Free to use.

SRS B & 47 i E
Open Textbooks Free to change.
for Hong Kong REFEFL

Free to shave.

Intro to Logic

NP

THE OPEN UNIVERSITY
OF HONG KONG

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

© Matthias Felleisen, John Grenier, Moshe Vardi, Phokion Kolaitis and lan Barland

This work is licensed under a Creative Commons-ShareAlike 4.0 International License

Original source: CONNEXIONS
http://cnx.org/content/col10154/1.20/

http://creativecommons.org/licenses/by-sa/4.0/
http://cnx.org/content/col10154/1.20/

Contents

Chapter 1 INtrodUCLIONeeeiiiiiiiiiiinetiiiieniinnestiisessissenssssissessssssnssssssssssssssnssssssssssses 1
12190 = TOO0: A PrOOT ettt 1
EXEICISE T.1.T oo 5

1.2 The Need fOr PrOOfS ..ottt s a s nae s 6
1.2.T WaterWOIT ...ttt 6
1.2.1.1 TYPE CRECKING oottt re 7

1.2.1.2 CirCUit VErifiCation ..ccuovveveririeieieiesiesescete ettt 9

1.3 DefiNiNG @ PrOOf ..ottt sttt sbe b nen 10
1.3.1 What are proofs? (iNformal) ... 10
EXAMPIE T.T ettt sttt bbb 10

1.3.1.1 An argument DY fOrM ..ooiviieiieec e 11

EXAMIPIE 1.2 oottt st st sttt b e st 11

EXAMPIE 1.3 et bbbt 11

EXAMPIE 1.4 oottt s sttt a e sb e s a et 12

1.3.1.2 SOME NON-PrOOFS ..ottt 12
EXAMPIE 1.5 e s 13

EXEICISE 1.3 ettt sttt et et st st e b et 14

EXAMPIE 1.6 ettt sttt s st 14

EXAMIPIE 1.7 ettt et s st 14

EXAMPIE 1.8 ettt sttt st 15

EXEICiSE 1.3.2 ittt 15

1.3.1.3 Other INference RUIES........oovvieieeeceeeee e 15

1.3.1.4 The need for a precise laNGUAZEcc.covvvrieieniineneeeeeeeie e 17

1.3.2 Solutions to Exercifes in Chapter 1 ... 18
Chapter 2 Propositional LOZICcccceevveiiiiiieniiiiineiinisienisnnseeiessssnenssssssesssssssssnessanes 21
2.1 ATOrmal VOCADUIAIY .oveceieieieececeeeeee ettt sttt st 21
2.1.71 PrOPOSITIONS eutiiieeiieitieieeie ettt sttt ettt sttt et ettt sbtesbe e beebeeabesanesanes 21
2.1.1.1 AFormal VOCADUIAIY ...ovuirieiieiceer e 21

2.1.1.1.1 A particular vocabulary for WaterWorldcccocevevvevcverieniennenne. 22

2.1.71.7.2 CONNECLIVES ettt ettt ettt sttt et st sreens 23

EXercise 2.1.1.T i 23

EXEICISE 2.1.T.2 ettt st 23

EXErcise 2.1.1.3 i 24

EXAMPIE e 24

EXAMIPIE ettt st 24

EXAMPIE e 24

EXAMIPIE 2.1 ottt s et 25

EXEICISE 2. 1. T4 ettt 25

EXercise 2.1.1.5 . 26

2.1 2 FOIMUIS ittt ettt st sb e s st b e b e sbesaeeasensens 26
2.1.2.1 Well-Formed FOrmuIascccvevieininiiniciinecetseeeeeeeeeeee 26
EXQMIPIE ottt sttt st b e b st nnenaen 26

EXAMIPIE et sttt 26

EXQMPIE ettt sttt 26

EXQMPIE ettt st 27

EXQMIPIE ittt st a et 27

EXAMPIE 2.2 oottt sttt 27

EXAMPIE 2.3 e 27

2.1.2.2 Some formulas are truer than othersc.ccceveiieviecieccececeeeeee, 28
EXQMPIE ettt st st n et 29

EXAMIPIE et st 29

EXQMPIE et sttt 29

EXQMPIE ettt 29

EXQMIPIE ittt s a et 29

EXEICISE 2.1.2.T ittt et st e e e b e be e sabe e sarees 30

EXEICISE 2.1.2.2 oottt sttt ettt 30

EXEICISE 2.1.2.3 ettt ettt e be e eareas 30

EXEICISE 2.1.2.4 oottt sttt s e e st e e sare s 30

EXEICISE 2.1.2.5 ettt sttt e ta e e e aaee s 30

2.1.2.3 FINAING TIULN oottt 31
2.1.2.4 GAaME-SPECITIC FUIES.....eriiiiieerieriee e 31

2.2 Reasoning With truth tables ..ot 31
2.2.1 USING truth tablescoiiieieeee et 31
2.2.1.1USING Truth TabIES .veeeiiciieieeesiesececeese ettt 32

L o OO O OO O TP TO SO S PP OPTORORRRPRRPPOPO 32

EXEICISE 2.2, 7.2 oottt st sttt sare s 33

2.2.2 The limitations of truth tables ... 34
2.2.2.1 Are WE dONE YET? ...ttt ettt sttt et st naesre s 34
EXEICISE 2.2. 2.7 oottt ettt et ettt e e s aa e e st e e s are e e e aree s 34

EXEICISE 2.2.2.2 oottt ettt sttt st s a e e e be e sare s 35

2.3 Reasoning With @qQUIVAIENCESooiiiiiiieiicieteteeete et 36
2.3.1 Propositional @qUIVAIENCESccccceveriieiiieriesenceteese sttt 36
2.3.1.1 Propositional EQUIVAIENCESc..coiririiieiererieeeeeeeieseeseeeeee e 36
EXAMPIE 2.4 oottt st 37

EXAMPIE 2.5 ettt 39

EXAMPIE 2.6 et 39

EXEICISE 2.3. 7.1 ittt et s te e eare s 40

EXEICISE 2.3.T.2 ittt sttt e e st e e a e e s ba e s be e sare s 40

2.3.1.1.1 DUAIS (OPLIONAI) weveeeieieiesierieseeteeeee et 40

WG A N Lo Y o 0= | i o o 0 £ 41
2.3.2.1 CNF, DNF, ... (ENUTF @lready!)...ccccceeieeeieiiseseseeeeieeseseseee e 41
EXQMPIE 2.7 ettt bbbt 41

EXAMPIE 2.8 ettt 41

EXAMPIE 2.9 et s na et 41

EXAMPIE 2.T0 ittt sttt 42

EXEICISE 2.3.2.T ittt s st st s 43

2.3.2.1.1 Notation for DNF, CNF....cceooieieeceeceeceee et 43

2.3.3 Soundness and COMPIELENESS ...cc.overeeieriererereeeere e 44

2.3.3.1 Are WE dONE YOI ..ottt sttt st sttt ettt sae b 44

EXEICISE 2.3.3.71 oottt 44

EXEICISE 2.3.3.2 ettt 45

2.4 Reasoning With INfErence rules ... 45
2.4.1 Propositional iNnferenCe ruUlEScoeeeeieieniseeeceesese e 45
24771 INFEIENCE oottt sttt sttt st sae s ae e 45
EXAMPIE 2.T7T ettt st sttt st 46

EXEICISE 2.4. 7.1 ettt sttt 47

EXEICISE 2.4.T.2 oottt ettt bbbt 47

2.4.1.1.1 Formal inference rules and proofscccececevevenesecceeciesieniene, 48
EXAMPIE 2.T2 oot 48

EXaMPIE 2,713 e 49

EXAMPIE 2.T4 oottt 50

EXAMPIE 2,15 oo e 50

EXEIrCiSE 2.4.T.3 oot 51

EXAMPIE 2.T6 oottt 51

EXEICISE 2.4.T.4 oottt 52

2.4.2 USING SUDPIOOTS ..iiiiiiiiiisieciiciteieie ettt sttt sttt sbe e saeenaennens 52
2.4.2.71 SUDPIOOTS ..ttt sttt et sbe b 52
EXAMPIE 2,17 ettt s 53

