

A BRIEF INTRODUCTION TO
ENGINEERING COMPUTATION
WITH MATLAB

SERHAT BEYENIR

By:
Serhat Beyenir

A Brief Introduction to Engineering
Computation with MATLAB

A Brief Introduction to Engineering
Computation with MATLAB

By:
Serhat Beyenir

Online:
< http://cnx.org/content/col11371/1.11/ >

OpenStax-CNX

This selection and arrangement of content as a collection is copyrighted by Serhat Beyenir. It is licensed under the

Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

Collection structure revised: November 17, 2015

PDF generated: February 24, 2016

For copyright and attribution information for the modules contained in this collection, see p. 156.

Table of Contents

Acknowledgements . 1

Preface . 3

Study Guide . 5

1 Introduction
1.1 What is MATLAB? . 7
1.2 Problem Set . 22
Solutions . 23

2 Getting Started

2.1 Essentials . 25
2.2 Problem Set . 42
Solutions . 44

3 Graphics

3.1 Plotting in MATLAB . 49
3.2 Problem Set . 67
Solutions . 71

4 Introductory Programming

4.1 Writing Scripts to Solve Problems . 81
4.2 Problem Set . 94
Solutions . 97

5 Interpolation

5.1 Interpolation . 105
5.2 Problem Set . 108
Solutions . 111

6 Numerical Integration

6.1 Computing the Area Under a Curve . 115
6.2 Problem Set . 122
Solutions . 124

7 Regression Analysis

7.1 Regression Analysis . 129
7.2 Problem Set . 138
Solutions . 140

8 Publishing with MATLAB

8.1 Generating Reports with MATLAB 143
8.2 Problem Set . 148
Solutions . 149

Index . 154
Attributions .156

iv

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

Acknowledgements1

I would like to express my appreciation to all of my students in the Power and Process Engineering program
between the academic years 2011-12 and 2015-16 for their feedback and understanding that this book is a
work in-progress.

Special thanks go to those who supported the book along the way:

• Dr. David Porter2, the founder of BCIT OER Group in 2015 who constantly provides me with the
latent energy to continue working on this book,

• Mr. Alex Podut with whom I co-taught MATLAB in 2015. His input was very valuable,
• Dr. Sanja Boskovic who promoted this book at management levels in 2012,
• Mr. Sergiy Yatlo who gave feedback to the �rst iterations of the book in early 2011.

1This content is available online at <http://cnx.org/content/m50977/1.3/>.
2BCIT, Associate Vice President, Education Support and Innovation (<http://cnx.org/content/m50977/latest/

http://commons.bcit.ca/update/2015/05/bcit-welcomes-new-associate-vice-president-education-support-and-innovation/>)

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

1

2

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

Preface3

In my tenth year at the Institute, I dedicate this book to the BCIT community.

The primary purpose of writing a book and distributing it free-of-charge is to extend my gratitude to
BCIT4 . I am particularly thrilled to do it with this textbook because it is a product of many learning
opportunities BCIT has o�ered me over a period of several years. What follows is a brief background on
how this book came to be.

My post-secondary teaching career began on 22 January 2001 at the Paci�c Marine Training Campus of
BCIT when I logged on to a Unix workstation to instruct in the Propulsion Plant Simulator. That has been
a major milestone in many ways in my professional life. While learning inner workings of Unix operating
system (OS), I also made a discovery and that discovery profoundly changed my view on how I thought the
world operated. The discovery was the GNU/Linux OS and open source software (OSS) movement through
several books, most notably Just for Fun: The Story of an Accidental Revolutionary5 and The Cathedral
and the Bazaar6. I was convinced that the collective power of connected individuals around the world and
the global infrastructure of the Internet had the potential to change the ways the world functioned.

In the last 10 years, BCIT has allowed me to study various subjects through its Professional Development
(PD) programs for which I am very grateful. I learned a great deal in PD courses and in one of the recent ones,
I had two déjà vu moments similar to my discovery of OSS movement. The �rst one occurred when I began
reading The Wealth of Networks7 and the second one when I found about Connexions8 . The former was a
con�rmation of my 10-year old discovery and the latter is what I am using to write this book. Connexions
is a web-based curricular content authoring and publishing technology that I believe has a growing potential
for writing and distributing free-of-charge learning materials.

Thus, motivation for this book stems from the notions that were generated by the OSS movement. The
book was written to pay a small token of appreciation to BCIT and I hope it will be a contribution to the
open educational resources repository.

Serhat Beyenir
North Vancouver, B. C.
25 October 2011

3This content is available online at <http://cnx.org/content/m41458/1.6/>.
4http://www.bcit.ca/
5Just for Fun: The Story of an Accidental Revolutionary by L. Torvalds and D. Diamond, New York: HarperCollins

Publishers. ©2001
6The Cathedral and the Bazaar by E. S. Raymond, Sebastopol: O'Reilly Media. ©1999
7The Wealth of Networks by Y. Benkler, New Haven: Yale University Press. ©2006
8http://cnx.org/

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

3

4

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

Study Guide9

MATLAB, a sub-course of Computer Technology 1 and this text are speci�cally designed for students with
no programming experience. However, students are expected to be pro�cient in First Year Mathematics and
Sciences and access to good reference books are highly recommended. I also assume that students have a
working knowledge of the Mac OS X or Microsoft Windows operating systems.

The strategic goal of the course and book is to provide learners with an appreciation for the role com-
putation plays in solving engineering problems. The MATLAB speci�c skills that I would like students to
acquire are as follows:

• Write scripts to solve engineering problems including interpolation, numerical integration and regression
analysis,

• Plot graphs to visualize, analyze and present numerical data,
• Publish reports.

The best way to learn about engineering computation is to actually do it. We will therefore solve many
engineering problems mainly using a recent version of MATLAB in this book. Since the primary focus is
engineering computation, we will concentrate on the mathematical solutions and, to a limited extent, the
graphical user interface (GUI) features of MATLAB.

Learning a new skill, especially a computer program, can be an overwhelming experience. To make the
best of this process, students are encouraged to observe the following guidelines that have proven to work
well:

• Plan to study 2 hours outside of class for every hour inside of class,
• Practice, practice, practice: As the old saying goes, practice makes one perfect or perhaps we should

modify that statement: Good practice makes one perfect,
• Buddy system: Study with a classmate. Helping one another drastically improves your understanding

of the material. Particularly, students are advised to work the problem sets in this fashion,
• Muddy points: Make a note of muddy points as they may occur during lectures and email your notes

to me. I will address those issues at the beginning of the next class,
• Open book exam: Do not try to memorize commands, functions or their syntax but learn where and

how to �nd that information. Through many exercises and problem sets you will have solved by the
end of the course, most computational routines will become second nature to you. The exam is open
book, so keep your learning materials and m-�les well organized.

9This content is available online at <http://cnx.org/content/m41459/1.2/>.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

5

6

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

Chapter 1

Introduction

1.1 What is MATLAB?1

MATLAB stands for MATrix LABoratory (see wikipedia2) and is a commercial software application
written by The MathWorks, Inc.3 When you �rst use MATLAB, you can think of it as a glori�ed calculator
allowing you to perform engineering calculations and plot data. However, MATLAB is more than an advanced
scienti�c calculator, for example MATLAB's sophisticated numerical computation environment also allows

1This content is available online at <http://cnx.org/content/m41403/1.5/>.
2http://en.wikipedia.org/wiki/MATLAB
3http://www.mathworks.com/

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

7

8 CHAPTER 1. INTRODUCTION

us to analyze data, simulate engineering systems, document and share our code with others.

1.1.1 Why Use MATLAB?

MATLAB has become a defacto standard in many �elds of engineering and science. Even a casual exploration
of MATLAB should unveil its computational power however a closer look at MATLAB's graphics and data
analysis tools as well as interaction with other applications and programing languages prove why MATLAB
is a very strong application for technical computing.

The standard MATLAB installation includes graphics features to visualize engineering and scienti�c data
in 2-D and 3-D plots. We can interactivity build graphs and generate MATLAB command output that can
be saved for use in the future. The saved-instructions can be called again with di�erent data set to build new
plots. The plots created with MATLAB can be exported in various �le formats (e.g. .jpg, .png) to embed
in Microsoft Word documents or PowerPoint slideshows.

MATLAB also contains interactive tools to explore and analyze data. For example, we can visualize
data with one of the many plotting routines, zoom in to plots to take measurements, perform statistical
calculations, �t curves to data and evaluate the obtained expression for a desired value.

MATLAB interacts with other applications (e.g. Microsoft Excel) and can be called from C code, C++
or Fortran programming language.

1.1.2 Running MATLAB

To use MATLAB, it must be installed on your computer and you can start it just like you start any application
on your system or you must have access to a network where it is available.

In POWR 3307, we will use MATLAB by accessing the BCIT network. The network access is platform
independent, that is, we can run MATLAB under Mac OS X or Microsoft Windows operating systems through
a web browser. The following links provide instructions on how to access and use BCIT's AppsAnywhere
service:

Con�guring AppsAnywhere on an Apple Macintosh4

Con�guring AppsAnywhere in Windows 75

How to open and save �les in AppsAnywhere when logging in from a Macintosh6

How to open and save �les in AppsAnywhere when logging in from Windows7

1.1.3 The MATLAB Desktop

When you start the MATLAB program, it displays the MATLAB desktop. The desktop is a set of tools
(graphical user interfaces or GUIs) for managing �les, variables, and applications associated with MATLAB.
The �rst time you start MATLAB, the desktop appears with the default layout, as shown in the following
illustration.

4http://kb.bcit.ca/sr/AppsAnywhere/1346.html
5http://kb.bcit.ca/sr/AppsAnywhere/1345.html
6http://kb.bcit.ca/sr/AppsAnywhere/807.html
7http://kb.bcit.ca/sr/AppsAnywhere/806.html

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

9

Figure 1.1: The MATLAB Desktop.

1.1.3.1 Command Window

The Command Window is where we execute MATLAB commands. We enter statements at the Command
Window prompt. The prompt can be any one of the following:

• Trial� indicates that the Command Window is in normal mode and the MATLAB license will expire
after the trial period ends.

• EDU� indicates that the Command Window is in normal mode, in MATLAB Student Version.
• � indicates that the Command Window is in normal mode.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

10 CHAPTER 1. INTRODUCTION

Figure 1.2: The Command Window.

1.1.3.2 Command History

The Command History is a log of the commands we have executed in the command window.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

11

Figure 1.3: The Command History.

1.1.3.3 Workspace

The workspace consists of a set of variables stored in memory during a MATLAB session. To open the
Workspace browser, select Desktop > Workspace in the MATLAB desktop, or type

� workspace

at the Command Window prompt.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

12 CHAPTER 1. INTRODUCTION

Figure 1.4: Workspace.

1.1.3.4 Current Folder

The Current Folder is like the Finder in Mac OS X or Windows Explorer in Windows operating systems
and allows us to browse through the �les and folders. The Current Folder also displays details about �les in
your current directory and within the hierarchy of the folders it contains.

Figure 1.5: Current Folder.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

13

Figure 1.6: Current Folder docked on the desktop.

1.1.3.5 Tool Strip

The tool strip contains global tabs, Home, Plots and Apps. Contextual tabs become available when you
need them.

Figure 1.7: Tool Strip.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

14 CHAPTER 1. INTRODUCTION

Figure 1.8: Tabs.

The plots tab allows us to plot various types of graphs quickly and easily.

Figure 1.9: The plots tab.

The apps tab gives quick access to interactive applications within MATLAB environment.

Figure 1.10: The apps tab.

Layout button allows us to change the desktop layout or go back to the default con�guration.

Figure 1.11: Layout button.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

15

1.1.3.6 Toolbar

The MATLAB toolbar provides on-screen buttons to access frequently used features such as, copy, paste,
undo and redo.

Figure 1.12: Toolbar.

1.1.3.7 Keyboard shortcuts

MATLAB provides keyboard shortcuts for viewing a history of commands and listing contextual help.

1. The up arrow key,
2. The tab key,
3. The semicolon symbol.

1.1.3.7.1 The Up Arrow Key

Suppose we want to enter the following equation:

� y=sin(45)

But we mistakenly entered

� y=sine(45)

MATLAB returns the following prompt:

??? Undefined function or method 'sine' for input arguments of type 'double'.

Instead of retyping the equation, press the up arrow key, the mistakenly entered line is displayed. Using the
left arrow key, move the cursor to the misspelled letter. Make the correction and press Return or Enter to
execute the command.

Pressing the up arrow key repeatedly recalls the previously entered commands. Likewise, typing the
�rst characters of previously entered line and pressing the up arrow key displays the full command line. To
execute that line, simply press the Return or Enter key.

1.1.3.7.2 The Tab Key

Suppose you forgot how to enter the square root command. Begin typing y=sq in the command prompt:

� y=sq

Then press the tab key and scroll down to sqrt. Select it and press Return or Enter key.

� y=sqrt

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

16 CHAPTER 1. INTRODUCTION

1.1.3.7.3 The Semicolon Symbol

The semicolon symbol at the end of a line suppresses the screen output. This is useful when you want to
keep your command window clean.

Type the following entry and press the Return key:

� y=2+2

The following output is displayed:

y =

4

Now, press the up arrow key to recall our initial entry

� y=2+2

And insert a semicolon as follows:

� y=2+2;

No numerical result is displayed however MATLAB stores the value of y in the memory. We can recall the
value y by simply typing y and pressing Return.

1.1.4 MATLAB Help

MATLAB comes with three forms of online help: help, doc and demos.

1.1.4.1 Help

Typing help in the Command Window lists all primary help topics. You can display a topic by clicking on
the link.

� help

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

17

Figure 1.13: Help.

Or if you know the command or function you need help with, you can type help followed by the command
or function. For example to learn about clc command, type help clc at the command prompt:

� help clc

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

18 CHAPTER 1. INTRODUCTION

Figure 1.14: The output of � help clc command.

Also try the following command: � help clear

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

19

Figure 1.15: The output of � help clear command.

To learn about sine function, type help sin at the command prompt:

� help sin

1.1.4.2 Doc

Obviously, to use help e�ectively, you need to know what you are looking for. Often times, especially
when you �rst start learning an application, it is usually di�cult to ask the right questions. In the case of
MATLAB, doc command is generally better than help. If you type doc in the command prompt, MATLAB
opens a browser from where you can obtain help easier:

� doc

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

20 CHAPTER 1. INTRODUCTION

Figure 1.16: Built-in MATLAB Documentation.

Like using help sin, try typing doc sin in the command prompt:

� doc sin

1.1.4.3 Demos

You can learn more about MATLAB through demos by typing demo in the command prompt, a list of links
to demos will open in Help Browser. Demos and online seminars are available at product demos and online
seminars8 .

� demo

8http://www.mathworks.com/products/matlab/demos.html

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

21

Figure 1.17: Built-in MATLAB Demos.

1.1.5 Useful Commands and Functions

For a detailed explanation and examples for each of the following type `help function' (without quotes) at
the MATLAB prompt.

Command/Function Meaning

clc Clear Command Window

clear Remove items from workspace

who, whos List variables in workspace

workspace Display Workspace browser

cd Change working directory

pwd Display current directory

computer Identify information about computer on which MATLAB is running

ver Display version information for MathWorks products

quit Terminate MATLAB

exit Terminate MATLAB (same as quit)

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

22 CHAPTER 1. INTRODUCTION

Table 1.1: Useful commands and functions

1.1.6 Summary of Key Points

1. MATLAB is a popular technical computing application and MathWorks o�ers a trial version of MAT-
LAB on their website,

2. The MATLAB Desktop consists of Command Window, Command History, Workspace, Current Folder
and Start Button,

3. The up/down arrow keys, the tab key and the semicolon are convenient tools to use the Command
Window,

4. MATLAB features an online help, doc and demo,
5. Various commands and functions make MATLAB experience easier, for example, clc, clear and

exit.

1.2 Problem Set9

Exercise 1.2.1 (Solution on p. 23.)

Learn about the following terms using help command:

1. workspace
2. plot
3. clear
4. format
5. roots

9This content is available online at <http://cnx.org/content/m41463/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

23

Solutions to Exercises in Chapter 1

Solution to Exercise 1.2.1 (p. 22)

1.

� help workspace

WORKSPACE Open Workspace browser to manage workspace

WORKSPACE Opens the Workspace browser with a view of the variables

in the current Workspace. Displayed variables may be viewed,

manipulated, saved, and cleared.

See also whos, openvar, save.

Reference page in Help browser

doc workspace

�

2.

� help plot

PLOT Linear plot.

PLOT(X,Y) plots vector Y versus vector X. If X or Y is a matrix,

then the vector is plotted versus the rows or columns of the matrix,

whichever line up. If X is a scalar and Y is a vector, disconnected

line objects are created and plotted as discrete points vertically at

X.

3.

� help clear

CLEAR Clear variables and functions from memory.

CLEAR removes all variables from the workspace.

CLEAR VARIABLES does the same thing.

CLEAR GLOBAL removes all global variables.

CLEAR FUNCTIONS removes all compiled M- and MEX-functions.

CLEAR ALL removes all variables, globals, functions and MEX links.

