, Mrs. D. S. Figgins, Mrs. B. S. Morton, Mrs. E. M. Holmes, and Mrs. M. Mazroff, have been gentle and kind with us.

A lengthy undertaking of this sort can be successful only when it has the backing of a sympathetic administration. This work was started with the helpful support of Professor P. Elias, who was then head of the Department of Electrical Engineering at M.I.T. It was finished with the active encouragement of Professor L. D. Smullin, who is presently head of the Department.

Finally, and most sincerely, we want to acknowledge the perseverance of our families during this effort. Our wives, Blanche S. Woodson and Janet D. Melcher, have been particularly tolerant of the demands of this work.

This book appears in three separately bound, consecutively paged parts that can be used individually or in any combination. Flexibility is ensured by including with each part a complete Table of Contents and Index. In addition, for convenient reference, Parts II and III are supplemented by brief appendices which summarize the relevant material from the preceding chapters. Part I includes Chapters 1 to 6, hence emphasizes lumped-parameter models while developing background in field concepts for further studies.

H. H. Woodson
J. R. Melcher

Cambridge, Massachusetts
January 1968

ELECTROMECHANICAL DYNAMICS

Part II: Fields, Forces, and Motion

ELECTROMECHANICAL DYNAMICS

Part II: Fields, Forces, and Motion

HERBERT H. WOODSON
Philip Sporn Professor of Energy Processing Departments of Electrical and Mechanical Engineering

JAMES R. MELCHER
Associate Professor of Electrical Engineering
Department of Electrical Engineering
both of Massachusetts Institute of Technology

To our parents

-

PREFACE

Part II: Fields, Forces, and Motion

In the early 1950's the option structure was abandoned and a common core curriculum was instituted for all electrical engineering students at M.I.T. The objective of the core curriculum was then, and is now, to provide a foundation in mathematics and science on which a student can build in his professional growth, regardless of the many opportunities in electrical engineering from which he may choose. In meeting this objective, core curriculum subjects cannot serve the needs of any professional area with respect to nomenclature, techniques, and problems unique to that area. Specialization comes in elective subjects, graduate study, and professional activities.

To be effective a core curriculum subject must be broad enough to be germane to the many directions an electrical engineer may go professionally, yet it must have adequate depth to be of lasting value. At the same time, the subject must be related to the real world by examples of application. This is true because students learn by seeing material in a familiar context, and engineering students are motivated largely by the relevance of the material to the realities of the world around them.
In the organization of the core curriculum in electrical engineering at M.I.T. electromechanics is one major component. As our core curriculum has evolved, there have been changes in emphasis and a broadening of the topic. The basic text in electromechanics until 1954, when a new departure was made, was Electric Machinery by Fitzgerald and Kingsley. This change produced Electromechanical Energy Conversion by White and Woodson, which was used until 1961. At that time we started the revision that resulted in the present book. During this period we went through many versions of notes while teaching the material three semesters a year.

Our objective has always been to teach a subject that combines classical mechanics with the fundamentals of electricity and magnetism. Thus the subject offers the opportunity to teach both mechanics and electromagnetic theory in a context vital to much of the electrical engineering community.

Our choice of material was to some extent determined by a desire to give the student a breadth of background sufficient for further study of almost any type of electromechanical interaction, whether in rotating machinery,
plasma dynamics, the electromechanics of biological systems, or magnetoelasticity. It was also chosen to achieve adequate depth while maintaining suitable unity, but, most important, examples were chosen that could be enlivened for the engineering student interested in the interplay of physical reality and the analytical model. There were many examples from which to choose, but only a few satisfied the requirement of being both mathematically lucid and physically demonstrable, so that the student could "push it or see it" and directly associate his observations with symbolic models. Among the areas of electrical engineering, electromechanics excels in offering the opportunity to establish that all-important "feel" for a physical phenomenon. Properly selected electromechanical examples can be the basis for discerning phenomena that are remote from human abilities to observe.

Before discussing how the material can be used to achieve these ends, a review of the contents is in order. The student who uses this book is assumed to have a background in electrostatics and magnetostatics. Consequently, Chapter 1 and Appendix B are essentially a review to define our starting point.

Chapter 2 is a generalization of the concepts of inductance and capacitance that are necessary to the treatment of electromechanical systems; it also provides a brief introduction to rigid-body mechanics. This treatment is included because many curricula no longer cover mechanics, other than particle mechanics in freshman physics. The basic ideas of Chapter 2 are repeated in Chapter 3 to establish some properties of electromechanical coupling in lumped-parameter systems and to obtain differential equations that describe the dynamics of lumped-parameter systems.

Next, the techniques of Chapters 2 and 3 are used to study rotating machines in Chapter 4. Physical models are defined, differential equations are written, machine types are classified, and steady-state characteristics are obtained and discussed. A separate chapter on rotating machines has been included not only because of the technological importance of machines but also because rotating machines are rich in examples of the kinds of phenomena that can be found in lumped-parameter electromechanical systems.

Chapter 5 is devoted to the study, with examples, of the dynamic behavior of lumped-parameter systems. Virtually all electromechanical systems are mathematically nonlinear; nonetheless, linear incremental models are useful for studying the stability of equilibria and the nature of the dynamical behavior in the vicinity of an equilibrium. The second half of this chapter develops the classic potential-well motions and loss-dominated dynamics in the context of electromechanics. These studies of nonlinear dynamics afford an opportunity to place linear models in perspective while forming further insights on the physical significance of, for example, flux conservation and state functions.

Chapter 6 represents our first departure from lumped-parameter systems into continuum systems with a discussion of how observers in relative motion will define and measure field quantities and the related effects of material motion on electromagnetic fields. It is our belief that dc rotating machines are most easily understood in this context. Certainly they are a good demonstration of field transformations at work.

As part of any continuum electromechanics problem, one must know how the electric and magnetic fields are influenced by excitations and motion. In quasi-static systems the distribution of charge and current are controlled by magnetic diffusion and charge relaxation, the subjects of Chapter 7. In Chapter 7 simple examples isolate significant cases of magnetic diffusion or charge relaxation, so that the physical processes involved can be better understood.

Chapters 6 and 7 describe the electrical side of a continuum electromechanical system with the material motion predetermined. The mechanical side of the subject is undertaken in Chapter 8 in a study of force densities of electric and magnetic origin. Because it is a useful concept in the analysis of many systems, we introduce the Maxwell stress tensor. The study of useful properties of tensors sets the stage for later use of mechanical stress tensors in elastic and fluid media.

At this point the additional ingredient necessary to the study of continuum electromechanics is the mechanical medium. In Chapter 9 we introduce simple elastic continua-longitudinal motion of a thin rod and transverse motion of wires and membranes. These models are used to study simple continuum mechanical motions (nondispersive waves) as excited electromechanically at boundaries.

Next, in Chapter 10 a string or membrane is coupled on a continuum basis to electric and magnetic fields and the variety of resulting dynamic behavior is studied. The unifying thread of this treatment is the dispersion equation that relates complex frequency ω with complex wavenumber k. Without material convection there can be simple nondispersive waves, cut off or evanescent waves, absolute instabilities, and diffusion waves. The effect of material convection on evanescent waves and oscillations and on wave amplification are topics that make a strong connection with electron beam and plasma dynamics. The method of characteristics is introduced as a convenient tool in the study of wave propagation.
In Chapter 11 the concepts and techniques of Chapters 9 and 10 are extended to three-dimensional systems. Strain displacement and stress-strain relations are introduced, with tensor concepts, and simple electromechanical examples of three-dimensional elasticity are given.

In Chapter 12 we turn to a different mechanical medium, a fluid. We first study electromechanical interactions with inviscid, incompressible
fluids to establish essential phenomena in the simplest context. It is here that we introduce the basic notions of MHD energy conversion that can result when a conducting fluid flows through a transverse magnetic field. We also bring in electric-field interactions with fluids, in which ion drag phenomena are used as an example. In addition to these basically conducting processes, we treat the electromechanical consequences of polarization and magnetization in fluids. We demonstrate how highly conducting fluids immersed in magnetic fields can propagate Alfvén waves.
In Chapter 13 we introduce compressibility to the fluid model. This can have a marked effect on electromechanical behavior, as demonstrated with the MHD conduction machine. With compressibility, a fluid will propagate longitudinal disturbances (acoustic waves). A transverse magnetic field and high electrical conductivity modify these disturbances to magnetoacoustic waves.

Finally, in Chapter 14 we add viscosity to the fluid model and study the consequences in electromechanical interactions with steady flow. Hartmann flow demonstrates the effect of viscosity on the dc magnetohydrodynamic machine.

To be successful a text must have a theme; the material must be interrelated. Our philosophy has been to get into the subject where the student is most comfortable, with lumped-parameter (circuit) concepts. Thus many of the subtle approximations associated with quasi-statics are made naturally, and the student is faced with the implications of what he has assumed only after having become thoroughly familiar with the physical significance and usefulness of his approximations. By the time he reaches Chapter 4 he will have drawn a circle around at least a class of problems in which electromagnetic fields interact usefully with media in motion.

In dealing with physical and mathematical subjects, as we are here, in which the job is incomplete unless the student sees the physical laws put to work in some kind of physical embodiment, it is necessary for the thread of continuity to be woven into the material in diverse and subtle ways. A number of attempts have been made, to which we can add our early versions of notes, to write texts with one obvious, pedagogically logical basis for evolving the material; for example, it can be recognized that classes of physical phenomena could be grouped according to the differential equation that describes the pertinent dynamics. Thus we could treat magnetic diffusion, diffusion waves on elastic continua, and viscous diffusion waves in one chapter, even though the physical embodiments are entirely different. Alternatively, we could devise a subject limited to certain technological applications or cover superficially a wide range of basically unrelated topics such as "energy conversion" under one heading. This was the prevalent approach in engineering education a decade or so ago, even at the
undergraduate level. It seems clear to us that organizing material in a teachable and meaningful fashion is far more demanding than this. To confess our own mistakes, our material went originally from the general to the specific; it began with the relativistic form of Maxwell's equations, including the effects of motion, and ended with lumped-parameter devices as special cases. Even if this were a pedagogically tenable approach, which we found it was not, what a bad example to set for students who should be learning to distinguish between the essential and the superfluous! Ideas connected with the propagation of electromagnetic waves (relativistic ideas) must be included in the curriculum, but their connection with media in motion should be made after the student is aware of the first-order issues.
A meaningful presentation to engineers must interweave and interrelate mathematical concepts, physical characteristics, the modeling process, and the establishment of a physical "feel" for the world of reality. Our approach is to come to grips with each of these goals as quickly as possible (let the student "get wet" within the first two weeks) and then, while reinforcing what he has learned, continually add something new. Thus, if one looks, he will see the same ideas coming into the flow of material over and over again.

For the organization of this book one should look for many threads of different types. We can list here only a few, in the hope that the subtle reinforcing interplay of mathematical and physical threads will be made evident. Probably the essential theme is Maxwell's equations and the ideas of quasi-statics. The material introduced in Chapter 1 is completely abstract, but it is reinforced in the first few chapters with material that is close to home for the student. By the time he reaches Chapter 10 he will have learned that waves exist which intimately involve electric and magnetic fields that are altogether quasistatic. (This is something that comes as a surprise to many late in life.) Lumped-parameter ideas are based on the integral forms of Maxwell's equations, so that the dynamical effects found with lumpedparameter time constants L / R and $R C$ in Chapter 5 are easily associated with the subjects of magnetic diffusion and charge relaxation. A close tie is made between the "speed voltage" of Chapter 5 and the effects of motion on magnetic fields, as described by field transformations in Chapters 6 to 14. Constant flux dynamics of a lumped coil in Chapter 5 are strongly associated with the dynamics of perfectly conducting continuous media; for example, Alfvén waves in Chapter 12.
Consider another thread of continuity. The book begins with the mathematics of circuit theory. The machines of Chapter 4 are essentially circuits in the sinusoidal steady state. In Chapter 5 we linearize to pursue lumpedparameter ideas of stability and other transient responses and then proceed to nonlinear dynamics, potential-well theory, and other approaches that should form a part of any engineer's mathematical background. By the time
the end of Chapter 10 is reached these ideas will have been carried into the continuum with the addition of tensor concepts, simple cases of the method of characteristics, and eigenvalue theory. The $\omega-k$ plot and its implication for all sorts of subjects in modern electrical engineering can be considered as a mathematical or a physical objective. The ideas of stability introduced with ordinary differential equations ($\exp s t$) in Chapter 5 evolve into the continuum stability studies of Chapter $10[\exp j(\omega t-k x)]$ and can be regarded as a mathematical or a physical thread in our treatment. We could list many other threads: witness the evolution of energy and thermodynamic notions from Chapters 3 to 5,5 to 8 , and 8 to 13 .

We hope that this book is not just one more in the mathematics of electrical engineering or the technical aspects of rotating machines, transducers, delay lines, MHD converters, and so on, but rather that it is the mathematics, the physics, and, most of all, the engineering combined into one.

The material brought together here can be used in a variety of ways. It has been used by Professors C. N. Weygandt and F. D. Ketterer at the University of Pennsylvania for two subjects. The first restricts attention to Chapters 1 to 6 and Appendix B for a course in lumped-parameter electromechanics that both supplants the traditional one on rotating machines in the electrical engineering curriculum and gives the background required for further study in a second term (elective) covering Chapter 7 and beyond. Professors C. D. Hendricks and J. M. Crowley at the University of Illinois have used the material to follow a format that covers up through Chapter 10 in one term but omits much of the material in Chapter 7. Professor W. D. Getty at the University of Michigan has used the material to follow a one-term subject in lumped-parameter electromechanics taught from a different set of notes. Thus he has been able to use the early chapters as a review and to get well into the later chapters in a one-term subject.

At M.I.T. our curriculum seems always to be in a state of change. It is clear that much of the material, Chapters 1 to 10 , will be part of our required (core) curriculum for the forseeable future, but the manner in which it is packaged is continually changing. During the fall term, 1967, we covered Chapters 1 to 10 in a one-semester subject taught to juniors and seniors. The material from Chapters 4 and 6 on rotating machines was used selectively, so that students had "a foot solidly in the door" on this important subject but also that the coverage could retain an orientation toward the needs of all the diverse areas found in electrical engineering today. We have found the material useful as the basis for early graduate work and as a starting point in several courses related to electromechanics.

Finally, to those who open this book and then close it with the benediction, "good material but unteachable," we apologize because to them we have not made our point. Perhaps not as presented here, but certainly as it is
represented here, this material is rich in teaching possibilities. The demands on the teacher to see the subject in its total context, especially the related problems that lie between the lines, are significant. We have taught this subject many times to undergraduates, yet each term has been more enjoyable than the last. There are so many ways in which drama can be added to the material, and we do not need to ask the students (bless them) when we have been successful in doing so.
In developing this material we have found lecture demonstrations and demonstration films to be most helpful, both for motivation and for developing understanding. We have learned that when we want a student to see a particular phenomenon it is far better for us to do the experiment and let the student focus his attention on what he should see rather than on the wrong connections and blown fuses that result when he tries to do the experiment himself. The most successful experiments are often the simplestthose that give the student an opportunity to handle the apparatus himself. Every student should "chop up some magnetic field lines" with a copper "axe" or he will never really appreciate the subject. We have also found that some of the more complex demonstrations that are difficult and expensive to store and resurrect each semester come through very well in films. In addition to our own short films, three films have been produced professionally in connection with this material for the National Committee on Electrical Engineering Films, under a grant from the National Science Foundation, by the Education Development Center, Newton, Mass.

Synchronous Machines: Electromechanical Dynamics by H. H. Woodson
 Complex Waves I: Propagation, Evanescence and Instability by J. R. Melcher
 Complex Waves II: Instability, Convection and Amplification by J. R. Melcher

An additional film is in the early stages of production. Other films that are useful have been produced by the Education Development Center for the National Committee on Fluid Mechanics Films and for the College Physics Film Program. Of particular interest, from the former series, is Magnetohydrodynamics by Arthur Shercliff.
A book like this can be produced only with plenty of assistance. We gratefully acknowledge the help we received from many directions and hope we have forgotten no one after seven years of work. First of all we want to acknowledge our students with whom we worked as the material developed. They are the one most essential ingredient in an effort of this sort. Next we want to thank Dr. S. I. Freedman, Professor H. H. Richardson, and Dr. C. V. Smith, Jr., for their assistance in framing worthwhile approaches to several of our key topics. In seven years we have had the help of many able
teachers in presenting this material to students. Their discussions and advice have been most useful. In this category we want particularly to mention Professors H. A. Haus, P. L. Penfield, D. C. White, G. L. Wilson, R. Gallager, and E. Pierson and Doctors J. Reynolds, W. H. Heiser, and A. Kusko. Professor Ketterer, who has taught this material at M.I.T. and the University of Pennsylvania, Professors C. D. Hendricks and J. M. Crowley, who have taught it at M.I.T. and the University of Illinois, and Professor W. D. Getty, who has taught it at M.I.T. and the University of Michigan, have been most generous with their comments. Messrs. Edmund Devitt, John Dressler, and Dr. Kent Edwards have checked the correctness of many of the mathematical treatments. Such a task as typing a manuscript repeatedly is enough to try the patience of anyone. Our young ladies of the keyboard, Miss M. A. Daly, Mrs. D. S. Figgins, Mrs. B. S. Morton, Mrs. E. M. Holmes, and Mrs. M. Mazroff, have been gentle and kind with us.

A lengthy undertaking of this sort can be successful only when it has the backing of a sympathetic administration. This work was started with the helpful support of Professor P. Elias, who was then head of the Department of Electrical Engineering at M.I.T. It was finished with the active encouragement of Professor L. D. Smullin, who is presently head of the Department.
Finally, and most sincerely, we want to acknowledge the perseverance of our families during this effort. Our wives, Blanche S. Woodson and Janet D. Melcher, have been particularly tolerant of the demands of this work.

This book appears in three separately bound, consecutively paged parts that can be used individually or in any combination. Flexibility is ensured by including with each part a complete Table of Contents and Index. In addition, for convenient reference, Parts II and III are supplemented by brief appendices which summarize the relevant material from the preceding chapters. Part II, Chapters 7 to 10, develops interactions between moving media and fields with simple mechanical models that illustrate the dynamics of continuum electromechanical systems.
H. H. Woodson
J. R. Melcher

Cambridge, Massachusetts
January 1968

ELECTROMECHANICAL DYNAMICS

Part III: Elastic and Fluid Media

ELECTROMECHANICAL DYNAMICS

Part III: Elastic and Fluid Media

HERBERT H. WOODSON
Philip Sporn Professor of Energy Processing Departments of Electrical and Mechanical Engineering

JAMES R. MELCHER
Associate Professor of Electrical Engineering Department of Electrical Engineering
both of Massachusetts Institute of Technology

To our parents

$$
\underline{V}_{\underline{\pi}}+3 \cos k
$$

PREFACE

Part III: Elastic and Fluid Media

In the early 1950's the option structure was abandoned and a common core curriculum was instituted for all electrical engineering students at M.I.T. The objective of the core curriculum was then, and is now, to provide a foundation in mathematics and science on which a student can build in his professional growth, regardless of the many opportunities in electrical engineering from which he may choose. In meeting this objective, core curriculum subjects cannot serve the needs of any professional area with respect to nomenclature, techniques, and problems unique to that area. Specialization comes in elective subjects, graduate study, and professional activities.

To be effective a core curriculum subject must be broad enough to be germane to the many directions an electrical engineer may go professionally, yet it must have adequate depth to be of lasting value. At the same time, the subject must be related to the real world by examples of application. This is true because students learn by seeing material in a familiar context, and engineering students are motivated largely by the relevance of the material to the realities of the world around them.

In the organization of the core curriculum in electrical engineering at M.I.T. electromechanics is one major component. As our core curriculum has evolved, there have been changes in emphasis and a broadening of the topic. The basic text in electromechanics until 1954, when a new departure was made, was Electric Machinery by Fitzgerald and Kingsley. This change produced Electromechanical Energy Conversion by White and Woodson, which was used until 1961. At that time we started the revision that resulted in the present book. During this period we went through many versions of notes while teaching the material three semesters a year.

Our objective has always been to teach a subject that combines classical mechanics with the fundamentals of electricity and magnetism. Thus the subject offers the opportunity to teach both mechanics and electromagnetic theory in a context vital to much of the electrical engineering community.
Our choice of material was to some extent determined by a desire to give the student a breadth of background sufficient for further study of almost any type of electromechanical interaction, whether in rotating machinery,
plasma dynamics, the electromechanics of biological systems, or magnetoelasticity. It was also chosen to achieve adequate depth while maintaining suitable unity, but, most important, examples were chosen that could be enlivened for the engineering student interested in the interplay of physical reality and the analytical model. There were many examples from which to choose, but only a few satisfied the requirement of being both mathematically lucid and physically demonstrable, so that the student could "push it or see it" and directly associate his observations with symbolic models. Among the areas of electrical engineering, electromechanics excels in offering the opportunity to establish that all-important "feel" for a physical phenomenon. Properly selected electromechanical examples can be the basis for discerning phenomena that are remote from human abilities to observe.

Before discussing how the material can be used to achieve these ends, a review of the contents is in order. The student who uses this book is assumed to have a background in electrostatics and magnetostatics. Consequently, Chapter 1 and Appendix B are essentially a review to define our starting point.

Chapter 2 is a generalization of the concepts of inductance and capacitance that are necessary to the treatment of electromechanical systems; it also provides a brief introduction to rigid-body mechanics. This treatment is included because many curricula no longer cover mechanics, other than particle mechanics in freshman physics. The basic ideas of Chapter 2 are repeated in Chapter 3 to establish some properties of electromechanical coupling in lumped-parameter systems and to obtain differential equations that describe the dynamics of lumped-parameter systems.
Next, the techniques of Chapters 2 and 3 are used to study rotating machines in Chapter 4. Physical models are defined, differential equations are written, machine types are classified, and steady-state characteristics are obtained and discussed. A separate chapter on rotating machines has been included not only because of the technological importance of machines but also because rotating machines are rich in examples of the kinds of phenomena that can be found in lumped-parameter electromechanical systems.
Chapter 5 is devoted to the study, with examples, of the dynamic behavior of lumped-parameter systems. Virtually all electromechanical systems are mathematically nonlinear; nonetheless, linear incremental models are useful for studying the stability of equilibria and the nature of the dynamical behavior in the vicinity of an equilibrium. The second half of this chapter develops the classic potential-well motions and loss-dominated dynamics in the context of electromechanics. These studies of nonlinear dynamics afford an opportunity to place linear models in perspective while forming further insights on the physical significance of, for example, flux conservation and state functions.

Chapter 6 represents our first departure from lumped-parameter systems into continuum systems with a discussion of how observers in relative motion will define and measure field quantities and the related effects of material motion on electromagnetic fields. It is our belief that dc rotating machines are most easily understood in this context. Certainly they are a good demonstration of field transformations at work.

As part of any continuum electromechanics problem, one must know how the electric and magnetic fields are influenced by excitations and motion. In quasi-static systems the distribution of charge and current are controlled by magnetic diffusion and charge relaxation, the subjects of Chapter 7. In Chapter 7 simple examples isolate significant cases of magnetic diffusion or charge relaxation, so that the physical processes involved can be better understood.

Chapters 6 and 7 describe the electrical side of a continuum electromechanical system with the material motion predetermined. The mechanical side of the subject is undertaken in Chapter 8 in a study of force densities of electric and magnetic origin. Because it is a useful concept in the analysis of many systems, we introduce the Maxwell stress tensor. The study of useful properties of tensors sets the stage for later use of mechanical stress tensors in elastic and fluid media.
At this point the additional ingredient necessary to the study of continuum electromechanics is the mechanical medium. In Chapter 9 we introduce simple elastic continua-longitudinal motion of a thin rod and transverse motion of wires and membranes. These models are used to study simple continuum mechanical motions (nondispersive waves) as excited electromechanically at boundaries.

Next, in Chapter 10 a string or membrane is coupled on a continuum basis to electric and magnetic fields and the variety of resulting dynamic behavior is studied. The unifying thread of this treatment is the dispersion equation that relates complex frequency ω with complex wavenumber k. Without material convection there can be simple nondispersive waves, cut off or evanescent waves, absolute instabilities, and diffusion waves. The effect of material convection on evanescent waves and oscillations and on wave amplification are topics that make a strong connection with electron beam and plasma dynamics. The method of characteristics is introduced as a convenient tool in the study of wave propagation.
In Chapter 11 the concepts and techniques of Chapters 9 and 10 are extended to three-dimensional systems. Strain displacement and stress-strain relations are introduced, with tensor concepts, and simple electromechanical examples of three-dimensional elasticity are given.

In Chapter 12 we turn to a different mechanical medium, a fluid. We first study electromechanical interactions with inviscid, incompressible
fluids to establish essential phenomena in the simplest context. It is here that we introduce the basic notions of MHD energy conversion that can result when a conducting fluid flows through a transverse magnetic field. We also bring in electric-field interactions with fluids, in which ion drag phenomena are used as an example. In addition to these basically conducting processes, we treat the electromechanical consequences of polarization and magnetization in fluids. We demonstrate how highly conducting fluids immersed in magnetic fields can propagate Alfvén waves.

In Chapter 13 we introduce compressibility to the fluid model. This can have a marked effect on electromechanical behavior, as demonstrated with the MHD conduction machine. With compressibility, a fluid will propagate longitudinal disturbances (acoustic waves). A transverse magnetic field and high electrical conductivity modify these disturbances to magnetoacoustic waves.

Finally, in Chapter 14 we add viscosity to the fluid model and study the consequences in electromechanical interactions with steady flow. Hartmann flow demonstrates the effect of viscosity on the dc magnetohydrodynamic machine.

To be successful a text must have a theme; the material must be interrelated. Our philosophy has been to get into the subject where the student is most comfortable, with lumped-parameter (circuit) concepts. Thus many of the subtle approximations associated with quasi-statics are made naturally, and the student is faced with the implications of what he has assumed only after having become thoroughly familiar with the physical significance and usefulness of his approximations. By the time he reaches Chapter 4 he will have drawn a circle around at least a class of problems in which electromagnetic fields interact usefully with media in motion.

In dealing with physical and mathematical subjects, as we are here, in which the job is incomplete unless the student sees the physical laws put to work in some kind of physical embodiment, it is necessary for the thread of continuity to be woven into the material in diverse and subtle ways. A number of attempts have been made, to which we can add our early versions of notes, to write texts with one obvious, pedagogically logical basis for evolving the material; for example, it can be recognized that classes of physical phenomena could be grouped according to the differential equation that describes the pertinent dynamics. Thus we could treat magnetic diffusion, diffusion waves on elastic continua, and viscous diffusion waves in one chapter, even though the physical embodiments are entirely different. Alternatively, we could devise a subject limited to certain technological applications or cover superficially a wide range of basically unrelated topics such as "energy conversion" under one heading. This was the prevalent approach in engineering education a decade or so ago, even at the
undergraduate level. It seems clear to us that organizing material in a teachable and meaningful fashion is far more demanding than this. To confess our own mistakes, our material went originally from the general to the specific; it began with the relativistic form of Maxwell's equations, including the effects of motion, and ended with lumped-parameter devices as special cases. Even if this were a pedagogically tenable approach, which we found it was not, what a bad example to set for students who should be learning to distinguish between the essential and the superfluous! Ideas connected with the propagation of electromagnetic waves (relativistic ideas) must be included in the curriculum, but their connection with media in motion should be made after the student is aware of the first-order issues.

A meaningful presentation to engineers must interweave and interrelate mathematical concepts, physical characteristics, the modeling process, and the establishment of a physical "feel" for the world of reality. Our approach is to come to grips with each of these goals as quickly as possible (let the student "get wet" within the first two weeks) and then, while reinforcing what he has learned, continually add something new. Thus, if one looks, he will see the same ideas coming into the flow of material over and over again.

For the organization of this book one should look for many threads of different types. We can list here only a few, in the hope that the subtle reinforcing interplay of mathematical and physical threads will be made evident. Probably the essential theme is Maxwell's equations and the ideas of quasi-statics. The material introduced in Chapter 1 is completely abstract, but it is reinforced in the first few chapters with material that is close to home for the student. By the time he reaches Chapter 10 he will have learned that waves exist which intimately involve electric and magnetic fields that are altogether quasistatic. (This is something that comes as a surprise to many late in life.) Lumped-parameter ideas are based on the integral forms of Maxwell's equations, so that the dynamical effects found with lumpedparameter time constants L / R and $R C$ in Chapter 5 are easily associated with the subjects of magnetic diffusion and charge relaxation. A close tie is made between the "speed voltage" of Chapter 5 and the effects of motion on magnetic fields, as described by field transformations in Chapters 6 to 14. Constant flux dynamics of a lumped coil in Chapter 5 are strongly associated with the dynamics of perfectly conducting continuous media; for example, Alfvén waves in Chapter 12.

Consider another thread of continuity. The book begins with the mathematics of circuit theory. The machines of Chapter 4 are essentially circuits in the sinusoidal steady state. In Chapter 5 we linearize to pursue lumpedparameter ideas of stability and other transient responses and then proceed to nonlinear dynamics, potential-well theory, and other approaches that should form a part of any engineer's mathematical background. By the time
the end of Chapter 10 is reached these ideas will have been carried into the continuum with the addition of tensor concepts, simple cases of the method of characteristics, and eigenvalue theory. The $\omega-k$ plot and its implication for all sorts of subjects in modern electrical engineering can be considered as a mathematical or a physical objective. The ideas of stability introduced with ordinary differential equations ($\exp s t$) in Chapter 5 evolve into the continuum stability studies of Chapter $10[\exp j(\omega t-k x)]$ and can be regarded as a mathematical or a physical thread in our treatment. We could list many other threads: witness the evolution of energy and thermodynamic notions from Chapters 3 to 5,5 to 8 , and 8 to 13 .

We hope that this book is not just one more in the mathematics of electrical engineering or the technical aspects of rotating machines, transducers, delay lines, MHD converters, and so on, but rather that it is the mathematics, the physics, and, most of all, the engineering combined into one.

The material brought together here can be used in a variety of ways. It has been used by Professors C. N. Weygandt and F. D. Ketterer at the University of Pennsylvania for two subjects. The first restricts attention to Chapters 1 to 6 and Appendix B for a course in lumped-parameter electromechanics that both supplants the traditional one on rotating machines in the electrical engineering curriculum and gives the background required for further study in a second term (elective) covering Chapter 7 and beyond. Professors C. D. Hendricks and J. M. Crowley at the University of Illinois have used the material to follow a format that covers up through Chapter 10 in one term but omits much of the material in Chapter 7. Professor W. D. Getty at the University of Michigan has used the material to follow a one-term subject in lumped-parameter electromechanics taught from a different set of notes. Thus he has been able to use the early chapters as a review and to get well into the later chapters in a one-term subject.

At M.I.T. our curriculum seems always to be in a state of change. It is clear that much of the material, Chapters 1 to 10 , will be part of our required (core) curriculum for the forseeable future, but the manner in which it is packaged is continually changing. During the fall term, 1967, we covered Chapters 1 to 10 in a one-semester subject taught to juniors and seniors. The material from Chapters 4 and 6 on rotating machines was used selectively, so that students had "a foot solidly in the door" on this important subject but also that the coverage could retain an orientation toward the needs of all the diverse areas found in electrical engineering today. We have found the material useful as the basis for early graduate work and as a starting point in several courses related to electromechanics.

Finally, to those who open this book and then close it with the benediction, "good material but unteachable," we apologize because to them we have not made our point. Perhaps not as presented here, but certainly as it is
represented here, this material is rich in teaching possibilities. The demands on the teacher to see the subject in its total context, especially the related problems that lie between the lines, are significant. We have taught this subject many times to undergraduates, yet each term has been more enjoyable than the last. There are so many ways in which drama can be added to the material, and we do not need to ask the students (bless them) when we have been successful in doing so.
In developing this material we have found lecture demonstrations and demonstration films to be most helpful, both for motivation and for developing understanding. We have learned that when we want a student to see a particular phenomenon it is far better for us to do the experiment and let the student focus his attention on what he should see rather than on the wrong connections and blown fuses that result when he tries to do the experiment himself. The most successful experiments are often the simplestthose that give the student an opportunity to handle the apparatus himself. Every student should "chop up some magnetic field lines" with a copper "axe" or he will never really appreciate the subject. We have also found that some of the more complex demonstrations that are difficult and expensive to store and resurrect each semester come through very well in films. In addition to our own short films, three films have been produced professionally in connection with this material for the National Committee on Electrical Engineering Films, under a grant from the National Science Foundation, by the Education Development Center, Newton, Mass.

> Synchronous Machines: Electromechanical Dynamics by H. H. Woodson
> Complex Waves I: Propagation, Evanescence and Instability by J. R. Melcher

> Complex Waves II: Instability, Convection and Amplification by J. R. Melcher

An additional film is in the early stages of production. Other films that are useful have been produced by the Education Development Center for the National Committee on Fluid Mechanics Films and for the College Physics Film Program. Of particular interest, from the former series, is Magnetohydrodynamics by Arthur Shercliff.

A book like this can be produced only with plenty of assistance. We gratefully acknowledge the help we received from many directions and hope we have forgotten no one after seven years of work. First of all we want to acknowledge our students with whom we worked as the material developed. They are the one most essential ingredient in an effort of this sort. Next we want to thank Dr. S. I. Freedman, Professor H. H. Richardson, and Dr. C. V. Smith, Jr., for their assistance in framing worthwhile approaches to several of our key topics. In seven years we have had the help of many able
teachers in presenting this material to students. Their discussions and advice have been most useful. In this category we want particularly to mention Professors H. A. Haus, P. L. Penfield, D. C. White, G. L. Wilson, R. Gallager, and E. Pierson and Doctors J. Reynolds, W. H. Heiser, and A. Kusko. Professor Ketterer, who has taught this material at M.I.T. and the University of Pennsylvania, Professors C. D. Hendricks and J. M. Crowley, who have taught it at M.I.T. and the University of Illinois, and Professor W. D. Getty, who has taught it at M.I.T. and the University of Michigan, have been most generous with their comments. Messrs. Edmund Devitt, John Dressler, and Dr. Kent Edwards have checked the correctness of many of the mathematical treatments. Such a task as typing a manuscript repeatedly is enough to try the patience of anyone. Our young ladies of the keyboard, Miss M. A. Daly, Mrs. D. S. Figgins, Mrs. B. S. Morton, Mrs. E. M. Holmes, and Mrs. M. Mazroff, have been gentle and kind with us.

A lengthy undertaking of this sort can be successful only when it has the backing of a sympathetic administration. This work was started with the helpful support of Professor P. Elias, who was then head of the Department of Electrical Engineering at M.I.T. It was finished with the active encouragement of Professor L. D. Smullin, who is presently head of the Department.

Finally, and most sincerely, we want to acknowledge the perseverance of our families during this effort. Our wives, Blanche S. Woodson and Janet D. Melcher, have been particularly tolerant of the demands of this work.