EXAMPIE 2.T8 ettt sttt bt 54

EXEICISE 2.4.2.71 ettt s bbb 54

EXaMIPIE 2.T9 ettt 55

2.4.2.2 MO @XAMPIES..cuiiiiiiiirieeieeitetesie sttt sttt ettt sbe s eeaesaens 57
EXAMPIE 2.20 .o 57

EXAMPIE 2,271 oottt sttt st st st 59

EXAMPIE 2.22 .ottt sttt 61

2.4.3 The soundness and completeness of inference rules........ccccvveveevvecenienennns 66
EXEICISE 2.4.3.7 oottt sttt et st s b et 66
2.4.4 Proofs and Programmingcccceeereeererierieenenieeeesesseeese sttt ssesseseesessesaeneene 66
2.4.4.1 Proofs and programming.......ccceeererereeiienenenesiesieeseeniessesesessesssensensens 66
2.4.5 CONCIUSIONS .ooviiiiiieieeietertese ettt sttt se e sb st besbesae e ennens 67
2.4.5.1 Are WE dONE YEI? .vviiiiirieeieeieiesie sttt st sttt sbasbe e e enaeneens 67
2.4.5.2 Distinctness of the approaches (0ptional)cccceceeveevievinenenienieieeene 68

2.5 Exercises for Propositional LOZIC |ccuevviiiiiieieiesieccccceeiese st 68
2.5.7T ProposSitioNal LOGIC....ccuiviriririeieiinienienieeiesie et ste st saesbe i saeeaensens 69
EXEICISE 2.5.T oottt et st 69
EXEICISE 2.5.2 1ottt 69
EXEICISE 2.5.3 Lottt et st e 69
EXEICISE 2.5.4 oot s 70
EXEICISE 2.5.5 1o 70
EXEICISE 2.5.6 ittt s bbb e 71
EXEICISE 2.5.7 e e e 71
EXEICISE 2.5.8 ettt 71

EXEICISE 2.5.9 oottt e et et e e e e s e e e e e eeeeeeeesesssssseraaaaaaaes 72

EXEICISE 2.5.T0 woriiiiiiiiiieeeeiieeeeeeeeeet ettt ettt et e e e e e e s s e s e sssasaaaaareeeeseeeessssesssssssssssnnnnes 73

EXEICISE 2.5.T7 ooiiiiiiieciee sttt sttt e s e st e e sba e e sbe e s ba e sabaesrbaesneeeens 74
EXEICISE 2.5.T2 ittt ettt ettt e e e e s bae e e s ba e e s saba e e eaaeeeearaee s 74
S el T T G PP 74
EXEICISE 2.5.T4 oottt ettt e ba e s ba e sabaesareeaes 74
2.5.2 Reasoning With Truth Tables.......cccverieiiiininineceereseeeee e 74
EXEICISE 2.5.T5 oottt ettt ettt s e e st s ba e sraeesaeeeees 75
EXEICISE 2.5.16 ceiiiieiiee ettt e ettt e s tte e s e e e e bae e e s be e e eenbaeeesaaeeeannee s 75
EXEICISE 2.5.T7 ittt ettt e st s e e s tae e bn e s ba e e abeeenteesreeennes 75
EXEICISE 2.5.T8 oottt sttt st sba e e s ba e sba e sabeesaeeenes 76
EXEICISE 2.5.T9 ittt et et e e st e e e bt e e e ata e e saaaee s 76
EXEICISE 2.5.20 wiiiiiiiiiieiee sttt sttt et b e e st e e e e ba e s b e srreesareeees 76
EXEICISE 2.5.27 oottt ettt et sttt et s st sar e e 77
EXEICISE 2.5.22 oottt sttt ettt st st e e st e e be e et e s ba e srbe e snreenes 77
EXEICISE 2.5.23 1ottt sttt et sb e st e e ae e e ba e s ba e srreesareeees 78
EXEICISE 2.5.24 ...ttt ettt ettt e e ae e e e ba e e e be e e e aaae e e aree s 79
2.5.3 Reasoning With EQUIVAlIENCES......ccevverieiiiiieeeese e 79
EXEICISE 2.5.25 oottt s sar e e 79
EXEICISE 2.5.26 eeiiiiiiiee ettt ettt ettt st e s e s s aae e s s ba e e s a e e e baa e e e aaee s 80
EXEITISE 2.5.27 oottt sttt ettt e e st e e st ae e s be e e ba e s be e sraeesaeeenens 80
EXEICISE 2.5.28 ittt et st sttt st st sae e aes 80
EXEICISE 2.5.29 ittt ettt e et e e erbe e s aaeenes 80

2.6 Exercises for Propositional LOZIC 1cocveiririeieinienieiecserieeeesesieees et 81
2.6.1 Reasoning with INference RUIEScceveriirininieieesesceceee e 81
EXEITISE 2.60.7T iriiiiiiiiecie ettt sttt ettt e s sbe e st e e s be e sba e e s ae e s baessbaesraeesneeenens 81
EXEICISE 2.6.2 eeeiieiieiee ettt ettt ettt st st e be e s e e st esaeeeaes 82
] e ST S TC PSP 82
EXEITISE 2.0.4 ..ottt sttt s be e st e st e s bt e e ae e e ba e sabaesrreesaeeenes 82
EXEICISE 2.6.5 oottt et e e et e s et e e s ba e e e aaee e eraee s 82
EXEITISE 2.6.6 .uviiiiieiiieiee sttt este sttt tr e e sta e s te e st e e s be e sraeesaeeebaesabeesrteesrseennns 82
EXEICISE 2.60.7 coeeeiieeeiie ettt sttt et st s e st esbte e sba e s ba e sabaesabeesaneenes 82
EXEICISE 2.6.8 oiieieiiee ettt ettt st e s e e st e e s bae e e s bt e e e nabe e e satae e eaaee s 83
EXEITISE 2.0.9 oeiiiiiiciie ettt sttt bbb e st e be e e be e s ba e srreesreeeees 83
EXEICISE 2.6.T0 weiiiiiiiieeiee sttt ettt et sttt ettt sb e s e nes 83
] el T3 V0 I RSP 83
EXEICISE 2.0.T2 oottt sttt sttt s be e s e e s be e sba e e sbaesbaessbaessbaesneeenens 83
=T ol 1 I Tt 1 TSRS 84
EXEICISE 2.6.T5 oottt sttt et e st e e s bae e s ba e e bn e s b e e sraeesaeeenes 87
EXEICISE 2.6.T6 weviuiiiiiieeieeriitente ettt sttt st st s e sbe e sbaeesaaesbaesabaesstaesaseenns 87
EXEICISE 2.6.17 cotieieiee ettt ettt et e st e e s a e e s bae e e s bt e e snabaeessaaeesnsaeen 87
EXEICISE 2.6.T8 oottt ettt ettt sae e st e e s be e sbaeesbe e s baessbaessteesnneenens 87
EXEICISE 2.6.T9 ittt et st sttt st s st sae e 88
EXEICISE 2.6.20 woiiiiiciieeiee sttt sttt e et e st s be e st e e be e e ba e e baeerteesaeeenes 88
2.6.2 Solutions to EXercises in ChapLer 2......ocveveverieierieneneneeeeeste s 88
Chapter 3 Relations and Modelsceiirirveiiiiineiinnisenicnsssennissssnssssssssssssssssssossns 105
S B (<] =T o LTSRS 105

3.1.1 Relations: Building a better (representation of) WaterWorldccccevnee. 105

[Y e Y= 70 106

3.2 Properties Of relationscoeivirerieirierieeesese ettt s 106
3.2.7T Relations @S SUDSEIS....cciiiiiiriiriirieteterierese sttt 106
EXGMIPIE 3.1 e 107

EXAMPIE 3.2 e 107

EXAMPIE 3.3 et 107

EXGMPIE 314 e 107

EXAMPIE 3.5 ettt bbb 108

EXGMIPIE 3.6 e 108

EXAMIPIE 3.7 oo 108

3.2.2 Relations as fUNCLIONScceviririricicteresese et 108
EXEICiSE 3.2.71 i e 109

EXEICISE 3.2.2 ettt st 109

3.2.3 FUNCLIONS @S REIALIONSviiiieiciiiieietcecce e 109
3.2.4 BiNAry REIALIONSovviriieiiiicieieriereeteteterte ettt 110
3.2.4.1 Binary Relation NOtationcccceviviviniieiiinieseneseetesesie s 110

3.2.4.2 Binary Relations as Graphscccceeveririeiineneneneeeesiesiesiesie s 110

3.3 INTEIPIretatiONS ..eeiiiieeiie ettt sttt s b e st e e st e st e s it e e sbaeebeesbeeeas 111
3.3.1 Needing Interpretations to Evaluate FOrmulascccecevevenenenienieieniennenn 111
3.3.1.1 Using Truth Tables to Summarize Interpretations (Optional) 112

