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1
Fundamentals

Combinatorics is often described briefly as being about counting, and indeed counting is

a large part of combinatorics. As the name suggests, however, it is broader than this: it

is about combining things. Questions that arise include counting problems: “How many

ways can these elements be combined?” But there are other questions, such as whether a

certain combination is possible, or what combination is the “best” in some sense. We will

see all of these, though counting plays a particularly large role.

Graph theory is concerned with various types of networks, or really models of networks

called graphs. These are not the graphs of analytic geometry, but what are often described

as “points connected by lines”, for example:
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The preferred terminology is vertex for a point and edge for a line. The lines need not

be straight lines, and in fact the actual definition of a graph is not a geometric definition.

The figure above is simply a visualization of a graph; the graph is a more abstract object,

consisting of seven vertices, which we might name {v1, . . . , v7}, and the collection of pairs

of vertices that are connected; for a suitable assignment of names vi to the points in

the diagram, the edges could be represented as {v1, v2},{v2, v3},{v3, v4},{v3, v5},{v4, v5},
{v5, v6},{v6, v7}.
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8 Chapter 1 Fundamentals

1.1 Examples

Suppose we have a chess board, and a collection of tiles, like dominoes, each of which is the

size of two squares on the chess board. Can the chess board be covered by the dominoes?

First we need to be clear on the rules: the board is covered if the dominoes are laid down so

that each covers exactly two squares of the board; no dominoes overlap; and every square

is covered. The answer is easy: simply by laying out 32 dominoes in rows, the board can

be covered. To make the problem more interesting, we allow the board to be rectangular

of any size, and we allow some squares to be removed from the board. What can be say

about whether the remaining board can be covered? This is such a board, for example:

.

What can we say? Here is an easy observation: each domino must cover two squares, so

the total number of squares must be even; the board above has an even number of squares.

Is that enough? It is not too hard to convince yourself that this board cannot be covered;

is there some general principle at work? Suppose we redraw the board to emphasize that

it really is part of a chess board:

.

Aha! Every tile must cover one white and one gray square, but there are four of the

former and six of the latter, so it is impossible. Now do we have the whole picture? No;
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for example:

.

The gray square at the upper right clearly cannot be covered. Unfortunately it is not easy

to state a condition that fully characterizes the boards that can be covered; we will see

this problem again. Let us note, however, that this problem can also be represented as

a graph problem. We introduce a vertex corresponding to each square, and connect two

vertices by an edge if their associated squares can be covered by a single domino; here is

the previous board:

..

•

.

•

.

•

.•. •. •

Here the top row of vertices represents the gray squares, the bottom row the white squares.

A domino now corresponds to an edge; a covering by dominoes corresponds to a collection

of edges that share no endpoints and that are incident with (that is, touch) all six vertices.

Since no edge is incident with the top left vertex, there is no cover.

Perhaps the most famous problem in graph theory concerns map coloring: Given a

map of some countries, how many colors are required to color the map so that countries

sharing a border get different colors? It was long conjectured that any map could be

colored with four colors, and this was finally proved in 1976. Here is an example of a small

map, colored with four colors:

.

Typically this problem is turned into a graph theory problem. Suppose we add to each

country a capital, and connect capitals across common boundaries. Coloring the capitals so
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that no two connected capitals share a color is clearly the same problem. For the previous

map:

..

•

.

•

.

•

.

•

.

•

Any graph produced in this way will have an important property: it can be drawn so that

no edges cross each other; this is a planar graph. Non-planar graphs can require more

than four colors, for example this graph:

..

•
.

•

.

•
.

•

.

•

This is called the complete graph on five vertices, denoted K5; in a complete graph,

each vertex is connected to each of the others. Here only the “fat” dots represent vertices;

intersections of edges at other points are not vertices. A few minutes spent trying should

convince you that this graph cannot be drawn so that its edges don’t cross, though the

number of edge crossings can be reduced.

Exercises 1.1.

1. Explain why an m× n board can be covered if either m or n is even. Explain why it cannot
be covered if both m and n are odd.

2. Suppose two diagonally opposite corners of an ordinary 8 × 8 board are removed. Can the
resulting board be covered?

3. Suppose that m and n are both odd. On an m× n board, colored as usual, all four corners
will be the same color, say white. Suppose one white square is removed from the board.
Show that the resulting board can be covered.

4. Suppose that one corner of an 8 × 8 board is removed. Can the remainder be covered by
1× 3 tiles? Show a tiling or prove that it cannot be done.
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5. Suppose the square in row 3, column 3 of an 8× 8 board is removed. Can the remainder be
covered by 1× 3 tiles? Show a tiling or prove that it cannot be done.

6. Remove two diagonally opposite corners of an m × n board, where m is odd and n is even.
Show that the remainder can be covered with dominoes.

7. Suppose one white and one black square are removed from an n × n board, n even. Show
that the remainder can be covered by dominoes.

8. Suppose an n×n board, n even, is covered with dominoes. Show that the number of horizontal
dominoes with a white square under the left end is equal to the number of horizontal dominoes
with a black square under the left end.

9. In the complete graph on five vertices shown above, there are five pairs of edges that cross.
Draw this graph so that only one pair of edges cross. Remember that “edges” do not have
to be straight lines.

10. The complete bipartite graph K3,3 consists of two groups of three vertices each, with all
possible edges between the groups and no other edges:
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Draw this graph with only one crossing.

1.2 Combinations and permutations

We turn first to counting. While this sounds simple, perhaps too simple to study, it is

not. When we speak of counting, it is shorthand for determining the size of a set, or more

often, the sizes of many sets, all with something in common, but different sizes depending

on one or more parameters. For example: how many outcomes are possible when a die is

rolled? Two dice? n dice? As stated, this is ambiguous: what do we mean by “outcome”?

Suppose we roll two dice, say a red die and a green die. Is “red two, green three” a

different outcome than “red three, green two”? If yes, we are counting the number of

possible “physical” outcomes, namely 36. If no, there are 21. We might even be interested

simply in the possible totals, in which case there are 11 outcomes.

Even the quite simple first interpretation relies on some degree of knowledge about

counting; we first make two simple facts explicit. In terms of set sizes, suppose we know

that set A has size m and set B has size n. What is the size of A and B together, that is,

the size of A ∪ B? If we know that A and B have no elements in common, then the size

A∪B is m+n; if they do have elements in common, we need more information. A simple

but typical problem of this type: if we roll two dice, how many ways are there to get either

7 or 11? Since there are 6 ways to get 7 and two ways to get 11, the answer is 6 + 2 = 8.

Though this principle is simple, it is easy to forget the requirement that the two sets be
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disjoint, and hence to use it when the circumstances are otherwise. This principle is often

called the addition principle.

This principle can be generalized: if sets A1 through An are pairwise disjoint and have

sizes m1, . . .mn, then the size of A1∪ · · ·∪An =
∑n

i=1 mi. This can be proved by a simple

induction argument.

Why do we know, without listing them all, that there are 36 outcomes when two dice

are rolled? We can view the outcomes as two separate outcomes, that is, the outcome

of rolling die number one and the outcome of rolling die number two. For each of 6

outcomes for the first die the second die may have any of 6 outcomes, so the total is

6+ 6+6+6+6+6 = 36, or more compactly, 6 · 6 = 36. Note that we are really using the

addition principle here: set A1 is all pairs (1, x), set A2 is all pairs (2, x), and so on. This

is somewhat more subtle than is first apparent. In this simple example, the outcomes of

die number two have nothing to do with the outcomes of die number one. Here’s a slightly

more complicated example: how many ways are there to roll two dice so that the two dice

don’t match? That is, we rule out 1-1, 2-2, and so on. Here for each possible value on

die number one, there are five possible values for die number two, but they are a different

five values for each value on die number one. Still, because all are the same, the result is

5+5+5+5+5+5 = 30, or 6 · 5 = 30. In general, then, if there are m possibilities for one

event, and n for a second event, the number of possible outcomes for both events together

is m · n. This is often called the multiplication principle.

In general, if n events have mi possible outcomes, for i = 1, . . . , n, where each mi is

unaffected by the outcomes of other events, then the number of possible outcomes overall

is
∏n

i=1 mi. This too can be proved by induction.

EXAMPLE 1.2.1 How many outcomes are possible when three dice are rolled, if no two

of them may be the same? The first two dice together have 6 · 5 = 30 possible outcomes,

from above. For each of these 30 outcomes, there are four possible outcomes for the third

die, so the total number of outcomes is 30 · 4 = 6 · 5 · 4 = 120. (Note that we consider the

dice to be distinguishable, that is, a roll of 6, 4, 1 is different than 4, 6, 1, because the first

and second dice are different in the two rolls, even though the numbers as a set are the

same.)

EXAMPLE 1.2.2 Suppose blocks numbered 1 through n are in a barrel; we pull out k

of them, placing them in a line as we do. How many outcomes are possible? That is, how

many different arrangements of k blocks might we see?

This is essentially the same as the previous example: there are k “spots” to be filled by

blocks. Any of the n blocks might appear first in the line; then any of the remaining n− 1

might appear next, and so on. The number of outcomes is thus n(n−1)(n−2) · · · (n−k+1),
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by the multiplication principle. In the previous example, the first “spot” was die number

one, the second spot was die number two, the third spot die number three, and 6 · 5 · 4 =

6(6− 1)(6− 2); notice that 6− 2 = 6− 3 + 1.

This is quite a general sort of problem:

DEFINITION 1.2.3 The number of permutations of n things taken k at a time is

P (n, k) = n(n− 1)(n− 2) · · · (n− k + 1) =
n!

(n− k)!
.

A permutation of some objects is a particular linear ordering of the objects; P (n, k)

in effect counts two things simultaneously: the number of ways to choose and order k out

of n objects. A useful special case is k = n, in which we are simply counting the number

of ways to order all n objects. This is n(n− 1) · · · (n− n+ 1) = n!. Note that the second

form of P (n, k) from the definition gives

n!

(n− n)!
=

n!

0!
.

This is correct only if 0! = 1, so we adopt the standard convention that this is true, that

is, we define 0! to be 1.

Suppose we want to count only the number of ways to choose k items out of n, that is,

we don’t care about order. In example 1.2.1, we counted the number of rolls of three dice

with different numbers showing. The dice were distinguishable, or in a particular order: a

first die, a second, and a third. Now we want to count simply how many combinations of

numbers there are, with 6, 4, 1 now counting as the same combination as 4, 6, 1.

EXAMPLE 1.2.4 Suppose we were to list all 120 possibilities in example 1.2.1. The list

would contain many outcomes that we now wish to count as a single outcome; 6, 4, 1 and

4, 6, 1 would be on the list, but should not be counted separately. How many times will a

single outcome appear on the list? This is a permutation problem: there are 3! orders in

which 1, 4, 6 can appear, and all 6 of these will be on the list. In fact every outcome will

appear on the list 6 times, since every outcome can appear in 3! orders. Hence, the list is

too big by a factor of 6; the correct count for the new problem is 120/6 = 20.

Following the same reasoning in general, if we have n objects, the number of ways to

choose k of them is P (n, k)/k!, as each collection of k objects will be counted k! times by

P (n, k).
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DEFINITION 1.2.5 The number of subsets of size k of a set of size n (also called an

n-set) is

C(n, k) =
P (n, k)

k!
=

n!

k!(n− k)!
=

(
n

k

)
.

The notation C(n, k) is rarely used; instead we use
(
n
k

)
, pronounced “n choose k”.

EXAMPLE 1.2.6 Consider n = 0, 1, 2, 3. It is easy to list the subsets of a small n-set; a

typical n-set is {a1, a2, . . . , an}. A 0-set, namely the empty set, has one subset, the empty

set; a 1-set has two subsets, the empty set and {a1}; a 2-subset has four subsets, ∅, {a1},
{a2}, {a1, a2}; and a 3-subset has eight: ∅, {a1}, {a2}, {a3}, {a1, a2}, {a1, a3}, {a2, a3},
{a1, a2, a3}. From these lists it is then easy to compute

(
n
k

)
:

k
0 1 2 3

0 1

n 1 1 1

2 1 2 1

3 1 3 3 1

You probably recognize these numbers: this is the beginning of Pascal’s Triangle.

Each entry in Pascal’s triangle is generated by adding two entries from the previous row:

the one directly above, and the one above and to the left. This suggests that
(
n
k

)
=(

n−1
k−1

)
+
(
n−1
k

)
, and indeed this is true. To make this work out neatly, we adopt the

convention that
(
n
k

)
= 0 when k < 0 or k > n.

THEOREM 1.2.7

(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Proof. A typical n-set is A = {a1, . . . , an}. We consider two types of subsets: those

that contain an and those that do not. If a k-subset of A does not contain an, then it is

a k-subset of {a1, . . . , an−1}, and there are
(
n−1
k

)
of these. If it does contain an, then it

consists of an and k − 1 elements of {a1, . . . , an−1}; since there are
(
n−1
k−1

)
of these, there

are
(
n−1
k−1

)
subsets of this type. Thus the total number of k-subsets of A is

(
n−1
k−1

)
+
(
n−1
k

)
.

Note that when k = 0,
(
n−1
k−1

)
=
(
n−1
−1

)
= 0, and when k = n,

(
n−1
k

)
=
(
n−1
n

)
= 0,

so that
(
n
0

)
=
(
n−1
0

)
and

(
n
n

)
=
(
n−1
n−1

)
. These values are the boundary ones in Pascal’s

Triangle.

Many counting problems rely on the sort of reasoning we have seen. Here are a few

variations on the theme.
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EXAMPLE 1.2.8 Six people are to sit at a round table; how many seating arrangements

are there?

It is not clear exactly what we mean to count here. If there is a “special seat”, for

example, it may matter who ends up in that seat. If this doesn’t matter, we only care

about the relative position of each person. Then it may or may not matter whether a

certain person is on the left or right of another. So this question can be interpreted in (at

least) three ways. Let’s answer them all.

First, if the actual chairs occupied by people matter, then this is exactly the same

as lining six people up in a row: 6 choices for seat number one, 5 for seat two, and so

on, for a total of 6!. If the chairs don’t matter, then 6! counts the same arrangement too

many times, once for each person who might be in seat one. So the total in this case is

6!/6 = 5!. Another approach to this: since the actual seats don’t matter, just put one

of the six people in a chair. Then we need to arrange the remaining 5 people in a row,

which can be done in 5! ways. Finally, suppose all we care about is who is next to whom,

ignoring right and left. Then the previous answer counts each arrangement twice, once for

the counterclockwise order and once for clockwise. So the total is 5!/2 = P (5, 3).

We have twice seen a general principle at work: if we can overcount the desired set in

such a way that every item gets counted the same number of times, we can get the desired

count just by dividing by the common overcount factor. This will continue to be a useful

idea. A variation on this theme is to overcount and then subtract the amount of overcount.

EXAMPLE 1.2.9 How many ways are there to line up six people so that a particular

pair of people are not adjacent?

Denote the people A and B. The total number of orders is 6!, but this counts those

orders with A and B next to each other. How many of these are there? Think of these

two people as a unit; how many ways are there to line up the AB unit with the other 4

people? We have 5 items, so the answer is 5!. Each of these orders corresponds to two

different orders in which A and B are adjacent, depending on whether A or B is first. So

the 6! count is too high by 2 · 5! and the count we seek is 6!− 2 · 5! = 4 · 5!.

Exercises 1.2.

1. How many positive factors does 2 ·34 ·73 ·112 ·475 have? How many does pe11 pe22 · · · penn have,
where the pi are distinct primes?

2. A poker hand consists of five cards from a standard 52 card deck with four suits and thirteen
values in each suit; the order of the cards in a hand is irrelevant. How many hands consist
of 2 cards with one value and 3 cards of another value (a full house)? How many consist of
5 cards from the same suit (a flush)?
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3. Six men and six women are to be seated around a table, with men and women alternating.
The chairs don’t matter, only who is next to whom, but right and left are different. How
many seating arrangements are possible?

4. Eight people are to be seated around a table; the chairs don’t matter, only who is next to
whom, but right and left are different. Two people, X and Y, cannot be seated next to each
other. How many seating arrangements are possible?

5. In chess, a rook attacks any piece in the same row or column as the rook, provided no other
piece is between them. In how many ways can eight rooks be placed on a chess board so that
no two attack each other? What about eight rooks on a 10× 10 board?

6. Suppose that we want to place 8 non-attacking rooks on a chessboard. In how many ways
can we do this if the 16 most ‘northwest’ squares must be empty? How about if only the 4
most ‘northwest’ squares must be empty?

7. A “legal” sequence of parentheses is one in which the parentheses can be properly matched,
like ()(()). It’s not hard to see that this is possible precisely when the number of left and right
parentheses is the same, and every initial segment of the sequence has at least as many left
parentheses as right. For example, ()) . . . cannot possibly be extended to a legal sequence.
Show that the number of legal sequences of length 2n is Cn =

(
2n
n

)
−
(

2n
n+1

)
. The numbers

Cn are called the Catalan numbers.

1.3 Binomial coefficients

Recall the appearance of Pascal’s Triangle in example 1.2.6. If you have encountered the

triangle before, you may know it has many interesting properties. We will explore some of

these here.

You may know, for example, that the entries in Pascal’s Triangle are the coefficients

of the polynomial produced by raising a binomial to an integer power. For example,

(x+ y)3 = 1 · x3 + 3 · x2y + 3 · xy2 + 1 · y3, and the coefficients 1, 3, 3, 1 form row three of

Pascal’s Triangle. For this reason the numbers
(
n
k

)
are usually referred to as the binomial

coefficients.

THEOREM 1.3.1 Binomial Theorem

(x+ y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n

)
yn =

n∑
i=0

(
n

i

)
xn−iyi

Proof. We prove this by induction on n. It is easy to check the first few, say for

n = 0, 1, 2, which form the base case. Now suppose the theorem is true for n− 1, that is,

(x+ y)n−1 =
n−1∑
i=0

(
n− 1

i

)
xn−1−iyi.

Then

(x+ y)n = (x+ y)(x+ y)n−1 = (x+ y)
n−1∑
i=0

(
n− 1

i

)
xn−1−iyi.
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Using the distributive property, this becomes

x
n−1∑
i=0

(
n− 1

i

)
xn−1−iyi + y

n−1∑
i=0

(
n− 1

i

)
xn−1−iyi

=
n−1∑
i=0

(
n− 1

i

)
xn−iyi +

n−1∑
i=0

(
n− 1

i

)
xn−1−iyi+1.

These two sums have much in common, but it is slightly disguised by an “offset”: the first

sum starts with an xny0 term and ends with an x1yn−1 term, while the corresponding

terms in the second sum are xn−1y1 and x0yn. Let’s rewrite the second sum so that they

match:

n−1∑
i=0

(
n− 1

i

)
xn−iyi +

n−1∑
i=0

(
n− 1

i

)
xn−1−iyi+1

=
n−1∑
i=0

(
n− 1

i

)
xn−iyi +

n∑
i=1

(
n− 1

i− 1

)
xn−iyi

=

(
n− 1

0

)
xn +

n−1∑
i=1

(
n− 1

i

)
xn−iyi +

n−1∑
i=1

(
n− 1

i− 1

)
xn−iyi +

(
n− 1

n− 1

)
yn

=

(
n− 1

0

)
xn +

n−1∑
i=1

(

(
n− 1

i

)
+

(
n− 1

i− 1

)
)xn−iyi +

(
n− 1

n− 1

)
yn.

Now we can use theorem 1.2.7 to get:(
n− 1

0

)
xn+

n−1∑
i=1

(

(
n− 1

i

)
+

(
n− 1

i− 1

)
)xn−iyi +

(
n− 1

n− 1

)
yn.

=

(
n− 1

0

)
xn +

n−1∑
i=1

(
n

i

)
xn−iyi +

(
n− 1

n− 1

)
yn.

=

(
n

0

)
xn +

n−1∑
i=1

(
n

i

)
xn−iyi +

(
n

n

)
yn

=
n∑

i=0

(
n

i

)
xn−iyi.

At the next to last step we used the facts that
(
n−1
0

)
=
(
n
0

)
and

(
n−1
n−1

)
=
(
n
n

)
.

Here is an interesting consequence of this theorem: Consider

(x+ y)n = (x+ y)(x+ y) · · · (x+ y).

One way we might think of attempting to multiply this out is this: Go through the n

factors (x + y) and in each factor choose either the x or the y; at the end, multiply your
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choices together, getting some term like xxyxyy · · · yx = xiyj , where of course i + j = n.

If we do this in all possible ways and then collect like terms, we will clearly get
n∑

i=0

aix
n−iyi.

We know that the correct expansion has
(
n
i

)
= ai; is that in fact what we will get by this

method? Yes: consider xn−iyi. How many times will we get this term using the given

method? It will be the number of times we end up with i y-factors. Since there are n

factors (x+ y), the number of times we get i y-factors must be the number of ways to pick

i of the (x+y) factors to contribute a y, namely
(
n
i

)
. This is probably not a useful method

in practice, but it is interesting and occasionally useful.

EXAMPLE 1.3.2 Using this method we might get

(x+ y)3 = xxx+ xxy + xyx+ xyy + yxx+ yxy + yyx+ yyy

which indeed becomes x3 + 3x2y + 3xy2 + y3 upon collecting like terms.

The Binomial Theorem, 1.3.1, can be used to derive many interesting identities. A

common way to rewrite it is to substitute y = 1 to get

(x+ 1)n =
n∑

i=0

(
n

i

)
xn−i.

If we then substitute x = 1 we get

2n =

n∑
i=0

(
n

i

)
,

that is, row n of Pascal’s Triangle sums to 2n. This is also easy to understand combinato-

rially: the sum represents the total number of subsets of an n-set, since it adds together

the numbers of subsets of every possible size. It is easy to see directly that the number of

subsets of an n-set is 2n: for each element of the set we make a choice, to include or to

exclude the element. The total number of ways to make these choices is 2 · 2 · · · 2 = 2n, by

the multiplication principle.

Suppose now that n ≥ 1 and we substitute −1 for x; we get

(−1 + 1)n =
n∑

i=0

(
n

i

)
(−1)n−i. (1.3.1)

The sum is now an alternating sum: every other term is multiplied by −1. Since the left

hand side is 0, we can rewrite this to get(
n

0

)
+

(
n

2

)
+ · · · =

(
n

1

)
+

(
n

3

)
+ · · · . (1.3.2)

So each of these sums is 2n−1.



1.3 Binomial coefficients 19

Another obvious feature of Pascal’s Triangle is symmetry: each row reads the same

forwards and backwards. That is, we have:

THEOREM 1.3.3

(
n

i

)
=

(
n

n− i

)
.

Proof. This is quite easy to see combinatorially: every i-subset of an n-set is associated

with an (n − i)-subset. That is, if the n-set is A, and if B ⊆ A has size i, then the

complement of B has size n− i. This establishes a 1–1 correspondence between sets of size

i and sets of size n − i, so the numbers of each are the same. (Of course, if i = n − i, no

proof is required.)

Note that this means that the Binomial Theorem, 1.3.1, can also be written as

(x+ y)n =

n∑
i=0

(
n

n− i

)
xn−iyi.

or

(x+ y)n =
n∑

i=0

(
n

i

)
xiyn−i.

Another striking feature of Pascal’s Triangle is that the entries across a row are strictly

increasing to the middle of the row, and then strictly decreasing. Since we already know

that the rows are symmetric, the first part of this implies the second.

THEOREM 1.3.4 For 1 ≤ i ≤ ⌊n
2 ⌋,

(
n

i

)
>

(
n

i− 1

)
.

Proof. This is by induction; the base case is apparent from the first few rows. Write(
n

i

)
=

(
n− 1

i− 1

)
+

(
n− 1

i

)
(

n

i− 1

)
=

(
n− 1

i− 2

)
+

(
n− 1

i− 1

)
Provided that 1 ≤ i ≤ ⌊n−1

2 ⌋, we know by the induction hypothesis that(
n− 1

i

)
>

(
n− 1

i− 1

)
.

Provided that 1 ≤ i− 1 ≤ ⌊n−1
2 ⌋, we know that(

n− 1

i− 1

)
>

(
n− 1

i− 2

)
.

Hence if 2 ≤ i ≤ ⌊n−1
2 ⌋, (

n

i

)
>

(
n

i− 1

)
.

This leaves two special cases to check: i = 1 and i ≥ ⌊n−1
2 ⌋ + 1. These are left as an

exercise.
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Exercises 1.3.

1. Suppose a street grid starts at position (0, 0) and extends up and to the right:

(0, 0)

A shortest route along streets from (0, 0) to (i, j) is i+ j blocks long, going i blocks east and
j blocks north. How many such routes are there? Suppose that the block between (k, l) and
(k+1, l) is closed, where k < i and l ≤ j. How many shortest routes are there from (0, 0) to
(i, j)?

2. Prove by induction that
∑n

k=0

(
k
i

)
=
(
n+1
i+1

)
for n ≥ 0 and i ≥ 0.

3. Use a combinatorial argument to prove that
∑n

k=0

(
k
i

)
=
(
n+1
i+1

)
for n ≥ 0 and i ≥ 0; that is,

explain why the left-hand side counts the same thing as the right-hand side.

4. Use a combinatorial argument to prove that
(
k
2

)
+
(
n−k
2

)
+ k(n− k) =

(
n
2

)
.

5. Use a combinatorial argument to prove that
(
2n
n

)
is even.

6. Suppose that A is a non-empty finite set. Prove that A has as many even-sized subsets as it
does odd-sized subsets.

7. Prove that
∑n

k=0

(
k
i

)
k =

(
n+1
i+1

)
n−

(
n+1
i+2

)
for n ≥ 0 and i ≥ 0.

8. Verify that
(
n+1
2

)
+
(
n
2

)
= n2. Use exercise 2 to find a simple expression for

∑n
i=1 i

2.

9. Make a conjecture about the sums of the upward diagonals in Pascal’s Triangle as indicated.
Prove your conjecture is true.

..

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

10. Find the number of ways to write n as an ordered sum of ones and twos, n ≥ 0. For example,
when n = 4, there are five ways: 1 + 1 + 1 + 1, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, and 2 + 2.

11. Use (x + 1)n =
∑n

i=0

(
n
i

)
xi to find a simple expression for

∑n
i=0

1
i+1

(
n
i

)
xi+1. Then find a

simple expression for
∑n

i=0
1

i+1

(
n
i

)
.

12. Use the previous exercise to find a simple expression for
∑n

i=0(−1)i 1
i+1

(
n
i

)
.

13. Give a combinatorial proof of

k∑
i=0

(
m

i

)(
n

k − i

)
=

(
m+ n

k

)
.

Rewrite this identity in simpler form if m = n, and when k = m = n.
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14. Finish the proof of theorem 1.3.4.

15. Give an alternate proof of theorm 1.3.4 by characterizing those i for which
(
n
i

)
/
(

n
i−1

)
> 1.

16. When is
(
n
i

)
/
(

n
i−1

)
a maximum? When is

(
n
i

)
/
(

n
i−1

)
= 2?

17. When is
(
n
i

)
−
(

n
i−1

)
a maximum?

18. AGalton board is an upright flat surface with protruding horizontal pins arranged as shown
below. At the bottom are a number of bins; if the number of rows is n, the number of bins
is n+ 1. A ball is dropped directly above the top pin, and at each pin bounces left or right
with equal probability. We assume that the ball next hits the pin below and immediately left
or right of the pin it has struck, and this continues down the board, until the ball falls into
a bin at the bottom. If we number the bins from 0 to n, how many paths can a ball travel
to end up in bin k?

This may be interpreted in terms of probability, which was the intent of Sir Francis
Galton when he designed it. Each path is equally likely to be taken by a ball. If many
balls are dropped, the number of balls in bin k corresponds to the probability of ending
up in that bin. The more paths that end in a bin, the higher the probability. When
a very large number of balls are dropped, the balls will form an approximation to the
bell curve familiar from probability and statistics. There is an animation of the process
at http://www.math.uah.edu/stat/apps/GaltonBoardExperiment.html. There was once a
very nice physical implementation at the Pacific Science Center in Seattle.

.. •.
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1.4 Bell numbers

We begin with a definition:

DEFINITION 1.4.1 A partition of a set S is a collection of non-empty subsets Ai ⊆ S,

1 ≤ i ≤ k (the parts of the partition), such that
∪k

i=1 Ai = S and for every i ̸= j,

Ai ∩Aj = ∅.

EXAMPLE 1.4.2 The partitions of the set {a, b, c} are {{a}, {b}, {c}}, {{a, b}, {c}},
{{a, c}, {b}}, {{b, c}, {a}}, and {{a, b, c}}.

Partitions arise in a number of areas of mathematics. For example, if ≡ is an equiv-

alence relation on a set S, the equivalence classes of ≡ form a partition of S. Here we

http://www.math.uah.edu/stat/apps/GaltonBoardExperiment.html
https://www.facebook.com/PacSci/photos/a.132354883854.108490.23998643854/10152321460423855/
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consider the number of partitions of a finite set S, which we might as well take to be

[n] = {1, 2, 3, . . . , n}, unless some other set is of interest. We denote the number of par-

titions of an n-element set by Bn; this numbers are the Bell numbers. From the example

above, we see that B3 = 5. For convenience we let B0 = 1. It is quite easy to see that

B1 = 1 and B2 = 2.

There are no known simple formulas for Bn, so we content ourselves with a recurrence

relation.

THEOREM 1.4.3 The Bell numbers satisfy

Bn+1 =
n∑

k=0

(
n

k

)
Bk.

Proof. Consider a partition of S = {1, 2, . . . , n+ 1}, A1,. . . ,Am. We may suppose that

n + 1 is in A1, and that |A1| = k + 1, for some k, 0 ≤ k ≤ n. Then A2,. . . ,Am form a

partition of the remaining n−k elements of S, that is, of S\A1. There are Bn−k partitions

of this set, so there are Bn−k partitions of S in which one part is the set A1. There are(
n
k

)
sets of size k+1 containing n+1, so the total number of partitions of S in which n+1

is in a set of size k + 1 is
(
n
k

)
Bn−k. Adding up over all possible values of k, this means

Bn+1 =
n∑

k=0

(
n

k

)
Bn−k. (1.4.1)

We may rewrite this, using theorem 1.3.3, as

Bn+1 =
n∑

k=0

(
n

n− k

)
Bn−k,

and then notice that this is the same as the sum

Bn+1 =
n∑

k=0

(
n

k

)
Bk,

written backwards.
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EXAMPLE 1.4.4 We apply the recurrence to compute the first few Bell numbers:

B1 =
0∑

k=0

(
0

0

)
B0 = 1 · 1 = 1

B2 =

1∑
k=0

(
1

k

)
Bk =

(
1

0

)
B0 +

(
1

1

)
B1 = 1 · 1 + 1 · 1 = 1 + 1 = 2

B3 =

2∑
k=0

(
2

k

)
Bk = 1 · 1 + 2 · 1 + 1 · 2 = 5

B4 =
3∑

k=0

(
3

k

)
Bk = 1 · 1 + 3 · 1 + 3 · 2 + 1 · 5 = 15

The Bell numbers grow exponentially fast; the first few are 1, 1, 2, 5, 15, 52, 203, 877,

4140, 21147, 115975, 678570, 4213597, 27644437.

The Bell numbers turn up in many other problems; here is an interesting example.

A common need in some computer programs is to generate a random permutation of

1, 2, 3, . . . , n, which we may think of as a shuffle of the numbers, visualized as numbered

cards in a deck. Here is an attractive method that is easy to program: Start with the

numbers in order, then at each step, remove one number at random (this is easy in most

programming languages) and put it at the front of the list of numbers. (Viewed as a shuffle

of a deck of cards, this corresponds to removing a card and putting it on the top of the

deck.) How many times should we do this? There is no magic number, but it certainly

should not be small relative to the size of n. Let’s choose n as the number of steps.

We can write such a shuffle as a list of n integers, (m1,m2, . . . ,mn). This indicates

that at step i, the number mi is moved to the front.

EXAMPLE 1.4.5 Let’s follow the shuffle (3, 2, 2, 4, 1):

(3) : 31245

(2) : 23145

(2) : 23145

(4) : 42315

(1) : 14235

Note that we allow “do nothing” moves, removing the top card and then placing it on

top. The number of possible shuffles is then easy to count: there are n choices for the card
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to remove, and this is repeated n times, so the total number is nn. (If we continue a shuffle

for m steps, the number of shuffles is nm.) Since there are only n! different permutations

of 1, 2, . . . , n, this means that many shuffles give the same final order.

Here’s our question: how many shuffles result in the original order?

EXAMPLE 1.4.6 These shuffles return to the original order: (1, 1, 1, 1, 1), (5, 4, 3, 2, 1),

(4, 1, 3, 2, 1).

THEOREM 1.4.7 The number of shuffles of [n] that result in the original sorted order

is Bn.

Proof. Since we know that Bn counts the number of partitions of {1, 2, 3, . . . , n}, we can
prove the theorem by establishing a 1–1 correspondence between the shuffles that leave

the deck sorted and the partitions. Given a shuffle (m1,m2, . . . ,mn), we put into a single

set all i such that mi has a single value. For example, using the shuffle (4, 1, 3, 2, 1), Since

m2 = m5, one set is {2, 5}. All the other values are distinct, so the other sets in the

partition are {1}, {3}, and {4}.
Note that every shuffle, no matter what the final order, produces a partition by this

method. We are only interested in the shuffles that leave the deck sorted. What we now

need is to show that each partition results from exactly one such shuffle.

Suppose we have a partition with k parts. If a shuffle leaves the deck sorted, the last

entry, mn, must be 1. If the part containing n is A1, then it must be that mi = 1 if and

only if i ∈ A1. If k = 1, then the only part contains all of {1, 2, . . . , n}, and the shuffle

must be (1, 1, 1, . . . , 1).

If k > 1, the last move that is not 1 must be 2, since 2 must end up immediately after

1. Thus, if j2 is the largest index such that j2 /∈ A1, let A2 be the part containing j2, and

it must be that mi = 2 if and only if i ∈ A2. We continue in this way: Once we have

discovered which of the mi must have values 1, 2, . . . , p, let jp+1 be the largest index such

that jp+1 /∈ A1 ∪ · · · ∪ Ap, let Ap+1 be the part containing jp+1, and then mi = p + 1 if

and only if i ∈ Ap+1. When p = k, all values mi have been determined, and this is the

unique shuffle that corresponds to the partition.

EXAMPLE 1.4.8 Consider the partition {{1, 5}, {2, 3, 6}, {4, 7}}. We must have m7 =

m4 = 1, m6 = m3 = m2 = 2, and m5 = m1 = 3, so the shuffle is (3, 2, 2, 1, 3, 2, 1).

Returning to the problem of writing a computer program to generate a partition: is

this a good method? When we say we want a random permutation, we mean that we

want each permutation to occur with equal probability, namely, 1/n!. Since the original

order is one of the permutations, we want the number of shuffles that produce it to be

exactly nn/n!, but n! does not divide nn, so this is impossible. The probability of getting
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the original permutation is Bn/n
n, and this turns out to be quite a bit larger than 1/n!.

Thus, this is not a suitable method for generating random permutations.

The recurrence relation above is a somewhat cumbersome way to compute the Bell

numbers. Another way to compute them is with a different recurrence, expressed in the

Bell triangle, whose construction is similar to that of Pascal’s triangle:

A1,1

A2,1 A2,2

A3,1 A3,2 A3,3

A4,1 A4,2 A4,3 A4,4

1
1 2
2 3 5
5 7 10 15

The rule for constructing this triangle is: A1,1 = 1; the first entry in each row is the last

entry in the previous row; other entries are An,k = An,k−1+An−1,k−1; row n has n entries.

Both the first column and the diagonal consist of the Bell numbers, with An,1 = Bn−1 and

An,n = Bn.