CLEAR ALL at the command prompt also removes the Java packages import

list.

......

4.

� help format

FORMAT Set output format.

FORMAT with no inputs sets the output format to the default appropriate

for the class of the variable. For float variables, the default is

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

24 CHAPTER 1. INTRODUCTION

FORMAT SHORT.

......

5.

� help roots

ROOTS Find polynomial roots.

ROOTS(C) computes the roots of the polynomial whose coefficients

are the elements of the vector C. If C has N+1 components,

the polynomial is C(1)*X^N + ... + C(N)*X + C(N+1).

......

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

Chapter 2

Getting Started

2.1 Essentials1

Learning a new skill, especially a computer program in this case, can be overwhelming. However, if we
build on what we already know, the process can be handled rather e�ectively. In the preceding chapter we
learned about MATLAB Graphical User Interface (GUI) and how to get help. Knowing the GUI, we will
use basic math skills in MATLAB to solve linear equations and �nd roots of polynomials in this chapter.

1This content is available online at <http://cnx.org/content/m41409/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

25

26 CHAPTER 2. GETTING STARTED

2.1.1 Basic Computation

2.1.1.1 Mathematical Operators

The evaluation of expressions is accomplished with arithmetic operators as we use them in scienti�c calcu-
lators. Note the addtional operators shown in the table below:

Operator Name Description

+ Plus Addition

- Minus Subtraction

* Asterisk Multiplication

/ Forward Slash Division

\ Back Slash Left Matrix Division

^ Caret Power

.* Dot Asterisk Array multiplication (element-wise)

./ Dot Slash Right array divide (element-wise)

.\ Dot Back Slash Left array divide (element-wise)

.^ Dot Caret Array power (element-wise)

Table 2.1: Operators

note: The backslash operator is used to solve linear systems of equations, see Section 2.1.5 (Linear
Equations).

important: Matrix is a rectangular array of numbers and formed by rows and columns. For

example A =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

. In this example A consists of 4 rows and 4 columns and

therefore is a 4x4 matrix. (see Wikipedia2).

important: Row vector is a special matrix that contains only one row. In other words, a row vector

is a 1xn matrix where n is the number of elements in the row vector. B =
(

1 2 3 4 5
)

important: Column vector is also a special matrix. As the term implies, it contains only one
column. A column vector is an nx1 matrix where n is the number of elements in the column vector.

C =

1

2

3

4

5

2http://en.wikipedia.org/wiki/Matrix_%28mathematics%29

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

27

note: Array operations refer to element-wise calculations on the arrays, for example if x is an a by
b matrix and y is a c by d matrix then x.*y can be performed only if a=c and b=d. Consider the
following example, x consists of 2 rows and 3 columns and therefore it is a 2x3 matrix. Likewise,

y has 2 rows and 3 columns and an array operation is possible. x =

 1 2 3

4 5 6

 and y = 10 20 30

40 50 60

 then x. ∗ y =

 10 40 90

160 250 360

Example 2.1
The following �gure illustrates a typical calculation in the Command Window.

Figure 2.1: Basic arithmetic in the command window.

2.1.1.2 Operator Precedence

MATLAB allows us to build mathematical expressions with any combination of arithmetic operators. The
order of operations are set by precedence levels in which MATLAB evaluates an expression from left to right.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

28 CHAPTER 2. GETTING STARTED

The precedence rules for MATLAB operators are shown in the list below from the highest precedence level
to the lowest.

1. Parentheses ()
2. Power (^)
3. Multiplication (*), right division (/), left division (\)
4. Addition (+), subtraction (-)

2.1.2 Mathematical Functions

MATLAB has all of the usual mathematical functions found on a scienti�c calculator including square root,
logarithm, and sine.

important: Typing pi returns the number 3.1416. To �nd the sine of pi, type in sin(pi) and
press enter.

important: The arguments in trigonometric functions are in radians. Multiply degrees by pi/180
to get radians. For example, to calculate sin(90), type in sin(90*pi/180).

warning: In MATLAB log returns the natural logarithm of the value. To �nd the ln of 10, type
in log(10) and press enter, (ans = 2.3026).

warning: MATLAB accepts log10 for common (base 10) logarithm. To �nd the log of 10, type
in log10(10) and press enter, (ans = 1).

Practice the following examples to familiarize yourself with the common mathematical functions. Be sure to
read the relevant help and doc pages for functions that are not self explanatory.

Example 2.2
Calculate the following quantities:

1. 23

32−1 ,

2. 50.5 − 1
3. π

4 d
2 for d=2

MATLAB inputs and outputs are as follows:

1. 23

32−1 is entered by typing 2^3/(3^2-1) (ans = 1)

2. 50.5 − 1 is entered by typing sqrt(5)-1 (ans = 1.2361)
3. π

4 d
2 for d=2 is entered by typing pi/4*2^2 (ans = 3.1416)

Example 2.3
Calculate the following exponential and logarithmic quantities:

1. e2

2. ln
(
510
)

3. log105

MATLAB inputs and outputs are as follows:

1. exp(2) (ans = 7.3891)

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

29

2. log((5^10)) (ans = 16.0944)
3. log10(10^5) (ans = 5)

Example 2.4
Calculate the following trigonometric quantities:

1. cos
(
π
6

)
2. tan (45)
3. sin (π) + cos (45)

MATLAB inputs and outputs are as follows:

1. cos(pi/6) (ans = 0.8660)
2. tan(45*pi/180) (ans = 1.0000)
3. sin(pi)+cos(45*pi/180) (ans = 0.7071)

2.1.3 The format Function

The format function is used to control how the numeric values are displayed in the Command Window. The
short format is set by default and the numerical results are displayed with 4 digits after the decimal point
(see the examples above). The long format produces 15 digits after the decimal point.

Example 2.5
Calculate θ = tan

(
π
3

)
and display results in short and long formats.

The short format is set by default:

� theta=tan(pi/3)

theta =

1.7321

�

And the long format is turned on by typing format long:

� theta=tan(pi/3)

theta =

1.7321

� format long

� theta

theta =

1.732050807568877

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

30 CHAPTER 2. GETTING STARTED

2.1.4 Variables

In MATLAB, a named value is called a variable. MATLAB comes with several prede�ned variables. For
example, the name pi refers to the mathematical quantity π, which is approximately pi ans = 3.1416

warning: MATLAB is case-sensitive, which means it distinguishes between upper- and lowercase
letters (e.g. data, DATA and DaTa are three di�erent variables). Command and function names
are also case-sensitive. Please note that when you use the command-line help, function names are
given in upper-case letters (e.g., CLEAR) only to emphasize them. Do not use upper-case letters
when running functions and commands.

2.1.4.1 Declaring Variables

Variables in MATLAB are generally represented as matrix quantities. Scalars and vectors are special cases
of matrices having size 1x1 (scalar), 1xn (row vector) or nx1 (column vector).

2.1.4.1.1 Declaration of a Scalar

The term scalar as used in linear algebra refers to a real number. Assignment of scalars in MATLAB is easy,
type in the variable name followed by = symbol and a number:

Example 2.6
a = 1

Figure 2.2: Assignment of a scalar quantity.

2.1.4.1.2 Declaration of a Row Vector

Elements of a row vector are separated with blanks or commas.

Example 2.7
Let's type the following at the command prompt:

b = [1 2 3 4 5]

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

31

Figure 2.3: Assignment of a row vector quantity.

We can also use the New Variable button to assign a row vector. In the tool strip, select
Home > New Variable. This action will create a variable called unnamed which is displayed in
the workspace. By clicking on the title unnamed, we can rename it to something more descriptive.
By double-clicking on the variable, we can open the Variable Editor and type in the values into
spreadsheet looking table.

Figure 2.4: Using the New Variable button in the tool strip.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

32 CHAPTER 2. GETTING STARTED

Figure 2.5: Assignment of a row vector by using the Variable Editor.

2.1.4.1.3 Declaration of a Column Vector

Elements of a column vector is ended by a semicolon:

Example 2.8
c = [1;2;3;4;5;]

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

33

Figure 2.6: Assignment of a column vector quantity.

Or by transposing a row vector with the ' operator:
c = [1 2 3 4 5]'

Figure 2.7: Assignment of a column vector quantity by transposing a row vector with the ' operator.

Or by using the Variable Editor:

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

34 CHAPTER 2. GETTING STARTED

Figure 2.8: Assignment of a column vector quantity by using the Variable Editor.

2.1.4.1.4 Declaration of a Matrix

Matrices are typed in rows �rst and separated by semicolons to create columns. Consider the examples
below:

Example 2.9
Let us type in a 2x5 matrix:

d = [2 4 6 8 10; 1 3 5 7 9]

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

35

Figure 2.9: Assignment of a 2x5 matrix.

Figure 2.10: Assignment of a matrix by using the Variable Editor.

Example 2.10
This example is a 5x2 matrix:

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

36 CHAPTER 2. GETTING STARTED

Figure 2.11: Assignment of a 5x2 matrix.

2.1.5 Linear Equations

Systems of linear equations are very important in engineering studies. In the course of solving a problem,
we often reduce the problem to simultaneous equations from which the results are obtained. As you learned
earlier, MATLAB stands for Matrix Laboratory and has features to handle matrices. Using the coe�cients
of simultaneous linear equations, a matrix can be formed to solve a set of simultaneous equations.

Example 2.11
Let's solve the following simultaneous equations:

x+ y = 1 (2.1)

2x− 5y = 9 (2.2)

First, we will create a matrix for the left-hand side of the equation using the coe�cients, namely
1 and 1 for the �rst and 2 and -5 for the second. The matrix looks like this: 1 1

2 −5

 (2.3)

The above matrix can be entered in the command window by typing A=[1 1; 2 -5].
Second, we create a column vector to represent the right-hand side of the equation as follows: 1

9

 (2.4)

The above column vector can be entered in the command window by typing B= [1;9].
To solve the simultaneous equation, we will use the left division operator and issue the following

command: C=A\B. These three steps are illustrated below:

� A=[1 1; 2 -5]

A =

1 1

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

37

2 -5

� B= [1;9]

B =

1

9

� C=A\B

C =

2

-1

�

The result C indicating 2 and 1 are the values for x and y, respectively.

2.1.6 Polynomials

In the preceding section, we brie�y learned about how to use MATLAB to solve linear equations. Equally
important in engineering problem solving is the application of polynomials. Polynomials are functions that
are built by simply adding together (or subtracting) some power functions. (see Wikipedia3).

ax2 + bx+ c = 0 (2.5)

f (x) = ax2 + bx+ c (2.6)

The coe�cients of a polynominal are entered as a row vector beginning with the highest power and including
the ones that are equal to 0.

Example 2.12
Create a row vector for the following function: y = 2x4 + 3x3 + 5x2 + x+ 10

Notice that in this example we have 5 terms in the function and therefore the row vector will
contain 5 elements. p=[2 3 5 1 10]

Example 2.13
Create a row vector for the following function: y = 3x4 + 4x2 − 5

In this example, coe�cients for the terms involving power of 3 and 1 are 0. The row vector
still contains 5 elements as in the previous example but this time we will enter two zeros for the
coe�cients with power of 3 and 1: p=[3 0 4 0 -5].

2.1.6.1 The polyval Function

We can evaluate a polynomial p for a given value of x using the syntax polyval(p,x) where p contains the
coe�cients of polynomial and x is the given number.

3http://en.wikipedia.org/wiki/Polynomial

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

38 CHAPTER 2. GETTING STARTED

Example 2.14
Evaluate f(x) at 5.

f (x) = 3x2 + 2x+ 1 (2.7)

The row vector representing f(x) above is p=[3 2 1]. To evaluate f(x) at 5, we type in:
polyval(p,5). The following shows the Command Window output:

� p=[3 2 1]

p =

3 2 1

� polyval(p,5)

ans =

86

�

2.1.6.2 The roots Function

Consider the following equation:

ax2 + bx+ c = 0 (2.8)

Probably you have solved this type of equations numerous times. In MATLAB, we can use the roots

function to �nd the roots very easily.

Example 2.15
Find the roots for the following:

0.6x2 + 0.3x− 0.9 = 0 (2.9)

To �nd the roots, �rst we enter the coe�cients of polynomial in to a row vector p with p=[0.6 0.3

-0.9] and issue the r=roots(p) command. The following shows the command window output:

� p=[0.6 0.3 -0.9]

p =

0.6000 0.3000 -0.9000

� r=roots(p)

r =

-1.5000

1.0000

�

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

39

2.1.7 Splitting a Statement

You will soon �nd out that typing long statements in the Command Window or in the the Text Editor makes
it very hard to read and maintain your code. To split a long statement over multiple lines simply enter three
periods "..." at the end of the line and carry on with your statement on the next line.

Example 2.16
The following command window output illustrates the use of three periods:

� sin(pi)+cos(45*pi/180)-sin(pi/2)+cos(45*pi/180)+tan(pi/3)

ans =

2.1463

� sin(pi)+cos(45*pi/180)-sin(pi/2)...

+cos(45*pi/180)+tan(pi/3)

ans =

2.1463

�

2.1.8 Comments

Comments are used to make scripts more "readable". The percent symbol % separates the comments from
the code. Examine the following examples:

Example 2.17
The long statements are split to make it easier to read. However, despite the use of descriptive
variable names, it is hard to understand what this script does, see the following Command Window
output:

t_water=80;

t_outside=15;

inner_dia=0.05;

thickness=0.006;

Lambda_steel=48;

AlfaInside=2800;

AlfaOutside=17;

thickness_insulation=0.012;

Lambda_insulation=0.03;

r_i=inner_dia/2

r_o=r_i+thickness

r_i_insulation=r_o

r_o_insulation=r_i_insulation+thickness_insulation

AreaInside=2*pi*r_i

AreaOutside=2*pi*r_o

AreaOutside_insulated=2*pi*r_o_insulation

AreaM_pipe=(2*pi*(r_o-r_i))/log(r_o/r_i)

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

40 CHAPTER 2. GETTING STARTED

AreaM_insulation=(2*pi*(r_o_insulation-r_i_insulation)) ...

/log(r_o_insulation/r_i_insulation)

TotalResistance=(1/(AlfaInside*AreaInside))+ ...

(thickness/(Lambda_steel*AreaM_pipe))+(1/(AlfaOutside*AreaOutside))

TotalResistance_insulated=(1/(AlfaInside*AreaInside))+ ...

(thickness/(Lambda_steel*AreaM_pipe))+(thickness_insulation ...

/(Lambda_insulation*AreaM_insulation))+(1/(AlfaOutside*AreaOutside_insulated))

Q_dot=(t_water-t_outside)/(TotalResistance*1000)

Q_dot_insulated=(t_water-t_outside)/(TotalResistance_insulated*1000)

PercentageReducttion=((Q_dot-Q_dot_insulated)/Q_dot)*100

Example 2.18
The following is an edited version of the above including numerous comments:

% Problem 16.06

% Problem Statement

% Calculate the percentage reduction in heat loss when a layer of hair felt

% is wrapped around the outside surface (see problem 16.05)

format short

% Input Values

t_water=80; % Water temperature [C]

t_outside=15; % Atmospheric temperature [C]

inner_dia=0.05; % Inner diameter [m]

thickness=0.006; % [m]

Lambda_steel=48; % Thermal conductivity of steel [W/mK]

AlfaInside=2800; % Heat transfer coefficient of inside [W/m2K]

AlfaOutside=17; % Heat transfer coefficient of outside [W/m2K]

% Neglect radiation

% Additional layer

thickness_insulation=0.012; % [m]

Lambda_insulation=0.03; % Thermal conductivity of insulation [W/mK]

% Output Values

% Q_dot=(t_water-t_outside)/TotalResistance

% TotalResistance=(1/(AlfaInside*AreaInside))+(thickness/(Lambda_steel*AreaM))+ ...

(1/(AlfaOutside*AreaOutside)

% Calculating the unknown terms

r_i=inner_dia/2 % Inner radius of pipe [m]

r_o=r_i+thickness % Outer radius of pipe [m]

r_i_insulation=r_o % Inner radius of insulation [m]

r_o_insulation=r_i_insulation+thickness_insulation % Outer radius of pipe [m]

AreaInside=2*pi*r_i

AreaOutside=2*pi*r_o

AreaOutside_insulated=2*pi*r_o_insulation

AreaM_pipe=(2*pi*(r_o-r_i))/log(r_o/r_i) % Logarithmic mean area for pipe

AreaM_insulation=(2*pi*(r_o_insulation-r_i_insulation)) ...

/log(r_o_insulation/r_i_insulation) % Logarithmic mean area for insulation

TotalResistance=(1/(AlfaInside*AreaInside))+(thickness/ ...

(Lambda_steel*AreaM_pipe))+(1/(AlfaOutside*AreaOutside))

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

41

TotalResistance_insulated=(1/(AlfaInside*AreaInside))+(thickness/ ...

(Lambda_steel*AreaM_pipe))+(thickness_insulation/(Lambda_insulation*AreaM_insulation)) ...

