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1 Sec. 0.1 Preface 

0.1 PREFACE 

The text is aimed at an audience that has seen Maxwell’s equations in integral 
or differential form (second-term Freshman Physics) and had some exposure to 
integral theorems and differential operators (second term Freshman Calculus). The 
first two chapters and supporting problems and appendices are a review of this 
material. 

In Chap. 3, a simple and physically appealing argument is presented to show 
that Maxwell’s equations predict the time evolution of a field, produced by free 
charges, given the initial charge densities and velocities, and electric and magnetic 
fields. This is a form of the uniqueness theorem that is established more rigorously 
later. As part of this development, it is shown that a field is completely specified by 
its divergence and its curl throughout all of space, a proof that explains the general 
form of Maxwell’s equations. 

With this background, Maxwell’s equations are simplified into their electro­
quasistatic (EQS) and magnetoquasistatic (MQS) forms. The stage is set for taking 
a structured approach that gives a physical overview while developing the mathe­
matical skills needed for the solution of engineering problems. 

The text builds on and reinforces an understanding of analog circuits. The 
fields are never static. Their dynamics are often illustrated with step and sinusoidal 
steady state responses in systems where the spatial dependence has been encapsu­
lated in time-dependent coefficients (of solutions to partial differential equations) 
satisfying ordinary differential equations. However, the connection with analog cir­
cuits goes well beyond the same approach to solving differential equations as used 
in circuit theory. The approximations inherent in the development of circuit theory 
from Maxwell’s equations are brought out very explicitly, so that the student ap­
preciates under what conditions the assumptions implicit in circuit theory cease to 
be applicable. 

To appreciate the organization of material in this text, it may be helpful to 
make a more subtle connection with electrical analog circuits. We think of circuit 
theory as being analogous to field theory. In this analogy, our development begins 
with capacitors– charges and their associated fields, equipotentials used to repre­
sent perfect conductors. It continues with resistors– steady conduction to represent 
losses. Then these elements are combined to represent charge relaxation, i.e. “RC” 
systems dynamics (Chaps. 4-7). Because EQS fields are not necessarily static, the 
student can appreciate R-C type dynamics, where the distribution of free charge is 
determined by the continuum analog of R-C systems. 

Using the same approach, we then take up the continuum generalization of 
L-R systems (Chaps. 8–10). As before, we first are given the source (the current 
density) and find the magnetic field. Then we consider perfectly conducting systems 
and once again take the boundary value point of view. With the addition of finite 
conductivity to this continuum analog of systems of inductors, we arrive at the 
dynamics of systems that are L-R-like in the circuit analogy. 

Based on an appreciation of the connection between sources and fields afforded 
by these quasistatic developments, it is natural to use the study of electric and 
magnetic energy storage and dissipation as an entree into electrodynamics (Chap. 
11). 

Central to electrodynamics are electromagnetic waves in loss-free media (Chaps. 
12–14). In this limit, the circuit analog is a system of distributed differential induc­
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tors and capacitors, an L-C system. Following the same pattern used for EQS and 
MQS systems, fields are first found for given sources– antennae and arrays. The 
boundary value point of view then brings in microwave and optical waveguides and 
transmission lines. 

We conclude with the electrodynamics of lossy material, the generalization 
of L-R-C systems (Chaps. 14–15). Drawing on what has been learned for EQS, 
MQS, and electrodynamic systems, for example, on the physical significance of the 
dominant characteristic times, we form a perspective as to how electromagnetic 
fields are exploited in practical systems. In the circuit analogy, these characteristic 
times are RC, L/R, and 1/

√
LC. One benefit of the field theory point of view is 

that it shows the influence of physical scale and configuration on the dynamics 
represented by these times. The circuit analogy gives a hint as to why it is so often 
possible to view the world as either EQS or MQS. The time 1/

√
LC is the geometric 

mean of RC and L/R. Either RC or L/R is smaller than 1/
√

LC, but not both. 
For large R, RC dynamics comes first as the frequency is raised (EQS), followed by 
electrodynamics. For small R, L/R dynamics comes first (MQS), again followed by 
electrodynamics. Implicit is the enormous difference between what is meant by a 
“perfect conductor” in systems appropriately modeled as EQS and MQS. 