An,k may be interpreted as the number of partitions of {1, 2, . . . , n + 1} in which

{k+ 1} is the singleton set with the largest entry in the partition. For example, A3,2 = 3;

the partitions of 3+1 = 4 in which 2+1 = 3 is the largest number appearing in a singleton

set are {{1}, {2, 4}, {3}}, {{2}, {1, 4}, {3}}, and {{1, 2, 4}, {3}}.
To see that this indeed works as advertised, we need to confirm a few things. First,

consider An,n, the number of partitions of {1, 2, . . . , n+1} in which {n+1} is the singleton

set with the largest entry in the partition. Since n + 1 is the largest element of the set,

all partitions containing the singleton {n + 1} satisfy the requirement, and so the Bn

partitions of {1, 2, . . . , n} together with {n+1} are exactly the partitions of interest, that

is, An,n = Bn.

Next, we verify that under the desired interpretation, it is indeed true that An,k =

An,k−1 + An−1,k−1 for k > 1. Consider a partition counted by An,k−1. This contains

the singleton {k}, and the element k + 1 is not in a singleton. If we interchange k and

k + 1, we get the singleton {k + 1}, and no larger element is in a singleton. This gives

us partitions in which {k + 1} is a singleton and {k} is not. Now consider a partition

of {1, 2, . . . , n} counted by An−1,k−1. Replace all numbers j > k by j + 1, and add the

singleton {k + 1}. This produces a partition in which both {k + 1} and {k} appear. In

fact, we have described how to produce each partition counted by An,k exactly once, and

so An,k = An,k−1 +An−1,k−1.

Finally, we need to verify that An,1 = Bn−1. We know that A1,1 = 1 = B0. Now we

claim that for n > 1,

An,1 =
n−2∑
k=0

(
n− 2

k

)
Ak+1,1.

In a partition counted by An,1, 2 is the largest element in a singleton, so {n+ 1} is not in

the partition. Choose any k ≥ 1 elements of {3, 4, . . . , n} to form the set containing n+1.
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There are An−k−1,1 partitions of the remaining n − k elements in which 2 is the largest

element in a singleton. This accounts for
(
n−2
k

)
An−k−1,1 partitions of {1, 2, . . . , n+ 1}, or

over all k:

n−2∑
k=1

(
n− 2

k

)
An−k−1,1 =

n−2∑
k=1

(
n− 2

n− k − 2

)
An−k−1,1 =

n−3∑
k=0

(
n− 2

k

)
Ak+1,1.

We are missing those partitions in which 1 is in the part containing n+1. We may produce

all such partitions by starting with a partition counted by An−1,1 and adding n+1 to the

part containing 1. Now we have

An,1 = An−1,1 +
n−3∑
k=0

(
n− 2

k

)
Ak+1,1 =

n−2∑
k=0

(
n− 2

k

)
Ak+1,1.

Although slightly disguised by the shifted indexing of the An,1, this is the same as the

recurrence relation for the Bn, and so An,1 = Bn−1 as desired.

Exercises 1.4.

1. Show that if {A1, A2, . . . , Ak} is a partition of {1, 2, . . . , n}, then there is a unique equivalence
relation ≡ whose equivalence classes are {A1, A2, . . . , Ak}.

2. Suppose n is a square-free number, that is, no number m2 divides n; put another way, square-
free numbers are products of distinct prime factors, that is, n = p1p2 · · · pk, where each pi
is prime and no two prime factors are equal. Find the number of factorizations of n. For
example, 30 = 2 · 3 · 5, and the factorizations of 30 are 30, 6 · 5, 10 · 3, 2 · 15, and 2 · 3 · 5. Note
we count 30 alone as a factorization, though in some sense a trivial factorization.

3. The rhyme scheme of a stanza of poetry indicates which lines rhyme. This is usually expressed
in the form ABAB, meaning the first and third lines of a four line stanza rhyme, as do the
second and fourth, or ABCB, meaning only lines two and four rhyme, and so on. A limerick
is a five line poem with rhyming scheme AABBA. How many different rhyme schemes are
possible for an n line stanza? To avoid duplicate patterns, we only allow a new letter into
the pattern when all previous letters have been used to the left of the new one. For example,
ACBA is not allowed, since when C is placed in position 2, B has not been used to the left.
This is the same rhyme scheme as ABCA, which is allowed.

4. Another way to express the Bell numbers for n > 0 is

Bn =

n∑
k=1

S(n, k),

where S(n, k) is the number of partitions of {1, 2, . . . , n} into exactly k parts, 1 ≤ k ≤ n.
The S(n, k) are the Stirling numbers of the second kind. Find a recurrence relation
for S(n, k). Your recurrence should allow a fairly simple triangle construction containing the
values S(n, k), and then the Bell numbers may be computed by summing the rows of this
triangle. Show the first five rows of the triangle, n ∈ {1, 2, . . . , 5}.

5. Let An be the number of partitions of {1, 2, . . . , n + 1} in which no consecutive integers
are in the same part of the partition. For example, when n = 3 these partitions are



1.5 Choice with repetition 27

{{1}, {2}, {3}, {4}}, {{1}, {2, 4}, {3}}, {{1, 3}, {2}, {4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2}, {3}},
so A3 = 5. Let A(n, k) be the number of partitions of {1, 2, . . . , n+ 1} into exactly k parts,
in which no consecutive integers are in the same part of the partition. Thus

An =

n+1∑
k=2

A(n, k).

Find a recurrence for A(n, k) and then show that An = Bn.

1.5 Choice with repetition

Most of the permutation and combination problems we have seen count choices made with-

out repetition, as when we asked how many rolls of three dice are there in which each die

has a different value. The exception was the simplest problem, asking for the total number

of outcomes when two or three dice are rolled, a simple application of the multiplication

principle. Typical permutation and combination problems can be interpreted in terms of

drawing balls from a box, and implicitly or explicitly the rule is that a ball drawn from

the box stays out of the box. If instead each ball is returned to the box after recording the

draw, we get a problem essentially identical to the general dice problem. For example, if

there are six balls, numbered 1–6, and we draw three balls with replacement, the number

of possible outcomes is 63. Another version of the problem does not replace the ball after

each draw, but allows multiple “identical” balls to be in the box. For example, if a box

contains 18 balls numbered 1–6, three with each number, then the possible outcomes when

three balls are drawn and not returned to the box is again 63. If four balls are drawn,

however, the problem becomes different.

Another, perhaps more mathematical, way to phrase such problems is to introduce

the idea of a multiset. A multiset is like a set, except that elements may appear more

than once. If {a, b} and {b, c} are ordinary sets, we say that the union {a, b} ∪ {b, c} is

{a, b, c}, not {a, b, b, c}. If we interpret these as multisets, however, we do write {a, b, b, c}
and consider this to be different than {a, b, c}. To distinguish multisets from sets, and to

shorten the expression in most cases, we use a repetition number with each element.

For example, we will write {a, b, b, c} as {1 · a, 2 · b, 1 · c}. By writing {1 · a, 1 · b, 1 · c} we

emphasize that this is a multiset, even though no element appears more than once. We

also allow elements to be included an infinite number of times, indicated with ∞ for the

repetition number, like {∞ · a, 5 · b, 3 · c}.
Generally speaking, problems in which repetition numbers are infinite are easier than

those involving finite repetition numbers. Given a multiset A = {∞·a1,∞·a2, . . . ,∞·an},
how many permutations of the elements of length k are there? That is, how many sequences

x1, x2, . . . , xk can be formed? This is easy: the answer is nk.
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Now consider combinations of a multiset, that is, submultisets: Given a multiset, how

many submultisets of a given size does it have? We say that a multiset A is a submultiset

of B if the repetition number of every element of A is less than or equal to its repetition

number in B. For example, {20 · a, 5 · b, 1 · c} is a submultiset of {∞ · a, 5 · b, 3 · c}. A

multiset is finite if it contains only a finite number of distinct elements, and the repetition

numbers are all finite. Suppose again that A = {∞ · a1,∞ · a2, . . . ,∞ · an}; how many

finite submultisets does it have of size k? This at first seems quite difficult, but put in the

proper form it turns out to be a familiar problem. Imagine that we have k+ n− 1 “blank

spaces”, like this:
. . .

Now we place n− 1 markers in some of these spots:

∧ ∧ ∧ . . . ∧

This uniquely identifies a submultiset: fill all blanks up to the first ∧ with a1, up to the

second with a2, and so on:

∧ a2 ∧ a3 a3 a3 ∧ a4 . . . an−1 an−1 ∧ an

So this pattern corresponds to the multiset {1 ·a2, 3 ·a3, . . . , 1 ·an}. Filling in the markers

∧ in all possible ways produces all possible submultisets of size k, so there are
(
k+n−1
n−1

)
such submultisets. Note that this is the same as

(
k+n−1

k

)
; the hard part in practice is

remembering that the −1 goes with the n, not the k.

• • •

Summarizing the high points so far: The number of permutations of n things taken k

at a time without replacement is P (n, k) = n!/(n− k)!; the number of permutations of n

things taken k at a time with replacement is nk. The number of combinations of n things

taken k at a time without replacement is
(
n
k

)
; the number of combinations of n things

taken k at a time with replacement is
(
k+n−1

k

)
.

• • •

If A = {m1 · a1,m2 · a2, . . . ,mn · an}, similar questions can be quite hard. Here is an

easier special case: How many permutations of the multiset A are there? That is, how many

sequences consist of m1 copies of a1, m1 copies of a2, and so on? This problem succumbs

to overcounting: suppose to begin with that we can distinguish among the different copies

of each ai; they might be colored differently for example: a red a1, a blue a1, and so

on. Then we have an ordinary set with M =
∑n

i=1 mi elements and M ! permutations.

Now if we ignore the colors, so that all copies of ai look the same, we find that we have
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overcounted the desired permutations. Permutations with, say, the a1 items in the same

positions all look the same once we ignore the colors of the a1s. How many of the original

permutations have this property? m1! permutations will appear identical once we ignore

the colors of the a1 items, since there are m1! permutations of the colored a1s in a given

m1 positions. So after throwing out duplicates, the number of remaining permutations is

M !/m1! (assuming the other ai are still distinguishable). Then the same argument applies

to the a2s: there are m2! copies of each permutation once we ignore the colors of the a2s, so

there are
M !

m1!m2!
distinct permutations. Continuing in this way, we see that the number

of distinct permutations once all colors are ignored is

M !

m1!m2! · · ·mn!
.

This is frequently written (
M

m1 m2 . . . mn

)
,

called a multinomial coefficient. Here the second row has n separate entries, not a

single product entry. Note that if n = 2 this is(
M

m1 m2

)
=

M !

m1!m2!
=

M !

m1! (M −m1)!
=

(
M

m1

)
. (1.5.1)

This is easy to see combinatorialy: given {m1 · a1,m2 · a2} we can form a permutation by

choosing the m1 places that will be occupied by a1, filling in the remaining m2 places with

a2. The number of permutations is the number of ways to choose the m1 locations, which

is
(
M
m1

)
.

EXAMPLE 1.5.1 How many solutions does x1+x2+x3+x4 = 20 have in non-negative

integers? That is, how many 4-tuples (m1,m2,m3,m4) of non-negative integers are solu-

tions to the equation? We have actually solved this problem: How many submultisets of

size 20 are there of the multiset {∞ · a1,∞ · a2,∞ · a3,∞ · a4}? A submultiset of size

20 is of the form {m1 · a1,m2 · a2,m3 · a3,m4 · a4} where
∑

mi = 20, and these are in

1–1 correspondence with the set of 4-tuples (m1,m2,m3,m4) of non-negative integers such

that
∑

mi = 20. Thus, the number of solutions is
(
20+4−1

20

)
. This reasoning applies in

general: the number of solutions to

n∑
i=1

xi = k

is (
k + n− 1

k

)
.
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This immediately suggests some generalizations: instead of the total number of solu-

tions, we might want the number of solutions with the variables xi in certain ranges, that

is, we might require that mi ≤ xi ≤ Mi for some lower and upper bounds mi and Mi.

Finite upper bounds can be difficult to deal with; if we require that 0 ≤ xi ≤ Mi, this

is the same as counting the submultisets of {M1 · a1,M2 · a2, . . . ,Mn · an}. Lower bounds
are easier to deal with.

EXAMPLE 1.5.2 Find the number of solutions to x1 +x2 +x3 +x4 = 20 with x1 ≥ 0,

x2 ≥ 1, x3 ≥ 2, x4 ≥ −1.

We can transform this to the initial problem in which all lower bounds are 0. The

solutions we seek to count are the solutions of this altered equation:

x1 + (x2 − 1) + (x3 − 2) + (x4 + 1) = 18.

If we set y1 = x1, y2 = x2 − 1, y3 = x3 − 2, and y4 = x4 + 1, then (x1, x2, x3, x4) is a

solution to this equation if and only if (y1, y2, y3, y4) is a solution to

y1 + y2 + y3 + y4 = 18,

and moreover the bounds on the xi are satisfied if and only if yi ≥ 0. Since the number

of solutions to the last equation is
(
18+4−1

18

)
, this is also the number of solutions to the

original equation.

Exercises 1.5.

1. Suppose a box contains 18 balls numbered 1–6, three balls with each number. When 4 balls
are drawn without replacement, how many outcomes are possible? Do this in two ways:
assuming that the order in which the balls are drawn matters, and then assuming that order
does not matter.

2. How many permutations are there of the letters in Mississippi?

3. How many permutations are there of the multiset {1 · a1, 1 · a2, . . . , 1 · an}?
4. Let M =

∑n
i=1 mi. If ki < 0, let’s say(

M

k1 k2 . . . kn

)
= 0.

Prove that (
M

m1 m2 . . . mn

)
=

n∑
i=1

(
M − 1

m1 m2 . . . (mi − 1) . . . mn

)
.

Note that when n = 2 this becomes(
M

m1 m2

)
=

(
M − 1

(m1 − 1) m2

)
+

(
M − 1

m1 (m2 − 1)

)
.
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As noted above in equation 1.5.1, when n = 2 we are really seeing ordinary binomial coeffi-
cients, and this can be rewritten as(

M

m1

)
=

(
M − 1

m1 − 1

)
+

(
M − 1

m1

)
,

which of course we already know.

5. The Binomial Theorem (1.3.1) can be written

(x+ y)n =
∑

i+j=n

(
n

i j

)
xi yj ,

where the sum is over all non-negative integers i and j that sum to n. Prove that for m ≥ 2,

(x1 + x2 + · · ·+ xm)n =
∑(

n

i1 i2 . . . im

)
xi1
1 xi2

2 . . . xim
m .

where the sum is over all i1, . . . , im such that i1 + · · ·+ im = n.

1.6 The Pigeonhole Principle

A key step in many proofs consists of showing that two possibly different values are in fact

the same. The Pigeonhole principle can sometimes help with this.

THEOREM 1.6.1 Pigeonhole Principle Suppose that n+1 (or more) objects are

put into n boxes. Then some box contains at least two objects.

Proof. Suppose each box contains at most one object. Then the total number of objects

is at most 1 + 1 + · · ·+ 1 = n, a contradiction.

This seemingly simple fact can be used in surprising ways. The key typically is to put

objects into boxes according to some rule, so that when two objects end up in the same

box it is because they have some desired relationship.

EXAMPLE 1.6.2 Among any 13 people, at least two share a birth month.

Label 12 boxes with the names of the months. Put each person in the box labeled

with his or her birth month. Some box will contain at least two people, who share a birth

month.

EXAMPLE 1.6.3 Suppose 5 pairs of socks are in a drawer. Picking 6 socks guarantees

that at least one pair is chosen.

Label the boxes by “the pairs” (e.g., the red pair, the blue pair, the argyle pair,. . . ).

Put the 6 socks into the boxes according to description.

Some uses of the principle are not nearly so straightforward.
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EXAMPLE 1.6.4 Suppose a1, . . . , an are integers. Then some “consecutive sum” ak +

ak+1 + ak+2 + · · ·+ ak+m is divisible by n.

Consider these n sums:
s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

...

sn = a1 + a2 + · · ·+ an

These are all consecutive sums, so if one of them is divisible by n we are done. If not,

dividing each by n leaves a non-zero remainder, r1 = s1 mod n, r2 = s2 mod n, and so on.

These remainders have values in {1, 2, 3, . . . , n − 1}. Label n − 1 boxes with these n − 1

values; put each of the n sums into the box labeled with its remainder mod n. Two sums

end up in the same box, meaning that si mod n = sj mod n for some j > i; hence sj − si
is divisible by n, and sj − si = ai+1 + ai+2 + · · ·+ aj , as desired.

A similar argument provides a proof of the Chinese Remainder Theorem.

THEOREM 1.6.5 Chinese Remainder Theorem If m and n are relatively prime,

and 0 ≤ a < m and 0 ≤ b < n, then there is an integer x such that x mod m = a and

x mod n = b.

Proof. Consider the integers a, a+m, a+ 2m, . . . a+ (n− 1)m, each with remainder a

when divided by m. We wish to show that one of these integers has remainder b when

divided by n, in which case that number satisfies the desired property.

For a contradiction, suppose not. Let the remainders be r0 = a mod n, r1 = a+m mod

n,. . . , rn−1 = a+ (n− 1)m mod n. Label n− 1 boxes with the numbers 0, 1, 2, 3, . . . , b−
1, b+ 1, . . . n− 1. Put each ri into the box labeled with its value. Two remainders end up

in the same box, say ri and rj , with j > i, so ri = rj = r. This means that

a+ im = q1n+ r and a+ jm = q2n+ r.

Hence
a+ jm− (a+ im) = q2n+ r − (q1n+ r)

(j − i)m = (q2 − q1)n.

Since n is relatively prime to m, this means that n | (j − i). But since i and j are in

{0, 1, 2, . . . , n− 1}, 0 < j− i < n, so n ̸ | (j− i). This contradiction finishes the proof.

More general versions of the Pigeonhole Principle can be proved by essentially the

same method. A natural generalization would be something like this: If X objects are put

into n boxes, some box contains at least m objects. For example:
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THEOREM 1.6.6 Suppose that r1, . . . , rn are positive integers. IfX ≥ (
∑n

i=1 ri)−n+1

objects are put into n boxes labeled 1, 2, 3, . . . , n, then some box labeled i contains at least

ri objects.

Proof. Suppose not. Then the total number of objects in the boxes is at most (r1−1)+

(r2 − 1) + (r3 − 1) + · · ·+ (rn − 1) = (
∑n

i=1 ri)− n < X, a contradiction.

This full generalization is only occasionally needed; often this simpler version is suffi-

cient:

COROLLARY 1.6.7 Suppose r > 0 and X ≥ n(r − 1) + 1 objects are placed into n

boxes. Then some box contains at least r objects.

Proof. Apply the previous theorem with ri = r for all i.

• • •

Here is a simple application of the Pigeonhole Principle that leads to many interesting

questions.

EXAMPLE 1.6.8 Suppose 6 people are gathered together; then either 3 of them are

mutually acquainted, or 3 of them are mutually unacquainted.

We turn this into a graph theory question: Consider the graph consisting of 6 vertices,

each connected to all the others by an edge, called the complete graph on 6 vertices, and

denoted K6; the vertices represent the people. Color an edge red if the people represented

by its endpoints are acquainted, and blue if they are not acquainted. Any choice of 3

vertices defines a triangle; we wish to show that either there is a red triangle or a blue

triangle.

Consider the five edges incident at a single vertex v; by the Pigeonhole Principle (the

version in corollary 1.6.7, with r = 3, X = 2(3 − 1) + 1 = 5), at least three of them are

the same color, call it color C; call the other color D. Let the vertices at the other ends

of these three edges be v1, v2, v3. If any of the edges between these vertices have color C,

there is a triangle of color C: if the edge connects vi to vj , the triangle is formed by v,

vi, and vj . If this is not the case, then the three vertices v1, v2, v3 are joined by edges of

color D, and form a triangle of color D.

The number 6 in this example is special: with 5 or fewer vertices it is not true that

there must be a monochromatic triangle, and with more than 6 vertices it is true. To see

that it is not true for 5 vertices, we need only show an example, as in figure 1.6.1.

The Ramsey number R(i) is the smallest integer n such that when the edges of Kn

are colored with two colors, there is a monochromatic complete graph on i vertices, Ki,

contained within Kn. The example shows that R(3) = 6.
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Figure 1.6.1 An edge coloring with no monochromatic triangles.

More generally, R(i, j) is the smallest integer n such that when the edges of Kn are

colored with two colors, say C1 and C2, either there is a Ki contained within Kn all of

whose edges are color C1, or there is a Kj contained within Kn all of whose edges are

color C2. Using this notion, R(k) = R(k, k). More generally still, R(i1, i2, . . . , im) is the

smallest integer n such that when the edges of Kn are colored with m colors, C1, . . . , Cm,

then for some j there is a Kij contained in Kn all of whose edges are color Cj .

Ramsey proved that in all of these cases, there actually is such a number n. General-

izations of this problem have led to the subject called Ramsey Theory.

Computing any particular value R(i, j) turns out to be quite difficult; Ramsey numbers

are known only for a few small values of i and j, and in some other cases the Ramsey number

is bounded by known numbers. Typically in these cases someone has exhibited a Km and

a coloring of the edges without the existence of a monochromatic Ki or Kj of the desired

color, showing that R(i, j) > m; and someone has shown that whenever the edges of Kn

have been colored, there is a Ki or Kj of the correct color, showing that R(i, j) ≤ n.

Exercises 1.6.

1. Assume that the relation “friend” is symmetric. Show that if n ≥ 2, then in any group of n
people there are two with the same number of friends in the group.

2. Suppose that 501 distinct integers are selected from 1 . . . 1000. Show that there are distinct
selected integers a and b such that a | b. Show that this is not always true if 500 integers are
selected. ⇒

3. Each of 15 red balls and 15 green balls is marked with an integer between 1 and 100 inclusive;
no integer appears on more than one ball. The value of a pair of balls is the sum of the
numbers on the balls. Show there are at least two pairs, consisting of one red and one green
ball, with the same value. Show that this is not true if there are 13 balls of each color.

4. Suppose (a1, a2, . . . , a52) are integers, not necessarily distinct. Show that there are two, ai

and aj with i ̸= j, such that either ai + aj or ai − aj is divisible by 100. Show that this is
not necessarily true for integers (a1, a2, . . . , a51).



1.7 Sperner’s Theorem 35

5. Suppose five points are chosen from a square whose sides are length s. (The points may be
either in the interior of the square or on the boundary.) Show that two of the points are at
most s

√
2/2 apart. Find five points so that no two are less than s

√
2/2 apart.

6. Show that if the edges ofK6 are colored with two colors, there are at least two monochromatic
triangles. (Two triangles are different if each contains at least one vertex not in the other.
For example, two red triangles that share an edge count as two triangles.) Color the edges
of K6 so that there are exactly two monochromatic triangles.

7. Suppose the edges of a K5 are colored with two colors, say red and blue, so that there are
no monochromatic triangles. Show that the red edges form a cycle, and the blue edges form
a cycle, each with five edges. (A cycle is a sequence of edges {v1, v2}, {v2, v3}, . . . , {vk, v1},
where all of the vi are distinct. Note that this is true in figure 1.6.1.)

8. Show that 8 < R(3, 4) ≤ 10.

9. Show that R(3, 4) = 9.

1.7 Sperner's Theorem

The binomial coefficients count the subsets of a given set; the sets themselves are worth

looking at. First some convenient notation:

DEFINITION 1.7.1 Let [n] = {1, 2, 3, . . . , n}. Then 2[n] denotes the set of all subsets

of [n], and
[
n
k

]
denotes the set of subsets of [n] of size k.

EXAMPLE 1.7.2 Let n = 3. Then[n
0

]
= {∅}[n

1

]
= {{1}, {2}, {3}}[n

2

]
= {{1, 2}, {1, 3}, {2, 3}}[n

3

]
= {{1, 2, 3}}

DEFINITION 1.7.3 A chain in 2[n] is a set of subsets of 2[n] that are linearly or-

dered by inclusion. An anti-chain in 2[n] is a set of subsets of 2[n] that are pairwise

incomparable.

EXAMPLE 1.7.4 In 2[3], {∅, {1}, {1, 2, 3}} is a chain, because ∅ ⊆ {1} ⊆ {1, 2, 3}.
Every

[
n
k

]
is an anti-chain, as is {{1}, {2, 3}}. The set {{1}, {1, 3}, {2, 3}} is neither a

chain nor an anti-chain.

Because of theorem 1.3.4 we know that among all anti-chains of the form
[
n
k

]
the

largest are the “middle” ones, namely
[

n
⌊n/2⌋

]
and

[
n

⌈n/2⌉

]
(which are the same if n is
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even). Remarkably, these are the largest of all anti-chains, that is, strictly larger than

every other anti-chain. When n = 3, the anti-chains
[
3
1

]
and

[
3
2

]
are the only anti-chains

of size 3, and no anti-chain is larger, as you can verify by examining all possibilities.

Before we prove this, a bit of notation.

DEFINITION 1.7.5 If σ:A → A is a bijection, then σ is called a permutation.

This use of the word permutation is different than our previous usage, but the two are

closely related. Consider such a function σ: [n] → [n]. Since the set A in this case is finite,

we could in principle list every value of σ:

σ(1), σ(2), σ(3), . . . , σ(n).

This is a list of the numbers {1, . . . , n} in some order, namely, this is a permutation

according to our previous usage. We can continue to use the same word for both ideas,

relying on context or an explicit statement to indicate which we mean.

THEOREM 1.7.6 (Sperner’s Theorem) The only anti-chains of largest size are
[

n
⌊n/2⌋

]
and

[
n

⌈n/2⌉

]
.

Proof. First we show that no anti-chain is larger than these two. We attempt to partition

2[n] into k =
(

n
⌊n/2⌋

)
chains, that is, to find chains

A1,0 ⊆ A1,1 ⊆ A1,2 ⊆ · · · ⊆ A1,m1

A2,0 ⊆ A2,1 ⊆ A2,2 ⊆ · · · ⊆ A2,m2

...

Ak,0 ⊆ Ak,1 ⊆ Ak,2 ⊆ · · · ⊆ Ak,mk

so that every subset of [n] appears exactly once as one of the Ai,j . If we can find such

a partition, then since no two elements of an anti-chain can be in the same chain, no

anti-chain can have more than k elements.

For small values of n this can be done by hand; for n = 3 we have

∅ ⊆ {1} ⊆ {1, 2} ⊆ {1, 2, 3}
{2} ⊆ {2, 3}
{3} ⊆ {1, 3}

These small cases form the base of an induction. We will prove that any 2[n] can be

partitioned into such chains with two additional properties:

1. Each set in a chain contains exactly one element more than the next smallest set

in the chain.
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2. The sum of the sizes of the smallest and largest element in the chain is n.

Note that the chains for the case n = 3 have both of these properties. The two properties

taken together imply that every chain “crosses the middle”, that is, every chain contains

an element of
[

n
n/2

]
if n is even, and an element of both

[
n

⌊n/2⌋

]
and

[
n

⌈n/2⌉

]
if n is odd.

Thus, if we succeed in showing that such chain partitions exist, there will be exactly
(

n
⌊n/2⌋

)
chains.

For the induction step, we assume that we have partitioned 2[n−1] into such chains,

and construct chains for 2[n].

First, for each chain Ai,0 ⊆ Ai,1 ⊆ · · · ⊆ Ai,mi we form a new chain Ai,0 ⊆ Ai,1 ⊆
· · · ⊆ Ai,mi ⊆ Ai,mi ∪{n}. Since |Ai,0|+ |Ai,mi | = n− 1, |Ai,0|+ |Ai,mi ∪{n}| = n, so this

new chain satisfies properties (1) and (2).

In addition, if mi > 0, we form a new new chain Ai,0 ∪ {n} ⊆ Ai,1 ∪ {n} ⊆ · · · ⊆
Ai,mi−1 ∪ {n}. Now

|Ai,0 ∪ {n}|+ |Ai,mi−1 ∪ {n}| = |Ai,0|+ 1 + |Ai,mi−1|+ 1

= |Ai,0|+ 1 + |Ai,mi | − 1 + 1

= n− 1 + 1 = n

so again properties (1) and (2) are satisfied.

Because of the first type of chain, all subsets of [n − 1] are contained exactly once in

the new set of chains. Also, we have added the element n exactly once to every subset of

[n − 1], so we have included every subset of [n] containing n exactly once. Thus we have

produced the desired partition of 2[n].

Now we need to show that the only largest anti-chains are
[

n
⌊n/2⌋

]
and

[
n

⌈n/2⌉

]
.

Suppose thatA1, A2, . . . , Am is an anti-chain; thenAc
1, A

c
2, . . . , A

c
m is also an anti-chain,

where Ac denotes the complement of A. Thus, if there is an anti-chain that contains some

A with |A| > ⌈n/2⌉, there is also one containing Ac, and |Ac| < ⌊n/2⌋. Suppose that some

anti-chain contains a set A with |A| < ⌊n/2⌋. We next prove that this anti-chain cannot

be of maximum size.

Partition 2[n] as in the first part of the proof. Suppose that A is a subset of the

elements of a one or two element chain C, that is, a chain consisting solely of a set S1 of

size n/2, if n is even, or of sets S1 and S2 of sizes ⌊n/2⌋ and ⌈n/2⌉, with A ⊆ S1 ⊆ S2, if

n is odd. Then no member of C is in the anti-chain. Thus, the largest possible size for an

anti-chain containing A is
(

n
⌊n/2⌋

)
− 1.

If A is not a subset of the elements of such a short chain, we now prove that there

is another chain partition of 2[n] that does have this property. Note that in the original

chain partition there must be a chain of length 1 or 2, C1, consisting of S1 and possibly

S2; if not, every chain would contain a set of size ⌊n/2⌋ − 1, but there are not enough
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such sets to go around. Suppose then that A = {x1, . . . , xk} and the set S1 in C1 is

S1 = {x1, . . . , xq, yq+1, . . . yl}, where 0 ≤ q < k and l > k.

Let σ be the permutation of [n] such that σ(xq+i) = yq+i and σ(yq+i) = xq+i, for

1 ≤ i ≤ k − q, and σ fixes all other elements. Now for U ⊆ [n], let U = σ(U), and note

that U ⊆ V if and only if U ⊆ V . Thus every chain in the original chain partition maps

to a chain. Since σ is a bijection, these new chains also form a partition of 2[n], with the

additional properties (1) and (2). By the definition of σ, A ⊆ S1, and {S1, S2} is a chain,

say C1. Thus, this new chain partition has the desired property: A is a subset of every

element of the 1 or 2 element chain C1, so A is not in an anti-chain of maximum size.

Finally, we need to show that if n is odd, no anti-chain of maximum size contains

sets in both
[

n
⌊n/2⌋

]
and

[
n

⌈n/2⌉

]
. Suppose there is such an anti-chain, consisting of sets

Ak+1, . . . , Al in
[

n
⌈n/2⌉

]
, where l =

(
n

⌈n/2⌉
)
, and B1, . . . , Bk in

[
n

⌊n/2⌋

]
. The remaining sets

in
[

n
⌈n/2⌉

]
are A1, . . . , Ak, and the remaining sets in

[
n

⌊n/2⌋

]
are Bk+1, . . . , Bl.

Each set Bi, 1 ≤ i ≤ k, is contained in exactly ⌈n/2⌉ sets in
[

n
⌈n/2⌉

]
, and all must

be among A1, . . . , Ak. On average, then, each Ai, 1 ≤ i ≤ k, contains ⌈n/2⌉ sets among

B1, . . . , Bk. But each set Ai, 1 ≤ i ≤ k, contains exactly ⌈n/2⌉ sets in
[

n
⌊n/2⌋

]
, and so

each must contain exactly ⌈n/2⌉ of the sets B1, . . . , Bk and none of the sets Bk+1, . . . , Bl.

Let A1 = Aj1 = {x1, . . . , xr} and Bk+1 = {x1, . . . , xs, ys+1, . . . , yr−1}. Let Bim =

Ajm\{xs+m} and Ajm+1
= Bim∪{ys+m}, for 1 ≤ m ≤ r−s−1. Note that by the preceding

discussion, 1 ≤ im ≤ k and 1 ≤ jm ≤ k. Then Ajr−s = {x1, . . . , xs, ys+1, . . . , yr−1, xr}, so
Ajr−s ⊇ Bk+1, a contradiction. Hence there is no such anti-chain.

Exercises 1.7.

1. Sperner’s Theorem (1.7.6) tells us that
[
6
3

]
, with size 20, is the unique largest anti-chain

for 2[6]. The next largest anti-chains of the form
[
6
k

]
are

[
6
2

]
and

[
6
4

]
, with size 15. Find a

maximal anti-chain with size larger than 15 but less than 20. (As usual, maximal here means
that the anti-chain cannot be enlarged simply by adding elements. So you may not simply
use a subset of

[
6
3

]
.)

1.8 Stirling numbers

In exercise 4 in section 1.4, we saw the Stirling numbers of the second kind. Not surpris-

ingly, there are Stirling numbers of the first kind. Recall that Stirling numbers of the

second kind are defined as follows:

DEFINITION 1.8.1 The Stirling number of the second kind, S(n, k) or
{

n
k

}
, is the

number of partitions of [n] = {1, 2, . . . , n} into exactly k parts, 1 ≤ k ≤ n.
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Before we define the Stirling numbers of the first kind, we need to revisit permutations.

As we mentioned in section 1.7, we may think of a permutation of [n] either as a reordering

of [n] or as a bijection σ: [n] → [n]. There are different ways to write permutations when

thought of as functions. Two typical and useful ways are as a table, and in cycle form.

Consider this permutation σ: [5] → [5]: σ(1) = 3, σ(2) = 4, σ(3) = 5, σ(4) = 2, σ(5) = 1.

In table form, we write this as
(
1 2 3 4 5
3 4 5 2 1

)
, which is somewhat more compact, as we don’t

write “σ” five times. In cycle form, we write this same permutation as (1, 3, 5)(2, 4). Here

(1, 3, 5) indicates that σ(1) = 3, σ(3) = 5, and σ(5) = 1, whiile (2, 4) indicates σ(2) = 4

and σ(4) = 2. This permutation has two cycles, a 3-cycle and a 2-cycle. Note that (1, 3, 5),

(3, 5, 1), and (5, 1, 3) all mean the same thing. We allow 1-cycles to count as cycles, though

sometimes we don’t write them explicitly. In some cases, however, it is valuable to write

them to force us to remember that they are there. Consider this permutation:
(
1 2 3 4 5 6
3 4 5 2 1 6

)
.

If we write this in cycle form as (1, 3, 5)(2, 4), which is correct, there is no indication that

the underlying set is really [6]. Writing (1, 3, 5)(2, 4)(6) makes this clear. We say that this

permutation has 3 cycles, even though one of them is a trivial 1-cycle. Now we’re ready

for the next definition.

DEFINITION 1.8.2 The Stirling number of the first kind, s(n, k), is (−1)n−k times

the number of permutations of [n] with exactly k cycles. The corresponding unsigned

Stirling number of the first kind, the number of permutations of [n] with exactly k

cycles, is |s(n, k)|, sometimes written
[
n
k

]
. Using this notation, s(n, k) = (−1)n−k

[
n
k

]
.

Note that the use of
[
n
k

]
conflicts with the use of the same notation in section 1.7;

there should be no confusion, as we won’t be discussing the two ideas together.

Some values of
[
n
k

]
are easy to see; if n ≥ 1, then[n
n

]
= 1

[n
k

]
= 0, if k > n[n

1

]
= (n− 1)!