+(1/(AlfaOutside*AreaOutside_insulated))

Q_dot=(t_water-t_outside)/(TotalResistance*1000) % converting into kW

Q_dot_insulated=(t_water-t_outside)/(TotalResistance_insulated*1000) % converting into kW

PercentageReducttion=((Q_dot-Q_dot_insulated)/Q_dot)*100

2.1.9 Basic Operations

Command Meaning

sum Sum of array elements

prod Product of array elements

sqrt Square root

log10 Common logarithm (base 10)

log Natural logarithm

max Maximum elements of array

min Minimum elements of array

mean Average or mean value of arrays

std Standard deviation

Table 2.2: Basic operations.

2.1.10 Special Characters

Character Meaning

= Assignment

() Prioritize operations

[] Construct array

: Specify range of array elements

, Row element separator in an array

; Column element separator in an array

... Continue statement to next line

. Decimal point, or structure �eld separator

% Insert comment line into code

Table 2.3: Special Characters

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

42 CHAPTER 2. GETTING STARTED

2.1.11 Summary of Key Points

1. MATLAB has the common functions found on a scienti�c calculator and can be operated in a similar
way,

2. MATLAB can store values in variables. Variables are case sensitive and some variables are reserved
by MATLAB (e.g. pi stores 3.1416),

3. Variable Editor can be used to enter or manipulate matrices,
4. The coe�cients of simultaneous linear equations and polynomials are used to form a row vector.

MATLAB then can be used to solve the equations,
5. The format function is used to control the number of digits displayed,
6. Three periods "..." at the end of the line is used to split a long statement over multiple lines,
7. The percent symbol % separates the comments from the code, anything following % symbol is ignored

by MATLAB.

2.2 Problem Set4

Determine the value of each of the following.

Exercise 2.2.1 (Solution on p. 44.)

6× 7 + 42 − 24

Exercise 2.2.2 (Solution on p. 44.)
32+23

45−54 + 640.5−52

45+56+78

Exercise 2.2.3 (Solution on p. 44.)

log102 + 105

Exercise 2.2.4 (Solution on p. 44.)

e2 + 23 − ln
(
e2
)

Exercise 2.2.5 (Solution on p. 44.)

sin (2π) + cos
(
π
4

)
Exercise 2.2.6 (Solution on p. 44.)

tan
(
π
3

)
+ cos (270) + sin (270) + cos

(
π
3

)
Exercise 2.2.7 (Solution on p. 44.)

Solve the following system of equations:
2x+ 4y = 1
x+ 5y = 2

Exercise 2.2.8 (Solution on p. 44.)

Evaluate y at 5.
y = 4x4 + 3x2 − x
Exercise 2.2.9 (Solution on p. 45.)

Given below is Load-Gage Length data for a type 304 stainless steel that underwent a tensile test.
Original specimen diameter is 12.7 mm. 5

4This content is available online at <http://cnx.org/content/m41464/1.7/>.
5Introduction to Materials Science for Engineers by J. F. Shackelford, Macmillan Publishing Company. ©1985, (p.304)

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

43

Load [N] Gage Length [mm]

0.000 50.8000

4890 50.8102

9779 50.8203

14670 50.8305

19560 50.8406

24450 50.8508

27620 50.8610

29390 50.8711

32680 50.9016

33950 50.9270

34580 50.9524

35220 50.9778

35720 51.0032

40540 51.816

48390 53.340

59030 55.880

65870 58.420

69420 60.960

69670 (maximum) 61.468

68150 63.500

60810 (fracture) 66.040 (after fracture)

Table 2.4

σ = P
A , where P is the load [N] on the sample with an original cross-sectional area A [m2] and

the engineering strain is de�ned as ε = ∆l
l , where ∆l is the change in length and l is the initial length.

Compute the stress and strain values for each of the measurements obtained in the tensile
test. Data available for download.6

6See the �le at <http://cnx.org/content/m41464/latest/Chp2_Exercise9.zip>

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

44 CHAPTER 2. GETTING STARTED

Solutions to Exercises in Chapter 2

Solution to Exercise 2.2.1 (p. 42)
� (6*7)+4^2-2^4 (ans = 42)
Solution to Exercise 2.2.2 (p. 42)
� ((3^2+2^3)/(4^5-5^4))+((sqrt(64)-5^2)/(4^5+5^6+7^8)) (ans = 0.0426)
Solution to Exercise 2.2.3 (p. 42)
� log10(10^2)+10^5 (ans = 100002)
Solution to Exercise 2.2.4 (p. 42)
� exp(2)+2^3-log(exp(2)) (ans = 13.3891)
Solution to Exercise 2.2.5 (p. 42)
� sin(2*pi)+cos(pi/4) (ans = 0.7071)
Solution to Exercise 2.2.6 (p. 42)
� tan(pi/3)+cos(270*pi/180)+sin(270*pi/180)+cos(pi/3) (ans = 1.2321)
Solution to Exercise 2.2.7 (p. 42)

� A=[2 4; 1 5]

A =

2 4

1 5

� B=[1; 2]

B =

1

2

� Solution=A\B

Solution =

-0.5000

0.5000

Solution to Exercise 2.2.8 (p. 42)

� p=[4 0 3 -1 0]

p =

4 0 3 -1 0

� polyval(p,5)

ans =

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

45

2570

�

Solution to Exercise 2.2.9 (p. 42)
First, we need to enter the data sets. Because it is rather a large table, using Variable Editor is more
convenient. See the �gures below:

Figure 2.12: Load in Newtons

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

46 CHAPTER 2. GETTING STARTED

Figure 2.13: Extension length in mm.

Next, we will calculate the cross-sectional area.

Area=pi/4*(0.0127^2)

Area =

1.2668e-004

Now, we can �nd the Stress values with the following, note that we are obtaining results in MPa:

Sigma=(Load_N./Area)*10^(-6)

Sigma =

0

38.6022

77.1964

115.8065

154.4086

193.0108

218.0351

232.0076

257.9792

268.0047

272.9780

278.0302

281.9773

320.0269

381.9955

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

47

465.9888

519.9844

548.0085

549.9820

537.9830

480.0403

For strain calculation, we will �rst �nd the change in length:

Delta_L=Length_mm-50.800

Delta_L =

0

0.0102

0.0203

0.0305

0.0406

0.0508

0.0610

0.0711

0.1016

0.1270

0.1524

0.1778

0.2032

1.0160

2.5400

5.0800

7.6200

10.1600

10.6680

12.7000

15.2400

Now we can determine Strain with the following:

Epsilon=Delta_L./50.800

Epsilon =

0

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0020

0.0025

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

48 CHAPTER 2. GETTING STARTED

0.0030

0.0035

0.0040

0.0200

0.0500

0.1000

0.1500

0.2000

0.2100

0.2500

0.3000

The �nal results can be tabulated as foolows:

[Sigma Epsilon]

ans =

0 0

38.6022 0.0002

77.1964 0.0004

115.8065 0.0006

154.4086 0.0008

193.0108 0.0010

218.0351 0.0012

232.0076 0.0014

257.9792 0.0020

268.0047 0.0025

272.9780 0.0030

278.0302 0.0035

281.9773 0.0040

320.0269 0.0200

381.9955 0.0500

465.9888 0.1000

519.9844 0.1500

548.0085 0.2000

549.9820 0.2100

537.9830 0.2500

480.0403 0.3000

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

Chapter 3

Graphics

3.1 Plotting in MATLAB1

A picture is worth a thousand words, particularly visual representation of data in engineering is very
useful. MATLAB has powerful graphics tools and there is a very helpful section devoted to graphics in
MATLAB Help: Graphics. Students are encouraged to study that section; what follows is a brief summary
of the main plotting features.

1This content is available online at <http://cnx.org/content/m41442/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

49

50 CHAPTER 3. GRAPHICS

3.1.1 Two-Dimensional Plots

3.1.1.1 The plot Statement

Probably the most common method for creating a plot is by issuing plot(x, y) statement where function
y is plotted against x.

Example 3.1
Type in the following statement at the MATLAB prompt:

x=[-pi:.1:pi]; y=sin(x); plot(x,y);

After we executed the statement above, a plot named Figure1 is generated:

Figure 3.1: Graph of sin(x)

Having variables assigned in the Workspace, x and y=sin(x) in our case, we can also select x and y, and right
click on the selected variables. This opens a menu from which we choose plot(x,y). See the �gure below.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

51

Figure 3.2: Creating a plot from Workspace.

3.1.1.2 Annotating Plots

Graphs without labels are incomplete and labeling elements such as plot title, labels for x and y axes, and
legend should be included. Using up arrow, recall the statement above and add the annotation commands
as shown below.

x=[-pi:.1:pi];y=sin(x);plot(x,y);title('Graph of y=sin(x)');xlabel('x');ylabel('sin(x)');grid on

Run the �le and compare your result with the �rst one.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

52 CHAPTER 3. GRAPHICS

Figure 3.3: Graph of sin(x) with Labels.

aside: Type in the following at the MATLAB prompt and learn additional commands to annotate
plots:

help gtext

help legend

help zlabel

3.1.1.3 Superimposed Plots

If you want to merge data from two graphs, rather than create a new graph from scratch, you can superimpose
the two using a simple trick:

% This script generates sin(x) and cos(x) plot on the same graph

% initialize variables

x=[-pi:.1:pi]; %create a row vector from -pi to +pi with .1 increments

y0=sin(x); %calculate sine value for each x

y1=cos(x); %calculate cosine value for each x

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

53

% Plot sin(x) and cos(x) on the same graph

plot(x,y0,x,y1);

title('Graph of sin(x) and cos(x)'); %Title of graph

xlabel('x'); %Label of x axis

ylabel('sin(x), cos(x)'); %Label of y axis

legend('sin(x)','cos(x)'); %Insert legend in the same order as y0 and y1 calculated

grid on %Graph grid is turned

Figure 3.4: Graph of sin(x) and cos(x) in the same plot with labels and legend.

3.1.1.4 Multiple Plots in a Figure

Multiple plots in a single �gure can be generated with subplot in the Command Window. However, this
time we will use the built-in Plot Tools. Before we initialize that tool set, let us create the necessary variables
using the following script:

% This script generates sin(x) and cos(x) variables

clc %Clears command window

clear all %Clears the variable space

close all %Closes all figures

X1=[-2*pi:.1:2*pi]; %Creates a row vector from -2*pi to 2*pi with .1 increments

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

54 CHAPTER 3. GRAPHICS

Y1=sin(X1); %Calculates sine value for each x

Y2=cos(X1); %Calculates cosine value for each x

Y3=Y1+Y2; %Calculates sin(x)+cos(x)

Y4=Y1-Y2; %Calculates sin(x)-cos(x)

Note that the above script clears the command window and variable workspace. It also closes any open
Figures. After running the script, we will have X1, Y1, Y2, Y3 and Y4 loaded in the workspace. Next, select
File > New > Figure, a new Figure window will open. Click "Show Plot Tools and Dock Figure" on the
tool bar.

Figure 3.5: Plot Tools

Under New Subplots > 2D Axes, select four vertical boxes that will create four subplots in one �gure.
Also notice, the �ve variables we created earlier are listed under Variables.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

55

Figure 3.6: Creating four sub plots.

After the subplots have been created, select the �rst supblot and click on "Add Data". In the dialog
box, set X Data Source to X1 and Y Data Source to Y1. Repeat this step for the remaining subplots paying
attention to Y Data Source (Y2, Y3 and Y4 need to be selected in the subsequent steps while X1 is always
the X Data Source).

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

56 CHAPTER 3. GRAPHICS

Figure 3.7: Adding data to axes.

Next, select the �rst item in "Plot Browser" and activate the "Property Editor". Fill out the �elds as
shown in the �gure below. Repeat this step for all subplots.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

57

Figure 3.8: Using "Property Editor".

Save the �gure as sinxcosx.fig in the current directory.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

58 CHAPTER 3. GRAPHICS

Figure 3.9: The four subplots generated with "Plot Tools".

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

59

Figure 3.10: The four subplots in a single �gure.

3.1.2 Three-Dimensional Plots

3D plots can be generated from the Command Window as well as by GUI alternatives. This time, we will
go back to the Command Window.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

60 CHAPTER 3. GRAPHICS

3.1.2.1 The plot3 Statement

With the X1,Y1,Y2 and Y2 variables still in the workspace, type in plot3(X1,Y1,Y2) at the MATLAB
prompt. A �gure will be generated, click "Show Plot Tools and Dock Figure".

Figure 3.11: A raw 3D �gure is generated with plot3.

Use the property editor to make the following changes.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

61

Figure 3.12: 3D Property Editor.

The �nal result should look like this:

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

62 CHAPTER 3. GRAPHICS

Figure 3.13: 3D graph of x, sin(x), cos(x)

Use help or doc commands to learn more about 3D plots, for example, image(x), surf(x) and mesh(x).

3.1.3 Quiver or Velocity Plots

To plot vectors, it is useful to draw arrows so that the direction of the arrow points the direction of the vector
and the length of the arrow is vector's magnitude. However the standard plot function is not suitable for this
purpose. Fortunately, MATLAB has quiver function appropriately named to plot arrows. quiver(x,y,u,v)
plots vectors as arrows at the coordinates (x,y) with components (u,v). The matrices x, y, u, and v must all
be the same size and contain corresponding position and velocity components.

Example 3.2
Calculate the magnitude of forces OA, OB and the resultant R of OA and OB shown below. Plot

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

63

all three forces on x-y Cartesian coordinate system2.

Figure 3.14: Quiver Plot.

% Preparation

clear % removes all variables from the current workspace,

% releasing them from system memory.

clc % clears all input and output from the Command Window display,

% giving you a "clean screen."

% Input and Computation

OA=[600 320]; % Force 1

magOA=sqrt(sum(OA.^2));

OB=[-200 -480]; % Force 2

magOB=sqrt(sum(OB.^2));

OC=OA+OB; % The resultant of OA and OB

magOC=sqrt(sum(OC.^2)); % The magnitude of resultant force OC

angleMag=atan(OC(2)/OC(1))*180/pi; % angle of OC in degrees

% Output

disp(' ') % Display blank line

str1= ['The magnitude of the resultant force is ', num2str(magOC), ' N.'];

disp(str1);

str2= ['The angle of the resultant force is ', num2str(angleMag), ' degrees.'];

disp(str2);

2Applied Engineering Mechanics by A. Jensen, H. Chenoweth McGraw-Hill Ryerson Limited©1972, (p. 15)

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

64 CHAPTER 3. GRAPHICS

% Plot Preparation

starts = zeros(3,2); % Origin for all 3 forces, 3x2 "zero" matrix

ends = [OA;OB;OC]; % End point for all 3 forces

vectors = horzcat(starts,ends); % Concatenate arrays horizontally

% Plot Forces on x-y Cartesian Coordinate System

% The following MATLAB function plots vectors as arrows

% at the coordinates specified in each corresponding

% pair of elements in x and y.

quiver(vectors(:,1), vectors(:,2), vectors(:,3), vectors(:,4));

axis equal

grid

title('Forces on x-y Cartesian Coordinate System')

xlabel('x') % x-axis label

ylabel('y') % y-axis label

view(2) % setting view to 2-D

Figure 3.15: Output of quiver function.

Example 3.3
Write an interactive script to calculate the resultant R of forces F1, F2 and F3 shown below and

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

65

plot all four forces on x-y Cartesian coordinate system3.

Figure 3.16: An example for quiver3 plot.

clear

clc

disp('This script computes the resultant of three forces on x-y Cartesian coordinate system.')

f1=input('Enter the magnitude of first force in N: ');

theta1=input('Enter the angle of first force in deg: ');

f2=input('Enter the magnitude of second force in N: ');

theta2=input('Enter the angle of second force in deg: ');

f3=input('Enter the magnitude of third force in N: ');

theta3=input('Enter the angle of third force in deg: ');

x1=f1*cos(theta1*pi/180); % The components of force

y1=f1*sin(theta1*pi/180); % The components of force

F1=[x1 y1]; % Force 1

x2=f2*cos(theta2*pi/180); % The components of force

y2=f2*sin(theta2*pi/180); % The components of force

F2=[x2 y2]; % Force 2

3Applied Engineering Mechanics by A. Jensen, H. Chenoweth McGraw-Hill Ryerson Limited©1972, (p. 15)

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

66 CHAPTER 3. GRAPHICS

x3=f3*cos(theta3*pi/180); % The components of force

y3=f3*sin(theta3*pi/180); % The components of force

F3=[x3 y3]; % Force 3

R=F1+F2+F3; % The resultant of F1, F2 and F3

magR=sqrt(sum(R.^2)); % The magnitude of resultant force R

angle=atan(R(2)/R(1))*180/pi; % Angle of R in degrees

disp(' ') % Display blank line

str1= ['The magnitude of the resultant force is ', num2str(magR), ' N.'];

disp(str1);

str2= ['The angle of the resultant force is ', num2str(angle), ' degrees.'];

disp(str2);

starts = zeros(4,3);

ends = [F1;F2;F3;R];

ends(3,3)=0; % inputs 0s for z components, making it 3D

vectors = horzcat(starts,ends); % Concatenate arrays horizontally

quiver3(vectors(:,1), vectors(:,2), vectors(:,3), vectors(:,4), vectors(:,5), vectors(:,6)); % A three-dimensional quiver plot displays vectors with components (u,v,w) at the points (x,y,z), where u, v, w, x, y, and z all have real (non-complex) values.

axis equal

title('Forces on x-y Cartesian coordinate system')

xlabel('x') % x-axis label

ylabel('y') % y-axis label

view(2)

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

67

Figure 3.17: Output of quiver3 function.