This organization of the material is intended to bring the student to the 
realization that electric, magnetic, and electromagnetic devices and systems can be 
broken into parts, often described by one or another limiting form of Maxwell’s 
equations. Recognition of these limits is part of the art and science of modeling, 
of making the simplifications necessary to make the device or system amenable 
to analytic treatment or computer analysis and of effectively using appropriate 
simplifications of the laws to guide in the process of invention. 

With the EQS approximation comes the opportunity to treat such devices 
as transistors, electrostatic precipitators, and electrostatic sensors and actuators, 
while relays, motors, and magnetic recording media are examples of MQS systems. 
Transmission lines, antenna arrays, and dielectric waveguides (i.e., optical fibers) 
are examples where the full, dynamic Maxwell’s equations must be used. 

In connection with examples, about 40 demonstrations are described in this 
text. These are designed to make the mathematical results take on physical mean­
ing. Based upon relatively simple configurations and arrangements of equipment, 
they incorporate no more complexity then required to make a direct connection 
between what has been derived and what is observed. Their purpose is to help 
the student observe physically what has been described symbolically. Often coming 
with a plot of the theoretical predictions that can be compared to data taken in the 
classroom, they give the opportunity to test the range of validity of the theory and 
to promulgate a quantitative approach to dealing with the physical world. More 
detailed consideration of the demonstrations can be the basis for special projects, 
often bringing in computer modeling. For the student having only the text as a 
resource, the descriptions of the experiments stand on their own as a connection 
between the abstractions and the physical reality. For those fortunate enough to 
have some of the demonstrations used in the classroom, they serve as documenta­
tion of what was done. All too often, students fail to profit from demonstrations 
because conventional note taking fails to do justice to the presentation. 

The demonstrations included in the text are of physical phenomena more 
than of practical applications. To fill out the classroom experience, to provide the 
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engineering motivation, applications should also be exemplified. In the subject as 
we teach it, and as a practical matter, these are more of the nature of “show and 
tell” than of working demonstrations, often reflecting the current experience and 
interests of the instructor and usually involving more complexity than appropriate 
for more than a qualitative treatment. 

The text provides a natural frame of reference for developing numerical ap­
proaches to the details of geometry and nonlinearity, beginning with the method of 
moments as the superposition integral approach to boundary value problems and 
culminating in energy methods as a basis for the finite element approach. Profes­
sor J. L. Kirtley and Dr. S. D. Umans are currently spearheading our efforts to 
expose the student to the “muscle” provided by the computer for making practical 
use of field theory while helping the student gain physical insight. Work stations, 
finite element packages, and the like make it possible to take detailed account of 
geometric effects in routine engineering design. However, no matter how advanced 
the computer packages available to the student may become in the future, it will 
remain essential that a student comprehend the physical phenomena at work with 
the aid of special cases. This is the reason for the emphasis of the text on simple ge­
ometries to provide physical insight into the processes at work when fields interact 
with media. 

The mathematics of Maxwell’s equations leads the student to a good under­
standing of the gradient, divergence, and curl operators. This mathematical con­
versance will help the student enter other areas– such as fluid and solid mechanics, 
heat and mass transfer, and quantum mechanics– that also use the language of clas­
sical fields. So that the material serves this larger purpose, there is an emphasis on 
source-field relations, on scalar and vector potentials to represent the irrotational 
and solenoidal parts of fields, and on that understanding of boundary conditions 
that accounts for finite system size and finite time rates of change. 

Maxwell’s equations form an intellectual edifice that is unsurpassed by any 
other discipline of physics. Very few equations encompass such a gamut of physical 
phenomena. Conceived before the introduction of relativity Maxwell’s equations 
not only survived the formulation of relativity, but were instrumental in shaping 
it. Because they are linear in the fields, the replacement of the field vectors by 
operators is all that is required to make them quantum theoretically correct; thus, 
they also survived the introduction of quantum theory. 

The introduction of magnetizable materials deviates from the usual treatment 
in that we use paired magnetic charges, magnetic dipoles, as the source of magneti­
zation. The often-used alternative is circulating Ampèrian currents. The magnetic 
charge approach is based on the Chu formulation of electrodynamics. Chu exploited 
the symmetry of the equations obtained in this way to facilitate the study of mag­
netism by analogy with polarization. As the years went by, it was unavoidable that 
this approach would be criticized, because the dipole moment of the electron, the 
main source of ferromagnetism, is associated with the spin of the electron, i.e., 
seems to be more appropriately pictured by circulating currents. 