3.3.1.2 Using Formulas to Classify Interpretations (Optional)cccccevuenen. 112

3.3.1.3 Encoding Functions as RelationsS.........cccoceveveninieiienenenenenceicienaene 113

3.4 Nonstandard Interpretations (OPtioNal) ..cccveveeieieiieiencceere e 113
3.4.1 Prime factorization ..o 113
3.4.2 The POINCAIe DiSC....ciiriiiiiiiiiiiiiiiiisieieeercceesre e 114
3.4.3 P VS. NP and Oraclescocoveviririiieierieniesesteee ettt nae e 115
3.4.4 Lo"wenheim-Skolem and the real NUMDErSccccoceverieienieneneneeeee 116
3.4.5 Object-oriented Programmingcccceeceeverierieneeneete e seeseeseesseeaeenesaeens 116
3.4.6 Real-World ArSUMENTSoveriririeieierieseseste sttt 117

3.5 Modeling With relatioNscoveieriririreeeeeee e 117
3.5.1 Modeling With REIAtIONSccvevuiriiriiieieriesieneceeee e e 117
EXEICISE 3.5 it e 118

EXErCiSe 3.5.2 i 118

EXEICISE 3.5.3 Lttt st e 118

EXEICISE 3.5.4 oot 119

3.5.2 A CaSe STUAY: ITUNES c..eevveieieriesieceetete ettt st sttt st nenae e 119
EXEICISE 3.5.5 i e 119

EXEICiSE 3.5.6 eiiuiiiiiiiiiiiiiiici e 119

EXOICISE 3.5.7 et 119

3.5.3 Solutions to Exercises in Chapter 3. 120
Chapter 4 First-Order LOZICcccovvtiiinreeienissneiecsssnniiosssnnssssssnsssssssnsssssssssssssssssssssssnns 123
4.1 ATOrmal VOCADUIAIY ..c.coiiiiiiiecee et 123
4.1.1 Syntax and semantics of QUANTIfIErscccocvevieiirininiceeeeee 123
4.1.1.1 Talking about UnnNamed ITEMS.......coceverieriereneneeeee e 123

4.1.1.1.1 Warning: The AmDbiguous "ANY"cccvvererierereneneneenieniennens 126

4.1.1.2 First-order 10gic: WFFS reVisitedccceveverenerinierieneseseeeeeesee e 126

DTS T huToT o IR S I <1 g o SR 127
Definition 4.2: Well-Formed Formula (WFF) for first-order logic 128

4.1.7.2.7 EXAMPIES .ttt 129
EXAMPIE 4. T oo 129

EXAMPIE 4.2 oottt 129

EXAMPIE 4.3 oot 129

EXAMIPIE 4.4 oot 129

EXEICISE 4. 1.T.T ettt st s e e 129

EXEICISE 4. 1.T.2 ettt ettt et 129

EXAMPIE 4.5 ettt 129

EXAMPIE 4.6 ettt s 129

EXEICISE 4.1.T.3 ettt sttt s 130

EXEICISE 4. 1.1 4 ettt e 130

EXAMPIE 4.7 oottt 130

EXAMIPIE 4.8 .ottt 131

EXErCISE 4.1.T.5 ittt e e 131

EXEICISE 4. 1.T.6 eviiiiiiieciee sttt ettt s 131

EXEICISE 4. 1. 1.7 oottt 132

4.1.1.2.2 A hint on deciphering formulas’ meanings........ccccccevvevenennene 132

4.1.1.2.3 "Forall™s friend "if" ... 132

4.1.2 Bound variables, free variablescccevieveevieveieeceeceeeee e 133
EXAMPIE 4.9 oot 134
4.1.3 NOormal forms reVISITEA ...ccviicieiriicreecreeee ettt et v v 134
4.1.3.1 CNF and DNF revisited (Optional)ccceverereriniieieneneneeeeeseeseene 134
EXAMIPIE 4.T0 ittt s s 134

4.2 Reasoning With @qUIVAIENCEScceveririiieieeeeeee e 135
4.2.1 First-order @qQUIVAlENCEScceevieviiiiirierieeieee ettt enees 135
4.2.1.1 First-order EQUIVAlENCES........cceveririeieieieneseseeteeesie s 135
EXAMPIE 4. T7T ettt 137

EXAMPIE 412 oottt sttt st aenae s 138

EXEICISE 4. 2. 1.1 ettt ettt e srr e e 138

4.2.1.2 Are We dONE YEL? ..oviiiieiieie ettt ettt st esesnee s 139

4.3 Reasoning With iNferenCe rulescoeeieieiivineeeeeeee e 139
4.3.1 First-order inference rules ... 139
4.3.1.1 Inference with qUANTIfIErsccvirviiierereee s 139
4.3.7T.1.71 EXISES-INTIO civtiiiieisieesitese ettt sre e s s s 140
4.3.1.7.2 EXISTS-ENM 1ottt 141

4.3.1. 1.3 FOrall-INtro coueeee ettt 141
4.3.1.7.4 FOTall-ElIM oottt 142

4.3.1.2 Formal inference rules and proofscccceveveveniinenieeieneneseseeenns 142
EXAMPIE 4. 13 ottt 143

EXEICISE 4.3.T.T ettt st st s s b e 143

4.3.1.3 Proofs and programmingcccceeeveeienenieneneneeiienienieseseseensessessesnes 144

4.4 EXercises fOr FirSt-Order LOGICcouvirerierierienienienieetetesie sttt 145

4.4.1 Relations and INterpretationsceerirerieieneneseseee e 145

EXEICISE AT oottt sttt e st e s e e st e et e e ba e e be e ssbaesabaesaneen 145
ST ol 1< 0 S USRS 145
] e TR B PRSP 145
EXEICISE A4 ..ottt sttt et st st s aa e s be e saba e sabaesare s 146
EXEICISE 445 oottt et e sabe e e st e e s e e s abe e e earaes 146
EXEICISE 4.6 oveieieeeieeeie sttt ettt ettt et e s e e st e e st e e s aa e s beessbeesabeesrnees 147
EXOICISE 447 oottt st sttt ettt sare s 147
Ny @ TN =Y a1} £ SRR 147
EXEICISE 4.8 ..ottt sttt ettt et sbe e st ba e st sbaesabaesare s 147
EXEICISE 449 ettt e ba e e abe e e eaaees 148
EXEICISE 4. T0 woiiieiiiiicie ettt ae st e b e e s b e e s e e s ta e e be e ssbeessbaesarees 148
4.4.3 Interpreting First-order FOrmMuUIAsccccovivvierienieeneseeieeie e 148
ST el TR 0 I PRSP 148
EXEICISE 4. T2 oottt sttt st s ae e st e st e e bt e s be e snbaessbaesaneen 149
ST ol 1< 0 St 1 SRR 149
S el TR B O SO UPPPPR 150
EXEICISE 4415 oottt ettt st sbe e sare s 150
=T ol 1< 0 St I Y USRI PPPPR 150
EXEICISE 4. T7 oottt ettt ettt e s be e st e e s s b e e sbe e s beessbeesnbeesrnaes 151
EXEICISE 44 T8 ettt st sttt et sbe e sare s 151
] e TR B L PRSP 152
EXEICISE 4. 4.20 .ooouviiiieeeieecie ettt sttt et st e st st e et e e b s be e s aesbeesareen 152
444 MOAEIING ettt st e s b st s e s b e besbeseeeneenaensens 153
EXEICISE 42T oottt sttt et et sbe e s e e st e e s ta e s be e snbeesabaesaras 153
EXEICISE 4422 oottt ettt st sttt bbb sare s 153
] e IR B 0 RS 154
4.4.5 Reasoning With EQUIVAIENCES......co.veviierenirereeerereseeeeese e 154
[e YR R ST 154
EXEICISE 4425 oottt eeab s e s ebaa e e e e seaabraeeeeeas 155
T ol 1= B 3 YR 155