3.1.4 Summary of Key Points

1. plot(x, y) and plot3(X1,Y1,Y2) statements create 2- and 3-D graphs respectively,
2. Plots at minimum should contain the following elements: title, xlabel, ylabel and legend,
3. Annotated plots can be easily generated with GUI Plot Tools,
4. quiver and quiver3 plots are useful for making vector diagrams.

3.2 Problem Set4

Exercise 3.2.1 (Solution on p. 71.)

Plot y = a+ bx, using the speci�ed coe�cients and ranges (use increments of 0.1):

4This content is available online at <http://cnx.org/content/m41466/1.7/>.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

68 CHAPTER 3. GRAPHICS

a. a = 2, b = 0.3 for 0 ≤ x ≤ 5
b. a = 3, b = 0 for 0 ≤ x ≤ 10
c. a = 4, b = −0.3 for 0 ≤ x ≤ 15

Exercise 3.2.2 (Solution on p. 71.)

Plot the following functions, using increments of 0.01 and a = 6, b = 0.8, 0 ≤ x ≤ 5:

a. y = a+ xb

b. y = axb

c. y = asin (x)

Exercise 3.2.3 (Solution on p. 73.)

Plot function y = sin(x)
x for π

100 ≤ x ≤ 10π using increments of π
100

Exercise 3.2.4 (Solution on p. 74.)

Data collected from Boyle's Law experiment are as follows: (Data available for down-
load.5)

Volume [cm^3] Pressure [Pa]

7.34 100330

7.24 102200

7.14 103930

7.04 105270

6.89 107400

6.84 108470

6.79 109400

6.69 111140

6.64 112200

Table 3.1

Plot a graph of Pressure vs Volume, annotate your graph.

Exercise 3.2.5 (Solution on p. 75.)

The original data collected from Boyle's 6 experiment are as follows: (Data available for down-
load.7)

Volume [tube-inches] Pressure [inches-Hg]

12 29.125

10 35.000

8 43.688

6 58.250

5 70.000

4 87.375

3 116.500

5See the �le at <http://cnx.org/content/m41466/latest/Chp3_Exercise4.zip>
6Introduction to Engineering: Modeling and Problem Solving by J. B. Brockman, John Wiley and Sons, Inc. ©2009, (p.246)
7See the �le at <http://cnx.org/content/m41466/latest/Chp3_Exercise5.zip>

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

69

Table 3.2

Plot a graph of Pressure vs Volume, annotate your graph.

Exercise 3.2.6 (Solution on p. 76.)

Display the two plots created earlier in one plot.

Exercise 3.2.7 (Solution on p. 77.)

A tensile test of SAE 1020 steel produced the data below (Data available for download.8) 9

experiment are as follows:

Extension [mm] Load [kN]

0.00 0.0

0.09 1.9

0.31 6.1

0.47 9.4

2.13 11.0

5.05 11.7

10.50 12.0

16.50 11.9

23.70 10.7

27.70 9.3

34.50 8.1

Table 3.3

Plot a graph of Load vs Extension, annotate your graph.

Exercise 3.2.8 (Solution on p. 78.)

Given below is Stress-Strain data for a type 304 stainless steel. 10 experiment are as follows: (Data
available for download.11)

8See the �le at <http://cnx.org/content/m41466/latest/Chp3_Exercise7.zip>
9Introduction to Materials Science for Engineers | Instructor's Manual by J. F. Shackelford, Macmillan Publishing Company.

©1992, (p.440)
10Introduction to Materials Science for Engineers by J. F. Shackelford, Macmillan Publishing Company. ©1985, (p.304)
11See the �le at <http://cnx.org/content/m41466/latest/Chp3_Exercise8.zip>

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

70 CHAPTER 3. GRAPHICS

Stress [MPa] Strain [mm/mm]

0.0 0.0000

38.6 0.0002

77.2 0.0004

115.8 0.0006

154.4 0.0008

193.0 0.0010

218.0 0.0012

232.0 0.0014

258.0 0.0020

268.0 0.0025

273.0 0.0030

278.0 0.0035

282.0 0.0040

320.0 0.0200

382.0 0.0500

466.0 0.1000

520.0 0.1500

548.0 0.2000

550.0 0.2100

538.0 0.2500

480.0 0.3000

Table 3.4

Plot a graph of Stress vs Strain, annotate your graph.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

71

Solutions to Exercises in Chapter 3

Solution to Exercise 3.2.1 (p. 67)

a.

a=2; b=.3; x=[0:.1:5]; y=a+b*x;

plot(x,y),title('Graph of y=a+bx'),xlabel('x'),ylabel('y'),grid

b.

a=3; b=.0; x=[0:.1:10]; y=a+b*x;

plot(x,y),title('Graph of y=a+bx'),xlabel('x'),ylabel('y'),grid

c.

a=2; b=.3; x=[0:.1:5]; y=a+b*x;

plot(x,y),title('Graph of y=a+bx'),xlabel('x'),ylabel('y'),grid

Solution to Exercise 3.2.2 (p. 68)

a.

a=6; b=.8; x=[0:.01:5]; y=a+x.^b;

plot(x,y),title('Graph of y=a+x^b'),xlabel('x'),ylabel('y'),grid

b.

a=6; b=.8; x=[0:.01:5]; y=a*x.^b;

plot(x,y),title('Graph of y=ax^b'),xlabel('x'),ylabel('y'),grid

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

72 CHAPTER 3. GRAPHICS

c.

a=6; x=[0:.01:5]; y=a*sin(x);

plot(x,y),title('Graph of y=a*sin(x)'),xlabel('x'),ylabel('y'),grid

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

73

Solution to Exercise 3.2.3 (p. 68)

x = pi/100:pi/100:10*pi;

y = sin(x)./x;

plot(x,y),title('Graph of y=sin(x)/x'),xlabel('x'),ylabel('y'),grid

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

74 CHAPTER 3. GRAPHICS

Figure 3.18: Graph of y = sin(x)
x

Solution to Exercise 3.2.4 (p. 68)

Pressure=[100330,102200,103930,105270,107400,108470,109400,111140,112200];

Volume=[7.34,7.24,7.14,7.04,6.89,6.84,6.79,6.69,6.64];

plot(Volume, Pressure),title('Pressure Volume Graph'),xlabel('Volume'),ylabel('Pressure'),grid

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

75

Solution to Exercise 3.2.5 (p. 68)

� P=[29.125,35,43.688,58.25,70,87.375,116.5];

� V=[12,10,8,6,5,4,3];

� plot(V,P),title('Pressure Volume Graph'),xlabel('Volume'),ylabel('Pressure'),grid

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

76 CHAPTER 3. GRAPHICS

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

77

Solution to Exercise 3.2.6 (p. 69)

Solution to Exercise 3.2.7 (p. 69)

Extension=[0.00,0.09,0.31,0.47,2.13,5.05,10.50,16.50,23.70,27.70,34.50];

Load=[0.0,1.9,6.1,9.4,11.0,11.7,12.0,11.9,10.7,9.3,8.1];

plot(Extension, Load),title('Load versus Extension Curve'),xlabel('Extension'),ylabel('Load'),grid

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

78 CHAPTER 3. GRAPHICS

Solution to Exercise 3.2.8 (p. 69)
The data can be entered using Variable Editor:

Then execute the following:

plot(Strain,Stress),title('Stress versus Strain Curve'),xlabel('Strain [mm/mm]'),ylabel('Stress [mPa]'),grid

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

79

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

80 CHAPTER 3. GRAPHICS

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

Chapter 4

Introductory Programming

4.1 Writing Scripts to Solve Problems1

MATLAB provides scripting and automation tools that can simplify repetitive computational tasks. For
example, a series of commands executed in a MATLAB session to solve a problem can be saved in a script
�le called an m-�le. An m-�le can be executed from the command line by typing the name of the �le or by
pressing the run button in the built-in text editor tool bar.

1This content is available online at <http://cnx.org/content/m41440/1.6/>.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

81

82 CHAPTER 4. INTRODUCTORY PROGRAMMING

4.1.1 Script Files

A script is a �le containing a sequence of MATLAB statements. Script �les have a �lename extension of .m.
By typing the �lename at the command prompt, we can run the script and obtain results in the command
window.

Figure 4.1: Number of m-�les are displayed in the Current Folder sub-window.

A sample m-�le named ThermalConductivity.m is displayed in Text Editor below. Note the triangle (in
green) run button in the tool bar, pressing this button executes the script in the command window.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

83

Figure 4.2: The content of ThermalConductivity.m �le is displayed in Text Editor.

Now let us see how an m-�le is created and executed.

Example 4.1
A cylindrical acetylene bottle with a radius r=0.3 m has a hemispherical top. The height of the
cylindrical part is h=1.5 m. Write a simple script to calculate the volume of the acetylene bottle.

To solve this problem, we will �rst apply the volume of cylinder equation (4.1). Using the volume
of sphere equation (4.2), we will calculate the volume of hemisphere (4.3). The total volume of the
acetylene bottle is found with the sum of volumes equation (4.4).

Vcylinder = πr2h (4.1)

Vsphere =
4

3
πr3 (4.2)

Vtop =
2

3
πr3 (4.3)

Vacetylene bottle = Vcylinder + Vtop (4.4)

To write the script, we will use the built-in text editor. From the menu bar select File >
New > Script. The text editor window will open in a separate window. First save this �le as
AcetyleneBottle.m. In that window type the following code paying attention to the use of per-
centage and semicolon symbols to comment out the lines and suppress the output, respectively.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

84 CHAPTER 4. INTRODUCTORY PROGRAMMING

% This script computes the volume of an acetylene bottle with a radius r=0.3 m,

% a hemispherical top and a height of cylindrical part h=1.5 m.

r=0.3; % Radius [m]

h=1.5; % Height [m]

Vol_top=(2*pi*r^3)/3; % Calculating the volume of hemispherical top [m3]

Vol_cyl=pi*r^2*h; % Calculating the volume of cylindrical bottom [m3]

Vol_total=Vol_top+Vol_cyl % Calculating the total volume of acetylene bottle [m3]

Figure 4.3: Script created with the built-in text editor.

After running the script by pressing the green button in the Text Editor tool bar, the output is
displayed in the command window as shown below.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

85

Figure 4.4: The MATLAB output in the command window.

4.1.2 The input Function

Notice that the script we have created above (Example 4.1) is not interactive and computes the total volume
only for the variables de�ned in the m-�le. To make this script interactive we will make some changes to the
existing AcetyleneBottle.m by adding input function and save it as AcetyleneBottleInteractive.m.

The syntax for input is as follows:

userResponse = input('prompt')

Example 4.2
Now, let's incorporate the input command in AcetyleneBottleInteractive.m as shown below
and the subsequent �gure:

% This script computes the volume of an acetylene bottle

% user is prompted to enter

% a radius r for a hemispherical top

% a height h for a cylindrical part

r=input('Enter the radius of acetylene bottle in meters ');

h=input('Enter the height of cylindrical part of acetylene bottle in meters ');

Vol_top=(2*pi*r^3)/3; % Calculating the volume of hemispherical top [m3]

Vol_cyl=pi*r^2*h; % Calculating the volume of cylindrical bottom [m3]

Vol_total=Vol_top+Vol_cyl % Calculating the total volume of acetylene bottle [m3]

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

86 CHAPTER 4. INTRODUCTORY PROGRAMMING

Figure 4.5: Interactive script that computes the volume of acetylene cylinder.

The command window upon run will be as follows, note that user keys in the radius and height
values and the same input values result in the same numerical answer as in example (Example 4.1)
which proves that the computation is correct.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

87

Figure 4.6: The same numerical result is obtained through interactive script.

4.1.3 The disp Function

As you might have noticed, the output of our script is not displayed in a well-formatted fashion. Using disp,
we can control how text or arrays are displayed in the command window. For example, to display a text
string on the screen, type in disp('Hello world!'). This command will return our friendly greeting as
follows: Hello world!

disp(variable) can be used to display only the value of a variable. To demonstrate this, issue the
following command in the command window:

b = [1 2 3 4 5]

We have created a row vector with 5 elements. The following is displayed in the command window:

� b = [1 2 3 4 5]

b =

1 2 3 4 5

Now if we type in disp(b) and press enter, the variable name will not be displayed but its value will be
printed on the screen:

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

88 CHAPTER 4. INTRODUCTORY PROGRAMMING

� disp(b)

1 2 3 4 5

The following example demonstrates the usage of disp function.

Example 4.3
Now, let's open AcetyleneBottleInteractive.m �le and modify it by using the disp command.
First save the �le as AcetyleneBottleInteractiveDisp.m, so that we don't accidentally introduce
errors to a working �le and also we can easily �nd this particular �le that utilizes the disp command
in the future. The new �le should contain the code below:

% This script computes the volume of an acetylene bottle

% user is prompted to enter

% a radius r for a hemispherical top

% a height h for a cylindrical part

clc % Clear screen

disp('This script computes the volume of an acetylene bottle')

r=input('Enter the radius of acetylene bottle in meters ');

h=input('Enter the height of cylindrical part of acetylene bottle in meters ');

Vol_top=(2*pi*r^3)/3; % Calculating the volume of hemispherical top [m3]

Vol_cyl=pi*r^2*h; % Calculating the volume of cylindrical bottom [m3]

Vol_total=Vol_top+Vol_cyl; % Calculating the total volume of acetylene bottle [m3]

disp(' ') % Display blank line

disp('The volume of the acetylene bottle is') % Display text

disp(Vol_total) % Display variable

Your screen output should look similar to the one below:

This script computes the volume of an acetylene bottle

Enter the radius of acetylene bottle in meters .3

Enter the height of cylindrical part of acetylene bottle in meters 1.5

The volume of the acetylene bottle is

0.4807

4.1.4 The num2str Function

The num2str function allows us to convert a number to a text string. Basic syntax is str =

num2str(A) where variable A is converted to a text and stored in str. Let's see how it works in
AcetyleneBottleInteractiveDisp.m. Remember to save the �le with a di�erent name before editing
it, for example, AcetyleneBottleInteractiveDisp1.m.

Example 4.4
Add the following line of code to your �le:

str = ['The volume of the acetylene bottle is ', num2str(Vol_total), ' cubic meters.'];

Notice that the three arguments in str are separated with commas. The �rst argument is a simple
text that is contained in ' '. The second argument is where the number to string conversion take
place. And �nally the third argument is also a simple text that completes the sentence displayed
on the screen. Using semicolon at the end of the line suppresses the output. In the next line of our
script, we will call str with disp(str);.

AcetyleneBottleInteractiveDisp1.m �le should look like this:

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

89

% This script computes the volume of an acetylene bottle

% user is prompted to enter

% a radius r for a hemispherical top

% a height h for a cylindrical part

clc % Clear screen

disp('This script computes the volume of an acetylene bottle:')

disp(' ') % Display blank line

r=input('Enter the radius of acetylene bottle in meters ');

h=input('Enter the height of cylindrical part of acetylene bottle in meters ');

Vol_top=(2*pi*r^3)/3; % Calculating the volume of hemispherical top [m3]

Vol_cyl=pi*r^2*h; % Calculating the volume of cylindrical bottom [m3]

Vol_total=Vol_top+Vol_cyl; % Calculating the total volume of acetylene bottle [m3]

disp(' ') % Display blank line

str = ['The volume of the acetylene bottle is ', num2str(Vol_total), ' cubic meters.'];

disp(str);

Running the script should produce the following:

This script computes the volume of an acetylene bottle:

Enter the radius of acetylene bottle in meters .3

Enter the height of cylindrical part of acetylene bottle in meters 1.5

The volume of the acetylene bottle is 0.48066 cubic meters.

4.1.5 The fopen and fclose Functions

The �rst command is used to open or create a �le. The basic syntax for fopen is as follows:

fid = fopen(filename, permission)

For example, fo = fopen('output.txt', 'w'); opens or creates a new �le named output.txt and sets
the permission for writing. If the �le already exists, it discards the existing contents.

fclose command is used to close a �le. For example, if we type in fclose(fo);, we close the �le that
was created above.

4.1.6 The fprintf Function

fprintf function writes formatted data to the computer monitor or a �le. This command can be used to
save the results of a calculation to a �le. To do this, �rst we create or open an output �le with fopen, second
we issue the fprintf command and then we close the output �le with fclose.

The simpli�ed syntax for fprintf is as follows:

fprintf=(fid, format, variable1, variable 2, ...)

