
High Performance Computing

By:
Charles Severance

Kevin Dowd

High Performance Computing

By:
Charles Severance

Kevin Dowd

High Performance Computing

By:
Charles Severance

Kevin Dowd

Online:
< http://cnx.org/content/col11136/1.5/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Charles Severance, Kevin Dowd. It is

licensed under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/).

Collection structure revised: August 25, 2010

PDF generated: October 29, 2012

For copyright and attribution information for the modules contained in this collection, see p. 271.

Table of Contents

Introduction to the Connexions Edition . 1

Introduction to High Performance Computing . 3

1 Modern Computer Architectures

1.1 Memory . 7
1.2 Floating-Point Numbers . 29

2 Programming and Tuning Software

2.1 What a Compiler Does . 47
2.2 Timing and Pro�ling . 62
2.3 Eliminating Clutter . 85
2.4 Loop Optimizations . 101

3 Shared-Memory Parallel Processors

3.1 Understanding Parallelism . 123
3.2 Shared-Memory Multiprocessors . 145
3.3 Programming Shared-Memory Multiprocessors 170

4 Scalable Parallel Processing

4.1 Language Support for Performance . 191
4.2 Message-Passing Environments . 213

5 Appendixes

5.1 Appendix C: High Performance Microprocessors . 239
5.2 Appendix B: Looking at Assembly Language . 256

Index . 267
Attributions .271

iv

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

Introduction to the Connexions Edition1

Introduction to the Connexions Edition

The purpose of this book has always been to teach new programmers and scientists about the basics of
High Performance Computing. Too many parallel and high performance computing books focus on the
architecture, theory and computer science surrounding HPC. I wanted this book to speak to the practicing
Chemistry student, Physicist, or Biologist who need to write and run their programs as part of their research.
I was using the �rst edition of the book written by Kevin Dowd in 1996 when I found out that the book was
going out of print. I immediately sent an angry letter to O'Reilly customer support imploring them to keep
the book going as it was the only book of its kind in the marketplace. That complaint letter triggered several
conversations which let to me becoming the author of the second edition. In true "open-source" fashion -
since I complained about it - I got to �x it. During Fall 1997, while I was using the book to teach my HPC
course, I re-wrote the book one chapter at a time, fueled by multiple late-night lattes and the fear of not
having anything ready for the weeks lecture.

The second edition came out in July 1998, and was pretty well received. I got many good comments from
teachers and scientists who felt that the book did a good job of teaching the practitioner - which made me
very happy.

In 1998, this book was published at a crossroads in the history of High Performance Computing. In the
late 1990's there was still a question a to whether the large vector supercomputers with their specialized
memory systems could resist the assault from the increasing clock rates of the microprocessors. Also in the
later 1990's there was a question whether the fast, expensive, and power-hungry RISC architectures would
win over the commodity Intel microprocessors and commodity memory technologies.

By 2003, the market had decided that the commodity microprocessor was king - its performance and the
performance of commodity memory subsystems kept increasing so rapidly. By 2006, the Intel architecture
had eliminated all the RISC architecture processors by greatly increasing clock rate and truly winning the
increasingly important Floating Point Operations per Watt competition. Once users �gured out how to
e�ectively use loosely coupled processors, overall cost and improving energy consumption of commodity
microprocessors became overriding factors in the market place.

These changes led to the book becoming less and less relevant to the common use cases in the HPC �eld
and led to the book going out of print - much to the chagrin of its small but devoted fan base. I was reduced
to buying used copies of the book from Amazon in order to have a few copies laying around the o�ce to give
as gifts to unsuspecting visitors.

Thanks the the forward-looking approach of O'Reilly and Associates to use Founder's Copyright and
releasing out-of-print books under Creative Commons Attribution, this book once again rises from the
ashes like the proverbial Phoenix. By bringing this book to Connexions and publishing it under a Creative
Commons Attribution license we are insuring that the book is never again obsolete. We can take the core
elements of the book which are still relevant and a new community of authors can add to and adapt the
book as needed over time.

Publishing through Connexions also keeps the cost of printed books very low and so it will be a wise
choice as a textbook for college courses in High Performance Computing. The Creative Commons Licensing

1This content is available online at <http://cnx.org/content/m32709/1.1/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

1

2

and the ability to print locally can make this book available in any country and any school in the world.
Like Wikipedia, those of us who use the book can become the volunteers who will help improve the book
and become co-authors of the book.

I need to thank Kevin Dowd who wrote the �rst edition and graciously let me alter it from cover to cover
in the second edition. Mike Loukides of O'Reilly was the editor of both the �rst and second editions and we
talk from time to time about a possible future edition of the book. Mike was also instrumental in helping
to release the book from O'Reilly under Creative Commons Attribution. The team at Connexions has been
wonderful to work with. We share a passion for High Performance Computing and new forms of publishing
so that the knowledge reaches as many people as possible. I want to thank Jan Odegard and Kathi Fletcher
for encouraging, supporting and helping me through the re-publishing process. Daniel Williamson did an
amazing job of converting the materials from the O'Reilly formats to the Connexions formats.

I truly look forward to seeing how far this book will go now that we can have an unlimited number of
co-authors to invest and then use the book. I look forward to work with you all.

Charles Severance - November 12, 2009

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

Introduction to High Performance

Computing2

Why Worry About Performance?

Over the last decade, the de�nition of what is called high performance computing has changed dramatically.
In 1988, an article appeared in the Wall Street Journal titled �Attack of the Killer Micros� that described
how computing systems made up of many small inexpensive processors would soon make large supercom-
puters obsolete. At that time, a �personal computer� costing $3000 could perform 0.25 million �oating-point
operations per second, a �workstation� costing $20,000 could perform 3 million �oating-point operations, and
a supercomputer costing $3 million could perform 100 million �oating-point operations per second. There-
fore, why couldn't we simply connect 400 personal computers together to achieve the same performance of
a supercomputer for $1.2 million?

This vision has come true in some ways, but not in the way the original proponents of the �killer micro�
theory envisioned. Instead, the microprocessor performance has relentlessly gained on the supercomputer
performance. This has occurred for two reasons. First, there was much more technology �headroom� for
improving performance in the personal computer area, whereas the supercomputers of the late 1980s were
pushing the performance envelope. Also, once the supercomputer companies broke through some technical
barrier, the microprocessor companies could quickly adopt the successful elements of the supercomputer
designs a few short years later. The second and perhaps more important factor was the emergence of
a thriving personal and business computer market with ever-increasing performance demands. Computer
usage such as 3D graphics, graphical user interfaces, multimedia, and games were the driving factors in
this market. With such a large market, available research dollars poured into developing inexpensive high
performance processors for the home market. The result of this trend toward faster smaller computers
is directly evident as former supercomputer manufacturers are being purchased by workstation companies
(Silicon Graphics purchased Cray, and Hewlett-Packard purchased Convex in 1996).

As a result nearly every person with computer access has some �high performance� processing. As
the peak speeds of these new personal computers increase, these computers encounter all the performance
challenges typically found on supercomputers.

While not all users of personal workstations need to know the intimate details of high performance
computing, those who program these systems for maximum performance will bene�t from an understanding
of the strengths and weaknesses of these newest high performance systems.

Scope of High Performance Computing

High performance computing runs a broad range of systems, from our desktop computers through large
parallel processing systems. Because most high performance systems are based on reduced instruction set
computer (RISC) processors, many techniques learned on one type of system transfer to the other systems.

2This content is available online at <http://cnx.org/content/m32676/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

3

4

High performance RISC processors are designed to be easily inserted into a multiple-processor system
with 2 to 64 CPUs accessing a single memory using symmetric multi processing (SMP). Programming
multiple processors to solve a single problem adds its own set of additional challenges for the programmer.
The programmer must be aware of how multiple processors operate together, and how work can be e�ciently
divided among those processors.

Even though each processor is very powerful, and small numbers of processors can be put into a single
enclosure, often there will be applications that are so large they need to span multiple enclosures. In order to
cooperate to solve the larger application, these enclosures are linked with a high-speed network to function
as a network of workstations (NOW). A NOW can be used individually through a batch queuing system or
can be used as a large multicomputer using a message passing tool such as parallel virtual machine (PVM)
or message-passing interface (MPI).

For the largest problems with more data interactions and those users with compute budgets in the millions
of dollars, there is still the top end of the high performance computing spectrum, the scalable parallel
processing systems with hundreds to thousands of processors. These systems come in two �avors. One type
is programmed using message passing. Instead of using a standard local area network, these systems are
connected using a proprietary, scalable, high-bandwidth, low-latency interconnect (how is that for marketing
speak?). Because of the high performance interconnect, these systems can scale to the thousands of processors
while keeping the time spent (wasted) performing overhead communications to a minimum.

The second type of large parallel processing system is the scalable non-uniform memory access (NUMA)
systems. These systems also use a high performance inter-connect to connect the processors, but instead of
exchanging messages, these systems use the interconnect to implement a distributed shared memory that can
be accessed from any processor using a load/store paradigm. This is similar to programming SMP systems
except that some areas of memory have slower access than others.

Studying High Performance Computing

The study of high performance computing is an excellent chance to revisit computer architecture. Once
we set out on the quest to wring the last bit of performance from our computer systems, we become more
motivated to fully understand the aspects of computer architecture that have a direct impact on the system's
performance.

Throughout all of computer history, salespeople have told us that their compiler will solve all of our
problems, and that the compiler writers can get the absolute best performance from their hardware. This
claim has never been, and probably never will be, completely true. The ability of the compiler to deliver
the peak performance available in the hardware improves with each succeeding generation of hardware and
software. However, as we move up the hierarchy of high performance computing architectures we can depend
on the compiler less and less, and programmers must take responsibility for the performance of their code.

In the single processor and SMP systems with few CPUs, one of our goals as programmers should be
to stay out of the way of the compiler. Often constructs used to improve performance on a particular
architecture limit our ability to achieve performance on another architecture. Further, these �brilliant� (read
obtuse) hand optimizations often confuse a compiler, limiting its ability to automatically transform our code
to take advantage of the particular strengths of the computer architecture.

As programmers, it is important to know how the compiler works so we can know when to help it out
and when to leave it alone. We also must be aware that as compilers improve (never as much as salespeople
claim) it's best to leave more and more to the compiler.

As we move up the hierarchy of high performance computers, we need to learn new techniques to map
our programs onto these architectures, including language extensions, library calls, and compiler directives.
As we use these features, our programs become less portable. Also, using these higher-level constructs, we
must not make modi�cations that result in poor performance on the individual RISC microprocessors that
often make up the parallel processing system.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

5

Measuring Performance

When a computer is being purchased for computationally intensive applications, it is important to determine
how well the system will actually perform this function. One way to choose among a set of competing systems
is to have each vendor loan you a system for a period of time to test your applications. At the end of the
evaluation period, you could send back the systems that did not make the grade and pay for your favorite
system. Unfortunately, most vendors won't lend you a system for such an extended period of time unless
there is some assurance you will eventually purchase the system.

More often we evaluate the system's potential performance using benchmarks. There are industry bench-
marks and your own locally developed benchmarks. Both types of benchmarks require some careful thought
and planning for them to be an e�ective tool in determining the best system for your application.

The Next Step

Quite aside from economics, computer performance is a fascinating and challenging subject. Computer
architecture is interesting in its own right and a topic that any computer professional should be comfortable
with. Getting the last bit of per- formance out of an important application can be a stimulating exercise, in
addition to an economic necessity. There are probably a few people who simply enjoy matching wits with a
clever computer architecture.

What do you need to get into the game?

• A basic understanding of modern computer architecture. You don't need an advanced degree in
computer engineering, but you do need to understand the basic terminology.

• A basic understanding of benchmarking, or performance measurement, so you can quantify your own
successes and failures and use that information to improve the performance of your application.

This book is intended to be an easily understood introduction and overview of high performance computing.
It is an interesting �eld, and one that will become more important as we make even greater demands on
our most common personal computers. In the high performance computer �eld, there is always a tradeo�
between the single CPU performance and the performance of a multiple processor system. Multiple processor
systems are generally more expensive and di�cult to program (unless you have this book).

Some people claim we eventually will have single CPUs so fast we won't need to understand any type of
advanced architectures that require some skill to program.

So far in this �eld of computing, even as performance of a single inexpensive microprocessor has increased
over a thousandfold, there seems to be no less interest in lashing a thousand of these processors together to
get a millionfold increase in power. The cheaper the building blocks of high performance computing become,
the greater the bene�t for using many processors. If at some point in the future, we have a single processor
that is faster than any of the 512-processor scalable systems of today, think how much we could do when we
connect 512 of those new processors together in a single system.