[e =R R TR 155
4.4.6 Reasoning With INference RUIEScccoeviririeiienieneneeeceeese e 155
EXEICISE 4428 ...ttt ettt ettt e st e e et e e st e e s ba e e e abea e eanees 155
EXEICISE 4.4.29 ettt ettt ettt et sttt sb e e s are s 156
EXEICISE 4.4.30 .ooiieiiiieeieecite ettt sttt st bbb e et e st ssbaesabeesarees 156
EXEICISE 4437 ettt e et ab e e st e e e abe e e eaaaes 156
EXEICISE 44,32 oottt ettt et et s re e st e e s e e ra e e be e st e e sabaesare s 156
4.4.7 Solutions to Exercises in Chaptero.oiveeeneenieseeeee e 156
Chapter 5 Conclusion, Acknowledgementsccccoevveririiveriessseriessseenssssnnensenens 160
5.1 LOGIC: LOOKING BACK ...veiiiieieierieeeeeeet ettt s 160
5.1.1 Why didn't we begin with quantifiers all along?cccecevereninininieniennn, 160
5.1.2 Logic and everyday r€aSONINGc.ccecueruerrererereeienieniessesessensessessessesseensensenee 161
T G O 1 1= o ={ kSRS 161
5.1.3.1 Limitations of first-order logic's eXpressiveness........cccveeevvevveniennens 162

EXAMPIE 5.1 ettt st s 162

5.1.4 LOZIC IN COMPULET SCIENCE ...eiiiiiieiteieeieeie ettt sttt e sbe et st 163

5.2 ACKNOWIEAZEMENTS ...ttt ettt snennes 164
Chapter 6 Appendices and Reference Sheetscoovverivevceriiiicsericisceneccsnnennenens 165
6.1 Propositional @QUIVAIENCESc.coveiiriiriieieeeeseeeeee et 165
EXAMPIE 6.1 ettt nre 166
6.2 Propositional iNfEreNCe MUIEScvoiirireeeeeeesee e 166
6.3 First-order @QUIVAIENCEScoieiiieiieseeeeee sttt st 168
6.4 First-order iNfErenCe MUl ...t 169
6.5 Propositional axioms for WaterWorldcoeveveeieienieneneneneeesiesieseseeeee e 171
6.5.7 PrOPOSITIONS .ottt st st 172
6.5.2 The dOmMain @XiOMS .c.iiiriiieiiriereeeetee ettt s s ae b nae e 173
6.6 First-order axioms for WaterWorldcoeverirenieienereneneseeeeresiese et 175
6.6.1 DOMain and RelatioNSccevuiriririiieiereseceeee s 175
6.6.2 The dOMaAiN @XIOMIS..cc.iviriiieierienentetee ettt st sae e se b e 176
6.7 BIrOWSEE SUPPOITS ..eeiiiieeiieiteeieete ettt ettt sttt esbee b e bt st e saeesreenne e 177

GlOSSAIY ..cueeiiiieeiiiiinetiiiinetiesssnneiesssssssssssssessssssnsssssssssssssssssssssssssssssssnsssssssssssssssssssssssnns 178

Chapter 1 Introduction

1.1 90 =100: A Proof

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).
Construct a four-sided figure ABED as follows:

+ |2ABE| =90«
- |«DEB| =100
- |AB| = |ED|

Using that as a starting point, we now tinker a bit to show that 90 = 100:

+ Draw the perpendicular bisectors to BE and AD; call the point where they meet
IICII.

Note: Actually, we must prove that those two perpendicular bisectors really do
meet at all (i.e., that the point C even exists). In this case, it turns out to be
pretty clear it's not hard to argue that lines AD and BE aren't parallel, and
therefore their perpendicular bisectors aren't parallel, and so they must
intersect (in Euclidean geometry). Still, be alert for people making glib
assertions in proofs.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 1.1 A construction to help prove that 90=100

Looking at this figure, some warning flags should be going up: How do we know C lies
below BD? Might it lie above BD? Or exactly on BD? It turns out that the argument
below is the same in all of these cases, though you'll certainly want to verify this to
yourself later.

1 |AB| = |ED|
> |BC| = |EC|

3 /CBE~ /BEC
4 |/CBE| = |/BEC]
5 |AC| = |DC|

6 AABC = ADEC(1I)

(From here, it's just routine steps to conclude
90 =100:)

8 FABC = ADEC

Table 1.1 A useful corollary: 0 = 1.

By
construction.

Cisonthe
perpendicular
bisector of BE
(thus ,BECis
isosceles).

Base angles of
isosceles
triangle BEC
are congruent.

Congruent
angles have
equal
measures; line
3.

Cison the
perpendicular
bisector of AD
(thus ,ADC is
isosceles).

Triangles with
three
congruent
sides are
congruent
(Euclid's Side-
Side-Side
congruence
theorem);
lines 1,2,5.

Corresponding
parts of

congruent
triangles are
congruent;
line 6.

Congruent
angles have

9 |ZABC| = |£ZDEC| equal
measures; line
8.

By

10 |/ABC| = |ZABE| + |/CBE| .
construction.

11 |/DEC| = |/DEB|+ |ZBEC| By .
construction.

Substituting
equals with
equals; lines 11
and 4.

12 |/DEC| = |/DEB| + |/CBE|

Substituting
equals with
equals; lines
12 and 9.

13 |/ABC| = |/DEB| + |/CBE|

Substituting
equals with
equals; lines
13 and 10.

14 |£ABC|+|/CBE =|/DEB|+ |/C BE|

Subtracting
equals from
equals
remains equal.

15 |/ABE| = |/DEB|

By
construction,
and
substituting

16 90 = |/DEB]|

Table 1.1 A useful corollary: 0 = 1.

equals with
equals; line 15.

By
construction,
and
substituting
equals with
equals; line 16.

17 90 = 100

Table 1.1 A useful corollary: 0 = 1.

1 90 = 100 Previous theorem.

Subtracting equals (90) from equals
remains equal.

Dividing equals by non-zero equals (10)
remains equal.

Exercise 1.1.1

If you feel this result is incorrect, then the challenge for you is to find
the first line which is false. You may have noticed that the proof
given here has some very minuscule steps e.g. "Congruent angles
have equal measure." Usually such simple steps can be omitted, since
they are obvious to any reader. We include them for a few reasons:

- Asa careful thinker, you should recognize that such small steps
really are part of the complete reasoning, even if they're not worth
mentioning continually.

- If a computer is checking a proof, it needs to actually include those
steps.

+ Programmers do need to be concerned with distinctions about
(abstract) types the difference between angles and their measures,
in this case.

- Sometimes a line's justification is glibly given as "by
construction", when that may not even be correct !-).

In this course, we'll spend a few weeks working with proofs which do include all the
small, pedantic steps, to instill a mental framework for what a rigorous proof is. But
after that, you can relax your proofs to leave out such low-level steps, once you
appreciate that they are being omitted.

1.2 The need for proofs

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The ancient Greeks loved to hang around on the stoa, sip some wine, and debate. But
at the end of the day, they wanted to sit back and decide who had won the argument.
When Socrates claims that one statement follows from another, is it actually so?
Shouldn't there be some set of rules to officially determine when an argument is
correct? Thus began the formal study of logic.

ASIDE: The three fundamental studies were the Trivium grammar (words), logic
(reasoning), and rhetoric (effective communication). These allowed study of the
QuadTivium arithmetic (patterns in number), geometry (patterns in space), music
(patterns in tone), and astronomy (patterns in time). All together, these subjects
comprise the seven liberal arts.

These issues are of course still with us today. And while it might be difficult to codify
real-world arguments about (say) gun-control laws, programs can be fully formalized,
and correctness can be specified. We'll look at three examples where formal proofs
are applicable:

+ playing a simple game, WaterWorld;
+ checking a program for type errors;
* circuit verification.

Many other areas of computer science routinely involve proofs, although we won't
explore them here. Manufacturing robots first prove that they can twist and move to
where they need to go before doing so, in order to avoid crashing into what they're
building. When programming a collection of client and server computers, we usually
want to prove that the manner in which they communicate guarantees that no clients
are always ignored. Optimizing compilers prove that, within your program, some
faster piece of code behaves the same as and can replace what you wrote. With
software systems controlling more and more life-critical applications, it's important to
be able to prove that a program always does what it claims.

1.2.1 WaterWorld

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Consider a game called WaterWorld, where each location is either empty sea or
contains a pirate. When you enter a location, you must correctly anticipate whether
or not it contains pirates.

+ If you correctly anticipate open sea, you are able to enter and determine how
many of the (up to 3) adjacent locations contain a pirate.