This book appears in three separately bound, consecutively paged parts that can be used individually or in any combination. Flexibility is ensured by including with each part a complete Table of Contents and Index. In addition, for convenient reference, Parts II and III are supplemented by brief appendices which summarize the relevant material from the preceding chapters. Part III, Chapters 11 to 14, introduces three-dimensional elasticity and fluid dynamics while emphasizing important electromechanical phenomena involving these mechanical models.
H. H. Woodson
J. R. Melcher

Cambridge, Massachusetts
January 1968

CONTENTS

Part I: Discrete Systems
1 Introduction 1
1.0 Introduction 1
1.0.1 Scope of Application 2
1.0.2 Objectives 4
1.1 Electromagnetic Theory 5
1.1.1 Differential Equations 6
1.1.2 Integral Equations 9
1.1.3 Electromagnetic Forces 12
1.2 Discussion 12
2 Lumped Electromechanical Elements 15
2.0 Introduction 15
2.1 Circuit Theory 16
2.1.1 Generalized Inductance 17
2.1.2 Generalized Capacitance 28
2.1.3 Discussion 34
2.2 Mechanics 35
2.2.1 Mechanical Elements 36
2.2.2 Mechanical Equations of Motion 49
2.3 Discussion 55
3 Lumped-Parameter Electromechanics 60
3.0 Introduction 60
3.1 Electromechanical Coupling 60
3.1.1 Energy Considerations 63
3.1.2 Mechanical Forces of Electric Origin 67
3.1.3 Energy Conversion 79
3.2 Equations of Motion 84
3.3 Discussion 88
4 Rotating Machines 103
4.0 Introduction 103
4.1 Smooth-Air-Gap Machines 104
4.1.1 Differential Equations 106
4.1.2 Conditions for Conversion of Average Power 110
4.1.3 Two-Phase Machine 111
4.1.4 Air-Gap Magnetic Fields 114
4.1.5 Discussion 117
4.1.6 Classification of Machine Types 119
4.1.7 Polyphase Machines 142
4.1.8 Number of Poles in a Machine 146
4.2 Salient-Pole Machines 150
4.2.1 Differential Equations 151
4.2.2 Conditions for Conversion of Average Power 154
4.2.3 Discussion of Saliency in Different Machine Types 156
4.2.4 Polyphase, Salient-Pole, Synchronous Machines 157
4.3 Discussion 165
5 Lumped-Parameter Electromechanical Dynamics 179
5.0 Introduction 179
5.1 Linear Systems 180
5.1.1 Linear Differential Equations 180
5.1.2 Equilibrium, Linearization, and Stability 182
5.1.3 Physical Approximations 206
5.2 Nonlinear Systems 213
5.2.1 Conservative Systems 213
5.2.2 Loss-Dominated Systems 227
5.3 Discussion 233
6 Fields and Moving Media 251
6.0 Introduction 251
6.1 Field Transformations 255
6.1.1 Transformations for Magnetic Field Systems 260
6.1.2 Transformations for Electric Field Systems 264
6.2 Boundary Conditions 267
6.2.1 Boundary Conditions for Magnetic Field Systems 270
6.2.2 Boundary Conditions for Electric Field Systems 277
6.3 Constituent Relations for Materials in Motion 283
6.3.1 Constituent Relations for Magnetic Field Systems 284
6.3.2 Constituent Relations for Electric Field Systems 289
6.4 DC Rotating Machines 291
6.4.1 Commutator Machines 292
6.4.2 Homopolar Machines 312
6.5 Discussion 317
Appendix A Glossary of Commonly Used Symbols A1
Appendix B Review of Electromagnetic Theory B1
B. 1 Basic Laws and Definitions B1
B.1.1 Coulomb's Law, Electric Fields and Forces B1
B.1.2 Conservation of Charge B5
B.1.3 Ampere's Law, Magnetic Fields and Forces B6
B.1.4 Faraday's Law of Induction and the Potential Difference B9
B. 2 Maxwell's Equations B12
B.2.1 Electromagnetic Waves B13
B.2.2 Quasi-static Electromagnetic Field Equations B19
B. 3 Macroscopic Models and Constituent Relations B25
B.3.1 Magnetization B25
B.3.2 Polarization B27
B.3.3 Electrical Conduction B30
B. 4 Integral Laws B32
B.4.1 Magnetic Field System B32
B.4.2 Electric Field System B36
B. 5 Recommended Reading B37
Appendix C Mathematical Identities and Theorems C1
Index 1
Part II: Fields, Forces, and Motion
7 Magnetic Diffusion and Charge Relaxation 330
7.0 Introduction 330
7.1 Magnetic Field Diffusion 335
7.1.1 Diffusion as an Electrical Transient 338
7.1.2 Diffusion and Steady Motion 347
7.1.3 The Sinusoidal Steady-State in the Presence of Motion 355
7.1.4 Traveling Wave Diffusion in Moving Media 364
7.2 Charge Relaxation 370
7.2.1 Charge Relaxation as an Electrical Transient 372
7.2.2 Charge Relaxation in the Presence of Steady Motion 380
7.2.3 Sinusoidal Excitation and Charge Relaxation with Motion 392
7.2.4 Traveling-Wave Charge Relaxation in a Moving Con- ductor 397
7.3 Conclusion 401
8 Field Description of Magnetic and Electric Forces 418
8.0 Introduction 418
8.1 Forces in Magnetic Field Systems 419
8.2 The Stress Tensor 423
8.2.1 Stress and Traction 424
8.2.2 Vector and Tensor Transformations 434
8.3 Forces in Electric Field Systems 440
8.4 The Surface Force Density 445
8.4.1 Magnetic Surface Forces 447
8.4.2 Electric Surface Forces 447
8.5 The Magnetization and Polarization Force Densities 450
8.5.1 Examples with One Degree of Freedom 451
8.5.2 The Magnetization Force Density 456
8.5.3 The Stress Tensor 462
8.5.4 Polarization Force Density and Stress Tensor 463
8.6 Discussion 466
9 Simple Elastic Continua 479
9.0 Introduction 479
9.1 Longitudinal Motion of a Thin Rod 480
9.1.1 Wave Propagation Without Dispersion 487
9.1.2 Electromechanical Coupling at Terminal Pairs 498
9.1.3 Quasi-statics of Elastic Media 503
9.2 Transverse Motions of Wires and Membranes 509
9.2.1 Driven and Transient Response, Normal Modes 511
9.2.2 Boundary Conditions and Coupling at Terminal Pairs 522
9.3 Summary 535
10 Dynamics of Electromechanical Continua 551
10.0 Introduction 551
10.1 Waves and Instabilities in Stationary Media 554
10.1.1 Waves Without Dispersion 555
10.1.2 Cutoff or Evanescent Waves 556
10.1.3 Absolute or Nonconvective Instability 566
10.1.4 Waves with Damping, Diffusion Waves 576
10.2 Waves and Instabilities in the Presence of Material Motion 583
10.2.1 Fast and Slow Waves 586
10.2.2 Evanescence and Oscillation with Convection 596
10.2.3 Convective Instability or Wave Amplification 601
10.2.4 "Resistive Wall" Wave Amplification 608
10.3 Propagation 613
10.3.1 Phase Velocity 613
10.3.2 Group Velocity 614
10.3.3 Characteristics and the Velocity of Wavefronts 618
10.4 Dynamics in Two Dimensions 621
10.4.1 Membrane Dynamics: Two-Dimensional Modes 622
10.4.2 Moving Membrane: Mach Lines 624
10.4.3 A Kink Instability 627
10.5 Discussion 636
Appendix D Glossary of Commonly Used Symbols D1
Appendix E Summary of Part I and Useful Theorems E1
Index 1
Part III: Elastic and Fluid Media
11 Introduction to the Electromechanics of Elastic Media 651
11.0 Introduction 651
11.1 Force Equilibrium 652
11.2 Equations of Motion for Isotropic Media 653
11.2.1 Strain-Displacement Relations 653
11.2.2 Stress-Strain Relations 660
11.2.3 Summary of Equations 666
11.3 Electromechanical Boundary Conditions 668
11.4 Waves in Isotropic Elastic Media 671
11.4.1 Waves in Infinite Media 671
11.4.2 Principal Modes of Simple Structures 679
11.4.3 Elastic Vibrations of a Simple Guiding Structure 693
11.5 Electromechanics and Elastic Media 696
11.5.1 Electromagnetic Stresses and Mechanical Design 697
11.5.2 Simple Continuum Transducers 704
11.6 Discussion 717
12 Electromechanics of Incompressible, Inviscid Fluids 724
12.0 Introduction 724
12.1 Inviscid, Incompressible Fluids 726
12.1.1 The Substantial Derivative 726
12.1.2 Conservation of Mass 729
12.1.3 Conservation of Momentum (Newton's Second Law) 731
12.1.4 Constituent Relations 735
12.2 Magnetic Field Coupling with Incompressible Fluids 737
12.2.1 Coupling with Flow in a Constant-Area Channel 739
12.2.2 Coupling with Flow in a Variable-Area Channel 751
12.2.3 Alfvén Waves 759
12.2.4 Ferrohydrodynamics 772
12.3 Electric Field Coupling with Incompressible Fluids 776
12.3.1 Ion-Drag Phenomena 776
12.3.2 Polarization Interactions 783
12.4 Discussion 787
13 Electromechanics of Compressible, Inviscid Fluids 813
13.0 Introduction 813
13.1 Inviscid, Compressible Fluids 813
13.1.1 Conservation of Energy 814
13.1.2 Constituent Relations 815
13.2 Electromechanical Coupling with Compressible Fluids 820
13.2.1 Coupling with Steady Flow in a Constant-Area Channel 821
13.2.2 Coupling with Steady Flow in a Variable-Area Channel 828
13.2.3 Coupling with Propagating Disturbances 841
13.3 Discussion 854
14 Electromechanical Coupling with Viscous Fluids 861
14.0 Introduction 861
14.1 Viscous Fluids 862
14.1.1 Mathematical Description of Viscosity 862
14.1.2 Boundary Conditions 873
14.1.3 Fluid-Mechanical Examples 875
14.2 Electromechanical Coupling with Viscous Fluids 878
14.2.1 Electromechanical Coupling with Shear Flow 878
14.2.2 Electromechanical Coupling with Pressure-Driven Flow (Hartmann Flow) 884
14.3 Discussion 893
Appendix F Glossary of Commonly Used Symbols F1
Appendix G Summary of Parts I and II, and Useful Theorems G1
Index 1

Appendix A

GLOSSARY OF

COMMONLY USED SYMBOLS

Section references indicate where symbols of a given significance are introduced; grouped symbols are accompanied by their respective references. The absence of a section reference indicates that a symbol has been applied for a variety of purposes. Nomenclature used in examples is not included.

Symbol	Meaning	Section
A	cross-sectional area	
A_{i}	coefficient in differential equation	5.1 .1
$\left(A_{n}^{+}, A_{n}^{-}\right)$	complex amplitudes of components of nth mode	9.2.1
A_{w}	cross-sectional area of armature conductor	6.4 .1
a	spacing of pole faces in magnetic circuit	8.5.1
$a,\left(a_{c}, a_{s}\right)$	phase velocity of acoustic related waves	13.2.1, 11.4.1
a_{b}	Alfvén velocity	12.2.3
(a, b, c)	Lagrangian coordinates	11.1
a_{i}	constant coefficient in differential equation	5.1.1
\mathbf{a}_{p}	instantaneous acceleration of point p fixed in material	2.2.1c
B, B_{r}, B_{s}	damping constant for linear, angular and square law dampers	2.2.1b, 4.1.1, 5.2.2
$\mathbf{B}, \mathbf{B}_{i}, B_{0}$	magnetic flux density	1.1.1a, 8.1, 6.4 .2
$B_{i} \quad B^{\prime} B^{\prime}$	induced flux density	7.0
$\left(B_{r}, B_{r a}, B_{r b}, B_{r m}\right)$	radial components of air-gap flux densities	4.1.4
[$\left.B_{r f},\left(B_{r f}\right)_{\mathrm{av}}\right]$	radial flux density due to field current	6.4.1
b	width of pole faces in magnetic circuit	8.5
b	half thickness of thin beam	11.4.2b
C	contour of integration	1.1.2a
$C,\left(C_{a}, C_{b}\right), C_{o}$	capacitance	2.1.2, 7.2.1a, 5.2.1
C	coefficient in boundary condition	9.1.1
C	the curl of the displacement	11.4
$\left(C^{+}, C^{-}\right)$	designation of characteristic lines	9.1.1

Symbol	Meaning	Section
c_{p}	specific heat capacity at constant pressure	13.1.2
c_{v}	specific heat capacity at constant volume	13.1.2
D	electric displacement	1.1.1a
d	length	
$d a$	elemental area	1.1.2a
$d \mathrm{f}_{n}$	total elemental force on material in rigid body	2.2.1c
$d \mathbf{}$	elemental line segment	1.1.2a
$d \mathrm{~T}_{n}$	torque on elemental volume of material	2.2.1c
$d V$	elemental volume	1.1.2b
E	constant of motion	5.2.1
E	Young's modulus or the modulus of elasticity	9.1
E, E_{0}	electric field intensity	1.1.1a, 5.1 .2 d
E_{f}	magnitude of armature voltage generated by field current in a synchronous machine	4.1.6a
E_{i}	induced electric field intensity	7.0
$e_{11}, e_{i j}$	strain tensor	9.1, 11.2
$\dot{e}_{i j}$	strain-rate tensor	14.1.1a
F	magnetomotive force (mmf)	13.2.2
F	force density	1.1.1a
\hat{F}	complex amplitude of $f(t)$	5.1.1
F_{0}	amplitude of sinusoidal driving force	9.1.3
f	equilibrium tension of string	9.2
f	driving function	5.1.1
$f, \mathbf{f}, f^{e}, f^{s}, f_{j}, f_{i}, f_{1}$	force	$\begin{aligned} & \text { 2.2.1, 2.2.1c, 3.1, } \\ & \text { 5.1.2a, 3.1.2b, 8.1, } \\ & \text { 9.1 } \end{aligned}$
f	arbitrary scalar function	6.1
f^{\prime}	scalar function in moving coordinate system	6.1
f	three-dimensional surface	6.2
f	integration constant	11.4.2a
G	a constant	5.1.2c
G	shear modulus of elasticity	11.2.2
G	speed coefficient	6.4.1
G	conductance	3.1
g	air-gap length	5.2.1
$g, \mathrm{~g}$	acceleration of gravity	5.1.2c, 12.1.3
$\left(\mathbf{H}, H_{x}, H_{y}, H_{z}\right.$)	magnetic field intensity	1.1.1a
h	specific enthalpy	13.1.2
I, $I,\left(I_{r}, I_{s}\right), I_{f}$	electrical current	$\begin{aligned} & \text { 10.4.3, 12.2.1a, 4.1.2, } \\ & 6.4 .1 \end{aligned}$
$\begin{gathered} \left(i, i_{1}, i_{2}, \ldots, i_{k}\right), \\ \left(i_{a r}, i_{a s}, i_{b r}, i_{b s}\right), \\ i_{a},\left(i_{a}, i_{b}, i_{c}\right) \\ \left(i_{f}, i_{t}\right),\left(i_{r}, i_{s}\right) \end{gathered}$	electrical current	$\begin{aligned} & \text { 2.1, 4.1.3, 6.4.1, 4.1.7, } \\ & 6.4 .1,4.1 \end{aligned}$

Symbol	Meaning	Section
\mathbf{i}_{n}	unit vector perpendicular to area of integration	6.2.1
i_{s}	unit vector normal to surface of integration	6.2 .1
$\left(i_{x}, i_{y}, i_{z}\right),\left(i_{1}, i_{2}, i_{3}\right)$	unit vectors in coordinate directions	2.2.1c
$J, \mathrm{~J}_{\boldsymbol{f}}$	current density	7.0, 1.1.1a
$J, J_{r},\left(J_{x}, J_{y}, J_{z}\right)$	moment of inertia	5.1.2b, 4.1.1, 2.2.1c
$J_{x z}, J_{y z}$	products of inertia	2.2.1c
j	$\sqrt{-1}$	4.1.6a
K	loading factor	13.2.2
$\boldsymbol{K}, \mathbf{K}_{\boldsymbol{f}}$	surface current density	7.0, 1.1.1a
K	linear or torsional spring constant	2.2.1a
K_{i}	induced surface current density	7.0
$k, k_{c},\left(k_{r}, k_{i}\right)$	wavenumber	7.1.3, 10.1.3, 10.0
k	summation index	2.1.1
k	maximum coefficient of coupling	4.1.6b
k_{n}	nth eigenvalue	9.2
$\begin{gathered} \left(L, L_{1}, L_{2}\right),\left(L_{a}, L_{f}\right), \\ L_{m},\left(L_{0}, L_{2}\right), \\ \left(L_{r}, L_{s}, L_{s r}\right), L_{s s} \end{gathered}$	inductance	$\begin{aligned} & \text { 2.1.1, 6.4.1, 2.1.1, } \\ & \text { 4.2.1, 4.1.1, 4.2.4 } \end{aligned}$
L	length of incremental line segment	6.2 .1
l	value of relative displacement for which spring force is zero	2.2.1a
l, l_{w}, I_{v}	length	
M	Hartmann number	14.2.2
M	mass of one mole of gas in kilograms	13.1.2
M	Mach number	13.2.1
M	mass	2.2.1c
M	number of mechanical terminal pairs	2.1.1
\boldsymbol{M}, M_{s}	mutual inductance	4.1.1, 4.2.4
M	magnetization density	1.1.1a
m	mass/unit length of string	9.2
N	number of electrical terminal pairs	2.1.1
N	number of turns	5.2.2
n	number density of ions	12.3.1
n	integer	7.1.1
n	unit normal vector	1.1.2
P	polarization density	1.1.1a
\boldsymbol{P}	power	12.2.1a
p	number of pole pairs in a machine	4.1.8
p	power per unit area	14.2.1
p	pressure	5.1.2d and 12.1.4
$p_{e}, p_{s}, p_{m}, p_{r}$	power	$\begin{aligned} & \text { 4.1.6a, 4.1.6b, 4.1.2, } \\ & \text { 4.1.6b } \end{aligned}$
Q	electric charge	7.2.1a
q, q_{i}, q_{k}	electric charge	$\begin{aligned} & \text { 1.1.3 and 2.1.2, 8.1, } \\ & \text { 2.1.2 } \end{aligned}$
$\boldsymbol{R}, R_{i}, R_{o}$	radius	

Symbol	Meaning	Section
$R, R_{a}, R_{b}, R_{f}, R_{r}, R_{s}$	resistance	
(R, R_{g})	gas constant	13.1.2
$\mathrm{R}_{\boldsymbol{e}}$	electric Reynolds number	7.0
$\mathbf{R}_{\boldsymbol{m}}$	magnetic Reynolds number	7.0
r	radial coordinate	
\mathbf{r}	position vector of material	2.2.1c
\mathbf{r}^{\prime}	position vector in moving reference frame	6.1
\mathbf{r}_{m}	center of mass of rigid body	2.2.1c
S	reciprocal modulus of elasticity	11.5.2c
\boldsymbol{S}	surface of integration	1.1.2a
S	normalized frequency	7.2 .4
S	membrane tension	9.2
S_{z}	transverse force/unit length acting on string	9.2
s	complex frequency	5.1.1
$\left(s, s_{m T}\right)$	slip	4.1.6b
s_{i}	i th root of characteristic equation, a natural frequency	5.1.1
T	period of oscillation	5.2 .1
T	temperature	13.1.2
$\begin{gathered} \mathrm{T}, T_{,}, T^{e}, T_{e m}, T_{m}, \\ T_{0}, T_{1} \end{gathered}$	torque	$\begin{aligned} & \text { 2.2.1c, } 5.1 .2 \mathrm{~b}, 3.1 .1 \\ & \text { 4.1.6b, 4.1.1, } 6.4 .1 \\ & \text { 6.4.1 } \end{aligned}$
T	surface force	8.4
$T_{i j}{ }^{m}$	mechanical stress tensor	13.1.2
$T_{m n}$	the component of the stress-tensor in the m th-direction on a cartesian surface with a normal vector in the n th-direction	8.1
$T_{0 r}$	constant of coulomb damping	4.1 .1
To	initial stress distribution on thin rod	9.1.1
T	longitudinal stress on a thin rod	9.1.1
T_{z}	transverse force per unit area on membrane	9.2
T_{2}	transverse force per unit area acting on thin beam	11.4.2b
t	time	1.1.1
t^{\prime}	time measured in moving reference frame	6.1
U	gravitational potential	12.1 .3
U	longitudinal steady velocity of string or membrane	10.2
4	internal energy per unit mass	13.1.1
\boldsymbol{u}	surface coordinate	11.3
$u_{0}\left(x-x_{0}\right)$	unit impulse at $x=x_{0}$	9.2.1
u	transverse deflection of wire in x-direction	10.4 .3
$u_{-1}(t)$	unit step occurring at $t=0$	5.1.2b
V, V_{m}	velocity	7.0, 13.2.3
V	volume	1.1.2
$V, V_{a}, V_{f}, V_{o}, V_{s}$	voltage	
V	potential energy	5.2.1

Symbol	Meaning	Section
v, \mathbf{v}	velocity	
$\left(v, v_{1}, \ldots, v_{k}\right)$	voltage	2.1.1
$v^{\prime},\left(v_{a}, v_{b}, v_{c}\right)$,	voltage	
$v_{f}, v_{\mathrm{oc}}, v_{t}$		
v_{n}	velocity of surface in normal direction	6.2 .1
v_{0}	initial velocity distribution on thin rod	9.1 .1
v_{p}	phase velocity	9.1.1 and 10.2
\mathbf{v}^{r}	relative velocity of inertial reference frames	6.1
v_{s}	$\sqrt{f / m}$ for a string under tension f and having mass/unit length m	10.1.1
v	longitudinal material velocity on thin rod	9.1.1
v	transverse deflection of wire in y-direction	10.4.3
(W_{e}, W_{m})	energy stored in electromechanical coupling	3.1.1
$\left(W_{e}^{\prime}, W_{m}^{\prime}, W^{\prime}\right)$	coenergy stored in electromechanical coupling	3.1.2b
$W^{\prime \prime}$	hybrid energy function	5.2.1
w	width	5.2.2
w	energy density	11.5.2c
w^{\prime}	coenergy density	8.5
X	equilibrium position	5.1.2a
$\left(x, x_{1}, x_{2}, \ldots, x_{k}\right)$	displacement of mechanical node	2.1.1
x	dependent variable	5.1.1
x_{p}	particular solution of differential equation	5.1.1
$\left(x_{1}, x_{2}, x_{3}\right),(x, y, z)$	cartesian coordinates	8.1, 6.1
($\left.x^{\prime}, y^{\prime}, z^{\prime}\right)$	cartesian coordinates of moving frame	6.1
(α, β)	constants along C^{+}and C^{-}characteristics, respectively	9.1.1
(α, β)	see (10.2.20) or (10.2.27)	
α	transverse wavenumber	11.4.3
(α, β)	angles used to define shear strain	11.2
(α, β)	constant angles	4.1.6b
α	space decay parameter	7.1.4
α	damping constant	5.1.2b
α	equilibrium angle of torsional spring	2.2.1a
γ	ratio of specific heats	13.1.2
γ	piezoelectric constant	11.5.2c
$\gamma, \gamma_{0}, \gamma^{\prime}$	angular position	
$\Delta_{d}(t)$	slope excitation of string	10.2.1b
Δ_{0}	amplitude of sinusoidal slope excitation	10.2.1b
Δr	distance between unstressed material points	11.2.1a
Δs	distance between stressed positions of material points	11.2.1a
$\delta()$	incremental change in ()	8.5
$\delta, \delta_{1}, \delta_{0}$	displacement of elastic material	11.1, 9.1, 11.4.2a
δ	thickness of incremental volume element	6.2.1
δ	torque angle	4.1.6a

Symbol	Meaning	Section
$\delta_{i j}$	Kronecker delta	8.1
(δ_{+}, δ_{-})	wave components traveling in the $\pm x$-directions	9.1.1
ϵ	linear permittivity	1.1.1b
ϵ_{0}	permittivity of free space	1.1.1a
η	efficiency of an induction motor	4.1.6b
η	second coefficient of viscosity	14.1.1c
$\theta, \theta_{i}, \theta_{m}$	angular displacement	2.1.1, 3.1.1, 5.2.1
θ	power factor angle; phase angle between current and voltage	4.1.6a
θ	equilibrium angle	5.2.1
$\dot{\theta}$	angular velocity of armature	6.4.1
θ_{m}	maximum angular deflection	5.2.1
$\left(\lambda, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$	magnetic flux linkage	2.1.1, 6.4.1, 4.1.7,
λ_{a}		4.1.3, 4.1
($\lambda_{a}, \lambda_{b}, \lambda_{c}$)		
$\begin{aligned} & \left(\lambda_{a r}, \lambda_{a_{s}}, \lambda_{b r}, \lambda_{b s}\right) \\ & \left(\lambda_{r}, \lambda_{s}\right) \end{aligned}$		
2.	Lamé constant for elastic material	11.2.3
λ	wavelength	7.1.4
μ	linear permeability	1.1.1a
$\mu,\left(\mu_{+}, \mu_{-}\right)$	mobility	12.3.1, 1.1.1b
μ	coefficient of viscosity	14.1.1
μ_{d}	coefficient of dynamic friction	2.2.1b
μ_{0}	permeability of free space	1.1.1a
μ_{s}	coefficient of static friction	2.2.1b
v	Poisson's ratio for elastic material	11.2.2
ν	damping frequency	10.1.4
(ξ, ξ)	continuum displacement	8.5
ξ_{0}	initial deflection of string	9.2
ξ_{d}	amplitude of sinusoidal driving deflection	9.2
$\left(\xi_{n}(x), \hat{\xi}_{n}(x)\right.$)	nth eigenfunctions	9.2.1b
$\left(\xi_{+}, \xi_{-}\right)$	amplitudes of forward and backward traveling waves	9.2
$\dot{\xi}_{0}(x)$	initial velocity of string	9.2
ρ	mass density	2.2.1c
ρ_{f}	free charge density	1.1.1a
ρ_{s}	surface mass density	11.3
シ	surface of discontinuity	6.2
σ	conductivity	1.1.1a
σ_{f}	free surface charge density	1.1.1a
σ_{m}	surface mass density of membrane	9.2
σ_{a}	surface charge density	7.2.3
σ_{s}	surface conductivity	1.1.1a
σ_{u}	surface charge density	7.2.3
τ	surface traction	8.2 .1
$\tau_{\text {, }} \tau_{d}$	diffusion time constant	7.1.1, 7.1.2a
τ	relaxation time	7.2.1a

	Symbol Meaning	
τ_{e}	electrical time constant	Section
τ_{m}	time for air gap to close	5.2 .2
τ_{o}	time constant	5.2 .2
τ_{t}	traversal time	5.1 .3
ϕ	electric potential	7.1 .2 a
ϕ	magnetic flux	7.2
ϕ	cylindrical coordinate	2.1 .1
ϕ	potential for \mathbf{H} when $\mathbf{J}_{f}=0$	2.1 .1
ϕ	flow potential	8.5 .2
χ_{e}	electric susceptibility	12.2
χ_{m}	magnetic susceptibility	1.1 .1 b
ψ	the divergence of the material	1.1 .1 a
	displacement	
ψ	angle defined in Fig. 6.4 .2	11.4
ψ	angular position in the air gap measured	6.4 .1
	from stator winding (a) magnetic axis	4.1 .4
ψ	angular deflection of wire	12.2
ψ	equilibrium rotational speed	10.4 .3
Ω	rotation vector in elastic material	5.1 .2 b
Ω	real part of eigenfrequency (10.1.47)	11.2 .1 a
Ω_{n}	radian frequency of electrical excitation	10.1 .4
$\omega,\left(\omega_{r}, \omega_{s}\right)$	natural angular frequency (Im $s)$	$4.1 .6 \mathrm{a}, 4.1 .2$
ω	angular velocity	5.1 .2 b
ω, ω_{m}	cutoff frequency for evanescent waves	$2.2 .1 \mathrm{c}, 4.1 .2$
ω_{c}	driving frequency	10.1 .2
ω_{d}	nth eigenfrequency	9.2
ω_{n}	natural angular frequency	9.2
ω_{o}	real and imaginary parts of ω	5.1 .3
$\left(\omega_{r}, \omega_{i}\right)$	nabla	10.0
∇	surface divergence	6.1
∇_{Σ}		6.2 .1

Appendix B

REVIEW OF
 ELECTROMAGNETIC THEORY

B. 1 BASIC LAWS AND DEFINITIONS

The laws of electricity and magnetism are empirical. Fortunately they can be traced to a few fundamental experiments and definitions, which are reviewed in the following sections. The rationalized MKS system of units is used.

B.1.1 Coulomb's Law, Electric Fields and Forces

Coulomb found that when a charge q (coulombs) is brought into the vicinity of a distribution of charge density $\rho_{e}\left(\mathbf{r}^{\prime}\right)$ (coulombs per cubic meter), as shown in Fig. B.1.1, a force of repulsion \mathbf{f} (newtons) is given by

$$
\begin{equation*}
\mathbf{f}=q \mathbf{E} \tag{B.1.1}
\end{equation*}
$$

where the electric field intensity \mathbf{E} (volts per meter) is evaluated at the position

Fig. B.1.1 The force f on the point charge q in the vicinity of charges with density $\rho_{e}\left(\mathbf{r}^{\prime}\right)$ is represented by the electric field intensity \mathbf{E} times q, where \mathbf{E} is found from (B.1.2).
r of the charge q and determined from the distribution of charge density by

$$
\begin{equation*}
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int_{V^{\prime}} \rho_{e}\left(\mathbf{r}^{\prime}\right) \frac{\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d V^{\prime} \tag{B.1.2}
\end{equation*}
$$

In the rationalized MKS system of units the permittivity ϵ_{0} of free space is

$$
\begin{equation*}
\epsilon_{0}=8.854 \times 10^{-12} \approx \frac{1}{36 \pi} \times 10^{-9} \mathrm{~F} / \mathrm{m} \tag{B.1.3}
\end{equation*}
$$

Note that the integration of (B.1.2) is carried out over all the charge distribution (excluding q), hence represents a superposition (at the location r of q) of the electric field intensities due to elements of charge density at the positions \mathbf{r}^{\prime}.

As an example, suppose that the charge distribution $\rho_{e}\left(\mathbf{r}^{\prime}\right)$ is simply a point charge Q (coulombs) at the origin (Fig. B.1.2); that is,

$$
\begin{equation*}
\rho_{e}=Q \delta\left(\mathbf{r}^{\prime}\right) \tag{B.1.4}
\end{equation*}
$$

where $\delta\left(\mathbf{r}^{\prime}\right)$ is the delta function defined by

$$
\begin{align*}
\delta\left(\mathbf{r}^{\prime}\right) & =0, \quad \mathbf{r}^{\prime} \neq 0 \\
\int_{V^{\prime}} \delta\left(\mathbf{r}^{\prime}\right) d V^{\prime} & =1 \tag{B.1.5}
\end{align*}
$$

Fig. B.1. 2 Coulomb's law for point charges Q (at the origin) and q (at the position r).

For the charge distribution of (B.1.4) integration of (B.1.2) gives

$$
\begin{equation*}
\mathbf{E}(\mathbf{r})=\frac{Q \mathbf{r}}{4 \pi \epsilon_{0}|r|^{3}} \tag{B.1.6}
\end{equation*}
$$

Hence the force on the point charge q, due to the point charge Q, is from (B.1.1)

$$
\begin{equation*}
\mathbf{f}=\frac{q Q \mathbf{r}}{4 \pi \epsilon_{0}|r|^{3}} \tag{B.1.7}
\end{equation*}
$$

This expression takes the familiar form of Coulomb's law for the force of repulsion between point charges of like sign.

We know that electric charge occurs in integral multiples of the electronic charge ($1.60 \times 10^{-19} \mathrm{C}$). The charge density ρ_{e}, introduced with (B.1.2), is defined as

$$
\begin{equation*}
\rho_{e}(\mathbf{r})=\lim _{\delta V \rightarrow 0} \frac{1}{\delta V} \sum_{i} q_{i} \tag{B.1.8}
\end{equation*}
$$

where δV is a small volume enclosing the point \mathbf{r} and $\sum_{i} q_{i}$ is the algebraic sum of charges within δV. The charge density is an example of a continuum model. To be valid the limit $\delta V \rightarrow 0$ must represent a volume large enough to contain a large number of charges q_{i}, yet small enough to appear infinitesimal when compared with the significant dimensions of the system being analyzed. This condition is met in most electromechanical systems.

For example, in copper at a temperature of $20^{\circ} \mathrm{C}$ the number density of free electrons available for carrying current is approximately 10^{23} electrons/ cm^{3}. If we consider a typical device dimension to be on the order of 1 cm , a reasonable size for δV would be a cube with $1-\mathrm{mm}$ sides. The number of electrons. in δV would be 10^{20}, which certainly justifies the continuum model.

The force, as expressed by (B.1.1), gives the total force on a single test charge in vacuum and, as such, is not appropriate for use in a continuum model of electromechanical systems. It is necessary to use an electric force density \mathbf{F} (newtons per cubic meter) that can be found by averaging (B.1.1) over a small volume.

$$
\begin{equation*}
\mathbf{F}=\lim _{\delta V \rightarrow 0} \frac{\sum_{i} \mathbf{f}_{i}}{\delta V}=\lim _{\delta V \rightarrow 0} \frac{\sum q_{i} \mathbf{E}_{i}}{\delta V} . \tag{B.1.9}
\end{equation*}
$$

Here q_{i} represents all of the charges in $\delta V, \mathbf{E}_{i}$ is the electric field intensity acting on the i th charge, and f_{i} is the force on the i th charge. As in the charge density defined by (B.1.8), the limit of (B.1.9) leads to a continuum model if the volume δV can be defined so that it is small compared with macroscopic dimensions of significance, yet large enough to contain many electronic charges. Further, there must be a sufficient amount of charge external to the volume δV that the electric field experienced by each of the test charges is essentially determined by the sources of field outside the volume. Fortunately these requirements are met in almost all physical situations that lead to useful electromechanical interactions. Because all charges in the volume δV experience essentially the same electric field \mathbf{E}, we use the definition of free charge density given by (B.1.8) to write (B.1.9) as

$$
\begin{equation*}
\mathbf{F}=\rho_{e} \mathbf{E} \tag{B.1.10}
\end{equation*}
$$

Although the static electric field intensity \mathbf{E} can be computed from (B.1.2), it is often more convenient to state the relation between charge density and field intensity in the form of Gauss's law:

$$
\begin{equation*}
\oint_{S} \epsilon_{0} E \cdot \mathrm{n} d a=\int_{V} \rho_{e} d V . \tag{B.1.11}
\end{equation*}
$$

In this integral law n is the outward-directed unit vector normal to the surface S, which encloses the volume V. It is not our purpose in this brief review to show that (B.1.11) is implied by (B.1.2). It is helpful, however, to note that

Fig. B.1.3 A hypothetical sphere of radius r encloses a charge Q at the origin. The integral of $\epsilon_{0} \mathrm{E}_{r}$ over the surface of the sphere is equal to the charge Q enclosed.
in the case of a point charge Q at the origin it predicts the same electric field intensity (B.1.6) as found by using (B.1.2). For this purpose the surface S is taken as the sphere of radius r centered at the origin, as shown in Fig. B.1.3. By symmetry the only component of \mathbf{E} is radial (E_{r}), and this is constant at a given radius r. Hence (B.1.11) becomes

$$
\begin{equation*}
4 \pi r^{2} E_{r} \epsilon_{0}=Q . \tag{B.1.12}
\end{equation*}
$$

Here the integration of the charge density over the volume V enclosed by S is the total charge enclosed Q but can be formally taken by using (B.1.4) with the definition provided by (B.1.5). It follows from (B.1.12) that

$$
\begin{equation*}
E_{r}=\frac{Q}{4 \pi \epsilon_{0} r^{2}} \tag{B.1.13}
\end{equation*}
$$

a result that is in agreement with (B.1.6).
Because the volume and surface of integration in (B.1.11) are arbitrary, the integral equation implies a differential law. This is found by making use of the divergence theorem*

$$
\begin{equation*}
\oint_{S} \mathbf{A} \cdot \mathbf{n} d a=\int_{V} \boldsymbol{\nabla} \cdot \mathbf{A} d V \tag{B.1.14}
\end{equation*}
$$

to write (B.1.11) as

$$
\begin{equation*}
\int_{V}\left(\boldsymbol{\nabla} \cdot \epsilon_{0} \mathbf{E}-\rho_{e}\right) d V=0 \tag{B.1.15}
\end{equation*}
$$

[^0]Since the volume of integration is arbitrary, it follows that

$$
\begin{equation*}
\nabla \cdot \epsilon_{0} \mathbf{E}=\rho_{e} . \tag{B.1.16}
\end{equation*}
$$

From this discussion it should be apparent that this differential form of Gauss's law is implied by Coulomb's law, with the electric field intensity defined as a force per unit charge.

B.1.2 Conservation of Charge

Experimental evidence supports the postulate that electric charge is conserved. When a negative charge appears (e.g., when an electron is removed from a previously neutral atom), an equal positive charge also appears (e.g., the positive ion remaining when the electron is removed from the atom).

We can make a mathematical statement of this postulate in the following way. Consider a volume V enclosed by a surface S. If charge is conserved, the net rate of flow of electric charge out through the surface S must equal the rate at which the total charge in the volume V decreases. The current density \mathbf{J} (coulombs per square meter-second) is defined as having the direction of flow of positive charge and a magnitude proportional to the net rate of flow of charge per unit area. Then the statement of conservation of charge is

$$
\begin{equation*}
\oint_{S} \mathbf{J} \cdot \mathbf{n} d a=-\frac{d}{d t} \int_{V} \rho_{e} d V \tag{B.1.17}
\end{equation*}
$$

Once again it follows from the arbitrary nature of S (which is fixed in space) and the divergence theorem (B.1.14) that

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{J}+\frac{\partial \rho_{e}}{\partial t}=0 \tag{B.1.18}
\end{equation*}
$$

It is this equation that is used as a differential statement of conservation of charge.