That's what this book is all about. If you're interested, read on.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

6

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

Chapter 1

Modern Computer Architectures

1.1 Memory

1.1.1 Introduction1

1.1.1.1 Memory

Let's say that you are fast asleep some night and begin dreaming. In your dream, you have a time machine
and a few 500-MHz four-way superscalar processors. You turn the time machine back to 1981. Once you
arrive back in time, you go out and purchase an IBM PC with an Intel 8088 microprocessor running at 4.77
MHz. For much of the rest of the night, you toss and turn as you try to adapt the 500-MHz processor to the
Intel 8088 socket using a soldering iron and Swiss Army knife. Just before you wake up, the new computer
�nally works, and you turn it on to run the Linpack2 benchmark and issue a press release. Would you expect
this to turn out to be a dream or a nightmare? Chances are good that it would turn out to be a nightmare,
just like the previous night where you went back to the Middle Ages and put a jet engine on a horse. (You
have got to stop eating double pepperoni pizzas so late at night.)

Even if you can speed up the computational aspects of a processor in�nitely fast, you still must load and
store the data and instructions to and from a memory. Today's processors continue to creep ever closer to
in�nitely fast processing. Memory performance is increasing at a much slower rate (it will take longer for
memory to become in�nitely fast). Many of the interesting problems in high performance computing use a
large amount of memory. As computers are getting faster, the size of problems they tend to operate on also
goes up. The trouble is that when you want to solve these problems at high speeds, you need a memory
system that is large, yet at the same time fast�a big challenge. Possible approaches include the following:

• Every memory system component can be made individually fast enough to respond to every memory
access request.

• Slow memory can be accessed in a round-robin fashion (hopefully) to give the e�ect of a faster memory
system.

• The memory system design can be made �wide� so that each transfer contains many bytes of informa-
tion.

• The system can be divided into faster and slower portions and arranged so that the fast portion is used
more often than the slow one.

Again, economics are the dominant force in the computer business. A cheap, statistically optimized memory
system will be a better seller than a prohibitively expensive, blazingly fast one, so the �rst choice is not much
of a choice at all. But these choices, used in combination, can attain a good fraction of the performance

1This content is available online at <http://cnx.org/content/m32733/1.3/>.
2See Chapter 15, Using Published Benchmarks, for details on the Linpack benchmark.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

7

8 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

you would get if every component were fast. Chances are very good that your high performance workstation
incorporates several or all of them.

Once the memory system has been decided upon, there are things we can do in software to see that it
is used e�ciently. A compiler that has some knowledge of the way memory is arranged and the details of
the caches can optimize their use to some extent. The other place for optimizations is in user applications,
as we'll see later in the book. A good pattern of memory access will work with, rather than against, the
components of the system.

In this chapter we discuss how the pieces of a memory system work. We look at how patterns of data
and instruction access factor into your overall runtime, especially as CPU speeds increase. We also talk a
bit about the performance implications of running in a virtual memory environment.

1.1.2 Memory Technology3

Almost all fast memories used today are semiconductor-based.4 They come in two �avors: dynamic random
access memory (DRAM) and static random access memory (SRAM). The term random means that you can
address memory locations in any order. This is to distinguish random access from serial memories, where
you have to step through all intervening locations to get to the particular one you are interested in. An
example of a storage medium that is not random is magnetic tape. The terms dynamic and static have to
do with the technology used in the design of the memory cells. DRAMs are charge-based devices, where
each bit is represented by an electrical charge stored in a very small capacitor. The charge can leak away in
a short amount of time, so the system has to be continually refreshed to prevent data from being lost. The
act of reading a bit in DRAM also discharges the bit, requiring that it be refreshed. It's not possible to read
the memory bit in the DRAM while it's being refreshed.

SRAM is based on gates, and each bit is stored in four to six connected transistors. SRAM memories
retain their data as long as they have power, without the need for any form of data refresh.

DRAM o�ers the best price/performance, as well as highest density of memory cells per chip. This means
lower cost, less board space, less power, and less heat. On the other hand, some applications such as cache
and video memory require higher speed, to which SRAM is better suited. Currently, you can choose between
SRAM and DRAM at slower speeds � down to about 50 nanoseconds (ns). SRAM has access times down
to about 7 ns at higher cost, heat, power, and board space.

In addition to the basic technology to store a single bit of data, memory performance is limited by the
practical considerations of the on-chip wiring layout and the external pins on the chip that communicate the
address and data information between the memory and the processor.

1.1.2.1 Access Time

The amount of time it takes to read or write a memory location is called the memory access time. A related
quantity is the memory cycle time. Whereas the access time says how quickly you can reference a memory
location, cycle time describes how often you can repeat references. They sound like the same thing, but
they're not. For instance, if you ask for data from DRAM chips with a 50-ns access time, it may be 100 ns
before you can ask for more data from the same chips. This is because the chips must internally recover from
the previous access. Also, when you are retrieving data sequentially from DRAM chips, some technologies
have improved performance. On these chips, data immediately following the previously accessed data may
be accessed as quickly as 10 ns.

Access and cycle times for commodity DRAMs are shorter than they were just a few years ago, meaning
that it is possible to build faster memory systems. But CPU clock speeds have increased too. The home
computer market makes a good study. In the early 1980s, the access time of commodity DRAM (200 ns)
was shorter than the clock cycle (4.77 MHz = 210 ns) of the IBM PC XT. This meant that DRAM could
be connected directly to the CPU without worrying about over running the memory system. Faster XT and

3This content is available online at <http://cnx.org/content/m32716/1.3/>.
4Magnetic core memory is still used in applications where radiation �hardness� � resistance to changes caused by ionizing

radiation � is important.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

9

AT models were introduced in the mid-1980s with CPUs that clocked more quickly than the access times
of available commodity memory. Faster memory was available for a price, but vendors punted by selling
computers with wait states added to the memory access cycle. Wait states are arti�cial delays that slow
down references so that memory appears to match the speed of a faster CPU � at a penalty. However, the
technique of adding wait states begins to signi�cantly impact performance around 25?33MHz. Today, CPU
speeds are even farther ahead of DRAM speeds.

The clock time for commodity home computers has gone from 210 ns for the XT to around 3 ns for a
300-MHz Pentium-II, but the access time for commodity DRAM has decreased disproportionately less �
from 200 ns to around 50 ns. Processor performance doubles every 18 months, while memory performance
doubles roughly every seven years.

The CPU/memory speed gap is even larger in workstations. Some models clock at intervals as short as
1.6 ns. How do vendors make up the di�erence between CPU speeds and memory speeds? The memory in
the Cray-1 supercomputer used SRAM that was capable of keeping up with the 12.5-ns clock cycle. Using
SRAM for its main memory system was one of the reasons that most Cray systems needed liquid cooling.

Unfortunately, it's not practical for a moderately priced system to rely exclusively on SRAM for storage.
It's also not practical to manufacture inexpensive systems with enough storage using exclusively SRAM.

The solution is a hierarchy of memories using processor registers, one to three levels of SRAM cache,
DRAM main memory, and virtual memory stored on media such as disk. At each point in the memory
hierarchy, tricks are employed to make the best use of the available technology. For the remainder of this
chapter, we will examine the memory hierarchy and its impact on performance.

In a sense, with today's high performance microprocessor performing computations so quickly, the task
of the high performance programmer becomes the careful management of the memory hierarchy. In some
sense it's a useful intellectual exercise to view the simple computations such as addition and multiplication
as �in�nitely fast� in order to get the programmer to focus on the impact of memory operations on the overall
performance of the program.

1.1.3 Registers5

At least the top layer of the memory hierarchy, the CPU registers, operate as fast as the rest of the processor.
The goal is to keep operands in the registers as much as possible. This is especially important for intermediate
values used in a long computation such as:

X = G * 2.41 + A / W - W * M

While computing the value of A divided by W, we must store the result of multiplying G by 2.41. It would
be a shame to have to store this intermediate result in memory and then reload it a few instructions later.
On any modern processor with moderate optimization, the intermediate result is stored in a register. Also,
the value W is used in two computations, and so it can be loaded once and used twice to eliminate a �wasted�
load.

Compilers have been very good at detecting these types of optimizations and e�ciently making use of
the available registers since the 1970s. Adding more registers to the processor has some performance bene�t.
It's not practical to add enough registers to the processor to store the entire problem data. So we must still
use the slower memory technology.

1.1.4 Caches6

Once we go beyond the registers in the memory hierarchy, we encounter caches. Caches are small amounts
of SRAM that store a subset of the contents of the memory. The hope is that the cache will have the right
subset of main memory at the right time.

5This content is available online at <http://cnx.org/content/m32681/1.3/>.
6This content is available online at <http://cnx.org/content/m32725/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

10 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

The actual cache architecture has had to change as the cycle time of the processors has improved. The
processors are so fast that o�-chip SRAM chips are not even fast enough. This has lead to a multilevel cache
approach with one, or even two, levels of cache implemented as part of the processor. Table 1.1 shows the
approximate speed of accessing the memory hierarchy on a 500-MHz DEC 21164 Alpha.

Registers 2 ns

L1 On-Chip 4 ns

L2 On-Chip 5 ns

L3 O�-Chip 30 ns

Memory 220 ns

Table 1.1: Memory Access Speed on a DEC 21164 Alpha

When every reference can be found in a cache, you say that you have a 100% hit rate. Generally, a hit
rate of 90% or better is considered good for a level-one (L1) cache. In level-two (L2) cache, a hit rate of
above 50% is considered acceptable. Below that, application performance can drop o� steeply.

One can characterize the average read performance of the memory hierarchy by examining the probability
that a particular load will be satis�ed at a particular level of the hierarchy. For example, assume a memory
architecture with an L1 cache speed of 10 ns, L2 speed of 30 ns, and memory speed of 300 ns. If a memory
reference were satis�ed from L1 cache 75% of the time, L2 cache 20% of the time, and main memory 5% of
the time, the average memory performance would be:

(0.75 * 10) + (0.20 * 30) + (0.05 * 300) = 28.5 ns

You can easily see why it's important to have an L1 cache hit rate of 90% or higher.
Given that a cache holds only a subset of the main memory at any time, it's important to keep an index of

which areas of the main memory are currently stored in the cache. To reduce the amount of space that must
be dedicated to tracking which memory areas are in cache, the cache is divided into a number of equal sized
slots known as lines. Each line contains some number of sequential main memory locations, generally four
to sixteen integers or real numbers. Whereas the data within a line comes from the same part of memory,
other lines can contain data that is far separated within your program, or perhaps data from somebody
else's program, as in Figure 1.1 (Cache lines can come from di�erent parts of memory). When you ask for
something from memory, the computer checks to see if the data is available within one of these cache lines.
If it is, the data is returned with a minimal delay. If it's not, your program may be delayed while a new line
is fetched from main memory. Of course, if a new line is brought in, another has to be thrown out. If you're
lucky, it won't be the one containing the data you are just about to need.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

11

Cache lines can come from di�erent parts of memory

Figure 1.1

On multiprocessors (computers with several CPUs), written data must be returned to main memory so
the rest of the processors can see it, or all other processors must be made aware of local cache activity.
Perhaps they need to be told to invalidate old lines containing the previous value of the written variable so
that they don't accidentally use stale data. This is known as maintaining coherency between the di�erent
caches. The problem can become very complex in a multiprocessor system.7

Caches are e�ective because programs often exhibit characteristics that help kep the hit rate high. These
characteristics are called spatial and temporal locality of reference; programs often make use of instructions
and data that are near to other instructions and data, both in space and time. When a cache line is
retrieved from main memory, it contains not only the information that caused the cache miss, but also some
neighboring information. Chances are good that the next time your program needs data, it will be in the
cache line just fetched or another one recently fetched.

Caches work best when a program is reading sequentially through the memory. Assume a program is
reading 32-bit integers with a cache line size of 256 bits. When the program references the �rst word in
the cache line, it waits while the cache line is loaded from main memory. Then the next seven references to
memory are satis�ed quickly from the cache. This is called unit stride because the address of each successive
data element is incremented by one and all the data retrieved into the cache is used. The following loop is
a unit-stride loop:

DO I=1,1000000

SUM = SUM + A(I)

END DO

When a program accesses a large data structure using �non-unit stride,� performance su�ers because data is
loaded into cache that is not used. For example:

7Section 3.2.1 describes cache coherency in more detail.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

12 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

DO I=1,1000000, 8

SUM = SUM + A(I)

END DO

This code would experience the same number of cache misses as the previous loop, and the same amount of
data would be loaded into the cache. However, the program needs only one of the eight 32-bit words loaded
into cache. Even though this program performs one-eighth the additions of the previous loop, its elapsed
time is roughly the same as the previous loop because the memory operations dominate performance.