+ If you correctly anticipate a pirate, the location is tagged as dangerous, and you
gather no further information.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Furthermore, there are really two types of moves: guesses, and assertions. If you
make an assertion, then even if you happen to be correct but it is possible you could
have been wrong, then itis an error. Also, it is an error if you make a guess about a
location if it is actually possible to assert a location's contents. The interesting fact
about these types of games is that while sometimes guesses are necessary (when?),
surprisingly often an assertion can be made.

(You can freely download WaterWorld at here (http://www.teachlogic.org/WaterWorld/
download.shtml).)

A N

[a) (b)

Figure 1.2 Glimpses of two different WaterWorld boards

For instance, in the first board, what assertions can we be sure of? What, exactly, is
your reasoning? How about in the second board? You can certainly envision wanting a
computer player that can deduce certain moves, and make those for you
automatically.

1.2.1.1 Type Checking

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

When writing a program, we'd like to simply look at the program and determine
whether it has any bugs, without having to run it. We'll see in the future, however, that
such a general problem cannot be solved. Instead, we focus on finding more limited
kinds of errors. Type checking determines whether all functions are called with the
correct type of inputs. E.g., the function + should be called with numbers, not
Booleans, and a function which a programmer has declared to return an integer really
should always return an integer. Consider the following program:

// average:
// Simply divide sum by N, but guard against dividing by 0.

http://www.teachlogic.org/WaterWorld/download.shtml
http://www.teachlogic.org/WaterWorld/download.shtml
http://www.teachlogic.org/WaterWorld/download.shtml
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

//
real-or-false average(real sum, natNum N) {
if (N!= 9)
return sum I N;
else

return false;

One reason programmers are required to declare the intended type of each variable is
so that the computer (the compiler) can prove that certain errors won't occur. How
can you or the compiler prove, in the above, that average returns a real number or
false, but never returns (say) a string, and doesn't raise an exception? Deductions are
made based on premises about the types that are passed in, along with axioms about
the input and return types of the built-in functions if, 1=, and |, as well as which
exceptions those built-ins might raise.

Consider this variant:

// augment-average:

// Given an old sum and N, compute the average if one more

// datum were included.

//

real augment average(real old sum, natNum old N, real new datum) {

return average(old sum + new datum, old N + 1);

Most compilers will reject augment-average, claiming that it may actually return false.
However, we're able prove that it really will only return a real, by using some
knowledge about natural numbers and adding 1, plus some knowledge of what
average returns. (Note that our reasoning uses aspects of average's interface which
aren't explicitly stated; most6 type systems aren't expressive enough to allow more
detailed type contracts, for reasons we'll allude to later.) So we see that many
compilers have overly conservative type-checkers, rejecting code which is perfectly
safe, because they are reasoning with only a narrow set of type-rules.

This example alludes to another use of logic: Not only is it the foundation of writing
proofs (ones that can be created or checked by computers), but logic can also be used
as an unambiguousspecificationlanguage. Observe that while a function's
implementation is always specified formally and unambiguously in a programming
language the interface is specified entirely English, aside from a few type declarations.
Many bugs stem from ambiguities in the English, that different humans interpret
differently (or, don't think about). Being able to use logic to specify an interface (and
cannot be modified even if the somebody later tunes the implementation) is an
important skill for programmers, even when those logic formulas aren't used in
proofs.

1.2.1.2 Circuit Verification

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Given a circuit's blueprints, will it work as advertised? In 1994, Intel had to recall five
million of its Pentium processors, due to a bug in the arithmetic circuitry: This cost
Intel nearly half a billion dollars, lots of bad publicity, and it happened after intensive
testing. Might it have been possible to have a program try to prove the chip's
correctness or uncover an error, before casting it in silicon?

Software and hardware companies are increasingly turning to the use of automated
proofs, rather than semi-haphazard testing, to verify (parts of) large products correct.
However, it is a formidable task, and how to do this is also an active area of research.

There are of course many more examples; one topical popular concern is veriflying
certain security properties of electronic voting machines (often provided by vendors
who keep their source software a proprietary secret).

Having proofs of correctness is not just comforting; it allows us to save effort (less
time testing, and also able to make better optimizations), and prevent recall of faulty
products. But: who decides a proof is correct the employee with best SAT scores?I? Is
there some trusted way to verify proofs, besides careful inspection by a skilled, yet still
error-prone, professional?

Many highly intelligent people are poor thinkers. Many people of average intelligence
are skilled thinkers. The power of the car is separate from the way the car is driven.
EdwaTd De Bono, consultant, wTiteT, and speakeT (1933-)

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

10

1.3 Defining a proof

1.3.1 What are proofs? (informal)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Example 1.1

The following submission from an anonymous engineer to the
January, 1902 edition of Popular Mechanics caught my eye. Seems
like something every Boy/Girl Scout and Architect should know.

"HOW TO USE THE WATCH AS A COMPASS: Very few people are
aware of the fact that in a watch they are always provided with a
compass, with which, when the sun is shining, the cardinal points
can be determined. All one has to do is to point the hour hand to the
sun and south is exactly half way between the hour and the figure 12
on the watch. This may seem strange to the average reader, but it is
easily explained. While the sun is passing over 180 degrees (east to
west) the hour hand of the watch passes over 360 degrees (from 6
o'clock to 6 0'clock). Therefore the angular movement of the sun in
one hour corresponds to the angular movement of the hour hand in
half an hour; hence, if we point the hour hand toward the sun the line
from the point midway between the hour hand and 12 o'clock to the
pivot of the hands will point to the south. Engineer."

They give an argument of correctness; is that really a proof? Well, there are some
ambiguities: Do | hold the watch vertically, or, in the plane of the sun's arc? Certainly |
can't hold it up-side down, even though this isn't explicitly stated. Furthermore, the
correctness of the reasoning relies on some unstated assumptions. E.g., the sun is at
its highest (northernmost) point of its transit at noon. Is this actually true? Does it
depend on the time of year? I'm not exactly sure (and will have to sit down and scratch
my head and draw pictures of orbits, to convince myself). Certainly there are at least a
couple of caveats: even beyond account for Daylight Savings Time, the solar-time and
clock-time only align at time-zone boundaries, and they drift up to an hour apart,
before the next boundary rectifies the difference. Is this presuming I'm in the northern
hemisphere? What if I'm on the equator?

To be fair, the intent of this anecdote was to give enough evidence to convince you,
not necessarily to be a complete, stand-alone self-contained proof. But in writing out a
careful proof, one is forced to consider all the points just made; being forced to
understand these can lead you to better understand the procedure yourself. But be
careful to distinguish between something which sounds reasonable, and something
that you're certain of.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

11

1.3.1.1 An argument by form

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

How can we tell true proofs from false ones? What, exactly, are the rules of a proof?
These are the questions which will occupy us.

Proofs are argument by form. We'll illustrate this with three parallel examples of a
particular proof form called syllogism.

Example 1.2

1 All people are mortal Premise
2 Socrates is a person. Premise
Therefore. Socrates is Syllogism, lines
3
mortal. 1,2

Example 1.3

All [substitution ciphers] are
1 [vulnerable to brute-force Premise
attacks]

The [Julius Caesar cipher] is a .
2 . . Premise
[substation cipher].

Therefore, the [Julius Caesar
3 cipher] is [vulnerable to brute-
force attacks].

Syllogism,
lines 1,2

Note that you don't need to know anything about cryptography to know that the
conclusion follows from the two premises. (Are the premises indeed true? That's a
different question.)

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

12

Example 1.4

1 All griznoxes chorble happily Premise

2 A floober is a type of griznox. Premise
Therefore, floobers chorble Syllogism,
happily. lines 1,2

You don't need to be a world-class foober expert to evaluate this argument, either.

ASIDE: Lewis Carroll, a logician, has developed many whimsical exampleslO of
syllogisms and simple reasoning. (Relatedly, note how the social context of Carroll's
examples demonstrates some feminist issues in teaching logic .)

As you've noticed, the form of the argument is the same in all these. If you are
assured that the first two premises are true, then, without any true understanding,
you (or a computer) can automatically come up with the conclusion. A syllogism is one
example of a inference rule that is, a rule form that a computer can use to deduce
new facts from known ones.

1.3.1.2 Some non-proofs

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Of course, not all arguments are valid proofs. Identiflying invalid proofs is just as
interesting as identi flying valid ones.

NOTE:

Homer: Ah, not a bear in sight. The Bear Patrol must be working.
Lisa: That's speciousl reasoning, Dad.

Homer: Thank you, honey.

Lisa: By your logic, this rock keeps tigers away.
Homer: Oh? How does it work?