Example 4.5
Add the following lines to your .m �le:

fo = fopen('output.txt', 'w');

fprintf(fo,'The radius of acetylene bottle: %g meters \n', r);

fprintf(fo,'The height of cylindrical part of acetylene bottle: %g meters \n', h);

fprintf(fo,'The volume of the acetylene bottle: %g cubic meters. \n', Vol_total);

fclose(fo);

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

90 CHAPTER 4. INTRODUCTORY PROGRAMMING

Here, we �rst create the output.txt �le that will contain the following three variables r, h and
Vol_total. In the fo output �le, the variables are formated with %g which automatically uses the
shortest display format. You can also use %i or %d for integers and %e for scienti�c notation. In
our script above, the \n (newline) moves the cursor to the next line.

Naming the new .m �le as AcetyleneBottleInteractiveOutput.m, it should look like this:

% This script computes the volume of an acetylene bottle

% user is prompted to enter

% a radius r for a hemispherical top

% a height h for a cylindrical part

clc % Clear screen

disp('This script computes the volume of an acetylene bottle:')

disp(' ') % Display blank line

r=input('Enter the radius of acetylene bottle in meters ');

h=input('Enter the height of cylindrical part of acetylene bottle in meters ');

Vol_top=(2*pi*r^3)/3; % Calculating the volume of hemispherical top [m3]

Vol_cyl=pi*r^2*h; % Calculating the volume of cylindrical bottom [m3]

Vol_total=Vol_top+Vol_cyl; % Calculating the total volume of acetylene bottle [m3]

disp(' ') % Display blank line

str = ['The volume of the acetylene bottle is ', num2str(Vol_total), ' cubic meters.'];

disp(str);

fo = fopen('output.txt', 'w');

fprintf(fo,'The radius of acetylene bottle: %g meters \n', r);

fprintf(fo,'The height of cylindrical part of acetylene bottle: %g meters \n', h);

fprintf(fo,'The volume of the acetylene bottle: %g cubic meters. \n', Vol_total);

fclose(fo);

Upon running the �le, the output.txt �le will display the following:

The radius of acetylene bottle: 0.3 meters

The height of cylindrical part of acetylene bottle: 1.5 meters

The volume of the acetylene bottle: 0.480664 cubic meters.

4.1.7 Loops

In programming, a loop executes a set of code a speci�ed number of times or until a condition is met.

4.1.7.1 For Loop

This loop iterates an index variable from an initial value using a speci�ed increment to a �nal value and
runs a set of code. The for loop syntax is the following:

for loop_index=vector_statement

code

...

code

end

Example 4.6
Calculate y = cos (x) for −π ≤ x ≤ π using an increment of π4 .

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

91

for x=-pi:pi/4:pi

y=cos(x);

fprintf('%8.3f %8.2f \n',x,y);
end

In the brief script above, x is the loop index that is initiated from −π and incremented with π
4

to a �nal value of π. At the end of each increment, y = cos (x) is calculated and displayed with the
fprintf command. This process continues until x = π.

From a previous exercise we know \n creates a new line when included in the fprintf command.
Here, we also use %8.3f to specify eight spaces and three decimal places for the �rst variable x.
Likewise %8.2f speci�es the formatting for the second variable y but in this case, y is displayed
with two decimal places. The result is the following:

-3.142 -1.00

-2.356 -0.71

-1.571 0.00

-0.785 0.71

0.000 1.00

0.785 0.71

1.571 0.00

2.356 -0.71

3.142 -1.00

We can improve our code by adding formatting lines as follows:

clear; clc;

fprintf(' x cos(x)\n') % title row

fprintf(' ----------------\n') % title row

for x=-pi:pi/4:pi % loop_index=inital_value:increment_value:final_value

y=cos(x); % code to calculate cos(x)

fprintf('%8.3f %8.2f \n',x,y); % code to print the output to screen

end

Screen output:

x cos(x)

-3.142 -1.00

-2.356 -0.71

-1.571 0.00

-0.785 0.71

0.000 1.00

0.785 0.71

1.571 0.00

2.356 -0.71

3.142 -1.00

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

92 CHAPTER 4. INTRODUCTORY PROGRAMMING

4.1.7.2 While Loop

Like the for loop, a while loop executes blocks of code over and over again however it runs as long as the
test condition remains true. The syntax of a while loop is

while test_condition

code

...

code

end

Example 4.7
Using a while loop, calculate y = cos (x) for −π ≤ x ≤ π using an increment of π4 .

This time we need to initialize the x value outside the loop and then state the test condition
in the �rst line of the while loop. We also need to create an increment statement within the while
loop:

x=-pi;

while x<=pi
y=cos(x);

fprintf('%8.3f %8.2f \n',x,y);
x = x + (pi/4);

end

The result is the same as that of the previous example:

-3.142 -1.00

-2.356 -0.71

-1.571 0.00

-0.785 0.71

0.000 1.00

0.785 0.71

1.571 0.00

2.356 -0.71

3.142 -1.00

Now we can improve the code by adding extra formatting lines and comments:

clear; clc;

fprintf(' x cos(x)\n') % title row

fprintf(' ----------------\n') % title row

x=-pi; % initiating the x value

while x<=pi % stating the test condition

y=cos(x); % calculating the value of y

fprintf('%8.3f %8.2f \n',x,y); % printing a and y

x = x + (pi/4); % iterating to the next step

end

The result should look the same as before.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

93

x cos(x)

-3.142 -1.00

-2.356 -0.71

-1.571 0.00

-0.785 0.71

0.000 1.00

0.785 0.71

1.571 0.00

2.356 -0.71

3.142 -1.00

4.1.8 The diary Function

Instead of writing a script from scratch, we sometimes solve problems in the Command Window as if we
are using a scienti�c calculator. The steps we perform in this fashion can be used to create an m-�le. For
example, the diary function allows us to record a MATLAB session in a �le and retrieve it for review.
Reviewing the �le and by copying relevant parts of it and pasting them in to an m-�le, a script can be
written easily.

Typing diary at the MATLAB prompt toggles the diary mode on and o�. As soon as the diary mode is
turned on, a �le called diary is created in the current directory. If you like to save that �le with a speci�c
name, say for example problem16, type
� diary problem16.txt.
A �le named problem16.txt will be created. The following is the content of a diary �le called problem16.txt.
Notice that in that session, the user is executing the four �les we created earlier. The user's keyboard input
and the resulting display output is recorded in the �le. The session is ended by typing diary which is printed
in the last line. This might be useful to create a record of your work to hand in with a lab or to create the
beginnings of an m-�le.

AcetyleneBottle

Vol_total =

0.4807

AcetyleneBottleInteractive

Enter the radius of acetylene bottle in meters .3

Enter the height of cylinderical part of acetylene bottle in meters 1.5

Vol_total =

0.4807

AcetyleneBottleInteractiveDisp

This script computes the volume of an acetylene bottle

Enter the radius of acetylene bottle in meters .5

Enter the height of cylinderical part of acetylene bottle in meters 1.6

The volume of the acetylene bottle is

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

94 CHAPTER 4. INTRODUCTORY PROGRAMMING

1.5184

AcetyleneBottleInteractiveDisp1

This script computes the volume of an acetylene bottle:

Enter the radius of acetylene bottle in meters .9

Enter the height of cylinderical part of acetylene bottle in meters 1.9

The volume of the acetylene bottle is 6.3617 cubic meters.

diary

4.1.9 Style Guidelines

Try to apply the following guidelines when writing your scripts:

• Share your code or programs with others, consider adopting one of Creative Commons2 or GNU General
Public License3 schemes

• Include your name and contact info in the opening lines
• Use comments liberally
• Group your code and use proper indentation
• Use white space liberally
• Use descriptive names for your variables
• Use descriptive names for your m-�les

4.1.10 Summary of Key Points

1. A script is a �le containing a sequence of MATLAB statements. Script �les have a �lename extension
of .m.

2. Functions such as input, disp and num2str can be used to make scripts interactive,
3. fopen, fprintf and fclose functions are used to create output �les,
4. A for loop is used to repeat a speci�c block of code a de�nite number of times.
5. A while loop is used to repeat a speci�c block of code an inde�nite number of times, until a condition

is met.
6. The diary function is useful to record a MATLAB command window session from which an m-�le can

be easily created,
7. Various style guidelines covered here help improve our code.

4.2 Problem Set4

Exercise 4.2.1 (Solution on p. 97.)

Write a script that will ask for pressure value in psi and display the equivalent pressure in kPa
with a statement, such as "The converted pressure is: ..."

Exercise 4.2.2 (Solution on p. 97.)

Write a script that generates a table of conversions from Fahrenheit to Celsius temperatures for a
range and increment entered by the user, such as

2http://creativecommons.org/
3http://www.gnu.org/licenses/gpl-3.0.html
4This content is available online at <http://cnx.org/content/m41536/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

95

Enter the beginning temperature in F:
Enter the ending temperature in F:
Enter the increment value:

Test your script with 20 the beginning Fahrenheit value, 200 the ending Fahrenheit value
and 20 the increment.

Exercise 4.2.3 (Solution on p. 98.)

Pascal's Law states that pressure is transmitted undiminished in all directions throughout a �uid
at rest. (See the illustration below). An initial force of 150 N is transmitted from a piston of 25
mm^2 to a piston of 100 mm^2. This force is progressively increased up to 200 N. Write a script
that computes the corresponding load carried by the larger piston and tabulate your results.

Figure 4.7: A simple hydraulic system.

Exercise 4.2.4 (Solution on p. 98.)

Modify your script in previous problem (Exercise 4.2.3) so that the user provides the following
input:

Enter the initial force in N:
Enter the �nal force in N:
Enter the increment value:
Enter the area of small piston in mm^2:
Enter the area of big piston in mm^2:

Test your script with 150, 200, 10, 25 and 100 with respect to each input variable.

Exercise 4.2.5 (Solution on p. 99.)

Write a script to solve the Stress-Strain problem in the Problem Set (Problem 2.2.9)

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

96 CHAPTER 4. INTRODUCTORY PROGRAMMING

Exercise 4.2.6 (Solution on p. 100.)

Modify the script, you wrote above (Exercise 4.2.5)and plot an annotated Stress-Strain graph.

Exercise 4.2.7 (Solution on p. 102.)

Repeat Problem 2 (Exercise 4.2.2), this time using a combination of disp, fprintf commands
and a for loop.

Exercise 4.2.8 (Solution on p. 103.)

Repeat Problem 7 (Exercise 4.2.7), this time using a while loop.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

97

Solutions to Exercises in Chapter 4

Solution to Exercise 4.2.1 (p. 94)

% This script converts pressures from psi to kPa

% User is prompted to enter pressure in psi

clc % Clear screen

disp('This script converts pressures from psi to kPa:')

disp(' ') % Display blank line

psi=input('What is the pressure value in psi? ');

kPa=psi*6.894757; % Calculating pressure in kPa

disp(' ') % Display blank line

str = ['The converted pressure is: ', num2str(kPa), ' kPa.'];

disp(str);

The script output is as follows:

This script converts pressures from psi to kPa:

What is the pressure value in psi? 150

The converted pressure is: 1034.2135 kPa.

Solution to Exercise 4.2.2 (p. 94)

% This script generates a table of conversions

% From Fahrenheit to Celsius temperatures

clc % Clear screen

disp('This script generates a table of conversions from Fahrenheit to Celsius')

disp(' ') % Display blank line

lowerF=input('Enter the beginning temperature in F: ');

upperF=input('Enter the ending temperature in F: ');

increment=input('Enter the increment value: ');

Fahrenheit=[lowerF:increment:upperF]; % Creating a row vector with F values

Celsius=5/9*(Fahrenheit-32); % Converting from F to C

disp(' ') % Display blank line

str = ['Fahrenheit Celsius '];% Displaying table header

disp(str);

% Tabulating results in two columns, ' is being used to transpose row to column

disp([Fahrenheit' Celsius'])

The script output is as follows:

This script generates a table of conversions from Fahrenheit to Celsius

Enter the beginning temperature in F: 20

Enter the ending temperature in F: 200

Enter the increment value: 20

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

98 CHAPTER 4. INTRODUCTORY PROGRAMMING

Fahrenheit Celsius

20.0000 -6.6667

40.0000 4.4444

60.0000 15.5556

80.0000 26.6667

100.0000 37.7778

120.0000 48.8889

140.0000 60.0000

160.0000 71.1111

180.0000 82.2222

200.0000 93.3333

Solution to Exercise 4.2.3 (p. 95)

% This script computes the load carried by the larger piston in a hydraulic system

clc % Clear screen

disp('This script computes the load carried by the larger piston in a hydraulic system')

disp(' ') % Display blank line

initialF=150;

finalF=200;

increment=10;

area1=25;

area2=100;

F1=[initialF:increment:finalF]; % Creating a row vector with F1 values

F2=F1*area2/area1; % Calculating F2 values

disp(' ') % Display blank line

str = [' F1 F2 '];% Displaying table header

disp(str);

disp([F1' F2']) % Tabulating results in two columns, ' is being used to transpose row to column

The script output is as follows:

This script computes the load carried by the larger piston in a hydraulic system

F1 F2

150 600

160 640

170 680

180 720

190 760

200 800

Solution to Exercise 4.2.4 (p. 95)

% This script computes the load carried by the larger piston in a hydraulic system

clc % Clear screen

disp('This script computes the load carried by the larger piston in a hydraulic system')

disp(' ') % Display blank line

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

99

initialF=input('Enter the initial force in N: ');

finalF=input('Enter the final force in N: ');

increment=input('Enter the increment value: ');

area1=input('Enter the area of small piston in mm^2: ');

area2=input('Enter the area of big piston in mm^2: ');

F1=[initialF:increment:finalF]; % Creating a row vector with F1 values

F2=F1*area2/area1; % Calculating F2 values

disp(' ') % Display blank line

str = [' F1 F2 '];% Displaying table header

disp(str);

disp([F1' F2']) % Tabulating results in two columns, ' is being used to transpose row to column

The script output is as follows:

This script computes the load carried by the larger piston in a hydraulic system

Enter the initial force in N: 150

Enter the final force in N: 200

Enter the increment value: 10

Enter the area of small piston in mm^2: 25

Enter the area of big piston in mm^2: 100

F1 F2

150 600

160 640

170 680

180 720

190 760

200 800

Solution to Exercise 4.2.5 (p. 95)
The m-�le contains the following:

% This script uses readings from a Tensile test and

% Computes Strain and Stress values

clc % Clear screen

disp('This script uses readings from a Tensile test and')

disp('Computes Strain and Stress values')

disp(' ') % Display a blank line

Specimen_dia=12.7; % Specimen diameter in mm

% Load in kN

Load_kN=[0;4.89;9.779;14.67;19.56;24.45;...

27.62;29.39;32.68;33.95;34.58;35.22;...

35.72;40.54;48.39;59.03;65.87;69.42;...

69.67;68.15;60.81];

% Gage length in mm

Length_mm=[50.8;50.8102;50.8203;50.8305;...

50.8406;50.8508;50.8610;50.8711;...

50.9016;50.9270;50.9524;50.9778;...

51.0032;51.816;53.340;55.880;58.420;...

60.96;61.468;63.5;66.04];

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

100 CHAPTER 4. INTRODUCTORY PROGRAMMING

% Calculate x-sectional area im m2

Cross_sectional_Area=pi/4*((Specimen_dia/1000)^2);

% Calculate change in length, initial lenght is 50.8 mm

Delta_L=Length_mm-50.8;

% Calculate Stress in MPa

Sigma=(Load_kN./Cross_sectional_Area)*10^(-3);

% Calculate Strain in mm/mm

Epsilon=Delta_L./50.8;

str = ['Specimen diameter is ', num2str(Specimen_dia), ' mm.'];

disp(str);

Results=[Load_kN Length_mm Delta_L Sigma Epsilon];

% Tabulated results

disp(' Load Length Delta L Stress Strain')

disp(Results)

After executed, the command window output is:

This script uses readings from a Tensile test and

Computes Strain and Stress values

Specimen diameter is 12.7 mm.

Load Length Delta L Stress Strain

0 50.8000 0 0 0

4.8900 50.8102 0.0102 38.6022 0.0002

9.7790 50.8203 0.0203 77.1964 0.0004

14.6700 50.8305 0.0305 115.8065 0.0006

19.5600 50.8406 0.0406 154.4086 0.0008

24.4500 50.8508 0.0508 193.0108 0.0010

27.6200 50.8610 0.0610 218.0351 0.0012

29.3900 50.8711 0.0711 232.0076 0.0014

32.6800 50.9016 0.1016 257.9792 0.0020

33.9500 50.9270 0.1270 268.0047 0.0025

34.5800 50.9524 0.1524 272.9780 0.0030

35.2200 50.9778 0.1778 278.0302 0.0035

35.7200 51.0032 0.2032 281.9773 0.0040

40.5400 51.8160 1.0160 320.0269 0.0200

48.3900 53.3400 2.5400 381.9955 0.0500

59.0300 55.8800 5.0800 465.9888 0.1000

65.8700 58.4200 7.6200 519.9844 0.1500

69.4200 60.9600 10.1600 548.0085 0.2000

69.6700 61.4680 10.6680 549.9820 0.2100

68.1500 63.5000 12.7000 537.9830 0.2500

60.8100 66.0400 15.2400 480.0403 0.3000

Solution to Exercise 4.2.6 (p. 96)
Edited script contains the plot commands:

% This script uses readings from a Tensile test and

% Computes Strain and Stress values

clc % Clear screen

disp('This script uses readings from a Tensile test and')

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

101

disp('Computes Strain and Stress values')

disp(' ') % Display a blank line

Specimen_dia=12.7; % Specimen diameter in mm

% Load in kN

Load_kN=[0;4.89;9.779;14.67;19.56;24.45;...