[n
0

]
= 0

It is sometimes convenient to say that
[
0
0

]
= 1. These numbers thus form a triangle in the

obvious way, just as the Stirling numbers of the first kind do. Here are lines 1–5 of the

triangle:
1
0 1
0 1 1
0 2 3 1
0 6 11 6 1
0 24 50 35 10 1

The first column is not particularly interesting, so often it is eliminated.
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In exercise 4 in section 1.4, we saw that{n
k

}
=

{
n− 1

k − 1

}
+ k ·

{
n− 1

k

}
. (1.8.1)

The unsigned Stirling numbers of the first kind satisfy a similar recurrence.

THEOREM 1.8.3
[
n
k

]
=
[
n−1
k−1

]
+ (n− 1) ·

[
n−1
k

]
, k ≥ 1, n ≥ 1.

Proof. The proof is by induction on n; the table above shows that it is true for the first

few lines. We split the permutations of [n] with k cycles into two types: those in which (n)

is a 1-cycle, and the rest. If (n) is a 1-cycle, then the remaining cycles form a permutation

of [n − 1] with k − 1 cycles, so there are
[
n−1
k−1

]
of these. Otherwise, n occurs in a cycle

of length at least 2, and removing n leaves a permutation of [n− 1] with k cycles. Given

a permutation σ of [n − 1] with k cycles, n can be added to any cycle in any position to

form a permutation of [n] in which (n) is not a 1-cycle. Suppose the lengths of the cycles

in σ are l1, l2, . . . , lk. In cycle number i, n may be added after any of the li elements in the

cycle. Thus, the total number of places that n can be added is l1+ l2+ · · ·+ lk = n− 1, so

there are (n− 1) ·
[
n−1
k

]
permutations of [n] in which (n) is not a 1-cycle. Now the total

number of permutations of [n] with k cycles is
[
n−1
k−1

]
+ (n− 1) ·

[
n−1
k

]
, as desired.

COROLLARY 1.8.4 s(n, k) = s(n− 1, k − 1)− (n− 1)s(n− 1, k).

The Stirling numbers satisfy two remarkable identities. First a definition:

DEFINITION 1.8.5 The Kronecker delta δn,k is 1 if n = k and 0 otherwise.

THEOREM 1.8.6 For n ≥ 0 and k ≥ 0,

n∑
j=0

s(n, j)S(j, k) =
n∑

j=0

(−1)n−j

[
n

j

]{
j

k

}
= δn,k

n∑
j=0

S(n, j)s(j, k) =

n∑
j=0

(−1)j−k

{
n

j

}[
j

k

]
= δn,k

Proof. We prove the first version, by induction on n. The first few values of n are easily

checked; assume n > 1. Now note that
[
n
0

]
= 0, so we may start the sum index j at 1.

When k > n,
{

j
k

}
= 0, for 1 ≤ j ≤ n, and so the sum is 0. When k = n, the only

non-zero term occurs when j = n, and is (−1)0
[
n
n

] {
n
n

}
= 1, so the sum is 1. Now suppose

k < n. When k = 0,
{

j
k

}
= 0 for j > 0, so the sum is 0, and we assume now that k > 0.
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We begin by applying the recurrence relations:

n∑
j=1

(−1)n−j

[
n

j

]{
j

k

}
=

n∑
j=1

(−1)n−j

([
n− 1

j − 1

]
+ (n− 1)

[
n− 1

j

]){
j

k

}

=

n∑
j=1

(−1)n−j

[
n− 1

j − 1

]{
j

k

}
+

n∑
j=1

(−1)n−j(n− 1)

[
n− 1

j

]{
j

k

}

=
n∑

j=1

(−1)n−j

[
n− 1

j − 1

]({
j − 1

k − 1

}
+ k

{
j − 1

k

})
+

n∑
j=1

(−1)n−j(n− 1)

[
n− 1

j

]{
j

k

}

=

n∑
j=1

(−1)n−j

[
n− 1

j − 1

]{
j − 1

k − 1

}
+

n∑
j=1

(−1)n−j

[
n− 1

j − 1

]
k

{
j − 1

k

}

+
n∑

j=1

(−1)n−j(n− 1)

[
n− 1

j

]{
j

k

}
.

Consider the first sum in the last expression:

n∑
j=1

(−1)n−j

[
n− 1

j − 1

]{
j − 1

k − 1

}
=

n∑
j=2

(−1)n−j

[
n− 1

j − 1

]{
j − 1

k − 1

}

=
n−1∑
j=1

(−1)n−j−1

[
n− 1

j

]{
j

k − 1

}
= δn−1,k−1 = 0,

since k − 1 < n− 1 (or trivially, if k = 1). Thus, we are left with just two sums.

n∑
j=1

(−1)n−j

[
n− 1

j − 1

]
k

{
j − 1

k

}
+

n∑
j=1

(−1)n−j(n− 1)

[
n− 1

j

]{
j

k

}

= k
n−1∑
j=1

(−1)n−j−1

[
n− 1

j

]{
j

k

}
− (n− 1)

n−1∑
j=1

(−1)n−j−1

[
n− 1

j

]{
j

k

}
= kδn−1,k − (n− 1)δn−1,k.

Now if k = n − 1, this is (n − 1)δn−1,n−1 − (n − 1)δn−1,n−1 = 0, while if k < n − 1 it is

kδn−1,k − (n− 1)δn−1,k = k · 0− (n− 1) · 0 = 0.

If we interpret the triangles containing the s(n, k) and S(n, k) as matrices, either

m ×m, by taking the first m rows and columns, or even the infinite matrices containing

the entire triangles, the sums of the theorem correspond to computing the matrix product

in both orders. The theorem then says that this product consists of ones on the diagonal
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and zeros elsewhere, so these matrices are inverses. Here is a small example:
1 0 0 0 0 0
0 1 0 0 0 0
0 −1 1 0 0 0
0 2 −3 1 0 0
0 −6 11 −6 1 0
0 24 −50 35 −10 1




1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 1 3 1 0 0
0 1 7 6 1 0
0 1 15 25 10 1

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



Exercises 1.8.

1. Find a simple expression for
[

n
n−1

]
.

2. Find a simple expression for
[
n
1

]
.

3. What is
∑n

k=0

[
n
k

]
?

4. What is
∑n

k=0 s(n, k)?

5. Show that xn =
∏n−1

k=0 (x− k) =
∑n

i=0 s(n, i)x
i, n ≥ 1; xn is called a falling factorial. Find

a similar identity for xn =
∏n−1

k=0 (x+ k); xn is a rising factorial.

6. Show that

n∑
k=0

{n
k

}
xk = xn, n ≥ 1; xk is defined in the previous exercise. The previous

exercise shows how to express the falling factorial in terms of powers of x; this exercise shows
how to express the powers of x in terms of falling factorials.

7. Prove: S(n, k) =

n−1∑
i=k−1

(
n− 1

i

)
S(i, k − 1).

8. Prove:
[n
k

]
=

n−1∑
i=k−1

(n− i− 1)!

(
n− 1

i

)[
i

k − 1

]
.

9. Use the previous exercise to prove s(n, k) =

n−1∑
i=k−1

(−1)n−i−1(n− i− 1)!

(
n− 1

i

)
s(i, k − 1).

10. We have defined
[
n
k

]
and

{
n
k

}
for n, k ≥ 0. We want to extend the definitions to all integers.

Without some extra stipulations, there are many ways to do this. Let us suppose that for
n ̸= 0 we want

[
n
0

]
=
[
0
n

]
=
{

n
0

}
=
{

0
n

}
= 0, and we want the recurrence relations of

equation 1.8.1 and in theorem 1.8.3 to be true. Show that under these conditions there is a

unique way to extend the definitions to all integers, and that when this is done,
{

n
k

}
=
[
−k
−n

]
for all integers n and k. Thus, the extended table of values for either

[
n
k

]
or
{

n
k

}
will contain

all the values of both
[
n
k

]
and

{
n
k

}
.

11. Under the assumptions that s(n, 0) = s(0, n) = 0 for n ̸= 0, and s(n, k) = s(n − 1, k − 1) −
(n−1)s(n−1, k), extend the table for s(n, k) to all integers, and find a connection to S(n, k)
similar to that in the previous problem.

12. Prove corollary 1.8.4.

13. Prove the remaining part of theorem 1.8.6.
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Inclusion-Exclusion

2.1 The Inclusion-Exclusion Formula

Let’s return to a problem we have mentioned but not solved:

EXAMPLE 2.1.1 How many submultisets of the multiset {2 · a, 4 · b, 3 · c} have size 7?

We recast the problem: this is the number of solutions to x1 + x2 + x3 = 7 with

0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 3. We know that the number of solutions in non-

negative integers is
(
7+3−1
3−1

)
=
(
9
2

)
, so this is an overcount, since we count solutions that

do not meet the upper bound restrictions. For example, this includes some solutions with

x1 ≥ 3; how many of these are there? This is a problem we can solve: it is the number

of solutions to x1 + x2 + x3 = 7 with 3 ≤ x1, 0 ≤ x2, 0 ≤ x3. This is the same as the

number of non-negative solutions of y1 + y2 + y3 = 7 − 3 = 4, or
(
4+3−1
3−1

)
=
(
6
2

)
. Thus,(

9
2

)
−
(
6
2

)
corrects this overcount. If we likewise correct for the overcounting of solutions

with x2 ≥ 5 and x3 ≥ 4, we get
(
9
2

)
−
(
6
2

)
−
(
4
2

)
−
(
5
2

)
. Is this correct? Not necessarily,

because we now have a potential undercount: we have twice subtracted 1 for a solution in

which both x1 ≥ 3 and x2 ≥ 5, when we should have subtracted just 1. However, by good

fortune, there are no such solutions, since 3 + 5 > 7. But the same applies to the other

pairs of variables: How many solutions have x1 ≥ 3 and x3 ≥ 4? It’s easy to see there is

only one such solution, namely 3 + 0 + 4 = 7. Finally, there are no solutions with x2 ≥ 5

and x3 ≥ 4, so the corrected count is now
(
9
2

)
−
(
6
2

)
−
(
4
2

)
−
(
5
2

)
+1. This does not take into

account any solutions in which x1 ≥ 3, x2 ≥ 5, and x3 ≥ 4, but there are none of these, so

43
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the actual count is(
9

2

)
−
(
6

2

)
−
(
4

2

)
−
(
5

2

)
+ 1 = 36− 15− 6− 10 + 1 = 6.

This is small enough that it is not hard to verify by listing all the solutions.

So we solved this problem, but it is apparent that it could have been much worse,

if the number of variables were larger and there were many complicated overcounts and

undercounts. Remarkably, it is possible to streamline this sort of argument; it will still,

often, be quite messy, but the reasoning will be simpler.

Let’s start by rephrasing the example. Let S be the set of all non-negative solutions

to x1 + x2 + x3 = 7, let A1 be all solutions with x1 ≥ 3, A2 all solutions with x2 ≥ 5, and

A3 all solutions with x3 ≥ 4. We want to know the size of Ac
1 ∩ Ac

2 ∩ Ac
3, the solutions

for which it is not true that x1 ≥ 3 and not true that x2 ≥ 5 and not true that x3 ≥ 4.

Examining our solution, we see that the final count is

|S| − |A1| − |A2| − |A3|+ |A1 ∩A2|+ |A1 ∩A3|+ |A2 ∩A3| − |A1 ∩A2 ∩A3|
= 36− 15− 6− 10 + 0 + 1 + 0− 0.

This pattern is completely general:

THEOREM 2.1.2 The inclusion-exclusion formula If Ai ⊆ S for 1 ≤ i ≤ n then

|Ac
1 ∩ · · · ∩Ac

n| = |S| − |A1| − · · · − |An|+ |A1 ∩A2|+ · · · − |A1 ∩A2 ∩A3| − · · · ,

or more compactly:

|
n∩

i=1

Ac
i | = |S|+

n∑
k=1

(−1)k
∑

|
k∩

j=1

Aij |,

where the internal sum is over all subsets {i1, i2, . . . , ik} of {1, 2, . . . , n}.

Proof. We need to show that each element of
∩n

i=1 A
c
i is counted once by the right hand

side, and every other element of S is counted zero times. The first of these is easy: if

x ∈
∩n

i=1 A
c
i then for every i, x /∈ Ai, so x is in none of the sets involving the Ai on the

right hand side, and so x is counted, once, by the term |S|.
Now suppose x /∈

∩n
i=1 A

c
i . On the right hand side, x is counted once by the term

|S|. For some values i1, i2, . . . , ik, x ∈ Aim , 1 ≤ m ≤ k, and x is not in the remaining sets

Ai. Then x is counted zero times by any term involving an Ai with i /∈ {i1, i2, . . . , ik},
and is counted once, positively or negatively, by each term involving only Ai1 , Ai2 , . . . , Aik .

There are k terms of the form −|Aim |, which count x a total of −k times. There are
(
k
2

)
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terms of the form |Ail ∩Aim |, counting x a total of
(
k
2

)
times. Continuing in this way, we

see that the final count for x on the right hand side is

1− k +

(
k

2

)
−
(
k

3

)
+ · · ·+ (−1)k

(
k

k

)
,

or more compactly
k∑

i=0

(−1)i
(
k

i

)
.

We know that this alternating sum of binomial coefficients is zero, so x is counted zero

times, as desired. (See equation 1.3.1.)

An alternate form of the inclusion exclusion formula is sometimes useful.

COROLLARY 2.1.3 If Ai ⊆ S for 1 ≤ i ≤ n then

|
n∪

i=1

Ai| =
n∑

k=1

(−1)k+1
∑

|
k∩

j=1

Aij |,

where the internal sum is over all subsets {i1, i2, . . . , ik} of {1, 2, . . . , n}.

Proof. Since (
∪n

i=1 Ai)
c =

∩n
i=1 A

c
i ,

|
n∪

i=1

Ai| = |S| − |
n∩

i=1

Ac
i |

= |S| − (|S|+
n∑

k=1

(−1)k
∑

|
k∩

j=1

Aij |)

= (−1)
n∑

k=1

(−1)k
∑

|
k∩

j=1

Aij |

=

n∑
k=1

(−1)k+1
∑

|
k∩

j=1

Aij |.

Since the right hand side of the inclusion-exclusion formula consists of 2n terms to

be added, it can still be quite tedious. In some nice cases, all intersections of the same

number of sets have the same size. Since there are
(
n
k

)
possible intersections consisting of

k sets, the formula becomes

|
n∩

i=1

Ac
i | = |S|+

n∑
k=1

(−1)k
(
n

k

)
mk, (2.1.1)

where mk is the size of an intersection of k of the sets.
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EXAMPLE 2.1.4 Find the number of solutions to x1+x2+x3+x4 = 25, 0 ≤ xi ≤ 10.

Let Ai be the solutions of x1 + x2 + x3 + x4 = 25 with xi ≥ 11. The number of solutions

with xi ≥ 0 for all i is
(
25+4−1

4−1

)
=
(
25+3

3

)
. Also |Ai| =

(
14+3

3

)
, and |Ai∩Aj | =

(
3+3
3

)
. There

are no solutions with 3 or 4 of the variables larger than 10. Hence the number of solutions

is (
25 + 3

3

)
−
(
4

1

)(
14 + 3

3

)
+

(
4

2

)(
3 + 3

3

)
= 676.

Exercises 2.1.

1. List all 6 solutions to the restricted equation in example 2.1.1, and list the corresponding 6
submultisets.

2. Find the number of integer solutions to x1 + x2 + x3 + x4 = 25, 1 ≤ x1 ≤ 6, 2 ≤ x2 ≤ 8,
0 ≤ x3 ≤ 8, 5 ≤ x4 ≤ 9.

3. Find the number of submultisets of {25 · a, 25 · b, 25 · c, 25 · d} of size 80.

4. Recall that
{

n
k

}
is a Stirling number of the second kind (definition 1.8.1). Prove that for

n ≥ k ≥ 0, {n
k

}
=

1

k!

k∑
i=0

(−1)k−iin
(
k

i

)
.

Do n = 0 as a special case, then use inclusion-exclusion for the rest. You may assume, by
convention, that 00 = 1.

2.2 Forbidden Position Permutations

Suppose we shuffle a deck of cards; what is the probability that no card is in its original

location? More generally, how many permutations of [n] = {1, 2, 3, . . . , n} have none of

the integers in their “correct” locations? That is, 1 is not first, 2 is not second, and so on.

Such a permutation is called a derangement of [n].

Let S be the set of all permutations of [n] and Ai be the permutations of [n] in which

i is in the correct place. Then we want to know |
∩n

i=1 A
c
i |.

For any i, |Ai| = (n − 1)!: once i is fixed in position i, the remaining n − 1 integers

can be placed in any locations.

What about |Ai ∩Aj |? If both i and j are in the correct position, the remaining n− 2

integers can be placed anywhere, so |Ai ∩Aj | = (n− 2)!.
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In the same way, we see that |Ai1 ∩Ai2 ∩ · · · ∩Aik | = (n− k)!. Thus, by the inclusion-

exclusion formula, in the form of equation 2.1.1,

|
n∩

i=1

Ac
i | = |S|+

n∑
k=1

(−1)k
(
n

k

)
(n− k)!

= n! +
n∑

k=1

(−1)k
n!

k!(n− k)!
(n− k)!

= n! +
n∑

k=1

(−1)k
n!

k!

= n! + n!

n∑
k=1

(−1)k
1

k!

= n!
(
1 +

n∑
k=1

(−1)k
1

k!

)
= n!

n∑
k=0

(−1)k
1

k!
.

The last sum should look familiar:

ex =

∞∑
k=0

1

k!
xk.

Substituting x = −1 gives

e−1 =

∞∑
k=0

1

k!
(−1)k.

The probability of getting a derangement by chance is then

1

n!
n!

n∑
k=0

(−1)k
1

k!
=

n∑
k=0

(−1)k
1

k!
,

and when n is bigger than 6, this is quite close to

e−1 ≈ 0.3678.

So in the case of a deck of cards, the probability of a derangement is about 37%.

Let Dn = n!
∑n

k=0(−1)k 1
k! . These derangement numbers have some interesting

properties. The derangements of [n] may be produced as follows: For each i ∈ {2, 3, . . . , n},
put i in position 1 and 1 in position i. Then permute the numbers {2, 3, . . . , i−1, i+1, . . . n}
in all possible ways so that none of these n− 2 numbers is in the correct place. There are
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Dn−2 ways to do this. Then, keeping 1 in position i, derange the numbers {i, 2, 3, . . . , i−
1, i+ 1, . . . n}, with the “correct” position of i now considered to be position 1. There are

Dn−1 ways to do this. Thus, Dn = (n− 1)(Dn−1 +Dn−2).

We explore this recurrence relation a bit:

Dn = nDn−1 −Dn−1 + (n− 1)Dn−2 (∗)
= nDn−1 − (n− 2)(Dn−2 +Dn−3) + (n− 1)Dn−2

= nDn−1 − (n− 2)Dn−2 − (n− 2)Dn−3 + (n− 1)Dn−2

= nDn−1 +Dn−2 − (n− 2)Dn−3 (∗)
= nDn−1 + (n− 3)(Dn−3 +Dn−4)− (n− 2)Dn−3

= nDn−1 + (n− 3)Dn−3 + (n− 3)Dn−4 − (n− 2)Dn−3

= nDn−1 −Dn−3 + (n− 3)Dn−4 (∗)
= nDn−1 − (n− 4)(Dn−4 +Dn−5) + (n− 3)Dn−4

= nDn−1 − (n− 4)Dn−4 − (n− 4)Dn−5 + (n− 3)Dn−4

= nDn−1 +Dn−4 − (n− 4)Dn−5. (∗)

It appears from the starred lines that the pattern here is that

Dn = nDn−1 + (−1)kDn−k + (−1)k+1(n− k)Dn−k−1.

If this continues, we should get to

Dn = nDn−1 + (−1)n−2D2 + (−1)n−1(2)D1.

Since D2 = 1 and D1 = 0, this would give

Dn = nDn−1 + (−1)n,

since (−1)n = (−1)n−2. Indeed this is true, and can be proved by induction. This gives a

somewhat simpler recurrence relation, making it quite easy to compute Dn.

• • •

There are many similar problems.

EXAMPLE 2.2.1 How many permutations of [n] contain no instance of i followed by

i+ 1?

By a similar use of the inclusion-exclusion formula, it turns out that this is

Qn = n!

n−1∑
k=0

(−1)k
1

k!
+ (n− 1)!

n−1∑
k=1

(−1)k−1 1

(k − 1)!
.

Note that the limits on the two sums are not identical.
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Exercises 2.2.

1. Prove that Dn = nDn−1 + (−1)n when n ≥ 2.

2. Prove that Dn is even if and only if n is odd.

3. Provide the missing details for example 2.2.1. What is lim
n→∞

Qn

n!
?

4. Find the number of permutations of 1, 2, . . . , 8 that have no odd number in the correct
position.

5. Find the number of permutations of 1, 2, . . . , 8 that have at least one odd number in the
correct position.

6. How many permutations of [n] have exactly k numbers in their correct positions?

7. Give a combinatorial proof that

n! =

n∑
k=0

(
n

k

)
Dn−k.

8. A small merry-go-round has 8 seats occupied by 8 children. In how many ways can the
children change places so that no child sits behind the same child as on the first ride? The
seats do not matter, only the relative positions of the children.

9. On the way into a party everyone checks a coat and a bag at the door. On the way out, the
attendant hands out coats and bags randomly. In how many ways can this be done if

(a) No one gets either their own coat or their own bag?

(b) One may get one’s own coat, or bag, but not both.

10. Suppose n people are seated in m ≥ n chairs in a room. At some point there is a break, and
everyone leaves the room. When they return, in how many ways can they be seated so that
no person occupies the same chair as before the break?





3
Generating Functions

As we have seen, a typical counting problem includes one or more parameters, which of

course show up in the solutions, such as
(
n
k

)
, P (n, k), or the number of derangements of

[n]. Also recall that

(x+ 1)n =
n∑

k=0

(
n

k

)
xk.

This provides the values
(
n
k

)
as coefficients of the Maclaurin expansion of a function. This

turns out to be a useful idea.

DEFINITION 3.0.1 f(x) is a generating function for the sequence a0, a1, a2, . . . if

f(x) =
∞∑
i=0

aix
i.

Sometimes a generating function can be used to find a formula for its coefficients, but

if not, it gives a way to generate them. Generating functions can also be useful in proving

facts about the coefficients.

3.1 Newton's Binomial Theorem

Recall that (
n

k

)
=

n!

k! (n− k)!
=

n(n− 1)(n− 2) · · · (n− k + 1)

k!
.

51
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The expression on the right makes sense even if n is not a non-negative integer, so long as

k is a non-negative integer, and we therefore define(
r

k

)
=

r(r − 1)(r − 2) · · · (r − k + 1)

k!

when r is a real number. For example,(
1/2

4

)
=

(1/2)(−1/2)(−3/2)(−5/2)

4!
=

−5

128
and

(
−2

3

)
=

(−2)(−3)(−4)

3!
= −4.

These generalized binomial coefficients share some important properties of the usual

binomial coefficients, most notably that(
r

k

)
=

(
r − 1

k − 1

)
+

(
r − 1

k

)
. (3.1.1)

Then remarkably:

THEOREM 3.1.1 Newton’s Binomial Theorem For any real number r that is

not a non-negative integer,

(x+ 1)r =
∞∑
i=0

(
r

i

)
xi

when −1 < x < 1.

Proof. It is not hard to see that the series is the Maclaurin series for (x+1)r, and that

the series converges when −1 < x < 1. It is rather more difficult to prove that the series is

equal to (x+ 1)r; the proof may be found in many introductory real analysis books.

EXAMPLE 3.1.2 Expand the function (1− x)−n when n is a positive integer.

We first consider (x+ 1)−n; we can simplify the binomial coefficients:

(−n)(−n− 1)(−n− 2) · · · (−n− i+ 1)

i!
= (−1)i

(n)(n+ 1) · · · (n+ i− 1)

i!

= (−1)i
(n+ i− 1)!

i! (n− 1)!

= (−1)i
(
n+ i− 1

i

)
= (−1)i

(
n+ i− 1

n− 1

)
.

Thus

(x+ 1)−n =
∞∑
i=0

(−1)i
(
n+ i− 1

n− 1

)
xi =

∞∑
i=0

(
n+ i− 1

n− 1

)
(−x)i.

Now replacing x by −x gives

(1− x)−n =
∞∑
i=0

(
n+ i− 1

n− 1

)
xi.

So (1 − x)−n is the generating function for
(
n+i−1
n−1

)
, the number of submultisets of {∞ ·

1,∞ · 2, . . . ,∞ · n} of size i.
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In many cases it is possible to directly construct the generating function whose coeffi-

cients solve a counting problem.

EXAMPLE 3.1.3 Find the number of solutions to x1 + x2 + x3 + x4 = 17, where

0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 5, 0 ≤ x3 ≤ 5, 2 ≤ x4 ≤ 6.

We can of course solve this problem using the inclusion-exclusion formula, but we use

generating functions. Consider the function

(1+ x+ x2)(1+ x+ x2 + x3 + x4 + x5)(1+ x+ x2 + x3 + x4 + x5)(x2 + x3 + x4 + x5 + x6).

We can multiply this out by choosing one term from each factor in all possible ways. If

we then collect like terms, the coefficient of xk will be the number of ways to choose one

term from each factor so that the exponents of the terms add up to k. This is precisely the

number of solutions to x1 + x2 + x3 + x4 = k, where 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 5, 0 ≤ x3 ≤ 5,

2 ≤ x4 ≤ 6. Thus, the answer to the problem is the coefficient of x17. With the help of a

computer algebra system we get

(1 + x+ x2)(1 + x+ x2 + x3 + x4 + x5)2(x2 + x3 + x4 + x5 + x6)

= x18 + 4x17 + 10x16 + 19x15 + 31x14 + 45x13 + 58x12 + 67x11 + 70x10

+ 67x9 + 58x8 + 45x7 + 31x6 + 19x5 + 10x4 + 4x3 + x2,

so the answer is 4.

EXAMPLE 3.1.4 Find the generating function for the number of solutions to x1 +

x2 + x3 + x4 = k, where 0 ≤ x1 ≤ ∞, 0 ≤ x2 ≤ 5, 0 ≤ x3 ≤ 5, 2 ≤ x4 ≤ 6.

This is just like the previous example except that x1 is not bounded above. The

generating function is thus

f(x) = (1 + x+ x2 + · · ·)(1 + x+ x2 + x3 + x4 + x5)2(x2 + x3 + x4 + x5 + x6)

= (1− x)−1(1 + x+ x2 + x3 + x4 + x5)2(x2 + x3 + x4 + x5 + x6)

=
(1 + x+ x2 + x3 + x4 + x5)2(x2 + x3 + x4 + x5 + x6)

1− x
.

Note that (1 − x)−1 = (1 + x + x2 + · · ·) is the familiar geometric series from calculus;

alternately, we could use example 3.1.2. Unlike the function in the previous example, this

function has an infinite expansion:

f(x) = x2 + 4x3 + 10x4 + 20x5 + 35x6 + 55x7 + 78x8

+ 102x9 + 125x10 + 145x11 + 160x12 + 170x13 + 176x14

+ 179x15 + 180x16 + 180x17 + 180x18 + 180x19 + 180x20 + · · · .

You can see how to do this in Sage.

https://www.whitman.edu/mathematics/cgt_online/sage/expand_gen_fn_sage.html
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EXAMPLE 3.1.5 Find a generating function for the number of submultisets of {∞ ·
a,∞·b,∞·c} in which there are an odd number of as, an even number of bs, and any number

of cs. As we have seen, this is the same as the number of solutions to x1 + x2 + x3 = n in

which x1 is odd, x2 is even, and x3 is unrestricted. The generating function is therefore

(x+ x3 + x5 + · · ·)(1 + x2 + x4 + · · ·)(1 + x+ x2 + x3 + · · ·)

= x(1 + (x2) + (x2)2 + (x2)3 + · · ·)(1 + (x2) + (x2)2 + (x2)3 + · · ·) 1

1− x

=
x

(1− x2)2(1− x)
.

Exercises 3.1.

For some of these exercises, you may want to use the sage applet above, in example 3.1.4, or your
favorite computer algebra system.

1. Prove that
(
r
k

)
=
(
r−1
k−1

)
+
(
r−1
k

)
.

2. Show that the Maclaurin series for (x+ 1)r is
∑∞

i=0

(
r
i

)
xi.

3. Concerning example 3.1.4, show that all coefficients beginning with x16 are 180.

4. Use a generating function to find the number of solutions to x1 + x2 + x3 + x4 = 14, where
0 ≤ x1 ≤ 3, 2 ≤ x2 ≤ 5, 0 ≤ x3 ≤ 5, 4 ≤ x4 ≤ 6.

5. Find the generating function for the number of solutions to x1 + x2 + x3 + x4 = k, where
0 ≤ x1 ≤ ∞, 3 ≤ x2 ≤ ∞, 2 ≤ x3 ≤ 5, 1 ≤ x4 ≤ 5.

6. Find a generating function for the number of non-negative integer solutions to 3x+2y+7z =
n.

7. Suppose we have a large supply of red, white, and blue balloons. How many different bunches
of 10 balloons are there, if each bunch must have at least one balloon of each color and the
number of white balls must be even?

8. Use generating functions to show that every positive integer can be written in exactly one
way as a sum of distinct powers of 2.

9. Suppose we have a large supply of blue and green candles, and one gold candle. How many
collections of n candles are there in which the number of blue candles is even, the number of
green candles is any number, and the number of gold candles is at most one?

3.2 Exponential Generating Functions

There are other ways that a function might be said to generate a sequence, other than as

what we have called a generating function. For example,

ex =
∞∑

n=0

1

n!
xn
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is the generating function for the sequence 1, 1, 1
2 ,

1
3! , . . .. But if we write the sum as

ex =

∞∑
n=0

1 · x
n

n!
,

considering the n! to be part of the expression xn/n!, we might think of this same function

as generating the sequence 1, 1, 1, . . ., interpreting 1 as the coefficient of xn/n!. This is not

a very interesting sequence, of course, but this idea can often prove fruitful. If

f(x) =

∞∑
n=0

an
xn

n!
,

we say that f(x) is the exponential generating function for a0, a1, a2, . . ..

EXAMPLE 3.2.1 Find an exponential generating function for the number of permu-

tations with repetition of length n of the set {a, b, c}, in which there are an odd number

of a s, an even number of b s, and any number of c s.

For a fixed n and fixed numbers of the letters, we already know how to do this. For

example, if we have 3 a s, 4 b s, and 2 c s, there are
(

9
3 4 5

)
such permutations. Now consider

the following function:
∞∑
i=0

x2i+1

(2i+ 1)!

∞∑
i=0

x2i

(2i)!

∞∑
i=0

xi

i!
.

What is the coefficient of x9/9! in this product? One way to get an x9 term is

x3

3!

x4

4!

x2

2!
=

9!

3! 4! 2!

x9

9!
=

(
9

3 4 5

)
x9

9!
.

That is, this one term counts the number of permutations in which there are 3 a s, 4 b s,

and 2 c s. The ultimate coefficient of x9/9! will be the sum of many such terms, counting

the contributions of all possible choices of an odd number of a s, an even number of b s,

and any number of c s.

Now we notice that

∞∑
i=0

xi

i!
= ex, and that the other two sums are closely related to

this. A little thought leads to

ex + e−x =

∞∑
i=0

xi

i!
+

∞∑
i=0

(−x)i

i!
=

∞∑
i=0

xi + (−x)i

i!
.

Now xi + (−x)i is 2xi when i is even, and 0 when x is odd. Thus

ex + e−x =
∞∑
i=0

2x2i

(2i)!
,
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so that
∞∑
i=0

x2i

(2i)!
=

ex + e−x

2
.

A similar manipulation shows that

∞∑
i=0

x2i+1

(2i+ 1)!
=

ex − e−x

2
.

Thus, the generating function we seek is

ex − e−x

2

ex + e−x

2
ex =

1

4
(ex − e−x)(ex + e−x)ex =

1

4
(e3x − e−x).

Notice the similarity to example 3.1.5.

Exercises 3.2.

1. Find the coefficient of x9/9! in the function of example 3.2.1. You may use Sage or a similar
program.

2. Find an exponential generating function for the number of permutations with repetition of
length n of the set {a, b, c}, in which there are an odd number of a s, an even number of b s,
and an even number of c s.

3. Find an exponential generating function for the number of permutations with repetition of
length n of the set {a, b, c}, in which the number of a s is even and at least 2, the number of
b s is even and at most 6, and the number of c s is at least 3.

4. In how many ways can we paint the 10 rooms of a hotel if at most three can be painted red,
at most 2 painted green, at most 1 painted white, and any number can be painted blue or
orange?

5. Recall from section 1.4 that the Bell numbers Bn count all of the partitions of {1, 2, . . . , n}.

Let f(x) =

∞∑
n=0

Bn · x
n

n!
, and note that

f ′(x) =
∞∑

n=1

Bn
xn−1

(n− 1)!
=

∞∑
n=0

Bn+1
xn

n!
=

∞∑
n=0

(
n∑

k=0

(
n

k

)
Bn−k

)
xn

n!
,

using the recurrence relation 1.4.1 for Bn+1 from section 1.4. Now it is possible to write this
as a product of two infinite series:

f ′(x) =

(
∞∑

n=0

Bn · x
n

n!

)(
∞∑

n=0

anx
n

)
= f(x)g(x).

Find an expression for an that makes this true, which will tell you what g(x) is, then solve
the differential equation for f(x), the exponential generating function for the Bell numbers.

From section 1.4, the first few Bell numbers are 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147,
115975, 678570, 4213597, 27644437. You can use Sage to check your answer.

https://www.whitman.edu/mathematics/cgt_online/sage/sage_exp_gf.html
https://www.whitman.edu/mathematics/cgt_online/sage/sage_exp_gf.html
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3.3 Partitions of Integers

DEFINITION 3.3.1 A partition of a positive integer n is a multiset of positive integers

that sum to n. We denote the number of partitions of n by pn.

Typically a partition is written as a sum, not explicitly as a multiset. Using the usual

convention that an empty sum is 0, we say that p0 = 1.

EXAMPLE 3.3.2 The partitions of 5 are

5

4 + 1

3 + 2

3 + 1 + 1

2 + 2 + 1

2 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1.

Thus p5 = 7.

There is no simple formula for pn, but it is not hard to find a generating function

for them. As with some previous examples, we seek a product of factors so that when

the factors are multiplied out, the coefficient of xn is pn. We would like each xn term

to represent a single partition, before like terms are collected. A partition is uniquely

described by the number of 1s, number of 2s, and so on, that is, by the repetition numbers

of the multiset. We devote one factor to each integer:

(1+x+x2+x3+ · · ·)(1+x2+x4+x6+ · · ·) · · · (1+xk +x2k +x3k + · · ·) · · · =
∞∏
k=1

∞∑
i=0

xik.

When this product is expanded, we pick one term from each factor in all possible ways, with

the further condition that we only pick a finite number of “non-1” terms. For example,

if we pick x3 from the first factor, x3 from the third factor, x15 from the fifth factor,

and 1s from all other factors, we get x21. In the context of the product, this represents

3 · 1 + 1 · 3 + 3 · 5, corresponding to the partition 1 + 1 + 1 + 3 + 5 + 5 + 5, that is, three

1s, one 3, and three 5s. Each factor is a geometric series; the kth factor is

1 + xk + (xk)2 + (xk)3 + · · · = 1

1− xk
,

so the generating function can be written

∞∏
k=1

1

1− xk
.
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Note that if we are interested in some particular pn, we do not need the entire infinite

product, or even any complete factor, since no partition of n can use any integer greater

than n, and also cannot use more than n/k copies of k.

EXAMPLE 3.3.3 Find p8.

We expand

(1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8)(1 + x2 + x4 + x6 + x8)(1 + x3 + x6)

(1 + x4 + x8)(1 + x5)(1 + x6)(1 + x7)(1 + x8)

= 1 + x+ 2x2 + 3x3 + 5x4 + 7x5 + 11x6 + 15x7 + 22x8 + · · ·+ x56,

so p8 = 22. Note that all of the coefficients prior to this are also correct, but the following

coefficients are not necessarily the corresponding partition numbers.