Lisa: It doesn't work.

Homer: Uh-huh.

Lisa: It's just a stupid rock.

Homer: Uh-huh.

Lisa: But I don't see any tigers around here, do you?
[pause]

Homer: Lisa, I want to buy your rock!

[A moment's hesitation ... and money changes hands.]

(From The Simpsons Much Apu About Nothing .)

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

13

If Lisa isn't around, who will identify specious reasoning for us? We can certainly use
her approach of finding other particular examples that follow the same argument, yet
lead to a clearly erroneous conclusion.

Example 1.5

Suppose that my friend makes the following argument:

1 Warm cola tastes bad. Premise

Warm salt-water tastes)
2 bad Premise

“Common-sense
conclusion”.
lines 1,2

Therefore, mixing them
together tastes bad.

I'm skeptical, so I have a sip; sure enough, the conclusion is indeed
true. But is the proof correct does the "common-sense conclusion"
rule actually hold? In order to refute the form of the argument, we
can try similar arguments which have the same form but a false
conclusion (as Lisa did).

Ice-cold coke tastes

Premise
good.
2 Ice coffee tastes good. Premise
Therefore, mixing “Common-sense
3 them together tastes conclusion”; lines 1
good. and 2.

After another unfortunate sip, | verify that this conclusion is not true, and therefore
my friend's reasoning is at fault.

My friend responds by claiming that the "common-sense conclusion" is too valid; the
rule is that bad-taste is preserved upon mixing, not that any taste is preserved. While
I'm inclined to believe that, we realize we can still test this more refined rule: can you
come up with an instance of mixing together bad-tasting things and ever getting a
yummy result? (Say, salt and four, which can be mixed and baked to get delicious
saltines The argument continues, about whether the form of the argument precludes
baking, and so on.)

The end result (after | take some antacid) is that we have a clearer understanding of
the initially vague "common-sense conclusion", and stricter rules about when it
applies. Thus, refining the argument has led us to a greater understanding.

14

The above examples are a bit frivolous, but the procedure of looking for
counterexamples applies to many real-world dilemmas. It also highlights the
difference between a correct proof, and a faulty proof that might still happen to lead
to a true result. (By the way, this is the exact same skill used when trying to come up
with an algorithm for a problem: "well, the algorithm works for this input, but can |
find a something that makes one of the steps fail?" If so, you then try refining your
algorithm "well, | can add a test to take care of that problem; is that enough so that it
always works?")

Exercise 1.3.1

Solve this statement for [X]: It is wrong to ban [X]. Such a ban would
punish those reasonable citizens who would use [X] responsibly,
while those who really want to abuse [X] will be able to get it anyway,
through a black market which will only subsidize other criminal
activities.

In real-world issues, there are often many subtleties, and short
arguments that sound airtight might be glossing over factors which
are important in practice.

Example 1.6

During daylight, there is no need to have headlights (or running
lights) on: there's already plenty of light for everybody to see each
other by. Even during the day, headlights slightly increase how
quickly other drivers see you during (say) a routine, tenth-of-a-
second glance in their mirror.

Example 1.7

When in a turn-only lane, there is absolutely no need to signal since
there's only one way to turn, a signal can't communicating any
information to other drivers’ Glib, but not true: Other defensive
drivers presumably know you have only one legal option, but they
don't know that you know that, and they are planning reactions in
case you surprise them with a sudden illegal maneuver. By signaling,
you give them information which helps them better plan for yet
other contingencies. Furthermore, it also gives you more confidence
that other drivers are expecting your turn, reducing your suspicion
that they're about to pull a surprise maneuver on you. (True, these
are all low-probability events which almost always turn out to be
unnecessary. But avoiding accidents is all about minimizing risks for
the one moment events do spiral out of control.)

15

Example 1.8

“You'll lose weight if and only if you burn more calories than you take in. All
those diet-plan books can never get around this, and all their details are
pointless.”

True, calorie intake and expenditure solely determine weight loss/
gain. But after some thought, we can get examples where the above
logic overlooks some relevant differences: If your friend told you they
were switching from a diet of 2000 calories of balanced short-term
and long-term energy sources (sugars, proteins, and carbs) to a diet
of 2000 calories worth of Pixy Stix at breakfast plus a Flintstones
multivitamin, would you be optimistic that they would have the
willpower to strictly follow the new plan? The two plans are equal
when counting calories, but in actuality one really is a better plan.
(Even more exaggeratedly, consider a daily plan of 2000 calories of
sugar while never drinking any water since water has no calories, it
can't affect your calorie count, according to the above claim.)

These contrived counterexamples help illustrate that it's conceivable
that there can be a difference between diet plans, so the initial claim
isn't technically true.

The pointillustrated is that often real-world arguments incorrectly imply that their
result follows from the form of the argument, when in fact the form is not valid in the
way a syllogism is. This fallacy can be illuminated by finding a different domain in
which the argument fails. The practice of searching for domains which invalidate the
argument can help both sides of a debate hone in on bringing the unspoken
assumptions to light. The original argument, if its conclusion is indeed true, must be
patched either by adding the unspoken assumptions or fixing the invalid form.

Exercise 1.3.2

Mistakes in syllogisms are hard to make: what are the only two ways
to have an error in a syllogism?

1.3.1.3 Other Inference Rules

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).
Of course, there are more ways to deduce things, beyond a syllogism.

* Who decides what the valid inference rules are?
+ Is it always clear when people have used the inference rules correctly?

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

16

B h
10N] -
Fa C A
G J \
' tl f::'J ik

a))

Figure 1.3 Glimpses of two different WaterWorld boards

Consider the following argument about WaterWorld boards:

Premise, from
1 (A) is next to exactly one pirate. either
subfigure

p ise, f
(A) has only one unexplored remise, from

2 . either
neighbor. .
subfigure
If you are an unexpected location
. Incorrect
3 next to (A), then you contain a .
conclusion

pirate.

This conclusion is not valid; while it is correct for the first board shown (Figure 1.3), it
is incorrect for the second (Figure 1.3). (I make this mistake all the time when playing
WaterWorld too quickly, arrgghl The Author.)

The problem is that the author of the argument presumably meant to conclude "all
explored neighbors of (A) contain a pirate".

Before we can study exact proofs, we need a way of writing exactly what we
mean. This will occupy us for the next section.

17

1.3.1.4 The need for a precise language

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

These previous glitches in the WaterWorld arguments both arise, of course, because
we were sloppy about what each sentence meant exactly. We used informal English a
fine language for humans, who can cope with remarkable amounts of ambiguity but
not a good language for speciflying arguments.

ASIDE: Laws and contracts are really written in a separate language from English
legalese full of technical terms with specific meanings. This is done because, while
some ambiguity is tolerable in 99% of human interaction, the remaining 1% can be
very problematic. Even so, legalese still contains intentionally ambiguous terms:
When, exactly, is a punishment "cruel and unusual'?

What exactly is the "community standard" of indecency? The legal system tries to
simultaneously be formal about laws, yet also be flexible to allow for unforeseen
situations and situation-specific latitude. (The result of this tension is the position of
Judge.)

ASIDE: Court decisions, while dense reading, are often the model of well-presented
arguments.

Consider, from a previous example (Example 1.1), the statement "...[this is something]
every Boy/Girl Scout and Architect should know". Does this mean all people who are
both a scout and architect, or everybody who is at least one or the other? Genuinely
ambiguous, in Englishl (Often, "and/or" is used to mean "one or the other or possibly
both".)

We'll next look at a way to specify some concepts non-ambiguously, at least for
WaterWorld. We need to be more careful about how we state our facts and how we
use these known facts to deduce other facts. Remember, faulty reasoning might not
just mean losing a silly game. Hardware and software bugs can lead to significant
bodily harm (Imagine software bugs in an airplane autopilot or surgical robot system),
security loopholes (e.g., in Mozillal6 or IEI7), or expensive recalls (p. 7).

One reaction to the above arguments is "Well, big deal somebody made a mistake
(mis-interpreting or mis-stating a claim); that's their problem. (And sheesh, they sure
are dolts)" But as a programmer, that's not true: Writing large systems, human
programmers will err, no matter how smart or careful or skilled they are. Type-
checkers catch some errors upon compilation, and test suites catch their share of
bugs, but many still remain in real-world software. Thus we are looking for systemic
ways to reduce and catch errors, with the ultimate ideal of being able to prove
programs correct.