While this example may seem a bit contrived, there are several situations in which non-unit strides occur
quite often. First, when a FORTRAN two-dimensional array is stored in memory, successive elements in the
�rst column are stored sequentially followed by the elements of the second column. If the array is processed
with the row iteration as the inner loop, it produces a unit-stride reference pattern as follows:

REAL*4 A(200,200)

DO J = 1,200

DO I = 1,200

SUM = SUM + A(I,J)

END DO

END DO

Interestingly, a FORTRAN programmer would most likely write the loop (in alphabetical order) as follows,
producing a non-unit stride of 800 bytes between successive load operations:

REAL*4 A(200,200)

DO I = 1,200

DO J = 1,200

SUM = SUM + A(I,J)

END DO

END DO

Because of this, some compilers can detect this suboptimal loop order and reverse the order of the loops to
make best use of the memory system. As we will see in Section 1.2.1, however, this code transformation may
produce di�erent results, and so you may have to give the compiler �permission� to interchange these loops
in this particular example (or, after reading this book, you could just code it properly in the �rst place).

while (ptr != NULL) ptr = ptr->next;

The next element that is retrieved is based on the contents of the current element. This type of loop bounces
all around memory in no particular pattern. This is called pointer chasing and there are no good ways to
improve the performance of this code.

A third pattern often found in certain types of codes is called gather (or scatter) and occurs in loops
such as:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

13

SUM = SUM + ARR (IND(I))

where the IND array contains o�sets into the ARR array. Again, like the linked list, the exact pattern of
memory references is known only at runtime when the values stored in the IND array are known. Some
special-purpose systems have special hardware support to accelerate this particular operation.

1.1.5 Cache Organization8

The process of pairing memory locations with cache lines is called mapping. Of course, given that a cache is
smaller than main memory, you have to share the same cache lines for di�erent memory locations. In caches,
each cache line has a record of the memory address (called the tag) it represents and perhaps when it was
last used. The tag is used to track which area of memory is stored in a particular cache line.

The way memory locations (tags) are mapped to cache lines can have a bene�cial e�ect on the way your
program runs, because if two heavily used memory locations map onto the same cache line, the miss rate
will be higher than you would like it to be. Caches can be organized in one of several ways: direct mapped,
fully associative, and set associative.

1.1.5.1 Direct-Mapped Cache

Direct mapping, as shown in Figure 1.2 (Many memory addresses map to the same cache line), is the simplest
algorithm for deciding how memory maps onto the cache. Say, for example, that your computer has a 4-KB
cache. In a direct mapped scheme, memory location 0 maps into cache location 0, as do memory locations
4K, 8K, 12K, etc. In other words, memory maps onto the cache size. Another way to think about it is to
imagine a metal spring with a chalk line marked down the side. Every time around the spring, you encounter
the chalk line at the same place modulo the circumference of the spring. If the spring is very long, the chalk
line crosses many coils, the analog being a large memory with many locations mapping into the same cache
line.

Problems occur when alternating runtime memory references in a direct-mapped cache point to the same
cache line. Each reference causes a cache miss and replaces the entry just replaced, causing a lot of overhead.
The popular word for this is thrashing. When there is lots of thrashing, a cache can be more of a liability
than an asset because each cache miss requires that a cache line be re�lled � an operation that moves more
data than merely satisfying the reference directly from main memory. It is easy to construct a pathological
case that causes thrashing in a 4-KB direct-mapped cache:

8This content is available online at <http://cnx.org/content/m32722/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

14 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

Many memory addresses map to the same cache line

Figure 1.2

REAL*4 A(1024), B(1024)

COMMON /STUFF/ A,B

DO I=1,1024

A(I) = A(I) * B(I)

END DO

END

The arrays A and B both take up exactly 4 KB of storage, and their inclusion together in COMMON assures
that the arrays start exactly 4 KB apart in memory. In a 4-KB direct mapped cache, the same line that is
used for A(1) is used for B(1), and likewise for A(2) and B(2), etc., so alternating references cause repeated
cache misses. To �x it, you could either adjust the size of the array A, or put some other variables into
COMMON, between them. For this reason one should generally avoid array dimensions that are close to powers
of two.

1.1.5.2 Fully Associative Cache

At the other extreme from a direct mapped cache is a fully associative cache, where any memory location
can be mapped into any cache line, regardless of memory address. Fully associative caches get their name
from the type of memory used to construct them � associative memory. Associative memory is like regular
memory, except that each memory cell knows something about the data it contains.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

15

When the processor goes looking for a piece of data, the cache lines are asked all at once whether any of
them has it. The cache line containing the data holds up its hand and says �I have it�; if none of them do,
there is a cache miss. It then becomes a question of which cache line will be replaced with the new data.
Rather than map memory locations to cache lines via an algorithm, like a direct- mapped cache, the memory
system can ask the fully associative cache lines to choose among themselves which memory locations they
will represent. Usually the least recently used line is the one that gets overwritten with new data. The
assumption is that if the data hasn't been used in quite a while, it is least likely to be used in the future.

Fully associative caches have superior utilization when compared to direct mapped caches. It's di�cult
to �nd real-world examples of programs that will cause thrashing in a fully associative cache. The expense
of fully associative caches is very high, in terms of size, price, and speed. The associative caches that do
exist tend to be small.

1.1.5.3 Set-Associative Cache

Now imagine that you have two direct mapped caches sitting side by side in a single cache unit as shown
in Figure 1.3 (Two-way set-associative cache). Each memory location corresponds to a particular cache line
in each of the two direct-mapped caches. The one you choose to replace during a cache miss is subject
to a decision about whose line was used last � the same way the decision was made in a fully associative
cache except that now there are only two choices. This is called a set-associative cache. Set-associative
caches generally come in two and four separate banks of cache. These are called two-way and four-way set
associative caches, respectively. Of course, there are bene�ts and drawbacks to each type of cache. A set-
associative cache is more immune to cache thrashing than a direct-mapped cache of the same size, because
for each mapping of a memory address into a cache line, there are two or more choices where it can go. The
beauty of a direct-mapped cache, however, is that it's easy to implement and, if made large enough, will
perform roughly as well as a set-associative design. Your machine may contain multiple caches for several
di�erent purposes. Here's a little program for causing thrashing in a 4-KB two-way set- associative cache:

REAL*4 A(1024), B(1024), C(1024)

COMMON /STUFF/ A,B,C

DO I=1,1024

A(I) = A(I) * B(I) + C(I)

END DO

END

Like the previous cache thrasher program, this forces repeated accesses to the same cache lines, except that
now there are three variables contending for the choose set same mapping instead of two. Again, the way
to �x it would be to change the size of the arrays or insert something in between them, in COMMON. By the
way, if you accidentally arranged a program to thrash like this, it would be hard for you to detect it � aside
from a feeling that the program runs a little slow. Few vendors provide tools for measuring cache misses.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

16 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

Two-way set-associative cache

Figure 1.3

1.1.5.4 Instruction Cache

So far we have glossed over the two kinds of information you would expect to �nd in a cache between main
memory and the CPU: instructions and data. But if you think about it, the demand for data is separate from
the demand for instructions. In superscalar processors, for example, it's possible to execute an instruction
that causes a data cache miss alongside other instructions that require no data from cache at all, i.e., they
operate on registers. It doesn't seem fair that a cache miss on a data reference in one instruction should
keep you from fetching other instructions because the cache is tied up. Furthermore, a cache depends on
locality of reference between bits of data and other bits of data or instructions and other instructions, but
what kind of interplay is there between instructions and data? It would seem possible for instructions to
bump perfectly useful data from cache, or vice versa, with complete disregard for locality of reference.

Many designs from the 1980s used a single cache for both instructions and data. But newer designs are
employing what is known as the Harvard Memory Architecture, where the demand for data is segregated
from the demand for instructions.

Main memory is a still a single large pool, but these processors have separate data and instruction
caches, possibly of di�erent designs. By providing two independent sources for data and instructions, the
aggregate rate of information coming from memory is increased, and interference between the two types
of memory references is minimized. Also, instructions generally have an extremely high level of locality of
reference because of the sequential nature of most programs. Because the instruction caches don't have to
be particularly large to be e�ective, a typical architecture is to have separate L1 caches for instructions and
data and to have a combined L2 cache. For example, the IBM/Motorola PowerPC 604e has separate 32-K

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

17

four-way set-associative L1 caches for instruction and data and a combined L2 cache.

1.1.6 Virtual Memory9

Virtual memory decouples the addresses used by the program (virtual addresses) from the actual addresses
where the data is stored in memory (physical addresses). Your program sees its address space starting at
0 and working its way up to some large number, but the actual physical addresses assigned can be very
di�erent. It gives a degree of �exibility by allowing all processes to believe they have the entire memory
system to themselves. Another trait of virtual memory systems is that they divide your program's memory
up into pages � chunks. Page sizes vary from 512 bytes to 1 MB or larger, depending on the machine. Pages
don't have to be allocated contiguously, though your program sees them that way. By being separated into
pages, programs are easier to arrange in memory, or move portions out to disk.

1.1.6.1 Page Tables

Say that your program asks for a variable stored at location 1000. In a virtual memory machine, there is
no direct correspondence between your program's idea of where location 1000 is and the physical memory
systems' idea. To �nd where your variable is actually stored, the location has to be translated from a virtual
to a physical address. The map containing such translations is called a page table. Each process has a several
page tables associated with it, corresponding to di�erent regions, such as program text and data segments.

To understand how address translation works, imagine the following scenario: at some point, your pro-
gram asks for data from location 1000. Figure 1.4 (Virtual-to-physical address mapping) shows the steps
required to complete the retrieval of this data. By choosing location 1000, you have identi�ed which region
the memory reference falls in, and this identi�es which page table is involved. Location 1000 then helps the
processor choose an entry within the table. For instance, if the page size is 512 bytes, 1000 falls within the
second page (pages range from addresses 0�511, 512�1023, 1024�1535, etc.).

Therefore, the second table entry should hold the address of the page housing the value at location 1000.

9This content is available online at <http://cnx.org/content/m32728/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

18 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

Virtual-to-physical address mapping

Figure 1.4

The operating system stores the page-table addresses virtually, so it's going to take a virtual-to-physical
translation to locate the table in memory. One more virtual-to- physical translation, and we �nally have
the true address of location 1000. The memory reference can complete, and the processor can return to
executing your program.

1.1.6.2 Translation Lookaside Bu�er

As you can see, address translation through a page table is pretty complicated. It required two table lookups
(maybe three) to locate our data. If every memory reference was that complicated, virtual memory computers
would be horrible performers. Fortunately, locality of reference causes virtual address translations to group
together; a program may repeat the same virtual page mapping millions of times a second. And where we
have repeated use of the same data, we can apply a cache.

All modern virtual memory machines have a special cache called a translation lookaside bu�er (TLB)
for virtual-to-physical-memory-address translation. The two inputs to the TLB are an integer that identi�es
the program making the memory request and the virtual page requested. From the output pops a pointer
to the physical page number. Virtual address in; physical address out. TLB lookups occur in parallel with
instruction execution, so if the address data is in the TLB, memory references proceed quickly.

Like other kinds of caches, the TLB is limited in size. It doesn't contain enough entries to handle all
the possible virtual-to-physical-address translations for all the programs that might run on your computer.
Larger pools of address translations are kept out in memory, in the page tables. If your program asks for a
virtual-to- physical-address translation, and the entry doesn't exist in the TLB, you su�er a TLB miss. The
information needed may have to be generated (a new page may need to be created), or it may have to be
retrieved from the page table.

The TLB is good for the same reason that other types of caches are good: it reduces the cost of memory
references. But like other caches, there are pathological cases where the TLB can fail to deliver value. The

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

19

easiest case to construct is one where every memory reference your program makes causes a TLB miss:

REAL X(10000000)

COMMON X

DO I=0,9999

DO J=1,10000000,10000

SUM = SUM + X(J+I)

END DO

END DO

Assume that the TLB page size for your computer is less than 40 KB. Every time through the inner loop
in the above example code, the program asks for data that is 4 bytes*10,000 = 40,000 bytes away from the
last reference. That is, each reference falls on a di�erent memory page. This causes 1000 TLB misses in the
inner loop, taken 1001 times, for a total of at least one million TLB misses. To add insult to injury, each
reference is guaranteed to cause a data cache miss as well. Admittedly, no one would start with a loop like
the one above. But presuming that the loop was any good to you at all, the restructured version in the code
below would cruise through memory like a warm knife through butter:

REAL X(10000000)

COMMON X

DO I=1,10000000

SUM = SUM + X(I)

END DO

The revised loop has unit stride, and TLB misses occur only every so often. Usually it is not necessary to
explicitly tune programs to make good use of the TLB. Once a program is tuned to be �cache-friendly,� it
nearly always is tuned to be TLB friendly.

Because there is a performance bene�t to keeping the TLB very small, the TLB entry often contains a
length �eld. A single TLB entry can be over a megabyte in length and can be used to translate addresses
stored in multiple virtual memory pages.

1.1.6.3 Page Faults

A page table entry also contains other information about the page it represents, including �ags to tell whether
the translation is valid, whether the associated page can be modi�ed, and some information describing how
new pages should be initialized. References to pages that aren't marked valid are called page faults.