Tellegen in particular, of Tellegen-theorem fame, took issue with this ap­
proach. Whereas he conceded that a choice between two approaches that give iden­
tical answers is a matter of taste, he gave a derivation of the force on a current 
loop (the Ampèrian model of a magnetic dipole) and showed that it gave a different 
answer from that on a magnetic dipole. The difference was small, the correction 
term was relativistic in nature; thus, it would have been difficult to detect the 
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effect in macroscopic measurements. It occurred only in the presence of a time-
varying electric field. Yet this criticism, if valid, would have made the treatment of 
magnetization in terms of magnetic dipoles highly suspect. 

The resolution of this issue followed a careful investigation of the force exerted 
on a current loop on one hand, and a magnetic dipole on the other. It turned out 
that Tellegen’s analysis, in postulating a constant circulating current around the 
loop, was in error. A time-varying electric field causes changes in the circulating 
current that, when taken into account, causes an additional force that cancels the 
critical term. Both models of a magnetic dipole yield the same force expression. The 
difficulty in the analysis arose because the current loop contains “moving parts,” 
i.e., a circulating current, and therefore requires the use of relativistic corrections in 
the rest-frame of the loop. Hence, the current loop model is inherently much harder 
to analyze than the magnetic charge–dipole model. 

The resolution of the force paradox also helped clear up the question of the 
symmetry of the energy momentum tensor. At about the same time as this work was 
in progress, Shockley and James at Stanford independently raised related questions 
that led to a lively exchange between them and Coleman and Van Vleck at Harvard. 
Shockley used the term “hidden momentum” for contributions to the momentum 
of the electromagnetic field in the presence of magnetizable materials. Coleman 
and Van Vleck showed that a proper formulation based on the Dirac equation 
(i.e., a relativistic description) automatically includes such terms. With all this 
theoretical work behind us, we are comfortable with the use of the magnetic charge– 
dipole model for the source of magnetization. The student is not introduced to the 
intricacies of the issue, although brief mention is made of them in the text. 

As part of curriculum development over a period about equal in time to the age 
of a typical student studying this material (the authors began their collaboration in 
1968) this text fits into an evolution of field theory with its origins in the “Radiation 
Lab” days during and following World War II. Quasistatics, promulgated in texts by 
Professors Richard B. Adler, L.J. Chu, and Robert M. Fano, is a major theme in this 
text as well. However, the notion has been broadened and made more rigorous and 
useful by recognizing that electromagnetic phenomena that are “quasistatic,” in the 
sense that electromagnetic wave phenomena can be ignored, can nevertheless be rate 
dependent. As used in this text, a quasistatic regime includes dynamical phenomena 
with characteristic times longer than those associated with electromagnetic waves. 
(A model in which no time-rate processes are included is termed “quasistationary” 
for distinction.) 

In recognition of the lineage of our text, it is dedicated to Professors R. B. 
Adler, L. J. Chu and R. M. Fano. Professor Adler, as well as Professors J. Moses, 
G. L. Wilson, and L. D. Smullin, who headed the department during the period 
of development, have been a source of intellectual, moral, and financial support. 
Our inspiration has also come from colleagues in teaching– faculty and teaching 
assistants, and those students who provided insight concerning the many evolutions 
of the “notes.” The teaching of Professor Alan J. Grodzinsky, whose latterday 
lectures have been a mainstay for the course, is reflected in the text itself. A partial 
list of others who contributed to the curriculum development includes Professors 
J. A. Kong, J. H. Lang, T. P. Orlando, R. E. Parker, D. H. Staelin, and M. Zahn 
(who helped with a final reading of the text). With “macros” written by Ms. Amy 
Hendrickson, the text was “Tex’t” by Ms. Cindy Kopf, who managed to make the 
final publication process a pleasure for the authors. 
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APPENDIX 

1.1 VECTOR OPERATIONS 

A vector is a quantity which possesses magnitude and direction. In order to describe 
a vector mathematically, a coordinate system having orthogonal axes is usually cho­
sen. In this text, use is made of the Cartesian, circular cylindrical, and spherical 
coordinate systems. In these three­dimensional systems, any vector is completely 
described by three scalar quantities. For example, in Cartesian coordinates, a vec­
tor is described with reference to mutually orthogonal coordinate axes. Then the 
magnitude and orientation of the vector are described by specifying the three pro­
jections of the vector onto the three coordinate axes. 