Partitions of integers have some interesting properties. Let pd(n) be the number of

partitions of n into distinct parts; let po(n) be the number of partitions into odd parts.

EXAMPLE 3.3.4 For n = 6, the partitions into distinct parts are

6, 5 + 1, 4 + 2, 3 + 2 + 1,

so pd(6) = 4, and the partitions into odd parts are

5 + 1, 3 + 3, 3 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1,

so po(6) = 4.

In fact, for every n, pd(n) = po(n), and we can see this by manipulating generating

functions. The generating function for pd(n) is

fd(x) = (1 + x)(1 + x2)(1 + x3) · · · =
∞∏
i=1

(1 + xi).

The generating function for po(n) is

fo(x) = (1 + x+ x2 + x3 + · · ·)(1 + x3 + x6 + x9 + · · ·) · · · =
∞∏
i=0

1

1− x2i+1
.

We can write

fd(x) =
1− x2

1− x
· 1− x4

1− x2
· 1− x6

1− x3
· · ·

and notice that every numerator is eventually canceled by a denominator, leaving only the

denominators containing odd powers of x, so fd(x) = fo(x).
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We can also use a recurrence relation to find the partition numbers, though in a

somewhat less direct way than the binomial coefficients or the Bell numbers. Let pk(n) be

the number of partitions of n into exactly k parts. We will find a recurrence relation to

compute the pk(n), and then

pn =
n∑

k=1

pk(n).

Now consider the partitions of n into k parts. Some of these partitions contain no 1s, like

3+3+4+6, a partition of 16 into 4 parts. Subtracting 1 from each part, we get a partition

of n − k into k parts; for the example, this is 2 + 2 + 3 + 5. The remaining partitions of

n into k parts contain a 1. If we remove the 1, we are left with a partition of n − 1 into

k − 1 parts. This gives us a 1–1 correspondence between the partitions of n into k parts,

and the partitions of n − k into k parts together with the partitions of n − 1 into k − 1

parts, so pk(n) = pk(n− k) + pk−1(n− 1).

Using this recurrence we can build a triangle containing the pk(n), and the row sums of

this triangle give the partition numbers. For all n, p1(n) = 1, which gives the first column

of the triangle, after which the recurrence applies. Also, note that pk(n) = 0 when k > n

and we let pk(0) = 0; these are needed in some cases to compute the pk(n − k) term of

the recurrence. Here are the first few rows of the triangle; at the left are the row numbers,

and at the right are the row sums, that is, the partition numbers. For the last row, each

entry is the sum of the like-colored numbers in the previous rows. Note that beginning

with p4(7) = 3 in the last row, pk(7) = pk−1(6), as pk(7− k) = 0.

1 1 1

2 1 1 2

3 1 1 1 3

4 1 2 1 1 5

5 1 2 2 1 1 7

6 1 3 3 2 1 1 11

7 1 3 4 3 2 1 1 15

Yet another sometimes useful way to think of a partition is with a Ferrers diagram.

Each integer in the partition is represented by a row of dots, and the rows are ordered

from longest on the top to shortest at the bottom. For example, the partition 3+3+4+5

would be represented by

• • •
• • •
• • • •
• • • • •

The conjugate of a partition is the one corresponding to the Ferrers diagram produced

by flipping the diagram for the original partition across the main diagonal, thus turning



60 Chapter 3 Generating Functions

rows into columns and vice versa. For the diagram above, the conjugate is

•
• •
• • • •
• • • •
• • • •

with corresponding partition 1 + 2 + 4 + 4 + 4. This concept can occasionally make facts

about partitions easier to see than otherwise. Here is a classic example: the number of

partitions of n with largest part k is the same as the number of partitions into k parts,

pk(n). The action of conjugation takes every partition of one type into a partition of the

other: the conjugate of a partition into k parts is a partition with largest part k and vice

versa. This establishes a 1–1 correspondence between partitions into k parts and partitions

with largest part k.

Exercises 3.3.

1. Use generating functions to find p15.

2. Find the generating function for the number of partitions of an integer into distinct odd
parts. Find the number of such partitions of 20.

3. Find the generating function for the number of partitions of an integer into distinct even
parts. Find the number of such partitions of 30.

4. Find the number of partitions of 25 into odd parts.

5. Find the generating function for the number of partitions of an integer into k parts; that is,
the coefficient of xn is the number of partitions of n into k parts.

6. Complete row 8 of the table for the pk(n), and verify that the row sum is 22, as we saw in
example 3.3.3.

7. A partition of n is self-conjugate if its Ferrers diagram is symmetric around the main diagonal,
so that its conjugate is itself. Show that the number of self-conjugate partitions of n is equal
to the number of partitions of n into distinct odd parts.

3.4 Recurrence Relations

A recurrence relation defines a sequence {ai}∞i=0 by expressing a typical term an in

terms of earlier terms, ai for i < n. For example, the famous Fibonacci sequence is defined

by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.

Note that some initial values must be specified for the recurrence relation to define a unique

sequence.

The starting index for the sequence need not be zero if it doesn’t make sense or some

other starting index is more convenient. We saw two recurrence relations for the number



3.4 Recurrence Relations 61

of derangements of [n]:

D1 = 0, Dn = nDn−1 + (−1)n.

and

D1 = 0, D2 = 1, Dn = (n− 1)(Dn−1 +Dn−2).

To “solve” a recurrence relation means to find a formula for an. There are a variety

of methods for solving recurrence relations, with various advantages and disadvantages in

particular cases. One method that works for some recurrence relations involves generating

functions. The idea is simple, if the execution is not always: Let

f(x) =

∞∑
i=0

aix
i,

that is, let f(x) be the generating function for {ai}∞i=0. We now try to manipulate f(x),

using the recurrence relation, until we can solve for f(x) explicitly. Finally, we hope that

we can find a formula for the coefficients from the formula for f(x).

EXAMPLE 3.4.1 Solve F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.

Let

f(x) =
∞∑
i=0

Fix
i

and note that

xf(x) =
∞∑
i=0

Fix
i+1 =

∞∑
i=1

Fi−1x
i.

To get the second sum we have simply “re-indexed” so that the index value gives the

exponent on x, just as in the series for f(x). Likewise,

x2f(x) =
∞∑
i=0

Fix
i+2 =

∞∑
i=2

Fi−2x
i.

In somewhat more suggestive form, we have

f(x) = x + F2x
2 + F3x

3 + F4x
4 + · · ·

xf(x) = x2 + F2x
3 + F3x

4 + · · ·
x2f(x) = x3 + F2x

4 + · · ·

and combining the three equations we get

f(x)− xf(x)− x2f(x) = x+ (F2 − 1)x2 + (F3 − F2 − 1)x3 + (F4 − F3 − F2)x
4 + · · ·
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or in more compact form

f(x)− xf(x)− x2f(x) =
∞∑
i=0

Fix
i −

∞∑
i=1

Fi−1x
i −

∞∑
i=2

Fi−2x
i

= x+
∞∑
i=2

(Fi − Fi−1 − Fi−2)x
i

= x+
∞∑
i=2

0 · xi

= x,

recalling that F0 = 0 and F1 = 1. Now

f(x) =
x

1− x− x2
=

−x

x2 + x− 1
.

If we can find an explicit representation for the series for this function, we will have solved

the recurrence relation. Here is where things could go wrong, but in this case it works out.

Let a and b be the roots of x2 + x− 1; using the quadratic formula, we get

a =
−1 +

√
5

2
, b =

−1−
√
5

2
.

Borrowing a technique from calculus, we write

−x

x2 + x− 1
=

A

x− a
+

B

x− b
.

Solving for A and B gives

A =
1−

√
5

2
√
5

, B =
−1−

√
5

2
√
5

.

Then
−x

x2 + x− 1
= −A

a

1

1− x/a
− B

b

1

1− x/b
.

From calculus we know that

1

1− x/a
=

∞∑
i=0

(1/a)ixi and
1

1− x/b
=

∞∑
i=0

(1/b)ixi.

Finally, this means the coefficient of xi in the series for f(x) is

Fi = −A

a
(1/a)i − B

b
(1/b)i.
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Simplifying gives

Fi =
1√
5

(1 +√
5

2

)i
− 1√

5

(1−√
5

2

)i
.

Here’s an interesting feature of this expression: since |(1 −
√
5)/2| < 1, the limit of

((1−
√
5)/2)i as i goes to infinity is 0. So when i is large,

Fi = round

(
1√
5

(1 +√
5

2

)i)
,

that is, the first term rounded to the nearest integer. As it turns out, this is true starting

with i = 0.

You can see how to do the entire solution in Sage.

Exercises 3.4.

1. Find the generating function for the solutions to hn = 4hn−1 − 3hn−2, h0 = 2, h1 = 5, and
use it to find a formula for hn.

2. Find the generating function for the solutions to hn = 3hn−1 + 4hn−2, h0 = h1 = 1, and use
it to find a formula for hn.

3. Find the generating function for the solutions to hn = 2hn−1 +3n, h0 = 0, and use it to find
a formula for hn.

4. Find the generating function for the solutions to hn = 4hn−2, h0 = 0, h1 = 1, and use it to
find a formula for hn. (It is easy to discover this formula directly; the point here is to see
that the generating function approach gives the correct answer.)

5. Find the generating function for the solutions to hn = hn−1 + hn−2, h0 = 1, h1 = 3, and use
it to find a formula for hn.

6. Find the generating function for the solutions to hn = 9hn−1 − 26hn−2 + 24hn−3, h0 = 0,
h1 = 1, h2 = −1, and use it to find a formula for hn.

7. Find the generating function for the solutions to hn = 3hn−1 + 4hn−2, h0 = 0, h1 = 1, and
use it to find a formula for hn.

8. Find a recursion for the number of ways to place flags on an n foot pole, where we have red
flags that are 2 feet high, blue flags that are 1 foot high, and yellow flags that are 1 foot
high; the heights of the flags must add up to n. Solve the recursion.

9. In Fibonacci’s original problem, a farmer started with one (newborn) pair of rabbits at month
0. After each pair of rabbits was one month old, they produced another pair each month
in perpetuity. Thus, after 1 month, he had the original pair, after two months 2 pairs,
three months, 3 pairs, four months, 5 pairs, etc. The number of pairs of rabbits satisfies
hn = hn−1 + hn−2, h0 = h1 = 1. (Note that this is slightly different than our definition, in
which h0 = 0.)

Suppose instead that each mature pair gives birth to two pairs of rabbits. The sequence
for the number of pairs of rabbits now starts out h0 = 1, h1 = 1, h2 = 3, h3 = 5, h4 = 11.
Set up and solve a recurrence relation for the number of pairs of rabbits. Show also that the
sequence statisfies hn = 2hn−1 + (−1)n.

https://www.whitman.edu/mathematics/cgt_online/sage/sage_fibonacci.html
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3.5 Catalan Numbers

A rooted binary tree is a type of graph that is particularly of interest in some areas

of computer science. A typical rooted binary tree is shown in figure 3.5.1. The root is

the topmost vertex. The vertices below a vertex and connected to it by an edge are the

children of the vertex. It is a binary tree because all vertices have 0, 1, or 2 children. How

many different rooted binary trees are there with n vertices?

..•.

•

.

•

.

•

.

•

.

•

.

•

. •

Figure 3.5.1 A rooted binary tree.

Let us denote this number by Cn; these are the Catalan numbers. For convenience,

we allow a rooted binary tree to be empty, and let C0 = 1. Then it is easy to see that

C1 = 1 and C2 = 2, and not hard to see that C3 = 5. Notice that any rooted binary tree

on at least one vertex can be viewed as two (possibly empty) binary trees joined into a

new tree by introducing a new root vertex and making the children of this root the two

roots of the original trees; see figure 3.5.2. (To make the empty tree a child of the new

vertex, simply do nothing, that is, omit the corresponding child.)

..•.

•

.

•

.

•

.

+

.

•

.

•

. •.

=

. •.

•

.

•

.

•

.

•

.

•

.

•

. •

Figure 3.5.2 Producing a new tree from smaller trees.

Thus, to make all possible binary trees with n vertices, we start with a root vertex, and

then for its two children insert rooted binary trees on k and l vertices, with k+ l = n− 1,
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for all possible choices of the smaller trees. Now we can write

Cn =
n−1∑
i=0

CiCn−i−1.

For example, since we know that C0 = C1 = 1 and C2 = 2,

C3 = C0C2 + C1C1 + C2C0 = 1 · 2 + 1 · 1 + 2 · 1 = 5,

as mentioned above. Once we know the trees on 0, 1, and 2 vertices, we can combine them

in all possible ways to list the trees on 3 vertices, as shown in figure 3.5.3. Note that the

first two trees have no left child, since the only tree on 0 vertices is empty, and likewise

the last two have no right child.

..

•

.

•

. •.

•

.

•

. •.

•

.

•

.

•

.

•

.

•

. •.

•

.

•

. •

Figure 3.5.3 The 3-vertex binary rooted trees.

Now we use a generating function to find a formula for Cn. Let f =
∑∞

i=0 Cix
i.

Now consider f2: the coefficient of the term xn in the expansion of f2 is
∑n

i=0 CiCn−i,

corresponding to all possible ways to multiply terms of f to get an xn term:

C0 · Cnx
n + C1x · Cn−1x

n−1 + C2x
2 · Cn−2x

n−2 + · · ·+ Cnx
n · C0.

Now we recognize this as precisely the sum that gives Cn+1, so f2 =
∑∞

n=0 Cn+1x
n. If we

multiply this by x and add 1 (which is C0) we get exactly f again, that is, xf2 +1 = f or

xf2 − f + 1 = 0; here 0 is the zero function, that is, xf2 − f + 1 is 0 for all x. Using the

Pythagorean theorem,

f =
1±

√
1− 4x

2x
,

as long as x ̸= 0. It is not hard to see that as x approaches 0,

1 +
√
1− 4x

2x

goes to infinity while
1−

√
1− 4x

2x

goes to 1. Since we know f(0) = C0 = 1, this is the f we want.
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Now by Newton’s Binomial Theorem 3.1.1, we can expand

√
1− 4x = (1 + (−4x))1/2 =

∞∑
n=0

(
1/2

n

)
(−4x)n.

Then

1−
√
1− 4x

2x
=

∞∑
n=1

−1

2

(
1/2

n

)
(−4)nxn−1 =

∞∑
n=0

−1

2

(
1/2

n+ 1

)
(−4)n+1xn.

Expanding the binomial coefficient
(
1/2
n+1

)
and reorganizing the expression, we discover that

Cn = −1

2

(
1/2

n+ 1

)
(−4)n+1 =

1

n+ 1

(
2n

n

)
.

In exercise 7 in section 1.2, we saw that the number of properly matched sequences of

parentheses of length 2n is
(
2n
n

)
−
(

2n
n+1

)
, and called this Cn. It is not difficult to see that(

2n

n

)
−
(

2n

n+ 1

)
=

1

n+ 1

(
2n

n

)
,

so the formulas are in agreement.

Temporarily let An be the number of properly matched sequences of parentheses of

length 2n, so from the exercise we know An =
(
2n
n

)
−
(

2n
n+1

)
. It is possible to see directly

that A0 = A1 = 1 and that the numbers An satisfy the same recurrence relation as do the

Cn, which implies that An = Cn, without manipulating the generating function.

There are many counting problems whose answers turns out to be the Catalan numbers.

Enumerative Combinatorics: Volume 2, by Richard Stanley, contains a large number of

examples.

Exercises 3.5.

1. Show that (
2n

n

)
−

(
2n

n+ 1

)
=

1

n+ 1

(
2n

n

)
.

2. Find a simple expression f(n) so that Cn+1 = f(n)Cn. Use this to compute C1, . . . , C6 from
C0.

3. Show that if An is the number of properly matched sequences of parentheses of length 2n,
then

An =

n−1∑
i=0

AiAn−i−1.

Do this in the same style that we used for the number of rooted binary trees: Given all the
sequences of shorter length, explain how to combine them to produce the sequences of length
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2n, in such a way that the sum clearly counts the number of sequences. Hint: Prove the
following lemma: If s is a properly matched sequence of parentheses of length 2n, s may
be written uniquely in the form (s1)s2, where s1 and s2 are properly matched sequences of
parentheses whose lengths add to 2n−2. For example, (())() = ([()])[()] and ()(()) = ([ ])[(())],
with the sequences s1 and s2 indicated by [ ]. Note that s1 and s2 are allowed to be empty
sequences, with length 0.

4. Consider a “staircase” as shown below. A path from A to B consists of a sequence of edges
starting at A, ending at B, and proceeding only up or right; all paths are of length 6. One
such path is indicated by arrows. The staircase shown is a “3 × 3” staircase. How many
paths are there in an n× n staircase?

......................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

...............................................................................................................................................

.................................................................................................................................................................................................................. ................... .......
.......
.......
.......
.......
.......
.........................

...................

................................................................... ................... ................................................................... ................... .......
.......
.......
.......
.......
.......
.........................

...................

.......

.......

.......

.......

.......

.......

.........................

...................

A

B

5. A convex polygon with n ≥ 3 sides can be divided into triangles by inserting n − 3 non-
intersecting diagonals. In how many different ways can this be done? The possibilities for
n = 5 are shown.

. . . . .

6. A partition of a set S is a collection of non-empty subsets Ai ⊆ S, 1 ≤ i ≤ k (the parts of
the partition), such that

∪k
i=1 Ai = S and for every i ̸= j, Ai ∩ Aj = ∅. For example, one

partition of {1, 2, 3, 4, 5} is {{1, 3}, {4}, {2, 5}}.
Suppose the integers 1, 2, . . . , n are arranged on a circle, in order around the circle. A

partition of {1, 2, . . . , n} is a non-crossing partition if it satisfies this additional property:
If w and x are in some part Ai, and y and z are in a different part Aj , then the line joining
w to x does not cross the line joining y to z. The partition above, {1, 3}, {4}, {2, 5}, is not
a non-crossing partition, as the the line 1–3 crosses the line 2–5.

Find the number of non-crossing partitions of {1, 2, . . . , n}.
Recall from section 1.4 that the Bell numbers count all of the partitions of {1, 2, . . . , n}.

Hence, this exercise gives us a lower bound on the total number of partitions.

7. Consider a set of 2n people sitting around a table. In how many ways can we arrange for
each person to shake hands with another person at the table such that no two handshakes
cross?





4
Systems of Distinct Representatives

Suppose that the student clubs at a college each send a representative to the student

government from among the members of the club. No person may represent more than

one club; is this possible? It is certainly possible sometimes, for example when no student

belongs to two clubs. It is not hard to see that it could be impossible. So the first

substantive question is: is there anything useful or interesting we can say about under

what conditions it is possible to choose such representatives.

We turn this into a more mathematical situation:

DEFINITION 4.0.1 Suppose that A1, A2, . . . , An are sets, which we refer to as a set

system. A (complete) system of distinct representatives is a set {x1, x2, . . . xn} such

that xi ∈ Ai for all i, and no two of the xi are the same. A (partial) system of distinct

representatives is a set of distinct elements {x1, x2, . . . xk} such that xi ∈ Aji , where

j1, j2, . . . , jk are distinct integers in [n].

In standard usage, “system of distinct representatives” means “complete system of dis-

tinct representatives”, but it will be convenient to let “system of distinct representatives”

mean either a complete or partial system of distinct representatives depending on context.

We usually abbreviate “system of distinct representatives” as sdr.

We will analyze this problem in two ways, combinatorially and using graph theory.

69
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4.1 Existence of SDRs

In this section, sdr means complete sdr. It is easy to see that not every collection of sets

has an sdr. For example,

A1 = {a, b}, A2 = {a, b}, A3 = {a, b}.

The problem is clear: there are only two possible representatives, so a set of three distinct

representatives cannot be found. This example is a bit more general than it may at first

appear. Consider

A1 = {a, b}, A2 = {a, b}, A3 = {a, b}, A4 = {b, c, d, e}.

Now the total number of possible representatives is 5, and we only need 4. Nevertheless,

this is impossible, because the first three sets have no sdr considered by themselves. Thus

the following condition, called Hall’s Condition, is clearly necessary for the existence of

an sdr: For every k ≥ 1, and every set {i1, i2, . . . , ik} ⊆ [n], |
∪k

j=1 Aij | ≥ k. That is, the

number of possible representatives in any collection of sets must be at least as large as the

number of sets. Both examples fail to have this property because |A1 ∪A2 ∪A3| = 2 < 3.

Remarkably, this condition is both necessary and sufficient.

THEOREM 4.1.1 Hall’s Theorem A collection of sets A1, A2, . . . , An has an sdr

if and only if for every k ≥ 1, and every set {i1, i2, . . . , ik} ⊆ [n], |
∪k

j=1 Aij | ≥ k.

Proof. We already know the condition is necessary, so we prove sufficiency by induction

on n.

Suppose n = 1; the condition is simply that |A1| ≥ 1. If this is true then A1 is

non-empty and so there is an sdr. This establishes the base case.

Now suppose that the theorem is true for a collection of k < n sets, and suppose we

have sets A1, A2, . . . , An satisfying Hall’s Condition. We need to show there is an sdr.

Suppose first that for every k < n and every {i1, i2, . . . , ik} ⊆ [n], that |
∪k

j=1 Aij | ≥
k + 1, that is, that these unions are larger than required. Pick any element xn ∈ An,

and define Bi = Ai\{xn} for each i < n. Consider the collection of sets B1, . . . , Bn−1,

and any union
∪k

j=1 Bij of a subcollection of the sets. There are two possibilities: either∪k
j=1 Bij =

∪k
j=1 Aij or

∪k
j=1 Bij =

∪k
j=1 Aij\{xn}, so that |

∪k
j=1 Bij | = |

∪k
j=1 Aij | or

|
∪k

j=1 Bij | = |
∪k

j=1 Aij |−1. In either case, since |
∪k

j=1 Aij | ≥ k+1, |
∪k

j=1 Bij | ≥ k. Thus,

by the induction hypothesis, the collection B1, . . . , Bn−1 has an sdr {x1, x2, . . . , xn−1},
and for every i < n, xi ̸= xn, by the definition of the Bi. Thus {x1, x2, . . . , xn} is an sdr

for A1, A2, . . . , An.

If it is not true that for every k < n and every {i1, i2, . . . , ik} ⊆ [n], |
∪k

j=1 Aij | ≥ k+1,

then for some k < n and {i1, i2, . . . , ik}, |
∪k

j=1 Aij | = k. Without loss of generality, we
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may assume that |
∪k

j=1 Aj | = k. By the induction hypothesis, A1, A2, . . . , Ak has an sdr,

{x1, . . . , xk}.
Define Bi = Ai\

∪k
j=1 Aj for i > k. Suppose that {xk+1, . . . , xn} is an sdr for

Bk+1, . . . , Bn; then it is also an sdr for Ak+1, . . . , An. Moreover, {x1, . . . , xn} is an sdr

for A1, . . . , An. Thus, to finish the proof it suffices to show that Bk+1, . . . , Bn has an sdr.

The number of sets here is n − k < n, so we need only show that the sets satisfy Hall’s

Condition.

So consider some sets Bi1 , Bi2 , . . . , Bil . First we notice that

|A1 ∪A2 ∪ · · · ∪Ak ∪Bi1 ∪Bi2 ∪ · · ·Bil | = k + |Bi1 ∪Bi2 ∪ · · ·Bil |.

Also

|A1 ∪A2 ∪ · · · ∪Ak ∪Bi1 ∪Bi2 ∪ · · ·Bil | = |A1 ∪A2 ∪ · · · ∪Ak ∪Ai1 ∪Ai2 ∪ · · ·Ail |

and

|A1 ∪A2 ∪ · · · ∪Ak ∪Ai1 ∪Ai2 ∪ · · ·Ail | ≥ k + l.

Putting these together gives

k + |Bi1 ∪Bi2 ∪ · · · ∪Bil | ≥ k + l

|Bi1 ∪Bi2 ∪ · · · ∪Bil | ≥ l

.

Thus, Bk+1, . . . , Bn has an sdr, which finishes the proof.

Exercises 4.1.

1. How many different systems of distinct representatives are there for A1 = {1, 2}, A2 = {2, 3},
. . . , An = {n, 1}?

2. How many different systems of distinct representatives are there for the sets Ai = [n]\i,
i = 1, 2, . . . , n, n ≥ 2?

3. Suppose the set system A1, A2, . . . , An has an sdr, and that x ∈ Ai. Show the set system
has an sdr containing x. Show that x cannot necessarily be chosen to represent Ai.

4. Suppose the set system A1, A2, . . . , An satisfies |
∪k

j=1 Aij | ≥ k + 1 for every 1 ≤ k < n and
{i1, i2, . . . , ik} ⊆ [n], and that x ∈ Ai. Show the set system has an sdr in which x represents
Ai.

5. An m×n chessboard, with m even and both m and n at least 2, has one white and one black
square removed. Show that the board can be covered by dominoes.
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4.2 Partial SDRs

In this section, sdr means partial sdr.

If there is no complete sdr, we naturally want to know how many of the n sets can

be represented, that is, what is the largest value of m so that some m of the sets have

a complete sdr. Since there is no complete sdr, there are sets Ai1 , Ai2 , . . . , Aik such

that |
∪k

j=1 Aij | = l < k. Clearly at most l of these k sets have a complete sdr, so no

sdr for A1, A2, . . . , An can be larger than n − k + l. Thus, m can be no larger than the

minimum value, over all k and all collections of sets Ai1 , Ai2 , . . . , Aik , of n−k+ |
∪k

j=1 Aij |.
Note that if |

∪k
j=1 Aij | > k, n − k + |

∪k
j=1 Aij | > n, which tells us nothing. If k = 0,

n− k + |
∪k

j=1 Aij | = n (because empty unions are empty), so we are guaranteed that the

minimum is never greater than n. In fact the minimum value of the expression is exactly

the size of a largest sdr.

THEOREM 4.2.1 The maximum size of an sdr for the sets A1, A2, . . . , An is the

minimum value, for 0 ≤ k ≤ n and sets Ai1 , Ai2 , . . . , Aik , of n− k + |
∪k

j=1 Aij |.

Proof. Since no sdr can be larger than this minimum value, it suffices to show that we

can find an sdr whose size is this minimum. The proof is by induction on n; the case

n = 1 is easy.

Suppose first that the minimum value is n, so that for all k and all collections of sets

Ai1 , Ai2 , . . . , Aik ,

n− k + |
k∪

j=1

Aij | ≥ n.

Then rearranging we see that

|
k∪

j=1

Aij | ≥ k,

so by Hall’s Theorem (4.1.1), there is an sdr of size n.

Note that the minimum value of n − k + |
∪k

j=1 Aij | occurs when |
∪k

j=1 Aij | − k is a

minimum, that is

min(n− k + |
k∪

j=1

Aij |) = n+min(|
k∪

j=1

Aij | − k).

Suppose now that the minimum m is less than n, and that m = n − k + |
∪k

j=1 Aij |,
with 0 < k < n. Let Bj = Aij ; since k < n, the induction hypothesis applies to the

sets B1, . . . , Bk. Since each set Bj is Aij , |
∪l

j=1 Bhj | − l ≥ |
∪k

j=1 Aij | − k, for all l and

Bh1 , . . . , Bhl
. Thus, the minimum value of |

∪l
j=1 Bij | − l, over all l and Bh1 , . . . , Bhl

, is
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|
∪k

j=1 Bj | − k = |
∪k

j=1 Aij | − k, so by the induction hypothesis, the sets Ai1 , Ai2 , . . . , Aik

have an sdr of size k − k + |
∪k

j=1 Aij | = |
∪k

j=1 Aij | = m− n+ k, {x1, . . . , xm−n+k}.
Now consider the n − k sets consisting of those original sets not in Ai1 , Ai2 , . . . , Aik ,

that is, {Ai | i /∈ {i1, . . . , ik}}. Let Ci = Ai\
∪k

j=1 Aij for i not in i1, i2, . . . , ik. Consider

some sets Cg1 , Cg2 , . . . , Cgl . If |
∪l

j=1 Cgj | < l then |
∪l

j=1 Cgj | − l < 0 and

n− k + |
k∪

j=1

Aij | > n− k − l + |
l∪

j=1

Cgj |+ |
k∪

j=1

Aij |

≥ n− (k + l) + |Cg1 ∪ · · · ∪ Cgl ∪Ai1 ∪ · · · ∪Aik |
= n− (k + l) + |Ag1 ∪ · · · ∪Agl ∪Ai1 ∪ · · · ∪Aik |,

contradicting the fact that n−k+|
∪k

j=1 Aij | is a minimum. Thus by Hall’s Theorem (4.1.1),

the sets Cg1 , Cg2 , . . . , Cgn−k
have a complete sdr {y1, . . . , yn−k}. By the definition of the

sets Ci, {x1, . . . , xm−n+k} ∩ {y1, . . . , yn−k} = ∅, so {x1, . . . , xm−n+k} ∪ {y1, . . . , yn−k} is

an sdr of size m− n+ k + n− k = m as desired.

Finally, suppose that the minimum value of n−k+ |
∪k

j=1 Aij | occurs only when k = n,

so we want an sdr of size

n− n+ |
n∪

j=1

Aj | = |
n∪

j=1

Aj |.

Then

n− (n− 1) + |
n−1∪
j=1

Aj | > |
n∪

j=1

Aj |

1 + |
n−1∪
j=1

Aj | > |
n∪

j=1

Aj |

|
n−1∪
j=1

Aj | ≥ |
n∪

j=1

Aj |.

Since |
∪n−1

j=1 Aj | ≤ |
∪n

j=1 Aj |, |
∪n−1

j=1 Aj | = |
∪n

j=1 Aj |. By the induction hypothesis, the

theorem applies to the sets A1, A2, . . . , An−1. If the minimum of (n− 1)− l + |
∪l

j=1 Aij |
occurs when l = n − 1, then there is an sdr of size (n − 1) − (n − 1) + |

∪n−1
j=1 Aj | =

|
∪n−1

j=1 Aj | = |
∪n

j=1 Aj |, as desired.
If the minimum occurs when l < n− 1 and not when l = n− 1, then

(n− 1)− l + |
l∪

j=1

Aij | < |
n−1∪
j=1

Aj |

n− l + |
l∪

j=1

Aij | < |
n−1∪
j=1

Aj |+ 1
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and by assumption

n− l + |
l∪

j=1

Aij | > |
n∪

j=1

Aj |.

Thus

|
n∪

j=1

Aj | < n− l + |
l∪

j=1

Aij |

< |
n−1∪
j=1

Aj |+ 1

= |
n∪

j=1

Aj |+ 1.

This means that there is an integer strictly between two consecutive integers, a contradic-

tion. This completes the proof.

While this theorem provides a method to calculate the size of a maximum sdr, the

method is hardly efficient: it requires looking at all possible collections of the sets. It also

does not provide a way to find an actual sdr, that is, the actual representatives. We will

fix these problems in the last two sections of this chapter.

Exercises 4.2.

1. Find the size of a maximum sdr for

A1 = {a, b, c}, A2 = {a, b, c, d, e}, A3 = {a, b}, A4 = {b, c}, A5 = {a}, A6 = {a, c, e}.
Justify your answer.

4.3 Latin Squares

DEFINITION 4.3.1 A Latin square of order n is an n×n grid filled with n symbols

so that each symbol appears once in each row and column.

EXAMPLE 4.3.2 Here is a Latin square of order 4:

♡ ♣ ♠ ♢
♣ ♠ ♢ ♡
♠ ♢ ♡ ♣
♢ ♡ ♣ ♠

Usually we use the integers 1 . . . n for the symbols. There are many, many Latin

squares of order n, so it pays to limit the number by agreeing not to count Latin squares
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that are “really the same” as different. The simplest way to do this is to consider reduced

Latin squares. A reduced Latin square is one in which the first row is 1 . . . n (in order)

and the first column is likewise 1 . . . n.

EXAMPLE 4.3.3 Consider this Latin square:

4 2 3 1

2 4 1 3

1 3 4 2

3 1 2 4

The order of the rows and columns is not really important to the idea of a Latin square.

If we reorder the rows and columns, we can consider the result to be in essence the same

Latin square. By reordering the columns, we can turn the square above into this:

1 2 3 4

3 4 1 2

2 3 4 1

4 1 2 3

Then we can swap rows two and three:

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

This Latin square is in reduced form, and is essentially the same as the original.

Another simple way to change the appearance of a Latin square without changing its

essential structure is to interchange the symbols.

EXAMPLE 4.3.4 Starting with the same Latin square as before:

4 2 3 1

2 4 1 3

1 3 4 2

3 1 2 4

we can interchange the symbols 1 and 4 to get:
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1 2 3 4

2 1 4 3

4 3 1 2

3 4 2 1

Now if we swap rows three and four we get:

1 2 3 4

2 1 4 3

3 4 2 1

4 3 1 2

Notice that this Latin square is in reduced form, but it is not the same as the reduced

form from the previous example, even though we started with the same Latin square. Thus,

we may want to consider some reduced Latin squares to be the same as each other.

DEFINITION 4.3.5 Two Latin squares are isotopic if each can be turned into the

other by permuting the rows, columns, and symbols. This isotopy relation is an equivalence

relation; the equivalence classes are the isotopy classes.

Latin squares are apparently quite difficult to count without substantial computing

power. According to Wikipedia, the number of Latin squares is known only up to n = 11.

Here are the first few values for all Latin squares, reduced Latin squares, and non-isotopic

Latin squares (that is, the number of isotopy classes):

n All Reduced Non-isotopic

1 1 1 1

2 2 1 1

3 12 1 1

4 576 4 2

5 161280 56 2

How can we produce a Latin square? If you know what a group is, you should know

that the multiplication table of any finite group is a Latin square. (Also, any Latin square

is the multiplication table of a quasigroup.) Even if you have not encountered groups by

that name, you may know of some. For example, considering the integers modulo n under

addition, the addition table is a Latin square.

EXAMPLE 4.3.6 Here is the addition table for the integers modulo 6:

https://en.wikipedia.org/wiki/Latin_square
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0 1 2 3 4 5

1 2 3 4 5 0

2 3 4 5 0 1

3 4 5 0 1 2

4 5 0 1 2 3

5 0 1 2 3 4

EXAMPLE 4.3.7 Here is another way to potentially generate many Latin squares.

Start with first row 1, . . . , n. Consider the sets Ai = [n]\{i}. From exercise 1 in section 4.1

we know that this set system has many sdrs; if x1, x2, . . . , xn is an sdr, we may use it for

row two. In general, after we have chosen rows 1, . . . , j, we let Ai be the set of integers

that have not yet been chosen for column i. This set system has an sdr, which we use for

row j + 1.

DEFINITION 4.3.8 Suppose A and B are two Latin squares of order n, with entries

Ai,j and Bi,j in row i and column j. Form the matrix M with entries Mi,j = (Ai,j , Bi,j);

we will denote this operation as M = A ∪ B. We say that A and B are orthogonal if

M contains all n2 ordered pairs (a, b), 1 ≤ a ≤ n, 1 ≤ b ≤ n, that is, all elements of

{0, 1, . . . , n− 1} × {0, 1, . . . , n− 1}.

As we will see, it is easy to find orthogonal Latin squares of order n if n is odd; not

too hard to find orthogonal Latin squares of order 4k, and difficult but possible to find

orthogonal Latin squares of order 4k+2, with the exception of orders 2 and 6. In the 1700s,

Euler showed that there are orthogonal Latin squares of all orders except of order 4k + 2,

and he conjectured that there are no orthogonal Latin squares of of order 6. In 1901, the

amateur mathematician Gaston Tarry showed that indeed there are none of order 6, by

showing that all possibilities for such Latin squares failed to be orthogonal. In 1959 it was

finally shown that there are orthogonal Latin squares of all other orders.