To express conservation of charge it has been necessary to introduce a new continuum variable, the current density J. Further insight into the relation between this quantity and the charge density ρ_{e} is obtained by considering a situation in which two types of charge contribute to the current, charges q_{+}with velocity \mathbf{v}_{+}and charges q_{-}with velocity \mathbf{v}_{-}. The current density \mathbf{J}_{+} that results from the flow of positive charge is

$$
\begin{equation*}
\mathbf{J}_{+}=\lim _{\delta V^{\prime} \rightarrow 0} \frac{1}{\delta V} \sum_{i} q_{+i} \mathbf{v}_{+i} . \tag{B.1.19}
\end{equation*}
$$

If we define a charge-average velocity \mathbf{v}_{+}for the positive charges as

$$
\begin{equation*}
\mathbf{v}_{+}=\frac{\sum_{i} q_{+i} \mathbf{v}_{+i}}{\sum_{i} q_{+i}} \tag{B.1.20}
\end{equation*}
$$

and the density ρ_{+}of positive charges from (B.1.8) as

$$
\begin{equation*}
\rho_{+}=\lim _{\delta V^{\prime} \rightarrow 0} \frac{1}{\delta V} \sum_{i} q_{+i} \tag{B.1.21}
\end{equation*}
$$

we can write the current density of (B.1.19) as

$$
\begin{equation*}
\mathbf{J}_{+}=\rho_{+} \mathbf{v}_{+} \tag{B.1.22}
\end{equation*}
$$

Similar definitions for the charge-average velocity \mathbf{v}_{-}and charge density ρ_{-}of negative charges yields the component of current density

$$
\begin{equation*}
\mathbf{J}_{-}=\rho_{-} \mathbf{v}_{-} . \tag{B.1.23}
\end{equation*}
$$

The total current density \mathbf{J} is the vector sum of the two components

$$
\begin{equation*}
\mathbf{J}=\mathbf{J}_{+}+\mathbf{J}_{-} . \tag{B.1.24}
\end{equation*}
$$

Now consider the situation of a material that contains charge densities $\boldsymbol{\rho}_{+}$ and ρ_{-}which have charge-average velocities \mathbf{v}_{+}and \mathbf{v}_{-}with respect to the material. Assume further that the material is moving with a velocity \mathbf{v} with respect to an observer who is to measure the current. The net average velocities of positive and negative charges as seen by the observer are $\mathbf{v}_{+}+\mathbf{v}$ and $\mathbf{v}_{-}+\mathbf{v}$, respectively. The current density measured by the observer is then from (B.1.24)

$$
\begin{equation*}
\mathbf{J}=\left(\rho_{+} \mathbf{v}_{+}+\rho_{-} \mathbf{v}_{-}\right)+\rho_{e} \mathbf{v} \tag{B.1.25}
\end{equation*}
$$

where the net charge density ρ_{e} is given by

$$
\begin{equation*}
\rho_{e}=\rho_{+}+\rho_{-} \tag{B.1.26}
\end{equation*}
$$

The first term of (B.1.25) is a net flow of charge with respect to the material and is normally called a conduction current. (It is often described by Ohm's law.) The last term represents the transport of net charge and is conventionally called a convection current. It is crucial that net flow of charge be distinguished from flow of net charge. The net charge may be zero but a current can still be accounted for by the conduction term. This is the case in metallic conductors.

B.1.3 Ampère's Law, Magnetic Fields and Forces

The magnetic flux density \mathbf{B} is defined to express the force on a current element $i d l$ placed in the vicinity of other currents. This element is shown in Fig. B.1.4 at the position r. Then, according to Ampère's experiments, the force is given by

$$
\begin{equation*}
\mathbf{f}=i d \mathbf{l} \times \mathbf{B} \tag{B.1.27}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0}}{4 \pi} \int_{V^{\prime}} \frac{\mathbf{J} \times\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d V^{\prime} \tag{B.1.28}
\end{equation*}
$$

Fig. B.1.4 A distribution of current density $\mathbf{J}\left(\mathbf{r}^{\prime}\right)$ produces a force on the current element $i d l$ which is represented in terms of the magnetic flux density \mathbf{B} by (B.1.27) and (B.1.28).

Hence the flux density at the position r of the current element $i d$ l is the superposition of fields produced by currents at the positions \mathbf{r}^{\prime}. In this expression the permeability of free space μ_{0} is

$$
\begin{equation*}
\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} \tag{B.1.29}
\end{equation*}
$$

As an example, suppose that the distribution of current density \mathbf{J} is composed of a current I (amperes) in the z direction and along the z-axis, as shown in Fig. B.1.5. The magnetic flux density at the position \mathbf{r} can be computed

Fig. B.1.5 A current I (amperes) along the z-axis produces a magnetic field at the position \mathbf{r} of the current element $i d \mathrm{l}$.
from (B.1.28), which for this case reduces to*

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0} I}{4 \pi} \int_{-\infty}^{+\infty} \frac{\mathbf{i}_{z} \times\left(\mathbf{r}-z^{\prime} \mathbf{i}_{z}\right)}{\left|\mathbf{r}-z^{\prime} \mathbf{i}_{z}\right|^{3}} d z^{\prime} \tag{B.1.30}
\end{equation*}
$$

Here the coordinate of the source current I is z^{\prime}, as shown in Fig. B.1.5, whereas the coordinate \mathbf{r} that designates the position at which \mathbf{B} is evaluated can be written in terms of the cylindrical coordinates (r, θ, z). Hence (B.1.30) becomes

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0} I \mathbf{i}_{\theta}}{4 \pi} \int_{-\infty}^{+\infty} \frac{\sin \psi \sqrt{\left(z-z^{\prime}\right)^{2}+r^{2}}}{\left[\left(z-z^{\prime}\right)^{2}+r^{2}\right]^{3 / 2}} d z^{\prime} \tag{B.1.31}
\end{equation*}
$$

where, from Fig. B.1.5, $\sin \psi=r / \sqrt{\left(z-z^{\prime}\right)^{2}+r^{2}}$. Integration on z^{\prime} gives the magnetic flux density

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0} I \mathbf{i}_{\theta}}{2 \pi r} \tag{B.1.32}
\end{equation*}
$$

It is often more convenient to relate the magnetic flux density to the current density \mathbf{J} by the integral of Ampère's law for static fields, which takes the form

$$
\begin{equation*}
\oint_{C} \mathbf{B} \cdot d \mathbf{l}=\mu_{\mathbf{0}} \int_{S} \mathbf{J} \cdot \mathbf{n} d a . \tag{B.1.33}
\end{equation*}
$$

Here C is a closed contour of line integration and S is a surface enclosed by C. We wish to present a review of electromagnetic theory and therefore we shall not embark on a proof that (B.1.33) is implied by (B.1.28). Our purpose is served by recognizing that (B.1.33) can also be used to predict the flux density in the situation in Fig. B.1.5. By symmetry we recognize that \mathbf{B} is azimuthally directed and independent of θ and z. Then, if we select the contour C in a plane z equals constant and at a radius r, as shown in Fig. B.1.5, (B.1.33) becomes

$$
\begin{equation*}
2 \pi r B_{\theta}=\mu_{0} I . \tag{B.1.34}
\end{equation*}
$$

Solution of this expression for B_{θ} gives the same result as predicted by (B.1.28). [See (B.1.32).]

The contour C and surface S in (B.1.33) are arbitrary and therefore the equation can be cast in a differential form. This is done by using Stokes' theorem \dagger,

$$
\begin{equation*}
\oint_{C} \mathbf{A} \cdot d \mathbf{l}=\int_{S} \mathbf{n} \cdot(\boldsymbol{\nabla} \times \mathbf{A}) d a, \tag{B.1.35}
\end{equation*}
$$

[^1]to write (B.1.33) as
\[

$$
\begin{equation*}
\int_{S}\left(\nabla \times \mathbf{B}-\mu_{0} \mathbf{J}\right) \cdot \mathbf{n} d a=0 \tag{B.1.36}
\end{equation*}
$$

\]

from which the differential form of Ampère's law follows as

$$
\begin{equation*}
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J} \tag{B.1.37}
\end{equation*}
$$

So far the assumption has been made that the current \mathbf{J} is constant in time. Maxwell's contribution consisted in recognizing that if the sources ρ_{e} and \mathbf{J} (hence the fields \mathbf{E} and \mathbf{B}) are time varying the displacement current $\epsilon_{0} \partial \mathbf{E} / \partial t$ must be included on the right-hand side of (B.1.37). Thus for dynamic fields Ampère's law takes the form

$$
\begin{equation*}
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \frac{\partial \epsilon_{0} \mathbf{E}}{\partial t} \tag{B.1.38}
\end{equation*}
$$

This alteration of (B.1.37) is necessary if conservation of charge expressed by (B.1.18) is to be satisfied. Because the divergence of any vector having the form $\boldsymbol{\nabla} \times \mathbf{A}$ is zero, the divergence of (B.1.38) becomes

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{J}+\frac{\partial\left(\boldsymbol{\nabla} \cdot \epsilon_{0} \mathbf{E}\right)}{\partial t}=0 \tag{B.1.39}
\end{equation*}
$$

Then, if we recall that ρ_{e} is related to \mathbf{E} by Gauss's law (B.1.16), the conservation of charge equation (B.1.18) follows. The displacement current in (B.1.38) accounts for the rate of change of ρ_{e} in (B.1.18).

We shall make considerable use of Ampère's law, as expressed by (B.1.38), with Maxwell's displacement current included. From our discussion it is clear that the static form of this law results from the force law of interaction between currents. The magnetic flux density is defined in terms of the force produced on a current element. Here we are interested primarily in a continuum description of the force, hence require (B.1.27) expressed as a force density. With the same continuum restrictions implied in writing (B.1.10), we write the magnetic force density (newtons per cubic meter) as

$$
\begin{equation*}
\mathbf{F}=\mathbf{J} \times \mathbf{B} \tag{B.1.40}
\end{equation*}
$$

In view of our remarks it should be clear that this force density is not something that we have derived but rather arises from the definition of the flux density B. Further remarks on this subject are found in Section 8.1.

B.1.4 Faraday's Law of Induction and the Potential Difference

Two extensions of static field theory are required to describe dynamic fields. One of these, the introduction of the displacement current in Ampère's law, was discussed in the preceding section. Much of the significance of this
generalization stems from the apparent fact that an electric field can lead to the generation of a magnetic field. As a second extension of static field theory, Faraday discovered that, conversely, time-varying magnetic fields can lead to the generation of electric fields.

Faraday's law of induction can be written in the integral form

$$
\begin{equation*}
\oint_{C} \mathbf{E} \cdot d \mathbf{l}=-\frac{d}{d t} \int_{S} \mathbf{B} \cdot \mathbf{n} d a, \tag{B.1.41}
\end{equation*}
$$

where again C is a contour that encloses the surface S. The contour and surface are arbitrary; hence it follows from Stokes' theorem (B.1.35) that Faraday's law has the differential form

$$
\begin{equation*}
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \tag{B.1.42}
\end{equation*}
$$

Note that in the static case this expression reduces to $\boldsymbol{\nabla} \times \mathbf{E}=0$, which is, in addition to Gauss's law, a condition on the static electric field. That this further equation is consistent with the electric field, as given by (B.1.2), is not shown in this review. Clearly the one differential equation represented by Gauss's law could not alone determine the three components of \mathbf{E}.
In regions in which the magnetic field is either static or negligible the electric field intensity can be derived as the gradient of a scalar potential ϕ :

$$
\begin{equation*}
\mathbf{E}=-\boldsymbol{\nabla} \phi \tag{B.1.43}
\end{equation*}
$$

This is true because the curl of the gradient is zero and (B.1.42) is satisfied. The difference in potential between two points, say a and b, is a measure of the line integral of \mathbf{E}, for

$$
\begin{equation*}
\int_{a}^{b} \mathbf{E} \cdot d \mathbf{l}=-\int_{a}^{b} \nabla \phi \cdot d \mathbf{l}=\phi_{a}-\phi_{b} . \tag{B.1.44}
\end{equation*}
$$

The potential difference $\phi_{a}-\phi_{b}$ is referred to as the voltage of point a with respect to b. If there is no magnetic field \mathbf{B} in the region of interest, the integral of (B.1.44) is independent of path. In the presence of a time-varying magnetic field the integral of \mathbf{E} around a closed path is not in general zero, and if a potential is defined in some region by (B.1.43) the path of integration will in part determine the measured potential difference.
The physical situation shown in Fig. B.1.6 serves as an illustration of the implications of Faraday's law. A magnetic circuit is excited by a current source $I(t)$ as shown. Because the magnetic material is highly permeable, the induced flux density $B(t)$ is confined to the cross section A which links a circuit formed by resistances R_{a} and R_{b} in series. A cross-sectional view of the

(b)

Fig. B.1.6 (a) A magnetic circuit excited by $I(t)$ so that flux $A B(t)$ links the resistive loop (b) a cross-sectional view of the loop showing connection of the voltmeters.
circuit is shown in Fig. B.1.6b, in which high impedance voltmeters v_{a} and v_{b} are shown connected to the same nodes. Under the assumption that no current is drawn by the voltmeters, and given the flux density $B(t)$, we wish to compute the voltages that would be indicated by v_{a} and v_{b}.
Three contours of integration C are defined in Fig. B.1.6 b and are used with Faraday's integral law (B.1.41). The integral of \mathbf{E} around the contour C_{c} is equal to the drop in potential across both of the resistances, which carry the same current i. Hence, since this path encloses a total flux $A B(t)$, we have

$$
\begin{equation*}
i\left(R_{a}+R_{b}\right)=-\frac{d}{d t}[A B(t)] \tag{B.1.45}
\end{equation*}
$$

The paths of integration C_{a} and C_{b} do not enclose a magnetic flux; hence for
these paths (B.1.41) gives

$$
\begin{align*}
& v_{a}=-i R_{a}=\frac{R_{a}}{R_{a}+R_{b}} \frac{d}{d t}[A B(t)] \text { for } C_{a} \tag{B.1.46}\\
& v_{b}=i R_{b}=\frac{-R_{b}}{R_{a}+R_{b}} \frac{d}{d t}[A B(t)] \text { for } C_{b} \tag{B.1.47}
\end{align*}
$$

where the current i is evaluated by using (B.1.45). The most obvious attribute of this result is that although the voltmeters are connected to the same nodes they do not indicate the same values. In the presence of the magnetic induction the contour of the voltmeter leads plays a role in determining the voltage indicated.

The situation shown in Fig. B.1.6 can be thought of as a transformer with a single turn secondary. With this in mind, it is clear that Faraday's law plays an essential role in electrical technology.

The divergence of an arbitrary vector $\boldsymbol{\nabla} \times \mathbf{A}$ is zero. Hence the divergence of (B.1.42) shows that the divergence of \mathbf{B} is constant. This fact also follows from (B.1.28), from which it can be shown that this constant is zero. Hence an additional differential equation for \mathbf{B} is

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{B}=0 \tag{B.1.48}
\end{equation*}
$$

Integration of this expression over an arbitrary volume V and use of the divergence theorem (B.1.14) gives

$$
\begin{equation*}
\oint_{S} \mathbf{B} \cdot \mathbf{n} d a=0 \tag{B.1.49}
\end{equation*}
$$

This integral law makes more apparent the fact that there can be no net magnetic flux emanating from a given region of space.

B. 2 MAXWELL'S EQUATIONS

The generality and far-reaching applications of the laws of electricity and magnetism are not immediately obvious; for example, the law of induction given by (B.1.42) was recognized by Faraday as true when applied to a conducting circuit. The fact that (B.1.42) has significance even in regions of space unoccupied by matter is a generalization that is crucial to the theory of electricity and magnetism. We can summarize the differential laws introduced in Section B. 1 as

$$
\begin{align*}
\boldsymbol{\nabla} \cdot \epsilon_{0} \mathbf{E} & =\rho_{e} \tag{B.2.1}\\
\boldsymbol{\nabla} \cdot \mathbf{J}+\frac{\partial \rho_{e}}{\partial t} & =0 \tag{B.2.2}\\
\boldsymbol{\nabla} \times \mathbf{B} & =\mu_{0} \mathbf{J}+\mu_{0} \frac{\partial \epsilon_{0} \mathbf{E}}{\partial t} \tag{B.2.3}\\
\boldsymbol{\nabla} \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \tag{B.2.4}\\
\boldsymbol{\nabla} \cdot \mathbf{B} & =0 \tag{B.2.5}
\end{align*}
$$

Taken together, these laws are called Maxwell's equations in honor of the man who was instrumental in recognizing that they have a more general significance than any one of the experiments from which they originate. For example, we can think of a time-varying magnetic flux that induces an electric field according to (B.2.4) even in the absence of a material circuit. Similarly, (B.2.3) is taken to mean that even in regions of space in which there is no circuit, hence $\mathbf{J}=0$, a time-varying electric field leads to an induced magnetic flux density \mathbf{B}.

The coupling between time-varying electric and magnetic fields, as predicted by (B.2.1 to B.2.5), accounts for the existence of electromagnetic waves, whether they be radio or light waves or even gamma rays. As we might guess from the electromechanical origins of electromagnetic theory, the propagation of electromagnetic waves is of secondary importance in the study of most electromechanical phenomena. This does not mean that electromechanical interactions are confined to frequencies that are low compared with radio frequencies. Indeed, electromechanical interactions of practical significance extend into the gigahertz range of frequencies.

To take a mature approach to the study of electromechanics it is necessary that we discriminate at the outset between essential and nonessential aspects of interactions between fields and media. This makes it possible to embark immediately on a study of nontrivial interactions. An essential purpose of this section is the motivation of approximations used in this book.

Although electromagnetic waves usually represent an unimportant consideration in electromechanics and are not discussed here in depth, they are important to an understanding of the quasi-static approximations that are introduced in Section B.2.2. Hence we begin with a brief simplified discussion of electromagnetic waves.

B.2.1 Electromagnetic Waves

Consider fields predicted by (B.2.3) and (B.2.4) in a region of free space in which $\mathbf{J}=0$. In particular, we confine our interest to situations in which the fields depend only on (x, t) (the fields are one-dimensional) and write the y-component of (B.2.3) and the z-component of (B.2.4)

$$
\begin{align*}
-\frac{\partial B_{z}}{\partial x} & =\mu_{0} \epsilon_{0} \frac{\partial E_{z}}{\partial t} \tag{B.2.6}\\
\frac{\partial E_{z}}{\partial x} & =-\frac{\partial B_{z}}{\partial t} \tag{B.2.7}
\end{align*}
$$

This pair of equations, which make evident the coupling between the dynamic electric and magnetic fields, is sufficient to determine the field components B_{z} and E_{y}. In fact, if we take the time derivative of (B.2.6) and use the resulting
expression to eliminate B_{z} from the derivative with respect to x of (B.2.7), we obtain

$$
\begin{equation*}
\frac{\partial^{2} E_{u}}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} E_{y}}{\partial t^{2}}, \tag{B.2.8}
\end{equation*}
$$

where

$$
c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}=3 \times 10^{8} \quad(\mathrm{~m} / \mathrm{sec}) .
$$

This equation for E_{y} is called the wave equation because it has solutions in the form of

$$
\begin{equation*}
E_{y}(x, t)=E_{+}(x-c t)+E_{-}(x+c t) . \tag{B.2.9}
\end{equation*}
$$

That this is true may be verified by substituting (B.2.9) into (B.2.8). Hence solutions for E_{ν} can be analyzed into components E_{+}and E_{-}that represent waves traveling, respectively, in the $+x$ - and $-x$-directions with the velocity of light c, given by (B.2.8). The prediction of electromagnetic wave propagation is a salient feature of Maxwell's equations. It results, as is evident from the derivation, because time-varying magnetic fields can induce electric fields [Faraday's law, (B.2.7)] while at the same time dynamic electric fields induce magnetic fields [Ampère's law with the displacement current included (B.2.6)]. It is also evident from the derivation that if we break this two-way coupling by leaving out the displacement current or omitting the magnetic induction term electromagnetic waves are not predicted.

Electromechanical interactions are usually not appreciably affected by the propagational character of electromagnetic fields because the velocity of propagation c is very large. Suppose that we are concerned with a system whose largest dimension is l. The time l / c required for the propagation of a wave between extremes of the system is usually short compared with characteristic dynamical times of interest; for example, in a device in which $l=0.3 \mathrm{~m}$ the time l / c equals $10^{-9} \mathrm{sec}$. If we were concerned with electromechanical motions with a time constant of a microsecond (which is extremely short for a device characterized by 30 cm), it would be reasonable to ignore the wave propagation. In the absence of other dynamic effects this could be done by assuming that the fields were established everywhere within the device instantaneously.

Even though it is clear that the propagation of electromagnetic waves has nothing to do with the dynamics of interest, it is not obvious how to go about simplifying Maxwell's equations to remove this feature of the dynamics. A pair of particular examples will help to clarify approximations made in the next section. These examples, which are considered simultaneously so that they can be placed in contrast, are shown in Fig. B.2.1.

Fig. B.2.1 Perfectly conducting plane-parallel electrodes driven at $x=-l$: $(a) i(t)=$ $i_{o} \cos \omega t ;(b) v(t)=v_{0} \cos \omega t$.

A pair of perfectly conducting parallel plates has the spacing s which is much smaller than the $x-z$ dimensions l and d. The plates are excited at $x=-l$ by

a current source	a voltage source

$i(t)=i_{o} \cos \omega t$ (amperes). (B.2.10a)

$$
\begin{equation*}
v(t)=v_{0} \cos \omega t \text { (volts). } \tag{B.2.10b}
\end{equation*}
$$

At $x=0$, the plates are terminated in
a perfectly conducting short circuit \mid an open circuit. plate.

If we assume that the spacing s is small enough to warrant ignoring the effects of fringing and that the driving sources at $x=-l$ are distributed along the z-axis, the one-dimensional fields B_{z} and E_{v} predicted by (B.2.6) and (B.2.7) represent the fields between the plates. Hence we can think of the current and voltage sources as exciting electromagnetic waves that propagate along the x-axis between the plates. The driving sources impose conditions on the fields at $x=-l$. They are obtained by
integrating (B.1.33) around the contour C (Fig. B.2.2a) which encloses the upper plate adjacent to the current source. (The surface S enclosed by C is very thin so that negligible displacement current links the loop).
$B_{2}(-l, t)=-\mu_{0} K=-\frac{\mu_{0} i(t)}{d}$
(B.2.11a)
integrating the electric field between
(a) and (b) in Fig. B.2.2b to relate the potential difference of the voltage source to the electric field intensity $E_{y}(-l, t)$.

$$
\begin{equation*}
\int_{s}^{0} E_{y} d y=-s E_{y}(-l, t)=v(t) . \tag{B.2.11b}
\end{equation*}
$$

Fig. B.2.2 Boundary conditions for the systems in Fig. B.2.1
Similar conditions used at $x=0$ give the boundary conditions

$E_{y}(0, t)=0$	$(\mathrm{~B} .2 .12 a)$	$B_{z}(0, t)=0$

It is not our purpose in this chapter to become involved with the formalism of solving the wave equation [or (B.2.6) and (B.2.7)] subject to the boundary conditions given by (B.2.11) and (B.2.12). There is ample opportunity to solve boundary value problems for electromechanical systems in the text, and the particular problem at hand forms a topic within the context of transmission lines and waveguides. For our present purposes, it suffices to guess solutions to these equations that will satisfy the appropriate boundary conditions. Then direct substitution into the differential equations will show that we have made the right choice.

$$
\begin{array}{l|l}
E_{y}=-i_{o} \frac{\sin \omega t \sin (\omega x / c)}{d \epsilon_{0} c \cos (\omega l / c)}, & E_{y}=-\frac{v_{n} \cos \omega t \cos (\omega x / c)}{s \cos (\omega l / c)}, \\
\quad(\mathrm{B} .2 .13 a) & \\
B_{z}=-\frac{\mu_{0} i_{o} \cos \omega t \cos (\omega x / c)}{d \cos (\omega l / c)}, & B_{z}=-\frac{v_{o} \sin \omega t \sin (\omega x / c)}{c s \cos (\omega l / c)}
\end{array}
$$

Note that at $x=-l$ the boundary conditions B.2.11 are satisfied, whereas at $x=0$ the conditions of (B.2.12) are met. One way to show that Maxwell's equations are satisfied also (aside from direct substitution) is to use trigometric identities* to rewrite these standing wave solutions as the superposition of two traveling waves in the form of (B.2.9). Our solutions are sinusoidal, steady-state solutions, so that with the understanding that the amplitude of the field at any point along the x-axis is varying sinusoidally with time we can obtain an impression of the dynamics by plotting the instantaneous amplitudes, as shown in Fig. B.2.3. In general, the fields have the sinusoidal distribution along the x-axis of a standing wave. From (B.2.13 to B.2.14) it

[^2]

Fig. B.2.3 Amplitude of the electric field intensity and magnetic flux density along the x-axis of the parallel-plate structures shown in Fig. B.2.1 For these plots $\omega / / c=3 \pi / 4$.
is clear that as a function of time the electric field reaches its maximum amplitude when $B_{z}=0$ and vice versa. Hence the amplitudes of E_{y} and B_{z} shown in Fig. B.2.3 are for different instants of time. The fields near $x=0$ do not in general have the same phase as those excited at $x=-l$. If, however, we can make the approximation that times of interest (which in this case are $1 / \omega)$ are much longer than the propagation time l / c,

$$
\begin{equation*}
\frac{l / c}{1 / \omega}=\frac{\omega l}{c} \ll 1 \tag{B.2.15}
\end{equation*}
$$

The sine functions can then be approximated by their arguments (which are small compared with unity) and the cosine functions are essentially equal to unity. Hence, when (B.2.15) is satisfied, the field distributions (B.2.13) and (B.2.14) become

$$
\begin{array}{ll|l}
E_{y} \simeq-\frac{i_{0} \sin \omega t}{d \epsilon_{0} c}\left(\frac{\omega x}{c}\right), & (\text { B.2.16a) } & E_{y} \simeq-\frac{v_{o}}{s} \cos \omega t \\
B_{z} \simeq-\frac{\mu_{0} i_{o} \cos \omega t}{d}, & (B .2 .17 a) & B_{z} \simeq-\frac{v_{o}}{c s} \sin \omega t\left(\frac{\omega x}{c}\right) . \tag{B.2.16b}
\end{array}
$$

The distribution of field amplitudes in this limit is shown in Fig. B.2.4. The most significant feature of the limiting solutions is that
the magnetic field between the short-circuited plates has the same distribution as if the excitation current were static.
the electric field between the opencircuited plates has the same distribution as if the excitation voltage were constant.

Fig. B.2.4 The distribution of field amplitudes between the parallel plates of Fig. B.2.1 in the limit in which $(\omega / / c) \ll 1$.

Note that the fields as they are excited at $x=-l$ retain the same phase everywhere between the plates. This simply reflects the fact that according to the approximate equations there is no time lag between an excitation at $x=-l$ and the field response elsewhere along the x-axis. It is in this limit that the ideas of circuit theory are applicable, for if we now compute
the voltage $v(t)$ at $x=-l$
$v(t)=-s E_{y}(-l, t)$
we obtain the terminal equation for an inductance
$v=L \frac{d}{d t}\left(i_{0} \cos \omega t\right)$,
where the inductance L is
$\mathrm{L}=\frac{s l \mu_{0}}{d}$.
the current $i(t)$ at $x=-l$
$i(t)=-B_{z}(-l, t) \frac{d}{\mu_{0}}$
we obtain the terminal equation for a capacitance

$$
\begin{equation*}
i(t)=C \frac{d}{d t}\left(v_{a} \cos \omega t\right) \tag{B.2.19b}
\end{equation*}
$$

where the capacitance C is

$$
C=\frac{\epsilon_{0} d l}{s} .
$$

A comparison of the examples will be useful for motivating many of the somewhat subtle ideas introduced in the main body of the book. One of the most important points that we can make here is that even though we have solved the same pair of Maxwell's equations (B.2.6) and (B.2.7) for both examples, subject to the same approximation that $\omega / / c \ll 1$ (B.2.15), we have been led to very different physical results. The difference between these
two examples arises from the boundary condition at $x=0$. In the case of
a short circuit a static excitation leads to a uniform magnetic field but no electric field. The electric field is generated by Faraday's law because the magnetic field is in fact only quasi-static and varies slowly with time.
an open circuit a static excitation results in a uniform electric field but no magnetic field. The magnetic field is induced by the displacement current in Ampère's law because the electric field is, in fact, only quasi-static and varies slowly with time.

B.2.2 Quasi-Static Electromagnetic Field Equations

As long as we are not interested in phenomena related to the propagation of electromagnetic waves, it is helpful to recognize that most electromechanical situations are in one of two classes, exemplified by the two cases shown in Fig. B.2.1. In the situation in which the plates are short-circuited together (Fig. B.2.1a) the limit $\omega / / c \ll 1$ means that the displacement current is of negligible importance. A characteristic of this system is that with a static excitation a large current results; hence there is a large static magnetic field. For this reason it exemplifies a magnetic field system. By contrast, in the case in which the plates are open-circuited, as shown in Fig. B.2.1b, a static excitation gives rise to a static electric field but no magnetic field. This example exemplifies an electric field system, in which the magnetic induction of Faraday's law is of negligible importance. To emphasize these points consider how we can use these approximations at the outset to obtain the approximate solutions of (B.2.19). Suppose that the excitations in Fig. B.2.1 were static. The fields between the plates are then independent of x and given by
$E_{y}=0$,
$B_{z}=-\frac{\mu_{0} i}{d}$,

$$
\begin{align*}
& E_{y}=-\frac{v}{s} \tag{B.2.20a}\\
& B_{z}=0 . \tag{B.2.21a}
\end{align*}
$$

Now suppose that the fields vary slowly with time [the systems are quasistatic in the sense of a condition like (B.2.15)]. Then i and v in these equations are time-varying, hence
B_{z} is a function of time.
From Faraday's law of induction as expressed by (B.2.7)
$\frac{\partial E_{y}}{\partial x}=\frac{\mu_{0}}{d} \frac{d i}{d t}$.
E_{y} is a function of time.
From Ampère's law, as expressed by (B.2.6)

$$
\begin{equation*}
\frac{\partial B_{z}}{\partial x}=\frac{\mu_{0} \epsilon_{0}}{s} \frac{d v}{d t} . \tag{B.2.22b}
\end{equation*}
$$

Now the right-hand side of each of these equations is independent of x; hence they can be integrated on x. At the same time, we recognize that
$E_{y}(0, t)=0$,
(B.2.23a)
$B_{z}(0, t)=0$,
so that integration gives
$E_{y}=\frac{\mu_{0} x}{d} \frac{d i}{d t}$.

$$
\begin{equation*}
B_{z}=\frac{\mu_{0} \epsilon_{0} x}{s} \frac{d v}{d t} \tag{B.2.24a}
\end{equation*}
$$

Recall how the terminal voltage and current are related to these field quantities (B.2.18) and these equations become
$v(t)=L \frac{d i}{d t}, \quad($ B.2.25a $) \quad i(t)=C \frac{d v}{d t}$,
where again the inductance L and capacitance C are defined as following (B.2.19). Hence making these approximations at the outset has led to the same approximate results as those found in the preceding section by computing the exact solution and taking the limits appropriate to $\omega / / c \ll 1$.

The simple example in Fig. B.2.1 makes it plausible that Maxwell's equations can be written in two quasi-static limits appropriate to the analysis of two major classes of electromechanical interaction:

\[

\]

Here the displacement current has been omitted from Ampère's law in the magnetic field system, whereas the magnetic induction has been dropped from Faraday's law in the electric field system. Note that if the displacement current is dropped from (B.2.26a) the charge density must be omitted from the conservation of charge equation (B.2.29a) because the latter expression is the divergence of ($\mathrm{B} \cdot 2.26 a$).

We have not included Guass's law for the charge density in the magnetic field system or the divergence equation for B in the electric field system because in the respective situations these expressions are of no interest. In fact, only the divergence of (B.2.26b) is of interest in determining the dynamics of most electric field systems and that is (B.2.29b).

It must be emphasized that the examples of Fig. B.2.1 serve only to motivate the approximations introduced by (B.2.26 to B.2.29). The two systems of equations have a wide range of application. The recognition that a given physical situation can be described as a magnetic field system, as opposed to an electric field system, requires judgment based on experience. A major intent of this book is to establish that kind of experience.

In the cases of Fig. B.2.1 we could establish the accuracy of the approximate equations by calculating effects induced by the omitted terms; for example, in the magnetic field system of Fig. B.2.1a we ignored the displacement current to obtain the quasi-static solution of (B.2.2la) and (B.2.24a). We could now compute the correction $B_{z}{ }^{\text {c }}$ to the quasi-static magnetic field induced by the displacement current by using (B.2.6), with \mathbf{E} given by (B.2.24a). This produces

$$
\begin{equation*}
\frac{\partial B_{z}{ }^{c}}{\partial x}=-\frac{\mu_{0}{ }^{2} \epsilon_{0} x}{d} \frac{d^{2} i}{d t^{2}} . \tag{B.2.30}
\end{equation*}
$$

Because the right-hand side of this expression is a known function of x, it can be integrated. The constant of integration is evaluated by recognizing that the quasi-static solution satisfies the driving condition at $x=-l$; hence the correction field $B_{z}{ }^{c}$ must be zero there and

$$
\begin{equation*}
B_{z}{ }^{c}=-\frac{\mu_{0}{ }^{2} \epsilon_{0}\left(x^{2}-l^{2}\right)}{2 d} \frac{d^{2} i}{d t^{2}} \tag{B.2.31}
\end{equation*}
$$

Now, to determine the error incurred in ignoring this field we take the ratio of its largest value (at $x=0$) to the quasi-static field of (B.2.21a):

$$
\begin{equation*}
\frac{\left|B_{z}{ }^{c}\right|}{\left|B_{z}\right|}=\frac{l^{2}}{2 c^{2}} \frac{\left|d^{2} i / d t^{2}\right|}{|i|} \tag{B.2.32}
\end{equation*}
$$

If this ratio is small compared with 1 , the quasi-static solution is adequate. It is evident that in this case the ratio depends on the time rate of change of the excitation. In Section B.2.1, in which $i=i_{o} \cos \omega t$, (B.2.32) becomes

$$
\begin{equation*}
\frac{\left|B_{z}{ }^{c}\right|}{\left|B_{z}\right|}=\frac{1}{2}\left(\frac{\omega l}{c}\right)^{2} \ll 1, \tag{B.2.33}
\end{equation*}
$$

which is essentially the same condition given by (B.2.15).
Once the fields have been determined by using either the magnetic field or the electric field representation it is possible to calculate the effects of the omitted terms. This procedure results in a condition characterized by (B.2.33). For this example, if the device were 30 cm long and driven at 1 MHz (this
is an extremely high frequency for anything 30 cm long to respond to electromechanically) (B.2.33) becomes

$$
\begin{equation*}
\frac{1}{2}\left(\frac{\omega l}{c}\right)^{2}=\frac{1}{2}\left(\frac{2 \cdot \pi \cdot 10^{6} \cdot 0.3}{3 \times 10^{8}}\right)^{2}=2 \pi^{2} \times 10^{-6} \ll 1 \tag{B.2.34}
\end{equation*}
$$

and the quasi-static approximation is extremely good.
It is significant that the magnetic and electric field systems can be thought of in terms of their respective modes of electromagnetic energy storage. In the quasi-static systems the energy that can be attributed to the electromagnetic fields is stored either in the magnetic or electric field. This can be seen by using (B.2.26 to B.2.27) to derive Poynting's theorem for the conservation of electromagnetic energy. If the equations in (B.2.27) are multiplied by \mathbf{B} / μ_{0} and subtracted from the equations in (B.2.26) multiplied by \mathbf{E} / μ_{0}, it follows that

$$
\begin{array}{r|r}
\frac{\mathbf{E}}{\mu_{0}} \cdot \boldsymbol{\nabla} \times \mathbf{B}-\frac{\mathbf{B}}{\mu_{0}} \cdot \boldsymbol{\nabla} \times \mathbf{E}=\mathbf{E} \cdot \mathbf{J} & \frac{\mathbf{E}}{\mu_{0}} \cdot \boldsymbol{\nabla} \times \mathbf{B}-\frac{\mathbf{B}}{\mu_{0}} \cdot \boldsymbol{\nabla} \times \mathbf{E}=\mathbf{E} \cdot \mathbf{J} \\
& +\frac{\mathbf{B}}{\mu_{0}} \cdot \frac{\partial \mathbf{B}}{\partial t} \cdot(\mathbf{B} \cdot 2.35 a)
\end{array} \quad+\epsilon_{0} \mathbf{E} \cdot \frac{\partial \mathbf{E}}{\partial t} \cdot(\mathbf{B} \cdot 2.35
$$

Then, because of a vector identity,* these equations take the form

$$
\begin{array}{rr|r}
-\boldsymbol{\nabla} \cdot\left(\mathbf{E} \times \frac{\mathbf{B}}{\mu_{0}}\right)=\mathbf{E} \cdot \mathbf{J} & -\boldsymbol{\nabla} \cdot\left(\mathbf{E} \times \frac{\mathbf{B}}{\mu_{0}}\right)=\mathbf{E} \cdot \mathbf{J} \\
+\frac{\partial}{\partial t}\left(\frac{1}{2} \frac{\mathbf{B} \cdot \mathbf{B}}{\mu_{0}}\right) \cdot(\mathbf{B} \cdot 2.36 a) & +\frac{\partial}{\partial t}\left(\frac{1}{2} \epsilon_{0} \mathbf{E} \cdot \mathbf{E}\right) .
\end{array}
$$

Now, if we integrate these equations over a volume V enclosed by a surface S, the divergence theorem (B.1.14) gives

$$
\begin{equation*}
-\oint_{S} \frac{\mathbf{E} \times \mathbf{B}}{\mu_{0}} \cdot \mathbf{n} d a=\int_{V} \mathbf{E} \cdot \mathbf{J} d V+\frac{\partial}{\partial t} \int_{V} w d V \tag{B.2.37}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.w=\frac{1}{2} \frac{\mathbf{B} \cdot \mathbf{B}}{\mu_{0}} . \quad(\mathbf{B} \cdot 2.38 a) \right\rvert\, w=\frac{1}{2} \epsilon_{0} \mathbf{E} \cdot \mathbf{E} . \tag{B.2.38b}
\end{equation*}
$$

The term on the left in (B.2.37) (including the minus sign) can be interpreted as the flux of energy into the volume V through the surface S. This energy is either dissipated within the volume V, as expressed by the first term on the right, or stored in the volume V, as expressed by the second term. Hence

[^3](w) can be interpreted as an electromagnetic energy density. The electromagnetic energy of the magnetic field system is stored in the magnetic field alone. Similarly, an electric field system is one in which the electromagnetic energy is stored in the electric field.