In representing a vector1 A mathematically, its direction along the three or­
thogonal coordinate axes must be given. The direction of each axis is represented 
by a unit vector i, that is, a vector of unit magnitude directed along the axis. In 
Cartesian coordinates, the three unit vectors are denoted ix, iy, iz. In cylindrical 
coordinates, they are ir, iφ, iz, and in spherical coordinates, ir, iθ, iφ. A, then, has 
three vector components, each component corresponding to the projection of A onto 
the three axes. Expressed in Cartesian coordinates, a vector is defined in terms of 
its components by 

A = Axix + Ayiy + Aziz (1) 

These components are shown in Fig. A.1.1. 

1 Vectors are usually indicated either with boldface characters, such as A, or by drawing a 

line (or an arrow) above a character to indicate its vector nature, as in A or A. 

1 
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Fig. A.1.1 Vector A represented by its components in Cartesian coordinates 
and unit vectors i. 

Fig. A.1.2 (a) Graphical representation of vector addition in terms of spe­
cific coordinates. (b) Representation of vector addition independent of specific 
coordinates. 

Vector Addition. The sum of two vectors A = Axix + Ayiy + Aziz and B = 
Bxix +Byiy +Bziz is effected by adding the coefficients of each of the components, 
as shown in two dimensions in Fig. A.1.2a. 

A + B = (Ax + Bx)ix + (Ay + By)iy + (Az + Bz)iz (2) 

From (2), then, it should be clear that vector addition is both commutative, A+B = 
B + A, and associative, (A + B) + C = A + (B + C). 

Graphically, vector summation can be performed without regard to the coor­
dinate system, as shown in Fig. A.1.2b, by noticing that the sum A+B is a vector 
directed along the diagonal of a parallelogram formed by A and B. 

It should be noted that the representation of a vector in terms of its com­
ponents is dependent on the coordinate system in which it is carried out. That is, 
changes of coordinate system will require an appropriate vector transformation. Fur­
ther, the variables used must also be transformed. The transformation of variables 
and vectors from one coordinate system to another is illustrated by considering a 
transformation from Cartesian to spherical coordinates. 

Example 1.1.1. Transformation of Variables and Vectors 

We are given variables in terms of x, y, and z and vectors such as A = Axix + 
Ayiy + Aziz. We wish to obtain variables in terms of r, θ, and φ and vectors ex­
pressed as A = Arir + Aθiθ + Aφiφ. In Fig. A.1.3a, we see that the point P has two 
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Fig. A.1.3 Specification of a point P in Cartesian and spherical co­
ordinates. (b) Transformation from Cartesian coordinate x to spherical 
coordinates. (c) Transformation of unit vector in x direction into spher­
ical coordinate coordinates. 

representations, one involving the variables x, y and z and the other, r, θ and φ. In 
particular, from Fig. A.1.3b, x is related to the spherical coordinates by 

x = r sin θ cos φ (3) 

In a similar way, the variables y and z evaluated in spherical coordinates can 
be shown to be 

y = r sin θ sin φ (4) 

z = r cos θ (5) 

The vector A is transformed by resolving each of the unit vectors ix, iy, iz 
in terms of the unit vectors in spherical coordinates. For example, ix can first be 
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Fig. A.1.4 Illustration for definition of dot product. 

resolved into components in the orthogonal coordinates (x�, y�, z) shown in Fig. 
A.1.3c. By definition, y� is along the intersection of the φ = constant and the x − y 
planes. Also in the x−y plane is x�, which is perpendicular to the y� −z plane. Thus, 
sin φ, cos φ, and 0 are the components of ix along the x�, y�, and z axes respectively. 
These components are in turn resolved into components along the spherical coordi­
nate directions by recognizing that the component sin φ along the x� axis is in the 
−iφ direction while the component of cos φ along the y� axis resolves into components 
cos φ cos θ in the direction of iθ, and cos φ sin θ in the ir direction. Thus, 

ix = sin θ cos φir + cos θ cos φiθ − sin φiφ (6) 

Similarly, 
iy = sin θ sin φir + cos θ sin φiθ + cos φiφ (7) 

iz = cos θir − sin θiθ (8) 

It must be emphasized that the concept of a vector is independent of the 
coordinate system. (In the same sense, in Chaps. 2 and 4, vector operations are 
defined independently of the coordinate system in which they are expressed.) A 
vector can be visualized as having the direction and magnitude of an arrow­tipped 
line element. This picture makes it possible to deal with vectors in a geometrical 
language that is independent of the choice of a particular coordinate system, one 
that will now be used to define the most important vector operations. 