Taking a worst-case scenario, say that your program asks for a variable from a particular memory location.
The processor goes to look for it in the cache and �nds it isn't there (cache miss), which means it must be
loaded from memory. Next it goes to the TLB to �nd the physical location of the data in memory and �nds
there is no TLB entry (a TLB miss). Then it tries consulting the page table (and re�lling the TLB), but
�nds that either there is no entry for your particular page or that the memory page has been shipped to disk
(both are page faults). Each step of the memory hierarchy has shrugged o� your request. A new page will
have to be created in memory and possibly, depending on the circumstances, re�lled from disk.

Although they take a lot of time, page faults aren't errors. Even under optimal conditions every program
su�ers some number of page faults. Writing a variable for the �rst time or calling a subroutine that has

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

20 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

never been called can cause a page fault. This may be surprising if you have never thought about it before.
The illusion is that your entire program is present in memory from the start, but some portions may never
be loaded. There is no reason to make space for a page whose data is never referenced or whose instructions
are never executed. Only those pages that are required to run the job get created or pulled in from the
disk.10

The pool of physical memory pages is limited because physical memory is limited, so on a machine where
many programs are lobbying for space, there will be a higher number of page faults. This is because physical
memory pages are continually being recycled for other purposes. However, when you have the machine to
yourself, and memory is less in demand, allocated pages tend to stick around for a while. In short, you
can expect fewer page faults on a quiet machine. One trick to remember if you ever end up working for a
computer vendor: always run short benchmarks twice. On some systems, the number of page faults will go
down. This is because the second run �nds pages left in memory by the �rst, and you won't have to pay for
page faults again.11

Paging space (swap space) on the disk is the last and slowest piece of the memory hierarchy for most
machines. In the worst-case scenario we saw how a memory reference could be pushed down to slower and
slower performance media before �nally being satis�ed. If you step back, you can view the disk paging
space as having the same relationship to main memory as main memory has to cache. The same kinds of
optimizations apply too, and locality of reference is important. You can run programs that are larger than
the main memory system of your machine, but sometimes at greatly decreased performance. When we look
at memory optimizations in Section 2.4.1, we will concentrate on keeping the activity in the fastest parts of
the memory system and avoiding the slow parts.

1.1.7 Improving Memory Performance12

Given the importance, in the area of high performance computing, of the performance of a computer's
memory subsystem, many techniques have been used to improve the performance of the memory systems of
computers. The two attributes of memory system performance are generally bandwidth and latency. Some
memory system design changes improve one at the expense of the other, and other improvements positively
impact both bandwidth and latency. Bandwidth generally focuses on the best possible steady-state transfer
rate of a memory system. Usually this is measured while running a long unit-stride loop reading or reading
and writing memory.13 Latency is a measure of the worst-case performance of a memory system as it moves
a small amount of data such as a 32- or 64-bit word between the processor and memory. Both are important
because they are an important part of most high performance applications.

Because memory systems are divided into components, there are di�erent bandwidth and latency �gures
between di�erent components as shown in Figure 1.5 (Simple Memory System). The bandwidth rate between
a cache and the CPU will be higher than the bandwidth between main memory and the cache, for instance.
There may be several caches and paths to memory as well. Usually, the peak memory bandwidth quoted by
vendors is the speed between the data cache and the processor.

In the rest of this section, we look at techniques to improve latency, bandwidth, or both.

1.1.7.1 Large Caches

As we mentioned at the start of this chapter, the disparity between CPU speeds and memory is growing. If
you look closely, you can see vendors innovating in several ways. Some workstations are being o�ered with
4- MB data caches! This is larger than the main memory systems of machines just a few years ago. With a
large enough cache, a small (or even moderately large) data set can �t completely inside and get incredibly
good performance. Watch out for this when you are testing new hardware. When your program grows too
large for the cache, the performance may drop o� considerably, perhaps by a factor of 10 or more, depending

10The term for this is demand paging.
11Text pages are identi�ed by the disk device and block number from which they came.
12This content is available online at <http://cnx.org/content/m32736/1.3/>.
13See the STREAM section in Chapter 15 for measures of memory bandwidth.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

21

on the memory access patterns. Interestingly, an increase in cache size on the part of vendors can render a
benchmark obsolete.

Simple Memory System

Figure 1.5

Up to 1992, the Linpack 100×100 benchmark was probably the single most- respected benchmark to
determine the average performance across a wide range of applications. In 1992, IBM introduced the IBM
RS-6000 which had a cache large enough to contain the entire 100×100 matrix for the duration of the
benchmark. For the �rst time, a workstation had performance on this benchmark on the same order of
supercomputers. In a sense, with the entire data structure in a SRAM cache, the RS-6000 was operating like
a Cray vector supercomputer. The problem was that the Cray could maintain and improve the performance
for a 120×120 matrix, whereas the RS-6000 su�ered a signi�cant performance loss at this increased matrix
size. Soon, all the other workstation vendors introduced similarly large caches, and the 100×100 Linpack
benchmark ceased to be useful as an indicator of average application performance.

1.1.7.2 Wider Memory Systems

Consider what happens when a cache line is re�lled from memory: consecutive memory locations from main
memory are read to �ll consecutive locations within the cache line. The number of bytes transferred depends
on how big the line is � anywhere from 16 bytes to 256 bytes or more. We want the re�ll to proceed quickly
because an instruction is stalled in the pipeline, or perhaps the processor is waiting for more instructions. In
Figure 1.6 (Narrow memory system), if we have two DRAM chips that provide us with 4 bits of data every
100 ns (remember cycle time), a cache �ll of a 16-byte line takes 1600 ns.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

22 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

Narrow memory system

Figure 1.6

One way to make the cache-line �ll operation faster is to �widen� the memory system as shown in Figure 1.7
(Wide memory system). Instead of having two rows of DRAMs, we create multiple rows of DRAMs. Now
on every 100-ns cycle, we get 32 contiguous bits, and our cache-line �lls are four times faster.

Wide memory system

Figure 1.7

We can improve the performance of a memory system by increasing the width of the memory system up

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

23

to the length of the cache line, at which time we can �ll the entire line in a single memory cycle. On the
SGI Power Challenge series of systems, the memory width is 256 bits. The downside of a wider memory
system is that DRAMs must be added in multiples. In many modern workstations and personal computers,
memory is expanded in the form of single inline memory modules (SIMMs). SIMMs currently are either
30-, 72-, or 168-pin modules, each of which is made up of several DRAM chips ready to be installed into a
memory sub-system.

1.1.7.3 Bypassing Cache

It's interesting that we have spent nearly an entire chapter on how great a cache is for high performance
computers, and now we are going to bypass the cache to improve performance. As mentioned earlier,
some types of processing result in non-unit strides (or bouncing around) through memory. These types
of memory reference patterns bring out the worst-case behavior in cache-based architectures. It is these
reference patterns that see improved performance by bypassing the cache. Inability to support these types
of computations remains an area where traditional supercomputers can signi�cantly outperform high-speed
RISC processors. For this reason, RISC processors that are serious about number crunching may have special
instructions that bypass data cache memory; the data are transferred directly between the processor and the
main memory system.14 In Figure 1.8 (Bypassing cache) we have four banks of SIMMs that can do cache
�lls at 128 bits per 100 ns memory cycle. Remember that the data is available after 50 ns but we can't
get more data until the DRAMs refresh 50�60 ns later. However, if we are doing 32-bit non-unit- stride
loads and have the capability to bypass cache, each load will be satis�ed from one of the four SIMMs in 50
ns. While that SIMM refreshed, another load can occur from any of the other three SIMMs in 50 ns. In a
random mix of non-unit loads there is a 75% chance that the next load will fall on a �fresh� DRAM. If the
load falls on a bank while it is refreshing, it simply has to wait until the refresh completes.

A further advantage of bypassing cache is that the data doesn't need to be moved through the SRAM
cache. This operation can add from 10�50 ns to the load time for a single word. This also avoids invalidating
the contents of an entire cache line in the cache.

Adding cache bypass, increasing memory-system widths, and adding banks increases the cost of a memory
system. Computer-system vendors make an economic choice as to how many of these techniques they need
to apply to get su�cient performance for their particular processor and system. Hence, as processor speed
increases, vendors must add more of these memory system features to their commodity systems to maintain
a balance between processor and memory-system speed.

14By the way, most machines have uncached memory spaces for process synchronization and I/O device registers. However,
memory references to these locations bypass the cache because of the address chosen, not necessarily because of the instruction
chosen.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

24 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

Bypassing cache

Figure 1.8

1.1.7.4 Interleaved and Pipelined Memory Systems

Vector supercomputers, such as the CRAY Y/MP and the Convex C3, are machines that depend on multi-
banked memory systems for performance. The C3, in particular, has a memory system with up to 256-way
interleaving. Each interleave (or bank) is 64 bits wide. This is an expensive memory system to build, but it
has some very nice performance characteristics. Having a large number of banks helps to reduce the chances
of repeated access to the same memory bank. If you do hit the same bank twice in a row, however, the
penalty is a delay of nearly 300 ns � a long time for a machine with a clock speed of 16 ns. So when things
go well, they go very well.

However, having a large number of banks alone is not su�cient to feed a 16-ns processor using 50 ns
DRAM. In addition to interleaving, the memory subsystem also needs to be pipelined. That is, the CPU
must begin the second, third, and fourth load before the CPU has received the results of the �rst load as
shown in Figure 1.9 (Multibanked memory system). Then each time it receives the results from bank �n,�
it must start the load from bank �n+4� to keep the pipeline fed. This way, after a brief startup delay, loads
complete every 16 ns and so the memory system appears to operate at the clock rate of the CPU. This
pipelined memory approach is facilitated by the 128-element vector registers in the C3 processor.

Using gather/scatter hardware, non-unit-stride operations can also be pipelined. The only di�erence for
non-unit-stride operations is that the banks are not accessed in sequential order. With a random pattern
of memory references, it's possible to reaccess a memory bank before it has completely refreshed from a
previous access. This is called a bank stall.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

25

Multibanked memory system

Figure 1.9

Di�erent access patterns are subject to bank stalls of varying severity. For instance, accesses to every
fourth word in an eight-bank memory system would also be subject to bank stalls, though the recovery would
occur sooner. References to every second word might not experience bank stalls at all; each bank may have
recovered by the time its next reference comes around; it depends on the relative speeds of the processor
and memory system. Irregular access patterns are sure to encounter some bank stalls.

In addition to the bank stall hazard, single-word references made directly to a multibanked memory
system carry a greater latency than those of (successfully) cached memory accesses. This is because references
are going out to memory that is slower than cache, and there may be additional address translation steps
as well. However, banked memory references are pipelined. As long as references are started well enough in
advance, several pipelined, multibanked references can be in �ight at one time, giving you good throughput.

The CDC-205 system performed vector operations in a memory-to-memory fashion using a set of explicit
memory pipelines. This system had superior performance for very long unit-stride vector computations. A
single instruction could perform 65,000 computations using three memory pipes.

1.1.7.5 Software Managed Caches

Here's an interesting thought: if a vector processor can plan far enough in advance to start a memory pipe,
why can't a RISC processor start a cache-�ll before it really needs the data in those same situations? In
a way, this is priming the cache to hide the latency of the cache-�ll. If this could be done far enough in
advance, it would appear that all memory references would operate at the speed of the cache.

This concept is called prefetching and it is supported using a special prefetch instruction available on
many RISC processors. A prefetch instruction operates just like a standard load instruction, except that
the processor doesn't wait for the cache to �ll before the instruction completes. The idea is to prefetch far
enough ahead of the computation to have the data ready in cache by the time the actual computation occurs.
The following is an example of how this might be used:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

26 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

DO I=1,1000000,8

PREFETCH(ARR(I+8))

DO J=0,7

SUM=SUM+ARR(I+J)

END DO

END DO

This is not the actual FORTRAN. Prefetching is usually done in the assembly code generated by the compiler
when it detects that you are stepping through the array using a �xed stride. The compiler typically estimate
how far ahead you should be prefetching. In the above example, if the cache-�lls were particularly slow, the
value 8 in I+8 could be changed to 16 or 32 while the other values changed accordingly.

In a processor that could only issue one instruction per cycle, there might be no payback to a prefetch
instruction; it would take up valuable time in the instruction stream in exchange for an uncertain bene�t.
On a superscalar processor, however, a cache hint could be mixed in with the rest of the instruction stream
and issued alongside other, real instructions. If it saved your program from su�ering extra cache misses, it
would be worth having.