The familiar elements of electrical circuit theory illustrate the division of interactions into those defined as magnetic field systems and those defined as electric field systems. From the discussion in this and the preceding section it is evident that the short-circuited plates in Fig. B.2.1 constitute an inductor, whereas the open-circuited plates can be represented as a capacitor. This fact is the basis for the development of electromechanical interactions undertaken in Chapter 2. From this specific example it is evident that the magnetic field system includes interactions in which we can define lumpedparameter variables like the inductance, but it is not so evident that this model also describes the magnetohydrodynamic interactions of a fluid and some plasmas with a magnetic field and the magnetoelastic interactions of solids in a magnetic field, even including electromechanical aspects of microwave magnetics.

Similarly, the electric field system includes not only the electromechanics of systems that can be modeled in terms of circuit concepts like the capacitance but ferroelectric interactions between solids and electric fields, the electrohydrodynamics of a variety of liquids and slightly ionized gases in an electric field, and even the most important oscillations of an electron beam. Of course, if we are interested in the propagation of an electromagnetic wave through an ionospheric plasma or through the slightly ionized wake of a space vehicle, the full set of Maxwell's equations must be used.

There are situations in which the propagational aspects of the electromagnetic fields are not of interest, yet neither of the quasi-static systems is appropriate. This is illustrated by short-circuiting the parallel plates of Fig. B.2.1 at $x=0$ by a resistive sheet. A static current or voltage applied to the plates at $x=-l$ then leads to both electric and magnetic fields between the plates. If the resistance of the sheet is small, the electric field between the plates is also small, and use of the exact field equations would show that we are still justified in ignoring the displacement current. In this case the inductance of Fig. B.2.1 a is in series with a resistance. In the opposite extreme, if the resistance of the resistive sheet were very high, we would still be justified in ignoring the magnetic induction of Faraday's law. The situation shown in Fig. B.2.1b would then be modeled by a capacitance shunted by a resistance. The obvious questions are, when do we make a transition from the first case to the second and why is not this intermediate case of more interest in electromechanics?

The purpose of practical electromechanical systems is either the conversion of an electromagnetic excitation into a force that can perform work on a
mechanical system or the reciprocal generation of electromagnetic energy from a force of mechanical origin. From (B.1.10) and (B.1.40) there are two fundamental types of electromagnetic force. Suppose that we are interested in producing a force of electrical origin on the upper of the two plates in Fig. B.2.1. We have the option of imposing a large current to interact with its induced magnetic field or of using a large potential to create an electric field that would interact with induced charges on the upper plate. Clearly, we are not going to impose a large potential on the plates if they are terminated in a small resistance or attempt to drive a large current through the plates with an essentially open circuit at $x=0$. The electrical dissipation in both cases would be prohibitively large. More likely, if we intended to use the force $\mathbf{J} \times \mathbf{B}$, we would make the resistance as small as possible to minimize the dissipation of electric power and approach the case of Fig. B.2.1a. The essentially open circuit shown in Fig. B.2.1b would make it possible to use a large potential to create a significant force of the type $\rho_{e} \mathbf{E}$ without undue power dissipation. In the intermediate case the terminating resistance could be adjusted to make the electric and magnetic forces about equal. As a practical matter, however, the resulting device would probably melt before it served any useful electromechanical function. The power dissipated in the termination resistance would be a significant fraction of any electric power converted to mechanical form.*

The energy densities of (B.2.38) provide one means of determining when the problem shown in Fig. B.2.1 (but with a resistive sheet terminating the plates at $x=0$) is intermediate between a magnetic and an electric field system. In the intermediate case the energy densities are equal

$$
\begin{equation*}
\frac{1}{2} \epsilon_{0} \mathbf{E} \cdot \mathbf{E}=\frac{1}{2} \frac{\mathbf{B} \cdot \mathbf{B}}{\mu_{0}} . \tag{B.2.39}
\end{equation*}
$$

Now, if the resistive sheet has a total resistance of R, then from (B.2.18a) applied at $x=0$

$$
\begin{equation*}
E_{y} s=-i R \tag{B.2.40}
\end{equation*}
$$

The current can be evaluated in terms of the magnetic field at $x=0$ by using (B.2.18b):

$$
\begin{equation*}
E_{y} s=B_{z} \frac{d R}{\mu_{0}} \tag{B.2.41}
\end{equation*}
$$

Substitution of the electric field, as found from this expression into (B.2.39), gives

$$
\begin{equation*}
\frac{\epsilon_{0}}{2} \mathrm{~B}_{z}^{2}\left(\frac{R d}{s \mu_{0}}\right)^{2}=\frac{1}{2} \frac{B_{z}^{2}}{\mu_{0}} . \tag{B.2.42}
\end{equation*}
$$

[^4]Hence, if the energy densities are equal, we obtain the following relation among the physical parameters of the system:

$$
\begin{equation*}
\frac{d R}{s}=\left(\frac{\mu_{0}}{\epsilon_{0}}\right)^{1 / 2} . \tag{B.2.43}
\end{equation*}
$$

It would be a digression to pursue this point here, but (B.2.43) is the condition that must be satisfied if an electromagnetic wave launched between the plates at $x=-l$ is to be absorbed, without reflection, by the resistive sheet*; that is, the intermediate case is one in which all the power fed into the system, regardless of the frequency or time constant, is dissipated by the resistive sheet.

B. 3 MACROSCOPIC MODELS AND CONSTITUENT RELATIONS

When solids, liquids, and gases are placed in electromagnetic fields, they influence the field distribution. This is another way of saying that the force of interaction between charges or between currents is influenced by the presence of media. The effect is not surprising because the materials are comprised of charged particles.

Problems of physical significance can usually be decomposed into parts with widely differing scales. At the molecular or submolecular level we may be concerned with the dynamics of individual charges or of the atoms or molecules to which they are attached. These systems tend to have extremely small dimensions when compared with the size of a physical device. On the macroscopic scale we are not interested in the detailed behavior of the microscopic constituents of a material but rather only a knowledge of the average behavior of variables, since only these averages are observable on a macroscopic scale. The charge and current densities introduced in Section B.I are examples of such variables, hence it is a macroscopic picture of fields and media that we require here.
There are three major ways in which media influence macroscopic electromagnetic fields. Hence the following sections undertake a review of magnetization, polarization, and conduction in common materials.

B.3.1 Magnetization

The macroscopic motions of electrons, even though associated with individual atoms or molecules, account for aggregates of charge and current

[^5](when viewed at the macroscopic level) that induce electric and magnetic fields. These field sources are not directly accessible; for example, the equivalent currents within the material cannot be circulated through an external circuit. The most obvious sources of magnetic field that are inaccessible in this sense are those responsible for the field of a permanent magnet. The earliest observations on magnetic fields involved the lodestone, a primitive form of the permanent magnet. Early investigators such as Oersted found that magnetic fields produced by a permanent magnet are equivalent to those induced by a circulating current. In the formulation of electromagnetic theory we must distinguish between fields due to sources within the material and those from applied currents simply because it is only the latter sources that can be controlled directly. Hence we divide the source currents into free currents (with the density \mathbf{J}_{f}) and magnetization currents (with the density \mathbf{J}_{m}). Ampère's law then takes the form
\[

$$
\begin{equation*}
\nabla \times\left(\frac{\mathbf{B}}{\mu_{0}}\right)=\mathbf{J}_{m}+\mathbf{J}_{f} . \tag{B.3.1}
\end{equation*}
$$

\]

By convention it is also helpful to attribute a fraction of the field induced by these currents to the magnetization currents in the material. Hence (B.3.1) is written as

$$
\begin{equation*}
\boldsymbol{\nabla} \times\left(\frac{\mathbf{B}}{\mu_{0}}-\mathbf{M}\right)=\mathbf{J}_{f} \tag{B.3.2}
\end{equation*}
$$

where the magnetization density \mathbf{M} is defined by

$$
\begin{equation*}
\boldsymbol{\nabla} \times \mathbf{M}=\mathbf{J}_{m} . \tag{B.3.3}
\end{equation*}
$$

Up to this point in this chapter it has been necessary to introduce only two field quantities to account for interactions between charges and between currents. To account for the macroscopic properties of media we have now introduced a new field quantity, the magnetization density \mathbf{M}, and in the next section similar considerations concerning electric polarization of media lead to the introduction of the polarization density \mathbf{P}. It is therefore apparent that macroscopic field theory is formulated in terms of four field variables. In our discussion these variables have been $\mathbf{E}, \mathbf{B}, \mathbf{M}$, and \mathbf{P}. An alternative representation of the fields introduces the magnetic field intensity \mathbf{H}, in our development defined as

$$
\begin{equation*}
\mathbf{H}=\left(\frac{\mathbf{B}}{\mu_{0}}-\mathbf{M}\right) \tag{B.3.4}
\end{equation*}
$$

From our definition it is clear that we could just as well deal with \mathbf{B} and \mathbf{H} as the macroscopic magnetic field vectors rather than with \mathbf{B} and \mathbf{M}. This is
particularly appealing, for then (B.3.2) takes the simple form

$$
\begin{equation*}
\boldsymbol{\nabla} \times \mathbf{H}=\mathbf{J}_{f} \tag{B.3.5}
\end{equation*}
$$

When the source quantities \mathbf{J}_{f} and \mathbf{M} are specified independently, the magnetic field intensity \mathbf{H} (or magnetic flux density \mathbf{B}) can be found from the quasi-static magnetic field equations. A given constant magnetization density corresponds to the case of the permanent magnet. In most cases, however, the source quantities are functions of the field vectors, and these funtional relations, called constituent relations, must be known before the problems can be solved. The constituent relations represent the constraints placed on the fields by the internal physics of the media being considered. Hence it is these relations that make it possible to separate the microscopic problem from the macroscopic one of interest here.

The simplest form of constituent relation for a magnetic material arises when it can be considered electrically linear and isotropic. Then the permeability μ is constant in the relation

$$
\begin{equation*}
\mathbf{B}=\mu \mathbf{H} \tag{B.3.6}
\end{equation*}
$$

The material is isotropic because \mathbf{B} is collinear with \mathbf{H} and a particular constant (μ) times \mathbf{H}, regardless of the direction of \mathbf{H}. A material that is homogeneous and isotropic will in addition have a permeability μ that does not vary with position in the material. Another way of expressing (B.3.6) is to define a magnetic susceptibility χ_{m} (dimensionless) such that

$$
\begin{equation*}
\mathbf{M}=\chi_{m} \mathbf{H} \tag{B.3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu=\mu_{0}\left(1+\chi_{m}\right) \tag{B.3.8}
\end{equation*}
$$

Magnetic materials are commonly found with \mathbf{B} not a linear function of \mathbf{H} and the constitutive law takes the general form

$$
\begin{equation*}
\mathbf{B}=\mathbf{B}(\mathbf{H}) \tag{B.3.9}
\end{equation*}
$$

We deal with some problems involving materials of this type, but with few exceptions confine our examples to situations in which \mathbf{B} is a single-valued function of \mathbf{H}. In certain magnetic materials in some applications the B-H curve must include hysteresis and (B.3.9) is not single-valued.*

The differential equations for a magnetic field system in the presence of moving magnetized media are summarized in Table 1.2.

B.3.2 Polarization

The force between a charge distribution and a test charge is observed to change if a dielectric material is brought near the region occupied by the test

[^6]charge. Like the test charge, the charged particles which compose the dielectric material experience forces due to the applied field. Although these charges remain identified with the molecules of the material, their positions can be distorted incrementally by the electric force and thus lead to a polarization of the molecules.

The basic sources of the electric field are charges. Hence it is natural to define a polarization charge density ρ_{p} as a source of a fraction of the electric field which can be attributed to the inaccessible sources within the media. Thus Gauss's law (B.1.16) is written

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \epsilon_{0} \mathbf{E}=\rho_{f}+\rho_{p} \tag{B.3.10}
\end{equation*}
$$

where the free charge density ρ_{f} resides on conducting electrodes and other parts of the system capable of supporting conduction currents. The free charges do not remain attached to individual molecules but rather can be conducted from one point to another in the system.

In view of the form taken by Gauss's law, it is convenient to identify a field induced by the polarization charges by writing (B.3.10) as

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot\left(\epsilon_{0} \mathbf{E}+\mathbf{P}\right)=\rho_{f} \tag{B.3.11}
\end{equation*}
$$

where the polarization density \mathbf{P} is related to the polarization charge density by

$$
\begin{equation*}
\rho_{p}=-\boldsymbol{\nabla} \cdot \mathbf{P} \tag{B.3.12}
\end{equation*}
$$

As in Section B.3.1, it is convenient to define a new vector field that serves as an alternative to \mathbf{P} in formulating the electrodynamics of polarized media. This is the electric displacement \mathbf{D}, defined as

$$
\begin{equation*}
\mathbf{D}=\epsilon_{0} \mathbf{E}+\mathbf{P} \tag{B.3.13}
\end{equation*}
$$

In terms of this field, Gauss's law for electric fields (B.3.11) becomes

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{D}=\rho_{f} \tag{B.3.14}
\end{equation*}
$$

The simple form of this expression makes it desirable to use \mathbf{D} rather than \mathbf{P} in the formulation of problems.

If a polarization charge model is to be used to account for the effects of polarizable media on electric fields, we must recognize that the motion of these charges can lead to a current. In fact, now that two classes of charge density have been identified we must distinguish between two classes of current density. The free current density \mathbf{J}_{f} accounts for the conservation of free charge so that (B.1.18) can be written as

$$
\begin{equation*}
\nabla \cdot \mathbf{J}_{f}+\frac{\partial \rho_{f}}{\partial t}=0 \tag{B.3.15}
\end{equation*}
$$

In view of (B.3.11), this expression becomes

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{J}_{f}+\frac{\partial}{\partial t} \boldsymbol{\nabla} \cdot\left(\epsilon_{0} \mathbf{E}+\mathbf{P}\right)=0 \tag{B.3.16}
\end{equation*}
$$

Now, if we write Ampère's law (B.2.26b) as

$$
\begin{equation*}
\nabla \times\left(\frac{\mathbf{B}}{\mu_{0}}\right)=\mathbf{J}_{f}+\mathbf{J}_{p}+\frac{\partial}{\partial t} \epsilon_{0} \mathbf{E}, \tag{B.3.17}
\end{equation*}
$$

where $\mathbf{J}_{\boldsymbol{v}}$ is a current density due to the motion of polarization charges, the divergence of (B.3.17) must give (B.3.16). Therefore

$$
\begin{equation*}
\nabla \cdot \mathbf{J}_{p}+\frac{\partial}{\partial t}(-\boldsymbol{\nabla} \cdot \mathbf{P})=0 \tag{B.3.18}
\end{equation*}
$$

which from (B.3.12) is an expression for the conservation of polarization charge. This expression does not fully determine the polarization current density $\mathbf{J}_{\boldsymbol{p}}$, because in general we could write

$$
\begin{equation*}
\mathbf{J}_{p}=\frac{\partial \mathbf{P}}{\partial t}+\nabla \times \mathbf{A}, \tag{B.3.19}
\end{equation*}
$$

where \mathbf{A} is an arbitrary vector, and still satisfy (B.3.18). At this point we could derive the quantity \mathbf{A} (which would turn out to be $\mathbf{P} \times \mathbf{v}$, where \mathbf{v} is the velocity of the polarized medium). It is important, however, to recognize that this represents an unnecessary digression. In the electric field system the magnetic field appears in only one of the equations of motion-Ampère's law. It does not appear in (B.2.27b) to (B.2.29b), nor will it appear in any constitutive law used in this book. For this reason the magnetic field serves simply as a quantity to be calculated once the electromechanical problem has been solved. We might just as well lump the quantity \mathbf{A} with the magnetic field in writing Ampère's law. In fact, if we are consistent, the magnetic field intensity \mathbf{H} can be defined as given by

$$
\begin{equation*}
\boldsymbol{\nabla} \times \mathbf{H}=\mathbf{J}_{f}+\frac{\partial \mathbf{D}}{\partial t}, \tag{B.3.20}
\end{equation*}
$$

with no loss of physical significance. In an electric field system the magnetic field is an alternative representation of the current density J_{f}. A review of the quasi-static solutions for the system in Fig. B.2.1b illustrates this point.
In some materials (ferroelectrics) the polarization density \mathbf{P} is constant. In most common dielectrics, however, the polarization density is a function of E. The simplest constituent relation for a dielectric is that of linear and isotropic material,

$$
\begin{equation*}
\mathbf{P}=\epsilon_{0} \chi_{e} \mathbf{E}, \tag{B.3.21}
\end{equation*}
$$

where χ_{e} is the dielectric susceptibility (dimensionless) that may be a function of space but not of \mathbf{E}. For such a material we define the permittivity ϵ as

$$
\begin{equation*}
\epsilon=\epsilon_{0}\left(1+\chi_{e}\right) . \tag{B.3.22}
\end{equation*}
$$

and then write the relation between \mathbf{D} and \mathbf{E} as [see (B.3.13)]

$$
\begin{equation*}
\mathbf{D}=\epsilon \mathbf{E} . \tag{B.3.23}
\end{equation*}
$$

This mathematical model of polarizable material is used extensively in this book.
The differential equations for the electric field system, in the presence of moving polarized media, are summarized in Table 1.2.

B.3.3 Electrical Conduction

In both magnetic and electric field systems the conduction process accounts for the free current density $\mathbf{J}_{\boldsymbol{f}}$ in a fixed conductor. The most common model for this process is appropriate in the case of an isotropic, linear, conducting medium which, when stationary, has the constituent relation (often called Ohm's law)

$$
\begin{equation*}
\mathbf{J}_{f}=\sigma \mathbf{E} \tag{B.3.24}
\end{equation*}
$$

Although (B.3.24) is the most widely used mathematical model of the conduction process, there are important electromechanical systems for which it is not adequate. This becomes apparent if we attempt to derive (B.3.24), an exercise that will contribute to our physical understanding of Ohm's law.

In many materials the conduction process involves two types of charge carrier (say, ions and electrons). As discussed in Section B.1.2, a macroscopic model for this case would recognize the existence of free charge densities ρ_{+}and ρ_{-}with charge average velocities \mathbf{v}_{+}and \mathbf{v}_{-}, respectively. Then

$$
\begin{equation*}
\mathbf{J}_{f}=\rho_{+} \mathbf{v}_{+}+\rho_{-} \mathbf{v}_{-} . \tag{B.3.25}
\end{equation*}
$$

The problem of relating the free current density to the electric field intensity is thus a problem in electromechanics in which the velocities of the particles carrying the free charge must be related to the electric fields that apply forces to the charges.

The charge carriers have finite mass and thus accelerate when subjected to a force. In this case there are forces on the positive and negative carriers, respectively, given by (B.1.10) (here we assume that effects from a magnetic field are ignorable):

$$
\begin{align*}
& \mathbf{F}_{+}=\rho_{+} \mathbf{E}, \tag{B.3.26}\\
& \mathbf{F}_{-}=\rho_{-} \mathbf{E} . \tag{B.3.27}
\end{align*}
$$

As the charge carriers move, their motion is retarded by collisions with other particles. On a macroscopic basis the retarding force of collisions can be thought of as a viscous damping force that is proportional to velocity. Hence we can picture the conduction process in two extremes. With no collisions between particles the electric force densities of (B.3.26 and B.3.27) continually accelerate the charges, for the only retarding forces are due to acceleration expressed by Newton's law. In the opposite extreme a charge carrier suffers collisions with other particles so frequently that its average velocity quickly reaches a limiting value, which in view of (B.3.26 and B.3.27) is proportional to the applied electric field. It is in this second limiting case that Ohm's law assumes physical significance. By convention mobilities μ_{+}and μ_{-}which relate these limiting velocities to the field \mathbf{E} are defined

$$
\begin{align*}
& \mathbf{v}_{+}=\mu_{+} \mathbf{E}, \tag{B.3.28}\\
& \mathbf{v}_{-}=\mu_{-} \mathbf{E} . \tag{B.3.29}
\end{align*}
$$

In terms of these quantities, (B.3.25) becomes

$$
\begin{equation*}
\mathbf{J}_{f}=\left(\rho_{+} \mu_{+}+\rho_{-} \mu_{-}\right) \mathbf{E} \tag{B.3.30}
\end{equation*}
$$

It is important to recognize that it is only when the collisions between carriers and other particles dominate the accelerating effect of the electric field that the conduction current takes on a form in which it is dependent on the instantaneous value of \mathbf{E}. Fortunately, (B.3.30) is valid in a wide range of physical situations. In fact, in a metallic conductor the number of charge carriers is extremely high and very nearly independent of the applied electric field. The current carriers in most metals are the electrons, which are detached from atoms held in the lattice structure of the solid. Therefore the negatively charged electrons move in a background field of positive charge and, to a good approximation, $\rho_{+}=-\rho_{-}$. Then (B.3.30) becomes

$$
\begin{equation*}
\mathbf{J}=\sigma \mathbf{E} \tag{B.3.31}
\end{equation*}
$$

where the conductivity is defined as

$$
\begin{equation*}
\rho_{+}\left(\mu_{+}-\mu_{-}\right) \tag{B.3.32}
\end{equation*}
$$

The usefulness of the conductivity as a parameter stems from the fact that both the number of charges available for conduction and the net mobility (essentially that of the electrons) are constant. This makes the conductivity essentially independent of the electric field, as assumed in (B.3.24).*

[^7]In some types of material (notably slightly ionized gases) which behave like insulators, the conduction process cannot be described simply by Ohm's law. In such materials the densities of charge carriers and even the mobilities may vary strongly with electric field intensity.

B. 4 INTEGRAL LAWS

The extensive use of circuit theory bears testimony to the usefulness of the laws of electricity and magnetism in integral form. Physical situations that would be far too involved to describe profitably in terms of field theory have a lucid and convenient representation in terms of circuits. Conventional circuit elements are deduced from the integral forms of the field equations. The description of lumped-parameter electromechanical systems, as undertaken in Chapter 2, requires that we generalize the integral laws to include time-varying surfaces and contours of integration. Hence it is natural that we conclude this appendix with a discussion of the integral laws.

B.4.1 Magnetic Field Systems

Faraday's law of induction, as given by (B.1.42), has the differential form

$$
\begin{equation*}
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \tag{B.4.1}
\end{equation*}
$$

This expression can be integrated over a surface S enclosed by the contour C. Then, according to Stokes's theorem,

$$
\begin{equation*}
\oint_{C} \mathbf{E} \cdot d \mathbf{l}=-\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{n} d a \tag{B.4.2}
\end{equation*}
$$

Now, if S and C are fixed in space, the time derivative on the right can be taken either before or after the surface integral of $\mathbf{B} \cdot \mathbf{n}$ is evaluated. Note that $\int_{S} \mathbf{B} \cdot \mathbf{n} d a$ is only a function of time. For this reason (B.1.41) could be written with the total derivative outside the surface integral. It is implied in the integral equation (B.1.41) that S is fixed in space.

Figure B.4.1 shows an example in which it is desirable to be able to use (B.4.2), with S and C varying in position as a function of time. The contour C is a rectangular loop that encloses a surface S which makes an angle $\theta(t)$ with the horizontal. Although the induction law is not limited to this case, the loop could comprise a one-turn coil, in which case it is desirable to be able to use (B.4.2) with C fixed to the coil. The integral law of induction would be much more useful if it could be written in the form

$$
\begin{equation*}
\oint_{C} \mathbf{E}^{\prime} \cdot d \mathbf{l}=-\frac{d}{d t} \int_{S} \mathbf{B} \cdot \mathbf{n} d a . \tag{B.4.3}
\end{equation*}
$$

Fig. B.4.1 Contour C enclosing a surface S which varies as a function of time. The rectangular loop links no magnetic flux when $\theta=0, \pi, \ldots$.

In this form the quantity on the right is the negative time rate of change of the flux linked by the contour C, whereas \mathbf{E}^{\prime} is interpreted as the electric field measured in the moving frame of the loop. An integral law of induction in the form of (B.4.3) is essential to the lumped-parameter description of magnetic field systems. At this point we have two choices. We can accept (B.4.3) as an empirical result of Faraday's original investigations or we can show mathematically that (B.4.2) takes the form of (B.4.3) if

$$
\begin{equation*}
\mathbf{E}^{\prime}=\mathbf{E}+\mathbf{v} \times \mathbf{B} \tag{B.4.4}
\end{equation*}
$$

where v is the velocity of $d l$ at the point of integration. In any case this topic is pursued in Chapter 6 to clarify the significance of electric and magnetic fields measured in different frames of reference.

The mathematical connection between (B.4.2) and (B.4.3) is made by using the integral theorem

$$
\begin{equation*}
\frac{d}{d t} \int_{S} \mathbf{A} \cdot \mathbf{n} d a=\int_{S}\left[\frac{\partial \mathbf{A}}{\partial t}+(\boldsymbol{\nabla} \cdot \mathbf{A}) \mathbf{v}\right] \cdot \mathbf{n} d a ̆+\oint_{C}(\mathbf{A} \times \dot{\mathbf{v}}) \cdot d \mathbf{l} \tag{B.4.5}
\end{equation*}
$$

where v is the velocity of S and C and in the case of (B.4.3), A \rightarrow B. Before we embark on a proof of this theorem, an example will clarify its significance.

Example B.4.1. The coil shown in Fig. B.4.1 rotates with the angular deflection $\theta(t)$ in a uniform magnetic flux density $\mathbf{B}(t)$, directed as shown. We wish to compute the rate of change of the flux linked by the coil in two ways: first by computing $\int_{S} \mathbf{B} \cdot \mathrm{n} d a$ and taking
its derivative [the left-hand side of (B.4.5)], then by using the surface and contour integrations indicated on the right-hand side of (B.4.5). This illustrates how the identity allows us to carry out the surface integration before rather than after the time derivative is taken. From Fig. B.4.1 we observe that

$$
\begin{equation*}
\int_{S} \mathbf{B} \cdot \mathbf{n} d a=-B_{0}(t) 2 a d \sin \theta, \tag{a}
\end{equation*}
$$

so that the first calculation gives

$$
\begin{equation*}
\frac{d}{d t} \int_{S} \mathrm{~B} \cdot \mathrm{n} d a=-2 a d \sin \theta \frac{d B_{0}}{d t}-B_{0} 2 a d \cos \theta \frac{d \theta}{d t} \tag{b}
\end{equation*}
$$

To evaluate the right-hand side of (B.4.5) observe that $\boldsymbol{\nabla} \cdot \mathbf{B}=0$ and [from (a)]

$$
\begin{equation*}
\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot \mathrm{n} d a=-2 a d \sin \theta \frac{d B_{0}}{d t} . \tag{c}
\end{equation*}
$$

The quantity $\mathbf{B} \times \mathrm{v}$ is collinear with the axis of rotation in Fig. B.4.1; hence there is no contribution to the line integral along the pivoted ends of the loop. Because both the velocity $\mathrm{v}=\mathrm{i}_{\theta} a(d \theta / d t)$ and line elements $d l$ are reversed in going from the upper to the lower horizontal contours, the line integral reduces to twice the value from the upper contour.

$$
\begin{equation*}
\oint_{C} \mathrm{~B} \times \mathrm{v} \cdot d \mathrm{I}=-2 B_{0} a d \cos \theta \frac{d \theta}{d t} \tag{d}
\end{equation*}
$$

From (c) and (d) it follows that the right-hand side of (B.4.5) also gives (b). Thus, at least for this example, (B.4.5) provides alternative ways of evaluating the time rate of change of the flux linked by the contour C.

The integral theorem of (B.4.5) can be derived by considering the deforming surface S shown at two instants of time in Fig. B.4.2. In the incremental time interval Δt the surface S moves from S_{1} to S_{2}, and therefore by

Fig. B.4.2 When $t=t$, the surface S enclosed by the contour C is as indicated by S_{1} and C_{1}. By the time $t=t+\Delta t$ this surface has moved to S_{2}, where it is enclosed by the contour C_{2}.
definition

$$
\begin{equation*}
\frac{d}{d t} \int_{S} \mathbf{A} \cdot \mathbf{n} d a=\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t}\left(\left.\int_{S_{2}} \mathbf{A}\right|_{t+\Delta t} \cdot \mathbf{n} d a-\left.\int_{S_{1}} \mathbf{A}\right|_{t} \cdot \mathbf{n} d a\right) \tag{B.4.6}
\end{equation*}
$$

Here we have been careful to show that when the integral on S_{2} is evaluated $t=t+\Delta t$, in contrast to the integration on S_{1}, which is carried out when $t=t$.

The expression on the right in (B.4.6) can be evaluated at a given instant in time by using the divergence theorem (B.1.14) to write

$$
\begin{equation*}
\left.\int_{\dot{V}} \boldsymbol{\nabla} \cdot \mathbf{A} d V \cong \int_{S 2} \mathbf{A}\right|_{t} \cdot \mathbf{n} d a-\left.\int_{S_{1}} \mathbf{A}\right|_{t} \cdot \mathbf{n} d a-\Delta t \oint_{C_{1}} \mathbf{A} \cdot \mathbf{v} \times d \mathbf{l} \tag{B.4.7}
\end{equation*}
$$

for the volume V traced out by the surface S in the time Δt. Here we have used the fact that $-\mathrm{v} \Delta t \times d \mathrm{l}$ is equivalent to a surface element $\mathrm{n} d a$ on the surface traced out by the contour C in going from C_{1} to C_{2} in Fig. B.4.2. To use (B.4.7) we make three observations. First, as $\Delta t \rightarrow 0$,

$$
\begin{equation*}
\left.\left.\int_{S_{2}} \mathbf{A}\right|_{t+\Delta t} \cdot \mathbf{n} d a \cong \int_{S_{2}} \mathbf{A}\right|_{t} \cdot \mathbf{n} d a+\left.\int_{S_{1}} \frac{\partial \mathbf{A}}{\partial t}\right|_{t} \Delta t \cdot \mathbf{n} d a+\cdots \tag{B.4.8}
\end{equation*}
$$

Second, it is a vector identity that

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{v} \times d \mathbf{l}=\mathbf{A} \times \mathbf{v} \cdot d \mathbf{l} \tag{B.4.9}
\end{equation*}
$$

Third, an incremental volume $d V$ swept out by the surface $d a$ is essentially the base times the perpendicular height or

$$
\begin{equation*}
d V=\Delta t v \cdot \mathrm{n} d a \tag{B.4.10}
\end{equation*}
$$

From these observations (B.4.7) becomes

$$
\begin{align*}
&\left.\Delta t \int_{S_{1}}(\nabla \cdot \mathbf{A}) \mathbf{v} \cdot \mathbf{n} d a \cong \int_{S_{2}} \mathbf{A}\right|_{t+\Delta t} \cdot \mathbf{n} d a-\left.\int_{S_{1}} \Delta t \frac{\partial \mathbf{A}}{\partial t}\right|_{t} \cdot \mathbf{n} d a \\
&-\left.\int_{S_{1}} \mathbf{A}\right|_{t} \cdot \mathbf{n} d a-\Delta t \oint_{C_{1}} \mathbf{A} \times \mathbf{v} \cdot d \mathbf{l} \tag{B.4.11}
\end{align*}
$$

This expression can be solved for the quantity on the right in (B.4.6) to give

$$
\begin{equation*}
\frac{d}{d t} \int_{S} \mathbf{A} \cdot \mathbf{n} d a=\lim _{\Delta t \rightarrow 0}\left\{\int_{S_{1}}\left[(\boldsymbol{\nabla} \cdot \mathbf{A}) \mathbf{v}+\frac{\partial \mathbf{A}}{\partial t}\right] \cdot \mathbf{n} d a+\oint_{C_{1}} \mathbf{A} \times \mathbf{\nabla} \cdot d \mathbf{l}\right\} \tag{B.4.12}
\end{equation*}
$$

The limit of this expression produces the required relation (B.4.5).

Use of (B.4.5) to express the right-hand side of (B.4.2) results in

$$
\begin{equation*}
\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{n} d a=\frac{d}{d t} \int_{S} \mathbf{B} \cdot \mathbf{n} d a-\int_{S}(\mathbf{\nabla} \cdot \mathbf{B}) \mathbf{v} \cdot \mathbf{n} d a-\oint_{C}(\mathbf{B} \times \mathbf{v}) \cdot d \mathbf{l} . \tag{B.4.13}
\end{equation*}
$$

Because $\boldsymbol{\nabla} \cdot \mathbf{B}=0$, ($\mathbf{B} .4 .2$) then reduces to (B.4.3), with \mathbf{E}^{\prime} given by (B.4.4).
The integral laws for the magnetic field system are summarized in Table 1.2 at the end of Chapter 1. In these equations surfaces and contours of integration can, in general, be time-varying.

B.4.2 Electric Field System

Although the integral form of Faraday's law can be taken as an empirical fact, we require (B.4.5) to write Ampère's law in integral form for an electric field system. If we integrate (B.3.20) over a surface S enclosed by a contour C, by Stokes's theorem it becomes

$$
\begin{equation*}
\oint_{C} \mathbf{H} \cdot d \mathbf{l}=\int_{S} \mathbf{J}_{f} \cdot \mathbf{n} d a+\int_{S} \frac{\partial \mathbf{D}}{\partial t} \cdot \mathbf{n} d a . \tag{B.4.14}
\end{equation*}
$$

As with the induction law for the magnetic field system, this expression can be generalized to include the possibility of a deforming surface S by using (B.4.13) with $\mathbf{B} \rightarrow \mathbf{D}$ to rewrite the last term. If, in addition, we use (B.3.14) to replace $\boldsymbol{\nabla} \cdot \mathbf{D}$ with ρ_{f}, (B.4.14) becomes

$$
\begin{equation*}
\oint_{C} \mathbf{H}^{\prime} \cdot d \mathbf{l}=\int_{S} \mathbf{J}_{f}^{\prime} \cdot \mathbf{n} d a+\frac{d}{d t} \int_{S} \mathbf{D} \cdot \mathbf{n} d a, \tag{B.4.15}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{H}^{\prime} & =\mathbf{H}-\mathbf{v} \times \mathbf{D} \tag{B.4.16}\\
\mathbf{J}_{f}^{\prime} & =\mathbf{J}_{f}-\rho_{f} \mathbf{v} \tag{B.4.17}
\end{align*}
$$

The fields \mathbf{H}^{\prime} and \mathbf{J}_{f}^{\prime} can be interpreted as the magnetic field intensity and free current density measured in the moving frame of the deforming contour. The significance of these field transformations is discussed in Chapter 6. Certainly the relationship between \mathbf{J}_{f}^{\prime} (the current density in a frame moving with a velocity \mathbf{v}) and the current density \mathbf{J}_{f} (measured in a fixed frame), as given by (B.4.17), is physically reasonable. The free charge density appears as a current in the negative v-direction when viewed from a frame moving at the velocity v . If was reasoning of this kind that led to (B.1.25).