THEOREM 4.3.9 There are pairs of orthogonal Latin squares of order n when n is

odd.

Proof. This proof can be shortened by using ideas of group theory, but we will present

a self-contained version. Consider the addition table for addition mod n:
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0 · · · j · · · n− 1

0 0 · · · j · · · n− 1
...

i i · · · i+ j · · · n+ i− 1
...

n− 1 n− 1 · · · n+ j − 1 · · · n− 2

We claim first that this (without the first row and column, of course) is a Latin square with

symbols 0, 1, . . . , n− 1. Consider two entries in row i, say i+ j and i+ k. If i+ j ≡ i+ j

(mod n), then j ≡ k, so j = k. Thus, all entries of row i are distinct, so each of 0, 1, . . . , n−1

appears exactly once in row i. The proof that each appears once in any column is similar.

Call this Latin square A. (Note that so far everything is true whether n is odd or even.)

Now form a new square B with entries Bi,j = A2i,j = 2i + j, where by 2i and 2i + j

we mean those values mod n. Thus row i of B is the same as row 2i of A. Now we claim

that in fact the rows of B are exactly the rows of A, in a different order. To do this, it

suffices to show that if 2i ≡ 2k (mod n), then i = k. This implies that all the rows of B

are distinct, and hence must be all the rows of A.

Suppose without loss of generality that i ≥ k. If 2i ≡ 2k (mod n) then n | 2(i − k).

Since n is odd, n | (i− k). Since i and k are in 0, 1, . . . , n− 1, 0 ≤ i− k ≤ n− 1. Of these

values, only 0 is divisible by n, so i− k = 0. Thus B is also a Latin square.

To show that A ∪B contains all n2 elements of {0, 1, . . . , n− 1} × {0, 1, . . . , n− 1}, it
suffices to show that no two elements of A∪B are the same. Suppose that (i1+j1, 2i1+j1) =

(i2 + j2, 2i2 + j2) (arithmetic is mod n). Then by subtracting equations, i1 = i2; with the

first equation this implies j1 = j2.

EXAMPLE 4.3.10 When n = 3, 0 1 2
1 2 0
2 0 1

 ∪

 0 1 2
2 0 1
1 2 0

 =

 (0, 0) (1, 1) (2, 2)
(1, 2) (2, 0) (0, 1)
(2, 1) (0, 2) (1, 0)

 .

One obvious approach to constructing Latin squares, and pairs of orthogonal Latin

squares, is to start with smaller Latin squares and use them to produce larger ones. We

will produce a Latin square of order mn from a Latin square of order m and one of order

n.

Let A be a Latin square of order m with symbols 1, . . . ,m, and B one of order n with

symbols 1, . . . , n. Let ci,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n, be mn new symbols. Form an mn×mn
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grid by replacing each entry of B with a copy of A. Then replace each entry i in this copy

of A with ci,j , where j is the entry of B that was replaced. We denote this new Latin

square A × B. Here is an example, combining a 4 × 4 Latin square with a 3 × 3 Latin

square to form a 12× 12 Latin square:

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

×

1 2 3

2 3 1

3 1 2

=

c1,1 c2,1 c3,1 c4,1 c1,2 c2,2 c3,2 c4,2 c1,3 c2,3 c3,3 c4,3

c2,1 c3,1 c4,1 c1,1 c2,2 c3,2 c4,2 c1,2 c2,3 c3,3 c4,3 c1,3

c3,1 c4,1 c1,1 c2,1 c3,2 c4,2 c1,2 c2,2 c3,3 c4,3 c1,3 c2,3

c4,1 c1,1 c2,1 c3,1 c4,2 c1,2 c2,2 c3,2 c4,3 c1,3 c2,3 c3,3

c1,2 c2,2 c3,2 c4,2 c1,3 c2,3 c3,3 c4,3 c1,1 c2,1 c3,1 c4,1

c2,2 c3,2 c4,2 c1,2 c2,3 c3,3 c4,3 c1,3 c2,1 c3,1 c4,1 c1,1

c3,2 c4,2 c1,2 c2,2 c3,3 c4,3 c1,3 c2,3 c3,1 c4,1 c1,1 c2,1

c4,2 c1,2 c2,2 c3,2 c4,3 c1,3 c2,3 c3,3 c4,1 c1,1 c2,1 c3,1

c1,3 c2,3 c3,3 c4,3 c1,1 c2,1 c3,1 c4,1 c1,2 c2,2 c3,2 c4,2

c2,3 c3,3 c4,3 c1,3 c2,1 c3,1 c4,1 c1,1 c2,2 c3,2 c4,2 c1,2

c3,3 c4,3 c1,3 c2,3 c3,1 c4,1 c1,1 c2,1 c3,2 c4,2 c1,2 c2,2

c4,3 c1,3 c2,3 c3,3 c4,1 c1,1 c2,1 c3,1 c4,2 c1,2 c2,2 c3,2

THEOREM 4.3.11 If A and B are Latin squares, so is A×B.

Proof. Consider two symbols ci,j and ck,l in the same row. If the positions containing

these symbols are in the same copy of A, then i ̸= k, since A is a Latin square, and so

the symbols ci,j and ck,l are distinct. Otherwise, j ̸= l, since B is a Latin square. The

argument is the same for columns.

Remarkably, this operation preserves orthogonality:

THEOREM 4.3.12 If A1 and A2 are Latin squares of order m, B1 and B2 are Latin

squares of order n, A1 and A2 are orthogonal, and B1 and B2 are orthogonal, then A1×B1

is orthogonal to A1 ×B2.

Proof. We denote the contents of Ai × Bi by Ci(w, x, y, z), meaning the entry in row

w and column x of the copy of Ai that replaced the entry in row y and column z of Bi,

which we denote Bi(y, z). We use Ai(w, x) to denote the entry in row w and column x of

Ai.

Suppose that (C1(w, x, y, z), C2(w, x, y, z)) = (C1(w
′, x′, y′, z′), C2(w

′, x′, y′, z′)), where

(w, x, y, z) ̸= (w′, x′, y′, z′). Either (w, x) ̸= (w′, x′) or (y, z) ̸= (y′, z′). If the lat-

ter, then (B1(y, z), B2(y, z)) = (B1(y
′, z′), B2(y

′, z′)), a contradiction, since B1 is or-

thogonal to B2. Hence (y, z) = (y′, z′) and (w, x) ̸= (w′, x′). But this implies that
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(A1(w, x), A2(w, x)) = (A1(w
′, x′), A2(w

′, x′)), a contradiction. Hence A1 × B1 is orthog-

onal to A1 ×B2.

We want to construct orthogonal Latin squares of order 4k. Write 4k = 2m · n,
where n is odd and m ≥ 2. We know there are orthogonal Latin squares of order n, by

theorem 4.3.9. If there are orthogonal Latin squares of order 2m, then by theorem 4.3.12

we can construct orthogonal Latin squares of order 4k = 2m · n.
To get a Latin square of order 2m, we also use theorem 4.3.12. It suffices to find

two orthogonal Latin squares of order 4 = 22 and two of order 8 = 23. Then repeated

application of theorem 4.3.12 allows us to build orthogonal Latin squares of order 2m,

m ≥ 2.

Two orthogonal Latin squares of order 4:
1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1



1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

 ,

and two of order 8:

1 3 4 5 6 7 8 2
5 2 7 1 8 4 6 3
6 4 3 8 1 2 5 7
7 8 5 4 2 1 3 6
8 7 2 6 5 3 1 4
2 5 8 3 7 6 4 1
3 1 6 2 4 8 7 5
4 6 1 7 3 5 2 8





1 4 5 6 7 8 2 3
8 2 6 5 3 1 4 7
2 8 3 7 6 4 1 5
3 6 2 4 8 7 5 1
4 1 7 3 5 2 8 6
5 7 1 8 4 6 3 2
6 3 8 1 2 5 7 4
7 5 4 2 1 3 6 8


.

Exercises 4.3.

1. Show that there is only one reduced Latin square of order 3.

2. Verify that the isotopy relation is an equivalence relation.

3. Find all 4 reduced Latin squares of order 4. Show that there are at most 2 isotopy classes
for order 4.

4. Show that the second set system defined in example 4.3.7 has an sdr as claimed.

5. Show that there are no orthogonal Latin squares of order 2.

6. Find the two orthogonal Latin squares of order 5 as described in theorem 4.3.9. Show your
answer as in example 4.3.10.

7. Prove that to construct orthogonal Latin squares of order 2m, m ≥ 2, it suffices to find two
orthogonal Latin squares of order 4 = 22 and two of order 8 = 23.

8. An n×n Latin square A is symmetric if it is symmetric around the main diagonal, that is,
Ai,j = Aj,i for all i and j. It is easy to find symmetric Latin squares: every addition table
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modulo n is an example, as in example 4.3.6. A Latin square is idempotent if every symbol
appears on the main diagonal. Show that if A is both symmetric and idempotent, then n is
odd. Find a 5× 5 symmetric, idempotent Latin square.

9. The transpose A⊤ of a Latin square A is the reflection of A across the main diagonal, so
that A⊤

i,j = Aj,i. A Latin square is self-orthogonal if A is orthogonal to A⊤. Show that there
is no self-orthogonal Latin square of order 3. Find one of order 4.

4.4 Introduction to Graph Theory

We can interpret the sdr problem as a problem about graphs. Given sets A1, A2, . . . , An,

with
∪n

i=1 Ai = {x1, x2, . . . , xm}, we define a graph with n + m vertices as follows: The

vertices are labeled {A1, A2, . . . , An, x1, x2, . . . xm}, and the edges are {{Ai, xj} | xj ∈ Ai}.

EXAMPLE 4.4.1 Let A1 = {a, b, c, d}, A2 = {a, c, e, g}, A3 = {b, d}, and A4 = {a, f, g}.
The corresponding graph is shown in figure 4.4.1.
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Figure 4.4.1 A set system depicted as a bipartite graph.

Before exploring this idea, we introduce a few basic concepts about graphs. If two

vertices in a graph are connected by an edge, we say the vertices are adjacent. If a vertex v

is an endpoint of edge e, we say they are incident. The set of vertices adjacent to v is called

the neighborhood of v, denotedN(v). This is sometimes called the open neighborhood

of v to distinguish it from the closed neighborhood of v, N [v] = N(v)∪{v}. The degree
of a vertex v is the number of edges incident with v; it is denoted d(v).

Some simple types of graph come up often: A path is a graph Pn on vertices v1, v2, . . . , vn,

with edges {vi, vi+1} for 1 ≤ i ≤ n − 1, and no other edges. A cycle is a graph Cn on

vertices v1, v2, . . . , vn with edges {vi, v1+(i mod n)} for 1 ≤ i ≤ n, and no other edges; this

is a path in which the first and last vertices have been joined by an edge. (Generally, we

require that a cycle have at least three vertices. If it has two, then the two are joined by

two distinct edges; when a graph has more than one edge with the same endpoints it is

called a multigraph. If a cycle has one vertex, there is an edge, called a loop, in which

a single vertex serves as both endpoints.) The length of a path or cycle is the number of

edges in the graph. For example, P1 has length 0, C1 has length 1. A complete graph
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Figure 4.4.2 Graphs P5, C6, K5.

Kn is a graph on v1, v2, . . . , vn in which every two distinct vertices are joined by an edge.

See figure 4.4.2 for examples.

The graph in figure 4.4.1 is a bipartite graph.

DEFINITION 4.4.2 A graph G is bipartite if its vertices can be partitioned into two

parts, say {v1, v2, . . . , vn} and {w1, w2, . . . , wm} so that all edges join some vi to some wj ;

no two vertices vi and vj are adjacent, nor are any vertices wi and wj .

The graph in figure 4.4.1 is bipartite, as are the first two graphs in figure 4.4.2.

4.5 Matchings

Now we return to systems of distinct representatives.

A system of distinct representatives corresponds to a set of edges in the corresponding

bipartite graph that share no endpoints; such a collection of edges (in any graph, not just

a bipartite graph) is called a matching. In figure 4.5.1, a matching is shown in red. This

is a largest possible matching, since it contains edges incident with all four of the top

vertices, and it thus corresponds to a complete sdr.
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Figure 4.5.1 A set system depicted as a bipartite graph.

Any bipartite graph can be interpreted as a set system: we simply label all the vertices

in one part with “set names” A1, A2, etc., and the other part is labeled with “element
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names”, and the sets are defined in the obvious way: Ai is the neighborhood of the vertex

labeled “Ai”. Thus, we know one way to compute the size of a maximum matching, namely,

we interpret the bipartite graph as a set system and compute the size of a maximum sdr;

this is the size of a maximum matching.

We will see another way to do this working directly with the graph. There are two

advantages to this: it will turn out to be more efficient, and as a by-product it will actually

find a maximum matching.

Given a bipartite graph, it is easy to find a maximal matching, that is, one that cannot

be made larger simply by adding an edge: just choose edges that do not share endpoints

until this is no longer possible. See figure 4.5.2 for an example.
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Figure 4.5.2 A maximal matching is shown in red.

An obvious approach is then to attempt to make the matching larger. There is a

simple way to do this, if it works: We look for an alternating chain, defined as follows.

DEFINITION 4.5.1 SupposeM is a matching, and suppose that v1, w1, v2, w2, . . . , vk, wk

is a sequence of vertices such that no edge in M is incident with v1 or wk, and moreover

for all 1 ≤ i ≤ k, vi and wi are joined by an edge not in M , and for all 1 ≤ i ≤ k − 1,

wi and vi+1 are joined by an edge in M . Then the sequence of vertices together with the

edges joining them in order is an alternating chain.

The graph in figure 4.5.2 contains alternating chains, one of which is shown in fig-

ure 4.5.3.

..

•

.

•

.

•

.

•

.•. •. •. •

Figure 4.5.3 An alternating chain.

Suppose now that we remove from M all the edges that are in the alternating chain

and also in M , forming M ′, and add to M ′ all of the edges in the alternating chain not in

M , forming M ′′. It is not hard to show that M ′′ is a matching, and it contains one more

edge than M . See figure 4.5.4.
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Figure 4.5.4 A new, larger matching.

Remarkably, if there is no alternating chain, then the matching M is a maximum

matching.

THEOREM 4.5.2 Suppose that M is a matching in a bipartite graph G, and there is

no alternating chain. Then M is a maximum matching.

Proof. We prove the contrapositive: Suppose thatM is not a maximum matching. Then

there is a larger matching, N . Create a new graph G′ by eliminating all edges that are in

both M and N , and also all edges that are in neither. We are left with just those edges in

M or N but not both.

In this new graph no vertex is incident with more than two edges, since if v were

incident with three edges, at least two of them would belong to M or two would belong to

N , but that can’t be true since M and N are matchings. This means that G′ is composed

of disjoint paths and cycles. Since N is larger than M , G′ contains more edges from N

than from M , and therefore one of the paths starts and ends with an edge from N , and

along the path the edges alternate between edges in N and edges in M . In the original

graph G with matching M , this path forms an alternating chain. The “alternating” part

is clear; we need to see that the first and last vertices in the path are not incident with

any edge in M .

Suppose that the first two vertices are v1 and v2. Then v1 and v2 are joined by an

edge of N . Suppose that v1 is adjacent to a vertex w and that the edge between v1 and w

is in M . This edge cannot be in N , for then there would be two edges of N incident at v1.

But then this edge is in G′, since it is in M but not N , and therefore the path in G′ does

not start with the edge in N joining v1 and v2. This contradiction shows that no edge of

M is incident at v1. The proof that the last vertex in the path is likewise not incident with

an edge of M is essentially identical.

Now to find a maximum matching, we repeatedly look for alternating chains; when we

cannot find one, we know we have a maximum matching. What we need now is an efficient

algorithm for finding the alternating chain.

The key, in a sense, is to look for all possible alternating chains simultaneously. Sup-

pose we have a bipartite graph with vertex partition {v1, v2, . . . , vn} and {w1, w2, . . . , wm}
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and a matching M . The algorithm labels vertices in such a way that if it succeeds, the

alternating chain is indicated by the labels. Here are the steps:

0. Label with ’(S,0)’ all vertices vi that are not incident with an edge in M . Set

variable step to 0.

Now repeat the next two steps until no vertex acquires a new label:

1. Increase step by 1. For each newly labeled vertex vi, label with (i, step) any

unlabeled neighbor wj of vi that is connected to vi by an edge that is not in M .

2. Increase step by 1. For each newly labeled vertex wi, label with (i, step) any

unlabeled neighbor vj of wi that is connected to wi by an edge in M .

Here “newly labeled” means labeled at the previous step. When labeling vertices in

step 1 or 2, no vertex is given more than one label. For example, in step 1, it may be that

wk is a neighbor of the newly labeled vertices vi and vj . One of vi and vj , say vi, will be

considered first, and will cause wk to be labeled; when vj is considered, wk is no longer

unlabeled.

At the conclusion of the algorithm, if there is a labeled vertex wi that is not incident

with any edge of M , then there is an alternating chain, and we say the algorithm succeeds.

If there is no such wi, then there is no alternating chain, and we say the algorithm fails.

The first of these claims is easy to see: Suppose vertex wi is labeled (k1, s). It became

labeled due to vertex vk1 labeled (k2, s− 1) that is connected by an edge not in M to wi.

In turn, vk1 is connected by an edge in M to vertex wk2 labeled (k3, s− 2). Continuing in

this way, we discover an alternating chain ending at some vertex vj labeled (S, 0): since

the second coordinate step decreases by 1 at each vertex along the chain, we cannot repeat

vertices, and must eventually get to a vertex with step = 0. If we apply the algorithm to

the graph in figure 4.5.2, we get the labeling shown in figure 4.5.5, which then identifies

the alternating chain w2, v3, w1, v1. Note that as soon as a vertex wi that is incident with

no edge of M is labeled, we may stop, as there must be an alternating chain starting at wi;

we need not continue the algorithm until no more labeling is possible. In the example in

figure 4.5.5, we could stop after step 3, when w2 becomes labeled. Also, the step component

of the labels is not really needed; it was included to make it easier to understand that if

the algorithm succeeds, there really is an alternating chain.

To see that when the algorithm fails there is no alternating chain, we introduce a new

concept.

DEFINITION 4.5.3 A vertex cover in a graph is a set of vertices S such that every

edge in the graph has at least one endpoint in S.



86 Chapter 4 Systems of Distinct Representatives

..

•

.

•

.

•

.

•

.•. •. •. •.

w1

.

w2

.

w3

.

w4

.

(1, 1)

.

(3, 3)

.

(4, 5)

.

(3, 3)

.
v1

.
v2

.
v3

.
v4

.

(S, 0)

.

(3, 6)

.

(1, 2)

.

(4, 4)

Figure 4.5.5 Labeling of a bipartite graph with matching; w2, v3, w1, v1 is an alternating
chain.

There is always a vertex cover of a graph, namely, the set of all the vertices of the

graph. What is clearly more interesting is a smallest vertex cover, which is related to a

maximum matching.

THEOREM 4.5.4 IfM is a matching in a graph and S is a vertex cover, then |M | ≤ |S|.

Proof. Suppose M̂ is a matching of maximum size and Ŝ is a vertex cover of minimum

size. Since each edge of M̂ has an endpoint in Ŝ, if |M̂ | > |Ŝ| then some vertex in Ŝ is

incident with two edges of M̂ , a contradiction. Hence |M | ≤ |M̂ | ≤ |Ŝ| ≤ |S|.

Suppose that we have a matchingM and vertex cover S for a graph, and that |M | = |S|.
Then the theorem implies that M is a maximum matching and S is a minimum vertex

cover. To show that when the algorithm fails there is no alternating chain, it is sufficient

to show that there is a vertex cover that is the same size as M . Note that the proof of this

theorem relies on the “official” version of the algorithm, that is, the algorithm continues

until no new vertices are labeled.

THEOREM 4.5.5 Suppose the algorithm fails on the bipartite graph G with matching

M . Let U be the set of labeled wi, L the set of unlabeled vi, and S = L ∪U . Then S is a

vertex cover and |M | = |S|.

Proof. If S is not a cover, there is an edge {vi, wj} with neither vi nor wj in S, so vi is

labeled and wj is not. If the edge is not in M , then the algorithm would have labeled wj

at the step after vi became labeled, so the edge must be in M . Now vi cannot be labeled

(S, 0), so vi became labeled because it is connected to some labeled wk by an edge of M .

But now the two edges {vi, wj} and {vi, wk} are in M , a contradiction. So S is a vertex

cover.

We know that |M | ≤ |S|, so it suffices to show |S| ≤ |M |, which we can do by finding

an injection from S to M . Suppose that wi ∈ S, so wi is labeled. Since the algorithm

failed, wi is incident with an edge e of M ; let f(wi) = e. If vi ∈ S, vi is unlabeled; if vi
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were not incident with any edge of M , then vi would be labeled (S, 0), so vi is incident with

an edge e of M ; let f(vi) = e. Since G is bipartite, it is not possible that f(wi) = f(wj)

or f(vi) = f(vj). If f(wi) = f(vj), then wi and vj are joined by an edge of M , and the

algorithm would have labeled vj . Hence, f is an injection.

We have now proved this theorem:

THEOREM 4.5.6 In a bipartite graph G, the size of a maximum matching is the same

as the size of a minimum vertex cover.

It is clear that the size of a maximum sdr is the same as the size of a maximum

matching in the associated bipartite graph G. It is not too difficult to see directly that

the size of a minimum vertex cover in G is the minimum value of f(n, i1, i2, . . . , ik) =

n − k + |
∪k

j=1 Aij |. Thus, if the size of a maximum matching is equal to the size of

a minimum cover, then the size of a maximum sdr is equal to the minimum value of

n − k + |
∪k

j=1 Aij |, and conversely. More concisely, theorem 4.5.6 is true if and only if

theorem 4.2.1 is true.

More generally, in the schematic of figure 4.5.6, if any three of the relationships are

known to be true, so is the fourth. In fact, we have proved all but the bottom equality, so

we know it is true as well.

max sdr =? max matching
∥? ∥?

min f(n, . . .) =? min cover

Figure 4.5.6 If any three of the “=?” are “=”, so is the fourth.

Finally, note that we now have both a more efficient way to compute the size of a

maximum sdr and a way to find the actual representatives: convert the sdr problem to

the graph problem, find a maximum matching, and interpret the matching as an sdr.

Exercises 4.5.

1. In this bipartite graph, find a maximum matching and a minimum vertex cover using the
algorithm of this section. Start with the matching shown in red. Copies of this graph are
available in this pdf file.

http://whitman.edu/mathematics/cgt_online/exercise_4.4.1.pdf
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2. Show directly that that the size of a minimum vertex cover in G is the minimum value of
n− k + |

∪k
j=1 Aij |, as mentioned above.
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Graph Theory

5.1 The Basics

See section 4.4 to review some basic terminology about graphs.

A graph G consists of a pair (V,E), where V is the set of vertices and E the set of

edges. We write V (G) for the vertices of G and E(G) for the edges of G when necessary

to avoid ambiguity, as when more than one graph is under discussion.

If no two edges have the same endpoints we say there are no multiple edges, and if

no edge has a single vertex as both endpoints we say there are no loops. A graph with

no loops and no multiple edges is a simple graph. A graph with no loops, but possibly

with multiple edges is a multigraph. The condensation of a multigraph is the simple

graph formed by eliminating multiple edges, that is, removing all but one of the edges with

the same endpoints. To form the condensation of a graph, all loops are also removed. We

sometimes refer to a graph as a general graph to emphasize that the graph may have

loops or multiple edges.

The edges of a simple graph can be represented as a set of two element sets; for

example,

({v1, . . . , v7}, {{v1, v2}, {v2, v3}, {v3, v4}, {v3, v5}, {v4, v5}, {v5, v6}, {v6, v7}})

is a graph that can be pictured as in figure 5.1.1. This graph is also a connected

graph: each pair of vertices v, w is connected by a sequence of vertices and edges,

v = v1, e1, v2, e2, . . . , vk = w, where vi and vi+1 are the endpoints of edge ei. The graphs

shown in figure 4.4.2 are connected, but the figure could be interpreted as a single graph

that is not connected.

89
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Figure 5.1.1 A simple graph.

A graph G = (V,E) that is not simple can be represented by using multisets: a loop

is a multiset {v, v} = {2 · v} and multiple edges are represented by making E a multiset.

The condensation of a multigraph may be formed by interpreting the multiset E as a set.

A general graph that is not connected, has loops, and has multiple edges is shown in

figure 5.1.2. The condensation of this graph is shown in figure 5.1.3.

..

•

.• .

•

.

•

.

•

.

•

.

•

.•. •. •. •

Figure 5.1.2 A general graph: it is not connected and has loops and mulitple edges.
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Figure 5.1.3 The condensation of the previous graph.

The degree of a a vertex v, d(v), is the number of times it appears as an endpoint of

an edge. If there are no loops, this is the same as the number of edges incident with v, but

if v is both endpoints of an edge, namely, of a loop, then this contributes 2 to the degree of

v. The degree sequence of a graph is a list of its degrees; the order does not matter, but

usually we list the degrees in increasing or decreasing order. The degree sequence of the

graph in figure 5.1.2, listed clockwise starting at the upper left, is 0, 4, 2, 3, 2, 8, 2, 4, 3, 2, 2.

We typically denote the degrees of the vertices of a graph by di, i = 1, 2, . . . , n, where n is

the number of vertices. Depending on context, the subscript i may match the subscript on

a vertex, so that di is the degree of vi, or the subscript may indicate the position of di in

an increasing or decreasing list of the degrees; for example, we may state that the degree

sequence is d1 ≤ d2 ≤ · · · ≤ dn.
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Our first result, simple but useful, concerns the degree sequence.

THEOREM 5.1.1 In any graph, the sum of the degree sequence is equal to twice the

number of edges, that is,
n∑

i=1

di = 2|E|.

Proof. Let di be the degree of vi. The degree di counts the number of times vi appears

as an endpoint of an edge. Since each edge has two endpoints, the sum
∑n

i=1 di counts

each edge twice.

An easy consequence of this theorem:

COROLLARY 5.1.2 The number of odd numbers in a degree sequence is even.

An interesting question immediately arises: given a finite sequence of integers, is it

the degree sequence of a graph? Clearly, if the sum of the sequence is odd, the answer is

no. If the sum is even, it is not too hard to see that the answer is yes, provided we allow

loops and multiple edges. The sequence need not be the degree sequence of a simple graph;

for example, it is not hard to see that no simple graph has degree sequence 0, 1, 2, 3, 4. A

sequence that is the degree sequence of a simple graph is said to be graphical. Graphical

sequences have be characterized; the most well known characterization is given by this

result:

THEOREM 5.1.3 A sequence d1 ≥ d2 ≥ . . . ≥ dn is graphical if and only if
∑n

i=1 di is

even and for all k ∈ {1, 2, . . . , n},

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min(di, k).

It is not hard to see that if a sequence is graphical it has the property in the theorem;

it is rather more difficult to see that any sequence with the property is graphical.

What does it mean for two graphs to be the same? Consider these three graphs:

G1 = ({v1, v2, v3, v4}, {{v1, v2}, {v2, v3}, {v3, v4}, {v2, v4}})
G2 = ({v1, v2, v3, v4}, {{v1, v2}, {v1, v4}, {v3, v4}, {v2, v4}})
G3 = ({w1, w2, w3, w4}, {{w1, w2}, {w1, w4}, {w3, w4}, {w2, w4}})

These are pictured in figure 5.1.4. Simply looking at the lists of vertices and edges, they

don’t appear to be the same. Looking more closely, G2 and G3 are the same except for
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the names used for the vertices: vi in one case, wi in the other. Looking at the pictures,

there is an obvious sense in which all three are the same: each is a triangle with an edge

(and vertex) dangling from one of the three vertices. Although G1 and G2 use the same

names for the vertices, they apply to different vertices in the graph: in G1 the “dangling”

vertex (officially called a pendant vertex) is called v1, while in G2 it is called v3. Finally,

note that in the figure, G2 and G3 look different, even though they are clearly the same

based on the vertex and edge lists.
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Figure 5.1.4 Three isomorphic graphs.

So how should we define “sameness” for graphs? We use a familiar term and definition:

isomorphism.

DEFINITION 5.1.4 Suppose G1 = (V,E) and G2 = (W,F ). G1 and G2 are isomor-

phic if there is a bijection f :V → W such that {v1, v2} ∈ E if and only if {f(v1), f(v2)} ∈
F . In addition, the repetition numbers of {v1, v2} and {f(v1), f(v2)} are the same if mul-

tiple edges or loops are allowed. This bijection f is called an isomorphism. When G1

and G2 are isomorphic, we write G1
∼= G2.

Each pair of graphs in figure 5.1.4 are isomorphic. For example, to show explicitly

that G1
∼= G3, an isomorphism is

f(v1) = w3

f(v2) = w4

f(v3) = w2

f(v4) = w1.

Clearly, if two graphs are isomorphic, their degree sequences are the same. The con-

verse is not true; the graphs in figure 5.1.5 both have degree sequence 1, 1, 1, 2, 2, 3, but in

one the degree-2 vertices are adjacent to each other, while in the other they are not. In

general, if two graphs are isomorphic, they share all “graph theoretic” properties, that is,

properties that depend only on the graph. As an example of a non-graph theoretic prop-

erty, consider “the number of times edges cross when the graph is drawn in the plane.”

In a more or less obvious way, some graphs are contained in others.
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Figure 5.1.5 Non-isomorphic graphs with degree sequence 1, 1, 1, 2, 2, 3.

DEFINITION 5.1.5 Graph H = (W,F ) is a subgraph of graph G = (V,E) if W ⊆ V

and F ⊆ E. (Since H is a graph, the edges in F have their endpoints in W .) H is an

induced subgraph if F consists of all edges in E with endpoints in W . See figure 5.1.6.

Whenever U ⊆ V we denote the induced subgraph of G on vertices U as G[U ].
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Figure 5.1.6 Left to right: a graph, a subgraph, an induced subgraph.

A path in a graph is a subgraph that is a path; if the endpoints of the path are v and

w we say it is a path from v to w. A cycle in a graph is a subgraph that is a cycle. A

clique in a graph is a subgraph that is a complete graph.

If a graph G is not connected, define v ∼ w if and only if there is a path connecting

v and w. It is not hard to see that this is an equivalence relation. Each equivalence

class corresponds to an induced subgraph G; these subgraphs are called the connected

components of the graph.

Exercises 5.1.

1. The complement G of the simple graph G is a simple graph with the same vertices as G, and
{v, w} is an edge of G if and only if it is not an edge of G. A graph G is self-complementary
if G ∼= G. Show that if G is self-complementary then it has 4k or 4k+ 1 vertices for some k.
Find self-complementary graphs on 4 and 5 vertices.

2. Prove that if
∑n

i=1 di is even, there is a graph (not necessarily simple) with degree sequence
d1, d2, . . . , dn.

3. Suppose d1 ≥ d2 ≥ · · · ≥ dn and
∑n

i=1 di is even. Prove that there is a multigraph with
degree sequence d1, d2, . . . , dn if and only if d1 ≤

∑n
i=2 di.

4. Prove that 0, 1, 2, 3, 4 is not graphical.
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5. Is 4, 4, 3, 2, 2, 1, 1 graphical? If not, explain why; if so, find a simple graph with this degree
sequence.

6. Is 4, 4, 4, 2, 2 graphical? If not, explain why, and find a graph with this degree sequence; if
so, find a simple graph with this degree sequence.

7. Prove that a simple graph with n ≥ 2 vertices has two vertices of the same degree.

8. Prove the “only if” part of theorem 5.1.3.

9. Show that the condition on the degrees in theorem 5.1.3 is equivalent to this condition:∑n
i=1 di is even and for all k ∈ {1, 2, . . . , n}, and all {i1, i2, . . . , ik} ⊆ [n],

k∑
j=1

dij ≤ k(k − 1) +
∑

i/∈{i1,i2,...,ik}

min(di, k).

Do not use theorem 5.1.3.

10. Draw the 11 non-isomorphic graphs with four vertices.

11. Suppose G1
∼= G2. Show that if G1 contains a cycle of length k so does G2.

12. Define v ∼ w if and only if there is a path connecting vertices v and w. Prove that ∼ is an
equivalence relation.

13. Prove the “if” part of theorem 5.1.3, as follows:

The proof is by induction on s =
∑n

i=1 di. This is easy to see if s = 2, so suppose s > 2.
Without loss of generality we may suppose that dn > 0. Let t be the least integer such that
dt > dt+1, or t = n− 1 if there is no such integer. Let d′t = dt − 1, d′n = dn − 1, and d′i = di
for all other i. Note that d′1 ≥ d′2 ≥ · · · d′n. We want to show that the sequence {d′i} satisfies
the condition of the theorem, that is, that for all k ∈ {1, 2, . . . , n},

k∑
i=1

d′i ≤ k(k − 1) +

n∑
i=k+1

min(d′i, k).

There are five cases:

1. k ≥ t

2. k < t, dk < k

3. k < t, dk = k

4. k < t, dn > k

5. k < t, dk > k, dn ≤ k

By the induction hypothesis, there is a simple graph with degree sequence {d′i}. Finally,
show that there is a graph with degree sequence {di}.

This proof is due to S. A. Choudum, A Simple Proof of the Erdős-Gallai Theorem on
Graph Sequences, Bulletin of the Australian Mathematics Society, vol. 33, 1986, pp. 67-70.
The proof by Paul Erdős and Tibor Gallai was long; Berge provided a shorter proof that
used results in the theory of network flows. Choudum’s proof is both short and elementary.

5.2 Euler Circuits and Walks

The first problem in graph theory dates to 1735, and is called the Seven Bridges of

Königsberg. In Königsberg were two islands, connected to each other and the mainland

http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg
http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg
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by seven bridges, as shown in figure 5.2.1. The question, which made its way to Euler,

was whether it was possible to take a walk and cross over each bridge exactly once; Euler

showed that it is not possible.

Figure 5.2.1 The Seven Bridges of Königsberg.

We can represent this problem as a graph, as in figure 5.2.2.

..

•

.•.

•

. •

Figure 5.2.2 The Seven Bridges of Königsberg as a graph.

The two sides of the river are represented by the top and bottom vertices, and the

islands by the middle two vertices. There are two possible interpretations of the question,

depending on whether the goal is to end the walk at its starting point. Perhaps inspired

by this problem, a walk in a graph is defined as follows.
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DEFINITION 5.2.1 A walk in a graph is a sequence of vertices and edges,

v1, e1, v2, e2, . . . , vk, ek, vk+1

such that the endpoints of edge ei are vi and vi+1. In general, the edges and vertices may

appear in the sequence more than once. If v1 = vk+1, the walk is a closed walk or a

circuit.

We will deal first with the case in which the walk is to start and end at the same place.

A successful walk in Königsberg corresponds to a closed walk in the graph in which every

edge is used exactly once.

What can we say about this walk in the graph, or indeed a closed walk in any graph

that uses every edge exactly once? Such a walk is called an Euler circuit. If there are

no vertices of degree 0, the graph must be connected, as this one is. Beyond that, imagine

tracing out the vertices and edges of the walk on the graph. At every vertex other than

the common starting and ending point, we come into the vertex along one edge and go

out along another; this can happen more than once, but since we cannot use edges more

than once, the number of edges incident at such a vertex must be even. Already we see

that we’re in trouble in this particular graph, but let’s continue the analysis. The common

starting and ending point may be visited more than once; except for the very first time

we leave the starting vertex, and the last time we arrive at the vertex, each such visit

uses exactly two edges. Together with the edges used first and last, this means that the

starting vertex must also have even degree. Thus, since the Königsberg Bridges graph has

odd degrees, the desired walk does not exist.