1.1.7.6 Post-RISC E�ects on Memory References

Memory operations typically access the memory during the execute phase of the pipeline on a RISC processor.
On the post-RISC processor, things are no di�erent than on a RISC processor except that many loads can
be half �nished at any given moment. On some current processors, up to 28 memory operations may be
active with 10 waiting for o�-chip memory to arrive. This is an excellent way to compensate for slow memory
latency compared to the CPU speed. Consider the following loop:

LOADI R6,10000 Set the Iterations

LOADI R5,0 Set the index variable

LOOP: LOAD R1,R2(R5) Load a value from memory

INCR R1 Add one to R1

STORE R1,R3(R5) Store the incremented value back to memory

INCR R5 Add one to R5

COMPARE R5,R6 Check for loop termination

BLT LOOP Branch if R5 < R6 back to LOOP

In this example, assume that it take 50 cycles to access memory. When the fetch/ decode puts the �rst
load into the instruction reorder bu�er (IRB), the load starts on the next cycle and then is suspended in the
execute phase. However, the rest of the instructions are in the IRB. The INCR R1 must wait for the load
and the STORE must also wait. However, by using a rename register, the INCR R5, COMPARE, and BLT
can all be computed, and the fetch/decode goes up to the top of the loop and sends another load into the
IRB for the next memory location that will have to wait. This looping continues until about 10 iterations of
the loop are in the IRB. Then the �rst load actually shows up from memory and the INCR R1 and STORE
from the �rst iteration begins executing. Of course the store takes a while, but about that time the second
load �nishes, so there is more work to do and so on. . .

Like many aspects of computing, the post-RISC architecture, with its out-of-order and speculative execu-
tion, optimizes memory references. The post-RISC processor dynamically unrolls loops at execution time to
compensate for memory subsystem delay. Assuming a pipelined multibanked memory system that can have
multiple memory operations started before any complete (the HP PA-8000 can have 10 o�- chip memory op-
erations in �ight at one time), the processor continues to dispatch memory operations until those operations
begin to complete.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

27

Unlike a vector processor or a prefetch instruction, the post-RISC processor does not need to anticipate
the precise pattern of memory references so it can carefully control the memory subsystem. As a result, the
post-RISC processor can achieve peak performance in a far-wider range of code sequences than either vector
processors or in-order RISC processors with prefetch capability.

This implicit tolerance to memory latency makes the post-RISC processors ideal for use in the scalable
shared-memory processors of the future, where the memory hierarchy will become even more complex than
current processors with three levels of cache and a main memory.

Unfortunately, the one code segment that doesn't bene�t signi�cantly from the post-RISC architecture is
the linked-list traversal. This is because the next address is never known until the previous load is completed
so all loads are fundamentally serialized.

1.1.7.7 Dynamic RAM Technology Trends

Much of the techniques in this section have focused on how to deal with the imperfections of the dynamic
RAM chip (although when your clock rate hits 300�600 MHz or 3�2 ns, even SRAM starts to look pretty
slow). It's clear that the demand for more and more RAM will continue to increase, and gigabits and more
DRAM will �t on a single chip. Because of this, signi�cant work is underway to make new super-DRAMs
faster and more tuned to the extremely fast processors of the present and the future. Some of the technologies
are relatively straightforward, and others require a major redesign of the way that processors and memories
are manufactured.

Some DRAM improvements include:

• Fast page mode DRAM
• Extended data out RAM (EDO RAM)
• Synchronous DRAM (SDRAM)
• RAMBUS
• Cached DRAM (CDRAM)

Fast page mode DRAM saves time by allowing a mode in which the entire address doesn't have to be re-
clocked into the chip for each memory operation. Instead, there is an assumption that the memory will be
accessed sequentially (as in a cache-line �ll), and only the low-order bits of the address are clocked in for
successive reads or writes.

EDO RAM is a modi�cation to output bu�ering on page mode RAM that allows it to operate roughly
twice as quickly for operations other than refresh.

Synchronous DRAM is synchronized using an external clock that allows the cache and the DRAM to
coordinate their operations. Also, SDRAM can pipeline the retrieval of multiple memory bits to improve
overall throughput.

RAMBUS is a proprietary technology capable of 500 MB/sec data transfer. RAMBUS uses signi�cant
logic within the chip and operates at higher power levels than typical DRAM.

Cached DRAM combines a SRAM cache on the same chip as the DRAM. This tightly couples the
SRAM and DRAM and provides performance similar to SRAM devices with all the limitations of any cache
architecture. One advantage of the CDRAM approach is that the amount of cache is increased as the amount
of DRAM is increased. Also when dealing with memory systems with a large number of interleaves, each
interleave has its own SRAM to reduce latency, assuming the data requested was in the SRAM.

An even more advanced approach is to integrate the processor, SRAM, and DRAM onto a single chip
clocked at say 5 GHz, containing 128 MB of data. Understandably, there is a wide range of technical
problems to solve before this type of component is widely available for $200 � but it's not out of the
question. The manufacturing processes for DRAM and processors are already beginning to converge in some
ways (RAMBUS). The biggest performance problem when we have this type of system will be, �What to do
if you need 160 MB?�

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

28 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

1.1.8 Closing Notes15

They say that the computer of the future will be a good memory system that just happens to have a CPU
attached. As high performance microprocessor systems take over as the high performance computing engines,
the problem of a cache-based memory system that uses DRAM for main memory must be solved. There
are many architecture and technology e�orts underway to transform workstation and personal computer
memories to be as capable as supercomputer memories.

As CPU speed increases faster than memory speed, you will need the techniques in this book. Also, as
you move into multiple processors, memory problems don't get better; usually they get worse. With many
hungry processors always ready for more data, a memory subsystem can become extremely strained.

With just a little skill, we can often restructure memory accesses so that they play to your memory
system's strengths instead of its weaknesses.

1.1.9 Exercises16

Exercise 1.1.9.1
The following code segment traverses a pointer chain:

while ((p = (char *) *p) != NULL);

How will such a code interact with the cache if all the references fall within a small portion of mem-
ory? How will the code interact with the cache if references are stretched across many megabytes?

Exercise 1.1.9.2
How would the code in Exercise 1.1.9.1 behave on a multibanked memory system that has no
cache?

Exercise 1.1.9.3
A long time ago, people regularly wrote self-modifying code � programs that wrote into instruction
memory and changed their own behavior. What would be the implications of self-modifying code
on a machine with a Harvard memory architecture?

Exercise 1.1.9.4
Assume a memory architecture with an L1 cache speed of 10 ns, L2 speed of 30 ns, and memory
speed of 200 ns. Compare the average memory system performance with (1) L1 80%, L2 10%, and
memory 10%; and (2) L1 85% and memory 15%.

Exercise 1.1.9.5
On a computer system, run loops that process arrays of varying length from 16 to 16 million:

ARRAY(I) = ARRAY(I) + 3

How does the number of additions per second change as the array length changes? Experiment
with REAL*4, REAL*8, INTEGER*4, and INTEGER*8.

Which has more signi�cant impact on performance: larger array elements or integer versus
�oating-point? Try this on a range of di�erent computers.

Exercise 1.1.9.6
Create a two-dimensional array of 1024×1024. Loop through the array with rows as the inner loop
and then again with columns as the inner loop. Perform a simple operation on each element. Do
the loops perform di�erently? Why? Experiment with di�erent dimensions for the array and see
the performance impact.

Exercise 1.1.9.7
Write a program that repeatedly executes timed loops of di�erent sizes to determine the cache size
for your system.

15This content is available online at <http://cnx.org/content/m32690/1.3/>.
16This content is available online at <http://cnx.org/content/m32698/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

29

1.2 Floating-Point Numbers

1.2.1 Introduction17

Often when we want to make a point that nothing is sacred, we say, �one plus one does not equal two.� This
is designed to shock us and attack our fundamental assumptions about the nature of the universe. Well, in
this chapter on �oating- point numbers, we will learn that �0.1+0.1 does not always equal 0.2� when we use
�oating-point numbers for computations.

In this chapter we explore the limitations of �oating-point numbers and how you as a programmer can
write code to minimize the e�ect of these limitations. This chapter is just a brief introduction to a signi�cant
�eld of mathematics called numerical analysis.

1.2.2 Reality18

The real world is full of real numbers. Quantities such as distances, velocities, masses, angles, and other
quantities are all real numbers.19 A wonderful property of real numbers is that they have unlimited accuracy.
For example, when considering the ratio of the circumference of a circle to its diameter, we arrive at a value
of 3.141592.... The decimal value for pi does not terminate. Because real numbers have unlimited accuracy,
even though we can't write it down, pi is still a real number. Some real numbers are rational numbers because
they can be represented as the ratio of two integers, such as 1/3. Not all real numbers are rational numbers.
Not surprisingly, those real numbers that aren't rational numbers are called irrational. You probably would
not want to start an argument with an irrational number unless you have a lot of free time on your hands.

Unfortunately, on a piece of paper, or in a computer, we don't have enough space to keep writing the
digits of pi. So what do we do? We decide that we only need so much accuracy and round real numbers to
a certain number of digits. For example, if we decide on four digits of accuracy, our approximation of pi is
3.142. Some state legislature attempted to pass a law that pi was to be three. While this is often cited as
evidence for the IQ of governmental entities, perhaps the legislature was just suggesting that we only need
one digit of accuracy for pi. Perhaps they foresaw the need to save precious memory space on computers
when representing real numbers.

1.2.3 Representation20

Given that we cannot perfectly represent real numbers on digital computers, we must come up with a
compromise that allows us to approximate real numbers.21 There are a number of di�erent ways that have
been used to represent real numbers. The challenge in selecting a representation is the trade-o� between
space and accuracy and the tradeo� between speed and accuracy. In the �eld of high performance computing
we generally expect our processors to produce a �oating- point result every 600-MHz clock cycle. It is pretty
clear that in most applications we aren't willing to drop this by a factor of 100 just for a little more accuracy.
Before we discuss the format used by most high performance computers, we discuss some alternative (albeit
slower) techniques for representing real numbers.

17This content is available online at <http://cnx.org/content/m32739/1.3/>.
18This content is available online at <http://cnx.org/content/m32741/1.3/>.
19In high performance computing we often simulate the real world, so it is somewhat ironic that we use simulated real numbers

(�oating-point) in those simulations of the real world.
20This content is available online at <http://cnx.org/content/m32772/1.3/>.
21Interestingly, analog computers have an easier time representing real numbers. Imagine a �water- adding� analog computer

which consists of two glasses of water and an empty glass. The amount of water in the two glasses are perfectly represented
real numbers. By pouring the two glasses into a third, we are adding the two real numbers perfectly (unless we spill some),
and we wind up with a real number amount of water in the third glass. The problem with analog computers is knowing just
how much water is in the glasses when we are all done. It is also problematic to perform 600 million additions per second using
this technique without getting pretty wet. Try to resist the temptation to start an argument over whether quantum mechanics
would cause the real numbers to be rational numbers. And don't point out the fact that even digital computers are really
analog computers at their core. I am trying to keep the focus on �oating-point values, and you keep drifting away!

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

30 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

1.2.3.1 Binary Coded Decimal

In the earliest computers, one technique was to use binary coded decimal (BCD). In BCD, each base-10 digit
was stored in four bits. Numbers could be arbitrarily long with as much precision as there was memory:

123.45

0001 0010 0011 0100 0101

This format allows the programmer to choose the precision required for each variable. Unfortunately, it is
di�cult to build extremely high-speed hardware to perform arithmetic operations on these numbers. Because
each number may be far longer than 32 or 64 bits, they did not �t nicely in a register. Much of the �oating-
point operations for BCD were done using loops in microcode. Even with the �exibility of accuracy on BCD
representation, there was still a need to round real numbers to �t into a limited amount of space.

Another limitation of the BCD approach is that we store a value from 0�9 in a four-bit �eld. This �eld
is capable of storing values from 0�15 so some of the space is wasted.

1.2.3.2 Rational Numbers

One intriguing method of storing real numbers is to store them as rational numbers. To brie�y review
mathematics, rational numbers are the subset of real numbers that can be expressed as a ratio of integer
numbers. For example, 22/7 and 1/2 are rational numbers. Some rational numbers, such as 1/2 and 1/10,
have perfect representation as base-10 decimals, and others, such as 1/3 and 22/7, can only be expressed as
in�nite-length base-10 decimals. When using rational numbers, each real number is stored as two integer
numbers representing the numerator and denominator. The basic fractional arithmetic operations are used for
addition, subtraction, multiplication, and division, as shown in Figure 1.10 (Rational number mathematics).

Rational number mathematics

Figure 1.10

The limitation that occurs when using rational numbers to represent real numbers is that the size of the
numerators and denominators tends to grow. For each addition, a common denominator must be found. To

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

31

keep the numbers from becoming extremely large, during each operation, it is important to �nd the greatest
common divisor (GCD) to reduce fractions to their most compact representation. When the values grow
and there are no common divisors, either the large integer values must be stored using dynamic memory or
some form of approximation must be used, thus losing the primary advantage of rational numbers.

For mathematical packages such as Maple or Mathematica that need to produce exact results on smaller
data sets, the use of rational numbers to represent real numbers is at times a useful technique. The perfor-
mance and storage cost is less signi�cant than the need to produce exact results in some instances.

1.2.3.3 Fixed Point

If the desired number of decimal places is known in advance, it's possible to use �xed-point representation.
Using this technique, each real number is stored as a scaled integer. This solves the problem that base-10
fractions such as 0.1 or 0.01 cannot be perfectly represented as a base-2 fraction. If you multiply 110.77
by 100 and store it as a scaled integer 11077, you can perfectly represent the base-10 fractional part (0.77).
This approach can be used for values such as money, where the number of digits past the decimal point is
small and known.