As we have emphasized, it is the divergence of Ampère's differential law that assumes the greatest importance in electric field systems, for it accounts for conservation of charge. The integral form of the conservation of charge

Fig. B.4.3 The sum of two surfaces S_{1} and S_{2} "spliced" together at the contour to enclose the volume V .
equation, including the possibility of a deforming surface of integration, is obtained by using (B.4.15). For this purpose integrations are considered over two deforming surfaces, S_{1} and S_{2}, as shown in Fig. B.4.3. These surfaces are chosen so that they are enclosed by the same contour C. Hence, taken together, S_{1} and S_{2} enclose a volume V.

Integration of (B.4.15) over each surface gives

$$
\begin{align*}
& \oint_{C} \mathbf{H}^{\prime} \cdot d \mathbf{l}_{1}=\int_{S_{1}} \mathbf{J}_{f}^{\prime} \cdot \mathbf{n} d a+\frac{d}{d t} \int_{S_{1}} \mathbf{D} \cdot \mathbf{n} d a . \tag{B.4.18}\\
& \oint_{C} \mathbf{H}^{\prime} \cdot d \mathbf{l}_{2}=\int_{S_{2}} \mathbf{J}_{f}^{\prime} \cdot \mathbf{n} d a+\frac{d}{d t} \int_{S_{2}} \mathbf{D} \cdot \mathbf{n} d a . \tag{B.4.19}
\end{align*}
$$

Now, if \mathbf{n} is defined so that it is directed out of the volume V on each surface, the line integral enclosing S_{1} will be the negative of that enclosing S_{2}. Then the sum of (B.4.18 and B.4.19) gives the desired integral form of the conservation of charge equation:

$$
\begin{equation*}
\oint_{S} \mathbf{J}_{f}^{\prime} \cdot \mathbf{n} d a+\frac{d}{d t} \int_{V} \rho_{f} d V=0 . \tag{B.4.20}
\end{equation*}
$$

In writing this expression we have used Gauss's theorem and (B.3.14) to show the explicit dependence of the current density through the deforming surface on the enclosed charge density.

The integral laws for electric field systems are summarized in Table 1.2 at the end of Chapter 1.

B. 5 RECOMMENDED READING

The following texts treat the subject of electrodynamics and provide a comprehensive development of the fundamental laws of electricity and magnetism.
R. M. Fano, L. J. Chu, and R. B. Adler, ElectromagneticFields, Energy, and Forces, Wiley, New York, 1960; J. D. Jackson, Classical Electrodynamics, Wiley, New York, 1962: S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, Wiley, New York, 1965; W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, Addison-Wesley, Reading, Mass., 1956; J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941.

Many questions arise in the study of the effects of moving media on electric and magnetic fields concerning the macroscopic representation of polarized and magnetized media; for example, in this appendix we introduced the fields \mathbf{E} and \mathbf{B} as the quantities defined by the force law. Then \mathbf{P} and \mathbf{M} (or \mathbf{D} and \mathbf{H}) were introduced to account for the effects of polarization and magnetization. Hence the effect of the medium was accounted for by equivalent polarization charges ρ_{p} and magnetization currents \mathbf{J}_{m}. Other representations can be used in which a different pair of fundamental vectors is taken, as defined by the force law (say, \mathbf{E} and \mathbf{H}), and in which the effects of media are accounted for by an equivalent magnetic charge instead of an equivalent current. If we are consistent in using the alternative formulations of the field equations, they predict the same physical results, including the force on magnetized and polarized media. For a complete discussion of these matters see P. Penfield, and H. Haus, Electrodynamics of Moving Media, M.I.T. Press, Cambridge, Mass., 1967.

Appendix C

SUMMARY OF PARTS I AND II AND USEFUL THEOREMS

IDENTITIES

$$
\begin{aligned}
& \mathbf{A} \times \mathbf{B} \cdot \mathbf{C}=\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}, \\
& \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B}) \\
& \boldsymbol{\nabla}(\phi+\psi)=\boldsymbol{\nabla} \phi+\boldsymbol{\nabla} \psi, \\
& \boldsymbol{\nabla} \cdot(\mathbf{A}+\mathbf{B})=\boldsymbol{\nabla} \cdot \mathbf{A}+\boldsymbol{\nabla} \cdot \mathbf{B}, \\
& \boldsymbol{\nabla} \times(\mathbf{A}+\mathbf{B})=\boldsymbol{\nabla} \times \mathbf{A}+\boldsymbol{\nabla} \times \mathbf{B}, \\
& \boldsymbol{\nabla}(\phi \psi)=\phi \boldsymbol{\nabla} \psi+\psi \boldsymbol{\nabla} \phi, \\
& \boldsymbol{\nabla} \cdot(\psi \mathbf{A})=\mathbf{A} \cdot \boldsymbol{\nabla} \psi+\psi \boldsymbol{\nabla} \cdot \mathbf{A}, \\
& \boldsymbol{\nabla} \cdot(\mathbf{A} \times \mathbf{B})=\mathbf{B} \cdot \boldsymbol{\nabla} \times \mathbf{A}-\mathbf{A} \cdot \boldsymbol{\nabla} \times \mathbf{B}, \\
& \boldsymbol{\nabla} \cdot \boldsymbol{\nabla} \phi=\nabla^{2} \phi, \\
& \boldsymbol{\nabla} \cdot \boldsymbol{\nabla} \times \mathbf{A}=0, \\
& \boldsymbol{\nabla} \times \boldsymbol{\nabla} \phi=0, \\
& \boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{A})=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{A})-\boldsymbol{\nabla}^{2} \mathbf{A}, \\
&(\boldsymbol{\nabla} \times \mathbf{A}) \times \mathbf{A}=(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{A}-\frac{1}{2} \boldsymbol{\nabla}(\mathbf{A} \cdot \mathbf{A}), \\
& \boldsymbol{\nabla}(\mathbf{A} \cdot \mathbf{B})=(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B}+(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}+\mathbf{A} \times(\boldsymbol{\nabla} \times \mathbf{B})+\mathbf{B} \times(\boldsymbol{\nabla} \times \mathbf{A}) \\
& \boldsymbol{\nabla} \times(\phi \mathbf{A})=\boldsymbol{\nabla} \phi \times \mathbf{A}+\phi \boldsymbol{\nabla} \times \mathbf{A}, \\
& \boldsymbol{\nabla} \times(\mathbf{A} \times \mathbf{B})=\mathbf{A}(\boldsymbol{\nabla} \cdot \mathbf{B})-\mathbf{B}(\boldsymbol{\nabla} \cdot \mathbf{A})+(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}-(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B} . \\
& \mathbf{C} \mathbf{1}
\end{aligned}
$$

THEOREMS

$$
\int_{a}^{b} \nabla \phi \cdot d \mathbf{I}=\phi_{b}-\phi_{a} .
$$

Divergence theorem

$$
\oint_{S} \mathbf{A} \cdot \mathbf{n} d a=\int_{V} \boldsymbol{\nabla} \cdot \mathbf{A} d V
$$

Stokes's theorem $\quad \oint_{C} \mathbf{A} \cdot d \mathbf{l}=\int_{S}(\boldsymbol{\nabla} \times \mathbf{A}) \cdot \mathbf{n} d a$

Appendix D

GLOSSARY OF COMMONLY USED SYMBOLS

Section references indicate where symbols of a given significance are introduced; grouped symbols are accompanied by their respective references. The absence of a section reference indicates that a symbol has been applied for a variety of purposes. Nomenclature used in examples is not included.
Symbol Meaning Section
A
A_{i}
$\left(A_{n}^{+}, A_{n}^{-}\right)$
A_{w}
a
$a,\left(a_{c}, a_{s}\right)$
a_{b}
(a, b, c)
a_{i}
\mathbf{a}_{p}
B, B_{r}, B_{s}
$\mathbf{B}, \mathbf{B}_{i}, B_{0}$
B_{i}
$\left(B_{r}, B_{r a}, B_{r b}, B_{r m}\right)$
$\left[B_{r f},\left(B_{r f}\right)_{\mathrm{av}}\right]$
b
b
C
$C,\left(C_{a}, C_{b}\right), C_{o}$
C
\mathbf{C}
$\left(C^{+}, C^{-}\right)$
cross-sectional area
coefficient in differential equation $\quad 5.1 .1$
complex amplitudes of components of nth
mode
cross-sectional area of armature conductor 6.4 .1
spacing of pole faces in magnetic circuit $\quad 8.5 .1$
phase velocity of acoustic related waves $\quad 13.2$.1, 11.4.1
Alfvén velocity
12.2.3

Lagrangian coordinates 11.1
constant coefficient in differential equation 5.1.1
instantaneous acceleration of point p fixed in material
damping constant for linear, angular and square law dampers
magnetic flux density
2.2.1b, 4.1.1, 5.2.2
induced flux density
1.1.1a, 8.1, 6.4.2
radial components of air-gap flux densities
4.1.4
radial flux density due to field current 6.4.1
width of pole faces in magnetic circuit 8.5
half thickness of thin beam 11.4 .2 b
contour of integration
1.1.2a
capacitance
coefficient in boundary condition
2.1.2, 7.2.1a, 5.2.1
9.1.1
the curl of the displacement 11.4
designation of characteristic lines 9.1.1

Symbol	Meaning	Section
c_{p}	specific heat capacity at constant pressure	13.1.2
c_{v}	specific heat capacity at constant volume	13.1.2
D	electric displacement	1.1.1a
d	length	
$d a$	elemental area	1.1.2a
$d \mathbf{f}_{n}$	total elemental force on material in rigid body	2.2.1c
$d 1$	elemental line segment	1.1.2a
$d \mathrm{~T}_{n}$	torque on elemental volume of material	2.2.1c
$d V$	elemental volume	1.1.2b
E	constant of motion	5.2.1
E	Young's modulus or the modulus of elasticity	9.1
E, E_{0}	electric field intensity	1.1.1a, 5.1.2d
E_{f}	magnitude of armature voltage generated by field current in a synchronous machine	4.1.6a
E_{i}	induced electric field intensity	7.0
$e_{11}, e_{i j}$	strain tensor	9.1, 11.2
$\dot{e}_{i j}$	strain-rate tensor	14.1.1a
F	magnetomotive force (mmf)	13.2.2
F	force density	1.1.1a
\hat{F}	complex amplitude of $f(t)$	5.1.1
F_{0}	amplitude of sinusoidal driving force	9.1.3
f	equilibrium tension of string	9.2
f	driving function	5.1.1
$f, \mathbf{f}, f^{e}, f^{s}, f_{j}, f_{i}, f_{1}$	force	$\begin{aligned} & \text { 2.2.1, 2.2.1c, 3.1, } \\ & \text { 5.1.2a, 3.1.2b, 8.1, } \\ & 9.1 \end{aligned}$
f	arbitrary scalar function	6.1
f^{\prime}	scalar function in moving coordinate system	6.1
f	three-dimensional surface	6.2
f	integration constant	11.4.2a
G	a constant	5.1.2c
G	shear modulus of elasticity	11.2.2
G	speed coefficient	6.4.1
G	conductance	3.1
g	air-gap length	5.2.1
$g, \mathrm{~g}$	acceleration of gravity	5.1.2c, 12.1.3
$\left(\mathbf{H}, H_{x}, H_{y}, H_{z}\right)$	magnetic field intensity	1.1.1a
h	specific enthalpy	13.1.2
I, $I,\left(I_{r}, I_{s}\right), I_{f}$	electrical current	$\begin{aligned} & \text { 10.4.3, 12.2.1a, 4.1.2 } \\ & 6.4 .1 \end{aligned}$
$\begin{aligned} & \left(i, i_{1}, i_{2}, \ldots, i_{k}\right), \\ & \left(i_{a r}, i_{a s}, i_{b r}, i_{b s}\right), \\ & i_{a},\left(i_{a}, i_{b}, i_{c}\right), \\ & \left(i_{f}, i_{t}\right),\left(i_{r}, i_{s}\right) \end{aligned}$	electrical current	$\begin{aligned} & \text { 2.1, 4.1.3, 6.4.1, 4.1.7, } \\ & 6.4 .1,4.1 \end{aligned}$

Symbol	Meaning	Section
\mathbf{i}_{n}	unit vector perpendicular to area of integration	6.2.1
i_{8}	unit vector normal to surface of integration	6.2 .1
$\left(i_{x}, i_{1}, i_{2}\right),\left(i_{1}, i_{2}, i_{3}\right)$	unit vectors in coordinate directions	2.2.1c
$J, \mathrm{~J}_{f}$	current density	7.0, 1.1.1a
$J, J_{r},\left(J_{x}, J_{y}, J_{z}\right)$	moment of inertia	5.1.2b, 4.1.1, 2.2.1c
$J_{x z}, J_{y z}$	products of inertia	2.2.1c
j	$\sqrt{-1}$	4.1.6a
K	loading factor	13.2.2
$\boldsymbol{K}, \mathbf{K}_{\boldsymbol{f}}$	surface current density	7.0, 1.1.1a
K	linear or torsional spring constant	2.2.1a
K_{i}	induced surface current density	7.0
$k, k_{c},\left(k_{r}, k_{i}\right)$	wavenumber	7.1.3, 10.1.3, 10.0
k	summation index	2.1.1
k	maximum coefficient of coupling	4.1.6b
k_{n}	nth eigenvalue	9.2
$\begin{gathered} \left(L_{,} L_{1}, L_{2}\right),\left(L_{a}, L_{f}\right), \\ L_{m},\left(L_{0}, L_{2}\right), \\ \left(L_{r}, L_{s}, L_{s r}\right), L_{s s} \end{gathered}$	inductance	$\begin{aligned} & \text { 2.1.1, 6.4.1, 2.1.1, } \\ & \text { 4.2.1, 4.1.1, 4.2.4 } \end{aligned}$
L	length of incremental line segment	6.2 .1
l	value of relative displacement for which spring force is zero	2.2.1a
l, l_{w}, I_{y}	length	
M	Hartmann number	14.2.2
\boldsymbol{M}	mass of one mole of gas in kilograms	13.1.2
M	Mach number	13.2.1
M	mass	2.2.1c
M	number of mechanical terminal pairs	2.1.1
\boldsymbol{M}, M_{s}	mutual inductance	4.1.1, 4.2.4
M	magnetization density	1.1.1a
m	mass/unit length of string	9.2
N	number of electrical terminal pairs	2.1.1
N	number of turns	5.2.2
n	number density of ions	12.3.1
n	integer	7.1.1
n	unit normal vector	1.1.2
P	polarization density	1.1.1a
\boldsymbol{P}	power	12.2.1a
P	number of pole pairs in a machine	4.1.8
p	power per unit area	14.2.1
p	pressure	5.1.2d and 12.1.4
$p_{e}, P_{g}, p_{m}, p_{r}$	power	$\begin{aligned} & \text { 4.1.6a, 4.1.6b, 4.1.2, } \\ & \text { 4.1.6b } \end{aligned}$
Q	electric charge	7.2.1a
q, q_{i}, q_{k}	electric charge	$\begin{aligned} & 1.1 .3 \text { and } 2.1 .2,8.1, \\ & 2.1 .2 \end{aligned}$
R, R_{i}, R_{o}	radius	

Symbol	Meaning	Section
$R, R_{a}, R_{b}, R_{f}, R_{r}, R_{s}$	resistance	
(R, R_{g})	gas constant	13.1.2
\mathbf{R}_{e}	electric Reynolds number	7.0
$\mathbf{R}_{\boldsymbol{m}}$	magnetic Reynolds number	7.0
r	radial coordinate	
\mathbf{r}	position vector of material	2.2.1c
\mathbf{r}^{\prime}	position vector in moving reference frame	6.1
$\mathbf{r}_{\boldsymbol{m}}$	center of mass of rigid body	2.2.1c
\boldsymbol{S}	reciprocal modulus of elasticity	11.5.2c
S	surface of integration	1.1.2a
S	normalized frequency	7.2.4
S	membrane tension	9.2
S_{z}	transverse force/unit length acting on string	9.2
s	complex frequency	5.1.1
$\left(s, s_{m T}\right)$	slip	4.1.6b
s_{i}	i th root of characteristic equation, a natural frequency	5.1 .1
T	period of oscillation	5.2.1
T	temperature	13.1.2
$\begin{gathered} \mathbf{T}, T, T^{e}, T_{e m}, T_{m}, \\ T_{0}, T_{1} \end{gathered}$	torque	$\begin{gathered} \text { 2.2.1c, 5.1.2b, 3.1.1, } \\ \text { 4.1.6b, 4.1.1, 6.4.1 } \\ 6.4 .1 \end{gathered}$
T	surface force	8.4
$T_{i j}{ }^{m}$	mechanical stress tensor	13.1.2
$T_{m n}$	the component of the stress-tensor in the m th-direction on a cartesian surface with a normal vector in the n th-direction	8.1
$T_{\text {or }}$	constant of coulomb damping	4.1 .1
T_{0}	initial stress distribution on thin rod	9.1.1
T	longitudinal stress on a thin rod	9.1.1
T_{z}	transverse force per unit area on membrane	9.2
T_{2}	transverse force per unit area acting on thin beam	11.4.2b
t	time	1.1 .1
t^{\prime}	time measured in moving reference frame	6.1
U	gravitational potential	12.1.3
U	longitudinal steady velocity of string or membrane	10.2
u	internal energy per unit mass	13.1.1
\boldsymbol{u}	surface coordinate	11.3
$u_{0}\left(x-x_{0}\right)$	unit impulse at $x=x_{0}$	9.2.1
\boldsymbol{u}	transverse deflection of wire in x-direction	10.4 .3
$u_{-1}(t)$	unit step occurring at $t=0$	5.1.2b
V, V_{m}	velocity	7.0, 13.2.3
V	volume	1.1.2
$V, V_{a}, V_{f}, V_{o}, V_{s}$	voltage	
V	potential energy	5.2.1

Symbol	Meaning	Section
v, v	velocity	
$\left(v, v_{1}, \ldots, v_{k}\right)$	voltage	2.1.1
$v^{\prime},\left(v_{a}, v_{b}, v_{c}\right)$,	voltage	
$v_{f}, v_{\mathrm{OC}}, v_{t}$		
v_{n}	velocity of surface in normal direction	6.2 .1
v_{0}	initial velocity distribution on thin rod	9.1.1
v_{p}	phase velocity	9.1.1 and 10.2
\mathbf{v}^{r}	relative velocity of inertial reference frames	6.1
v_{s}	$\sqrt{f / m}$ for a string under tension f and having mass/unit length m	10.1.1
v	longitudinal material velocity on thin rod	9.1.1
v	transverse deflection of wire in y-direction	10.4.3
(W_{e}, W_{m})	energy stored in electromechanical coupling	3.1.1
$\left(W_{e}^{\prime}, W_{m}^{\prime}, W^{\prime}\right)$	coenergy stored in electromechanical coupling	3.1.2b
$W^{\prime \prime}$	hybrid energy function	5.2 .1
w	width	5.2.2
w	energy density	11.5.2c
w^{\prime}	coenergy density	8.5
X	equilibrium position	5.1.2a
$\left(x, x_{1}, x_{2}, \ldots, x_{k}\right)$	displacement of mechanical node	2.1.1
x	dependent variable	5.1.1
x_{p}	particular solution of differential equation	5.1.1
$\left(x_{1}, x_{2}, x_{3}\right),(x, y, z)$	cartesian coordinates	8.1, 6.1
($x^{\prime}, y^{\prime}, z^{\prime}$)	cartesian coordinates of moving frame	6.1
(α, β)	constants along C^{\top} and C^{-}characteristics, respectively	9.1.1
(α, β)	see (10.2.20) or (10.2.27)	
α	transverse wavenumber	11.4 .3
(α, β)	angles used to define shear strain	11.2
(α, β)	constant angles	4.1.6b
α	space decay parameter	7.1.4
α	damping constant	5.1.2b
α	equilibrium angle of torsional spring	2.2.1a
γ	ratio of specific heats	13.1.2
γ	piezoelectric constant	11.5.2c
$\gamma, \gamma_{0}, \gamma^{\prime}$	angular position	
$\Delta_{d}(t)$	slope excitation of string	10.2.1b
Δ_{0}	amplitude of sinusoidal slope excitation	10.2.1b
$\Delta \mathrm{r}$	distance between unstressed material points	11.2.1a
Δs	distance between stressed positions of material points	11.2.1a
$\delta()$	incremental change in ()	8.5
$\delta, \delta_{1}, \delta_{0}$	displacement of elastic material	11.1, 9.1, 11.4.2a
δ	thickness of incremental volume element	6.2.1
δ	torque angle	4.1.6a

Symbol	Meaning	Section
$\delta_{i j}$	Kronecker delta	8.1
(δ_{+}, δ_{-})	wave components traveling in the $\pm x$-directions	9.1.1
ϵ	linear permittivity	1.1.1b
ϵ_{0}	permittivity of free space	1.1.1a
η	efficiency of an induction motor	4.1.6b
η	second coefficient of viscosity	14.1.1c
$\theta, \theta_{i}, \theta_{m}$	angular displacement	2.1.1, 3.1.1, 5.2.1
θ	power factor angle; phase angle between current and voltage	4.1.6a
θ	equilibrium angle	5.2.1
$\dot{\theta}$	angular velocity of armature	6.4.1
θ_{m}	maximum angular deflection	5.2.1
$\left(\lambda, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$	magnetic flux linkage	2.1.1, 6.4.1, 4.1.7,
λ_{a}		4.1.3, 4.1
$\left(\lambda_{a}, \lambda_{b}, \lambda_{c}\right)$		
($\left.\lambda_{a r}, \lambda_{a s}, \lambda_{b r}, \lambda_{b s}\right)$		
$\left(\lambda_{r}, \lambda_{s}\right)$		
λ	Lamé constant for elastic material	11.2.3
λ	wavelength	7.1.4
μ	linear permeability	1.1.1a
$\mu,\left(\mu_{+}, \mu_{-}\right)$	mobility	12.3.1, 1.1.1b
μ	coefficient of viscosity	14.1.1
μ_{d}	coefficient of dynamic friction	2.2.1b
μ_{0}	permeability of free space	1.1.1a
μ_{s}	coefficient of static friction	2.2.1b
ν	Poisson's ratio for elastic material	11.2.2
ν	damping frequency	10.1.4
(ξ, ξ)	continuum displacement	8.5
ξ_{0}	initial deflection of string	9.2
ξ_{d}	amplitude of sinusoidal driving deflection	9.2
$\left(\xi_{n}(x), \hat{\xi}_{n}(x)\right)$	nth eigenfunctions	9.2.1b
$\left(\xi_{+}, \xi_{-}\right)$	amplitudes of forward and backward traveling waves	9.2
$\dot{\xi}_{0}(x)$	initial velocity of string	9.2
-	mass density	2.2.1c
p_{f}	free charge density	1.1.1a
ρ_{s}	surface mass density	11.3
Σ	surface of discontinuity	6.2
σ	conductivity	1.1.1a
σ_{f}	free surface charge density	1.1.1a
σ_{m}	surface mass density of membrane	9.2
σ_{o}	surface charge density	7.2.3
σ_{s}	surface conductivity	1.1.1a
σ_{u}	surface charge density	7.2.3
τ	surface traction	8.2.1
τ, τ_{d}	diffusion time constant	7.1.1, 7.1.2a
τ	relaxation time	7.2.1a

Symbol	Meaning	Section
τ_{e}	electrical time constant	5.2.2
τ_{m}	time for air gap to close	5.2.2
τ_{0}	time constant	5.1.3
τ_{t}	traversal time	7.1.2a
ϕ	electric potential	7.2
ϕ	magnetic flux	2.1.1
ϕ	cylindrical coordinate	2.1.1
ϕ	potential for \mathbf{H} when $\mathbf{J}_{f}=0$	8.5.2
ϕ	flow potential	12.2
χ_{e}	electric susceptibility	1.1.1b
χ_{m}	magnetic susceptibility	1.1.1a
ψ	the divergence of the material displacement	11.4
ψ	angle defined in Fig. 6.4.2	6.4.1
$\boldsymbol{\psi}$	angular position in the air gap measured from stator winding (a) magnetic axis	4.1.4
ψ	electromagnetic force potential	12.2
ψ	angular deflection of wire	10.4.3
Ω	equilibrium rotational speed	5.1.2b
Ω	rotation vector in elastic material	11.2.1a
Ω_{n}	real part of eigenfrequency (10.1.47)	10.1.4
$\omega,\left(\omega_{r}, \omega_{s}\right)$	radian frequency of electrical excitation	4.1.6a, 4.1.2
ω	natural angular frequency ($\operatorname{Im} s$)	5.1.2b
ω, ω_{m}	angular velocity	2.2.1c, 4.1.2
ω_{c}	cutoff frequency for evanescent waves	10.1.2
ω_{d}	driving frequency	9.2
ω_{n}	nth eigenfrequency	9.2
ω_{0}	natural angular frequency	5.1.3
$\left(\omega_{r}, \omega_{i}\right)$	real and imaginary parts of ω	10.0
∇	nabla	6.1
∇_{Σ}	surface divergence	6.2.1

Appendix E

SUMMARY OF PARTS I AND II AND USEFUL THEOREMS

IDENTITIES

$$
\begin{aligned}
\mathbf{A} \times \mathbf{B} \cdot \mathbf{C} & =\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}, \\
\mathbf{A} \times(\mathbf{B} \times \mathbf{C}) & =\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B}) \\
\boldsymbol{\nabla}(\phi+\psi) & =\boldsymbol{\nabla} \phi+\boldsymbol{\nabla} \psi, \\
\boldsymbol{\nabla} \cdot(\mathbf{A}+\mathbf{B}) & =\boldsymbol{\nabla} \cdot \mathbf{A}+\boldsymbol{\nabla} \cdot \mathbf{B}, \\
\boldsymbol{\nabla} \times(\mathbf{A}+\mathbf{B}) & =\boldsymbol{\nabla} \times \mathbf{A}+\boldsymbol{\nabla} \times \mathbf{B}, \\
\boldsymbol{\nabla}(\phi \psi) & =\phi \boldsymbol{\nabla} \psi+\psi \boldsymbol{\nabla} \phi, \\
\boldsymbol{\nabla} \cdot(\psi \mathbf{A}) & =\mathbf{A} \cdot \boldsymbol{\nabla} \psi+\psi \boldsymbol{\nabla} \cdot \mathbf{A}, \\
\nabla \cdot(\mathbf{A} \times \mathbf{B}) & =\mathbf{B} \cdot \boldsymbol{\nabla} \times \mathbf{A}-\mathbf{A} \cdot \boldsymbol{\nabla} \times \mathbf{B}, \\
\boldsymbol{\nabla} \cdot \boldsymbol{\nabla} \phi & =\nabla^{2} \phi, \\
\boldsymbol{\nabla} \cdot \boldsymbol{\nabla} \times \mathbf{A} & =0, \\
\boldsymbol{\nabla} \times \nabla \phi & =0, \\
\nabla \times(\boldsymbol{\nabla} \times \mathbf{A}) & =\nabla(\boldsymbol{\nabla} \cdot \mathbf{A})-\nabla^{2} \mathbf{A}, \\
(\boldsymbol{\nabla} \times \mathbf{A}) \times \mathbf{A} & =(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{A}-\frac{1}{2} \boldsymbol{\nabla}(\mathbf{A} \cdot \mathbf{A}), \\
\boldsymbol{\nabla}(\mathbf{A} \cdot \mathbf{B}) & =(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B}+(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}+\mathbf{A} \times(\boldsymbol{\nabla} \times \mathbf{B})+\mathbf{B} \times(\boldsymbol{\nabla} \times \mathbf{A}) \\
\boldsymbol{\nabla} \times(\phi \mathbf{A}) & =\boldsymbol{\nabla} \phi \times \mathbf{A}+\phi \boldsymbol{\nabla} \times \mathbf{A}, \\
\boldsymbol{\nabla} \times(\mathbf{A} \times \mathbf{B}) & =\mathbf{A}(\boldsymbol{\nabla} \cdot \mathbf{B})-\mathbf{B}(\boldsymbol{\nabla} \cdot \mathbf{A})+(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}-(\mathbf{A} \cdot \nabla) \mathbf{B}
\end{aligned}
$$

THEOREMS

$$
\int_{a}^{b} \nabla \phi \cdot d \mathbf{l}=\phi_{b}-\phi_{a}
$$

Divergence theorem

$$
\oint_{S} \mathbf{A} \cdot \mathbf{n} d a=\int_{V} \boldsymbol{\nabla} \cdot \mathbf{A} d V
$$

Stokes's theorem

$$
\oint_{C} \mathbf{A} \cdot d \mathbf{l}=\int_{S}(\nabla \times \mathbf{A}) \cdot \mathbf{n} d a
$$

Table 1.2 Summary of Quasi-Static Electromagnetic Equations

	Differential Equations		Integral Equations	
Magnetic field system	$\boldsymbol{\nabla} \times \mathbf{H}=\mathrm{J}_{f}$	(1.1.1)	$\oint_{C} \mathbf{H} \cdot d \mathbf{l}=\int_{S} \mathbf{J}_{f} \cdot \mathbf{n} d a$	(1.1.20)
	$\boldsymbol{\nabla} \cdot \mathrm{B}=0$	(1.1.2)	$\oint_{S} \mathbf{B} \cdot \mathrm{n} d a=0$	(1.1.21)
	$\boldsymbol{\nabla} \cdot \mathrm{J}_{f}=\mathbf{0}$	(1.1.3)	$\oint_{S} \mathbf{J}_{f} \cdot \mathbf{n} d a=0$	(1.1.22)
	$\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$	(1.1.5)	$\begin{aligned} & \oint_{C} \mathbf{E}^{\prime} \cdot d \mathbf{l}=-\frac{d}{d t} \int_{S} \mathbf{B} \cdot \mathbf{n} d a \\ & \text { where } \mathbf{E}^{\prime}=\mathbf{E}+\mathbf{v} \times \mathbf{B} \end{aligned}$	(1.1.23)
Electric field system	$\nabla \times \mathrm{E}=0$	(1.1.11)	$\oint_{C} \mathbf{E} \cdot d \mathbf{l}=0$	(1.1.24)
	$\boldsymbol{\nabla} \cdot \mathrm{D}=\mathrm{P}_{\boldsymbol{f}}$	(1.1.12)	$\oint_{S} \mathbf{D} \cdot \mathbf{n} d a=\int_{V} \rho_{f} d V$	(1.1.25)
	$\nabla \cdot J_{f}=-\frac{\partial \rho_{f}}{\partial t}$	(1.1.14)	$\oint_{S} \mathrm{~J}_{f}^{\prime} \cdot \mathrm{n} d a=-\frac{d}{d t} \int_{V} \rho_{f} d V$	(1.1.26)
	$\boldsymbol{\nabla} \times \mathbf{H}=\mathbf{J}_{f}+\frac{\partial \mathbf{D}}{\partial t}$	(1.1.15)	$\begin{aligned} \oint_{C} \mathbf{H}^{\prime} \cdot d \mathrm{l} & =\int_{S} \mathbf{J}_{f}^{\prime} \cdot \mathrm{n} d a+\frac{d}{d t} \int_{S} \mathbf{D} \cdot \mathrm{n} d a \\ \text { where } \mathrm{J}_{f}^{\prime} & =\mathbf{J}_{f}-\rho_{f} \mathbf{v} \\ \mathbf{H}^{\prime} & =\mathbf{H}-\mathbf{v} \times \mathbf{D} \end{aligned}$	(1.1.27)

Table 2.1 Summary of Terminal Variables and Terminal Relations

Electric field system

Definition of Terminal Variables

Flux

$$
\lambda_{k}=\int_{S_{k}} \mathbf{B} \cdot \mathbf{n} d a
$$

Current

$$
i_{k}=\int_{S_{k^{\prime}}} \mathbf{J}_{f} \cdot \mathbf{n}^{\prime} d a
$$

Charge

$$
q_{k}=\int_{V_{k}} \rho_{f} d V
$$

Voltage

$$
\boldsymbol{v}_{k}=\int_{a}^{b} \mathbf{E} \cdot d \mathbf{l}
$$

Terminal Conditions

$$
\begin{aligned}
v_{k} & =\frac{d \lambda_{k}}{d t} \\
\lambda_{k} & =\lambda_{k}\left(i_{1} \cdots i_{V} ; \text { geometry }\right) \\
i_{k} & =i_{k}\left(\lambda_{1} \cdots \lambda_{V} ; \text { geometry }\right)
\end{aligned}
$$

$$
\begin{aligned}
i_{k} & =\frac{d q_{k}}{d t} \\
q_{k} & =q_{k}\left(v_{1} \cdots v_{N} ; \text { geometry }\right) \\
v_{k} & =v_{k}\left(q_{1} \cdots q_{N} ; \text { geometry }\right)
\end{aligned}
$$

Conservation of Energy

$$
\begin{array}{lll}
d W_{m}=\sum_{j=1}^{N} i_{j} d \lambda_{j}-\sum_{j=1}^{M} f_{j}^{e} d x_{j} & \text { (a) } & d W_{e}=\sum_{j=1}^{N} v_{j} d q_{j}-\sum_{j=1}^{M} f_{j}^{e} d x_{j} \\
d W_{m}^{\prime}=\sum_{j=1}^{N} \lambda_{j} d i_{j}+\sum_{j=1}^{M} f_{j}^{e} d x_{j} & \text { (c) } & d W_{e}^{\prime}=\sum_{j=1}^{N} q_{j} d v_{j}+\sum_{j=1}^{M} f_{j}^{e} d x_{j} \tag{d}
\end{array}
$$

Forces of Electric Origin, $j=1, \ldots, M$

思

$$
\begin{equation*}
f_{j}^{e}=-\frac{\partial W_{m}\left(\lambda_{1}, \ldots, \hat{\lambda}_{N} ; x_{1}, \ldots, x_{M}\right)}{\partial x_{j}} \tag{f}
\end{equation*}
$$

(e) $f_{j}^{e}=-\frac{\partial W_{e}\left(q_{1}, \ldots, q_{N} ; x_{1}, \ldots, x_{M}\right)}{\partial x_{j}}$

$$
\begin{equation*}
f_{j}^{e}=\frac{\partial W_{m}^{\prime}\left(i_{1}, \ldots, i_{N} ; x_{1}, \ldots, x_{M}\right)}{\partial x_{j}} \tag{h}
\end{equation*}
$$

(g) $\quad f_{j}^{e}=\frac{\partial W_{e}^{\prime}\left(v_{1}, \ldots, v_{N} ; x_{1}, \ldots, x_{M}\right)}{\partial x_{j}}$

Relation of Energy to Coenergy

$$
\begin{equation*}
W_{m}+W_{m}^{\prime}=\sum_{j=1}^{N} \lambda_{j} i_{j} \tag{j}
\end{equation*}
$$

(i) $\quad W_{e}+W_{e}^{\prime}=\sum_{j=1}^{N} v_{j} q_{j}$

Energy and Coenergy from Electrical Terminal Relations

$$
\begin{array}{ll}
W_{m}=\sum_{j=1}^{N} \int_{0}^{\lambda_{1}} i_{j}\left(\lambda_{1}, \ldots, \lambda_{j-1}, \lambda_{j}^{\prime}, 0, \ldots, 0 ; x_{1}, \ldots, x_{M}\right) d \lambda_{j}^{\prime} \quad(\mathrm{k}) \quad W_{e}=\sum_{j=1}^{N} \int_{0}^{q_{j}} v_{j}\left(q_{1}, \ldots, q_{j-1}, q_{j}^{\prime}, 0, \ldots, 0 ; x_{1}, \ldots, x_{M M}\right) d q_{j}^{\prime} \\
W_{m}^{\prime}=\sum_{j=1}^{N} \int_{0}^{i_{j}} \lambda_{j}\left(i_{1}, \ldots, i_{j-1}, i_{j}^{\prime}, 0, \ldots, 0 ; x_{1}, \ldots, x_{M}\right) d i_{j}^{\prime} \quad(\mathrm{m}) & W_{e}^{\prime}=\sum_{j=1}^{N} \int_{0}^{v_{j}} q_{j}\left(v_{1}, \ldots, v_{j-1}, v_{j}^{\prime}, 0, \ldots, 0 ; x_{1}, \ldots, x_{M}\right) d v_{j}^{\prime}
\end{array}
$$

* The mechanical variables f_{j} and x_{j} can be regarded as the j th force and displacement or the j th torque T_{j} and angular displacement θ_{j}.