ASIDE: Other professions have checklists, protocols, and regulations to minimize
human error; programming is no different, except that the industry is still working on
exactly what the checklists or training should be. Someday, a license will be required
for practicing software, at least for software involved with life-safety.

In our study of formal logic, we'll need three things:

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

18

+ Syntax (language) -- a precise syntax and vocabulary for expressing concepts
without ambiguity,
> Propositional logic,
o First-order logic (propositional logic, plus relations and quantifiers)
* Semantics (meaning) and modeling -- how to connect these formal languages to
whatever topic we want to reason about (including our software).
+ Reasoning (proofs) -- methods of deducing new facts from old. We'll see three
types of reasoning, and how to use them for each of our two logics:
o Truth tables
o Boolean Algebra
o Inference Rules

We'll visit these topics in an interleaved manner first propositional logic (immediately
with its semantics) and three methods of reasoning for it; then first-order logic and an
in-depth look at its interpretations, and finally the methods of reasoning for first-order
logic.

We'll begin with a particular syntax propositional logic for the game of WaterWorld
before using this syntax to formally deduce safe moves.

1.3.2 Solutions to Exercifes in Chapter 1

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).
Solution to Exercise 1.1.1

The flaw is extremely hard to find. We won't actually give the solution, but here's a
hint on how to go about attacking the puzzle:

Note that finding the bug in the proof is the same skill as debugging a program. A
good approach is to try various degenerate inputs. In this case, there are a couple of
"inputs" to the construction the length of CD is arbitrary; no matter how long or short
the proof should apply equally well. Similarly, the angle 100 - seems arbitrary; fiddling
with inputs like these (making them very small or very large) might give you some
clues as to where the bug is. A very careful drawing will clear things up.

Solution to Exercise 1.3.1
This argument is or has been commonly used for varying topics

* marijuana,

+ alcohol,

+ all drugs,

* handguns,

* birth control,

* prostitution,

*+ encryption technology.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

19

The interesting part, is that the traditional Left and Right political positions each use
this argument for some of these items, while rejecting the argument when used for
other items.

A more rational response is to either accept all the above, or none of the above, or to
realize that the stated argument wasn't everything that there might be implicit
assumptions or arguments which actually do distinguish between these cases (the
different interpretations of "[X]"). Being able to articulate the differences is essential.
The more refined arguments may be more nuanced, and less able to ft into a sound-
bite, but lead to a better understanding of one's own values. And sometimes, upon
reflection, one may realize that some of the implicit values or premises are things they
actually disagree with, once they are precisely spelled out.

Solution to Exercise 1.3.2

1. The argument isn't actually in syllogism form. For example, the following is an
incorrect syllogism:

All people
don’t

1 know my
file’s
password

Premise (Equivalent to “Nobody knows
my file’s password”, but reworded to be
of the required form “All somethings
have some property.”.)

All
hackers)

2 Premise
are

people.

Therefore,
my file is
3 secure Incorrect syllogism, lines 1, 2
from
hackers.

To be a syllogism, the conclusion would have to be "all hackers don't know my file's
password." The file might or might not be secure, but the above doesn't prove it.

2. One of the two premises is wrong.

20

All people don’t know my file’s Premise, but
password. possibly false

2 All hackers are people. Premise, but

possibly false
Therefore, all hackers don’t know Syllogism, line 1,
3 my file’s password. 2

This proof fails, of course, if some hackers are non-people (e.g., programs), or if some
people know the password. (In fact, presumably you know the password!)

Of course, even if a proof fails, the conclusion might be true for other reasons. An
incorrect argument doesn't prove the conclusion's opposite!

21

Chapter 2 Propositional Logic

2.1 A formal vocabulary

2.1.1 Propositions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).
Recall examples of where we'd like proofs:

« WaterWorld (Is a certain location guaranteed safe?)
*+ type checking (Does a program call functions in the proper way?)
* circuit verifcation (Does a circuit always work as advertised?)

After seeing the reasons why proofs are important, we ended with a call for first
needing a precise language for writing down statements without the ambiguity of
English.

ASIDE: Might a programming language be a good way to specify formal concepts
without ambiguity? Programming languages are usually motivated by speciflying how
to do something (implementation), rather than formally speciflying what is being
done (interface). While there is a deep relation between these two, logic is more
appropriate for speci flying the "what".

2.1.1.1 A formal vocabulary

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Imagine an offer where, for a mere $6.99, you can get: EE, (FF or CF or OB or HB) or CC
and PH and BR and GR or WB and PJ. Some fine print clarifies for us that BR includes
T (Whi, Whe, Ra, or Hb), FT, HM (Bb, Ba, or Ca), EM, B with CrCh, BB (GR from
6-11am). Unfortunately, it's not clear at all how the "and" and "or"s relate.
Fundamentally, is "x and y or z" meant to be interpreted as "(x and y) or z", or as "x and
(y or 2)"? With some context, we might be able to divine what the author intended: the
above ofer is the direct translation from the menu of a local diner 2 : 2 eggs, potatoes
(french fries, cottage fries, O'Brien or hashed brown) or cottage cheese and peach half
(grits before 11am) and choice of bread with gravy or whipped butter and premium
jam. Bread choices include toast (white, wheat ,raisin or herb), hot four tortillas,
homemade muffin (blueberry, banana or carrot), English muffin, bagel with cream
cheese, homemade buttermilk biscuits. Grits available from 6:00am to 11:00am. (In a
brazen display of understatement, this meal was called "Eggs Alone".) Even given
context, this offer still isn't necessarily clear to everybody: can | get both french fries
and a peach half? Happily, coffee is available before having to decipher the menu. In
this example, parentheses would have clarified how we should interpret "and", "or".
But before we discuss how to connect statements, we will consider the statements
themselves.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

22

Definition 2.1: proposition

A statement which can be either true or false.
Example

“Your meal will include hashbrowns.”
Definition 2.2: propositional variable

Avariable that can either be true or false, representing whether a certain proposition
is true or not.

Example
HB

We will often refer to "propositional variables" as just plain ol' "propositions", since
our purpose in studying logic is to abstract away from individual statements and
encapsulate them in a single variable, thereon only studying how to work with the
variable.

For a proposition or propositional variable X, rather than write "X is true", it is more
succinct to simply write "X". Likewise, "X is false" is indicated as "-X".

ASIDE: Compare this with Boolean variables in a programming language. Rather than
(x == true)Or(x == false), it's idiomatic to instead write x or !x.

Observe that not all English sentences are propositions, since they aren't true/false
issues. Which of the following do you think might qualify as propositions? If not, how
might you phrase similar statements that are propositions?

+ "Crocodiles are smaller than Alligators."

+ "What time is it?"

+ "Pass the salt, please."

*+ "Hopefully, the Rice Owls will win tomorrow's game."
* "Mr. Burns is filthy rich."

* "Fresca® is the bee's knees."

2.1.1.1.1 A particular vocabulary for WaterWorld

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

When playing WaterWorld, what particular propositions are involved? To consider this,
we think of a generic board, and wonder what the underlying statements are. They are
statements like "location A contains a pirate" ("A — unsafe"), "location G has 2 adjacent
pirates" ("G — has - 2") and so on. Each of these statements may be true or false,
depending on the particular board in question.

Here are all the WaterWorld propositions (Section 6.5) that we'll use.

Remember that B — unsafe doesn't mean "I'm not sure whether or not B is safe";
rather it means "B is unsafe" it contains a pirate. You may not be sure whether (the
truth of) this proposition follows what you see, but in any given board the variable has
one of two values, true or false.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

23

Every WaterWorld board has the same set of propositions to describe it: A — unsafe, B
- has - 2, etc. However, different boards will have different underlying values of those
propositions.

2.1.1.1.2 Connectives

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Some statements in the above proof were simple, e.g., the single proposition "A — has
- 2". Some statements had several parts, though, e.g., "(F - unsafe and G - unsafe)".
We build these more complicated statements out of propositions. If you know both F
- unsafe is false, and G - unsafe is false, what can you deduce about the truth of the
statement "(F — unsafe and G — unsafe)"? Clearly, it is also false. What about when F -
unsafe is false, but G — unsafe is true? What about when both propositions are true?
In fact, we can fill in the following table:

A B (a”b)
false false False
false true False
true false false
true true true

Table 2.1 Truth table for A (AND)

Definition 2.3: truth table

A truth table for an expression has a column for each of its propositional variables. It
has a row for each different true/false combination of its propositional variables. It
has one more column for the expression itself, showing the truth of the entire
expression for that row.