However, just because all numbers can be accurately represented it doesn't mean there are not errors with
this format. When multiplying a �xed-point number by a fraction, you get digits that can't be represented
in a �xed-point format, so some form of rounding must be used. For example, if you have $125.87 in the
bank at 4% interest, your interest amount would be $5.0348. However, because your bank balance only has
two digits of accuracy, they only give you $5.03, resulting in a balance of $130.90. Of course you probably
have heard many stories of programmers getting rich depositing many of the remaining 0.0048 amounts into
their own account. My guess is that banks have probably �gured that one out by now, and the bank keeps
the money for itself. But it does make one wonder if they round or truncate in this type of calculation.22

1.2.3.4 Mantissa/Exponent

The �oating-point format that is most prevalent in high performance computing is a variation on scienti�c
notation. In scienti�c notation the real number is represented using a mantissa, base, and exponent: 6.02 ×
1023.

The mantissa typically has some �xed number of places of accuracy. The mantissa can be represented in
base 2, base 16, or BCD. There is generally a limited range of exponents, and the exponent can be expressed
as a power of 2, 10, or 16.

The primary advantage of this representation is that it provides a wide overall range of values while using
a �xed-length storage representation. The primary limitation of this format is that the di�erence between
two successive values is not uniform. For example, assume that you can represent three base-10 digits,
and your exponent can range from �10 to 10. For numbers close to zero, the �distance� between successive
numbers is very small. For the number 1.72× 10−10, the next larger number is 1.73× 10−10. The distance
between these two �close� small numbers is 0.000000000001. For the number 6.33 × 1010, the next larger
number is 6.34× 1010. The distance between these �close� large numbers is 100 million.

In Figure 1.11 (Distance between successive �oating-point numbers), we use two base-2 digits with an
exponent ranging from �1 to 1.

22Perhaps banks round this instead of truncating, knowing that they will always make it up in teller machine fees.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

32 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

Distance between successive �oating-point numbers

Figure 1.11

There are multiple equivalent representations of a number when using scienti�c notation:
6.00× 105

0.60× 106

0.06× 107

By convention, we shift the mantissa (adjust the exponent) until there is exactly one nonzero digit to
the left of the decimal point. When a number is expressed this way, it is said to be �normalized.� In the
above list, only 6.00 × 105 is normalized. Figure 1.12 (Normalized �oating-point numbers) shows how some
of the �oating-point numbers from Figure 1.11 (Distance between successive �oating-point numbers) are not
normalized.

While the mantissa/exponent has been the dominant �oating-point approach for high performance com-
puting, there were a wide variety of speci�c formats in use by computer vendors. Historically, each computer
vendor had their own particular format for �oating-point numbers. Because of this, a program executed on
several di�erent brands of computer would generally produce di�erent answers. This invariably led to heated
discussions about which system provided the right answer and which system(s) were generating meaningless
results.23

Normalized �oating-point numbers

Figure 1.12

23Interestingly, there was an easy answer to the question for many programmers. Generally they trusted the results from the
computer they used to debug the code and dismissed the results from other computers as garbage.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

33

When storing �oating-point numbers in digital computers, typically the mantissa is normalized, and then
the mantissa and exponent are converted to base-2 and packed into a 32- or 64-bit word. If more bits were
allocated to the exponent, the overall range of the format would be increased, and the number of digits of
accuracy would be decreased. Also the base of the exponent could be base-2 or base-16. Using 16 as the
base for the exponent increases the overall range of exponents, but because normalization must occur on
four-bit boundaries, the available digits of accuracy are reduced on the average. Later we will see how the
IEEE 754 standard for �oating-point format represents numbers.

1.2.4 E�ects of Floating-Point Representation24

One problem with the mantissa/base/exponent representation is that not all base-10 numbers can be ex-
pressed perfectly as a base-2 number. For example, 1/2 and 0.25 can be represented perfectly as base-2
values, while 1/3 and 0.1 produce in�nitely repeating base-2 decimals. These values must be rounded to
be stored in the �oating-point format. With su�cient digits of precision, this generally is not a problem
for computations. However, it does lead to some anomalies where algebraic rules do not appear to apply.
Consider the following example:

REAL*4 X,Y

X = 0.1

Y = 0

DO I=1,10

Y = Y + X

ENDDO

IF (Y .EQ. 1.0) THEN

PRINT *,'Algebra is truth'

ELSE

PRINT *,'Not here'

ENDIF

PRINT *,1.0-Y

END

At �rst glance, this appears simple enough. Mathematics tells us ten times 0.1 should be one. Unfortunately,
because 0.1 cannot be represented exactly as a base-2 decimal, it must be rounded. It ends up being rounded
down to the last bit. When ten of these slightly smaller numbers are added together, it does not quite add
up to 1.0. When X and Y are REAL*4, the di�erence is about 10-7, and when they are REAL*8, the di�erence
is about 10-16.

One possible method for comparing computed values to constants is to subtract the values and test to
see how close the two values become. For example, one can rewrite the test in the above code to be:

IF (ABS(1.0-Y).LT. 1E-6) THEN

PRINT *,'Close enough for government work'

ELSE

PRINT *,'Not even close'

ENDIF

24This content is available online at <http://cnx.org/content/m32755/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

34 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

The type of the variables in question and the expected error in the computation that produces Y determines
the appropriate value used to declare that two values are close enough to be declared equal.

Another area where inexact representation becomes a problem is the fact that algebraic inverses do not
hold with all �oating-point numbers. For example, using REAL*4, the value (1.0/X) * X does not evaluate
to 1.0 for 135 values of X from one to 1000. This can be a problem when computing the inverse of a
matrix using LU-decomposition. LU-decomposition repeatedly does division, multiplication, addition, and
subtraction. If you do the straightforward LU-decomposition on a matrix with integer coe�cients that has an
integer solution, there is a pretty good chance you won't get the exact solution when you run your algorithm.
Discussing techniques for improving the accuracy of matrix inverse computation is best left to a numerical
analysis text.

1.2.5 More Algebra That Doesn't Work25

While the examples in the proceeding section focused on the limitations of multiplication and division,
addition and subtraction are not, by any means, perfect. Because of the limitation of the number of digits
of precision, certain additions or subtractions have no e�ect. Consider the following example using REAL*4

with 7 digits of precision:

X = 1.25E8

Y = X + 7.5E-3

IF (X.EQ.Y) THEN

PRINT *,'Am I nuts or what?'

ENDIF

While both of these numbers are precisely representable in �oating-point, adding them is problematic. Prior
to adding these numbers together, their decimal points must be aligned as in Figure 1.13 (Figure 4-4: Loss
of accuracy while aligning decimal points).

Figure 4-4: Loss of accuracy while aligning decimal points

Figure 1.13

25This content is available online at <http://cnx.org/content/m32754/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

35

Unfortunately, while we have computed the exact result, it cannot �t back into a REAL*4 variable (7
digits of accuracy) without truncating the 0.0075. So after the addition, the value in Y is exactly 1.25E8.
Even sadder, the addition could be performed millions of times, and the value for Y would still be 1.25E8.

Because of the limitation on precision, not all algebraic laws apply all the time. For instance, the answer
you obtain from X+Y will be the same as Y+X, as per the commutative law for addition. Whichever operand
you pick �rst, the operation yields the same result; they are mathematically equivalent. It also means that
you can choose either of the following two forms and get the same answer:

(X + Y) + Z

(Y + X) + Z

However, this is not equivalent:

(Y + Z) + X

The third version isn't equivalent to the �rst two because the order of the calculations has changed. Again, the
rearrangement is equivalent algebraically, but not computationally. By changing the order of the calculations,
we have taken advantage of the associativity of the operations; we have made an associative transformation
of the original code.

To understand why the order of the calculations matters, imagine that your computer can perform
arithmetic signi�cant to only �ve decimal places.

Also assume that the values of X, Y, and Z are .00005, .00005, and 1.0000, respectively. This means that:

(X + Y) + Z = .00005 + .00005 + 1.0000

= .0001 + 1.0000 = 1.0001

but:

(Y + Z) + X = .00005 + 1.0000 + .00005

= 1.0000 + .00005 = 1.0000

The two versions give slightly di�erent answers. When adding Y+Z+X, the sum of the smaller numbers was
insigni�cant when added to the larger number. But when computing X+Y+Z, we add the two small numbers
�rst, and their combined sum is large enough to in�uence the �nal answer. For this reason, compilers
that rearrange operations for the sake of performance generally only do so after the user has requested
optimizations beyond the defaults.

For these reasons, the FORTRAN language is very strict about the exact order of evaluation of ex-
pressions. To be compliant, the compiler must ensure that the operations occur exactly as you express
them.26

26Often even if you didn't mean it.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

36 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

For Kernighan and Ritchie C, the operator precedence rules are di�erent. Although the precedences
between operators are honored (i.e., * comes before +, and evaluation generally occurs left to right for
operators of equal precedence), the compiler is allowed to treat a few commutative operations (+, *, &, �
and |) as if they were fully associative, even if they are parenthesized. For instance, you might tell the C
compiler:

a = x + (y + z);

However, the C compiler is free to ignore you, and combine X, Y, and Z in any order it pleases.
Now armed with this knowledge, view the following harmless-looking code segment:

REAL*4 SUM,A(1000000)

SUM = 0.0

DO I=1,1000000

SUM = SUM + A(I)

ENDDO

Begins to look like a nightmare waiting to happen. The accuracy of this sum depends of the relative
magnitudes and order of the values in the array A. If we sort the array from smallest to largest and then
perform the additions, we have a more accurate value. There are other algorithms for computing the sum
of an array that reduce the error without requiring a full sort of the data. Consult a good textbook on
numerical analysis for the details on these algorithms.

If the range of magnitudes of the values in the array is relatively small, the straight- forward computation
of the sum is probably su�cient.

1.2.6 Improving Accuracy Using Guard Digits27

In this section we explore a technique to improve the precision of �oating-point computations without using
additional storage space for the �oating-point numbers.

Consider the following example of a base-10 system with �ve digits of accuracy performing the following
subtraction:

10.001 - 9.9993 = 0.0017

All of these values can be perfectly represented using our �oating-point format. However, if we only have
�ve digits of precision available while aligning the decimal points during the computation, the results end
up with signi�cant error as shown in Figure 1.14 (Need for guard digits).

27This content is available online at <http://cnx.org/content/m32744/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

37

Need for guard digits

Figure 1.14

To perform this computation and round it correctly, we do not need to increase the number of signi�cant
digits for stored values. We do, however, need additional digits of precision while performing the computation.

The solution is to add extra guard digits which are maintained during the interim steps of the compu-
tation. In our case, if we maintained six digits of accuracy while aligning operands, and rounded before
normalizing and assigning the �nal value, we would get the proper result. The guard digits only need to be
present as part of the �oating-point execution unit in the CPU. It is not necessary to add guard digits to
the registers or to the values stored in memory.

It is not necessary to have an extremely large number of guard digits. At some point, the di�erence in
the magnitude between the operands becomes so great that lost digits do not a�ect the addition or rounding
results.

1.2.7 History of IEEE Floating-Point Format28

1.2.7.1 History of IEEE Floating-Point Format

Prior to the RISC microprocessor revolution, each vendor had their own �oating- point formats based on
their designers' views of the relative importance of range versus accuracy and speed versus accuracy. It was
not uncommon for one vendor to carefully analyze the limitations of another vendor's �oating-point format
and use this information to convince users that theirs was the only �accurate� �oating- point implementation.
In reality none of the formats was perfect. The formats were simply imperfect in di�erent ways.

During the 1980s the Institute for Electrical and Electronics Engineers (IEEE) produced a standard for
the �oating-point format. The title of the standard is �IEEE 754-1985 Standard for Binary Floating-Point
Arithmetic.� This standard provided the precise de�nition of a �oating-point format and described the
operations on �oating-point values.

Because IEEE 754 was developed after a variety of �oating-point formats had been in use for quite some
time, the IEEE 754 working group had the bene�t of examining the existing �oating-point designs and
taking the strong points, and avoiding the mistakes in existing designs. The IEEE 754 speci�cation had
its beginnings in the design of the Intel i8087 �oating-point coprocessor. The i8087 �oating-point format
improved on the DEC VAX �oating-point format by adding a number of signi�cant features.

The near universal adoption of IEEE 754 �oating-point format has occurred over a 10-year time period.
The high performance computing vendors of the mid 1980s (Cray IBM, DEC, and Control Data) had their
own proprietary �oating-point formats that they had to continue supporting because of their installed user
base. They really had no choice but to continue to support their existing formats. In the mid to late
1980s the primary systems that supported the IEEE format were RISC workstations and some coprocessors

28This content is available online at <http://cnx.org/content/m32770/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

38 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

for microprocessors. Because the designers of these systems had no need to protect a proprietary �oating-
point format, they readily adopted the IEEE format. As RISC processors moved from general-purpose
integer computing to high performance �oating-point computing, the CPU designers found ways to make
IEEE �oating-point operations operate very quickly. In 10 years, the IEEE 754 has gone from a standard
for �oating-point coprocessors to the dominant �oating-point standard for all computers. Because of this
standard, we, the users, are the bene�ciaries of a portable �oating-point environment.