For analytical or numerical purposes, the operations are usually carried out 
in coordinate notation. Then, as illustrated, either in the text that follows or in the 
problems, each operation will be evaluated in a Cartesian coordinate system. 

Definition of Scalar Product. Given vectors A and B as illustrated in Fig. 
A.1.4, the scalar, or dot product, between the two vectors is defined as 

A · B = |A||B| cos θ (9) 

where θ is the angle between the two vectors. 
It follows directly from its definition that the scalar product is commutative. 

A B = B A (10)· · 
The scalar product is also distributive. 

(A + B) C = A C + B C (11)· · · 
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Fig. A.1.5 Illustration for definition of vector­product. 

To see this, note that A C is the projection of A onto C times the magnitude of · 
C, C , and B C is the projection of B onto C times C . Because projections are 
additive, (11) follows. 

| | · | | 

These two properties can be used to define the scalar product in terms of the 
vector components in Cartesian coordinates. According to the definition of the unit 
vectors, 

ix ix = iy iy = iz iz = 1 · · · 
ix iy = ix iz = iy iz = 0 (12)· · · 

With A and B expressed in terms of these components, it follows from the dis­
tributive and commutative properties that 

A B = AxBx + AyBy + AzBz (13)· 

Thus, in agreement with (9), the square of the magnitude of a vector is 

A A = A 2 = A2 
x + A2 

y + A2 
z (14)· | | 

Definition of Vector Product. The cross­product of vectors A and B is a 
vector C having a magnitude 

|C| = |A||B| sin θ (15) 

and having a direction perpendicular to both A and B. Geometrically, the mag­
nitude of C is the area of the parallelogram formed by the vectors A and B. The 
vector C has the direction of advance of a right­hand screw, as though driven by 
rotating A into B. Put another way, a right­handed coordinate system is formed 
by A− B− C, as is shown in Fig. A.1.5. The commonly accepted notation for the 
cross­product is 

C = A× B (16) 

It is useful to note that if the vector A is resolved into two mutually per­
pendicular vectors, A = A + A , where A lies in the plane of A and B and is � ⊥
perpendicular to B and A�

⊥
is parallel to B, then 

A× B = A⊥ × B (17) 
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Fig. A.1.6 Graphical representation showing that the vector­product is dis­
tributive. 

This equality follows from the fact that both cross­products have equal magnitude 
(since A⊥ × B = A and A ⊥ = A sin θ) and direction (perpendicular to 
both A

| 
and B).

| | ⊥||B| | | | | | 

The distributive property for the cross­product, 

(A + B)× D = A× D + B× D (18) 

can be shown using (17) and the geometrical construction in Fig. A.1.6 as follows. 
First, note that (A + B)⊥ = (A⊥ + B⊥), where ⊥ denotes a component in the 
planes of A and D or B and D, respectively, and perpendicular to D. Thus, 

(A + B)× D = (A + B)⊥ × D = (A⊥ + B⊥)× D (19) 

Now, we need only show that 

(A⊥ + B⊥)× D = A⊥ × D + B⊥ × D (20) 

This equation is given graphical expression in Fig. A.1.6 by the vectors A⊥, B⊥, 
and their sum. To within a factor of D , the three vectors A| |

⊥, B
⊥ × D, B⊥ × D, 

and their sum, are, respectively, the vectors A , and their sum, rotated by ⊥
90 degrees. Thus, the vector addition property already shown for A + B also 
applies to A⊥ × D + B⊥ × D. 

⊥ ⊥ 

Because interchanging the order of two vectors calls for a reassignment of the 
direction of the product vector (the direction of C in Fig. A.1.5), the commutative 
property does not hold. Rather, 

A× B = −B× A (21) 

Using the distributive law, the vector product of two vectors can be con­
structed in terms of their Cartesian coordinates by using the following properties 
of the vector products of the unit vectors. 

ix × ix = 0 ix × iy = iz 

iy × iy = 0 iy × iz = −iz × iy = ix 

iz × iz = 0 ix × iz = −iz × ix = −iy (22) 
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Fig. A.1.7 Graphical representation of scalar triple product. 