The question that should immediately spring to mind is this: if a graph is connected

and the degree of every vertex is even, is there an Euler circuit? The answer is yes.

THEOREM 5.2.2 If G is a connected graph, then G contains an Euler circuit if and

only if every vertex has even degree.

Proof. We have already shown that if there is an Euler circuit, all degrees are even.

We prove the other direction by induction on the number of edges. If G has no edges

the problem is trivial, so we assume that G has edges.

We start by finding some closed walk that does not use any edge more than once:

Start at any vertex v0; follow any edge from this vertex, and continue to do this at each

new vertex, that is, upon reaching a vertex, choose some unused edge leading to another

vertex. Since every vertex has even degree, it is always possible to leave a vertex at which

we arrive, until we return to the starting vertex, and every edge incident with the starting

vertex has been used. The sequence of vertices and edges formed in this way is a closed

walk; if it uses every edge, we are done.
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Otherwise, form graph G′ by removing all the edges of the walk. G′ is not connected,

since vertex v0 is not incident with any remaining edge. The rest of the graph, that is, G′

without v0, may or may not be connected. It consists of one or more connected subgraphs,

each with fewer edges than G; call these graphs G1, G2,. . . ,Gk. Note that when we remove

the edges of the initial walk, we reduce the degree of every vertex by an even number, so

all the vertices of each graph Gi have even degree. By the induction hypothesis, each Gi

has an Euler circuit. These closed walks together with the original closed walk use every

edge of G exactly once.

Suppose the original closed walk is v0, v1, . . . , vm = v0, abbreviated to leave out the

edges. Because G is connected, at least one vertex in each Gi appears in this sequence,

say vertices w1,1 ∈ G1, w2,1 ∈ G2,. . . , wk,1 ∈ Gk, listed in the order they appear in

v0, v1, . . . , vm. The Euler circuits of the graphs Gi are

w1,1, w1,2, . . . , w1,m1 = w1,1

w2,1, w2,2, . . . , w2,m2 = w2,1

...

wk,1, wk,2, . . . , wk,mk
= wk,1.

By pasting together the original closed walk with these, we form a closed walk in G that

uses every edge exactly once:

v0, v1, . . . , vi1 = w1,1, w1,2, . . . , w1,m1 = vi1 , vi1+1,

. . . , vi2 = w2,1, . . . , w2,m2 = vi2 , vi2+1,

. . . , vik = wk,1, . . . , wk,mk
= vik , vik+1, . . . , vm = v0.

Now let’s turn to the second interpretation of the problem: is it possible to walk over

all the bridges exactly once, if the starting and ending points need not be the same? In a

graph G, a walk that uses all of the edges but is not an Euler circuit is called an Euler

walk. It is not too difficult to do an analysis much like the one for Euler circuits, but it

is even easier to use the Euler circuit result itself to characterize Euler walks.

THEOREM 5.2.3 A connected graph G has an Euler walk if and only if exactly two

vertices have odd degree.

Proof. Suppose first that G has an Euler walk starting at vertex v and ending at vertex

w. Add a new edge to the graph with endpoints v and w, forming G′. G′ has an Euler

circuit, and so by the previous theorem every vertex has even degree. The degrees of v

and w in G are therefore odd, while all others are even.
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Now suppose that the degrees of v and w in G are odd, while all other vertices have

even degree. Add a new edge e to the graph with endpoints v and w, forming G′. Every

vertex in G′ has even degree, so by the previous theorem there is an Euler circuit which

we can write as

v, e1, v2, e2, . . . , w, e, v,

so that

v, e1, v2, e2, . . . , w

is an Euler walk.

Exercises 5.2.

1. Suppose a connected graph G has degree sequence d1, d2, . . . , dn. How many edges must be
added to G so that the resulting graph has an Euler circuit? Explain.

2. Which complete graphs Kn, n ≥ 2, have Euler circuits? Which have Euler walks? Justify
your answers.

3. Prove that if vertices v and w are joined by a walk they are joined by a path.

4. Show that if G is connected and has exactly 2k vertices of odd degree, k ≥ 1, its edges can
be partitioned into k walks. Is this true for non-connected G?

5.3 Hamilton Cycles and Paths

Here is a problem similar to the Königsberg Bridges problem: suppose a number of cities

are connected by a network of roads. Is it possible to visit all the cities exactly once,

without traveling any road twice? We assume that these roads do not intersect except at

the cities. Again there are two versions of this problem, depending on whether we want to

end at the same city in which we started.

This problem can be represented by a graph: the vertices represent cities, the edges

represent the roads. We want to know if this graph has a cycle, or path, that uses every

vertex exactly once. (Recall that a cycle in a graph is a subgraph that is a cycle, and a

path is a subgraph that is a path.) There is no benefit or drawback to loops and multiple

edges in this context: loops can never be used in a Hamilton cycle or path (except in the

trivial case of a graph with a single vertex), and at most one of the edges between two

vertices can be used. So we assume for this discussion that all graphs are simple.

DEFINITION 5.3.1 A cycle that uses every vertex in a graph exactly once is called

a Hamilton cycle, and a path that uses every vertex in a graph exactly once is called a

Hamilton path.
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Unfortunately, this problem is much more difficult than the corresponding Euler circuit

and walk problems; there is no good characterization of graphs with Hamilton paths and

cycles. Note that if a graph has a Hamilton cycle then it also has a Hamilton path.

There are some useful conditions that imply the existence of a Hamilton cycle or path,

which typically say in some form that there are many edges in the graph. An extreme

example is the complete graph Kn: it has as many edges as any simple graph on n vertices

can have, and it has many Hamilton cycles.

The problem for a characterization is that there are graphs with Hamilton cycles that

do not have very many edges. The simplest is a cycle, Cn: this has only n edges but has a

Hamilton cycle. On the other hand, figure 5.3.1 shows graphs with just a few more edges

than the cycle on the same number of vertices, but without Hamilton cycles.

..• .• .• .• .• .

•

.

•

.

•

.

•

.

•

.

•

.

•

.

•

.•. •. •. •. •. •. •.

•

.

•

.

•

.

•

.

•

.

•

.

•

.

•

.

•

.

•

.

•

Figure 5.3.1 A graph with a Hamilton path but not a Hamilton cycle, and one with
neither.

There are also graphs that seem to have many edges, yet have no Hamilton cycle, as

indicated in figure 5.3.2.

..•. •. Kn−1

Figure 5.3.2 A graph with many edges but no Hamilton cycle: a complete graph Kn−1

joined by an edge to a single vertex. This graph has
(
n−1
2

)
+ 1 edges.

The key to a successful condition sufficient to guarantee the existence of a Hamilton

cycle is to require many edges at lots of vertices.

THEOREM 5.3.2 (Ore) If G is a simple graph on n vertices, n ≥ 3, and d(v) +

d(w) ≥ n whenever v and w are not adjacent, then G has a Hamilton cycle.

Proof. First we show that G is connected. If not, let v and w be vertices in two different

connected components of G, and suppose the components have n1 and n2 vertices. Then



100 Chapter 5 Graph Theory

d(v) ≤ n1 − 1 and d(w) ≤ n2 − 1, so d(v) + d(w) ≤ n1 + n2 − 2 < n. But since v and w

are not adjacent, this is a contradiction.

Now consider a longest possible path in G: v1, v2, . . . , vk. Suppose, for a contradiction,

that k < n, so there is some vertex w adjacent to one of v2, v3, . . . , vk−1, say to vi. If

v1 is adjacent to vk, then w, vi, vi+1, . . . , vk, v1, v2, . . . vi−1 is a path of length k + 1, a

contradiction. Hence, v1 is not adjacent to vk, and so d(v1)+ d(vk) ≥ n. The neighbors of

v1 are among {v2, v3, . . . , vk−1} as are the neighbors of vk. Consider the vertices

W = {vl+1 | vl is a neighbor of vk}.

Then |N(vk)| = |W | and W ⊆ {v3, v4, . . . , vk} and N(v1) ⊆ {v2, v3, . . . , vk−1}, so W ∪
N(v1) ⊆ {v2, v3, . . . , vk}, a set with k − 1 < n elements. Since |N(v1)|+ |W | = |N(v1)|+
|N(vk)| ≥ n, N(v1) and W must have a common element, vj ; note that 3 ≤ j ≤ k − 1.

Then this is a cycle of length k:

v1, vj , vj+1, . . . , vk, vj−1, vj−2, . . . , v1.

We can relabel the vertices for convenience:

v1 = w1, w2, . . . , wk = v2, w1.

Now as before, w is adjacent to some wl, and w,wl, wl+1, . . . , wk, w1, w2, . . . wl−1 is a path

of length k+1, a contradiction. Thus, k = n, and, renumbering the vertices for convenience,

we have a Hamilton path v1, v2, . . . , vn. If v1 is adjacent to vn, there is a Hamilton cycle,

as desired.

If v1 is not adjacent to vn, the neighbors of v1 are among {v2, v3, . . . , vn−1} as are the

neighbors of vn. Consider the vertices

W = {vl+1 | vl is a neighbor of vn}.

Then |N(vn)| = |W | and W ⊆ {v3, v4, . . . , vn}, and N(v1) ⊆ {v2, v3, . . . , vn−1}, so W ∪
N(v1) ⊆ {v2, v3, . . . , vn}, a set with n− 1 < n elements. Since |N(v1)|+ |W | = |N(v1)|+
|N(vk)| ≥ n, N(v1) and W must have a common element, vi; note that 3 ≤ i ≤ n − 1.

Then this is a cycle of length n:

v1, vi, vi+1, . . . , vk, vi−1, vi−2, . . . , v1,

and is a Hamilton cycle.

The property used in this theorem is called the Ore property; if a graph has the Ore

property it also has a Hamilton path, but we can weaken the condition slightly if our goal

is to show there is a Hamilton path. The proof of this theorem is nearly identical to the

preceding proof.

THEOREM 5.3.3 If G is a simple graph on n vertices and d(v)+d(w) ≥ n−1 whenever

v and w are not adjacent, then G has a Hamilton path.
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Exercises 5.3.

1. Suppose a simple graph G on n vertices has at least
(n− 1)(n− 2)

2
+ 2 edges. Prove that G

has a Hamilton cycle. For n ≥ 2, show that there is a simple graph with
(n− 1)(n− 2)

2
+ 1

edges that has no Hamilton cycle.

2. Prove theorem 5.3.3.

3. The graph shown below is the Petersen graph. Does it have a Hamilton cycle? Justify your
answer. Does it have a Hamilton path? Justify your answer.
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5.4 Bipartite Graphs

We have already seen how bipartite graphs arise naturally in some circumstances. Here

we explore bipartite graphs a bit more.

It is easy to see that all closed walks in a bipartite graph must have even length,

since the vertices along the walk must alternate between the two parts. Remarkably, the

converse is true. We need one new definition:

DEFINITION 5.4.1 The distance between vertices v and w, d(v, w), is the length of

a shortest walk between the two. If there is no walk between v and w, the distance is

undefined.

THEOREM 5.4.2 G is bipartite if and only if all closed walks in G are of even length.

Proof. The forward direction is easy, as discussed above.

Now suppose that all closed walks have even length. We may assume that G is con-

nected; if not, we deal with each connected component separately.

Let v be a vertex of G, let X be the set of all vertices at even distance from v, and Y

be the set of vertices at odd distance from v. We claim that all edges of G join a vertex

of X to a vertex of Y . Suppose not; then there are adjacent vertices u and w such that

d(v, u) and d(v, w) have the same parity. Then there is a closed walk from v to u to w to

v of length d(v, u) + 1 + d(v, w), which is odd, a contradiction.
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The closed walk that provides the contradiction is not necessarily a cycle, but this can

be remedied, providing a slightly different version of the theorem.

COROLLARY 5.4.3 G is bipartite if and only if all cycles in G are of even length.

Proof. Again the forward direction is easy, and again we assume G is connected. As

before, let v be a vertex of G, let X be the set of all vertices at even distance from v,

and Y be the set of vertices at odd distance from v. If two vertices in X are adjacent, or

two vertices in Y are adjacent, then as in the previous proof, there is a closed walk of odd

length.

To finish the proof, it suffices to show that if there is a closed walk W of odd length

then there is a cycle of odd length. The proof is by induction on the length of the closed

walk.

If W has no repeated vertices, we are done. Otherwise, suppose the closed walk is

v = v1, e1, . . . , vi = v, . . . , vk = v = v1.

Then

v = v1, . . . , vi = v and v = vi, ei, vi+1, . . . , vk = v

are closed walks, both are shorter than the original closed walk, and one of them has odd

length. By the induction hypothesis, there is a cycle of odd length.

It is frequently fruitful to consider graph properties in the limited context of bipartite

graphs (or other special types of graph). For example, what can we say about Hamilton

cycles in simple bipartite graphs? Suppose the partition of the vertices of the bipartite

graph is X and Y . Because any cycle alternates between vertices of the two parts of the

bipartite graph, if there is a Hamilton cycle then |X| = |Y | ≥ 2. In such a case, the degree

of every vertex is at most n/2, where n is the number of vertices, namely n = |X| + |Y |.
Thus the Ore condition (d(v) + d(w) ≥ n when v and w are not adjacent) is equivalent

to d(v) = n/2 for all v. This means the only simple bipartite graph that satisfies the Ore

condition is the complete bipartite graph Kn/2,n/2, in which the two parts have size

n/2 and every vertex of X is adjacent to every vertex of Y . The upshot is that the Ore

property gives no interesting information about bipartite graphs.

Of course, as with more general graphs, there are bipartite graphs with few edges and

a Hamilton cycle: any even length cycle is an example.

We note that, in general, a complete bipartite graph Km,n is a bipartite graph with

|X| = m, |Y | = n, and every vertex of X is adjacent to every vertex of Y . The only such

graphs with Hamilton cycles are those in which m = n.
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Exercises 5.4.

1. Prove that there is a bipartite multigraph with degree sequence d1, . . . , dn if and only if there
is a partition {I, J} of [n] such that ∑

i∈I

di =
∑
i∈J

di.

2. What is the smallest number of edges that can be removed from K5 to create a bipartite
graph?

3. A regular graph is one in which the degree of every vertex is the same. Show that if G is
a regular bipartite graph, and the common degree of the vertices is at least 1, then the two
parts are the same size.

4. A perfect matching is one in which all vertices of the graph are incident with an edge
in the matching. Show that a regular bipartite graph with common degree at least 1 has a
perfect matching. (We discussed matchings in section 4.5.)

5.5 Trees

Another useful special class of graphs:

DEFINITION 5.5.1 A connected graph G is a tree if it is acyclic, that is, it has no

cycles. More generally, an acyclic graph is called a forest.

Two small examples of trees are shown in figure 5.1.5. Note that the definition implies

that no tree has a loop or multiple edges.

THEOREM 5.5.2 Every tree T is bipartite.

Proof. Since T has no cycles, it is true that every cycle of T has even length. By

corollary 5.4.3, T is bipartite.

DEFINITION 5.5.3 A vertex of degree one is called a pendant vertex, and the edge

incident to it is a pendant edge.

THEOREM 5.5.4 Every tree on two or more vertices has at least one pendant vertex.

Proof. We prove the contrapositive. Suppose graph G has no pendant vertices. Starting

at any vertex v, follow a sequence of distinct edges until a vertex repeats; this is possible

because the degree of every vertex is at least two, so upon arriving at a vertex for the first

time it is always possible to leave the vertex on another edge. When a vertex repeats for

the first time, we have discovered a cycle.

This theorem often provides the key step in an induction proof, since removing a

pendant vertex (and its pendant edge) leaves a smaller tree.
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THEOREM 5.5.5 A tree on n vertices has exactly n− 1 edges.

Proof. A tree on 1 vertex has 0 edges; this is the base case.

If T is a tree on n ≥ 2 vertices, it has a pendant vertex. Remove this vertex and its

pendant edge to get a tree T ′ on n− 1 vertices. By the induction hypothesis, T ′ has n− 2

edges; thus T has n− 1 edges.

THEOREM 5.5.6 A tree with a vertex of degree k ≥ 1 has at least k pendant vertices.

In particular, every tree on at least two vertices has at least two pendant vertices.

Proof. The case k = 1 is obvious. Let T be a tree with n vertices, degree sequence

{di}ni=1, and a vertex of degree k ≥ 2, and let l be the number of pendant vertices.

Without loss of generality, 1 = d1 = d2 = · · · = dl and dl+1 = k. Then

2(n− 1) =
n∑

i=1

di = l + k +
n∑

i=l+2

di ≥ l + k + 2(n− l − 1).

This reduces to l ≥ k, as desired.

If T is a tree on two vertices, each of the vertices has degree 1. If T has at least three

vertices it must have a vertex of degree k ≥ 2, since otherwise 2(n − 1) =
∑n

i=1 di = n,

which implies n = 2. Hence it has at least k ≥ 2 pendant vertices.

Trees are quite useful in their own right, but also for the study of general graphs.

DEFINITION 5.5.7 If G is a connected graph on n vertices, a spanning tree for G

is a subgraph of G that is a tree on n vertices.

THEOREM 5.5.8 Every connected graph has a spanning tree.

Proof. By induction on the number of edges. If G is connected and has zero edges, it is

a single vertex, so G is already a tree.

Now suppose G has m ≥ 1 edges. If G is a tree, it is its own spanning tree. Otherwise,

G contains a cycle; remove one edge of this cycle. The resulting graph G′ is still connected

and has fewer edges, so it has a spanning tree; this is also a spanning tree for G.

In general, spanning trees are not unique, that is, a graph may have many spanning

trees. It is possible for some edges to be in every spanning tree even if there are multiple

spanning trees. For example, any pendant edge must be in every spanning tree, as must

any edge whose removal disconnects the graph (such an edge is called a bridge.)

COROLLARY 5.5.9 If G is connected, it has at least n − 1 edges; moreover, it has

exactly n− 1 edges if and only if it is a tree.
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Proof. If G is connected, it has a spanning tree, which has n− 1 edges, all of which are

edges of G.

If G has n−1 edges, which must be the edges of its spanning tree, then G is a tree.

THEOREM 5.5.10 G is a tree if and only if there is a unique path between any two

vertices.

Proof.

if: Since every two vertices are connected by a path, G is connected. For a contradiction,

suppose there is a cycle in G; then any two vertices on the cycle are connected by at least

two distinct paths, a contradiction.

only if: If G is a tree it is connected, so between any two vertices there is at least one

path. For a contradiction, suppose there are two different paths from v to w:

v = v1, v2, . . . , vk = w and v = w1, w2, . . . , wl = w.

Let i be the smallest integer such that vi ̸= wi. Then let j be the smallest integer greater

than or equal to i such that wj = vm for some m, which must be at least i. (Since wl = vk,

such an m must exist.) Then vi−1, vi, . . . , vm = wj , wj−1, . . . , wi−1 = vi−1 is a cycle in G,

a contradiction. See figure 5.5.1.
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Figure 5.5.1 Distinct paths imply the existence of a cycle.

DEFINITION 5.5.11 A cutpoint in a connected graph G is a vertex whose removal

disconnects the graph.

THEOREM 5.5.12 Every connected graph has a vertex that is not a cutpoint.

Proof. Remove a pendant vertex in a spanning tree for the graph.

Exercises 5.5.

1. Suppose that G is a connected graph, and that every spanning tree contains edge e. Show
that e is a bridge.

2. Show that every edge in a tree is a bridge.
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3. Show that G is a tree if and only if it has no cycles and adding any new edge creates a graph
with exactly one cycle.

4. Which trees have Euler walks?

5. Which trees have Hamilton paths?

6. Let n ≥ 2. Show that there is a tree with degree sequence d1, d2, . . . , dn if and only if di > 0
for all i and

∑n
i=1 di = 2(n− 1).

7. A multitree is a multigraph whose condensation is a tree. Let n ≥ 2. Let d1, d2, . . . , dn be
positive integers, and let g be the greatest common divisor of the di. Show that there is
a multitree with degree sequence d1, d2, . . . , dn if and only if

∑n
i=1 di/g ≥ 2(n − 1) and for

some partition I, J of [n],
∑

i∈I di =
∑

i∈J di.

5.6 Optimal Spanning Trees

In some applications, a graph G is augmented by associating a weight or cost with each

edge; such a graph is called a weighted graph. For example, if a graph represents a

network of roads, the weight of an edge might be the length of the road between its two

endpoints, or the amount of time required to travel from one endpoint to the other, or

the cost to bury cable along the road from one end to the other. In such cases, instead of

being interested in just any spanning tree, we may be interested in a least cost spanning

tree, that is, a spanning tree such that the sum of the costs of the edges of the tree is as

small as possible. For example, this would be the least expensive way to connect a set of

towns by a communication network, burying the cable in such a way as to minimize the

total cost of laying the cable.

This problem is one that can be solved by a greedy algorithm. Roughly speaking,

a greedy algorithm is one that makes choices that are optimal in the short run. Typically

this strategy does not result in an optimal solution in the long run, but in this case this

approach works.

DEFINITION 5.6.1 A weighted graph is a graph G together with a cost function

c:E(G) → R>0. If H is a subgraph of G, the cost of H is c(H) =
∑

e∈E(H) c(e).

The Jarńık Algorithm. Given a weighted connected graph G, we construct a minimum

cost spanning tree T as follows. Choose any vertex v0 in G and include it in T . If

vertices S = {v0, v1, . . . , vk} have been chosen, choose an edge with one endpoint in S and

one endpoint not in S and with smallest weight among all such edges. Let vk+1 be the

endpoint of this edge not in S, and add it and the associated edge to T . Continue until

all vertices of G are in T .

This algorithm was discovered by Vojtěch Jarńık in 1930, and rediscovered indepen-

dently by Robert C. Prim in 1957 and Edsger Dijkstra in 1959. It is often called Prim’s

Algorithm.
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The algorithm proceeds by constructing a sequence of trees T1, T2, . . . , Tn−1, with Tn−1

a spanning tree for G. At each step, the algorithm adds an edge that will make c(Ti+1) as

small as possible among all trees that consist of Ti plus one edge. This is the best choice

in the short run, but it is not obvious that in the long run, that is, by the time Tn−1 is

constructed, that this will turn out to have been the best choice.

THEOREM 5.6.2 The Jarńık Algorithm produces a minimum cost spanning tree.

Proof. Suppose G is connected on n vertices. Let T be the spanning tree produced by

the algorithm, and Tm a minimum cost spanning tree. We prove that c(T ) = c(Tm).

Let e1, e2, . . . , en−1 be the edges of T in the order in which they were added to T ;

one endpoint of ei is vi, the other is in {v0, . . . , vi−1}. We form a sequence of trees

Tm = T0, T1, . . . , Tn−1 = T such that for each i, c(Ti) = c(Ti+1), and we conclude that

c(Tm) = c(T ).

If e1 is in T0, let T1 = T0. Otherwise, add edge e1 to T0. This creates a cycle containing

e1 and another edge incident at v0, say f1. Remove f1 to form T1. Since the algorithm

added edge e1, c(e1) ≤ c(f1). If c(e1) < c(f1), then c(T1) < c(T0) = c(Tm), a contradiction,

so c(e1) = c(f1) and c(T1) = c(T0).

Suppose we have constructed tree Ti. If ei+1 is in Ti, let Ti+1 = Ti. Otherwise, add

edge ei+1 to Ti. This creates a cycle, one of whose edges, call it fi+1, is not in e1, e2, . . . , ei
and has exactly one endpoint in {v0, . . . , vi}. Remove fi+1 to create Ti+1. Since the

algorithm added ei+1, c(ei+1) ≤ c(fi+1). If c(ei+1) < c(fi+1), then c(Ti+1) < c(Ti) =

c(Tm), a contradiction, so c(ei+1) = c(fi+1) and c(Ti+1) = c(Ti).

Exercises 5.6.

1. Kruskal’s Algorithm is also a greedy algorithm that produces a minimum cost spanning tree
for a connected graph G. Begin by choosing an edge in G of smallest cost. Assuming that
edges e1, e2, . . . , ei have been chosen, pick an edge ei+1 that does not form a cycle together
with e1, e2, . . . , ei and that has smallest cost among all such edges. The edges e1, e2, . . . , en−1

form a spanning tree for G. Prove that this spanning tree has minimum cost.

2. Prove that if the edge costs of G are distinct, there is exactly one minimum cost spanning
tree. Give an example of a graph G with more than one minimum cost spanning tree.

3. In both the Jarńık and Kruskal algorithms, it may be that two or more edges can be added
at any particular step, and some method is required to choose one over the other. For the
graph below, use both algorithms to find a minimum cost spanning tree. Using the labels
ei on the graph, at each stage pick the edge ei that the algorithm specifies and that has the
lowest possible i among all edges available. For the Jarńık algorithm, use the designated
v0 as the starting vertex. For each algorithm, list the edges in the order in which they are
added. The edge weights e1, e2, . . . , e10 are 6, 7, 8, 2, 3, 2, 4, 6, 1, 1.



108 Chapter 5 Graph Theory

..•. •.

•

.

•

.

•

.

•

.

v0

.

e1

.

e2

.

e3

.

e4

.

e5

.

e6

.

e7

.

e8

.

e9

.
e10

5.7 Connectivity

We have seen examples of connected graphs and graphs that are not connected. While “not

connected” is pretty much a dead end, there is much to be said about “how connected”

a connected graph is. The simplest approach is to look at how hard it is to disconnect a

graph by removing vertices or edges. We assume that all graphs are simple.

If it is possible to disconnect a graph by removing a single vertex, called a cutpoint,

we say the graph has connectivity 1. If this is not possible, but it is possible to disconnect

the graph by removing two vertices, the graph has connectivity 2.

DEFINITION 5.7.1 If a graph G is connected, any set of vertices whose removal

disconnects the graph is called a cutset. G has connectivity k if there is a cutset of size k

but no smaller cutset. If there is no cutset and G has at least two vertices, we say G has

connectivity n−1; if G has one vertex, its connectivity is undefined. If G is not connected,

we say it has connectivity 0. G is k-connected if the connectivity of G is at least k. The

connectivity of G is denoted κ(G).

As you should expect from the definition, there are graphs without a cutset: the

complete graphs Kn. If G is connected but not a Kn, it has vertices v and w that are

not adjacent, so removing the n − 2 other vertices leaves a non-connected graph, and so

the connectivity of G is at most n− 2. Thus, only the complete graphs have connectivity

n− 1.

We do the same thing for edges:

DEFINITION 5.7.2 If a graph G is connected, any set of edges whose removal dis-

connects the graph is called a cut. G has edge connectivity k if there is a cut of size k

but no smaller cut; the edge connectivity of a one-vertex graph is undefined. G is k-edge-

connected if the edge connectivity of G is at least k. The edge connectivity is denoted

λ(G).
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Any connected graph with at least two vertices can be disconnected by removing

edges: by removing all edges incident with a single vertex the graph is disconnected.

Thus, λ(G) ≤ δ(G), where δ(G) is the minimum degree of any vertex in G. Note that

δ(G) ≤ n− 1, so λ(G) ≤ n− 1.

Removing a vertex also removes all of the edges incident with it, which suggests that

κ(G) ≤ λ(G). This turns out to be true, though not as easy as you might hope. We write

G − v to mean G with vertex v removed, and G − {v1, v2, . . . , vk} to mean G with all of

{v1, v2, . . . , vk} removed, and similarly for edges.

THEOREM 5.7.3 κ(G) ≤ λ(G).

Proof. We use induction on λ = λ(G). If λ = 0, G is disconnected, so κ = 0. If λ = 1,

removal of edge e with endpoints v and w disconnects G. If v and w are the only vertices

of G, G is K2 and has connectivity 1. Otherwise, removal of one of v and w disconnects

G, so κ = 1.

As a special case we note that if λ = n− 1 then δ = n− 1, so G is Kn and κ = n− 1.

Now suppose n − 1 > λ = k > 1, and removal of edges e1, e2, . . . , ek disconnects G.

Remove edge ek with endpoints v and w to form G1 with λ(G1) = k− 1. By the induction

hypothesis, there are at most k−1 vertices v1, v2, . . . , vj such thatG2 = G1−{v1, v2, . . . , vj}
is disconnected. Since k < n− 1, k − 1 ≤ n− 3, and so G2 has at least 3 vertices.

If both v and w are vertices of G2, and if adding ek to G2 produces a connected

graph G3, then removal of one of v and w will disconnect G3 forming G4, and G4 =

G−{v1, v2, . . . , vj , v} or G4 = G−{v1, v2, . . . , vj , w}, that is, removing at most k vertices

disconnects G. If v and w are vertices of G2 but adding ek does not produce a connected

graph, then removing v1, v2, . . . , vj disconnects G. Finally, if at least one of v and w is not

in G2, then G2 = G − {v1, v2, . . . , vj} and the connectivity of G is less than k. So in all

cases, κ ≤ k.

Graphs that are 2-connected are particularly important, and the following simple the-

orem is useful.

THEOREM 5.7.4 If G has at least three vertices, the following are equivalent:

1. G is 2-connected

2. G is connected and has no cutpoint

3. For all distinct vertices u, v, w in G there is a path from u to v that does not

contain w.

Proof. 1 ⇒ 3: Since G is 2-connected, G with w removed is a connected graph G′.

Thus, in G′ there is a path from u to v, which in G is a path from u to v avoiding w.
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3 ⇒ 2: If G has property 3 it is clearly connected. Suppose that w is a cutpoint, so that

G′ = G − w is disconnected. Let u and v be vertices in two different components of G′,

so that no path connects them in G′. Then every path joining u to v in G must use w, a

contradiction.

2 ⇒ 1: Since G has at least 3 vertices and has no cutpoint, its connectivity is at least 2,

so it is 2-connected by definition.

There are other nice characterizations of 2-connected graphs.

THEOREM 5.7.5 If G has at least three vertices, then G is 2-connected if and only if

every two vertices u and v are contained in a cycle.

Proof.

if: Suppose vertex w is removed from G, and consider any other vertices u and v. In G, u

and v lie on a cycle; even if w also lies on this cycle, then u and v are still connected by a

path when w is removed.

only if: Given u and v we want to show there is a cycle containing both. Let U be

the set of vertices other than u that are contained in a cycle with u. First, we show that

U is non-empty. Let w be adjacent to u, and remove the edge e between them. Since

λ(G) ≥ κ(G) ≥ 2, G− e is connected. Thus, there is a path from u to w; together with e

this path forms a cycle containing u and w, so w ∈ U .

For a contradiction, suppose v /∈ U . Let w be in U with d(w, v) ≥ 1 as small as

possible, fix a cycle C containing u and w and a path P of length d(w, v) from w to v.

By the previous theorem, there is a path Q from u to v that does not use w. Following

this path from u, there is a last vertex x on the path that is also on the cycle containing

u and w, and there is a first vertex y on the path, after x, with y also on the path from

w to v (it is possible that y = v, but not that y = w); see figure 5.7.1. Now starting at u,

proceeding on cycle C to x without using w, then from x to y on Q, then to w on P , and

finally back to u on C, we see that y ∈ U . But y is closer to v than is w, a contradiction.

Hence v ∈ U .

..•.u . •.
w

. •.
y

. •. v.

•
.

x

Figure 5.7.1 Point y closer to v than w is a contradiction; path Q is shown dashed. (See
theorem 5.7.5.)
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The following corollary is an easy restatement of this theorem.

COROLLARY 5.7.6 If G has at least three vertices, then G is 2-connected if and only

if between every two vertices u and v there are two internally disjoint paths between v

and w, that is, paths that share only the vertices v and w.

This version of the theorem suggests a generalization:

THEOREM 5.7.7 Menger’s Theorem If G has at least k + 1 vertices, then G is

k-connected if and only if between every two vertices u and v there are k pairwise internally

disjoint paths.

We first prove Menger’s original version of this, a “local” version.

DEFINITION 5.7.8 If v and w are non-adjacent vertices in G, κG(v, w) is the smallest

number of vertices whose removal separates v from w, that is, disconnects G leaving v and

w in different components. A cutset that separates v and w is called a separating set

for v and w. pG(v, w) is the maximum number of internally disjoint paths between v and

w.

THEOREM 5.7.9 If v and w are non-adjacent vertices in G, κG(v, w) = pG(v, w).

Proof. If there are k internally disjoint paths between v and w, then any set of vertices

whose removal separates v from w must contain at least one vertex from each of the k

paths, so κG(v, w) ≥ pG(v, w).

To finish the proof, we show that there are κG(v, w) internally disjoint paths between

v and w. The proof is by induction on the number of vertices in G. If G has two vertices,

G is not connected, and κG(v, w) = pG(v, w) = 0. Now suppose G has n > 2 vertices and

κG(v, w) = k.

Note that removal of either N(v) or N(w) separates v from w, so no separating set S

of size k can properly contain N(v) or N(w). Now we address two cases:

Case 1: Suppose there is a set S of size k that separates v from w, and S contains a vertex

not in N(v) or N(w). G− S is disconnected, and one component G1 contains v. Since S

does not contain N(v), G1 has at least two vertices; let X = V (G1) and Y = V (G)−S−X.

Since S does not contain N(w), Y contains at least two vertices. Now we form two new

graphs: Form HX by starting with G− Y and adding a vertex y adjacent to every vertex

of S. Form HY by starting with G − X and adding a vertex x adjacent to every vertex

of S; see figure 5.7.2. Since X and Y each contain at least two vertices, HX and HY are

smaller than G, and so the induction hypothesis applies to them.
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Clearly S separates v from y in HX and w from x in HY . Moreover, any set that

separates v from y in HX separates v from w in G, so κHX
(v, y) = κG(v, w) = k. Similarly,

κHY (x,w) = κG(v, w) = k. Hence, by the induction hypothesis, there are k internally

disjoint paths from v to y in HX and k internally disjoint paths from x to w in HY . Each

of these paths uses one vertex of S; by eliminating x and y and joining the paths at the

vertices of S, we produce k internally disjoint paths from v to w.
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Figure 5.7.2 Case 1: Top figure is G, lower left is HX , lower right is HY .

Case 2: Now we suppose that any set S separating v and w is a subset of N(v) ∪N(w);

pick such an S. If there is a vertex u not in {v, w} ∪N(v) ∪N(w), consider G − u. This

u is not in any set of size k that separates v from w, for if it were we would be in Case

1. Since S separates v from w in G − u, κG−u(v, w) ≤ k. But if some smaller set S′

separates v from w in G − u, then S′ ∪ {u} separates v from w in G, a contradiction, so

κG−u(v, w) = k. By the induction hypothesis, there are k internally disjoint paths from v

to w in G− u and hence in G.

We are left with V (G) = {v, w} ∪ N(v) ∪ N(w). Suppose there is a vertex u in

N(v) ∩ N(w). Then u is in every set that separates v from w, so κG−u = k − 1. By the

induction hypothesis, there are k − 1 internally disjoint paths from v to w in G − u and

together with the path v, u, w, they comprise k internally disjoint paths from v to w in G.

Finally, suppose that N(v) ∩ N(w) = ∅. Form a bipartite graph B with vertices

N(v) ∪N(w) and any edges of G that have one endpoint in N(v) and the other in N(w).

Every set separating v from w in G must include one endpoint of every edge in B, that is,

must be a vertex cover in B, and conversely, every vertex cover in B separates v from w

in G. Thus, the minimum size of a vertex cover in B is k, and so there is a matching in B

of size k, by theorem 4.5.6. The edges of this matching, together with the edges incident

at v and w, form k internally disjoint paths from v to w in G.
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Proof of Menger’s Theorem (5.7.7). Suppose first that between every two vertices

v and w in G there are k internally disjoint paths. If G is not k-connected, the connectivity

of G is at most k − 1, and because G has at least k + 1 vertices, there is a cutset S of G

with size at most k − 1. Let v and w be vertices in two different components of G− S; in

G these vertices are joined by k internally disjoint paths. Since there is no path from v to

w in G−S, each of these k paths contains a vertex of S, but this is impossible since S has

size less than k, and the paths share no vertices other than v and w. This contradiction

shows that G is k-connected.