Exercise 2.1.1.1

What do you think the truth table for "a or b" looks like? Hint: To fill
out one row of the table, say, for a = true and b = false, ask yourself
"For this row, is it true that (a is true, or b is true)?"

Exercise 2.1.1.2

The above proof also used subexpressions of the form "not b-
unsafe". What is the truth table for "not a"?

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

24

Exercise 2.1.1.3

What is the truth table for the expression "(not a) or b"?

Definition 2.4: connective

1. The syntactic operator combining one or more logical expressions into a larger
expression.

Example

Two operators are A and V.

2. Afunction with one or more Boolean inputs and a Boolean result. l.e., the
meaning of a syntactic operator.

Example

The meaning of A and V, e.g., as described by their truth tables.

Example

nand (mnemonic: "not and"), written 1, takes in two Boolean values
aand b, and returns true exactly when a A b is not true thatis,atb
=-(a A b).

The following are the connectives we will use most often. At least some of these
should already be familiar from Boolean conditional expressions.

25

Connective

M,

"'I.u"l

Pronunciation

not

and

or

implies

Table 2.2 Connectives

Meaning

da:
a is false

a M ba :
and b are

both true

a’b:
at least

one of
{a,b}is
true

a=b:
equivalent

to
Hayhb

Alternative
pronunciations /
notations

-a; la

a*b; ab; a&&b;
a&b

atb; allb; alb

a — b

a b
if a then b; a

onlyif b;bifa; b
is necessary for

a; a is sufficient
forb

Many other connectives can also be defined. In fact, it turns out that any connective
for propositional logic can be defined in terms of those above.

Example 2.1

Another connective is if-and-only-if or iff, written as a © b, which
is true when a and b have the same truth value. So, as its name
implies, it can be defined as (a = b) A (b = a). It is also commonly
known as "a is equivalent to b" and "a is necessary and sufficient for

b".

Exercise 2.1.1.4

Another connective is "exactly-one-of", which is more traditionally
called exclusive-or or xor (since it excludes both a and b holding,
unlike the traditional "inclusive" or.) How would you define a "xor" b
in terms of the above connectives?

26

Note that the conventional a VV b is sometimes called inclusive-or, to stress that it
includes the case where both a and b hold. In English, the word "or" may sometimes
mean inclusive-or, and other times mean exclusive-or, depending on context.
Sometimes the term "andjor" is used to emphasize that the inclusive-or really is
intended.

Exercise 2.1.1.5

For each of the following English sentences, does "or" mean
inclusive-or or exclusive-or?

1. "Whether you are tired or lazy, caffeine is just the drug for you!"

2. "Whether you win a dollar or lose a dollar, the difference in your
net worth will be noticed."

3. "If you own a house or a car, then you have to pay property tax."

4. "Give me your lunch money, or you'll never see your precious
hoppy taw again"

2.1.2 Formulas

2.1.2.1 Well-Formed Formulas

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

If we want to develop complicated expressions about breakfast foods like eggs,
hashbrowns, and so on, we will want an exact grammar telling us how to connect the
propositions, what connections are allowed, and when parentheses are necessary (if
at all). We will choose a grammar so that all our formulas are fully parenthesized:

Definition 2.5: Well-Formed formula (WFF)

1. A constant: true or false. (If you prefer brevity, you can write "T" or "F".)
2. Apropositional variable.

Example

3. Anegation -, where ¢ is a WFF.

Example

C

4. A conjunction @ A Y, where @ and Y are WFFs.

Example

a N-c

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

27

5. Adisjunction @ V Y, where ¢ and Y are WFFs.

Example

=c V a A=, or equivalently, (=¢) V (a A-c)

6. Animplication @ = {, where @ and y are WFFs.

Example

-c V a AN=c = b, or equivalently, ((-c) vV (a A=c)) = b

The last two examples illustrate that we can add parentheses to formulas to make the
precedence explicit. While some parentheses may be unnecessary, over-
parenthesizing often improves clarity. We introduced the basic connectives in the
order of their precedence: - has the highest precedence, while = has the lowest.
Furthermore, A and V group left-to-right:a A b A ¢ =(a N b) N ¢, whereas = groups
right-to-left.

Example 2.2

We can combine these ways of forming WFFs in arbitrarily complex
ways, for example,

d{(dancvib=a=c))Ndla=-1b))

While large WFFs are common, and we will use some, ones with this
much nesting are not.

Note: ¢, v, and 0 are meta-variables standing for any WFF. The literal
character "¢" doesn't actually show up inside some WFF; but instead, any
particular formula can be used where we write "¢". It is a variable which you
the reader must substitute with some particular WFF, suchas " a = b ".

Similarly, a, b, and c are meta-variables to be replaced with a proposition, such
as n b n .

Variations of well-formed formulas occur routinely in writing programs. While
different languages might vary in details of what connectives are allowed, how to

express them, and whether or not all parentheses are required, all languages use
WEFFs.

Example 2.3

When creating the homeworks' web pages, the authors keep the
problems and solutions together in one file. Then, a program reads
that file, and creates a new one which either excludes the solution
(for the problem set), or includes it (for the solution set, and for
practice-problems). The condition for deciding whether to include
the solutions is a WFF.

28

;; 1s—a-solution?: paragraph -> boolean
;5 A function to tell if we are looking at a "solution” paragraph.

;; Assume this is provided.

;3 1s—in-a-practice-prob?: paragraph -> boolean
;5 A function to tell if Is the current problem a practice problem?

;; Assume this is provided.

;3 include-all-solutions?: boolean
;5 A variable for the entire file.

;; Assume this is provided.

;; show-or-hide-soln: paragraph -> paragraph
;; Either return the given paragraph,
;5 or (if it shouldn't be revealed) return a string saying so.
(define (show-or-hide-soln a-para)
(if (and (is-a-solution? a-para)
(not (or include-all-solns? (is-in-a-practice-prob? a-para)))
"(see solution set)”

a-para))

Note that the Boolean variable include-all-solutions? and Boolean values of (is-a-
solution? a-para) and (is-in-a-practice-prob? a-para) play the part of propositions (is -
soln, include - solns, is — practice), respectively. The if's condition boils down to the
WEFF is — soln A = (include - solns V is - practice).

Keep in mind that a WFF is purely a syntactic entity. We'll introduce rules later for re-
writing or reasoning with WFFs, but it's those rules that will be contrived to preserve
our meaning of connectives like A or -. The truth value of a WFF depends on the truth
values we assign to the propositions it involves.

When writing a program about WFFs, veriflying syntactic property, calculating a value,
counting the number of negations or bs, etc., such programs exactly follow the
definition of WFF given.

2.1.2.2 Some formulas are truer than others

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Is the formula A - unsafeVV A - has - 2 true? Your response should be that it depends
on the particular board in question. But some formulas are true regardless of the
board. For instance, A - unsafe V-A - unsafe: this holds no matter what. Similarly, A
- unsafe A=A - unsafe can never be satisfied (made true), no matter how you try to
set the variable A — unsafe.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

29

Definition 2.6: truth assignment

An assignment of a value true or false to each proposition being used.

Example
For the formulaa = a A b, one possible truth assignment is a = true
and b = false. With that truth assignment, the formula is false.

ASIDE: We've used three different symbols to describe "equality" in some sense:

« a < bisaformula. The symbol "<" is a logical connective.
* (= Y is a statement that two formulas are equivalent ——- that is, the same for

all truth assignments.
« g = true defines the value of a proposition. We also use the symbol for defining

variables, b = ¢, and meta-variables, ¢ = (.

Of these, only "&" occurs within a formula.
Commonly, people use symbols such as "=" for multiple purposes. This is
problematic when part of what we are studying are the syntactic formulas themselves.

Definition 2.7: tautology

A WFF which is true under any truth assignment (any way of assigning true/false to
the propositions).

Example

A - unsafe = A - unsafe

Example

a=aVvhb

Definition 2.8: unsatisfable

A WFF which is false under any truth assignment.

Example

- (A - unsafe = A - unsafe)

Example

a=-da

Note that in algebra, there are certainly formulas which are true (or similarly, false) for
all values, but they don't get special names. For example, over the real numbers, any
assignment to x makes the formula x° 20 true, so it's similar to a tautology. Similarly, x
= x +1 is unsatisfable, since it can't be made true for any assignment to x.

30

Some people use the term contingenc