Thus, 
A× B =ix(AyBz − AzBy) + iy(AzBx − AxBz) 

(23)
+ iz(AxBy − AyBx) 

A useful mnemonic for finding the cross­product in Cartesian coordinates is 
realized by noting that the right­hand side of (23) is the determinant of a matrix: 

�����
ix iy iz 

�����A× B =	 Ax Ay Az (24) 
Bx By Bz 

The Scalar Triple Product. The definition of the scalar triple product of 
vectors A, B, and C follows from Fig. A.1.7, and the definition of the scalar and 
vector products. 

A · (B× C) = [|A| cos(A,B× C)][|B||C| sin(B,C)] (25) 

The scalar triple product is equal to the volume of the parallelepiped having 
the three vectors for its three bases. That is, in (25) the second term in square 
brackets is the area of the base parallelogram in Fig. A.1.7 while the first is the 
height of the parallelopiped. The scalar triple product is positive if the three vectors 
form a right­handed coordinate system in the order in which they are written; 
otherwise it is negative. Hence, a cyclic rearrangement in the order of the vectors 
leaves the value of the product unchanged. 

A (B× C) = B (C× A) = C (A× B) (26)· · · 

It follows that the placing of the cross and the dot in a scalar triple product is 
arbitrary. The cross and dot can be interchanged without affecting the product. 

Using the rules for evaluating the dot product and the cross­product in Carte­
sian coordinates, we have 

A (B× C) = Ax(ByCz − BzCy) + Ay(BzCx − BxCz) + Az(BxCy − ByCx) (27)· 

The Double Cross­Product. Consider the vector product A (B C). Is 
there another, sometimes more useful, way of expressing this double cross­pro

× × 
duct? 
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Fig. A.1.8 Graphical representation of double cross­product. 

Since the product B × C is perpendicular to the plane defined by B and C, then 
the final product A× (B× C) must lie in the plane of B and C. Hence, the vector 
product must be expressible as a linear combination of the vectors B and C. One 
way to find the coefficients of this linear combination is to evaluate the product in 
Cartesian coordinates. Here we prefer to use a geometric derivation. 

Because the vector B× C is perpendicular to the plane defined by the vectors 
B and C, it follows from Fig. A.1.7 that 

A× (B× C) = A� × (B× C) (28) 

where A� is the projection of A onto the plane defined by B and C. Next, we 
separate the vector C into a component parallel to B, C , and a component per­
pendicular to B, C⊥, as shown by Fig. A.1.8, so that 

�

A× (B× C) = A� × (B× C⊥) (29) 

Then, according to the properties of the cross­product, the magnitude of the 
vector product is given by 

|A× (B× C)| = |A�||B||C⊥| (30) 

and the direction of the vector product is orthogonal to A� and lies in the plane 
defined by the vectors B and C, as shown in Fig. A.1.8 

A rule for constructing a vector perpendicular to a given vector, A�, in an 
x − y plane is as follows. First, the two components of A� with respect to any two 
orthogonal axes (x, y) are determined. Here these are the directions of C and B⊥
with components A� C , and A� B, respectively. Then, a new vector is constructed · ⊥ · 
by interchanging the x and y components and changing the sign of one of them. 
According to this rule, Fig. A.1.8 shows that the vector A× (B× C) is given by 

A× (B× C) = (A� C⊥)B− (A� B)C · · ⊥ (31) 

�Now, because C has the same direction as B, 

(A� B)C� = (A� C�)B,· · (32) 

and addition of (31) gives 

A× (B× C) = A� (C + C�)B− (A� B)(C + C�)· ⊥ · ⊥ (33) 
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Now observe that A� C = A C and A� B = A B (which follow from the definition · · · · 
of A� as the projection of A into the B − C plane), and the double cross­product 
becomes 

A× (B× C) = (A C)B− (A B)C (34)· · 
This result is particularly convenient because it does not contain any special nota­
tion or projections. 

The vector identities found in this Appendix are summarized in Table III at 
the end of the text. 
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APPENDIX
 

2.1 LINE AND SURFACE INTEGRALS 

Consider a path connecting points (a) and (b) as shown in Fig. A.2.1. Assume that 
a vector field A(r) exists in the space in which the path is situated. Then the line 
integral of A(r) is defined by 

� (b) 

A ds (1) 
(a) 

· 

To interpret (1), think of the path between (a) and (b) as subdivided into differential 
vector segments ds. At every vector segment, the vector A(r) is evaluated and the 
dot product is formed. The line integral is then defined as the sum of these dot 
products in the limit as ds approaches zero. A line integral over a path that closes 
on itself is denoted by the symbol 

� 
A ds. · 

Fig. A.2.1 Configuration for integration of vector field A along line having 
differential length ds between points (a) and (b). 