27.62;29.39;32.68;33.95;34.58;35.22;...

35.72;40.54;48.39;59.03;65.87;69.42;...

69.67;68.15;60.81];

% Gage length in mm

Length_mm=[50.8;50.8102;50.8203;50.8305;...

50.8406;50.8508;50.8610;50.8711;...

50.9016;50.9270;50.9524;50.9778;...

51.0032;51.816;53.340;55.880;58.420;...

60.96;61.468;63.5;66.04];

% Calculate x-sectional area im m2

Cross_sectional_Area=pi/4*((Specimen_dia/1000)^2);

% Calculate change in length, initial lenght is 50.8 mm

Delta_L=Length_mm-50.8;

% Calculate Stress in MPa

Sigma=(Load_kN./Cross_sectional_Area)*10^(-3);

% Calculate Strain in mm/mm

Epsilon=Delta_L./50.8;

str = ['Specimen diameter is ', num2str(Specimen_dia), ' mm.'];

disp(str);

Results=[Load_kN Length_mm Delta_L Sigma Epsilon];

% Tabulated results

disp(' Load Length Delta L Stress Strain')

disp(Results)

% Plot Stress versus Strain

plot(Epsilon,Sigma)

title('Stress versus Strain Curve')

xlabel('Strain [mm/mm]')

ylabel('Stress [mPa]')

grid

In addition to Command Window output, the following plot is generated:

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

102 CHAPTER 4. INTRODUCTORY PROGRAMMING

Solution to Exercise 4.2.7 (p. 96)
The re-worked solution:

% This script generates a table of conversions

% From Fahrenheit to Celsius temperatures

clear % removes all variables from the current workspace,

clc % clears all input and output from the Command Window display,

disp('This script generates a table of conversions from Fahrenheit to Celsius')

disp(' ') % Display blank line

lowerF=input('Enter the initial temperature in F: ');

upperF=input('Enter the final temperature in F: ');

increment=input('Enter the increment value: ');

disp(' ') % Display blank line

fprintf('Fahrenheit Celsius\n') % title row

fprintf('------------------\n') % title row

for Fahrenheit=[lowerF:increment:upperF]; % Creating a row vector with F values

Celsius=5/9*(Fahrenheit-32); % Converting from F to C

fprintf('%8.3f %8.3f \n',Fahrenheit,Celsius); % Tabulating results in two columns

end

After executed, the command window output is:

This script generates a table of conversions from Fahrenheit to Celsius

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

103

Enter the initial temperature in F: 20

Enter the final temperature in F: 200

Enter the increment value: 20

Fahrenheit Celsius

20.000 -6.667

40.000 4.444

60.000 15.556

80.000 26.667

100.000 37.778

120.000 48.889

140.000 60.000

160.000 71.111

180.000 82.222

200.000 93.333

Solution to Exercise 4.2.8 (p. 96)
The re-worked solution:

% This script generates a table of conversions

% From Fahrenheit to Celsius temperatures

clear % removes all variables from the current workspace,

clc % clears all input and output from the Command Window display,

disp('This script generates a table of conversions from Fahrenheit to Celsius')

disp(' ') % Display blank line

lowerF=input('Enter the initial temperature in F: ');

upperF=input('Enter the final temperature in F: ');

increment=input('Enter the increment value: ');

disp(' ') % Display blank line

fprintf('Fahrenheit Celsius\n') % title row

fprintf('------------------\n') % title row

Fahrenheit=lowerF;

while Fahrenheit<=upperF
Celsius=5/9*(Fahrenheit-32); % Converting from F to C

fprintf('%8.3f %8.3f \n',Fahrenheit,Celsius); % Tabulating results in two columns

Fahrenheit=Fahrenheit+increment;

end

After executed, the command window output is:

This script generates a table of conversions from Fahrenheit to Celsius

Enter the initial temperature in F: 20

Enter the final temperature in F: 200

Enter the increment value: 20

Fahrenheit Celsius

20.000 -6.667

40.000 4.444

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

104 CHAPTER 4. INTRODUCTORY PROGRAMMING

60.000 15.556

80.000 26.667

100.000 37.778

120.000 48.889

140.000 60.000

160.000 71.111

180.000 82.222

200.000 93.333

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

Chapter 5

Interpolation

5.1 Interpolation1

Linear interpolation is one of the most common techniques for estimating values between two given data
points. For example, when using steam tables, we often have to carry out interpolations. With this technique,
we assume that the function between the two points is linear. MATLAB has a built-in interpolation function.

1This content is available online at <http://cnx.org/content/m41455/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

105

106 CHAPTER 5. INTERPOLATION

5.1.1 The interp1 Function

Give an x-y table, y_new = interp1(x,y,x_new) interpolates to �nd y_new. Consider the following exam-
ples:

Example 5.1
To demonstrate how the interp1 function works, let us create an x-y table with the following
commands;

x = 0:5;

y = [0,20,60,68,77,110];

To tabulate the output, we can use

[x',y']

The result is

ans =

0 0

1 20

2 60

3 68

4 77

5 110

Suppose we want to �nd the corresponding value for 1.5 or interpolate for 1.5. Using y_new =

interp1(x,Y,x_new) syntax, let us type in:

y_new=interp1(x,y,1.5)

y_new =

40

Example 5.2
The table we created above has only 6 elements in it and suppose we need a more detailed table.
In order to do that, instead of a single new x value, we can de�ne an array of new x values, the
interp1 function returns an array of new y values:

new_x = 0:0.2:5;

new_y = interp1(x,y,new_x);

Let's display this table

[new_x',new_y']

The result is

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

107

ans =

0 0

0.2000 4.0000

0.4000 8.0000

0.6000 12.0000

0.8000 16.0000

1.0000 20.0000

1.2000 28.0000

1.4000 36.0000

1.6000 44.0000

1.8000 52.0000

2.0000 60.0000

2.2000 61.6000

2.4000 63.2000

2.6000 64.8000

2.8000 66.4000

3.0000 68.0000

3.2000 69.8000

3.4000 71.6000

3.6000 73.4000

3.8000 75.2000

4.0000 77.0000

4.2000 83.6000

4.4000 90.2000

4.6000 96.8000

4.8000 103.4000

5.0000 110.0000

Example 5.3
Using the table below, �nd the internal energy of steam at 215 �C and the temperature if the
internal energy is 2600 kJ/kg (use linear interpolation).

Temperature [C] Internal Energy [kJ/kg]

100 2506.7

150 2582.8

200 2658.1

250 2733.7

300 2810.4

400 2967.9

500 3131.6

Table 5.1: An extract from Steam Tables

First let us enter the temperature and energy values

temperature = [100, 150, 200, 250, 300, 400, 500];

energy = [2506.7, 2582.8, 2658.1, 2733.7, 2810.4, 2967.9, 3131.6];

[temperature',energy']

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

108 CHAPTER 5. INTERPOLATION

returns

ans =

1.0e+003 *

0.1000 2.5067

0.1500 2.5828

0.2000 2.6581

0.2500 2.7337

0.3000 2.8104

0.4000 2.9679

0.5000 3.1316

issue the following for the �rst question:

new_energy = interp1(temperature,energy,215)

returns

new_energy =

2.6808e+003

Now, type in the following for the second question:

new_temperature = interp1(energy,temperature,2600)

returns

new_temperature =

161.4210

5.1.2 Summary of Key Points

1. Linear interpolation is a technique for estimating values between two given data points,
2. Problems involving steam tables often require interpolated data,
3. MATLAB has a built-in interpolation function.

5.2 Problem Set2

Exercise 5.2.1 (Solution on p. 111.)

Determine the saturation temperature, speci�c liquid enthalpy, speci�c enthalpy of evaporation
and speci�c enthalpy of dry steam at a pressure of 2.04 MPa.

2This content is available online at <http://cnx.org/content/m41624/1.2/>.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

109

Pressure [MN/m2] Saturation Temperature [C] hf [kJ/kg] hfg [kJ/kg] hg [kJ/kg]

2.1 214.9 920.0 1878.2 2798.2

2.0 212.4 908.6 1888.6 2797.2

Table 5.2: An extract from steam tables

Exercise 5.2.2 (Solution on p. 111.)

The following table gives data for the speci�c heat as it changes with temperature for a perfect
gas. (Data available for download3). 4

Temperature [F] Speci�c Heat [BTU/lbmF]

25 0.118

50 0.120

75 0.123

100 0.125

125 0.128

150 0.131

Table 5.3: Change of speci�c heat with temperature

Using interp1 function calculate the speci�c heat for 30 F, 70 F and 145 F.

Exercise 5.2.3 (Solution on p. 112.)

For the problem above (Exercise 5.2.2), create a more detailed table in which temperature varies
between 25 and 150 with 5 F increments and corresponding speci�c heat values.

Exercise 5.2.4 (Solution on p. 113.)

During a 12-hour shift a fuel tank has varying levels due to consumption and transfer pump
automatically cutting in and out to maintain a safe fuel level. The following table of fuel tank
level versus time (Data available for download5) is missing readings for 5 and 9 AM. Using linear
interpolation, estimate the fuel level at those times.

3See the �le at <http://cnx.org/content/m41624/latest/Chp5_Exercise2.zip>
4Thermodynamics and Heat Power by Kurt C. Rolle, Pearson Prentice Hall. ©2005, (p.19)
5See the �le at <http://cnx.org/content/m41624/latest/Chp5_Exercise4.zip>

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

110 CHAPTER 5. INTERPOLATION

Time [hours, AM] Tank level [m]

1:00 1.5

2:00 1.7

3:00 2.3

4:00 2.9

5:00 ?

6:00 2.6

7:00 2.5

8:00 2.3

9:00 ?

10:00 2.0

11:00 1.8

12:00 1.3

Table 5.4: Fuel tank level versus time

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

111

Solutions to Exercises in Chapter 5

Solution to Exercise 5.2.1 (p. 108)
MATLAB solution is as follows;

� pressure=[2.1 2.0];

� sat_temp=[214.9 212.4];

� h_f=[920 908.6];

� h_fg=[1878.2 1888.6];

� h_g=[2798.2 2797.2];

� sat_temp_new=interp1(pressure,sat_temp,2.04)

sat_temp_new =

213.4000

� h_f_new=interp1(pressure,h_f,2.04)

h_f_new =

913.1600

� h_fg_new=interp1(pressure,h_fg,2.04)

h_fg_new =

1.8844e+003

� h_g_new=interp1(pressure,h_g,2.04)

h_g_new =

2.7976e+003

Solution to Exercise 5.2.2 (p. 109)
MATLAB solution is as follows:

� temperature=[25;50;75;100;125;150]

temperature =

25

50

75

100

125

150

� specific_heat=[.118;.120;.123;.125;.128;.131]

specific_heat =

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

112 CHAPTER 5. INTERPOLATION

0.1180

0.1200

0.1230

0.1250

0.1280

0.1310

� specific_heatAt30=interp1(temperature,specific_heat,30)

specific_heatAt30 =

0.1184

� specific_heatAt70=interp1(temperature,specific_heat,70)

specific_heatAt70 =

0.1224

� specific_heatAt145=interp1(temperature,specific_heat,145)

specific_heatAt145 =

0.1304

Solution to Exercise 5.2.3 (p. 109)
MATLAB solution is as follows:

� new_temperature=25:5:150;

� new_specific_heat=interp1(temperature,specific_heat,new_temperature);

� [new_temperature',new_specific_heat']

ans =

25.0000 0.1180

30.0000 0.1184

35.0000 0.1188

40.0000 0.1192

45.0000 0.1196

50.0000 0.1200

55.0000 0.1206

60.0000 0.1212

65.0000 0.1218

70.0000 0.1224

75.0000 0.1230

80.0000 0.1234

85.0000 0.1238

90.0000 0.1242

95.0000 0.1246

100.0000 0.1250

105.0000 0.1256

110.0000 0.1262

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

113

115.0000 0.1268

120.0000 0.1274

125.0000 0.1280

130.0000 0.1286

135.0000 0.1292

140.0000 0.1298

145.0000 0.1304

150.0000 0.1310

Solution to Exercise 5.2.4 (p. 109)

� time=[1 2 3 4 6 7 8 10 11 12];

� tank_level=[1.5 1.7 2.3 2.9 2.6 2.5 2.3 2.0 1.8 1.3];

� tank_level_at_5=interp1(time,tank_level,5)

tank_level_at_5 =

2.7500

� tank_level_at_9=interp1(time,tank_level,9)

tank_level_at_9 =

2.1500

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

114 CHAPTER 5. INTERPOLATION

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

Chapter 6

Numerical Integration

6.1 Computing the Area Under a Curve1

This chapter essentially deals with the problem of computing the area under a curve. First, we will
employ a basic approach and form trapezoids under a curve. From these trapezoids, we can calculate the
total area under a given curve. This method can be tedious and is prone to errors, so in the second half of
the chapter, we will utilize a built-in MATLAB function to carry out numerical integration.

1This content is available online at <http://cnx.org/content/m41454/1.4/>.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

115

116 CHAPTER 6. NUMERICAL INTEGRATION

6.1.1 A Basic Approach

There are various methods to calculating the area under a curve, for example, Rectangle Method2 , Trape-
zoidal Rule3 and Simpson's Rule4 . The following procedure is a simpli�ed method.

Consider the curve below:

Figure 6.1: Numerical integration

Each segment under the curve can be calculated as follows:

1

2
(y0 + y1) ∆x +

1

2
(y1 + y2) ∆x +

1

2
(y2 + y3) ∆x (6.1)

Therefore, if we take the sum of the area of each trapezoid, given the limits, we calculate the total area
under a curve. Consider the following example.

Example 6.1
Given the following data, plot an x-y graph and determine the area under a curve between x=3
and x=30

Index x [m] y [N]

1 3 27.00

2 10 14.50

3 15 9.40

4 20 6.70

5 25 5.30

6 30 4.50

Table 6.1: Data Set

First, let us enter the data set. For x, issue the following command x=[3,10,15,20,25,30];.
And for y, y=[27,14.5,9.4,6.7,5.3,4.5];. If yu type in [x',y'], you will see the following
tabulated result. Here we transpose row vectors with ' and displaying them as columns:

2http://en.wikipedia.org/wiki/Rectangle_method
3http://en.wikipedia.org/wiki/Trapezoidal_rule
4http://en.wikipedia.org/wiki/Simpson%27s_rule

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

117

ans =

3.0000 27.0000

10.0000 14.5000

15.0000 9.4000

20.0000 6.7000

25.0000 5.3000

30.0000 4.5000

Compare the data set above with the given information in the question (Table 6.1).
To plot the data type the following:

plot(x,y),title('Distance-Force Graph'),xlabel('Distance[m]'),ylabel('Force[N]'),grid

The following �gure is generated:

Figure 6.2: Distance-Force Graph

To compute dx for consecutive x values, we will use the index for each x value, see the given
data in the question (Table 6.1).:

dx=[x(2)-x(1),x(3)-x(2),x(4)-x(3),x(5)-x(4),x(6)-x(5)];

dy is computed by the following command:

dy=[0.5*(y(2)+y(1)),0.5*(y(3)+y(2)),0.5*(y(4)+y(3)),0.5*(y(5)+y(4)),0.5*(y(6)+y(5))];

dx and dy can be displayed with the following command: [dx',dy']. The result will look like this:

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

118 CHAPTER 6. NUMERICAL INTEGRATION

[dx',dy']

ans =

7.0000 20.7500

5.0000 11.9500

5.0000 8.0500

5.0000 6.0000

5.0000 4.9000

Our results so far are shown below

x [m] y [N] dx [m] dy [N]

3 27.00

10 14.50 7.00 20.75

15 9.40 5.00 11.95

20 6.70 5.00 8.05

25 5.30 5.00 6.00

30 4.50 5.00 4.90

Table 6.2: x, y and corresponding di�erential elements

If we multiply dx by dy, we �nd da for each element under the curve. The di�erential area
da=dx*dy, can be computed using the 'term by term multiplication' technique in MATLAB as
follows:

da=dx.*dy

da =

145.2500 59.7500 40.2500 30.0000 24.5000

Each value above represents an element under the curve or the area of trapezoid. By taking the
sum of array elements, we �nd the total area under the curve.

sum(da)

ans =

299.7500

The following (Table 6.3) illustrates all the steps and results of our MATLAB computation.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

119

x [m] y [N] dx [m] dy [N] dA [Nm]

3 27.00

10 14.50 7.00 20.75 145.25

15 9.40 5.00 11.95 59.75

20 6.70 5.00 8.05 40.25

25 5.30 5.00 6.00 30.00

30 4.50 5.00 4.90 24.50

299.75

Table 6.3: Computation of the approximate area under a curve

6.1.2 The Trapezoidal Rule

Sometimes it is rather convenient to use a numerical approach to solve a de�nite integral. The trapezoid
rule allows us to approximate a de�nite integral using trapezoids.