Now suppose G is k-connected.

If v and w are not adjacent, κG(v, w) ≥ k and by the previous theorem there are

pG(v, w) = κG(v, w) internally disjoint paths between v and w.

If v and w are connected by edge e, consider G− e. If there is a cutset of G− e of size

less than k − 1, call it S, then either S ∪ {v} or S ∪ {w} is a cutset of G of size less than

k, a contradiction. (Since G has at least k + 1 vertices, G− S has at least three vertices.)

Thus, κG−e(v, w) ≥ k − 1 and by the previous theorem there are at least k − 1 internally

disjoint paths between v and w in G− e. Together with the path v, w using edge e, these

form k internally disjoint paths between v and w in G.

• • •

We return briefly to 2-connectivity. The next theorem can sometimes be used to

provide the induction step in an induction proof.

THEOREM 5.7.10 The Handle Theorem Suppose G is 2-connected and K is a

2-connected proper subgraph of G. Then there are subgraphs L and H (the handle) of G

such that L is 2-connected, L contains K, H is a simple path, L and H share exactly the

endpoints of H, and G is the union of L and H.

Proof. Given G and K, let L be a maximal proper subgraph of G containing K. If

V (L) = V (G), let e be an edge not in L. Since L plus the edge e is 2-connected, it must

be G, by the maximality of L. Hence H is the path consisting of e and its endpoints.

Suppose that v is in V (G) but not V (L). Let u be a vertex of L. Since G is 2-

connected, there is a cycle containing v and u. Following the cycle from v to u, Let w be

the first vertex in L. Continuing on the cycle from u to v, let x be the last vertex in L. Let

P be the path continuing around the cycle: (x, v1, v2, . . . , vk, v = vk+1, vk+2, . . . , vm, w). If

x ̸= w, let H = P . Since L together with H is 2-connected, it is G, as desired.

If x = w then x = w = u. Let y be a vertex of L other than u. Since G is 2-connected,

there is a path P1 from v to y that does not include u. Let vj be the last vertex on P1 that

is in {v1, . . . , v, . . . , vm}; without loss of generality, suppose j ≥ k + 1. Then let H be the

path (u, v1, . . . , v = vk+1, . . . , vj , . . . , y), where from vj to y we follow path P1. Now L∪H
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is a 2-connected subgraph of G, but it is not G, as it does not contain the edge {u, vm},
contradicting the maximality of L. Thus x ̸= w.

A graph that is not connected consists of connected components. In a theorem rem-

iniscent of this, we see that connected graphs that are not 2-connected are constructed

from 2-connected subgraphs and bridges.

DEFINITION 5.7.11 A block in a graph G is a maximal induced subgraph on at

least two vertices without a cutpoint.

As usual, maximal here means that the induced subgraph B cannot be made larger by

adding vertices edges. A block is either a 2-connected induced subgraph or a single edge

together with its endpoints. Blocks are useful in large part because of this theorem:

THEOREM 5.7.12 The blocks of G partition the edges.

Proof. We need to show that every edge is in exactly one block. If an edge is in no

2-connected induced subgraph of G, then, together with its endpoints, it is itself a block.

Thus, every edge is in some block.

Now suppose that B1 and B2 are distinct blocks. This implies that neither is a sub-

graph of the other, by the maximality condition. Hence, the induced subgraph G[V (B1)∪
V (B2)] is larger than either of B1 and B2. Suppose B1 and B2 share an edge, so that they

share the endpoints of this edge, say u and v. Supppose w is a vertex in V (B1) ∪ V (B2).

Since B1 − w and B2 − w are connected, so is G[(V (B1) ∪ V (B2))\{w}], because either

u or v is in (V (B1) ∪ V (B2))\{w}. Thus G[V (B1) ∪ V (B2)] has no cutpoint and so it

is 2-connected and strictly contains B1 and B2, contradicting the maximality property of

blocks. Thus, every edge is in at most one block.

If G has a single block, it is either K2 or is 2-connected, and any 2-connected graph

has a single block.

THEOREM 5.7.13 If G is connected but not 2-connected, then every vertex that is in

two blocks is a cutpoint of G.

Proof. Suppose w is in B1 and B2, but G − w is connected. Then there is a path

v1, v2, . . . , vk in G − w, with v1 ∈ B1 and vk ∈ B2. But then G[V (B1) ∪ V (B2) ∪
{v1, v2, . . . , vk}] is 2-connected and contains both B1 and B2, a contradiction.

Exercises 5.7.

1. Suppose a simple graph G on n ≥ 2 vertices has at least
(n− 1)(n− 2)

2
+ 1 edges. Prove

that G is connected.
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2. Suppose a general graph G has exactly two odd-degree vertices, v and w. Let G′ be the
graph created by adding an edge joining v to w. Prove that G′ is connected if and only if G
is connected.

3. Suppose G is simple with degree sequence d1 ≤ d2 ≤ · · · ≤ dn, and for k ≤ n−dn−1, dk ≥ k.
Show G is connected.

4. Recall that a graph is k-regular if all the vertices have degree k. What is the smallest integer
k that makes this true:

If G is simple, has n vertices, m ≥ k, and G is m-regular, then G is connected.

(Of course k depends on n.)

5. Suppose G has at least one edge. Show that G is 2-connected if and only if for all vertices v
and edges e there is a cycle containing v and e.

6. Find a simple graph with κ(G) < λ(G) < δ(G).

7. Suppose λ(G) = k > 0. Show that there are sets of vertices U and V that partition the
vertices of G, and such that there are exactly k edges with one endpoint in U and one
endpoint in V .

8. Find λ(Km,n), where both m and n are at least 1.

9. Suppose G is a connected graph. The block-cutpoint graph of G, BC(G) is formed as
follows: Let vertices c1, c2, . . . , ck be the cutpoints of G, and let the blocks of G be B1, . . . , Bl.
The vertices of BC(G) are c1, . . . , ck, B1, . . . , Bl. Add an edge {Bi, cj} if and only if cj ∈ Bi.
Show that the block-cutpoint graph is a tree.

Note that a cutpoint is contained in at least two blocks, so that all pendant vertices of
the block-cutpoint graph are blocks. These blocks are called endblocks.

10. Draw the block-cutpoint graph of the graph below.
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11. Show that the complement of a disconnected graph is connected. Is the complement of a
connected graph always disconnected? (The complement G of graph G has the same vertices
as G, and {v, w} is an edge of G if and only if it is not an edge of G.)

5.8 Graph Coloring

As we briefly discussed in section 1.1, the most famous graph coloring problem is certainly

the map coloring problem, proposed in the nineteenth century and finally solved in 1976.

DEFINITION 5.8.1 A proper coloring of a graph is an assignment of colors to the

vertices of the graph so that no two adjacent vertices have the same color.
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Usually we drop the word “proper” unless other types of coloring are also under dis-

cussion. Of course, the “colors” don’t have to be actual colors; they can be any distinct

labels—integers, for example. If a graph is not connected, each connected component can

be colored independently; except where otherwise noted, we assume graphs are connected.

We also assume graphs are simple in this section.

Graph coloring has many applications in addition to its intrinsic interest.

EXAMPLE 5.8.2 If the vertices of a graph represent academic classes, and two vertices

are adjacent if the corresponding classes have people in common, then a coloring of the

vertices can be used to schedule class meetings. Here the colors would be schedule times,

such as 8MWF, 9MWF, 11TTh, etc.

EXAMPLE 5.8.3 If the vertices of a graph represent radio stations, and two vertices

are adjacent if the stations are close enough to interfere with each other, a coloring can be

used to assign non-interfering frequencies to the stations.

EXAMPLE 5.8.4 If the vertices of a graph represent traffic signals at an intersection,

and two vertices are adjacent if the corresponding signals cannot be green at the same

time, a coloring can be used to designate sets of signals than can be green at the same

time.

Graph coloring is closely related to the concept of an independent set.

DEFINITION 5.8.5 A set S of vertices in a graph is independent if no two vertices of

S are adjacent.

If a graph is properly colored, the vertices that are assigned a particular color form an

independent set. Given a graph G it is easy to find a proper coloring: give every vertex a

different color. Clearly the interesting quantity is the minimum number of colors required

for a coloring. It is also easy to find independent sets: just pick vertices that are mutually

non-adjacent. A single vertex set, for example, is independent, and usually finding larger

independent sets is easy. The interesting quantity is the maximum size of an independent

set.

DEFINITION 5.8.6 The chromatic number of a graph G is the minimum number

of colors required in a proper coloring; it is denoted χ(G). The independence number

of G is the maximum size of an independent set; it is denoted α(G).
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The natural first question about these graphical parameters is: how small or large

can they be in a graph G with n vertices. It is easy to see that

1 ≤ χ(G) ≤ n

1 ≤ α(G) ≤ n

and that the limits are all attainable: A graph with no edges has chromatic number 1 and

independence number n, while a complete graph has chromatic number n and independence

number 1. These inequalities are thus not very interesting. We will see some that are more

interesting.

Another natural question: What is the relation between the chromatic number of a

graph G and chromatic number of a subgraph of G? This too is simple, but quite useful

at times.

THEOREM 5.8.7 If H is a subgraph of G, χ(H) ≤ χ(G).

Proof. Any coloring of G provides a proper coloring of H, simply by assigning the same

colors to vertices of H that they have in G. This means that H can be colored with χ(G)

colors, perhaps even fewer, which is exactly what we want.

Often this fact is interesting “in reverse”. For example, if G has a subgraph H that

is a complete graph Km, then χ(H) = m and so χ(G) ≥ m. A subgraph of G that is a

complete graph is called a clique, and there is an associated graphical parameter.

DEFINITION 5.8.8 The clique number of a graph G is the largest m such that Km

is a subgraph of G.

It is tempting to speculate that the only way a graph G could require m colors is

by having such a subgraph. This is false; graphs can have high chromatic number while

having low clique number; see figure 5.8.1. It is easy to see that this graph has χ ≥ 3,

because there are many 3-cliques in the graph. In general it can be difficult to show that

a graph cannot be colored with a given number of colors, but in this case it is easy to see

that the graph cannot in fact be colored with three colors, because so much is “forced”.

Suppose the graph can be colored with 3 colors. Starting at the left if vertex v1 gets color

1, then v2 and v3 must be colored 2 and 3, and vertex v4 must be color 1. Continuing, v10

must be color 1, but this is not allowed, so χ > 3. On the other hand, since v10 can be

colored 4, we see χ = 4.

Paul Erdős showed in 1959 that there are graphs with arbitrarily large chromatic

number and arbitrarily large girth (the girth is the size of the smallest cycle in a graph).

This is much stronger than the existence of graphs with high chromatic number and low

clique number.
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Figure 5.8.1 A graph with clique number 3 and chromatic number 4.

Bipartite graphs with at least one edge have chromatic number 2, since the two parts

are each independent sets and can be colored with a single color. Conversely, if a graph can

be 2-colored, it is bipartite, since all edges connect vertices of different colors. This means

it is easy to identify bipartite graphs: Color any vertex with color 1; color its neighbors

color 2; continuing in this way will or will not successfully color the whole graph with

2 colors. If it fails, the graph cannot be 2-colored, since all choices for vertex colors are

forced.

If a graph is properly colored, then each color class (a color class is the set of all

vertices of a single color) is an independent set.

THEOREM 5.8.9 In any graph G on n vertices,
n

α
≤ χ.

Proof. Suppose G is colored with χ colors. Since each color class is independent, the

size of any color class is at most α. Let the color classes be V1, V2, . . . , Vχ. Then

n =

χ∑
i=1

|Vi| ≤ χα,

as desired.

We can improve the upper bound on χ(G) as well. In any graph G, ∆(G) is the

maximum degree of any vertex.

THEOREM 5.8.10 In any graph G, χ ≤ ∆+ 1.

Proof. We show that we can always color G with ∆ + 1 colors by a simple greedy

algorithm: Pick a vertex vn, and list the vertices of G as v1, v2, . . . , vn so that if i < j,

d(vi, vn) ≥ d(vj , vn), that is, we list the vertices farthest from vn first. We use integers

1, 2, . . . ,∆ + 1 as colors. Color v1 with 1. Then for each vi in order, color vi with the

smallest integer that does not violate the proper coloring requirement, that is, which is
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different than the colors already assigned to the neighbors of vi. For i < n, we claim that

vi is colored with one of 1, 2, . . . ,∆.

This is certainly true for v1. For 1 < i < n, vi has at least one neighbor that is not

yet colored, namely, a vertex closer to vn on a shortest path from vn to vi. Thus, the

neighbors of vi use at most ∆ − 1 colors from the colors 1, 2, . . . ,∆, leaving at least one

color from this list available for vi.

Once v1, . . . , vn−1 have been colored, all neighbors of vn have been colored using the

colors 1, 2, . . . ,∆, so color ∆ + 1 may be used to color vn.

Note that if d(vn) < ∆, even vn may be colored with one of the colors 1, 2, . . . ,∆.

Since the choice of vn was arbitrary, we may choose vn so that d(vn) < ∆, unless all

vertices have degree ∆, that is, if G is regular. Thus, we have proved somewhat more than

stated, namely, that any graph G that is not regular has χ ≤ ∆. (If instead of choosing

the particular order of v1, . . . , vn that we used we were to list them in arbitrary order, even

vertices other than vn might require use of color ∆+1. This gives a slightly simpler proof

of the stated theorem.) We state this as a corollary.

COROLLARY 5.8.11 If G is not regular, χ ≤ ∆.

There are graphs for which χ = ∆+ 1: any cycle of odd length has ∆ = 2 and χ = 3,

and Kn has ∆ = n− 1 and χ = n. Of course, these are regular graphs. It turns out that

these are the only examples, that is, if G is not an odd cycle or a complete graph, then

χ(G) ≤ ∆(G).

THEOREM 5.8.12 Brooks’s Theorem If G is a graph other than Kn or C2n+1,

χ ≤ ∆.

The greedy algorithm will not always color a graph with the smallest possible number

of colors. Figure 5.8.2 shows a graph with chromatic number 3, but the greedy algorithm

uses 4 colors if the vertices are ordered as shown.

In general, it is difficult to compute χ(G), that is, it takes a large amount of compu-

tation, but there is a simple algorithm for graph coloring that is not fast. Suppose that v

and w are non-adjacent vertices in G. Denote by G+ {v, w} = G+ e the graph formed by

adding edge e = {v, w} to G. Denote by G/e the graph in which v and w are “identified”,

that is, v and w are replaced by a single vertex x adjacent to all neighbors of v and w.

(But note that we do not introduce multiple edges: if u is adjacent to both v and w in G,

there will be a single edge from x to u in G/e.)

Consider a proper coloring of G in which v and w are different colors; then this is a

proper coloring of G+ e as well. Also, any proper coloring of G+ e is a proper coloring of

G in which v and w have different colors. So a coloring of G+ e with the smallest possible
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Figure 5.8.2 A greedy coloring on the left and best coloring on the right.

number of colors is a best coloring of G in which v and w have different colors, that is,

χ(G+ e) is the smallest number of colors needed to color G so that v and w have different

colors.

If G is properly colored and v and w have the same color, then this gives a proper

coloring of G/e, by coloring x in G/e with the same color used for v and w in G. Also, if

G/e is properly colored, this gives a proper coloring of G in which v and w have the same

color, namely, the color of x in G/e. Thus, χ(G/e) is the smallest number of colors needed

to properly color G so that v and w are the same color.

The upshot of these observations is that χ(G) = min(χ(G+e), χ(G/e)). This algorithm

can be applied recursively, that is, if G1 = G+ e and G2 = G/e then χ(G1) = min(χ(G1+

e), χ(G1/e)) and χ(G2) = min(χ(G2 + e), χ(G2/e)), where of course the edge e is different

in each graph. Continuing in this way, we can eventually compute χ(G), provided that

eventually we end up with graphs that are “simple” to color. Roughly speaking, because

G/e has fewer vertices, and G + e has more edges, we must eventually end up with a

complete graph along all branches of the computation. Whenever we encounter a complete

graph Km it has chromatic number m, so no further computation is required along the

corresponding branch. Let’s make this more precise.

THEOREM 5.8.13 The algorithm above correctly computes the chromatic number in

a finite amount of time.

Proof. Suppose that a graph G has n vertices and m edges. The number of pairs of

non-adjacent vertices is na(G) =
(
n
2

)
−m. The proof is by induction on na.

If na(G) = 0 then G is a complete graph and the algorithm terminates immediately.

Now we note that na(G+ e) < na(G) and na(G/e) < na(G):

na(G+ e) =

(
n

2

)
− (m+ 1) = na(G)− 1
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and

na(G/e) =

(
n− 1

2

)
− (m− c),

where c is the number of neighbors that v and w have in common. Then

na(G/e) =

(
n− 1

2

)
−m+ c

≤
(
n− 1

2

)
−m+ n− 2

=
(n− 1)(n− 2)

2
−m+ n− 2

=
n(n− 1)

2
− 2(n− 1)

2
−m+ n− 2

=

(
n

2

)
−m− 1

= na(G)− 1.

Now if na(G) > 0, G is not a complete graph, so there are non-adjacent vertices v and

w. By the induction hypothesis the algorithm computes χ(G + e) and χ(G/e) correctly,

and finally it computes χ(G) from these in one additional step.

While this algorithm is very inefficient, it is sufficiently fast to be used on small graphs

with the aid of a computer.

EXAMPLE 5.8.14 We illustrate with a very simple graph:
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The chromatic number of the graph at the top is min(3, 4) = 3. (Of course, this is quite

easy to see directly.)

Exercises 5.8.

1. Suppose G has n vertices and chromatic number k. Prove that G has at least
(
k
2

)
edges.

2. Find the chromatic number of the graph below by using the algorithm in this section. Draw
all of the graphs G + e and G/e generated by the alorithm in a “tree structure” with the
complete graphs at the bottom, label each complete graph with its chromatic number, then
propogate the values up to the original graph.



122 Chapter 5 Graph Theory

..
•

.

•

.
•

.

•

.

•
3. Show that a graph is bipartite if and only if it can be properly colored with two colors.

4. Show that χ(G− v) is either χ(G) or χ(G)− 1.

5. Prove theorem 5.8.10 without assuming any particular properties of the order v1, . . . , vn.

6. Prove theorem 5.8.12 as follows. By corollary 5.8.11 we need consider only regular graphs.
Regular graphs of degree 2 are easy, so we consider only regular graphs of degree at least 3.

If G is not 2-connected, show that the blocks of G may colored with ∆(G) colors, and
then the colorings may be altered slightly so that they combine to give a proper coloring of
G.

If G is 2-connected, show that there are vertices u, v, w such that u is adjacent to both
v and w, v and w are not adjacent, and G− v−w is connected. Given such vertices, color v
and w with color 1, then color the remaining vertices by a greedy algorithm similar to that
in theorem 5.8.10, with u playing the role of vn.

To show the existence of u, v, w as required, let x be a vertex not adjacent to all other
vertices. If G− x is 2-connected, let v = x, let w be at distance 2 from v (justify this), and
let a path of length 2 be v, u, w. Use theorem 5.7.4 to show that u, v, w have the required
properties.

If G− x is not 2-connected, let u = x and let v and w be (carefully chosen) vertices in
two different endblocks of G− x. Show that u, v, w have the required properties.

Brooks proved the theorem in 1941; this simpler proof is due to Lovász, 1975.

5.9 The Chromatic Polynomial

We now turn to the number of ways to color a graph G with k colors. Of course, if

k < χ(G), this is zero. We seek a function PG(k) giving the number of ways to color G

with k colors. Some graphs are easy to do directly.

EXAMPLE 5.9.1 If G is Kn, PG(k) = k(k − 1)(k − 2) · · · (k − n + 1), namely, the

number of permutations of k things taken n at a time. Vertex 1 may be colored any of the

k colors, vertex 2 any of the remaining k − 1 colors, and so on. Note that when k < n,

PG(k) = 0. By exercise 5 in section 1.8, we may also write PG(k) =
n∑

i=0

s(n, i)ki.

EXAMPLE 5.9.2 If G has n vertices and no edges, PG(k) = kn.

Given PG it is not hard to compute χ(G); for example, we could simply plug in the

numbers 1, 2, 3, . . . for k until PG(k) is non-zero. This suggests it will be difficult (that is,
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time consuming) to compute PG. We can provide an easy mechanical procedure for the

computation, quite similar to the algorithm we presented for computing χ(G).

Suppose G has edge e = {v, w}, and consider PG−e(k), the number of ways to color

G− e with k colors. Some of the colorings of G− e are also colorings of G, but some are

not, namely, those in which v and w have the same color. How many of these are there?

From our discussion of the algorithm for χ(G) we know this is the number of colorings of

G/e. Thus,

PG(k) = PG−e(k)− PG/e(k).

Since G− e and G/e both have fewer edges than G, we can compute PG by applying this

formula recursively. Ultimately, we need only compute PG for graphs with no edges, which

is easy, as in example 5.9.2.

Since PG(k) = kn when G has no edges, it is then easy to see, and to prove by

induction, that PG is a polynomial.

THEOREM 5.9.3 For all G on n vertices, PG is a polynomial of degree n, and PG is

called the chromatic polynomial of G.

Proof. The proof is by induction on the number of edges in G. When G has no edges,

this is example 5.9.2.

Otherwise, by the induction hypothesis, PG−e is a polynomial of degree n and PG/e is

a polynomial of degree n− 1, so PG = PG−e − PG/e is a polynomial of degree n.

The chromatic polynomial of a graph has a number of interesting and useful properties,

some of which are explored in the exercises.

Exercises 5.9.

1. Show that the leading coefficient of PG is 1.

2. Suppose that G is not connected and has components C1, . . . , Ck. Show that PG =
∏k

i=1 PCi .

3. Show that the constant term of PG(k) is 0. Show that the coefficient of k in PG(k) is non-zero
if and only if G is connected.

4. Show that the coefficient of kn−1 in PG is −1 times the number of edges in G.

5. Show that G is a tree if and only if PG(k) = k(k − 1)n−1.

6. Find the chromatic polynomial of Kn with one edge removed.

5.10 Coloring Planar Graphs

Now we return to the original graph coloring problem: coloring maps. As indicated in

section 1.1, the map coloring problem can be turned into a graph coloring problem. Fig-

ure 5.10.1 shows the example from section 1.1.
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Figure 5.10.1 A map and its corresponding graph.

Graphs formed from maps in this way have an important property: they are planar.

DEFINITION 5.10.1 A graph G is planar if it can be represented by a drawing in the

plane so that no edges cross.

Note that this definition only requires that some representation of the graph has no

crossing edges. Figure 5.10.2 shows two representations of K4; since in the second no edges

cross, K4 is planar.

..•. •.
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..•.

•

. •.

•

Figure 5.10.2 K4 drawn in two ways; the second shows that it is planar.

The number of colors needed to properly color any map is now the number of colors

needed to color any planar graph. This problem was first posed in the nineteenth century,

and it was quickly conjectured that in all cases four colors suffice. This was finally proved

in 1976 (see figure 5.10.3) with the aid of a computer. In 1879, Alfred Kempe gave a

proof that was widely known, but was incorrect, though it was not until 1890 that this

was noticed by Percy Heawood, who modified the proof to show that five colors suffice to

color any planar graph. We will prove this Five Color Theorem, but first we need some

other results. We assume all graphs are simple.

THEOREM 5.10.2 Euler’s Formula SupposeG is a connected planar graph, drawn

so that no edges cross, with n vertices and m edges, and that the graph divides the plane
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Figure 5.10.3 The postmark on University of Illinois mail after the Four Color Theorem
was proved.

into r regions. Then

r = m− n+ 2.

Proof. The proof is by induction on the number of edges. The base case is m = n− 1,

the minimum number of edges in a connected graph on n vertices. In this case G is a tree,

and contains no cycles, so the number of regions is 1, and indeed 1 = (n− 1)− n+ 2.

Now suppose G has more than n − 1 edges, so it has a cycle. Remove one edge from

a cycle forming G′, which is connected and has r− 1 regions, n vertices, and m− 1 edges.

By the induction hypothesis r− 1 = (m− 1)− n+ 2, which becomes r = m− n+ 2 when

we add 1 to each side.

LEMMA 5.10.3 Suppose G is a simple connected planar graph, drawn so that no edges

cross, with n ≥ 3 vertices and m edges, and that the graph divides the plane into r regions.

Then m ≤ 3n− 6.

Proof. Let fi be the number of edges that adjoin region number i; if the same region is

on both sides of an edge, that edge is counted twice. We call the edges adjoining a region

the boundary edges of the region. Since G is simple and n ≥ 3, every region is bounded

by at least 3 edges. Then
∑r

i=1 fi = 2m, since each edge is counted twice, once for the

region on each side of the edge. From r = m−n+2 we get 3r = 3m−3n+6, and because

fi ≥ 3, 3r ≤
∑r

i=1 fi = 2m, so 3m− 3n+ 6 ≤ 2m, or m ≤ 3n− 6 as desired.

THEOREM 5.10.4 K5 is not planar.

Proof. K5 has 5 vertices and 10 edges, and 10 ̸≤ 3 · 5 − 6, so by the lemma, K5 is not

planar.

LEMMA 5.10.5 If G is planar then G has a vertex of degree at most 5.

Proof. Suppose that d(vi) > 5 for all vi. Then 2m =
∑n

i=1 d(vi) ≥ 6n. By lemma 5.10.3,

3n− 6 ≥ m so 6n− 12 ≥ 2m. Thus 6n ≤ 2m ≤ 6n− 12, a contradiction.
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THEOREM 5.10.6 Five Color Theorem Every planar graph can be colored with

5 colors.

Proof. The proof is by induction on the number of vertices n; when n ≤ 5 this is trivial.

Now suppose G is planar on more than 5 vertices; by lemma 5.10.5 some vertex v has

degree at most 5. By the induction hypothesis, G− v can be colored with 5 colors. Color

the vertices of G, other than v, as they are colored in a 5-coloring of G − v. If d(v) ≤ 4,

then v can be colored with one of the 5 colors to give a proper coloring of G with 5 colors.

So we now suppose d(v) = 5. If the five neighbors of v are colored with four or fewer of

the colors, then again v can be colored to give a proper coloring of G with 5 colors.

Now we suppose that all five neighbors of v have a different color, as indicated in

figure 5.10.4.
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Figure 5.10.4 Five neighbors of v colored with 5 colors: v1 is red, v2 is purple, v3 is green,
v4 is blue, v5 is orange.

Suppose that in G there is a path from v1 to v3, and that the vertices along this path

are alternately colored red and green; call such a path a red-green alternating path. Then

together with v, this path makes a cycle with v2 on the inside and v4 on the outside,

or vice versa. This means there cannot be a purple-blue alternating path from v2 to v4.

Supposing that v2 is inside the cycle, we change the colors of all vertices inside the cycle

colored purple to blue, and all blue vertices are recolored purple. This is still a proper

coloring of all vertices of G except v, and now no neighbor of v is purple, so by coloring v

purple we obtain a proper coloring of G.

If there is no red-green alternating path from v1 to v3, then we recolor vertices as

follows: Change the color of v1 to green. Change all green neighbors of v1 to red. Continue

to change the colors of vertices from red to green or green to red until there are no conflicts,

that is, until a new proper coloring is obtained. Because there is no red-green alternating

path from v1 to v3, the color of v3 will not change. Now no neighbor of v is colored red,

so by coloring v red we obtain a proper coloring of G.
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Exercises 5.10.

1. Show K3,3 is not planar. (Prove a lemma like lemma 5.10.3 for bipartite graphs, then do
something like the proof of theorem 5.10.4.) What is the chromatic number of K3,3?

5.11 Directed Graphs

A directed graph, also called a digraph, is a graph in which the edges have a direction.

This is usually indicated with an arrow on the edge; more formally, if v and w are vertices,

an edge is an unordered pair {v, w}, while a directed edge, called an arc, is an ordered

pair (v, w) or (w, v). The arc (v, w) is drawn as an arrow from v to w. If a graph contains

both arcs (v, w) and (w, v), this is not a “multiple edge”, as the arcs are distinct. It is

possible to have multiple arcs, namely, an arc (v, w) may be included multiple times in

the multiset of arcs. As before, a digraph is called simple if there are no loops or multiple

arcs.

We denote by E
−
v

the set of all arcs of the form (w, v), and by E+
v the set of arcs of

the form (v, w). The indegree of v, denoted d
−
(v), is the number of arcs in E

−
v
, and

the outdegree, d
+
(v), is the number of arcs in E+

v . If the vertices are v1, v2, . . . , vn, the

degrees are usually denoted d−1 , d
−
2 , . . . , d

−
n and d+1 , d

+
2 , . . . , d

+
n . Note that both

∑n
i=0 d

−
i

and
∑n

i=0 d
+

i
count the number of arcs exactly once, and of course

∑n
i=0 d

−
i
=
∑n

i=0 d
+

i
.

A walk in a digraph is a sequence v1, e1, v2, e2, . . . , vk−1, ek−1, vk such that ek = (vi, vi+1);

if v1 = vk, it is a closed walk or a circuit. A path in a digraph is a walk in which all

vertices are distinct. It is not hard to show that, as for graphs, if there is a walk from v to

w then there is a path from v to w.

Many of the topics we have considered for graphs have analogues in digraphs, but

there are many new topics as well. We will look at one particularly important result in

the latter category.

DEFINITION 5.11.1 A network is a digraph with a designated source s and target

t ̸= s . In addition, each arc e has a positive capacity, c(e).

Networks can be used to model transport through a physical network, of a physical

quantity like oil or electricity, or of something more abstract, like information.

DEFINITION 5.11.2 A flow in a network is a function f from the arcs of the digraph

to R, with 0 ≤ f(e) ≤ c(e) for all e, and such that∑
e∈E+

v

f(e) =
∑
e∈E−

v

f(e),

for all v other than s and t.
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We wish to assign a value to a flow, equal to the net flow out of the source. Since

the substance being transported cannot “collect” or “originate” at any vertex other than

s and t, it seems reasonable that this value should also be the net flow into the target.

Before we prove this, we introduce some new notation. Suppose that U is a set of

vertices in a network, with s ∈ U and t /∈ U . Let
⇀
U be the set of arcs (v, w) with v ∈ U ,

w /∈ U , and
↼
U be the set of arcs (v, w) with v /∈ U , w ∈ U .

THEOREM 5.11.3 For any flow f in a network, the net flow out of the source is equal

to the net flow into the target, namely,∑
e∈E+

s

f(e)−
∑
e∈E−

s

f(e) =
∑
e∈E−

t

f(e)−
∑
e∈E+

t

f(e).

Proof. We will show first that for any U with s ∈ U and t /∈ U ,∑
e∈E+

s

f(e)−
∑
e∈E−

s

f(e) =
∑
e∈
⇀
U

f(e)−
∑
e∈
↼
U

f(e).

Consider the following:

S =
∑
v∈U

∑
e∈E+

v

f(e)−
∑
e∈E−

v

f(e)

 .

The quantity ∑
e∈E+

v

f(e)−
∑
e∈E−

v

f(e)

is zero except when v = s, by the definition of a flow. Thus, the entire sum S has value∑
e∈E+

s

f(e)−
∑
e∈E−

s

f(e).

On the other hand, we can write the sum S as∑
v∈U

∑
e∈E+

v

f(e)−
∑
v∈U

∑
e∈E−

v

f(e).

Every arc e = (x, y) with both x and y in U appears in both sums, that is, in∑
v∈U

∑
e∈E+

v

f(e),

when v = x, and in ∑
v∈U

∑
e∈E−

v

f(e),

when v = y, and so the flow in such arcs contributes 0 to the overall value. Thus, only arcs

with exactly one endpoint in U make a non-zero contribution, so the entire sum reduces
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to ∑
e∈
⇀
U

f(e)−
∑
e∈
↼
U

f(e).

Thus ∑
e=(s,v)

f(e)−
∑

e=(v,s)

f(e) = S =
∑
e∈
⇀
U

f(e)−
∑
e∈
↼
U

f(e),

as desired.

Now let U consist of all vertices except t. Then∑
e∈E+

s

f(e)−
∑
e∈E−

s

f(e) =
∑
e∈
⇀
U

f(e)−
∑
e∈
↼
U

f(e) =
∑
e∈E−

t

f(e)−
∑
e∈E+

t

f(e),

finishing the proof.

DEFINITION 5.11.4 The value of a flow, denoted val(f), is
∑

e∈E+
s
f(e)−

∑
e∈E−

s
f(e).

A maximum flow in a network is any flow f whose value is the maximum among all

flows.

We next seek to formalize the notion of a “bottleneck”, with the goal of showing that

the maximum flow is equal to the amount that can pass through the smallest bottleneck.

DEFINITION 5.11.5 A cut in a network is a set C of arcs with the property that

every path from s to t uses an arc in C, that is, if the arcs in C are removed from the

network there is no path from s to t. The capacity of a cut, denoted c(C), is∑
e∈C

c(e).

A minimum cut is one with minimum capacity. A cut C is minimal if no cut is properly

contained in C.

Note that a minimum cut is a minimal cut. Clearly, if U is a set of vertices containing

s but not t, then
⇀
U is a cut.

LEMMA 5.11.6 Suppose C is a minimal cut. Then there is a set U containing s but

not t such that C =
⇀
U .

Proof. Let U be the set of vertices v such that there is a path from s to v using no arc

in C.

Suppose that e = (v, w) ∈ C. Since C is minimal, there is a path P from s to t using

e but no other arc in C. Thus, there is a path from s to v using no arc of C, so v ∈ U . If
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there is a path from s to w using no arc of C, then this path followed by the portion of P

that begins with w is a walk from s to t using no arc in C. This implies there is a path

from s to t using no arc in C, a contradiction. Thus w /∈ U and so e ∈ ⇀
U . Hence, C ⊆ ⇀

U .

Suppose that e = (v, w) ∈ ⇀
U . Then v ∈ U and w /∈ U , so every path from s to w uses

an arc in C. Since v ∈ U , there is a path from s to v using no arc of C, and this path

followed by e is a path from s to w. Hence the arc e must be in C, so
⇀
U ⊆ C.

We have now shown that C =
⇀
U .

Now we can prove a version of the important max-flow, min cut theorem.

THEOREM 5.11.7 Suppose in a network all arc capacities are integers. Then the

value of a maximum flow is equal to the capacity of a minimum cut. Moreover, there is a

maximum flow f for which all f(e) are integers.

Proof. First we show that for any flow f and cut C, val(f) ≤ c(C). It suffices to show

this this for a minimum cut C, and by lemma 5.11.6 we know that C =
⇀
U for some U .

Using the proof of theorem 5.11.3 we have:

val(f) =
∑
e∈
⇀
U

f(e)−
∑
e∈
↼
U

f(e) ≤
∑
e∈
⇀
U

f(e) ≤
∑
e∈
⇀
U

c(e) = c(
⇀
U ).

Now if we find a flow f and cut C with val(f) = c(C), it follows that f is a maximum flow

and C is a minimum cut. We present an algorithm that will produce such an f and C.

Given a flow f , which may initially be the zero flow, f(e) = 0 for all arcs e, do the

following:

0. Let U = {s}.
Repeat the next two steps until no new vertices are added to U .

1. If there is an arc e = (v, w) with v ∈ U and w /∈ U , and f(e) < c(e), add w to U .

2. If there is an arc e = (v, w) with v /∈ U and w ∈ U , and f(e) > 0, add v to U .

When this terminates, either t ∈ U or t /∈ U . If t ∈ U , there is a sequence of distinct

vertices s = v1, v2, v3, . . . , vk = t such that for each i, 1 ≤ i < k, either e = (vi, vi+1) is an

arc with f(e) < c(e) or e = (vi+1, vi) is an arc with f(e) > 0. Update the flow by adding

1 to f(e) for each of the former, and subtracting 1 from f(e) for each of the latter. This

new flow f ′ is still a flow: In the first case, since f(e) < c(e), f ′(e) ≤ c(e), and in the

second case, since f(e) > 0, f ′(e) ≥ 0. It is straightforward to check that for each vertex

vi, 1 < i < k, that ∑
e∈E+

vi

f ′(e) =
∑

e∈E−
vi

f ′(e).