Table 6.1 Differential Equations, Transformations, and Boundary Conditions for Quasi-static Electromagnetic Systems with Moving Media

	Differential Equations		Transformations		Boundary Conditions	
Magnetic field systems 켱	$\begin{aligned} & \boldsymbol{\nabla} \times \mathbf{H}=\mathbf{J}_{f} \\ & \boldsymbol{\nabla} \cdot \mathbf{B}=\mathbf{0} \\ & \boldsymbol{\nabla} \cdot \mathbf{J}_{f}=\mathbf{0} \\ & \boldsymbol{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\ & \mathbf{B}=\mu_{0}(\mathbf{H}+\mathbf{M}) \end{aligned}$	$\begin{aligned} & (1.1 .1) \\ & (1.1 .2) \\ & (1.1 .3) \\ & (1.1 .5) \\ & (1.1 .4) \end{aligned}$	$\begin{aligned} & \mathbf{H}^{\prime}=\mathbf{H} \\ & \mathbf{B}^{\prime}=\mathbf{B} \\ & \mathbf{J}_{f}^{\prime}=\mathbf{J}_{f} \\ & \mathbf{E}^{\prime}=\mathbf{E}+\mathbf{v}^{r} \times \mathbf{B} \\ & \mathbf{M}^{\prime}=\mathbf{M} \end{aligned}$	$\begin{aligned} & (6.1 .35) \\ & (6.1 .37) \\ & (6.1 .36) \\ & (6.1 .38) \\ & (6.1 .39) \end{aligned}$	$\begin{aligned} & \mathbf{n} \times\left(\mathbf{H}^{a}-\mathbf{H}^{b}\right)=K_{f} \\ & \mathbf{n} \cdot\left(\mathbf{B}^{a}-\mathbf{B}^{b}\right)=\mathbf{0} \\ & \mathbf{n} \cdot\left(\mathbf{J}_{f}^{a}-\mathbf{J}_{f}^{b}\right)+\nabla_{\Sigma} \cdot \mathbf{K}_{f}=\mathbf{0} \\ & \mathbf{n} \times\left(\mathbf{E}^{a}-\mathbf{E}^{b}\right)=v_{n}\left(\mathbf{B}^{a}-\mathbf{B}^{b}\right) \end{aligned}$	$\begin{aligned} & (6.2 .14) \\ & (6.2 .7) \\ & (6.2 .9) \\ & \\ & (6.2 .22) \end{aligned}$
Electric field systems	$\begin{aligned} & \nabla \times \mathbf{E}=0 \\ & \nabla \cdot \mathrm{D}=\rho_{f} \\ & \nabla \cdot \mathrm{~J}_{f}=-\frac{\partial \rho_{f}}{\partial t} \\ & \nabla \times \mathbf{H}=\mathrm{J}_{f}+\frac{\partial \mathrm{D}}{\partial t} \\ & \mathrm{D}=\epsilon_{0} \mathrm{E}+\mathbf{P} \end{aligned}$	$\begin{aligned} & (1.1 .11) \\ & (1.1 .12) \\ & (1.1 .14) \\ & (1.1 .15) \\ & (1.1 .13) \end{aligned}$	$\begin{aligned} \mathbf{E}^{\prime} & =\mathbf{E} \\ \mathbf{D}^{\prime} & =\mathbf{D} \\ \rho_{f}^{\prime} & =\rho_{f} \\ \mathbf{J}_{f}^{\prime} & =\mathbf{J}_{f}-\rho_{f} \mathbf{v}^{r} \\ \mathbf{H}^{\prime} & =\mathbf{H}-\mathbf{v}^{\mathbf{r}} \times \mathbf{D} \\ \mathbf{P}^{\prime} & =\mathbf{P} \end{aligned}$	$\begin{aligned} & \hline(6.1 .54) \\ & (6.1 .55) \\ & (6.1 .56) \\ & (6.1 .58) \\ & (6.1 .57) \\ & (6.1 .59) \end{aligned}$	$\begin{aligned} & \mathbf{n} \times\left(\mathbf{E}^{a}-\mathbf{E}^{b}\right)=0 \\ & \mathbf{n} \cdot\left(\mathbf{D}^{a}-\mathbf{D}^{b}\right)=\sigma_{f} \end{aligned}$ $\begin{aligned} & \mathbf{n} \cdot\left(\mathbf{J}_{f}{ }^{a}-\mathbf{J}_{f}{ }^{b}\right)+\boldsymbol{\nabla}_{\mathbf{\Sigma}} \cdot \mathbf{K}_{f}=v_{n}\left(\rho_{f}{ }^{a}-\rho_{f}{ }^{b}\right)-\frac{\partial \sigma_{f}}{\partial t} \\ & \mathbf{n} \times\left(\mathbf{H}^{a}-\mathbf{H}^{b}\right)=\mathbf{K}_{f}+v_{n} \mathbf{n} \times\left[\mathbf{n} \times\left(\mathbf{D}^{a}-\mathbf{D}^{b}\right)\right] \end{aligned}$	(6.2.31) (6.2.33) (6.2.36) (6.2.38)

Appendix F

GLOSSARY OF COMMONLY USED SYMBOLS

Section references indicate where symbols of a given significance are introduced; grouped symbols are accompanied by their respective references. The absence of a section reference indicates that a symbol has been applied for a variety of purposes. Nomenclature used in examples is not included.

Symbol	Meaning	Section
A	cross-sectional area	
A_{i}	coefficient in differential equation	5.1.1
$\left(A_{n}^{+}, A_{n}^{-}\right)$	complex amplitudes of components of \boldsymbol{n} th mode	9.2.1
A_{w}	cross-sectional area of armature conductor	6.4.1
a	spacing of pole faces in magnetic circuit	8.5.1
$a,\left(a_{c}, a_{8}\right)$	phase velocity of acoustic related waves	13.2.1, 11.4.1
a_{b}	Alfvén velocity	12.2.3
(a, b, c)	Lagrangian coordinates	11.1
a_{i}	constant coefficient in differential equation	5.1.1
$\mathbf{a}_{\boldsymbol{p}}$	instantaneous acceleration of point p fixed in material	2.2.1c
B, B_{r}, B_{s}	damping constant for linear, angular and square law dampers	2.2.1b, 4.1.1, 5.2.2
$\mathbf{B}, \mathrm{B}_{i}, \boldsymbol{B}_{0}$	magnetic flux density	1.1.1a, 8.1, 6.4.2
B_{i}	induced flux density	7.0
$\left(B_{r}, B_{r a}, B_{r b}, B_{r m}\right)$	radial components of air-gap flux densities	4.1 .4
[$\left.B_{r f},\left(B_{r f}\right)_{\text {av }}\right]$	radial flux density due to field current	6.4.1
b	width of pole faces in magnetic circuit	8.5
b	half thickness of thin beam	11.4.2b
C	contour of integration	1.1.2a
$C,\left(C_{a}, C_{b}\right), C_{o}$	capacitance	2.1.2, 7.2.1a, 5.2.1
C	coefficient in boundary condition	9.1 .1
C	the curl of the displacement	11.4
$\left(C^{+}, C^{-}\right)$	designation of characteristic lines	9.1.1

Symbol	Meaning	Section
c_{p}	specific heat capacity at constant pressure	13.1.2
c_{v}	specific heat capacity at constant volume	13.1.2
D	electric displacement	1.1.1a
d	length	
da	elemental area	1.1.2a
$\boldsymbol{d} \mathrm{f}_{\boldsymbol{n}}$	total elemental force on material in rigid body	2.2.1c
dl	elemental line segment	1.1.2a
$d \mathrm{~T}_{n}$	torque on elemental volume of material	2.2.1c
$d V$	elemental volume	1.1.2b
E	constant of motion	5.2.1
E	Young's modulus or the modulus of elasticity	9.1
E, E_{0}	electric field intensity	1.1.1a, 5.1.2d
E_{f}	magnitude of armature voltage generated by field current in a synchronous machine	4.1.6a
E_{i}	induced electric field intensity	7.0
$e_{11}, e_{i j}$	strain tensor	9.1, 11.2
$\dot{e}_{i j}$	strain-rate tensor	14.1.1a
F	magnetomotive force (mmf)	13.2.2
F	force density	1.1.1a
F	complex amplitude of $f(t)$	5.1.1
F_{0}	amplitude of sinusoidal driving force	9.1.3
f	equilibrium tension of string	9.2
f	driving function	5.1 .1
$f, \mathbf{f}, f^{e}, f^{s}, f_{j}, f_{i}, f_{1}$	force	$\begin{aligned} & \text { 2.2.1, 2.2.1c, 3.1, } \\ & \text { 5.1.2a, 3.1.2b, 8.1, } \\ & \text { 9.1 } \end{aligned}$
f	arbitrary scalar function	6.1
f^{\prime}	scalar function in moving coordinate system	6.1
f	three-dimensional surface	6.2
f	integration constant	11.4.2a
G	a constant	5.1.2c
G	shear modulus of elasticity	11.2.2
G	speed coefficient	6.4.1
G	conductance	3.1
g	air-gap length	5.2.1
g, g	acceleration of gravity	5.1.2c, 12.1.3
$\left(\mathrm{H}, H_{x}, H_{y}, H_{x}\right.$)	magnetic field intensity	1.1.1a
h	specific enthalpy	13.1.2
I, $I_{,}\left(I_{r}, I_{s}\right), I_{f}$	electrical current	$\begin{gathered} \text { 10.4.3, 12.2.1a, 4.1.2, } \\ 6.4 .1 \end{gathered}$
$\begin{aligned} & \left(i, i_{1}, i_{2}, \ldots, i_{k}\right), \\ & \left(i_{a r}, i_{a s}, i_{b r}, i_{b s}\right), \\ & i_{a},\left(i_{a}, i_{b}, i_{c}\right), \\ & \left(i_{f}, i_{t}\right),\left(i_{r}, i_{s}\right) \end{aligned}$	electrical current	$\begin{aligned} & \text { 2.1, 4.1.3, 6.4.1, 4.1.7, } \\ & \text { 6.4.1, 4.1 } \end{aligned}$

\mathbf{i}_{n}	unit vector perpendicular to area of integration	6.2.1
i_{s}	unit vector normal to surface of integration	6.2 .1
$\left(i_{x}, i_{y}, i_{z}\right),\left(i_{1}, i_{2}, i_{3}\right)$	unit vectors in coordinate directions	2.2.1c
$J, \mathrm{~J}_{\boldsymbol{f}}$	current density	7.0, 1.1.1a
$J, J_{+},\left(J_{x}, J_{y}, J_{z}\right)$	moment of inertia	5.1.2b, 4.1.1, 2.2.1c
$J_{\text {azz }}, J_{y z}$	products of inertia	2.2.1c
j	$\sqrt{-1}$	4.1.6a
K	loading factor	13.2.2
$\boldsymbol{K}, \mathrm{K}_{f}$	surface current density	7.0, 1.1.1a
K	linear or torsional spring constant	2.2.1a
K_{i}	induced surface current density	7.0
$k, k_{c},\left(k_{r}, k_{i}\right)$	wavenumber	7.1.3, 10.1.3, 10.0
k	summation index	2.1.1
k	maximum coefficient of coupling	4.1.6b
k_{n}	nth eigenvalue	9.2
$\begin{aligned} & \left(L_{,} L_{n}, L_{2}\right),\left(L_{a}, L_{f}\right), \\ & L_{m},\left(L_{0}, L_{2}\right), \\ & \left(L_{r}, L_{s}, L_{s t}\right), L_{s s} \end{aligned}$	inductance	$\begin{aligned} & \text { 2.1.1, 6.4.1, 2.1.1, } \\ & \text { 4.2.1, 4.1.1, 4.2. } \end{aligned}$
L	length of incremental line segment	6.2.1
l	value of relative displacement for which spring force is zero	2.2.1a
l, l_{w}, l_{v}	length	
M	Hartmann number	14.2.2
M	mass of one mole of gas in kilograms	13.1.2
M	Mach number	13.2.1
M	mass	2.2.1c
M	number of mechanical terminal pairs	2.1.1
\boldsymbol{M}, M_{s}	mutual inductance	4.1.1, 4.2.4
M	magnetization density	1.1.1a
m	mass/unit length of string	9.2
N	number of electrical terminal pairs	2.1.1
N	number of turns	5.2.2
n	number density of ions	12.3.1
n	integer	7.1.1
n	unit normal vector	1.1.2
P	polarization density	1.1.1a
\boldsymbol{P}	power	12.2.1a
p	number of pole pairs in a machine	4.1.8
\boldsymbol{p}	power per unit area	14.2.1
p	pressure	5.1.2d and 12.1.4
$p_{e}, p_{\theta}, p_{m}, P_{r}$	power	$\begin{aligned} & \text { 4.1.6a, 4.1.6b, 4.1.2, } \\ & \text { 4.1.6b } \end{aligned}$
Q	electric charge	7.2.1a
q, q_{i}, q_{k}	electric charge	$\begin{aligned} & \text { 1.1.3 and 2.1.2, 8.1, } \\ & \text { 2.1.2 } \end{aligned}$
$\boldsymbol{R}, R_{i}, R_{\text {d }}$	radius	

Symbol	Meaning	Section
$\begin{aligned} & R, R_{a}, R_{b}, R_{f}, R_{r}, R_{s} \\ & \left(R, R_{g}\right) \end{aligned}$	resistance gas constant	13.1.2
R_{6}	electric Reynolds number	7.0
$\mathbf{R}_{\boldsymbol{m}}$	magnetic Reynolds number	7.0
r	radial coordinate	
r	position vector of material	2.2.1c
\mathbf{r}^{\prime}	position vector in moving reference frame	6.1
$\mathbf{r}_{\boldsymbol{m}}$	center of mass of rigid body	2.2.1c
\boldsymbol{S}	reciprocal modulus of elasticity	11.5.2c
S	surface of integration	1.1.2a
S	normalized frequency	7.2.4
S	membrane tension	9.2
S_{z}	transverse force/unit length acting on string	9.2
s	complex frequency	5.1.1
$\left(s, s_{m T}\right)$	slip	4.1.6b
s_{i}	i th root of characteristic equation, a natural frequency	5.1.1
T	period of oscillation	5.2.1
T	temperature	13.1.2
$\begin{gathered} \mathbf{T}, T_{,}, T^{e}, T_{e m}, T_{m}, \\ T_{0}, T_{1} \end{gathered}$	torque	$\begin{aligned} & \text { 2.2.1c, 5.1.2b, 3.1.1, } \\ & \text { 4.1.6b, 4.1.1, 6.4.1, } \\ & 6.4 .1 \end{aligned}$
T	surface force	8.4
$T_{i j}{ }^{\text {m }}$	mechanical stress tensor	13.1.2
$T_{m n}$	the component of the stress-tensor in the m th-direction on a cartesian surface with a normal vector in the n th-direction	8.1
$T_{\text {or }}$	constant of coulomb damping	4.1.1
T_{o}	initial stress distribution on thin rod	9.1.1
T	longitudinal stress on a thin rod	9.1.1
T_{z}	transverse force per unit area on membrane	9.2
T_{2}	transverse force per unit area acting on thin beam	11.4.2b
t	time	1.1.1
t^{\prime}	time measured in moving reference frame	6.1
U	gravitational potential	12.1.3
U	longitudinal steady velocity of string or membrane	10.2
u	internal energy per unit mass	13.1.1
u	surface coordinate	11.3
$u_{0}\left(x-x_{0}\right)$	unit impulse at $x=x_{0}$	9.2.1
u	transverse deflection of wire in x-direction	10.4.3
$u_{-1}(t)$	unit step occurring at $t=0$	5.1.2b
V, V_{m}	velocity	7.0, 13.2.3
V	volume	1.1.2
$\underset{V}{V}, V_{a}, V_{f}, V_{o}, V_{s}$	voltage	
V	potential energy	5.2.1

$v, \mathrm{~V}$	velocity	
$\left(v, v_{1}, \ldots, v_{k}\right)$	voltage	2.1.1
$v^{\prime},\left(v_{a}, v_{b}, v_{c}\right)$,	voltage	
$v_{f}, v_{0 c}, v_{i}$		
v_{n}	velocity of surface in normal direction	6.2 .1
v_{0}	initial velocity distribution on thin rod	9.1.1
v_{p}	phase velocity	9.1.1 and 10.2
\mathbf{v}^{r}	relative velocity of inertial reference frames	6.1
v_{s}	$\sqrt{f / m}$ for a string under tension f and having mass/unit length m	10.1.1
v	longitudinal material velocity on thin rod	9.1.1
v	transverse deflection of wire in y-direction	10.4.3
(W_{e}, W_{m})	energy stored in electromechanical coupling	3.1.1
$\left(W_{e}^{\prime}, W_{m}^{\prime}, W^{\prime}\right)$	coenergy stored in electromechanical coupling	3.1.2b
$W^{\prime \prime}$	hybrid energy function	5.2.1
\boldsymbol{w}	width	5.2.2
w	energy density	11.5.2c
w^{\prime}	coenergy density	8.5
X	equilibrium position	5.1.2a
$\left(x, x_{1}, x_{2}, \ldots, x_{k}\right)$	displacement of mechanical node	2.1.1
	dependent variable	5.1 .1
x_{p}	particular solution of differential equation	5.1.1
($\left.x_{1}, x_{2}, x_{3}\right),(x, y, z)$	cartesian coordinates	8.1, 6.1
($x^{\prime}, y^{\prime}, z^{\prime}$)	cartesian coordinates of moving frame	6.1
(α, β)	constants along C^{+}and C^{-}characteristics, respectively	9.1.1
(α, β)	see (10.2.20) or (10.2.27)	
α	transverse wavenumber	11.4.3
(α, β)	angles used to define shear strain	11.2
(α, β)	constant angles	4.1.6b
α	space decay parameter	7.1.4
α	damping constant	5.1.2b
α	equilibrium angle of torsional spring	2.2.1a
γ	ratio oi specific heats	13.1.2
γ	piezoelectric constant	11.5.2c
$\gamma, \gamma_{0}, \gamma^{\prime}$	angular position	
$\Delta_{d}(t)$	slope excitation of string	10.2.1b
Δ_{0}	amplitude of sinusoidal slope excitation	10.2.1b
$\Delta \mathrm{r}$	distance between unstressed material points	11.2.1a
Δs	distance between stressed positions of material points	11.2.1a
$\delta()$	incremental change in ()	8.5
$\delta, \delta_{1}, \delta_{0}$	displacement of elastic material	11.1, 9.1, 11.4.2a
δ	thickness of incremental volume element	6.2.1
δ	torque angle	4.1.6a

Symbol	Meaning	Section
$\delta_{i j}$	Kronecker delta	8.1
$\left(\delta_{+}, \delta_{-}\right)$	wave components traveling in the	
	$\pm x$-directions	9.1.1
$\boldsymbol{\epsilon}$	linear permittivity	1.1.1b
ϵ_{0}	permittivity of free space	1.1.1a
η	efficiency of an induction motor	4.1.6b
η	second coefficient of viscosity	14.1.1c
$\theta, \theta_{i}, \theta_{m}$	angular displacement	2.1.1, 3.1.1, 5.2.1
θ	power factor angle; phase angle between current and voltage	4.1.6a
θ	equilibrium angle	5.2.1
$\dot{\theta}$	angular velocity of armature	6.4 .1
θ_{m}	maximum angular deflection	5.2 .1
$\left(\lambda, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$	magnetic flux linkage	2.1.1, 6.4.1, 4.1.7,
λ_{a}		4.1.3, 4.1
$\left(\lambda_{a}, \lambda_{b}, \lambda_{c}\right)$		
$\begin{aligned} & \left(\lambda_{a r}, \lambda_{a s s} \lambda_{b r}, \lambda_{b s}\right) \\ & \left(\lambda_{r}, \lambda_{s}\right) \end{aligned}$		
λ	Lamé constant for elastic material	11.2 .3
λ.	wavelength	7.1 .4
μ	linear permeability	1.1.1a
$\mu,\left(\mu_{+}, \mu_{-}\right)$	mobility	12.3.1, 1.1.1b
μ	coefficient of viscosity	14.1.1
μ_{d}	coefficient of dynamic friction	2.2 .1 b
μ_{0}	permeability of free space	1.1.1a
μ_{s}	coefficient of static friction	2.2.1b
ν	Poisson's ratio for elastic material	11.2 .2
ν	damping frequency	10.1.4
(ξ, ξ)	continuum displacement	8.5
ξ_{0}	initial deflection of string	9.2
ξ_{d}	amplitude of sinusoidal driving deflection	9.2
$\left(\xi_{n}(x), \hat{\xi}_{n}(x)\right)$	nth eigenfunctions	9.2 .1 b
$\left(\xi_{+}, \xi_{-}\right)$	amplitudes of forward and backward traveling waves	9.2
$\dot{\xi}_{0}(x)$	initial velocity of string	9.2
ρ	mass density	2.2 .1 c
p_{f}	free charge density	1.1.1a
ρ_{s}	surface mass density	11.3
Σ	surface of discontinuity	6.2
σ	conductivity	1.1.1a
σ_{f}	free surface charge density	1.1.1a
σ_{m}	surface mass density of membrane	9.2
σ_{0}	surface charge density	7.2 .3
σ_{s}	surface conductivity	1.1 .1 a
σ_{u}	surface charge density	7.2.3
τ	surface traction	8.2.1
τ, τ_{d}	diffusion time constant	7.1.1, 7.1.2a
τ	relaxation time	7.2.1a

$$
8 \cdot 314 x
$$

Appendix G

SUMMARY OF PARTS I AND II AND USEFUL THEOREMS

IDENTITIES
$\mathbf{A} \times \mathbf{B} \cdot \mathbf{C}=\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}$,
$A \times(B \times C)=B(A \cdot C)-C(A \cdot B)$
$\nabla(\phi+\psi)=\nabla \phi+\nabla \psi$,
$\boldsymbol{\nabla} \cdot(\mathbf{A}+\mathbf{B})=\boldsymbol{\nabla} \cdot \mathbf{A}+\boldsymbol{\nabla} \cdot \mathbf{B}$,
$\nabla \times(\mathbf{A}+\mathbf{B})=\boldsymbol{\nabla} \times \mathbf{A}+\boldsymbol{\nabla} \times \mathbf{B}$,

$$
\boldsymbol{\nabla}(\phi \psi)=\phi \boldsymbol{\nabla} \psi+\psi \boldsymbol{\nabla} \phi,
$$

$$
\boldsymbol{\nabla} \cdot(\psi \mathbf{A})=\mathbf{A} \cdot \boldsymbol{\nabla} \psi+\psi \boldsymbol{\nabla} \cdot \mathbf{A},
$$

$$
\boldsymbol{\nabla} \cdot(\mathbf{A} \times \mathbf{B})=\mathbf{B} \cdot \boldsymbol{\nabla} \times \mathbf{A}-\mathbf{A} \cdot \boldsymbol{\nabla} \times \mathbf{B},
$$

$$
\nabla \cdot \nabla \phi=\nabla^{2} \phi
$$

$$
\boldsymbol{\nabla} \cdot \boldsymbol{\nabla} \times \mathbf{A}=0,
$$

$$
\nabla \times \nabla \phi=0,
$$

$$
\nabla \times(\nabla \times \mathbf{A})=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{A})-\nabla^{2} \mathbf{A},
$$

$$
(\boldsymbol{\nabla} \times \mathbf{A}) \times \mathbf{A}=(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{A}-\frac{1}{2} \boldsymbol{\nabla}(\mathbf{A} \cdot \mathbf{A}),
$$

$$
\boldsymbol{\nabla}(\mathbf{A} \cdot \mathbf{B})=(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B}+(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}+\mathbf{A} \times(\boldsymbol{\nabla} \times \mathbf{B})+\mathbf{B} \times(\boldsymbol{\nabla} \times \mathbf{A})
$$

$$
\boldsymbol{\nabla} \times(\phi \mathbf{A})=\boldsymbol{\nabla} \phi \times \mathbf{A}+\phi \boldsymbol{\nabla} \times \mathbf{A},
$$

$$
\boldsymbol{\nabla} \times(\mathbf{A} \times \mathbf{B})=\mathbf{A}(\boldsymbol{\nabla} \cdot \mathbf{B})-\mathbf{B}(\boldsymbol{\nabla} \cdot \mathbf{A})+(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}-(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B} .
$$

THEOREMS

$$
\int_{a}^{b} \nabla \phi \cdot d \mathbf{I}=\phi_{b}-\phi_{a} .
$$

Divergence theorem

$$
\oint_{S} \mathbf{A} \cdot \mathbf{n} d a=\int_{V} \boldsymbol{\nabla} \cdot \mathbf{A} d V
$$

Stokes's theorem $\oint_{C} \mathbf{A} \cdot d \mathbf{l}=\int_{S}(\boldsymbol{\nabla} \times \mathbf{A}) \cdot \mathbf{n} d a$

Table 1.2 Summary of Quasi-Static Electromagnetic Equations

	Differential Equations		Integral Equations	
Magnetic field system	$\nabla \times \mathbf{H}=\mathbf{J}_{f}$	(1.1.1)	$\oint_{C} \mathbf{H} \cdot d \mathbf{l}=\int_{S} \mathbf{J}_{f} \cdot \mathbf{n} d a$	(1.1.20)
	$\boldsymbol{\nabla} \cdot \mathbf{B}=0$	(1.1.2)	$\oint_{S} \mathbf{B} \cdot \mathbf{n} d a=0$	(1.1.21)
	$\boldsymbol{\nabla} \cdot \mathrm{J}_{f}=\mathbf{0}$	(1.1.3)	$\oint_{S} \mathbf{J}_{f} \cdot \mathbf{n} d a=0$	(1.1.22)
	$\boldsymbol{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$	(1.1.5)	$\oint_{C} \mathbf{E}^{\prime} \cdot d \mathbf{l}=-\frac{d}{d t} \int_{S} \mathbf{B} \cdot \mathrm{n} d a$	(1.1.23)
Electric field system	$\boldsymbol{\nabla} \times \mathrm{E}=0$	(1.1.11)	$\begin{aligned} & \text { where } \mathbf{E}^{\prime}=\mathbf{E}+\mathbf{v} \times \mathbf{B} \\ & \oint_{C} \mathbf{E} \cdot d \mathbf{l}=0 \end{aligned}$	(1.1.24)
	$\boldsymbol{\nabla} \cdot \mathbf{D}=\rho_{f}$	(1.1.12)	$\oint_{S} \mathbf{D} \cdot \mathbf{n} d a=\int_{V} \rho_{f} d V$	(1.1.25)
	$\nabla \cdot J_{f}=-\frac{\partial_{\rho_{f}}}{\partial t}$	(1.1.14)	$\oint_{S} \mathbf{J}_{f}^{\prime} \cdot \mathbf{n} d a=-\frac{\dot{d}}{d t} \int_{V} \rho_{f} d V$	(1.1.26)
	$\nabla \times H=J_{f}+\frac{\partial D}{\partial t}$	(1.1.15)	$\begin{aligned} \oint_{C} \mathbf{H}^{\prime} \cdot d \mathrm{l} & =\int_{S} \mathrm{~J}_{f}^{\prime} \cdot \mathrm{n} d a+\frac{d}{d t} \int_{S} \mathrm{D} \cdot \mathrm{n} d a \\ \text { where } \mathbf{J}_{f}^{\prime} & =\mathbf{J}_{f}-\rho_{f} \mathbf{v} \\ \mathbf{H}^{\prime} & =\mathbf{H}-\mathbf{v} \times \mathbf{D} \end{aligned}$	(1.1.27)

Table 2.1 Summary of Terminal Variables and Terminal Relations

Electric field system

Definition of Terminal Variables

Flux

$$
\lambda_{k}=\int_{\mathbf{S}_{k}} \mathbf{B} \cdot \mathbf{n} d a
$$

Current

$$
i_{k}=\int_{S_{k}^{\prime}} \mathbf{J}_{f} \cdot \mathbf{n}^{\prime} d a
$$

Terminal Conditions

$$
\begin{aligned}
v_{k} & =\frac{d \lambda_{k}}{d t} \\
\lambda_{k} & =\lambda_{k}\left(i_{1} \cdots i_{N} ; \text { geometry }\right) \\
i_{k} & =i_{k}\left(\lambda_{1} \cdots \lambda_{N} ; \text { geometry }\right)
\end{aligned}
$$

Charge

$$
q_{k}=\int_{V_{k}} \rho_{f} d V
$$

Voltage

$$
v_{k}=\int_{a}^{b} \mathbf{E} \cdot d \mathbf{l}
$$

$$
i_{k}=\frac{d q_{k}}{d t}
$$

$$
q_{k}=q_{k}\left(v_{1} \cdots v_{N} ; \text { geometry }\right)
$$

$$
v_{k}=v_{k}\left(q_{1} \cdots q_{N} ; \text { geometry }\right)
$$

Table 3.1 Energy Relations for an Electromechanical Coupling Network with N Electrical and M Mechanical Terminal Pairs*

Magnetic Field Systems
Electric Field Systems
Conservation of Energy

$$
\begin{align*}
& d W_{m}=\sum_{j=1}^{N} i_{j} d \lambda_{j}-\sum_{j=1}^{M} f_{j}^{e} d x_{j} \tag{b}\\
& d W_{m}^{\prime}=\sum_{j=1}^{N} \lambda_{j} d i_{j}+\sum_{j=1}^{M} f_{j}^{e} d x_{j} \tag{d}
\end{align*}
$$

(a) $\quad d W_{e}=\sum_{j=1}^{N} v_{j} d q_{j}-\sum_{j=1}^{M} f_{j}^{e} d x_{j}$
(c) $d W_{e}^{\prime}=\sum_{j=1}^{N} q_{j} d v_{j}+\sum_{j=1}^{M} f_{j}^{e} d x_{j}$

Forces of Electric Origin, $j=1, \ldots, M$

$$
\begin{array}{ll}
f_{j}^{e}=-\frac{\partial W_{m}\left(\lambda_{1}, \ldots, \lambda_{N} ; x_{1}, \ldots, x_{M}\right)}{\partial x_{j}} & \text { (e) } \quad f_{j}^{e}=-\frac{\partial W_{e}\left(q_{1}, \ldots, q_{N} ; x_{1}, \ldots, x_{M}\right)}{\partial x_{j}} \tag{f}\\
f_{j}^{e}=\frac{\partial W_{m}^{\prime}\left(i_{1}, \ldots, i_{N} ; x_{1}, \ldots, x_{M}\right)}{\partial x_{j}} & \text { (g) } \quad f_{j}^{e}=\frac{\partial W_{e}^{\prime}\left(v_{1}, \ldots, v_{\mathrm{N}} ; x_{1}, \ldots, x_{M}\right)}{\partial x_{j}}
\end{array}
$$

Relation of Energy to Coenergy

$$
\begin{equation*}
W_{m}+W_{m}^{\prime}=\sum_{j=1}^{N} \lambda_{j} i_{j} \quad \text { (i) } \quad W_{e}+W_{e}^{\prime}=\sum_{j=1}^{N} v_{j} q_{j} \tag{i}
\end{equation*}
$$

Energy and Coenergy from Electrical Terminal Relations

$$
\begin{align*}
& W_{m}=\sum_{j=1}^{N} \int_{0}^{\lambda_{j}} i_{j}\left(\lambda_{1}, \ldots, \lambda_{j-1}, \lambda_{j}^{\prime}, 0, \ldots, 0 ; x_{1}, \ldots, x_{M}\right) d \lambda_{j}^{\prime} \quad \text { (k) } \quad W_{e}=\sum_{j=1}^{N} \int_{0}^{q_{j}} v_{j}\left(q_{1}, \ldots, q_{j-1}, q_{j}^{\prime}, 0, \ldots, 0 ; x_{1}, \ldots, x_{M}\right) d q_{j}^{\prime} \tag{1}\\
& W_{m}^{\prime}=\sum_{j=1}^{N} \int_{0}^{i_{j}} \lambda_{j}\left(i_{1}, \ldots, i_{j-1}, i_{j}^{\prime}, 0, \ldots, 0 ; x_{1}, \ldots, x_{M}\right) d i_{j}^{\prime} \quad \text { (m) } \quad W_{e}^{\prime}=\sum_{j=1}^{N} \int_{0}^{v_{j}} q_{j}\left(v_{1}, \ldots, v_{j-1}, v_{j}^{\prime}, 0, \ldots, 0 ; x_{1}, \ldots, x_{M}\right) d v_{j}^{\prime} \tag{n}
\end{align*}
$$

* The mechanical variables f_{j} and x_{j} can be regarded as the j th force and displacement or the j th torque T_{j} and angular displacement θ_{j}.