6.1.2.1 The trapz Command

Z = trapz(Y) computes an approximation of the integral of Y using the trapezoidal method.
Now, let us see a typical problem.
Example 6.2

Given Area =
∫ 5

2
x2dx, an analytical solution would produce 39. Use trapz command and solve it

1. Initialize variable x as a row vector, from 2 with increments of 0.1 to 5: x=2:.1:5;
2. Declare variable y as y=x^2;. Note the following error prompt: ??? Error using ==>

mpower Inputs must be a scalar and a square matrix. This is because x is a vector
quantity and MATLAB is expecting a scalar input for y. Because of that, we need to compute
y as a vector and to do that we will use the dot operator as follows: y=x.^2;. This tells
MATLAB to create vector y by taking each x value and raising its power to 2.

3. Now we can issue the following command to calculate the �rst area, the output will be as
follows:

area1=trapz(x,y)

area1 =

39.0050

Notice that this numerical value is slightly o�. So let us increase the number of increments and
calculate the area again:

x=2:.01:5;

y=x.^2;

area2=trapz(x,y)

area2 =

39.0001

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

120 CHAPTER 6. NUMERICAL INTEGRATION

Yet another increase in the number of increments:

x=2:.001:5;

y=x.^2;

area3=trapz(x,y)

area3 =

39.0000

Example 6.3
Determine the value of the following integral:∫ π

0
sin (x) dx

1. Initialize variable x as a row vector, from 0 with increments of pi/100 to pi: x=0:pi/100:pi;
2. Declare variable y as y=sin(x);
3. Issue the following command to calculate the �rst area, the output will be as follows:

area1=trapz(x,y)

area1 =

1.9998

let us increase the increments as above:

x=0:pi/1000:pi;

y=sin(x);

area2=trapz(x,y)

area2 =

2.0000

Example 6.4
A gas expands according to the law, PV1.4=c. Initially, the pressure is 100 kPa when the volume is
1 m3. Write a script to compute the work done by the gas in expanding to three times its original
volume5.

Recall that PV diagrams can be used to estimate the net work performed by a thermodynamic
cycle, see Wikipedia6 or we can use de�nite integral to compute the work done (WD) as follows:

WD =

∫
pdv (6.2)

If we rearrange the expression pressure as a function of volume, we get:

P =
c

V 1.4
(6.3)

By considering the initial state, we can determine the value of c:

c = 100× 11.4

= 100
(6.4)

5O. N. Mathematics: 2 by J. Dobinson, Penguin Library of Technology. ©1969, (p. 184)
6http://en.wikipedia.org/wiki/Pressure_volume_diagram#Thermodynamics

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

121

From the equation (6.3) and the equation (6.4) above, we can write:

P =
100

V 1.4
(6.5)

By inserting P (6.5) in WD (6.2), we get:

WD =

∫ 3

1

100

v1.4
dv (6.6)

For MATLAB solution, we will consider P as a function of V (6.5) and WD (6.6). Now, let us
apply the three-step approach we have used earlier:

1. Initialize variable volume as a row vector, from 1 with increments of 0.001 to 3: v=1:0.001:3;
2. Declare variable pressure as p=100./v.^1.4;
3. Use the trapz function to calculate the work done, the output will be as follows:

WorkDone=trapz(v,p)

WorkDone =

88.9015

These steps can be combined in an m-�le as follows:

clc

disp('A gas expands according to the law, pv^1.4=C')

disp('Initial pressure is 100 kPa when the volume is 1 m3')

disp('Compute the work done by the gas in expanding')

disp('To three times its original volume')

disp(' ') % Display blank line

v=1:.001:3; % Creating a row vector for volume, v

p=100./(v.^1.4); % Computing pressure for volume

WorkDone=trapz(v,p) % Integrating p*dv over 1 to 3 cubic meters

Example 6.5
A body moves from rest under the action of a direct force given by F = 15

x+3 where x is the distance
in meters from the starting point. Write a script to compute the total work done in moving a
distance 10 m.7

Recall that the general de�nition of mechanical work is given by the following integral, see
Wikipedia8 :

WD =

∫
Fdx (6.7)

Therefore we can write:

WD =

∫ 10

0

15

x+ 3
dx (6.8)

Applying the steps we followed in the previous examples, we write:

7O. N. Mathematics: 2 by J. Dobinson, Penguin Library of Technology. ©1969, (p. 183)
8http://en.wikipedia.org/wiki/Work_%28physics%29#Force_and_displacement

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

122 CHAPTER 6. NUMERICAL INTEGRATION

clc

disp('A body moves from rest under the action of a direct force given')

disp('by F=15/(x+3) where x is the distance in meters')

disp('From the starting point.')

disp('Compute the total work done in moving a distance 10 m.')

disp(' ') % Display blank line

x=0:.001:10; % Creating a row vector for distance, x

F=15./(x+3); % Computing Force for x

WorkDone=trapz(x,F) % Integrating F*dx over 0 to 10 meters.

The output of the above code is:

A body moves from rest under the action of a direct force given

by F=15/(x+3) where x is the distance in meters

From the starting point.

Compute the total work done in moving a distance 10 m.

WorkDone =

21.9951

6.1.3 Summary of Key Points

1. In its simplest form, numerical integration involves calculating the areas of segments that make up the
area under a curve,

2. MATLAB has built-in functions to perform numerical integration,
3. Z = trapz(Y) computes an approximation of the integral of Y using the trapezoidal method.

6.2 Problem Set9

Exercise 6.2.1 (Solution on p. 124.)

Let the function y de�ned by y = cos (x). Plot this function over the interval [-pi,pi]. Use
numerical integration techniques to estimate the integral of y over [0, pi/2] using increments of
pi/10 and pi/1000.

Exercise 6.2.2 (Solution on p. 124.)

Let the function y de�ned by y = 0.04x2−2.13x+32.58. Plot this function over the interval [3,30].
Use numerical integration techniques to estimate the integral of y over [3,30].

Exercise 6.2.3 (Solution on p. 124.)

A 2000-liter tank is full of lube oil. It is known that if lube oil is drained from the tank, the mass
�ow rate will decrease from the maximum when the tank level is at the highest. The following data
were collected when the tank was drained.

9This content is available online at <http://cnx.org/content/m41541/1.9/>.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

123

Time [min] Mass Flow [kg/min]

0 50.00

5 48.25

10 46.00

15 42.50

20 37.50

25 30.50

30 19.00

35 9.00

Table 6.4: Data

Write a script to estimate the amount of oil drained in 35 minutes.

Exercise 6.2.4 (Solution on p. 125.)

A gas is expanded in an engine cylinder, following the law PV1.3=c. The initial pressure is 2550
kPa and the �nal pressure is 210 kPa. If the volume at the end of expansion is 0.75 m3, compute
the work done by the gas. 10

Exercise 6.2.5 (Solution on p. 126.)

A force F acting on a body at a distance s from a �xed point is given by F = 3s + 1
s2 . Write a

script to compute the work done when the body moves from the position where s=1 to that where
s=10. 11

Exercise 6.2.6 (Solution on p. 126.)

The pressure p and volume v of a given mass of gas are connected by the relation(
p+ a

v2

)
(v − b) = k where a, b and k are constants. Express p in terms of v, and write a

script to compute the work done by the gas in expanding from an initial volume to a �nal volume.
12

Test your solution with the following input:
a: 0.01
b: 0.001
The initial pressure [kPa]: 100
The initial volume [m3]: 1
The �nal volume [m3]: 2

10Applied Heat for Engineers by W. Embleton and L Jackson, Thomas Reed Publications. ©1999, (p. 80)
11O. N. Mathematics: 2 by J. Dobinson, Penguin Library of Technology. ©1969, (p. 213)
12O. N. Mathematics: 2 by J. Dobinson, Penguin Library of Technology. ©1969, (p. 212)

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

124 CHAPTER 6. NUMERICAL INTEGRATION

Solutions to Exercises in Chapter 6

Solution to Exercise 6.2.1 (p. 122)

1. Plotting:

x=-pi:pi/100:pi;

y=cos(x);

plot(x,y),title('Graph of y=cos(x)'),xlabel('x'),ylabel('y'),grid

2. Area calculation 1:

� x=0:pi/10:pi/2;

� y=cos(x);

� area1=trapz(x,y)

area1 =

0.9918

3. Area calculation 2:

� x=0:pi/1000:pi/2;

� y=cos(x);

� area2=trapz(x,y)

area2 =

1.0000

Solution to Exercise 6.2.2 (p. 122)

1. Plotting:

� x=3:.1:30;

� y=0.04*(x.^2)-2.13.*x+32.58;

� plot(x,y), title('Graph of ...

y=.04*(x^2)-2.13*x+32.58'),xlabel('x'),ylabel('y'),grid

2. Area calculation:

� area=trapz(x,y)

area =

290.3868

Solution to Exercise 6.2.3 (p. 122)

clc

t=linspace(0,35,8) % Data entry for time [min]

m=[50 48.25 46 42.5 37.5 30.5 19 9] % Data entry for mass flow [kg/min]

% Calculate time intervals

dt=[t(2)-t(1),t(3)-t(2),t(4)-t(3),...

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

125

t(5)-t(4),t(6)-t(5),t(7)-t(6),t(8)-t(7)]

% Calculate mass out

dm=[0.5*(m(2)+m(1)),0.5*(m(3)+m(2)),0.5*(m(4)+m(3)),0.5*(m(5)+...

m(4)),0.5*(m(6)+m(5)),0.5*(m(7)+m(6)),0.5*(m(8)+m(7))]

% Calculate differential areas

da=dt.*dm;

% Tabulate time and mass flow

[t',m']

% Tabulate time intervals, mass out and differential areas

[dt',dm',da']

% Calculate the amount of oil drained [kg] in 35 minutes

Oil_Drained=sum(da)

The output is:

ans =

0 50.0000

5.0000 48.2500

10.0000 46.0000

15.0000 42.5000

20.0000 37.5000

25.0000 30.5000

30.0000 19.0000

35.0000 9.0000

ans =

5.0000 49.1250 245.6250

5.0000 47.1250 235.6250

5.0000 44.2500 221.2500

5.0000 40.0000 200.0000

5.0000 34.0000 170.0000

5.0000 24.7500 123.7500

5.0000 14.0000 70.0000

Oil_Drained =

1.2663e+003

Solution to Exercise 6.2.4 (p. 123)

clc

disp('A gas is expanded in an engine cylinder, following the law PV^1.3=c')

disp('The initial pressure is 2550 kPa and the final pressure is 210 kPa.')

disp('If the volume at the end of expansion is 0.75 m3,')

disp('Compute the work done by the gas.')

disp(' ') % Display blank line

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

126 CHAPTER 6. NUMERICAL INTEGRATION

n=1.3;

P_i=2550; % Initial pressure

P_f=210; % Final pressure

V_f=.75; % Final volume

V_i=(P_f*(V_f^n)/P_i)^(1/n); % Initial volume

c=P_f*V_f^n;

v=V_i:.001:V_f; % Creating a row vector for volume, v

p=c./(v.^n); % Computing pressure for volume

WorkDone=trapz(v,p) % Integrating p*dv

The output is:

A gas is expanded in an engine cylinder, following the law PV^1.3=c

The initial pressure is 2550 kPa and the final pressure is 210 kPa.

If the volume at the end of expansion is 0.75 m3,

Compute the work done by the gas.

WorkDone =

409.0666

Solution to Exercise 6.2.5 (p. 123)

clc

disp('A force F acting on a body at a distance s from a fixed point is given by')

disp('F=3*s+(1/(s^2)) where s is the distance in meters')

disp('Compute the total work done in moving')

disp('From the position where s=1 to that where s=10.')

disp(' ') % Display blank line

s=1:.001:10; % Creating a row vector for distance, s

F=3.*s+(1./(s.^2)); % Computing Force for s

WorkDone=trapz(s,F) % Integrating F*ds over 1 to 10 meters.

The output is:

A force F acting on a body at a distance s from a fixed point is given by

F=3*s+(1/(s^2)) where s is the distance in meters

Compute the total work done in moving

From the position where s=1 to that where s=10.

WorkDone =

149.4000

Solution to Exercise 6.2.6 (p. 123)

clc % Clear screen

disp('This script computes the work done by')

disp('The gas in expanding from volume v1 to v2')

disp(' ') % Display blank line

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

127

a=input('Enter the constant a: ');

b=input('Enter the constant b: ');

p_i=input('Enter the initial pressure [kPa]: ');

v_i=input('Enter the initial volume [m3]: ');

v_f=input('Enter the final volume [m3]: ');

k=(p_i+(a/(v_i^2))*(v_i-b)); % Calculating constant k

v=v_i:.001:v_f; % Creating a row vector for volume

p=(k./(v-b))-(a./(v.^2)); % Computing pressure for volume

WorkDone=trapz(v,p); % Integrating p*dv

disp(' ') % Display blank line

str = ['The work done by the gas in expanding from ', num2str(v_i),...

' m3 to ' num2str(v_f), ' m3 is ', num2str(WorkDone), ' kW.'];

disp(str);

The output is:

This script computes the work done by

The gas in expanding from volume v1 to v2

Enter the constant a: .01

Enter the constant b: .001

Enter the initial pressure [kPa]: 100

Enter the initial volume [m3]: 1

Enter the final volume [m3]: 2

The work done by the gas in expanding from 1 m3 to 2 m3 is 69.3667 kW.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

128 CHAPTER 6. NUMERICAL INTEGRATION

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

Chapter 7

Regression Analysis

7.1 Regression Analysis1

7.1.1 What is Regression Analysis?

Suppose we calculate some variable of interest, y, as a function of some other variable x. We call y the
dependent variable and x the independent variable. For example, consider the data set below, taken from a

1This content is available online at <http://cnx.org/content/m41448/1.4/>.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

129

130 CHAPTER 7. REGRESSION ANALYSIS

simple experiment involving a vehicle, its velocity versus time is tabulated. In this case, velocity is a function
of time, thus velocity is the dependent variable and the time is the independent variable.

Time [s] Velocity [m/s]

0 20

10 39

20 67

30 89

40 111

50 134

60 164

70 180

80 200

Table 7.1: Vehicle velocity versus time.

In its simplest form regression analysis involves �tting the best straight line relationship to explain how
the variation in a dependent variable, y, depends on the variation in an independent variable, x. In our
example above, once the relationship (in this case a linear relationship) has been estimated we can produce
a linear equation in the following form:

y = mx+ n (7.1)

And once an analytic equation such as the one above has been determined, dependent variables at interme-
diate independent values can be computed.

7.1.2 Performing Linear Regression

Regression analysis with MATLAB is easy. The MATLAB Basic Fitting GUI allows us to interactively to
do "curve �tting" which is a method to arrive at the best "straight line" �t for linear equations or the best
curve �t for a polynomial up to the tenth degree. The procedure to perform a curve �tting with MATLAB
is as follows:

1. Input the variables,
2. Plot the data,
3. Initialize the Basic Fitting GUI,
4. Select the desired regression analysis parameters.

Example 7.1
Using the data set above, determine the relationship between velocity and time.

First, let us input the variables (Workspace > New variable) as shown in the following �gures.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

131

Figure 7.1: A new variable is created in the Workspace.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

132 CHAPTER 7. REGRESSION ANALYSIS

Figure 7.2: New variables are entered in the Variable Editor.

Second, we will plot the data by typing in plot(time,velocity) at the MATLAB prompt.
The following plot is generated, select Tools > Basic Fitting:

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

133

Figure 7.3: A plot is generated in Figure 1. The Basic Fitting tool can be initialized from Tools >
Basic Fitting.

In the "Basic Fitting" window, select "linear" and "Show equations". The best �tting linear
line along with the corresponding equation are displayed on the plot:

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

134 CHAPTER 7. REGRESSION ANALYSIS

Figure 7.4: Basic Fitting window is used to select the desired regression analysis parameters.

Now let us do another curve �tting and obtain an equation for the function. Using that equation, we can
evaluate the function at a desired value with polyval.

Example 7.2
The following is a collection of data for an iron-constantan thermocouple (data available for down-
load2). 3

2See the �le at <http://cnx.org/content/m41448/latest/Chp7_Example2.zip>
3Engineering Fundamentals and Problem Solving by Arvid R. Eide, Roland Jenison, Larry L. Northup, Steven K. Mikelson

, McGraw-Hill Higher Education. ©2007 p.114

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

135

Temperature [C] Voltage [mV]

50 2.6

100 6.7

150 8.8

200 11.2

300 17.0

400 22.5

500 26

600 32.5

700 37.7

800 41

900 48

1000 55.2

Table 7.2: Temperature [C] vs Voltage [mV]

a. Plot a graph with Temperature as the independent variable.
b. Determine the equation of the relationship using the Basic Fitting tools.
c. Estimate the Voltage that corresponds to a Temperature of 650 C and 1150 C.