1.2.7.2 IEEE Floating-Point Standard

The IEEE 754 standard speci�ed a number of di�erent details of �oating-point operations, including:

• Storage formats
• Precise speci�cations of the results of operations
• Special values
• Speci�ed runtime behavior on illegal operations

Specifying the �oating-point format to this level of detail insures that when a computer system is compliant
with the standard, users can expect repeatable execution from one hardware platform to another when
operations are executed in the same order.

1.2.7.3 IEEE Storage Format

The two most common IEEE �oating-point formats in use are 32- and 64-bit numbers. Table 1.2: Parameters
of IEEE 32- and 64-Bit Formats gives the general parameters of these data types.

Parameters of IEEE 32- and 64-Bit Formats

IEEE75 FORTRAN C Bits Exponent Bits Mantissa Bits

Single REAL*4 �oat 32 8 24

Double REAL*8 double 64 11 53

Double-Extended REAL*10 long double >=80 >=15 >=64

Table 1.2

In FORTRAN, the 32-bit format is usually called REAL, and the 64-bit format is usually called DOUBLE.
However, some FORTRAN compilers double the sizes for these data types. For that reason, it is safest to
declare your FORTRAN variables as REAL*4 or REAL*8. The double-extended format is not as well supported
in compilers and hardware as the single- and double-precision formats. The bit arrangement for the single
and double formats are shown in Figure 1.15 (IEEE754 �oating-point formats).

Based on the storage layouts in Table 1.2: Parameters of IEEE 32- and 64-Bit Formats, we can derive
the ranges and accuracy of these formats, as shown in Table 1.3.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

39

IEEE754 �oating-point formats

Figure 1.15

IEEE754 Minimum Normalized Number Largest Finite Number Base-10 Accuracy

Single 1.2E-38 3.4 E+38 6-9 digits

Double 2.2E-308 1.8 E+308 15-17 digits

Extended Double 3.4E-4932 1.2 E+4932 18-21 digits

Table 1.3: Range and Accuracy of IEEE 32- and 64-Bit Formats

1.2.7.3.1 Converting from Base-10 to IEEE Internal Format

We now examine how a 32-bit �oating-point number is stored. The high-order bit is the sign of the number.
Numbers are stored in a sign-magnitude format (i.e., not 2's - complement). The exponent is stored in the
8-bit �eld biased by adding 127 to the exponent. This results in an exponent ranging from -126 through
+127.

The mantissa is converted into base-2 and normalized so that there is one nonzero digit to the left of
the binary place, adjusting the exponent as necessary. The digits to the right of the binary point are then
stored in the low-order 23 bits of the word. Because all numbers are normalized, there is no need to store
the leading 1.

This gives a free extra bit of precision. Because this bit is dropped, it's no longer proper to refer to the
stored value as the mantissa. In IEEE parlance, this mantissa minus its leading digit is called the signi�cand.

Figure 1.16 (Converting from base-10 to IEEE 32-bit format) shows an example conversion from base-10
to IEEE 32-bit format.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

40 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

Converting from base-10 to IEEE 32-bit format

Figure 1.16

The 64-bit format is similar, except the exponent is 11 bits long, biased by adding 1023 to the exponent,
and the signi�cand is 54 bits long.

1.2.8 IEEE Operations29

The IEEE standard speci�es how computations are to be performed on �oating- point values on the following
operations:

• Addition
• Subtraction
• Multiplication
• Division
• Square root
• Remainder (modulo)
• Conversion to/from integer
• Conversion to/from printed base-10

These operations are speci�ed in a machine-independent manner, giving �exibility to the CPU designers to
implement the operations as e�ciently as possible while maintaining compliance with the standard. During
operations, the IEEE standard requires the maintenance of two guard digits and a sticky bit for intermediate
values. The guard digits above and the sticky bit are used to indicate if any of the bits beyond the second
guard digit is nonzero.

29This content is available online at <http://cnx.org/content/m32756/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

41

Computation using guard and sticky bits

Figure 1.17

In Figure 1.17 (Computation using guard and sticky bits), we have �ve bits of normal precision, two
guard digits, and a sticky bit. Guard bits simply operate as normal bits � as if the signi�cand were 25
bits. Guard bits participate in rounding as the extended operands are added. The sticky bit is set to 1 if
any of the bits beyond the guard bits is nonzero in either operand.30 Once the extended sum is computed,
it is rounded so that the value stored in memory is the closest possible value to the extended sum including
the guard digits. Table 1.4 shows all eight possible values of the two guard digits and the sticky bit and the
resulting stored value with an explanation as to why.

30If you are somewhat hardware-inclined and you think about it for a moment, you will soon come up with a way to properly
maintain the sticky bit without ever computing the full �in�nite precision sum.� You just have to keep track as things get
shifted around.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

42 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

Extended Sum Stored Value Why

1.0100 000 1.0100 Truncated based on guard digits

1.0100 001 1.0100 Truncated based on guard digits

1.0100 010 1.0100 Rounded down based on guard digits

1.0100 011 1.0100 Rounded down based on guard digits

1.0100 100 1.0100 Rounded down based on sticky bit

1.0100 101 1.0101 Rounded up based on sticky bit

1.0100 110 1.0101 Rounded up based on guard digits

1.0100 111 1.0101 Rounded up based on guard digits

Table 1.4: Extended Sums and Their Stored Values

The �rst priority is to check the guard digits. Never forget that the sticky bit is just a hint, not a real
digit. So if we can make a decision without looking at the sticky bit, that is good. The only decision we
are making is to round the last storable bit up or down. When that stored value is retrieved for the next
computation, its guard digits are set to zeros. It is sometimes helpful to think of the stored value as having
the guard digits, but set to zero.

Two guard digits and the sticky bit in the IEEE format insures that operations yield the same rounding
as if the intermediate result were computed using unlimited precision and then rounded to �t within the
limits of precision of the �nal computed value.

At this point, you might be asking, �Why do I care about this minutiae?� At some level, unless you are a
hardware designer, you don't care. But when you examine details like this, you can be assured of one thing:
when they developed the IEEE �oating-point standard, they looked at the details very carefully. The goal
was to produce the most accurate possible �oating-point standard within the constraints of a �xed-length
32- or 64-bit format. Because they did such a good job, it's one less thing you have to worry about. Besides,
this stu� makes great exam questions.

1.2.9 Special Values31

In addition to specifying the results of operations on numeric data, the IEEE standard also speci�es the
precise behavior on unde�ned operations such as dividing by zero. These results are indicated using several
special values. These values are bit patterns that are stored in variables that are checked before operations
are performed. The IEEE operations are all de�ned on these special values in addition to the normal numeric
values. Table 1.5: Special Values for an IEEE 32-Bit Number summarizes the special values for a 32-bit
IEEE �oating-point number.

Special Values for an IEEE 32-Bit Number

Special Value Exponent Signi�cand

+ or � 0 00000000 0

Denormalized number 00000000 nonzero

NaN (Not a Number) 11111111 nonzero

+ or � In�nity 11111111 0

Table 1.5

31This content is available online at <http://cnx.org/content/m32758/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

43

The value of the exponent and signi�cand determines which type of special value this particular �oating-
point number represents. Zero is designed such that integer zero and �oating-point zero are the same bit
pattern.

Denormalized numbers can occur at some point as a number continues to get smaller, and the exponent
has reached the minimum value. We could declare that minimum to be the smallest representable value.
However, with denormalized values, we can continue by setting the exponent bits to zero and shifting the
signi�cand bits to the right, �rst adding the leading �1� that was dropped, then continuing to add leading
zeros to indicate even smaller values. At some point the last nonzero digit is shifted o� to the right, and the
value becomes zero. This approach is called gradual under�ow where the value keeps approaching zero and
then eventually becomes zero. Not all implementations support denormalized numbers in hardware; they
might trap to a software routine to handle these numbers at a signi�cant performance cost.

At the top end of the biased exponent value, an exponent of all 1s can represent the Not a Number
(NaN) value or in�nity. In�nity occurs in computations roughly according to the principles of mathematics.
If you continue to increase the magnitude of a number beyond the range of the �oating-point format, once
the range has been exceeded, the value becomes in�nity. Once a value is in�nity, further additions won't
increase it, and subtractions won't decrease it. You can also produce the value in�nity by dividing a nonzero
value by zero. If you divide a nonzero value by in�nity, you get zero as a result.

The NaN value indicates a number that is not mathematically de�ned. You can generate a NaN by
dividing zero by zero, dividing in�nity by in�nity, or taking the square root of -1. The di�erence between
in�nity and NaN is that the NaN value has a nonzero signi�cand. The NaN value is very sticky. Any
operation that has a NaN as one of its inputs always produces a NaN result.

1.2.10 Exceptions and Traps32

In addition to de�ning the results of computations that aren't mathematically de�ned, the IEEE standard
provides programmers with the ability to detect when these special values are being produced. This way,
programmers can write their code without adding extensive IF tests throughout the code checking for the
magnitude of values. Instead they can register a trap handler for an event such as under�ow and handle the
event when it occurs. The exceptions de�ned by the IEEE standard include:

• Over�ow to in�nity
• Under�ow to zero
• Division by zero
• Invalid operation
• Inexact operation

According to the standard, these traps are under the control of the user. In most cases, the compiler runtime
library manages these traps under the direction from the user through compiler �ags or runtime library calls.
Traps generally have signi�cant overhead compared to a single �oating-point instruction, and if a program
is continually executing trap code, it can signi�cantly impact performance.

In some cases it's appropriate to ignore traps on certain operations. A commonly ignored trap is the
under�ow trap. In many iterative programs, it's quite natural for a value to keep reducing to the point where
it �disappears.� Depending on the application, this may or may not be an error situation so this exception
can be safely ignored.

If you run a program and then it terminates, you see a message such as:

Overflow handler called 10,000,000 times

It probably means that you need to �gure out why your code is exceeding the range of the �oating-point
format. It probably also means that your code is executing more slowly because it is spending too much
time in its error handlers.

32This content is available online at <http://cnx.org/content/m32760/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

44 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

1.2.11 Compiler Issues33

The IEEE 754 �oating-point standard does a good job describing how �oating- point operations are to be
performed. However, we generally don't write assembly language programs. When we write in a higher-level
language such as FORTRAN, it's sometimes di�cult to get the compiler to generate the assembly language
you need for your application. The problems fall into two categories:

• The compiler is too conservative in trying to generate IEEE-compliant code and produces code that
doesn't operate at the peak speed of the processor. On some processors, to fully support gradual under-
�ow, extra instructions must be generated for certain instructions. If your code will never under�ow,
these instructions are unnecessary overhead.

• The optimizer takes liberties rewriting your code to improve its performance, eliminating some neces-
sary steps. For example, if you have the following code:

Z = X + 500

Y = Z - 200

The optimizer may replace it with Y = X + 300. However, in the case of a value for X that is close to
over�ow, the two sequences may not produce the same result.

Sometimes a user prefers �fast� code that loosely conforms to the IEEE standard, and at other times the
user will be writing a numerical library routine and need total control over each �oating-point operation.
Compilers have a challenge supporting the needs of both of these types of users. Because of the nature of
the high performance computing market and benchmarks, often the �fast and loose� approach prevails in
many compilers.

1.2.12 Closing Notes34

While this is a relatively long chapter with a lot of technical detail, it does not even begin to scratch the
surface of the IEEE �oating-point format or the entire �eld of numerical analysis. We as programmers must
be careful about the accuracy of our programs, lest the results become meaningless. Here are a few basic
rules to get you started:

• Look for compiler options that relax or enforce strict IEEE compliance and choose the appropriate
option for your program. You may even want to change these options for di�erent portions of your
program.

• Use REAL*8 for computations unless you are sure REAL*4 has su�cient precision. Given that REAL*4
has roughly 7 digits of precision, if the bottom digits become meaningless due to rounding and compu-
tations, you are in some danger of seeing the e�ect of the errors in your results. REAL*8 with 13 digits
makes this much less likely to happen.

• Be aware of the relative magnitude of numbers when you are performing additions.
• When summing up numbers, if there is a wide range, sum from smallest to largest.
• Perform multiplications before divisions whenever possible.
• When performing a comparison with a computed value, check to see if the values are �close� rather

than identical.
• Make sure that you are not performing any unnecessary type conversions during the critical portions

of your code.