1 
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Fig. A.2.2 Integration line having shape of quarter segment of a circle 
with radius R and differential element ds. 

To perform a line integration, the integral must first be reduced to a form 
that can be evaluated using the rules of integral calculus. This is done with the aid 
of a coordinate system. The following example illustrates this process. 

Example 2.1.1. Line Integral 

Given the two­dimensional vector field 

A = xix + axy iy (2) 

find the line integral along a quarter circle of radius R as shown in Fig. A.2.2. 
Using a Cartesian coordinate system, the differential line segment ds has the 

components dx and dy. 
ds = ixdx + iydy (3) 

Now x and y are not independent but are constrained by the fact that the integration 
path follows a circle defined by the equation 

x 2 + y 2 = R2 (4) 

Differentiation of (4) gives 

2xdx + 2ydy = 0 (5) 

and therefore x 
dy = dx (6)− 

y 

Thus, the dot product A ds can be written as a function of the variable x alone.· 

A ds = xdx + a xydy = (x − ax 2)dx (7)· 

When the path is described in the sense shown in Fig. A.2.4, x decreases from R to 
zero. Therefore, 

0 2 ax 3
0 

aR3 R2
� 

A ds = 

� 
(x − ax 2)dx = 

� x ����� = (8)· 
R 

2 
− 

3 
R 

3 
− 

2 

If the path is not expressible in terms of an analytic function, the evaluation of the 
line integral becomes difficult. If everything else fails, numerical methods can be 
employed. 
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Surface Integrals. Given a vector field A(r) in a region of space containing 
a specified (open or closed) surface S, an important form of the surface integral of 
A over S is 

A da (9) 
S 

· 

The vector da has a magnitude that represents the differential area of a surface 
element and a direction that is normal to that area. To interpret (9), think of 
the surface S as subdivided into these differential area elements da. At each area 
element, the differential scalar A da is evaluated and the surface integral is defined · 
as the sum of these dot products over S in the limit as da approaches zero. The 
surface integral 

�
S 
A da is also called the “flux” of the vector A through the surface · 

S. 
To evaluate a surface integral, a coordinate system is introduced in which 

the integration can be performed according to the methods of integral calculus. 
Then the surface integral is transformed into a double integral in two independent 
variables. This is best illustrated with the aid of a specific example. 

Example 2.1.2. Surface Integral 

Given the vector field 
A = ixx (10) 

find the surface integral 
� 

A da, where S is one eighth of a spherical surface of 
S 

· 
radius R in the first octant of a sphere (0 ≤ φ ≤ π/2, 0 ≤ θ ≤ π/2). 

Because the surface lies on a sphere, it is best to carry out the integration in 
spherical coordinates. To transform coordinates from Cartesian to spherical, recall 
from (A.1.3) that the x coordinate is related to r, θ, and φ by 

x = r sin θ cos φ (11) 

and from (A.1.6), the unit vector ix is 

ix = sin θ cos φ ir + cos θ cos φ iθ − sin φ iφ (12) 

Therefore, because the area element da is 

da = irR
2 sin θdθdφ (13) 

the surface integral becomes 

� � π/2 � π/2
3 3 2A da = dθ dφR sin θ cos φ· 

S 0 0 

πR3 
� π/2 

πR3 
(14) 

= dθ sin3 θ = 
4 6

0 

A surface integral of a vector A over a closed surface is indicated by 

A da (15) 
S 

· 
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Note also that we use a single integral sign for a surface integral, even though, in 
fact, two integrations are involved when the integral is actually evaluated in terms 
of a coordinate system. 

2.2 PROOF THAT THE CURL OPERATION 
RESULTS IN A VECTOR 

The definition 
[curl A]n = lim 

1
� 

A ds (1) 
a 0 a 

· 
→ 

assigns a scalar, [curl A]n, to each direction n at the point P under consideration. 
The limit must be independent of the shape of the contour C (as long as all its 
points approach the point P in the limit as the area a of the contour goes to zero). 
The identification of curl A as a vector also implies a proper dependence of this 
limit upon the orientation of the normal n of a. The purpose of this appendix is 
to show that these two requirements are indeed satisfied by (1). We shall prove the 
following facts: 

1. At a particular point (x, y, z) lying in the plane specified by its normal vector 
n, the quantity on the right in (1) is independent of the shape of the con­
tour. (The notation [curl A]n, is introduced at this stage only as a convenient 
abbreviation for the expression on the right.) 