We will input the variables �rst:

Temp=[50;100;150;200;300;400;500;600;700;800;900;1000]

Voltage=[2.6;6.7;8.8;11.2;17;22.5;26;32.5;37.7;41;48;55.2]

To plot the graph, type in:

plot(Temp,Voltage)

We can now use the Plot Tools and Basic Fitting settings and determine the equation:

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

136 CHAPTER 7. REGRESSION ANALYSIS

Figure 7.5: Basic Fitting window is used to select the desired regression analysis parameters.

By clicking the right arrow twice at the bottom right corner on the Basic Fitting window, we
can evaluate the function at a desired value. See the �gure below which illustrates this process for
the temperature value 1150 C.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

137

Figure 7.6: Estimating the Voltage that corresponds to a Temperature of 1150 C.

Now let us check our answer with a technique we learned earlier. As displayed on the plot, we
have obtained the following equation: y = 0.052831x + 0.67202 This equation can be entered as
polynomial and evaluated at 650 and 1150 as follows:

� p=[0.052831,0.67202]

p =

0.0528 0.6720

� polyval(p,1150)

ans =

61.4277

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

138 CHAPTER 7. REGRESSION ANALYSIS

7.1.3 Summary of Key Points

1. Linear regression involves �tting the best straight line relationship to explain how the variation in a
dependent variable, y, depends on the variation in an independent variable, x,

2. Basic Fitting GUI allows us to interactively perform curve �tting,
3. Some of the plot �ts available are linear, quadratic and cubic functions,
4. Basic Fitting GUI can evaluate functions at given points.

7.2 Problem Set4

Exercise 7.2.1 (Solution on p. 140.)

Using the following experimental values 5, plot a distance-time graph and determine the equation,
relating the distance and time for a moving object.

Distance [m] Time [s]

0 0

24 5

48 10

72 15

96 20

Table 7.3: Experimental data.

Exercise 7.2.2 (Solution on p. 140.)

Using the data set below, determine the relationship between temperature and internal en-
ergy.

Temperature [C] Internal Energy [kJ/kg]

100 2506.7

150 2582.8

200 2658.1

250 2733.7

300 2810.4

400 2967.9

500 3131.6

Table 7.4: An extract from Steam Tables

Exercise 7.2.3 (Solution on p. 141.)

Using the following experimental values 6, plot a velocity-time graph and determine the equation,
relating the velocity and time for a moving object.

4This content is available online at <http://cnx.org/content/m48021/1.1/>.
5Engineering Science by E. Hughes and C. Hughes, Longman ©1994, (p. 375)
6Engineering Science by E. Hughes and C. Hughes, Longman ©1994, (p. 375)

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

139

Velocity [m/s] Time [s]

12 0

142 5

512 10

1122 15

1972 20

Table 7.5: Experimental data.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

140 CHAPTER 7. REGRESSION ANALYSIS

Solutions to Exercises in Chapter 7

Solution to Exercise 7.2.1 (p. 138)
Data can be entered as follows:

distance=[0 24 48 72 96];

time=[0 5 10 15 20];

we can now plot the data by typing in

plot(time,distance);title('Distance-Time Graph');xlabel('time');ylabel('distance');

at the MATLAB prompt. The following plot is generated, select Tools > Basic Fitting:

As shown above, the relationship between distance and time is:

y = 4.8x− 1.7× 10−14

or
Distance = 4.8Time− 1.7× 10−14

Solution to Exercise 7.2.2 (p. 138)
Data can be entered as follows:

temperature = [100, 150, 200, 250, 300, 400, 500];

energy = [2506.7, 2582.8, 2658.1, 2733.7, 2810.4, 2967.9, 3131.6];

we can now plot the data by typing in

plot(temperature,energy);title('temperature vs. energy');xlabel('temperature');ylabel('energy');

at the MATLAB prompt. The following plot is generated, select Tools > Basic Fitting:

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

141

As shown above, the relationship between temperature and internal energy is:

y = 1.6x+ 2347.2
or
internal energy = 1.6temperature + 2347.2
Solution to Exercise 7.2.3 (p. 138)
Data can be entered as follows:

velocity=[12 142 512 1122 1972];

time=[0 5 10 15 20];

we can now plot the data by typing in

plot(time,velocity);title('Velocity-Time Graph');xlabel('time');ylabel('velocity');

at the MATLAB prompt. The following plot is generated, select Tools > Basic Fitting, notice that we are
choosing the quadratic option this time:

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

142 CHAPTER 7. REGRESSION ANALYSIS

As shown above, the relationship between velocity and time is:

y = 4.8x2 + 2x+ 12

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

Chapter 8

Publishing with MATLAB

8.1 Generating Reports with MATLAB1

MATLAB includes an automatic report generator called publisher. The publisher publishes a script in
several formats, including HTML, XML, MS Word and PowerPoint. The published �le can contain the
following:

• Commentary on the code,
• MATLAB code,

1This content is available online at <http://cnx.org/content/m41457/1.2/>.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

143

144 CHAPTER 8. PUBLISHING WITH MATLAB

• Results of the executed code, including the Command Window output and �gures created by the code.

8.1.1 The publish Function

The most basic syntax is publish('file','format') where the m-�le is called and executed line by line
then saved to a �le in speci�ed format. All published �les are placed in the html directory although the
published output might be a doc �le.

8.1.2 Publishing with Editor

The publisher is easily accessible from the Tool Strip:

Figure 8.1: Publish tab on the Tool Strip.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

145

Figure 8.2: Editing publishing options, currently output format is html.

Example 8.1
Write a simple script and publish it in an html �le.

Select File > New > Script to create an m-�le. Once the editor is opened, type in the following
code:

x = [0:6]; % Create a row vector

y = 1.6*x; % Compute y as a function of x

[x',y'] % Transpose vectors x and y

plot(x,y),title('Graph of y=f(x)'),xlabel('x'),ylabel('f(x)'),grid % Plot a graph

Save the script as publishing.m and select Publish > Publish.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

146 CHAPTER 8. PUBLISHING WITH MATLAB

Figure 8.3: Publishing a script.

An HTML �le is generated as shown in the �gure below:

Figure 8.4: A script published in html

8.1.3 The Double Percentage %% Sign

The scripts sometimes can be very long and their readability might be reduced. To improve the publishing
result, sections are introduced by adding descriptive lines to the script preceded by %%. Consider the following

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

147

example.
Example 8.2
Edit the script created in the example above to look like the code below:

%% This file creates vectors, displays results and plots an x-y graph

x = [0:6]; % Create a row vector

y = 1.6*x; % Compute y as a function of x

%% Tabulated data

[x',y'] % Transpose vectors x and y

%% Graph of y=f(x)

plot(x,y),title('Graph of y=f(x)'),xlabel('x'),ylabel('f(x)'),grid % Plot a graph

Save the script, a new HTML �le is generated as shown in the �gure below:

Figure 8.5: An html �le with sections

8.1.4 Summary of Key Points

1. MATLAB can generate reports containing commentary on the code, MATLAB code and the results of
the executed code,

2. The publisher generates a script in several formats, including HTML, XML, MS Word and PowerPoint.
3. The Double Percentage %% can be used to creates hyper-linked sections.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

148 CHAPTER 8. PUBLISHING WITH MATLAB

8.2 Problem Set2

Exercise 8.2.1 (Solution on p. 149.)

Write a script to plot function y = sin(x)
x for π

100 ≤ x ≤ 10π using increments of π
100 . Publish your

m-�le to html.

Exercise 8.2.2 (Solution on p. 150.)

A gas is expanded in an engine cylinder, following the law PV1.3=c. The initial pressure is 2550
kPa and the �nal pressure is 210 kPa. If the volume at the end of expansion is 0.75 m3, write a
script to compute the work done by the gas and publish your solution to an html �le. This is the
same problem as this Problem you have solved before. (Exercise 6.2.4)

Exercise 8.2.3 (Solution on p. 151.)

A force F acting on a body at a distance s from a �xed point is given by F = 3s + 1
s2 . Write a

script to compute the work done when the body moves from the position where s=1 to that where
s=10 and and publish your solution to an html �le. Include a table of contents in the output �le.
This is the same problem as this Problem you have solved before. (Problem 6.2.5)

2This content is available online at <http://cnx.org/content/m48023/1.1/>.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

149

Solutions to Exercises in Chapter 8

Solution to Exercise 8.2.1 (p. 148)
The m-�le content:

% This script plots a graph of Graph of y=sin(x)/x

clc % Clear screen

x = pi/100:pi/100:10*pi; % Create a row vector

y = sin(x)./x; % Calculate y as function of x

plot(x,y),title('Graph of y=sin(x)/x'),xlabel('x'),ylabel('y'),grid

The html output:

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

150 CHAPTER 8. PUBLISHING WITH MATLAB

Figure 8.6: The published html �le.

Solution to Exercise 8.2.2 (p. 148)
The m-�le content:

clc

disp('A gas is expanded in an engine cylinder, following the law PV^1.3=c')

disp('The initial pressure is 2550 kPa and the final pressure is 210 kPa.')

disp('If the volume at the end of expansion is 0.75 m3,')

disp('Compute the work done by the gas.')

disp(' ') % Display blank line

n=1.3;

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

151

P_i=2550; % Initial pressure

P_f=210; % Final pressure

V_f=.75; % Final volume

V_i=(P_f*(V_f^n)/P_i)^(1/n); % Initial volume

c=P_f*V_f^n;

v=V_i:.001:V_f; % Creating a row vector for volume, v

p=c./(v.^n); % Computing pressure for volume

WorkDone=trapz(v,p) % Integrating p*dv

The html output:

Figure 8.7: The published html �le.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

152 CHAPTER 8. PUBLISHING WITH MATLAB

Solution to Exercise 8.2.3 (p. 148)
The m-�le content:

%% Work done

% This script computes the work done on an object

clc

disp('A force F acting on a body at a distance s from a fixed point is given by')

disp('F=3*s+(1/(s^2)) where s is the distance in meters')

disp('Compute the total work done in moving')

disp('From the position where s=1 to that where s=10.')

disp(' ') % Display blank line

%% Create a row vector for distance, s

s=1:.001:10;

%% Compute Force for s

F=3.*s+(1./(s.^2)); % Computing Force for s

%% Integrating F*ds over 1 to 10 meters.

WorkDone=trapz(s,F)

The html output:

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

153

Figure 8.8: The published html �le.

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

154 INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A acknowledgement, � (1)
AppsAnywhere, � 1.1(7)
Arithmetic Operators, � 2.1(25)
Assignment of a Matrix, � 2.1(25)
Assignment of a Scalar, � 2.1(25)
Assignment of a Vector, � 2.1(25)

B Boyle's Law, � 3.2(67)

C cd, � 1.1(7)
clc, � 1.1(7)
clear, � 1.1(7), � 1.2(22)
Command History, � 1.1(7)
Command Window, � 1.1(7)
Comments, � 2.1(25)
computer, � 1.1(7)
Creative Commons, � 4.1(81)
Current Folder, � 1.1(7)
Curve �tting, � 7.1(129)

D diary function, � 4.1(81)
disp function, � 4.1(81)
Double percentage, � 8.1(143)

E Elementary Math, � 1.2(22)
exit, � 1.1(7)
Exponential, � 1.2(22)

F fclose function, � 4.1(81)
fopen function, � 4.1(81)
for loop, � 4.1(81)
format, � 1.2(22)
format Function, � 2.1(25)
fprintf function, � 4.1(81)
Function Browser, � 1.2(22)

G Gas Law, � 6.2(122)
GNU General Public License, � 4.1(81)
Graphics, � 3.1(49)
guide, � (5)

H HTML, � 8.1(143)

I input function, � 4.1(81)

Integration, � 6.1(115)
interp1 function, � 5.1(105)
Interpolation, � 5.1(105)

K Keyboard shortcuts, � 1.1(7)

L Labeling Graphs, � 3.1(49)
Latex, � 8.1(143)
Linear Equations, � 2.1(25), � 2.2(42)
Linear regression, � 7.1(129)
loops, � 4.1(81)

M m-�le, � 4.1(81)
mass �ow rate, � 6.2(122)
MATLAB Help, � 1.1(7)
Mechanical work, � 6.1(115)
MS Word, � 8.1(143)
Multiple Plots, � 3.1(49)

N num2str function, � 4.1(81)

O Operator Precedence, � 2.1(25)

P Pascal's Law, � 4.2(94)
plot, � 1.2(22)
Polynomials, � 2.1(25), � 2.2(42)
polyval Function, � 2.1(25)
PowerPoint, � 8.1(143)
Problem Set for Graphing with MATLAB,
� 3.2(67)
Problem Set for Interpolation with MATLAB,
� 5.2(108)
Problem Set for Introductory Programming,
� 4.2(94)
Problem Set for MATLAB Essentials, � 2.2(42)
Problem Set for Numerical Integration with
MATLAB, � 6.2(122)
Problem Set for Publishing with MATLAB,
� 8.2(148)
Problem Set for Regression Analysis with
MATLAB, � 7.2(138)
Problem Set for What is MATLAB?, � 1.2(22)
publish function, � 8.1(143)

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

INDEX 155

Publishing, � 8.1(143)
PV diagrams, � 6.1(115)
pwd, � 1.1(7)

Q quit, � 1.1(7)

R Regression analysis, � 7.1(129)
roots, � 1.2(22)
roots Function, � 2.1(25)

S script, � 4.1(81)
speci�c heat, � 5.2(108)
Steam tables, � 5.1(105), � 5.2(108)
Strain, � 2.2(42), � 3.2(67), � 4.2(94)
Stress, � 2.2(42), � 3.2(67), � 4.2(94)
Superimposed Plots, � 3.1(49)

T Three-Dimensional Plots, � 3.1(49)
Trapezoidal Rule, � 6.1(115)
Two-Dimensional Plots, � 3.1(49)

U Unit conversion, � 4.2(94)

V Variables, � 2.1(25)
ver, � 1.1(7)

W while loop, � 4.1(81)
who, � 1.1(7)
whos, � 1.1(7)
Work done, � 6.1(115)
workspace, � 1.1(7), � 1.2(22)

X XML, � 8.1(143)

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

156 ATTRIBUTIONS

Attributions

Collection: A Brief Introduction to Engineering Computation with MATLAB

Edited by: Serhat Beyenir
URL: http://cnx.org/content/col11371/1.11/
License: http://creativecommons.org/licenses/by/4.0/

Module: "Acknowledgements"
By: Serhat Beyenir
URL: http://cnx.org/content/m50977/1.3/
Page: 1
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/

Module: "Preface"
By: Serhat Beyenir
URL: http://cnx.org/content/m41458/1.6/
Page: 3
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "Study Guide"
By: Serhat Beyenir
URL: http://cnx.org/content/m41459/1.2/
Page: 5
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "What is MATLAB?"
By: Serhat Beyenir
URL: http://cnx.org/content/m41403/1.5/
Pages: 7-22
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/

Module: "What is MATLAB? | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41463/1.3/
Page: 22
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/

Module: "MATLAB Essentials"
Used here as: "Essentials"
By: Serhat Beyenir
URL: http://cnx.org/content/m41409/1.3/
Pages: 25-42
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

ATTRIBUTIONS 157

Module: "MATLAB Essentials | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41464/1.7/
Pages: 42-43
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/

Module: "Graphing with MATLAB"
Used here as: "Plotting in MATLAB"
By: Serhat Beyenir
URL: http://cnx.org/content/m41442/1.3/
Pages: 49-67
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/

Module: "Graphing with MATLAB | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41466/1.7/
Pages: 67-70
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "Introductory Programming with MATLAB"
Used here as: "Writing Scripts to Solve Problems"
By: Serhat Beyenir
URL: http://cnx.org/content/m41440/1.6/
Pages: 81-94
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/

Module: "Introductory Programming with MATLAB | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41536/1.3/
Pages: 94-96
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/

Module: "Interpolation with MATLAB"
Used here as: "Interpolation"
By: Serhat Beyenir
URL: http://cnx.org/content/m41455/1.3/
Pages: 105-108
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

158 ATTRIBUTIONS

Module: "Interpolation with MATLAB | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41624/1.2/
Pages: 108-110
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "Numerical Integration with MATLAB"
Used here as: "Computing the Area Under a Curve"
By: Serhat Beyenir
URL: http://cnx.org/content/m41454/1.4/
Pages: 115-122
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "Numerical Integration with MATLAB | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41541/1.9/
Pages: 122-123
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/

Module: "Regression Analysis with MATLAB"
Used here as: "Regression Analysis"
By: Serhat Beyenir
URL: http://cnx.org/content/m41448/1.4/
Pages: 129-138
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/

Module: "Regression Analysis with MATLAB | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m48021/1.1/
Pages: 138-139
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "Publishing with MATLAB"
Used here as: "Generating Reports with MATLAB"
By: Serhat Beyenir
URL: http://cnx.org/content/m41457/1.2/
Pages: 143-147
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

ATTRIBUTIONS 159

Module: "Publishing with MATLAB | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m48023/1.1/
Page: 148
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11371/1.11>

A Brief Introduction to Engineering Computation with MATLAB
An Engineering Computation Primer.

About OpenStax-CNX
Rhaptos is a web-based collaborative publishing system for educational material.