Table 6.1 Differential Equations, Transformations, and Boundary Conditions for Quasi-static Electromagnetic Systems with Moving Media

	Differential Equations		Transformations		Boundary Conditions	
Magnetic field systems §	$\begin{aligned} & \nabla \times \mathbf{H}=\mathbf{J}_{f} \\ & \nabla \cdot \mathbf{B}=0 \\ & \nabla \cdot \mathrm{~J}_{f}=0 \\ & \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\ & \mathbf{B}=\mu_{0}(\mathbf{H}+\mathbf{M}) \end{aligned}$	$\begin{aligned} & (1.1 .1) \\ & (1.1 .2) \\ & (1.1 .3) \\ & (1.1 .5) \\ & (1.1 .4) \end{aligned}$	$\begin{aligned} & \mathbf{H}^{\prime}=\mathbf{H} \\ & \mathbf{B}^{\prime}=\mathbf{B} \\ & \mathbf{J}_{f}^{\prime}=\mathbf{J}_{f} \\ & \mathbf{E}^{\prime}=\mathbf{E}+\mathbf{v}^{\mathbf{r}} \times \mathbf{B} \\ & \mathbf{M}^{\prime}=\mathbf{M} \end{aligned}$	$\begin{aligned} & (6.1 .35) \\ & (6.1 .37) \\ & (6.1 .36) \\ & (6.1 .38) \\ & (6.1 .39) \end{aligned}$	$\begin{aligned} & \mathbf{n} \times\left(\mathbf{H}^{a}-\mathbf{H}^{b}\right)=\mathbf{K}_{f} \\ & \mathbf{n} \cdot\left(\mathbf{B}^{a}-\mathbf{B}^{b}\right)=0 \\ & \mathbf{n} \cdot\left(\mathbf{J}_{f}^{a}-\mathbf{J}_{f}^{b}\right)+\nabla_{\mathbf{\Sigma}} \cdot \mathbf{K}_{f}=0 \\ & \mathbf{n} \times\left(\mathbf{E}^{a}-\mathbf{E}^{b}\right)=v_{n}\left(\mathbf{B}^{a}-\mathbf{B}^{b}\right) \end{aligned}$	(6.2.14) (6.2.7) (6.2.9) (6.2.22)
Electric field systems	$\begin{aligned} & \nabla \times \mathbf{E}=0 \\ & \boldsymbol{\nabla} \cdot \mathbf{D}=\rho_{f} \\ & \boldsymbol{\nabla} \cdot \mathbf{J}_{f}=-\frac{\partial \rho_{f}}{\partial t} \\ & \boldsymbol{\nabla} \times \mathbf{H}=\mathbf{J}_{f}+\frac{\partial \mathbf{D}}{\partial t} \\ & \mathbf{D}=\epsilon_{0} \mathbf{E}+\mathbf{P} \end{aligned}$	$\begin{aligned} & (1.1 .11) \\ & (1.1 .12) \\ & (1.1 .14) \\ & (1.1 .15) \\ & (1.1 .13) \end{aligned}$	$\begin{aligned} & \mathbf{E}^{\prime}=\mathbf{E} \\ & \mathbf{D}^{\prime}=\mathbf{D} \\ & \rho_{f}^{\prime}=\rho_{f} \\ & \mathbf{J}_{f}^{\prime}=\mathbf{J}_{f}-\rho_{f} \mathbf{v}^{r} \\ & \mathbf{H}^{\prime}=\mathbf{H}-\mathbf{v}^{r} \times \mathbf{D} \\ & \mathbf{P}^{\prime}=\mathbf{P} \end{aligned}$	$\begin{aligned} & (6.1 .54) \\ & (6.1 .55) \\ & (6.1 .56) \\ & (6.1 .58) \\ & (6.1 .57) \\ & (6.1 .59) \end{aligned}$	$\begin{aligned} & \mathbf{n} \times\left(\mathbf{E}^{a}-\mathbf{E}^{b}\right)=0 \\ & \mathbf{n} \cdot\left(\mathbf{D}^{a}-\mathbf{D}^{b}\right)=\sigma_{f} \end{aligned}$ $\begin{aligned} & \mathbf{n} \cdot\left(\mathbf{J}_{f}^{a}-\mathbf{J}_{f}^{b}\right)+\nabla_{\mathbf{E}} \cdot \mathbf{K}_{f}=v_{n}\left(\rho_{f}^{a}-\rho_{f}^{b}\right)-\frac{\partial \sigma_{f}}{\partial t} \\ & \mathbf{n} \times\left(\mathbf{H}^{a}-\mathbf{H}^{b}\right)=\mathbf{K}_{f}+v_{n} \mathbf{n} \times\left[\mathbf{n} \times\left(\mathbf{D}^{a}-\mathbf{D}^{b}\right)\right] \end{aligned}$	$\begin{aligned} & (6.2 .31) \\ & (6.2 .33) \\ & (6.2 .36) \\ & (6.2 .38) \end{aligned}$

From Chapter 8; The Stress Tensor and Related Tensor Concepts

In what follows we assume a right-hand cartesian coordinate system x_{1}, x_{2}, x_{3}. The component of a vector in the direction of an axis carries the subscript of that axis. When we write F_{m} we mean the m th component of the vector F, where m can be 1,2 , or 3 . When the index is repeated in a single term, it implies summation over the three values of the index
and

$$
\frac{\partial H_{n}}{\partial x_{n}}=\frac{\partial H_{1}}{\partial x_{1}}+\frac{\partial H_{2}}{\partial x_{2}}+\frac{\partial H_{3}}{\partial x_{3}}=\boldsymbol{\nabla} \cdot \mathbf{H}
$$

$$
H_{n} \frac{\partial}{\partial x_{n}}=H_{1} \frac{\partial}{\partial x_{1}}+H_{2} \frac{\partial}{\partial x_{2}}+H_{3} \frac{\partial}{\partial x_{3}}=\mathbf{H} \cdot \nabla .
$$

This illustrates the summation convention. On the other hand, $\partial H_{m} / \partial x_{n}$ represents any one of the nine possible derivatives of components of \mathbf{H} with respect to coordinates. We define the Kronecker delta $\delta_{m n}$ which has the values

$$
\delta_{m n}=\left\{\begin{array}{l}
1, \text { when } m=n \tag{8.1.7}\\
0, \text { when } m \neq n
\end{array}\right.
$$

The component $T_{m n}$ of the stress tensor can be physically interpreted as the mth component of the traction (force per unit area) applied to a surface with a normal vector in the n-direction.

Fig. 8.2.2 Rectangular volume with center at $\left(x_{1}, x_{2}, x_{3}\right)$ showing the surfaces and directions of the stresses $\boldsymbol{T}_{\boldsymbol{m} \boldsymbol{n}}$.

The x_{1}-component of the total force applied to the material within the volume of Fig. 8.2.2 is

$$
\begin{align*}
f_{1}= & T_{11}\left(x_{1}+\frac{\Delta x_{1}}{2}, x_{2}, x_{3}\right) \Delta x_{2} \Delta x_{3}-T_{11}\left(x_{1}-\frac{\Delta x_{1}}{2}, x_{2}, x_{3}\right) \Delta x_{2} \Delta x_{3} \\
& +T_{12}\left(x_{1}, x_{2}+\frac{\Delta x_{2}}{2}, x_{3}\right) \Delta x_{1} \Delta x_{3}-T_{12}\left(x_{1}, x_{2}-\frac{\Delta x_{2}}{2}, x_{3}\right) \Delta x_{1} \Delta x_{3} \\
& +T_{13}\left(x_{1}, x_{2}, x_{3}+\frac{\Delta x_{3}}{2}\right) \Delta x_{1} \Delta x_{2}-T_{13}\left(x_{1}, x_{2}, x_{3}-\frac{\Delta x_{3}}{2}\right) \Delta x_{1} \Delta x_{2} . \tag{8.2.3}
\end{align*}
$$

Here we have evaluated the components of the stress tensor at the centers of the surfaces on which they act; for example, the stress component T_{11} acting on the top surface is evaluated at a point having the same x_{2} - and x_{3} coordinates as the center of the volume but an x_{1} coordinate $\Delta x_{1} / 2$ above the center.

The dimensions of the volume have already been specified as quite small. In fact, we are interested in the limit as the dimensions go to zero. Consequently, each component of the stress tensor is expanded in a Taylor series about the value at the volume center with only linear terms in each series retained to write (8.2.3) as

$$
\begin{aligned}
f_{1}= & \left(T_{11}+\frac{\Delta x_{1}}{2} \frac{\partial T_{11}}{\partial x_{1}}-T_{11}+\frac{\Delta x_{1}}{2} \frac{\partial T_{11}}{\partial x_{1}}\right) \Delta x_{2} \Delta x_{3} \\
& +\left(T_{12}+\frac{\Delta x_{2}}{2} \frac{\partial T_{12}}{\partial x_{2}}-T_{12}+\frac{\Delta x_{2}}{2} \frac{\partial T_{12}}{\partial x_{2}}\right) \Delta x_{1} \Delta x_{3} \\
& +\left(T_{13}+\frac{\Delta x_{3}}{2} \frac{\partial T_{13}}{\partial x_{3}}-T_{13}+\frac{\Delta x_{3}}{2} \frac{\partial T_{13}}{\partial x_{3}}\right) \Delta x_{1} \Delta x_{2}
\end{aligned}
$$

or

$$
\begin{equation*}
f_{1}=\left(\frac{\partial T_{11}}{\partial x_{1}}+\frac{\partial T_{12}}{\partial x_{2}}+\frac{\partial T_{13}}{\partial x_{3}}\right) \Delta x_{1} \Delta x_{2} \Delta x_{3} . \tag{8.2.4}
\end{equation*}
$$

All terms in this expression are to be evaluated at the center of the volume (x_{1}, x_{2}, x_{3}). We have thus verified our physical intuition that space-varying stress tensor components are necessary to obtain a net force.

From (8.2.4) we can obtain the x_{1}-component of the force density \mathbf{F} at the point $\left(x_{1}, x_{2}, x_{3}\right)$ by writing

$$
\begin{equation*}
F_{1}=\lim _{\Delta x_{1}, \Delta x_{2}, \Delta x_{3} \rightarrow 0} \frac{f_{1}}{\Delta x_{1} \Delta x_{2} \Delta x_{3}}=\frac{\partial T_{11}}{\partial x_{1}}+\frac{\partial T_{12}}{\partial x_{2}}+\frac{\partial T_{13}}{\partial x_{3}} . \tag{8.2.5}
\end{equation*}
$$

The limiting process makes the expansion of (8.2.4) exact. The summation convention is used to write (8.2.5) as

$$
\begin{equation*}
F_{1}=\frac{\partial T_{1 n}}{\partial x_{n}} . \tag{8.2.6}
\end{equation*}
$$

A similar process for the other two components of the force and force density yields the general result that the m th component of the force density at a point is

$$
\begin{equation*}
F_{m}=\frac{\partial T_{m n}}{\partial x_{n}} . \tag{8.2.7}
\end{equation*}
$$

Now suppose we wish to find the m th component of the total force f on material contained within the volume V. We can find it by performing the volume integration:

$$
\begin{equation*}
f_{m}=\int_{V} F_{m} d V=\int_{V} \frac{\partial T_{m n}}{\partial x_{n}} d V \tag{8.1.13}
\end{equation*}
$$

When we define the components of a vector A as

$$
\begin{equation*}
A_{1}=T_{m 1}, \quad A_{2}=T_{m 2}, \quad A_{3}=T_{m 3} \tag{8.1.14}
\end{equation*}
$$

we can write (8.1.13) as

$$
\begin{equation*}
f_{m}=\int_{V} \frac{\partial A_{n}}{\partial x_{n}} d V=\int_{V}(\nabla \cdot \mathrm{~A}) d V \tag{8.1.15}
\end{equation*}
$$

We now use the divergence theorem to change the volume integral to a surface integral,

$$
\begin{equation*}
f_{m}=\oint_{S} \mathbf{A} \cdot \mathrm{n} d a=\oint_{S} A_{n} n_{n} d a \tag{8.1.16}
\end{equation*}
$$

where n_{n} is the nth component of the outward-directed unit vector n normal to the surface S and the surface S encloses the volume V. Substitution from (8.1.14) back into this expression yields

$$
\begin{equation*}
f_{m}=\oint_{S} T_{m n} n_{n} d a \tag{8.1.17}
\end{equation*}
$$

where $T_{m n} n_{n}$ is the m th component of the surface traction τ.
The traction τ is a vector. The components of this vector depend on the coordinate system in which τ is expressed; for example, the vector might be directed in one of the coordinate directions (x_{1}, x_{2}, x_{3}), in which case there would be only one nonzero component of τ. In a second coordinate system ($x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$), this same vector might have components in all of the coordinate directions. Analyzing a vector into orthogonal components along the coordinate axes is a familiar process. The components in a cartesian coordinate system ($x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$) are related to those in the cartesian coordinate system $\left(x_{1}, x_{2}, x_{3}\right)$ by the three equations

$$
\begin{equation*}
\tau_{p}^{\prime}=a_{p r} \tau_{r}, \tag{8.2.10}
\end{equation*}
$$

where $a_{p r}$ is the cosine of the angle between the $x_{p}^{\prime}-a x i s$ and the x_{r}-axis.

Similarly, the components of the stress tensor transform according to the equation

$$
\begin{equation*}
T_{p q}^{\prime}=a_{p r} a_{q s} T_{r s} \tag{8.2.17}
\end{equation*}
$$

This relation provides the rule for finding the components of the stress in the primed coordinates, given the components in the unprimed coordinates. It serves the same purpose in dealing with tensors that (8.2.10) serves in dealing with vectors.

Equation 8.2.10 is the transformation of a vector τ from an unprimed to a primed coordinate system. There is, in general, nothing to distinguish the two coordinate systems. We could just as well define a transformation from the primed to the unprimed coordinates by

$$
\begin{equation*}
\tau_{s}=b_{s p} \tau_{p}^{\prime} \tag{8.2.18}
\end{equation*}
$$

where $b_{s p}$ is the cosine of the angle between the x_{s}-axis and the x_{p}^{\prime}-axis. But $b_{s p}$, from the definition following (8.2.10), is then also

$$
\begin{equation*}
b_{s p} \equiv a_{p s} \tag{8.2.19}
\end{equation*}
$$

that is, the transformation which reverses the transformation (8.2.10) is

$$
\begin{equation*}
\tau_{s}=a_{p s} \tau_{p}^{\prime} \tag{8.2.20}
\end{equation*}
$$

Now we can establish an important property of the direction cosines $a_{p s}$ by transforming the vector τ to an arbitrary primed coordinate system and then transforming the components τ_{m}^{\prime} back to the unprimed system in which they must be the same as those we started with. Equation 8.2 .10 provides the first transformation, whereas (8.2.20) provides the second; that is, we substitute (8.2.10) into (8.2.20) to obtain

$$
\begin{equation*}
\tau_{s}=a_{p s} a_{p r} \tau_{r} \tag{8.2.21}
\end{equation*}
$$

Remember that we are required to sum on both p and r; for example, consider the case in which $s=1$:

$$
\begin{align*}
\tau_{1} & =\left(a_{11} a_{11}+a_{21} a_{21}+a_{31} a_{31}\right) \tau_{1} \\
& +\left(a_{11} a_{12}+a_{21} a_{22}+a_{31} a_{32}\right) \tau_{2} \tag{8.2.22}\\
& +\left(a_{11} a_{13}+a_{21} a_{23}+a_{31} a_{33}\right) \tau_{3}
\end{align*}
$$

This relation must hold in general. We have not specified either $a_{p s}$ or τ_{m}. Hence the second two bracketed quantities must vanish and the first must be unity. We can express this fact much more concisely by stating that in general

$$
\begin{equation*}
a_{p s} a_{p r}=\delta_{s r} \tag{8.2.23}
\end{equation*}
$$

Table 8.1 Electromagnetic Force Densities, Stress Tensors, and Surface Force Densities for Quasi-static Magnetic and Electric Field Systems*

Description	Force Density	Stress Tensor $\boldsymbol{T}_{\boldsymbol{m} \boldsymbol{n}}$ $F_{m}=\frac{\partial T_{m n}}{\partial x_{n}}(8.1 .10)$	Surface Force Density* $T_{m}=\left[T_{m n}\right] n_{n} \text { (8.4.2) }$
Force on media carrying free current density \mathbf{J}_{f}, μ constant	$\begin{aligned} & \mathbf{J}_{f} \times \mathbf{B} \\ & (8.1 .3) \end{aligned}$	$\begin{aligned} & T_{m n}=\mu H_{m} H_{n}-\delta_{m n} \frac{1}{\frac{1}{2}} \mu H_{k} H_{k} \\ & \text { (8.1.11) } \end{aligned}$	$\begin{aligned} & \mathbf{T}=\mathbf{K}_{f} \times \mu\langle\mathbf{H}\rangle \\ & \mathbf{K}_{f}=\mathbf{n} \times[\mathbf{H}] \\ &(8.4 .3) \end{aligned}$
Force on media supporting free charge density ρ_{f}, ϵ constant	$p_{f}{ }^{\mathbf{E}}$ (8.3.3)	$\begin{aligned} & T_{m n}=\epsilon E_{m} E_{n}-\delta_{m n^{\frac{1}{2}} \epsilon E_{k}} E_{k} \\ & \text { (8.3.10) } \end{aligned}$	$\begin{aligned} & \mathbf{T}=\sigma_{f}(\mathbf{E}\rangle \\ & \sigma_{f}=\mathbf{n} \cdot[\epsilon \mathrm{E}] \\ &(8.4 .8) \end{aligned}$
Force on free current plus magnetization force in which $\mathbf{B}=\mu \mathbf{H}$ both before and after media are deformed	$\begin{aligned} & \mathbf{J}_{f} \times \mathbf{B}-\frac{1}{2} H \cdot H \nabla \boldsymbol{H} \\ & +\frac{1}{2} \nabla\left(H \cdot H \rho \frac{\partial \mu}{\partial \rho}\right) \\ & \text { (8.5.38) } \end{aligned}$	$\begin{aligned} & T_{m n}=\mu H_{m} H_{n} \\ & -\frac{1}{2} \delta_{m n}\left(\mu-\rho \frac{\partial \mu}{\partial \rho}\right) H_{k} H_{k} \\ & \text { (8.5.41) } \end{aligned}$	
Force on free charge plus polarization force in which $\mathrm{D}=\epsilon \mathrm{E}$ both before and after media are deformed	$\begin{aligned} & \rho_{f} \mathbf{E}-\frac{1}{8} \mathbf{E} \cdot \mathbf{E} \boldsymbol{\nabla}_{\epsilon} \\ & +\frac{1}{2} \nabla\left(\mathbf{E} \cdot \mathbf{E} \rho \frac{\partial_{\epsilon}}{\partial_{\rho}}\right) \\ & \text { (8.5.45) } \end{aligned}$	$\begin{aligned} & T_{m n}=\epsilon E_{m} E_{n} \\ & -\frac{1}{2} \delta_{m n}\left(\epsilon-\rho \frac{\partial \epsilon}{\partial \rho}\right) E_{k} E_{k} \\ & \text { (8.5.46) } \end{aligned}$	

$*\langle\mathbf{A}\rangle \equiv \frac{\mathbf{A}^{a}+\mathbf{A}^{b}}{2}$
$[\mathbf{A}] \equiv \mathbf{A}^{a}-\mathbf{A}^{b}$

Table 9.1 Modulus of Elasticity \boldsymbol{E} and Density $\boldsymbol{\rho}$ for Representative Materials*

Material	E-units of $10^{11} \mathrm{~N} / \mathrm{m}^{2}$	ρ-units of $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$	v_{p}-units \dagger of $\mathrm{m} / \mathrm{sec}$
Aluminum (pure and alloy)	$0.68-0.79$	$2.66-2.89$	5100
Brass $(60-70 \% \mathrm{Cu}, 40-30 \% \mathrm{Zn}$)	$1.0-1.1$	$8.36-8.51$	3500
Copper	$1.17-1.24$	$8.95-8.98$	3700
Iron, cast $(2.7-3.6 \% \mathrm{C}$)	$0.89-1.45$	$6.96-7.35$	4000
Steel (carbon and low alloy)	$1.93-2.20$	$7.73-7.87$	5100
Stainless steel ($18 \% \mathrm{Cr}, 8 \% \mathrm{Ni}$)	$1.93-2.06$	$7.65-7.93$	5100
Titanium (pure and alloy)	$1.06-1.14$	4.52	4900
Glass	$0.49-0.79$	$2.38-3.88$	4500
Methyl methacrylate	$0.024-0.034$	1.16	1600
Polyethylene	$1.38-3.8 \times 10^{-3}$	0.915	530
Rubber	$0.79-4.1 \times 10^{-5}$	$0.99-1.245$	46

[^8]Table 9.2 Summary of One-Dimensional Mechanical Continua Introduced in Chapter 9

Thin Elastic Rod
$\rho \frac{\partial^{2} \delta}{\partial t^{2}}=E \frac{\partial^{2} \delta}{\partial x^{2}}+F_{x}$
$T=E \frac{\partial \delta}{\partial x}$
δ-longitudinal (x) displacement
$T-$ normal stress
$\rho-$ mass density
E-modulus of elasticity
F_{x}-longitudinal body force density
Wire or "String"
$m \frac{\partial^{2} \xi}{\partial t^{2}}=f \frac{\partial^{2} \xi}{\partial x^{2}}+S_{z}$
ξ-transverse displacement
m-mass/unit length
f-tension (constant force)
S_{z}-transverse force/unit length
Membrane
$\sigma_{m} \frac{\partial^{2} \xi}{\partial t^{2}}=S\left(\frac{\partial^{2} \xi}{\partial x^{2}}+\frac{\partial^{2} \xi}{\partial y^{2}}\right)+T_{z}$
ξ-transverse displacement
σ_{m}-surface mass density
S-tension in y - and z-directions (constant force per unit length)
$T_{z}-z$-directed force per unit area

$$
(-14-B) \cdots
$$

INDEX

Numbers preceded by letters are Appendix references. Appendices A, B, and C are in Part One; Appendices D and E, Part Two; and Appendices F and G, Part Three.

Acceleration, centrifugal fluid, 729
centripetal, 59
Coriolis, 59
Eulerian variable, 727
fluid, 727
instantaneous, 45
Accelerator, electric field, 776
MHD, 825
particle, 608
Acoustic delay lines, 480
Acoustic waves, compressional in solid, 673
dilatational in solid, 673
elastic media, 671
fluid, 544
gases, 845
guided, 679, 683, 693
magnetic fields and, 846
membrane, 509
shear elastic, 675
string, 509
thin beam, 683
thin rod, 487, 681
Acyclic machine, 286
Air-gap magnetic fields, 114
Alfvén velocity, 763
Alfvén waves, 759
compressible fluids and, 841
cylindrical geometry, 767
effect of conductivity on, 772
mechanical analogue to, 766
nature of, 764
numerical example of, 771
resonances and, 771
standing, 771
torsional, 765
Amortisseur winding, 164
Ampere, 1
Ampère's law, B6, C3, E3, G3
dynamic, $B 9$
electromechanical, 304
example of, B7
integral form of, B36, C3, E3, G3
magnetization and, B26
Amplifying wave, coupled system and, 608
electric field induced, 605
evanescent wave and, 607
space-time behavior of, 604,606
Angular frequency, 513
Angular momentum, 248
Angular velocity, 47
Applications of electromechanics, 2
Approximations, electromechanical, 206
Armature, ac machine, 120
dc machine, 141, 293
Armature reaction, 297

Astrophysics and MHD, 552
Attenuation, microwave, 561
Average power converted, salient pole machine, 155
smooth-air-gap machine, 124
Beats in space, 595
Bernoulli's equation, 738
example of, 752
Bessel functions, 408
roots of, 409
Bias, linear transducer operation and, 201 piezoelectricity and, 711
Bode plot, 206
Boundary, analytic description of, 269,668
examples of moving, $269,276,279,280$,
$364,392,397,451,460,563,574,605$, 627, 704, 783
moving, 267
well defined, 267
Boundary condition, Alfvén waves, 769
causality and, $491,592,607$
conservation of charge, $279,374,376,394$, 399
convection and, $267,587,598$
dispersion and, 618
elastic media, 671,676
electric displacement, 278
electric field intensity, 275, 278
electric field systems, 277, E6, G6
electromagnetic field, 267
electromechanical, 668
field transformations and, 275
geometric effect of, 280
initial condition and, 513
inviscid fluid, 752
inviscid fluid slip, 740
longitudinal and transverse, 680
magnetic field intensity, 273,280
magnetic field systems, 270, E6, G6
magnetic field system current, 272
magnetic fluid, 774
magnetic flux density, 271
MHD, 769
motion and, $267,491,587,592,598,607$
string and membrane, 522
summary of electromagnetic, 268 , E6, G6
thin rod, 493
viscous fluid, 873
Boundary layer dynamics, 602
Brake, induction, 134
MHD, 744
Breakdown, electrical, 576, 782
Breakdown strength of air, 576

Brush, dc machine, 292
liquid-metal, 316, 878
metal-graphite, 883
Bullard's equation, 336
Cables, charge relaxation in high voltage, 380 nonuniform conductivity in, 380
Capability curve of synchronous generator, 170
Capacitance, electrical linearity and, 30
example for calculation of, 32, 33
generalized, 28
quasi-static limit and, B18
Causality, boundary conditions and, 592, 607
condition of, 491, 592, 607
Center of mass, 46
Channel, variable-area MHD, 751
Characteristic dynamical times, excitation and, 332
material motion and, 332
Characteristic equation, 181
Characteristics, wave fronts and, 618
wave propagation and, 488,490
waves with convection and, 586
Charge, B1
conservation of, B5
net flow and flow of net, B6
test, 12
total, 29
Charge-average velocity, B5
Charge carriers, effect of motion on, 290
Charge conservation, differential form of, B5
integral form of, B5
Charge density, B1
effect of motion on, $290,334,382,387$, 388, 392, 397, 401
free, 7, B28
magnetic field system and, 288
Charge distribution, effect of motion on, $334,382,387,388,392,397,401$
Charge relaxation, 330,370
electrical transient, 372
examples of, 372,375
excitation frequency and, 378,400
frequency in frame of material and, 399
general equation for, 371
lumped-parameter models for, 331, 375
magnetic diffusion and, 401
motion sinusoidal excitation with, 392
moving frame and, 381
nonuniform properties and, 378
sources of charge and, 372
spatially and temporally periodic fields and, 397
steady motion and, 380
thunder storms, and, 388
traveling wave in a moving material and, 397
uniform properties and, 372
Choking, constant area flow, 824

Circuit breaker, transducer for a, 22
Circuit theory, 16
Coefficient, of sliding friction, 42
of static friction, 42
Coefficients of viscosity, independence of, 870
Coenergy, 73, E5, G5
electrical linearity and, 76
potential well motions and, 217
Coenergy density, electric field system, 464, 714
magnetic field system, 456
Collector rings, 120
Commutation in dc machines, 296
Commutator, 140
of dc machines, 292
Commutator bars, 142
Commutator machines, 140
ac generator, 329
brake operation of, 306
compound wound, 310
electrical power input of, 303
equation for armature of, 300
equation for field of, 297
equation of motion for, 297
generator operation of, 306
linear amplifier, 304
mechanical power output of, 303
motor operation of, 306
operation with alternating currents and, 312
properties of, 303
separately excited, 306
series excitation of, 309
shunt excitation of, 309
speed curves of, shunt excited, 310
speed regulation of, 307
summary of equations for, 303
torque-current curves of series excited, 311
torque-speed curves of shunt excited, 310
transient performance of, 306
Compensating networks, 198
Compensation in feedback loops, 198
Compressibility constant, 845
Compressibility of fluid, 725
Compressible fluids, 813
electromechanical coupling to, 820
Conduction, electrical, 7, B30
in electric field system, effect of motion on, 371
heat, 815
motion and electrical, 284, 289
Conduction current, B6
absence of net free charge and, 374
Conduction machine, MHD, 740
variable area, MHD, 753
see also Commutator machine; DC machines
Conductivity, air and water, 388
electrical, 7
electrical surface, 7
mechanical strength and, 698
nonuniform, 380
numerical values of, 345, 377
Conductor, electric field perfect, 29, 213,

390, 400, 401
magnetic field perfect, 18, 211, 223, $354,401,563$
Confinement, electromechanical, 4, 407
Conservation, of charge, B5
displacement current and, B9
integral form of, B37
of energy, 63,66
continuum, 456, 464
continuum coupling and, 455
equation, steady state, 820
fluid, 814
incompressible fluid, 757
integral form of, 819
of flux, lumped-parameter, 211, 220
perfectly conducting fluid and, 761
of mass, differential law of, 731
example of, 730
fluid, 729,814
integral form of, 730
of momentum, fluid, 731,814
integral form of, 733, 734
interfacial, 671
stress and, 733
Conservative systems, 213
Constant charge dynamics, 205, 213
Constant-current constant-flux dynamics, 220
Constant-current constraint, continuum, 628
Constant-current dynamics, 220
Constant flux, lumped and continuum, 212
Constant flux dynamics, fluid, 761
lumped-parameter, 211, 220
Constant of the motion, fluid, 738
Constant voltage dynamics, 204, 212, 226
Constituent relations, electromagnetic, 283, B25
fluid, 815
fluid mechanical, 735
materials in motion and, 283
moving media in electric field systems and, 289
moving media in magnetic field systems and, 284
Constitutive law, mobile ion, 778
piezoclectric slab, 712
Con'tact resistance, MHD, 750
Contacts, sliding, 42
Continuity of space, 35
Continuum and discrete dynamics, 553
Continuum descriptions, 727
Continuum electromechanical systems, 251
Contour, deforming, 11, B32
Control, de machines and, 291
Controlled thermonuclear reactions, 354
Convection, dynamical effect of, 584
and instability, 593
Convection current, 86
Convective derivative, 259, 584
charge relaxation and, 381
example of, 729
magnetic diffusion and, 357
see also Substantial derivative

Convective second derivative, 585
Coordinate system, inertial, 254
Corona discharge, 776, 782
Corona wind, demonstration of, 782
Couette flow, plane, 876
Coulomb's law, B1
point charge, B2
Coupling, electromechanical, 15,60
Coupling to continuous media at terminal pairs, 498
Coupling network, lossless and conservative, 63
Creep, failure in solids by, 704
Critical condition for instability, 568
Crystals, electromechanics of, 651 piezoelectric materials as, 711
Current, balanced two-phase, 113
conduction, B6
convection, B6
displacement, B9
electric field system, 29
free, B25
magnetization, B25
polarization, B29
Current density, B5
diffusion of, 343
distribution of, 332 free, 7
Current law, Kirchhoff's, 16
Currents as functions of flux linkages, 26
Current transformation, examples of, 226
Cutoff condition, 559
Cutoff frequency, 559
elastic shear waves, 695
membrane, 623
Cutoff waves, 556
electromagnetic plasma, 638
membrane, 623
power flow and, 637
thin beam, 684
see also Evanescent wave
Cyclic energy conversion processes, 79
Cylindrical coordinates, stress components in, 437
Cylindrical modes, 648
Damped waves, driven response of, 577
Damper, linear ideal, 40°
lumped element, 36, 40
square-law, 43, 229
Damper winding in rotating machine, 164
Damping, magnetic fluid, 750
negative, 198
spatial decay and, 560
wave dynamics with, 576
Damping constant, 41
Damping frequency, 577
DC generator, magnetic saturation in, 310 self-excited, 310
DC machines, 140; see also Commutator machines
DC motor, self-excited, 308
series excited, 311
starting torque of, 310
torque-speed curves for, 306
Definitions, electromagnetic, 7, B1
Deforming contours of integration, 10, 18, 262, B32, 761
Degree of freedom, 49
Delay line, acoustic, 480
acoustic magnetostrictive, 708
fidelity in, 501
mechanical, 499
shear waves and, 696
Delta function, B2
Kronecker, 421
Derivative, convective, 259, 584, 726
individual, 728
particle, 728
Stokes, 728
substantial, 259, 584, 728
total, 728
Dielectrophoresis, 783
Difference equation, 620
Differential equation, order of, 180 linear, 180
Differential operators, moving coordinates and, 257
Diffusion, magnetic, 576
magnetic analogous to mechanical, 580
of magnetic field and current, 335
Diffusion equation, 337
Diffusion time constant, 341
numerical values of, 344
Diffusion wave, magnetic, 358
picture of, 581
space-time behavior of, 359
Dilatational motion of fluid, 866
Direction cosines, definition of, 435
relation among, 439
Discrete systems, electromechanics of, 60
Discrete variables, mechanical, 36
summary of electrical, 35
Dispersion equation, absolutely unstable wire, 567
Alfvén wave, 769
amplifying wave, 602
convective instability, 602
damped waves, 577
elastic guided shear waves, 695
electron oscillations, 601
evanescent wave, 557
kink instability, 629
magnetic diffusion with motion, 357
membrane, 623
moving wire destabilized by magnetic field, 602
moving wire stabilized by magnetic field, 596
ordinary waves, 513
with convection, 594
on wire, 555
on wires and membranes, 513
resistive wall interactions, 609
sinusoidal steady-state, and 514
wire with convection and damping, 609

Displacement, elastic materials, 486
elastic media, 652
lumped parameter systems, 36
one-dimensional, 483
relative, 657
and rotation, 657
and strain, 658
transformation of, 659
translational, 657
Displacement current, B9
Displacement current negligible, B19
Distributed circuits, electromechanical, 651
Divergence, surface, 272
tensor, 422, G9
theorem, B4, C2, E2, G2, G9
Driven and transient response, unstable system, 569
Driven response, one-dimensional continuum, 511
unstable wire, 568
Driving function, differential equation, 180
sinusoidal, 181
Dynamics, constant charge, 205, 213
constant current, 220
constant flux, 211, 220
constant voltage, 204, 212, 226
lumped-parameter, 179
reactance dominated, 138, 211, 220, 242, 336, 354, 368, 563
resistance dominated, $138,209,233,242$, 336, 354, 368, 503, 583, 611
two-dimensional, 621
Dynamics of continua, $x-t$ plane, 488, 586
omega-k plane, 511, 554
Dynamo, electrohydrodynamic, 388
Eddy currents, 342, 628
Efficiency of induction machine, 134
EHD, 3, 552, 776
EHD pump, demonstration of, 783
Eigenfrequencies, 518
electromechanical filter, 707
magnetic field, shift of, 562
not harmonic, 563, 684
wire stiffened by magnetic field, 562
Eigenfunction, 518
Eigenmode, 517
complex boundary conditions and, 533
orthogonality of, 341, 519, 520
Eigenvalues, 518
dispersion and, 562
graphic solution for, 526
kink instability, 630
Elastic beam, resonant circuit element, 688
Elastic constants, independence of, 664
numerical values of, 486
Elastic continua, 479
Elastic failure, example of electromechanical, 701
Elastic force density, 667
Elastic guiding structures, 693
Elasticity, summary of equations of, 666,668
Elasticity equations, steps in derivation of, 651

Elastic material, ideal, 485
linear, 485
Elastic media, 651
electromechanical design and, 697
electromechanics of, 696
equations of motion for, 653
quasi-statics of, 503
Elastic model, membrane, 509
thin rod, 480
wire, 509
Elastic waves, lumped mechanical elements and, 507
shear, 543
thin rod, 543
see also Acoustic waves
Electrical circuits, 16
Electric displacement, 7, B28
Electric field, effect of motion on, 334, 382, 387, 388, 392, 397, 401
Electric field coupling to fluids, 776
Electric field equations, periodic solution to, 281
Electric field intensity, 7, B1
Electric field system, B19
differential equations for, 8, E3, G3
integral equations for, 11, E3, G3
Electric field transformation, example of, 262
Faraday's law and, 262
Electric force, field description of, 440
fluids and, 776
stress tensor for, 441
Electric force density, 418, 463
Electric Reynolds number, 335, 370, 381, 383, 395, 399, 401, 575, 780
mobility model and, 780
Electric shear, induced surface charge and, 400
Electric surface force, 447
Electrification, frictional, 552
Electroelasticity, 553
Electrogasdynamic generator, 782
Electrohydrodynamic orientation, 785
Electrohydrodynamic power generation, 782
Electrohydrodynamics, 3, 552, 776
Electrohydrodynamic stabilization, 786
Electromagnetic equations, differential, 6, B12, B19, E3, G3
integral, 9, B32, E3, G3
quasi-static, 5, B19, B32, E3, G3
summary of quasi-static, 13, E3, G3
Electromagnetic field equations, summary of, 268, E6, G6
Electromagnetic fields, moving observer and, 254
Electromagnetic theory, 5, B1
summary of, 5, E6, G6
Electromagnetic waves, B13
absorption of, B25
Electromechanical coupling, field description of, 251
Electromechanics, continuum, 330
of elastic media, 651
incompressible fluids and, 737
lumped-parameter, 60
Electron beam, 4, 552, 600, 608
magnetic field confinement of, 601
oscillations of, 600
Electrostatic ac generator, 415
Electrostatic self-excited generator, 388
Electrostatic voltmeter, 94
Electrostriction, incompressibility and, 784
Electrostriction force density, 465
Elements, lumped-parameter electrical, 16
lumped-parameter mechanical, 36
Energy, conservation of fluid, 814
electrical linearity and, 76
electric field system conservation of, 66
internal or thermal gas, 813
internal per unit mass, 815
kinetic per unit mass, 815
magnetic field system conservation of, 63
magnetic stored, 64
potential and kinetic, 214
Energy conversion, cyclic, 79, 110
electromechanical, 79
lumped-parameter systems, 79
Energy density, B23
equal electric and magnetic, B24
Energy dissipated, electromagnetic, B22
Energy flux, B22
Energy function, hybrid, 220
Energy method, 60, 450, E5, G5
Energy relations, summary of, 68, E5, G5
Enthalpy, specific, 820
Equation of motion, elastic media, 668
electromechanical, 84
examples of lumped-parameter, 84,86
incompressible, irrotational inviscid flow, 738
linearized, 183
lumped mechanical, 49
Equilibrium, of continuum, stability of, 574
dynamic or steady-state, 188
hydromagnetic, 561
kink instability of, 633
potential well stability of, 216
static, 182
Equipotentials, fluid, 752
Eulerian description, 727
Evanescence with convection, 596
Evanescent wave, 556
appearance of, 559
constant flux and, 563
dissipation and, 560
elastic shear, 695
equation for, 557
example of, 556
membrane, 560, 623
physical nature of, 560
signal transmission and, 639
sinusoidal steady-state, 558
thin beam, 684
Evil, 697
Failure in solids, fatigue and creep, 704
Faraday, 1