In addition, val(f ′) = val(f) + 1. Now rename f ′ to f and repeat the algorithm.
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Eventually, the algorithm terminates with t /∈ U and flow f . This implies that for

each e = (v, w) with v ∈ U and w /∈ U , f(e) = c(e), and for each e = (v, w) with v /∈ U

and w ∈ U , f(e) = 0. The capacity of the cut
⇀
U is∑

e∈
⇀
U

c(e).

The value of the flow f is∑
e∈
⇀
U

f(e)−
∑
e∈
↼
U

f(e) =
∑
e∈
⇀
U

c(e)−
∑
e∈
↼
U

0 =
∑
e∈
⇀
U

c(e).

Thus we have found a flow f and cut
⇀
U such that

val(f) = c(
⇀
U ),

as desired.

The max-flow, min-cut theorem is true when the capacities are any positive real num-

bers, though of course the maximum value of a flow will not necessarily be an integer in

this case. It is somewhat more difficult to prove, requiring a proof involving limits.

We have already proved that in a bipartite graph, the size of a maximum matching is

equal to the size of a minimum vertex cover, theorem 4.5.6. This turns out to be essentially

a special case of the max-flow, min-cut theorem.

COROLLARY 5.11.8 In a bipartite graph G, the size of a maximum matching is the

same as the size of a minimum vertex cover.

Proof. Suppose the parts of G are X = {x1, x2, . . . , xk} and Y = {y1, y2, . . . , yl}. Create
a network as follows: introduce two new vertices s and t and arcs (s, xi) for all i and (yi, t)

for all i. For each edge {xi, yj} in G, let (xi, yj) be an arc. Let c(e) = 1 for all arcs e. Now

the value of a maximum flow is equal to the capacity of a minimum cut.

Let C be a minimum cut. If (xi, yj) is an arc of C, replace it by arc (s, xi). This is

still a cut, since any path from s to t including (xi, yj) must include (s, xi). Thus, we may

suppose that C contains only arcs of the form (s, xi) and (yi, t). Now it is easy to see that

K = {xi|(s, xi) ∈ C} ∪ {yi|(yi, t) ∈ C}

is a vertex cover of G with the same size as C.

Let f be a maximum flow such that f(e) is an integer for all e, which is possible by

the max-flow, min-cut theorem. Consider the set of edges

M = {{xi, yj}|f((xi, yj)) = 1}.

If {xi, yj} and {xi, ym} are both in this set, then the flow out of vertex xi is at least 2,

but there is only one arc into xi, (s, xi), with capacity 1, contradicting the definition of a
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flow. Likewise, if {xi, yj} and {xm, yj} are both in this set, then the flow into vertex yj is

at least 2, but there is only one arc out of yj , (yj , t), with capacity 1, also a contradiction.

Thus M is a matching. Moreover, if U = {s, x1, . . . , xk} then the value of the flow is∑
e∈
⇀
U

f(e)−
∑
e∈
↼
U

f(e) =
∑
e∈
⇀
U

f(e) = |M | · 1 = |M |.

Thus |M | = val(f) = c(C) = |K|, so we have found a matching and a vertex cover with

the same size. This implies that M is a maximum matching and K is a minimum vertex

cover.

Exercises 5.11.

1. Connectivity in digraphs turns out to be a little more complicated than connectivity in
graphs. A digraph is connected if the underlying graph is connected. (The underlying graph
of a digraph is produced by removing the orientation of the arcs to produce edges, that is,
replacing each arc (v, w) by an edge {v, w}. Even if the digraph is simple, the underlying
graph may have multiple edges.) A digraph is strongly connected if for every vertices v and
w there is a walk from v to w. Give an example of a digraph that is connected but not
strongly connected.

2. A digraph has an Euler circuit if there is a closed walk that uses every arc exactly once. Show
that a digraph with no vertices of degree 0 has an Euler circuit if and only if it is connected

and d
+
(v) = d

−
(v) for all vertices v.

3. A tournament is an oriented complete graph. That is, it is a digraph on n vertices, containing
exactly one of the arcs (v, w) and (w, v) for every pair of vertices. A Hamilton path is a walk
that uses every vertex exactly once. Show that every tournament has a Hamilton path.

4. Interpret a tournament as follows: the vertices are players. If (v, w) is an arc, player v beat
w. Say that v is a champion if for every other player w, either v beat w or v beat a player
who beat w. Show that a player with the maximum number of wins is a champion. Find a
5-vertex tournament in which every player is a champion.



6
Pólya–Redfield Counting

We have talked about the number of ways to properly color a graph with k colors, given

by the chromatic polynomial. For example, the chromatic polynomial for the graph in

figure 6.0.1 is k4 − 4k3 + 6k2 − 3k, and f(2) = 2. The two colorings are shown in the

figure, but in an obvious sense they are the same coloring, since one can be turned into the

other by simply rotating the graph. We will consider a slightly different sort of coloring

problem, in which we count the “truly different” colorings of objects.

..•. •.

•

.

•

..•. •.

•

.

•

Figure 6.0.1 C4 drawn as a square, colored in two ways.

Many of the “objects” we color will appear to be graphs, but we will usually be

interested in them as geometric objects rather than graphs, and we will not require that

adjacent vertices be different colors. This will simplify the problems; counting the number

of different proper colorings of graphs can also be done, but it is more complicated.

So consider this problem: How many different ways are there to color the vertices of

a regular pentagon with k colors? The number of ways to color the vertices of a fixed

pentagon is k5, but this includes many duplicates, that is, colorings that are really the

same. But what do we mean by “the same” in this case? We might mean that two

colorings are the same if we can rotate one to get the other. But what about the colorings

in figure 6.0.2? Are they the same? Neither can be rotated to produce the other, but either

133



134 Chapter 6 Pólya–Redfield Counting

can be flipped or reflected through a vertical line to produce the other. In fact we are free

to decide what “the same” means, but we will need to make sure that our requirements

are consistent.

..
•

.

•

.
•

.

•

.

•

..
•

.

•

.
•

.

•

.

•

Figure 6.0.2 Two colorings of a pentagon.

As an example of what can go wrong if we’re not careful, note that there are five lines

through which the pentagon can be reflected onto itself. Suppose we want to consider

colorings to be “the same” if one can be produced from the other by a reflection, but not

if one can be obtained from the other by rotation. Surely if one coloring can be obtained

by two reflections in a row from another, then these colorings should also be the same.

But two reflections in a row equal a rotation, as shown in figure 6.0.3. So whenever we

have some motions that identify two colorings, we are required to include all combinations

of the motions as well. In addition, any time we include a motion, we must include the

“inverse” motion. For example, if we say a rotation by 54◦ degrees produces a coloring

that we consider to be the same, a rotation by −54◦ must be included as well (we may

think of this as a rotation by 306◦). Finally, since any coloring is the same as itself, we

must always include the “trivial” motion, namely, doing nothing, or rotation by 0◦ if you

prefer.
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•
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•

Figure 6.0.3 Two reflections equal a rotation.
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6.1 Groups of Symmetries

The motions we want to consider can be thought of as permutations, that is, as bijections.

For example, the rotation in figure 6.1.1 can be thought of as the function ϕ given by

ϕ(1) = 3

ϕ(2) = 4

ϕ(3) = 5

ϕ(4) = 1

ϕ(5) = 2,

or more compactly we can write this function as

(
1 2 3 4 5
3 4 5 1 2

)
.
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•

.
•
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•

.

•

.
2
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1

.
5
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4
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3
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.
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•
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.
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.

1

Figure 6.1.1 The rotation

(
1 2 3 4 5
3 4 5 1 2

)
.

As we would hope, doing two motions in a row corresponds to the compostion of the as-

sociated functions. For example, the reflection

(
1 2 3 4 5
3 2 1 5 4

)
is shown in figure 6.1.2.

Doing first the rotation of figure 6.1.1 and then this reflection is shown in figure 6.1.3, and

this does indeed correspond to(
1 2 3 4 5
3 2 1 5 4

)
◦
(
1 2 3 4 5
3 4 5 1 2

)
=

(
1 2 3 4 5
1 5 4 3 2

)
.
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Figure 6.1.2 The reflection

(
1 2 3 4 5
3 2 1 5 4

)
.
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Figure 6.1.3 The compostion

(
1 2 3 4 5
3 2 1 5 4

)
◦
(
1 2 3 4 5
3 4 5 1 2

)
=

(
1 2 3 4 5
1 5 4 3 2

)
.

With some restrictions, we may choose any permutations of the vertices as the allow-

able rearrangements giving colorings that are the same. We have discussed the restrictions

in general terms; in terms of permuations we require the following: Suppose that G is a

set of permutations that we wish to use to define the “same coloring” relation. Then the

following must be true:

1. If ϕ and σ are in G, so is ϕ ◦ σ.
2. The identity permutation, id, is in G.

3. If ϕ ∈ G, ϕ−1 ∈ G.

DEFINITION 6.1.1 If G has the three properties above it is called a group of per-

mutations.

EXAMPLE 6.1.2 The group of all permutations of {1, 2, . . . , n} is denoted Sn, the

symmetric group on n items. It satisfies the three required conditions by simple prop-

erties of bijections.

In the case of the regular pentagon, there are a number of groups of permutations,

but two are of primary interest. The five possible rotations (including the trivial rotation)

form a group, the cyclic group of size 5. The total number of “rigid motions”, that

is, any combination of rotations and reflections that leave the pentagon superimposed on

itself, is 10: Once the position of vertex 1 is established, the other vertices can increase

from 1 either clockwise or counterclockwise. The rotations provide all of the former, and

it is easy to check that the five reflections provide the counterclockwise positions. This is

called a dihedral group and denoted D5.

Suppose that G is some group of permutations of an object. If ϕ ∈ G, then ϕ induces

a function on the colorings of the object in a natural way, and we can use the same symbol

ϕ to represent this function without confusion. If c is a coloring of the object, then ϕ(c) is

the coloring that results by applying ϕ to the colored object, moving the colors with the

object. See figure 6.1.4 for examples. We say that G acts on the set of colorings C.



6.1 Groups of Symmetries 137
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Figure 6.1.4 Some examples of an induced function on colorings.

If we apply all permutations in G to a coloring c, we get all the colorings that we

consider to be the same as c modulo G. More formally, define c1 ∼ c2 if there is a ϕ ∈ G

such that ϕ(c1) = c2; ∼ is an equivalence relation on the colorings. The equivalence classes,

called orbits in this context, group colorings that are the same together. The number of

truly different colorings that we want to count is then the number of orbits.

The total number of colorings of the pentagon with k colors is k5. If all orbits were

the same size, say s, then the number of orbits would be k5/s. Unfortunately, this is not

true. In figure 6.1.4 we see a coloring whose orbit has size at least 3, but the pentagon

with all vertices colored red has orbit size 1.

Exercises 6.1.

1. Find the 12 permutations of the vertices of the regular tetrahedron corresponding to the 12
rigid motions of the regular tetrahedron. Use the labeling below.
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1

2

3

4

2. Find the 12 permutations of the edges of the regular tetrahedron corresponding to the 12
rigid motions of the regular tetrahedron. Use the labeling below.

a

b
c

de

f

6.2 Burnside's Theorem

Burnside’s Theorem will allow us to count the orbits, that is, the different colorings, in a

variety of problems. We first need some lemmas.

If c is a coloring, [c] is the orbit of c, that is, the equivalence class of c. Let G(c) be the

set of permutations in G that fix c, that is, those ϕ such that ϕ(c) = c; the permutation

in figure 6.1.4 fixes the coloring in the bottom row, for example.

LEMMA 6.2.1 G(c) is a group of permutations.

Proof. We check the properties of a group from definition 6.1.1.

Suppose ϕ and σ both fix c; then ϕ(σ(c)) = ϕ(c) = c, so ϕ ◦ σ fixes c and ϕ ◦ σ ∈ G(c).

The identity permutation fixes all colorings, so id ∈ G(c).

If ϕ(c) = c then ϕ−1(c) = ϕ−1(ϕ(c)) = id(c) = c, so ϕ−1 ∈ G(c).

LEMMA 6.2.2 |G| = |[c]| · |G(c)|.

Proof. For ϕ and σ in G, define ϕ ∼ σ if σ−1 ◦ϕ ∈ G(c). This is an equivalence relation:

1. σ−1 ◦ σ is the identity function, which is in G(c). Thus σ ∼ σ, so the relation is

reflexive.

2. If ϕ ∼ σ, σ−1 ◦ ϕ ∈ G(c). Then (σ−1 ◦ ϕ)−1 ∈ G(c), and (σ−1 ◦ ϕ)−1 = ϕ−1 ◦ σ ∈
G(c), so σ ∼ ϕ and ∼ is symmetric.
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3. If ϕ ∼ σ and σ ∼ τ , then σ−1◦ϕ ∈ G(c) and τ−1◦σ ∈ G(c), so (τ−1◦σ)◦(σ−1◦ϕ) ∈
G(c). Since (τ−1 ◦ σ) ◦ (σ−1 ◦ ϕ) = τ−1 ◦ ϕ, ϕ ∼ τ , and ∼ is transitive.

Now we claim that the equivalence class of ϕ is A = {ϕ ◦σ | σ ∈ G(c)}. First, suppose
that σ ∈ G(c); then ϕ−1 ◦ ϕ ◦ σ = σ ∈ G(c), so ϕ ◦ σ ∼ ϕ and A ⊆ [ϕ]. Next, suppose

ϕ ∼ τ , so τ−1 ◦ ϕ = γ ∈ G(c). Then ϕ ◦ γ−1 = τ , so τ ∈ A and [ϕ] ⊆ A.

Now we show that each equivalence class is the same size as G(c). Define f :G(c) →
{ϕ ◦ σ | σ ∈ G(c)} by f(γ) = ϕ ◦ γ. If f(γ1) = f(γ2), then

ϕ ◦ γ1 = ϕ ◦ γ2
ϕ−1 ◦ ϕ ◦ γ1 = ϕ−1 ◦ ϕ ◦ γ2

γ1 = γ2

so f is 1–1. Since every ϕ ◦ γ ∈ {ϕ ◦ σ | σ ∈ G(c)} is f(γ), f is onto.

Thus the number of equivalence classes is |G|/|G(c)|.
Finally, we show that the number of equivalence classes is |[c]|. Let the set of equiva-

lence classes in G be E, that is, E = {[ϕ] | ϕ ∈ G}. We define g: [c] → E and show that g

is a bijection. Suppose d ∈ [c], so d = σ(c) for some σ ∈ G. Let g(d) = [σ].

First, we show g is well-defined. If d = σ1(c) = σ2(c), then σ−1
2 ◦σ1(c) = c, so σ1 ∼ σ2

and [σ1] = [σ1], that is, g(σ1) = g(σ2).

Next, suppose g(d1) = g(d2). This means that d1 = σ1(c), d2 = σ2(c), and [σ1] = [σ2].

Hence σ−1
2 ◦ σ1(c) = c, so σ1(c) = σ2(c) and thus d1 = d2, so g is 1–1.

Suppose that [σ] ∈ E. Then g(σ(c)) = [σ], so g is onto.

Thus we have

|[c]| = |E| = |G|
|G(c)|

and

|G(c)| · |[c]| = |G|

as desired.

COROLLARY 6.2.3 If c ∼ d then |G(c)| = |G(d)|.

Proof. Since c ∼ d, [c] = [d], and

|G|
|G(c)|

= |[c]| = |[d]| = |G|
|G(c)|

|G(c)| = |G(d)|

DEFINITION 6.2.4 If group G acts on the colorings of an object and σ ∈ G, fix(σ) is

the set of colorings that are fixed by σ.
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THEOREM 6.2.5 Burnside’s Theorem If group G acts on the colorings of an

object, the number of distinct colorings modulo G is

1

|G|
∑
σ∈G

| fix(σ)|.

Proof. Let C be the set of all colorings, and let O be the set of orbits. Let c1, c2, . . . , ck
be a list of colorings, one in each orbit, so that the orbits are [c1], [c2], . . . , [ck]. Consider

the sum
∑
c∈C

|G(c)|:

∑
c∈C

|G(c)| =
k∑

i=1

∑
c∈[ci]

|G(c)|

=

k∑
i=1

∑
c∈[ci]

|G(ci)|

=
k∑

i=1

∑
c∈[ci]

|G|
|[ci]|

=
k∑

i=1

|[ci]|
|G|
|[ci]|

=
k∑

i=1

|G| = |G|
k∑

i=1

1 = |G||O|.

Then

|O| = 1

|G|
∑
c∈C

|G(c)|.

This already gives an interesting formula for |O|, but it is unwieldy, since the number of

colorings is typically quite large; indeed, since we typically want to compute the number

of orbits for k colors, the number of colorings is not a fixed number.

With just a little more work we can fix this problem:∑
c∈C

|G(c)| =
∑
c∈C

∑
σ∈G(c)

1

=
∑
σ∈G

∑
c∈fix(σ)

1

=
∑
σ∈G

| fix(σ)|.

Now

|O| = 1

|G|
∑
σ∈G

| fix(σ)|

as desired.
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Since the group of permutations in a typical problem is fairly small, the sum in Burn-

side’s Theorem is usually manageable. Moreover, we can make the task of computing

| fix(σ)| fairly straightforward. Let’s consider a particular example, the permutation of

figure 6.1.4, shown again in figure 6.2.1. If we are using k colors, how many colorings of

the pentagon are fixed by this permutation? Since the permutation swaps vertices 2 and

5, they must be the same color if ϕ is to fix the coloring. Likewise vertices 3 and 4 must

be the same color; vertex 1 can be any color. Thus, the number of colorings fixed by ϕ is

k3. It is easy to see that every “flip” permutation of the pentagon is essentially the same,

so for each of the five flip permutations, the size of fix(σ) is k3.
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Figure 6.2.1 The cycles in a vertex permutation.

Every permutation can be written in cycle form: The permutation in figure 6.2.1, for

example, is (1)(2, 5)(3, 4). A cycle in this context is a sequence (x1, x2, . . . , xk), meaning

that ϕ(x1) = x2, ϕ(x2) = x3), and so on until ϕ(xk) = x1. Following our reasoning above,

the vertices in each cycle must be colored the same color, and the total number of colors

fixed by ϕ is km, where m is the number of cycles.

Let’s apply this to another permutation, shown in figure 6.2.2. This permutation

consists of a single cycle, so every vertex must have the same color, and the number of

colorings fixed by ϕ is k1. All rotations of the pentagon consist of a single cycle except the

trivial rotation, that is, the identity permutation. In cycle form, the identity permutation

is (1)(2)(3)(4)(5), so the number of colorings fixed by the identity is k5. Putting everything

together, we thus have

|O| = 1

10
(k5 + k + k + k + k + k3 + k3 + k3 + k3 + k3) =

1

10
(k5 + 5k3 + 4k).

For example, the number of different 3-colorings is (35 + 5 · 33 + 4 · 3)/10 = 39.
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•

.
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.

•

.

•

. 2.

1

.5 .
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.
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•

.

•

.
•

.

•

.

•

. 5.

4

.3 .

2

.

1

Figure 6.2.2 The permutation (1, 3, 5, 2, 4) is a single cycle.
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EXAMPLE 6.2.6 We find the number of distinct colorings of the vertices of a square

with k colors, modulo D4, the dihedral group of size 8. The elements of D4 are the four

rotations r0, r90, r180, r270, where ri is the counterclockwise rotation by i degrees, and the

four reflections fH , fV , fD, fA, as indicated in figure 6.2.3.
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Figure 6.2.3 The reflection axes for fH , fV , fD, and fA.

In cycle notation these permutations are:

r0 = (1)(2)(3)(4)

r90 = (1, 4, 3, 2)

r180 = (1, 3)(2, 4)

r270 = (1, 2, 3, 4)

fH = (1, 4)(2, 3)

fV = (1, 2)(3, 4)

fD = (1)(2, 4)(3)

fA = (1, 3)(2)(4).

so the number of colorings is

f(k) =
1

8
(k4 + k + k2 + k + k2 + k2 + k3 + k3) =

1

8
(k4 + 2k3 + 3k2 + 2k).

For example, f(2) = 6; the six colorings are shown in figure 6.2.4.
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Figure 6.2.4 The six 2-colorings of the square.

EXAMPLE 6.2.7 Here is a more complicated example: how many different graphs are

there on four vertices? In this case, of course, “different” means “non-isomorphic”. We

can interpret this as a coloring problem: Color the edges of the complete graph K4 with
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two colors, say black and white. The black edges form a graph; the white edges are the

ones left out of the graph. The group G we need to consider is all permutations of the six

edges of K4 induced by a permutation of the vertices, so |G| = 4! = 24. All we need to

know is the number of cycles in each permutation; we consider a number of cases.

Case 1. The identity permutation on the vertices induces the identity permutation on the

edges, with 6 cycles, so the contribution to the sum is 26.

Case 2. A 4-cycle on the vertices induces a permutation of the edges consisting of one

4-cycle and one 2-cycle, that is, two cycles. There are 3! = 6 4-cycles on the vertices, so

the contribution of all of these is 6 · 22.
Case 3. A permutation of the vertices consisting of a 3-cycle and a 1-cycle induces a

permutation of the edges consisting of two 3-cycles. There are 4 · 2 = 8 such permutations

of the vertices, so the contribution of all is 8 · 22.
Case 4. A permutation of the vertices consisting of two 2-cycles induces a permuta-

tion of the edges consisting of two 1-cycles and two 2-cycles. There are 1
2

(
4
2

)
= 3 such

permutations, so the contribution is 3 · 24.
Case 5. A permutation of the vertices consisting of a 2-cycle and two 1-cycles induces a

permutation of the edges consisting of two 1-cycles and two 2-cycles. There are
(
4
2

)
= 6

such permutations, so the contribution is 6 · 24.
The number of distinct colorings, that is, the number of distinct graphs on four vertices,

is
1

24
(26 + 6 · 22 + 8 · 22 + 3 · 24 + 6 · 24) = 1

24
(264) = 11.

It is possible, though a bit difficult, to see that for n vertices the result is

f(n) =
∑
j

n∏
k=1

1

kjkjk!

⌊n/2⌋∏
k=1

2kj2k
⌊(n−1)/2⌋∏

k=1

2kj2k+1

⌊n/2⌋∏
k=1

2kC(jk,2)
∏

1≤r<s≤n−1

2gcd(r,s)jrjs (6.2.1)

where the sum is over all partitions j = (j1, j2, . . . , jn) of n, that is, over all j such that

j1 + 2j2 + 3j3 + · · ·+ njn = n, and C(m, 2) =
(
m
2

)
. With this formula and a computer it

is easy to compute the number of graphs when n is not too large; for example, f(5) = 34,

so there are 34 different five-vertex graphs.

In light of the forgoing discussion, we can restate theorem 6.2.5. If σ is a permutation,

let #σ denote the number of cycles when σ is written in cycle form.

COROLLARY 6.2.8 If group G acts on the colorings of an object, the number of

distinct colorings modulo G with k colors is

1

|G|
∑
σ∈G

k#σ.
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Exercises 6.2.

1. Write the 12 permutations of the vertices of the regular tetrahedron corresponding to the 12
rigid motions of the regular tetrahedron in cycle form. Use the labeling below.

1

2

3

4

2. Find the number of different colorings of the vertices of a regular tetrahedron with k colors,
modulo the rigid motions.

3. Write the 12 permutations of the edges of the regular tetrahedron corresponding to the 12
rigid motions of the regular tetrahedron in cycle form. Use the labeling below.

a

b
c

de

f

4. Find the number of different colorings of the edges of a regular tetrahedron with k colors,
modulo the rigid motions.

5. Find the number of non-isomorphic graphs on 5 vertices “by hand”, that is, using the method
of example 6.2.7.

6.3 P�olya-Redfield Counting

Suppose we are interested in a more detailed inventory of the colorings of an object,

namely, instead of the total number of colorings we seek the number of colorings with a

given number of each color.

EXAMPLE 6.3.1 How many distinct ways are there to color the vertices of a regular

pentagon modulo D5 so that one vertex is red, two are blue, and two are green?

We can approach this as before, that is, the answer is

1

|D5|
∑
σ∈D5

| fix(σ)|,
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where fix(σ) now means the colorings with one red, two blues, and two greens that are

fixed by σ. No longer can we use the simple expression of corollary 6.2.8.

The identity permutation fixes all colorings, so we need to know how many colorings

of the pentagon use one red, two blues, and two greens. This is an easy counting problem:

the number is
(
5
2

)(
3
2

)
= 30.

If σ is a non-trivial rotation, | fix(σ)| = 0, since the only colorings fixed by a rotation

have all vertices the same color.

If σ is a reflection, the single vertex fixed by σ must be red, and then the remaining

2-cycles are colored blue and green in one of two ways, so | fix(σ)| = 2.

Thus, the number of distinct colorings is

1

10
(30 + 0 + 0 + 0 + 0 + 2 + 2 + 2 + 2 + 2) = 4.

What we seek is a way to streamline this process, since in general the computations

of |fix(σ)| can be tedious. We begin by recasting the formula of corollary 6.2.8.

DEFINITION 6.3.2 The type of a permutation σ ∈ Sn is τ(σ) = (τ1(σ), τ2(σ), . . . , τn(σ)),

where τi(σ) is the number of i-cycles in the cycle form of σ.

Note that
∑n

i=1 τi(σ) = #σ. Now instead of the simple

1

|G|
∑
σ∈G

k#σ

let us write
1

|G|
∑
σ∈G

x
τ1(σ)
1 x

τ2(σ)
2 · · ·xτn(σ)

n .

If we substitute xi = k for every i, we get the original form of the sum, but the new version

carries more information about each σ.

Suppose we want to know the number of colorings fixed by some σ that use i reds and

j blues, where of course i+ j = n. Using ideas familiar from generating functions, consider

the following expression:

(r + b)τ1(σ)(r2 + b2)τ2(σ) · · · (rn + bn)τn(σ).

If we multiply out, we get a sum of terms of the form rpbq, each representing some particular

way of coloring the vertices of cycles red and blue so that the total number of red vertices

is p and the number of blue vertices is q, and moreover this coloring will be fixed by σ.
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When we collect like terms, the coefficient of ribj is the number of colorings fixed by σ

that use i reds and j blues. This means that the coefficient of ribj in∑
σ∈G

(r + b)τ1(σ)(r2 + b2)τ2(σ) · · · (rn + bn)τn(σ)

is ∑
σ∈G

|fix(σ)|

where fix(σ) is the set of colorings using i reds and j blues that are fixed by σ. Finally,

then, the number of distinct colorings using i reds and j blues is this coefficient divided

by |G|. This means that by multiplying out

1

|G|
∑
σ∈G

(r + b)τ1(σ)(r2 + b2)τ2(σ) · · · (rn + bn)τn(σ)

and collecting like terms, we get a list of the number of distinct colorings using any combi-

nation of reds and blues, each the coefficient of a different term; we call this the inventory

of colorings. If we substitute r = 1 and b = 1, we get the sum of the coefficients, namely,

the total number of distinct colorings with two colors.

DEFINITION 6.3.3 The cycle index of G is

PG =
1

|G|
∑
σ∈G

n∏
i=1

x
τi(σ)
i .

EXAMPLE 6.3.4 Consider again example 6.2.6, in which we found the number of

colorings of a square with two colors. The cycle index of D4 is

1

8
(x4

1 + x1
4 + x2

2 + x1
4 + x2

2 + x2
2 + x2

1x2 + x2
1x2) =

1

8
x4
1 +

1

4
x2
1x2 +

3

8
x2
2 +

1

4
x4.

Substituting as above gives

1

8
(r + b)4 +

1

4
(r + b)2(r2 + b2) +

3

8
(r2 + b2)2 +

1

4
(r4 + b4) = r4 + r3b+ 2r2b2 + rb3 + b4.

Thus there is one all red coloring, one with three reds and one blue, and so on, as shown

in figure 6.2.4.

There is nothing special about the use of two colors. If we want to use three colors, we

substitute ri + bi + gi for xi in the cycle index, and for k colors we substitute something

like ci1 + ci2 + ci3 + · · ·+ cik.



6.3 Pólya-Redfield Counting 147

EXAMPLE 6.3.5 Let’s do the number of 3-colorings of the square. Since we already

have the cycle index, we need only substitute xi = ri + bi + gi and expand. We get

1

8
(r + b+ g)4 +

1

4
(r + b+ g)2(r2 + b2 + g2) +

3

8
(r2 + b2 + g2)2 +

1

4
(r4 + b4 + g4)

= b4 + b3g + b3r + 2b2g2 + 2b2gr + 2b2r2 + bg3 + 2bg2r + 2bgr2+

br3 + g4 + g3r + 2g2r2 + gr3 + r4.

So, for example, there are two squares with two blue vertices, one green, and one red, from

the b2gr term.

EXAMPLE 6.3.6 Consider again example 6.2.7, in which we counted the number of

four-vertex graphs. Following that example, we get

PG =
1

24
(x6

1 + 6x2x4 + 8x2
3 + 3x2

1x
2
2 + 6x2

1x
2
2),

and substituting for the variables xi gives

r6 + r5b+ 2r4b2 + 3r3b3 + 2r2b4 + rb5 + b6.

Recall that the “colors” of the edges in this example are “included” and “excluded”. If we

set b = 1 and r = i (for “included”) we get

i6 + i5 + 2i4 + 3i3 + 2i2 + i+ 1,

interpreted as one graph with 6 edges, one with 5, two with 4, three with 3, two with 2,

one with 1, and one with zero edges, since 1 = i0.

It is possible, though a bit difficult, to see that for n vertices the cycle index is

PG =
∑
j

n∏
k=1

1

kjkjk!

⌊n/2⌋∏
k=1

(xkx
k−1
2k )j2k

⌊(n−1)/2⌋∏
k=1

x
kj2k+1

2k+1

⌊n/2⌋∏
k=1

x
kC(jk,2)
k

∏
1≤r<s≤n−1

x
gcd(r,s)jrjs
lcm(r,s) ,

where the sums are over all partitions j = (j1, j2, . . . , jn) of n, that is, over all j such that

j1 + 2j2 + 3j3 + · · ·+ njn = n, and C(m, 2) =
(
m
2

)
. This is where the formula 6.2.1 comes

from, substituting xi = 2 for all i.

With this formula and a computer it is easy to compute the inventory of n-vertex

graphs when n is not too large. When n = 5, the inventory is

i10 + i9 + 2i8 + 4i7 + 6i6 + 6i5 + 6i4 + 4i3 + 2i2 + i+ 1.
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Exercises 6.3.

1. Find the cycle index PG for the group of permutations of the vertices of a regular tetrahedron
induced by the rigid motions. (See exercise 1 in section 6.2.)

2. Using the previous exercise, write out a full inventory of colorings of the vertices of a regular
tetrahedron induced by the rigid motions, , with three colors, as in example 6.3.5. You may
use Sage or some other computer algebra system.

3. Find the cycle index PG for the group of permutations of the edges of K5. (See exercise 5 in
section 6.2. Don’t use the general formula above.)

4. Using the previous exercise, write out a full inventory of the graphs on five vertices, as in
example 6.3.6. You may use Sage or some other computer algebra system.



A
Hints

1.6.2. Every positive integer can be writ-

ten as j · 2k, with j odd and k ≥ 0.
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A

action
group action on a set, 136

acyclic graph, 103
addition principle, 12
adjacent, 81
alternating chain, 83
anti-chain, 35
arc, 127

B

Bell numbers, 21
Bell triangle, 25
binomial coefficients, 16
monotonicity, 19
symmetry, 19

bipartite graph, 82, 101
complete, 11, 102

block, 114
block-cutpoint graph, 115
bridge, 104
Brooks’s Theorem, 119

C

Catalan numbers, 16, 64
chain, 35
Chinese Remainder Theorem, 32
chromatic number, 116
chromatic polynomial, 123
circuit, 96, 127

class, 118
clique, 93, 117
clique number, 117
closed neighborhood, 81
closed walk, 96, 127
complete bipartite graph, 11, 102
complete graph, 10, 33, 93
Kn, 82

condensation, 89
conjugate of a partition, 59
connected, 89
connected components, 93
cut, 108
in network, 129

cutpoint, 105, 108
cutset, 108
cycle, 35, 93
cycle form, 141
cycle form of a permutation, 39
cycle graph (Cn), 81
cycle index, 146
cyclic group, 136

D

degree, 81
maximum, 118
minimum, 109

derangement, 46
derangement numbers, 47
digraph, 127
connected, 132
strongly connected, 132

151
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underlying graph, 132
dihedral group, 136
directed edge (arc), 127
directed graph (digraph), 127

E

endblock, 115
equivalence relation, 93
Euler circuit, 96
Euler walk, 97
exponential generating function, 55

F

falling factorial, 42
Ferrers diagram, 59
flow, 127
value of, 129

forest, 103

G

Galton board, 21
general graph, 89
generating function, 51
exponential, 55

girth, 117
graph
directed, 127
weighted, 106

graphical parameters, 117
graphical sequence, 91
greedy algorithm, 118
group, 136
cyclic, 136
dihedral, 136
symmetric, 136

H

Hall’s Condition, 70
Hall’s Theorem, 70
Hamilton cycle, 98
Hamilton path, 98
in digraph, 132

handle, 113
Handle Theorem, The, 113

I

incident, 9, 81

indegree, 127
independence number, 116
independent set, 116
induced subgraph, 93
internally disjoint, 111
inventory, 146
isomorphic, 92
isomorphism, 92
isotopic, 76
isotopy class, 76

J

Jarńık Algorithm, 106

K

Kronecker delta, 40
Kruskal’s Algorithm, 107

L

Latin square, 74
isotopic, 76
isotopy class, 76
orthogonol, 77
reduced, 75

least cost spanning tree, 106
length, 81
loop, 81, 89

M

matching, 82
perfect, 103

maximum degree, 118
maximum flow, 129
minimum degree, 109
modulo
colorings modulo G, 137

multigraph, 81, 89
multinomial coefficient, 29
multiple edges, 89
multiplication principle, 12
multiset, 27
multitree, 106

N

neighborhood, 81
closed, 81
open, 81

network, 127
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n-set, 14

O

open neighborhood, 81
orbit, 137
Ore property, 100
outdegree, 127

P

partition
conjugate, 59
non-crossing, 67
of a set, 21, 67
of an integer, 57
self-conjugate, 60

Pascal’s Triangle, 14
monotonicity, 19
symmetry, 19

path, 81, 93
in digraph, 127

pendant, 103
pendant vertex, 92
perfect matching, 103
permutation, 36
cycle form, 39

permutations, 13
Petersen graph, 101
pigeonhole principle, 31
planar, 124
Prim’s Algorithm, 106
proper coloring, 115

Q

quasigroup, 76

R

Ramsey number, 33
Ramsey Theory, 34
recurrence relation, 22, 48, 60
regular graph, 103
repetition number, 27
rising factorial, 42
rooted binary tree, 64

S

SDR, 69
separating set, 111
sequence, 90

set system, 69
simple graph, 89
source, 127
spanning tree, 104
least cost, 106

Stirling numbers of the first kind, 38, 39
unsigned, 39

Stirling numbers of the second kind, 26, 38
subgraph, 93
symmetric group, 136
system of distinct representatives, 69

T

target, 127
tree, 103
rooted binary, 64

type, 145

V

value of a flow, 129

W

walk, 96
in digraph, 127

weighted graph, 106
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