2. If [curl A]n is indeed the component of a vector [curl A] in the n direction 
and n is a unit normal in the n direction, then 

[curl A]n = [curl A] n (2)· 
where [curl A] is a vector defined at the point (x, y, z). 

The proof of (1) follows from the fact that any closed contour integral can 
be built up from a superposition of contour integrals around a large number of 
rectangular contours Ci, as shown in Fig. A.2.3. All rectangles have sides Δξ, Δη. 
If the entire contour containing the rectangles is small (a 0), then the contour → 

at the origin integral around each rectangle differs from that for the contour Co 

only by a term on the order of the linear dimension of the contour, a1/2, times the 
area ΔξΔη. This is true provided that the distance from the origin to any point 
on the contour does not exceed a1/2 by an order of magnitude and that A is once 
differentiable in the neighborhood of the origin. We have 

1 
� 

1 
� 

1/2)A ds = A ds + O(a (3)
ΔξΔη Ci 

· 
ΔξΔη Co 

· 

Therefore, 

1
� � 1

� 
ΔξΔη � 1 

�
A ds = A ds = A ds 

a C 

· 
a Ci 

· 
a ΔξΔη Ci 

· 
i i 

ΔξΔη
� 

1 
� � (4) 

= N
a ΔξΔη Co 

A · ds + O(a 1/2)
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Fig. A.2.3 Separation of closed contour integral into large number of inte­
grals over rectangular contours. 

Fig. A.2.4 Arbitrary incremental contour integral having normal n analyzed 
into integration contours enclosing surface, having normals in the directions of 
the Cartesian coordinates. 

where N is the number of rectangles into which the contour C has been subdivided. 
However, N = a/(ΔξΔη), and therefore we find 

lim 
� 

a 

1
� 

Ci 

A · ds = lim 
0 Δξ

1
Δη 

� 

Co 

A · ds (5) 
a 0 a→ 

i 
→

The expression on the left refers to the original contour, while the expression on the 
right refers to the rectangular contour at the origin. Since a contour of arbitrary 
shape can be constructed by a proper arrangement of rectangular contours, we 
have proven that the expression lima 0 

� 
A ds/a is independent of the shape of 

the contour as long as (3) holds. 
→ · 

Turning to the proof that (1) defines the component of a vector, we recognize 
that the shape of the contour is arbitrary when evaluating 

� 
A ds/a. We displace · 

the plane in which the contour lies by a differential amount away from the point 
P (x, y, z), as shown in Fig. A.2.4 which does not affect the value of [curl A]n as 
defined in (1). The intersection of the plane with the three coordinate planes through 
P is a triangle. We pick the triangle for the contour C in (1). 

It follows from Fig. A.2.4 that the contour integral around the triangular 
contour in the plane perpendicular to n can also be written as the sum of three 
integrals around the three triangular contours in the respective coordinate planes. 
Indeed, each of the added sections of line are traversed in one contour integration 
in the opposite direction, so that the integrals over the added sections of the line 
cancel upon summation and we have 

A ds = A ds + A ds + A ds (6) 
n 

· 
x 

· 
y 

· 
z 

· 
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where each contour integral is denoted by the subscript taken from the unit vector 
normal to the plane of the contour. 

We further note that the areas ax, ay, az of the three triangles in the respec­
tive coordinate planes are the projections of the area a onto the corresponding 
coordinate plane. 

ax = aix n	 (7)· 
ay = aiy n	 (8)· 
az = aiz n	 (9)· 

Thus, by dividing (6) by a and making use of (7), (8), and (9), we have: 

1
� 

1 
� 

1 
� 

a n 

A · ds = 
ax x 

A · dsix · n + 
ay y 

A · dsiy · n 
(10)

1	
�

+	 A dsiz n 
az z 

· · 

Now, since the contours are already taken around differential area elements, the 
limit a 0 is already implied in (10). Thus, we have the quantities → 

[curl A]x = lim A ds/ax . . .	 (11) 
ax 0→ x 

· 

But (10) is the definition of the component in the n direction of a vector: 

curl A = [curl A]xix + [curl A]yiy + [curl A]ziz (12) 

It is therefore legitimate to define at every point x, y, z in space a vector quantity, 
curl A, whose x­, y­, and z­components are evaluated as the limiting expressions 
of (1). 
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