Faraday disk, 286
Faraday's law, B9
deforming contour of integration and, 262, 300, 315, 565, B32, E3, G3
differential form, 6, B10, E3, G3
example of integral, 262, 276, 286, 297, 315
integral form of, B10, B32
perfectly conducting fluid and, 761
Fatigue, failure in solids by, 704
Feedback, continuous media and, 548
stabilization by use of, 193
Ferroelectrics, B29
piezoelectric materials and, 711
Ferrohydrodynamics, 552, 772
Field circuit of dc machine, 141
Field equations, moving media, generalization of, 252
Fields and moving media, 251
Field transformations, 268, E6, G6; see also Transformations
Field winding, ac machine, 120
dc machine, 293
Film, Complex Waves I, xi, 516, 559, 571, 634
Film, Complex Waves II, xi, 573, 606
Filter, electromechanical, 2, 200, 480, 704
First law of thermodynamics, 63
Flow, Hartmann, 884
irrotational fluid, 737
laminar, 725
turbulent, 725
Flowmeter, liquid metal, 363
Fluid, boundary condition for, 725
boundary condition on, inviscid, 752
compressibility of, 725
effect of temperature and pressure on, 724
electric field coupled, 776
electromechanics of, 724
ferromagnetic, 552, 772
highly conducting, 760
incompressible, 724, 735
inhomogeneous, 735
internal friction of, 724
inviscid, 724, 725
laminar and turbulent flow of, 725
magnetic field coupling to incompressible, 737
magnetizable, 772
Newtonian, 861
perfectly conducting, 563
solids and, 724
static, 735
viscous, 861
Fluid dynamics, equations of inviscid compressible, 813
equations of inviscid, incompressible, 726
equations of viscous, 871
Fluid flow, accelerating but steady, 753
around a corner, 751
potential, 751
unsteady, 746
variable-area channel, 751

Fluid-mechanical examples with viscosity, 875
Fluid orientation systems, 785
Fluid pendulum, electric-field coupled, 784
magnetic damping of, 750
Fluid pump or accelerator, 176
Fluid stagnation point, 752
Fluid streamlines, 752
Fluid transformer, variable-area channel as, 756
Flux amplification, plasmas and, 354
Flux conservation, lumped-parameter, 211, 220
magnetic fields and, 352
perfectly conducting gas and, 849
Flux density, mechanical amplification of, 354
Flux linkage, 19, E4, G4
example of, 22,23
Force, charge, $\mathrm{B1}$
derivative of inductance and, 453
electric origin, 67, E5, G5
electromagnetic, 12
field description of, 418
fluid electric, 776
Lorentz, 12, 255, 419
magnetic, B6
magnetization with one degree of freedom, 451
physical significance of electromagnetic, 420
polarized fluids, 463, 572, 784
single ion, 778
surface integral of stress and, 422
Force-coenergy relations, 72, E5, G5
Force density, 7
averaging of electric, 440
averaging of magnetic, 419
divergence of stress tensor and, 422, 427, G9
effect of permeability on, 455, 456
elastic medium, 667
electric, 12, B3, 440, G11
magnetic field systems, 419,462 , G11
electromagnetic fluid, 732
electrostriction, 465 , G11
fluid mechanical, 732
fluid pressure, 736
free current, 419, G11
inviscid fluid mechanical, 737
lumped parameter model for, 455
magnetic, 12, 419, B9
magnetization, 448, 450, 462, G11
magnetostriction, 461, 462, G11
polarization, 450, 463, G11
summary of, 448, G11
Forced related to variable capacitance, 75
Force-energy relations, 67, ES, G5
examples of, 70
Force equations, elastic media, 653
Force of electric origin, 60, E5, G5
Fourier series, 340
Fourier transform, two-dimensional, 617
Fourier transforms and series, diffusion
equation and, 340
eigenmodes as, 517
linear continuum systems and, 511, 554, 617
linear lumped systems and, 200
mutual inductance expansions and, 108, 153
Frame of reference, laboratory, 254
Free-body diagram, 49
Free charge density, B28
Free charge forces, avoidance of, 787
Frequency, complex, 181, 554
complex angular, 554
natural, 181, 515
voltage tuning of, 704
Frequency conditions for power conversion, 111, 155
Frequency response of transducer, 204
Friction, coulomb, 42
Frozen fields, perfectly conducting gas and, 849
Fusion machines, instability of, 571
Galilean transformation, 584
Gamma rays, 813
Gas, perfect, 816
Gas constant, 816
universal, 816
Gases, definition of, 724
ionized, 813
Gauss's law, differential form of, B5
example of, B 4
integral form of, B3
magnetic field, B12
polarization and, B28
Gauss's theorem, tensor form of, 423, G9
Generators, electric field, 778
electrohydrodynamic applications of, 3
hydroelectric, 152
induction, 134
magnetohydrodynamic applications of, 3
MHD, 744
Van de Graaff, 3, 383, 385
Geometrical compatibility, 53
Geophysics and MHD, 552
Gravitational potential, 733
Gravity, artificial electric, 785
force density due to, 732
waves, 794
Group velocity, 614
power flow and, 638
unstable media and, 617
Guiding structures, evanescence in, 560
Hartmann flow, 884
Hartmann number, 887
Heat transfer, EHD and, 552
Homogeneity, B27
Homogeneous differential equation, solution of, 180
Homopolar machine, 286, 312
armature voltage for, 314
speed coefficient for, 314
summary of equations for, 316
torque for, 316
Hunting transient of synchronous machine, 192
Hydraulic turbine, 151
Hydroelectric generator, 152
Hydromagnetic equilibria, 561, 571
Hysteresis, magnetic, B27
Identities, C1, E1, G1
Impedance, characteristic, 497
Incompressibility, fluid, 735
Incompressible fluids, MHD, 737
Incompressible media, 380
Incremental motions, see Linearization
Independence of variables, 69, 97 (see
Problem 3.16)
Independent variables, change of, 72
Index notation, 421, G7
Inductance, calculation of, 22
electrical linearity and, 20
generalized, 17
quasi-static limit and, B18
Induction, demonstration of motional, 253
law of, B9; see also Faraday's law
Induction brake, 134
Induction generator, 134
electric, 400
Induction interaction, 367
Induction law, integral, B32; see also
Faraday's law
Induction machine, 127
coefficient of coupling for, 135
distributed linear, 368
efficiency of, 134
equivalent circuit for, 131
loading of, 137
lumped-parameter, 368
MHD, 745
power flow in, 133
reactance and resistance dominated, 137
single phase, 138
squirrel-cage, 129
starting of, 137, 139
torque in, 132
torque-slip curve of, 135
variable resistance in, 136
wound rotor, 106
Induction motor, 134
Inductor, 17
Inelastic behavior of solids, 699
Influence coefficients, MHD, 822
variable-area MHD machine, 832
Initial and boundary conditions, 513
Initial conditions, convection and, 587
one-dimensional continuum, 488, 512
Initial value problem, continuum, 488
Instability, absolute, 566
and convective, 604
aeroelastic absolute, 793
convective, 601
dynamic, 192
electrohydrodynamic, 571
engineering limitations from convective, 604
and equilibrium, example of, 185
failure of a static argument to predict, 192
fluid pendulum, 785
fluid turbulence and, 725
graphical determination of, 184
heavy on light fluid, 571
and initial conditions, 184
kink, 627
linear and nonlinear description of, 216
nonconvective, 566
nonlinearity and, 570
omega- k plot for, 569
plasma, 553
in presence of motion, 583
Rayleigh-Taylor, 571
resistive wall, 576, 608
space-time dependence of absolute, 570
static, 182
in stationary media, 554
Integral laws, electromagnetic, 9, B32, E3, G3
Integrated electronics, electromechanics and, 688
Integration contour, deforming, 11, B32
Internal energy, perfect gas, 816
Invariance of equations, 256
Inviscid fluid, boundary condition for, 752
Ion beams, 552
Ion conduction, moving fluid and, 778
Ion drag, efficiency of, 782
Ion-drag phenomena, 776
Ionized gases, acceleration of, 746
Ion source, 776
Isotropic elastic media, 660
Isotropy, B27
Kinetic energy, 214
Kirchhoff's current law, 16
Kirchhoff's laws, 15
electromechanical coupling and, 84
Kirchhoffis voltage law, 16
Klystron, 601
Kronecker delta function, 421, G7
Lagrangian coordinates, 652
surface in, 669
Lagrangian description, 727
Lagrangian to Eulerian descriptions, 483
Lamé constant, 667
numerical values of, 677
Laplace's equation, fluid dynamics and, 737 two-dimensional flow and, 751
Leakage resistance of capacitors, 377
Legendre transformation, 73
Length expander bar, equivalent circuit for, 716
piezoelectric, 712
Levitating force, induction, 369
Levitation, electromechanical, $4,195,365$, 370
demonstration of magnetic, 370
and instability, 574
of liquids, EHD, 552
MHD, 552
solid and liquid magnetic, 365
Light, velocity of, B14
Linearity, electrical, 20, 30, B27
Linearization, continuum, $483,510,556$, 652, 842
error from, 224
lumped-parameter, 182
Linear systems, 180
Line integration in variable space, 64, 67
Liquid drops, charge-carrying, 388
Liquid level gauge, 416
Liquid metal brush, 878
numerical example of, 883
Liquid metal MHD, numerical example of 750
Liquid metals, pumping of, 746
Liquid orientation in fields, 785
Liquids, definition of, 724
Liquids and gases, comparison of, 724
Loading factor, MHD machine, 833
Lodestone, B25
Long-wave limit, 283, 574
thin elastic rod and, 683
Lord Kelvin, 389
Lorentz force, 419
Loss-dominated dynamics, continuum, 576
Loss-dominated electromechanics, 229, 249
Loss-dominated systems, 227
Losses, fluid joule, 815
Loudspeaker, model for, 527
Lumped-parameter electromechanics, 60
Lumped-parameter variables, summary of, 35, E4, G4

Mach lines, 624
Mach number, 624, 823
Macroscopic models, electromagnetic, B25
Magnet, permanent, 27
Magnetic axes of rotating machines, 105
Magnetic circuit, example of, 22, 23
Magnetic diffusion, 330, 335
charge relaxation compared to, 401
competition between motion and, 351
cylindrical geometry and, 408
effect of motion on, 354
electrical transient, 338
induction machines and, 746
initial conditions for, 339
limit, of infinite conductivity in, 343
of small conductivity in, 343
liquid metals and, 354
lumped-parameter models for, 331, 334, 336
sinusoidal steady-state, 358
sinusoidal steady-state with motion, 355
steady-state, 337, 347
steady-state in the moving frame, 351
traveling-wave moving media, 364
Magnetic diffusion time, 341, 772
Magnetic field, air-gap, 114
induced and imposed, 212, 286, 332
origin of earths, 336,552
Magnetic field compression, 354
Magnetic field equations, imsulating me-
dium, 773
Magnetic field intensity, 7, B25
Magnetic field system, 6, B19
differential equations for, $6, \mathrm{~B} 20, \mathrm{E} 6, \mathrm{G} 6$
integral equations for, 10, B32, E3, G3
Magnetic field transformation, example of,
266; see also Transformations
Magnetic fluid, demonstration of, 777
Magnetic flux density, 7, B6
Magnetic flux lines, frozen, 763
Magnetic force, field description of, 418, G11
stress tensor for, 422, G11
Magnetic forces and mechanical design, 697
Magnetic induction negligible, B19
Magnetic piston, 354
Magnetic pressure, 369
Magnetic Reynolds numbers, 333, 349, 351, $353,357,401,628,741,821$
MHD flow, 754
numerical value of, 354
Magnetic saturation in commutator machines, 297
Magnetic surface force, 447
Magnetic tension, 767
Magnetization, B25
effect of free current forces on, 455
Magnetization currents, B25
Magnetization density, 7, B25
Magnetization force, fluids and, 772
one degree of freedom and, 451
Magnetization force density, changes in density and, 461
example of, 460
inhomogeneity and, 460
in moving media, 285
summary of, 448, G11
Magnetoacoustic velocity, 850
Magnetoacoustic wave, 846
electrical losses and, 860
flux and density in, 851
numerical example, in gas, 852 in liquid, 853
Magnetoelasticity, 553
Magnetofluid dynamics, 551
Magnetogasdynamics, 551
Magnetohydrodynamic conduction machine, 740
Magnetohydrodynamic generator, constantarea, 821
variable-area, 828
Magnetohydrodynamics, 551
constant-area channel, 740
viscosity and, 725
Magnetohydrodynamics of viscous fluids, 878
Magnetostriction, 697
one degree of freedom and, 452
Magnetostriction force, incompressible fluid and, 776
Magnetostrictive coupling, 707
Magnetostrictive transducer, terminal representation of, 711
Mass, conservation of fluid, 729
elastic continua, quasi-static limit of, 507
lumped-parameter, 36,43
total, 46
Mass conservation, 731
Mass density, 45
elastic materials, numerical values of, 486
of solid, 486
numerical values of, 486, G12
Mass per unit area of membrane, 509
Mass per unit length of wire, 511
Matched termination, 497
Material motion, waves and instabilities with, 583
Matter, states of, 724
Maxwell, 1
Maxwell's equations, B12
limiting forms of, B14
Maxwell stress tensor, 420, 441, G7, G11
Mechanical circuits, 36
Mechanical continuum, 479
Mechanical equations, lumped-parameter, 49
Mechanical input power, fluid, 756
variable-area channel, 756
Mechanical lumped-parameter equations, examples of, 49, 51,53
Mechanics, lumped-parameter, 35
rigid body, 35
transformations and Newtonian, 254
Membrane, elastic continua and, 509, 535 ,
electric field and, 574
equations of motion for, 511,535, G13
two-dimensional modes of, 622
Membrane dynamics with convection, 584
Mercury, density and conductivity of, 750
properties of, 883
Meteorology, EHD and, 552
MFD, 551; see also MHD
MGD, 551; see also MHD
MHD, 551
compressible fluids and, 813
liquid metal numerical example of, 750
magnetic damping in, 750
transient effects in, 746, 759
transient example of, 750
variable-area channel in, 751
of viscous fluids, 878
MHD conduction machine, 821, 828
equivalent circuit for, 742
pressure drop in, 742
terminal characteristics of, 742
MHD constant-area channel, 740, 820
MHD flows, dynamic effects in, 746
MHD generator, comparison of, 839
compressibility and, 820
constant voltage constrained, 743
distribution of properties in, 827
end effects in, 797
examples of, 840, 841
Mach number in, 823
numerical example of, 826
temperature in, 823
variable-area channel, 828
viscosity and, 725, 884

MHD machine, compressible and incompressible, 825
constant velocity, loading factor and aspect ratio, 834
dynamic operation of, 746
equivalent circuit for variable area, 756
loading factor of, 833
operation of brake, pump, generator, 744
quasi-one-dimensional, 828
steady-state operation of, 740
velocity profile of, 891
MHD plane Couette flow, 884
MHD plane Poiseuille flow, 878
MHD pressure driven flow, 884
MHD pump or accelerator, 824
MHD transient phenomena, 759
MHD variable-area channel equations, conservation of energy and, 831, 833
conservation of mass and, 831,833
conservation of momentum and, 831, 833
local Mach number and, 823,833
local sound velocity and, 822,833
mechanical equation of state and, 816,833
Ohm's law and, 830, 833
thermal equations of state and, 820,833
MHD variable-area machine, equations for, 833
MHD variable-area pumps, generators and brakes, 751
Microphone, capacitor, 201
fidelity of, 204
Microphones, 200
Microwave magnetics, 553
Microwave power generation, 552
Mobility, 289, B31
ion, 778
Model, engineering, 206
Modulus of elasticity, 485
numerical values of, 486, G12
Molecular weight of gas, 816
Moment of inertia, 36, 48
Momentum, conservation of, see Conservation of momentum
Momentum density, fluid, 734
Motor, commutator, 140, 291
induction, 134
reluctance, 156
synchrónous, 119
Moving media, electromagnetic fields and, 251
Mutual inductance, calculation of, 22
Natural frequencies, 515
dispersion equation and, 517
Natural modes, dispersion and, 561
kink instability, 635
of membrane, 624,625
overdamped and underdamped, 583
of unstable wire, 569
Navier-Stokes equation, 872
Negative sequence currents, 144
Networks, compensating, 198
Newtonian fluids, 861

Newton's laws, 15, 35
elastic media and, 653
Newton's second law, 44, 50
electromechanical coupling and, 84
fluid and, 729, 731
Node, mechanical, 36, 49
Nonlinear systems, 206, 213
Nonuniform magnetic field, motion of conductor through, 367
Normal modes, 511
boundary conditions and, 524
Normal strain and shear stress, 662
Normal stress and normal strain, 661
Normal vector, analytic description of, 269
Oerstad, 1, B25
Ohm's law, 7, B30
for moving media, 284, 298
Omega- k plot, absolutely unstable wire, 567
amplifying wave, 603
convective instability, 603
damped waves, complex k for real omega, 579
elastic guided shear waves, 695
electron oscillations, 601
evanescent wave, 557, 559, 597, 615, 695
moving wire, with destabilizing magnetic force, 603
with resistive wall, complex \boldsymbol{k} for real omega, 611
with resistive wall, complex omega for real $k, 610$
ordinary wave, with convection, 594
on wires and membranes, 514
ordinary waves, 514,555
unstable eigenfrequencies and, 569
waves with damping showing eigenfrequencies, 582
wire stabilized by magnetic field, 557
Orientation, electrohydrodynamic, 571
electromechanical, 4
of liquids, dielectrophoretic, 785 EHD, 552
Orthogonality, eigenfunctions and, 341, 519, 520
Oscillations, nonlinear, 226
with convection, 596
Oscillators in motion, 599
Overstability, 192
Particles, charge carriers and, 782
Particular solution of differential equation, 180
Pendulum, hydrodynamic, 746
simple mechanical, 214
Perfect conductor, no slip condition on, 769
Perfect gas law, 816
Perfectly conducting gas, dynamics of, 846
Perfectly conducting media, see Conductor
Permanent magnet, in electromechanics, 27 example of, 28
as rotor for machine, 127
Permanent set, solids and, 700

Permeability, 7, B27
deformation and, 459
density dependence of, 454
free space, 7, B7
Permittivity, 9, B30
free space, 7, 9, B2
Perturbations, 183
Phase sequence, 144
Phase velocity, 613
diffusion wave, 358
dispersive wave, 598
membrane wave, 512
numerical elastic compressional wave, 677
numerical elastic shear wave, 677
numerical thin rod, 486, G12
ordinary wave, 487
thin rod, 487
wire wave, 512
Physical acoustics, 553, 651
Piezoelectric coupling, 711
reciprocity in, 712
Piezoelectric devices, example of, 717
Piezoelectricity, 553, 711
Piezoelectric length expander bar, 712
Piezoelectric resonator, equivalent circuit for, 716
Piezoelectric transducer, admittance of, 714
Piezomagnetics, 553
Plane motion, 44
Plasma, confinement of, 552
electromechanics and, 4
evanescent waves in, 561, 638
heating of, 552
lumped-parameter model for, 223
magnetic bottle for, 563
magnetic diffusion and, 408
MHD and, 553
solid state, 553
Plasma dynamics, 553
Plasma frequency, 600
Poiseuille flow, plane, 878
Poisson's ratio, 662
numerical values of, 666
Polarization, effect of motion on, 290
current, B29
density, 7, B28
electric, B27
force, 463, 571, G11
Polarization force, one degree of freedom, 464
Polarization interactions, liquids and, 783
Polarization stress tensor, 463, G11
Pole pairs, 148
Poles in a machine, 146
Polyphase machines, 142
Position vector, 45
Positive sequence currents, 144
Potential, electric, B9
electromagnetic force, 738
gravitational, 733
mechanical, 214
velocity, 737

Potential difference, B10
Potential energy, 214
Potential flow, irrotational electrical forces and, 738
Potential fluid flow, two-dimensional, 751
Potential plot, 214
Potential well, electrical constraints and, 217
electromechanical system and, 217
temporal behavior from, 224
Power, conservation of, 64
Power density input to fluid, 818
Power factor, 126
Power flow, group velocity and, 638
ordinary and evanescent waves and, 638
rotating machines and, 110
Power generation, ionized gases and, 552
microwave, 552, 553
Power input, electrical, 64
fluid electrical, 818
mechanical, 64
mechanical MHD, 743
Power input to fluid, electric forces and, 819
electrical losses and, 818,819
magnetic forces and, 818
pressure forces and, 818
Power output, electric MHD, 743
Power theorem, wire in magnetic field, 637, 644
Poynting's theorem, B22
Pressure, density and temperature dependence of, 816
hydrostatic, 735
hydrostatic example of, 736
incompressible fluids and significance of, 753
isotropic, 735
magnetic, 369
normal compressive stress and, 735
significance of negative, 753
velocity and, 753
Principal axes, 49
Principal modes, 681
elastic structure, 679
shear wave, 695
Principle of virtual work, see Conservation, of energy
Products of inertia, 48
Propagation, 613
Propulsion, electromagnetic, 552
electromechanical, 4
MHD space, 746
Pulling out of step for synchronous machine, 125
Pump, electric field, 776
electrostatic, 778
liquid metal induction, 365
MHD, 744, 746
variation of parameters in MHD, 825
Pumping, EHD, 552
MHD, 552
Quasi-one-dimensional model, charge relaxa-
tion, 392, 394
electron beam, 600
gravity wave, 794
magnetic diffusion, 347
membrane, 509, 648
and fluid, 793
MHD generator, 828
thin bar, 712
thin beam, 683
thin rod, 480, 681
wire or string, 509
in field, $556,563,574,605,627$
Quasi-static approximations, 6, B17
Quasi-static limit, sinusoidal steady-state and, 515,534
wavelength and, B17
wire and, 534
Quasi-statics, conditions for, B21
correction fields for, B21
elastic media and, 503
electromagnetic, B19
Quasi-static systems, electric, 8
magnetic, 6
Radiation, heat, 815
Rate of strain, 864
Reactance-dominated dynamics, 138, 211 , $220,242,336,354,368,563,759$
Reciprocity, electromechanical coupling and, 77
piezoelectric coupling and, 713
Reference system, inertial, 44
Regulation, transformer design and, 699
Relative displacement, rotation, strain and, 658
Relativity, Einstein, 254
Galilean, 255
postulate of special, 261
theory of, 44
Relaxation time, free charge, 372
numerical values of, 377
Relay, damped time-delay, 229
Reluctance motor, 156
Resistance-dominated dynamics, 138, 209, $233,242,336,354,368,503,583,611$
MHD, 750
Resistive wall damping, continuum, 583
Resistive wall instability, nature of, 612
Resistive wall wave amplification, 608
Resonance, electromechanically driven continuum and, 533
response of continua and, 515
Resonance frequencies, magnetic field shift of, 563
membrane, 624
natural frequencies and, 515
Resonant gate transistor, 688
Response, sinusoidal steady-state, 181, 200, 514
Rigid body, 44
Rigid-body mechanics, 35
Rotating machines, 103
air-gap magnetic fields in, 114
applications of, 3
balanced two-phase, 113
classification of, 119
commutator type, 140, 255, 292
computation of mutual inductance in, 22
dc, 140, 291
differential equations for, 106
effect of poles on speed of, 149
electric field type, 177
energy conversion conditions for, 110
energy conversion in salient pole, 154
equations for salient pole, 151
hunting transient of synchronous, 192
induction, 127
losses in, 109
magnetic saturation in, 106
mutual inductance in, 108
number of poles in, 146
polyphase, 142
power flow in, 110
salient pole, 103, 150
single-phase, 106
single-phase salient-pole, 79
smooth-air-gap, 103, 104
stresses in rotor of, 697
superconducting rotor in, 92
synchronous, 119
two-phase, smooth-air-gap, 111
winding distribution of, 108
Rotating machines, physical structure, acyclic generator, 287
commutator type, 292
dc motor, 293
development of dc, 295
distribution of currents and, 166,169
four-pole, salient pole, 164
four-pole, single phase, 147
homopolar, 313
hydroelectric generator, 152
multiple-pole rotor, 146
rotor of induction motor, 107
rotor of salient-pole synchronous, 151
synchronous, salient-pole, 152
salient-pole, two phase, 158
salient-pole, single phase, 150
smooth-air-gap, single phase, 104
stator for induction motor, 106
three-phase stator, 145
turboalternator, 120
two-pole commutator, 294
Rotation, fluid, 865
Rotation vector, 658
Rotor of rotating machines, $104,107,112$, $120,146,147,150,151,152,158$, $164,166,169$
Rotor teeth, shield effect of, 301
Saliency in different machines, 156
Salient-pole rotating machines, 103,150
Salient poles and dc machines, 293
Servomotor, 140
Shading coils in machines, 139
Shear flow, 862, 864, 875
magnetic coupling, 878
Shear modulus, 664
numerical values of, 666
Shear rate, 866
Shear strain, 543, 655
normal strain and, 663
shear stress and, 664
Shear stress, 543
Shear waves, elastic slab and, 693
Shearing modes, beam principal, 683
Shock tube, example related to, 276
Shock waves, supersonic flow and, 592
Sinusoidal steady-state, 181, 200, 514
convection and establishing, 592
Sinusoidal steady-state response, elastic continua, 514
Skin depth, 357
numerical values of, 361
Skin effect, 358
effect of motion on, 361
Slip of induction machine, 131
Slip rings, 120
ac machines and, 120
Slots of dc machine, 296
Sodium liquid, density of, 771
Solids, definition of, 724
Sound speed, gases, 844
liquids, 845
Sound velocity, see Velocity
Sound waves, see Acoustic waves
Source, force, 37
position, 36
velocity, 37
Space charge, fluid and, 780
Space-charge oscillations, 601
Speakers, 200
Specific heat capacity, constant pressure, 817
constant volume, 816
ratio of, 817
Speed coefficient, of commutator machine, 300
torque on dc machine and, 302
Speed control of rotating machines, 149
Speedometer transducer, 170
Speed voltage in commutator machine, 299
Spring, linear ideal, 38
lumped element, 36, 38
quasi-static limit of elastic continua and, 505
torsional, 40
Spring constant, 39
Stability, 182, 566, 583
Stagnation point, fhuid, 752
Standing waves, electromagnetic, B16
electromechanical, 516, 559, 596, 771
State, coupling network, 61, 65 thermal, 816
Stator, of rotating machines, $104,106,120$, $145,147,150,152,158,164,166,169$
smooth-air-gap, 103
Stinger, magnetic, 193
Strain, formal derivation of, 656
geometric significance of, 654
normal, 654
permanent, 700
shear, 543, 654
as a tensor, 659
thin rod, normal, 484
Strain components, 656
Strain-displacement relation, 653
thin-rod, 485
Strain rate, 724, 864
dilatational, 869
Strain-rate tensor, 864
Streaming electron oscillations, 600
Streamline, fluid, 752
Stress, fluid isotropy and, 868
fluid mechanical, 872
hydrostatic, 724
limiting, 700
normal, 432
shear, 432, 543
and traction, 424, G9
Stress components, 425
Stress-strain, nonlinear, 700
Stress-strain rate relations, 868
Stress-strain relation, 660, 668
thin-rod, 485
Stress-tensor, elastic media and, 667
example of magnetic, 428
magnetization, 462, G11
Maxwell, 420
physical interpretation of, 425, G7
polarization, 463, G11
pressure as, 735
properties of, 423, G7
surface force density and, 446, G9
symmetry of, 422
total force and, 444, G9
Stress tensors, summary of, 448, G11
String, convection and, 584
equation of motion for, 511,535
and membrane, electromechanical coupling to, 522
see also Wire
Subsonic steady MHD flow, 823
Subsonic velocity, 587
Substantial derivative, 259, 584, 726; see also Convective derivative
Summation convention, 421, G7
Superconductors, flux amplification in, 354
Supersonic steady MHD flow, 823
Supersonic steady-state dynamics, 524
Supersonic velocity, 587
Surface charge density, free, 7
Surface conduction in moving media, 285
Surface current density, free, 7
Surface force, example of, 449
magnetization, 775
Surface force densities, summary of, 448, G11
Surface force density, 445, G11
free surface charge and, 447, G11
free surface currents and, 447, G11
Surface tension, 605
Susceptance, electromechanical driving, 531
Susceptibility, dielectric, 9, B30
electric, 9, B30
magnetic, 7, B27
Suspension, magnetic, 193

Symbols, A1, D1, F1
Symbols for electromagnetic quantities, 7
Synchronous condenser, 127
Synchronous machine, 119
equivalent circuit of, 123
hunting transient of, 192
phasor diagram for, 124, 162
polyphase, salient-pole, 157
torque in, 122, 123, 125
torque of salient-pole, two-phase, 160, 162
Synchronous motor, performance of, 126
Synchronous reactance, 123
Synchronous traveling-wave energy conversion, 117

Tachometer, drag-cup, 363
Taylor series, evaluation of displacement with, 483
multivariable, 187
single variable, 183
Teeth of dc machine, 296
Temperature, electrical conductivity and, 380
Tension, of membrane, 509
of wire, 511
Tensor, first and second order, 437
one-dimensional divergence of, 482
surface integration of, 428, 441, 444, G9
transformation law, 437, G10
transformation of, 434, G9
Tensor strain, 659
Tensor transformation, example of, 437
Terminal pairs, mechanical, 36
Terminal variables, summary of, 35, E4, G4
Terminal voltage, definition of, 18
Theorems, C2, E2, G2
Thermonuclear devices, electromechanics and, 4
Thermonuclear fusion, 552
Theta-pinch machine, 408
Thin beam, 683
boundary conditions for, 687
cantilevered, 688
deflections of, 691, 692
eigenvalues of, 692
electromechanical elements and, 688, 691, 701, 704
equation for, 687
resonance frequencies of, 692
static loading of, 701
Thin rod, 681
boundary conditions for, 494
conditions for, 683
equations of motion for, 485, G13
force equation for, 484
longitudinal motion of, 480
transverse motions of, 682
Three-phase currents, 143
Time constant, charge relaxation, 372
magnetic diffusion, 341
Time delay, acoustic and electromagnetic, 499
Time-delay relay, electrically damped, 249
Time derivative, moving coordinates and, 258
Time rate of change, moving grain and, 727
Torque, dc machine, 302
electrical, 66

Lorentz force density and, 301
pull-out, 124
Torque-angle, 123
Torque-angle characteristic of synchronous machine, 125
Torque-angle curve, salient-pole synchronous machine, 163
Torque-slip curve for induction machine, 135
Torque-speed curve, single phase induction machine, 139
Torsional vibrations of thin rod, 543
Traction, 424, 432
pressure and, 735
stress and, 432, G9
Traction drives, 310
Transducer, applications of, 2
continuum, 704
example of equations for, 84,86
fidelity of, 203
incremental motion, 180, 193, 200
Magnetostrictive, 708
Transfer function capacitor microphone, 204
electromechanical filter, 706
Transformations, electric field system, 264
Galilean coordinate, 254, 256
integral laws and, 11, 276, 300, 315, B32
Lorentz, 254
Lorentz force and, 262
magnetic field system, 260
primed to imprimed frame, 439
summary of field, 268, E6, G6
vector and tensor, 434, G9
Transformer, electromechanical effects in, 697
step-down, 698
tested to failure, 698
Transformer efficiency, mechanical design and, 699
Transformer talk, 697
Transient response, convective instability, 621
elastic continua, 517
MHD system, 751
one-dimensional continua, 511
superposition of eigenmodes in, 518
supersonic media, 593
'Transient waves, convection and, 587
Transmission line, electromagnetic, B16
parallel plate, B15
thin rod and, 488
Transmission without distortion in elastic structures, 696
Traveling wave, 487
convection and, 586
magnetic diffusion in terms of, 357
single-phase excitation of, 118
standing wave and, 116
two-dimensional, 622
two-dimensional elastic, 694
two-phase current excitation of, 116
Traveling-wave induction interaction, 368
Traveling-wave MHD interaction, 746
Traveling-wave solutions, 554
Traveling-wave tube, 602
Turboalternator, 120
Turbulence in fluids, 725
Turbulent flow, 43

Ultrasonic amplification, 602
Ultrasonics in integrated electronics. 688
Units of electromagnetic quantities, 7
Van de Graaff generator, example of, 383, 385
gaseous, 778
Variable, dependent, 180
independent, differential equation, 180
thermodynamic independent, 64
Variable capacitance continuum coupling, 704
V curve for synchronous machine, 125
Vector, transformation of, 434, 659
Vector transformation, example of, 435
Velocity, absolute, 44
acoustic elastic wave, 673,677
acoustic fluid wave, 844,846
Alfvén wave, 763, 772
charge-average, B5
charge relaxation used to measure, 396
charge relaxation wave, 395
compressional elastic wave, 673,677
dilatational elastic wave, 673, 677
elastic distortion wave, 675,677
fast and slow wave, 586
light wave, B14
magnetic diffusion wave, 358
magnetic flux wave, 114
magnetoacoustic wave, 850,852
measurement of material, 356,362
membrane wave, 512
phase, 488
shear elastic wave, 675,677
thin rod wave, $486,487,682$
wavefront, 618
with dispersion, 598
wire or string wave, 512
Velocity potential, 737
Viscosity, 862
coefficient of, 863
examples of, 875
fluid, 724
mathematical description of, 862
second coefficient of, 871
Viscous flow, pressure driven, 877
Viscous fluids, 861
Viscour losses, turbulent flow, 725
Voltage, definition of, B10
speed, 20, 21
terminal, 18
transformer, 20, 21
Voltage equation, Kirchhoff, 16
Ward-Leonard system, 307
Water waves, 794
Wave amplification, 601
Wave equation, 487
Wavenumber, 357, 513
complex, 554, 607
Wave propagation, 487
characteristics and, $487,586,618$
group velocity and, 616
phase velocity and, 613
Wave reflection at a boundary, 493
Waves, acoustic elastic, 673
acoustic in fluid, 544, 841, 842, 845
Alfvén, 759
compressional elastic, 673
convection and, 586
cutoff, see Cutoff waves
damping and, 576
diffusion, 355, 576
dilatational, 672
dispersionless, 555
dispersion of, 488
of distortion, 675
elastic shear, 678
electromagnetic, B13, 488
electromechanical in fluids, 759
evanescent, see Evanescent waves
fast and slow, 586
fast and slow circularly polarized, 631
fluid convection and, 860
fluid shear, 760
fluid sound, 813
incident and reflected at a boundary, 494
light, B13
longitudinal elastic, 673
magnetoacoustic, 841, 846
motion and, 583
plasma, 553, 600, 638
radio, B13
rotational, 671
shear elastic, 675
stationary media and, 554
surface gravity, 794
thin rod and infinite media, 673
Wave transients, solution for, 490
Wind tunnel, magnetic stinger in, 193
Windings, balanced two-phase, 113
dc machine, 292
lap, 296
wave, 296
Wire, continuum elastic, 509,535
convection and dynamics of, 584
dynamics of, 554
equations of motion for, $511, \mathrm{G} 13$
magnetic field and, $556,566,627$
two-dimensional motions of, 627
Yield strength, elastic, 700
Young's modulus, 485, G12
Zero-gravity experiments, KC-135 trajectory and, 787

[^0]: * For a discussion of the divergence theorem see F. B. Hildebrand, Advanced Calculus for Engineers, Prentice-Hall, New York, 1949, p. 312.

[^1]: * Unit vectors in the coordinate directions are designated by \mathbf{i}. Thus \mathbf{i}_{z} is a unit vector in the z-direction.
 \dagger See F. B. Hildebrand, Advanced Calculus for Engineers, Prentice-Hall, New York, 1949, p. 318 .

[^2]: * For example in $(\mathrm{B} \cdot 2 \cdot 13 a) \sin \omega t \sin (\omega x / c) \equiv \frac{1}{2}\{\cos [\omega(t-x / c)]-\cos [\omega(t+x / c)]\}$.

[^3]: $* \boldsymbol{\nabla} \cdot(\mathrm{~A} \times \mathrm{C})=\mathrm{C} \cdot \boldsymbol{\nabla} \times \mathrm{A}-\mathrm{A} \cdot \boldsymbol{\nabla} \times \mathrm{C}$.

[^4]: * It is interesting that for this particular intermediate case the electric force tends to pull the plates together, whereas the magnetic force tends to push them apart. Hence, because the two forces are equal in magnitude, they just cancel.

[^5]: * The propagation of an electromagnetic wave on structures of this type is discussed in texts concerned with transmission lines or TEM wave guide modes. For a discussion of this matching problem see R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and Radiation, Wiley, New York, 1960, p. 111, or S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, Wiley, New York, p. 27.

[^6]: * G. R. Slemon, Magnetoelectric Devices, Wiley, New York, 1966, p. 115.

[^7]: * We assume here that the temperature remains constant. A worthwhile qualitative description of conduction processes in solids is given in J. M. Ham and G. R. Slemon, Scientific Basis of Electrical Engineering, Wiley, New York, 1961, p. 453.

[^8]: * See S. H. Crandall, and N. C. Dahl, An Introduction to the Mechanics of Solids, McGrawHill, New York, 1959, for a list of references for these constants and a list of these constants in English units.
 \dagger Computed from average values of E and ρ.