33This content is available online at <http://cnx.org/content/m32762/1.3/>.
34This content is available online at <http://cnx.org/content/m32768/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

45

An excellent reference on �oating-point issues and the IEEE format is �What Every Computer Scientist
Should Know About Floating-Point Arithmetic,� written by David Goldberg, in ACM Computing Surveys
magazine (March 1991). This article gives examples of the most common problems with �oating-point and
outlines the solutions. It also covers the IEEE �oating-point format very thoroughly. I also recommend
you consult Dr. William Kahan's home page (http://www.cs.berkeley.edu/∼wkahan/35) for some excellent
materials on the IEEE format and challenges using �oating-point arithmetic. Dr. Kahan was one of the
original designers of the Intel i8087 and the IEEE 754 �oating-point format.

1.2.13 Exercises36

Exercise 1.2.13.1
Run the following code to count the number of inverses that are not perfectly accurate:

REAL*4 X,Y,Z

INTEGER I

I = 0

DO X=1.0,1000.0,1.0

Y = 1.0 / X

Z = Y * X

IF (Z .NE. 1.0) THEN

I = I + 1

ENDIF

ENDDO

PRINT *,'Found ',I

END

Exercise 1.2.13.2
Change the type of the variables to REAL*8 and repeat. Make sure to keep the optimization at a
su�ciently low level (-00) to keep the compiler from eliminating the computations.

Exercise 1.2.13.3
Write a program to determine the number of digits of precision for REAL*4 and REAL*8.

Exercise 1.2.13.4
Write a program to demonstrate how summing an array forward to backward and backward to
forward can yield a di�erent result.

Exercise 1.2.13.5
Assuming your compiler supports varying levels of IEEE compliance, take a signi�cant computa-
tional code and test its overall performance under the various IEEE compliance options. Do the
results of the program change?

35http://www.cs.berkeley.edu/∼wkahan/
36This content is available online at <http://cnx.org/content/m32765/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

46 CHAPTER 1. MODERN COMPUTER ARCHITECTURES

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

Chapter 2

Programming and Tuning Software

2.1 What a Compiler Does

2.1.1 Introduction1

2.1.1.1 What a Compiler Does

The goal of an optimizing compiler is the e�cient translation of a higher-level language into the fastest possi-
ble machine language that accurately represents the high-level language source. What makes a representation
good is: it gives the correct answers, and it executes quickly.

Naturally, it makes no di�erence how fast a program runs if it doesn't produce the right answers.2 But
given an expression of a program that executes correctly, an optimizing compiler looks for ways to streamline
it. As a �rst cut, this usually means simplifying the code, throwing out extraneous instructions, and sharing
intermediate results between statements. More advanced optimizations seek to restructure the program and
may actually make the code grow in size, though the number of instructions executed will (hopefully) shrink.

When it comes to �nally generating machine language, the compiler has to know about the registers
and rules for issuing instructions. For performance, it needs to understand the costs of those instructions
and the latencies of machine resources, such as the pipelines. This is especially true for processors that can
execute more than one instruction at a time. It takes a balanced instruction mix � the right proportion of
�oating-point, �xed point, memory and branch operations, etc. � to keep the machine busy.

Initially compilers were tools that allowed us to write in something more readable than assembly language.
Today they border on arti�cial intelligence as they take our high-level source code and translate it into highly
optimized machine language across a wide variety of single- and multiple-processor architectures. In the area
of high performance computing, the compiler at times has a greater impact on the performance of our program
than either the processor or memory architecture. Throughout the history of high performance computing,
if we are not satis�ed with the performance of our program written in a high-level language, we will gladly
rewrite all or part of the program in assembly language. Thankfully, today's compilers usually make that
step unnecessary.

In this chapter we cover the basic operation of optimizing compilers. In a later chapter we will cover
the techniques used to analyze and compile programs for advanced architectures such as parallel or vector
processing systems. We start our look at compilers examining how the relationship between programmers
and their compilers has changed over time.

1This content is available online at <http://cnx.org/content/m33690/1.3/>.
2However, you can sometimes trade accuracy for speed.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

47

48 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

2.1.2 History of Compilers3

If you have been in high performance computing since its beginning in the 1950s, you have programmed
in several languages during that time. During the 1950s and early 1960s, you programmed in assembly
language. The constraint on memory and slow clock rates made every instruction precious. With small
memories, overall program size was typically small, so assembly language was su�cient. Toward the end
of the 1960s, programmers began writing more of their code in a high-level language such as FORTRAN.
Writing in a high-level language made your work much more portable, reliable, and maintainable. Given
the increasing speed and capacity of computers, the cost of using a high-level language was something most
programmers were willing to accept. In the 1970s if a program spent a particularly large amount of time
in a particular routine, or the routine was part of the operating system or it was a commonly used library,
most likely it was written in assembly language.

During the late 1970s and early 1980s, optimizing compilers continued to improve to the point that all
but the most critical portions of general-purpose programs were written in high-level languages. On the
average, the compilers generate better code than most assembly language programmers. This was often
because a compiler could make better use of hardware resources such as registers. In a processor with 16
registers, a programmer might adopt a convention regarding the use of registers to help keep track of what
value is in what register. A compiler can use each register as much as it likes because it can precisely track
when a register is available for another use.

However, during that time, high performance computer architecture was also evolving. Cray Research
was developing vector processors at the very top end of the computing spectrum. Compilers were not quite
ready to determine when these new vector instructions could be used. Programmers were forced to write
assembly language or create highly hand-tuned FORTRAN that called the appropriate vector routines in
their code. In a sense, vector processors turned back the clock when it came to trusting the compiler for a
while. Programmers never lapsed completely into assembly language, but some of their FORTRAN started
looking rather un-FORTRAN like. As the vector computers matured, their compilers became increasingly
able to detect when vectorization could be performed. At some point, the compilers again became better
than programmers on these architectures. These new compilers reduced the need for extensive directives or
language extensions.4

The RISC revolution led to an increasing dependence on the compiler. Programming early RISC proces-
sors such as the Intel i860 was painful compared to CISC processors. Subtle di�erences in the way a program
was coded in machine language could have a signi�cant impact on the overall performance of the program.
For example, a programmer might have to count the instruction cycles between a load instruction and the
use of the results of the load in a computational instruction. As superscalar processors were developed,
certain pairs of instructions could be issued simultaneously, and others had to be issued serially. Because
there were a large number of di�erent RISC processors produced, programmers did not have time to learn
the nuances of wringing the last bit of performance out of each processor. It was much easier to lock the
processor designer and the compiler writer together (hopefully they work for the same company) and have
them hash out the best way to generate the machine code. Then everyone would use the compiler and get
code that made reasonably good use of the hardware.

The compiler became an important tool in the processor design cycle. Processor designers had much
greater �exibility in the types of changes they could make. For example, it would be a good design in the
next revision of a processor to execute existing codes 10% slower than a new revision, but by recompiling
the code, it would perform 65% faster. Of course it was important to actually provide that compiler when
the new processor was shipped and have the compiler give that level of performance across a wide range of
codes rather than just one particular benchmark suite.

3This content is available online at <http://cnx.org/content/m33686/1.3/>.
4The Livermore Loops was a benchmark that speci�cally tested the capability of a compiler to e�ectively optimize a set of

loops. In addition to being a performance benchmark, it was also a compiler benchmark.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

49

2.1.3 Which Language To Optimize5

It has been said, �I don't know what language they will be using to program high performance computers 10
years from now, but we do know it will be called FORTRAN.� At the risk of inciting outright warfare, we
need to discuss the strengths and weaknesses of languages that are used for high performance computing.
Most computer scientists (not computational scientists) train on a steady diet of C, C++,6 or some other
language focused on data structures or objects. When students encounter high performance computing for
the �rst time, there is an immediate desire to keep programming in their favorite language. However, to get
the peak performance across a wide range of architectures, FORTRAN is the only practical language.

When students ask why this is, usually the �rst answer is, �Because it has always been that way.� In
one way this is correct. Physicists, mechanical engineers, chemists, structural engineers, and meteorologists
do most programming on high performance computers. FORTRAN is the language of those �elds. (When
was the last time a computer science student wrote a properly working program that computed for a week?)
So naturally the high performance computer vendors put more e�ort into making FORTRAN work well on
their architecture.

This is not the only reason that FORTRAN is a better language, however. There are some fundamental
elements that make C, C++, or any data structures-oriented language unsuitable for high performance
programming. In a word, that problem is pointers. Pointers (or addresses) are the way good computer
scientists construct linked lists, binary trees, binomial queues, and all those nifty data structures. The
problem with pointers is that the e�ect of a pointer operation is known only at execution time when the
value of the pointer is loaded from memory. Once an optimizing compiler sees a pointer, all bets are o�.
It cannot make any assumptions about the e�ect of a pointer operation at compile time. It must generate
conservative (less optimized) code that simply does exactly the same operation in machine code that the
high-level language described.

While the lack of pointers in FORTRAN is a boon to optimization, it seriously limits the programmer's
ability to create data structures. In some applications, especially highly scalable network-based applications,
the use of good data structures can signi�cantly improve the overall performance of the application. To solve
this, in the FORTRAN 90 speci�cation, pointers have been added to FORTRAN. In some ways, this was an
attempt by the FORTRAN community to keep programmers from beginning to use C in their applications for
the data structure areas of their applications. If programmers begin to use pointers throughout their codes,
their FORTRAN programs will su�er from the same problems that inhibit optimization in C programs. In
a sense FORTRAN has given up its primary advantage over C by trying to be more like C. The debate over
pointers is one reason that the adoption rate of FORTRAN 90 somewhat slowed. Many programmers prefer
to do their data structure, communications, and other bookkeeping work in C, while doing the computations
in FORTRAN 77.

FORTRAN 90 also has strengths and weaknesses when compared to FORTRAN 77 on high performance
computing platforms. FORTRAN 90 has a strong advantage over FORTRAN 77 in the area of improved
semantics that enable more opportunities for advanced optimizations. This advantage is especially true
on distributed memory systems on which data decomposition is a signi�cant factor. (See Section 4.1.1.)
However, until FORTRAN 90 becomes popular, vendors won't be motivated to squeeze the last bit of
performance out of FORTRAN 90.

So while FORTRAN 77 continues to be the mainstream language for high performance computing for
the near future, other languages, like C and FORTRAN 90, have their limited and potentially increasing
roles to play. In some ways the strongest potential challenger to FORTRAN in the long run may come in
the form of a numerical tool set such as Matlab. However, packages such as Matlab have their own set of
optimization challenges that must be overcome before they topple FORTRAN 77's domination.

5This content is available online at <http://cnx.org/content/m33687/1.3/>.
6Just for the record, both the authors of this book are quite accomplished in C, C++, and FORTRAN, so they have no

preconceived notions.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

50 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

2.1.4 Optimizing Compiler Tour7

We will start by taking a walk through an optimizing compiler to see one at work. We think it's interesting,
and if you can empathize with the compiler, you will be a better programmer; you will know what the
compiler wants from you, and what it can do on its own.

2.1.4.1 Compilation Process

Basic compiler processes

Figure 2.1

The compilation process is typically broken down into a number of identi�able steps, as shown in Fig-
ure 2.1 (Basic compiler processes). While not all compilers are implemented in exactly this way, it helps to
understand the di�erent functions a compiler must perform:

1. A precompiler or preprocessor phase is where some simple textual manipulation of the source code
is performed. The preprocessing step can be processing of include �les and making simple string
substitutions throughout the code.

2. The lexical analysis phase is where the incoming source statements are decomposed into tokens such
as variables, constants, comments, or language elements.

3. The parsing phase is where the input is checked for syntax, and the compiler translates the incoming
program into an intermediate language that is ready for optimization.

7This content is available online at <http://cnx.org/content/m33694/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

51

4. One or more optimization passes are performed on the intermediate language.
5. An object code generator translates the intermediate language into assembly code, taking into consid-

eration the particular architectural details of the processor in question.

As compilers become more and more sophisticated in order to wring the last bit of performance from the
processor, some of these steps (especially the optimization and code-generation steps) become more and
more blurred. In this chapter, we focus on the traditional optimizing compiler, and in later chapters we will
look more closely at how modern compilers do more sophisticated optimizations.

2.1.4.2 Intermediate Language Representation

Because we are most interested in the optimization of our program, we start our discussion at the output
of the parse phase of the compiler. The parse phase output is in the form of an an intermediate language
(IL) that is somewhere between a high-level language and assembly language. The intermediate language
expresses the same calculations that were in the original program, in a form the compiler can manipulate
more easily. Furthermore, instructions that aren't present in the source, such as address expressions for
array references, become visible along with the rest of the program, making them subject to optimizations
too.

How would an intermediate language look? In terms of complexity, it's similar to assembly code but not
so simple that the de�nitions8 and uses of variables are lost. We'll need de�nition and use information to
analyze the �ow of data through the program. Typically, calculations are expressed as a stream of quadruples
� statements with exactly one operator, (up to) two operands, and a result.9 Presuming that anything in
the original source program can be recast in terms of quadruples, we have a usable intermediate language. To
give you an idea of how this works, We're going to rewrite the statement below as a series of four quadruples:

A = -B + C * D / E

Taken all at once, this statement has four operators and four operands: /, *, +, and - (negate), and B, C, D,
and E. This is clearly too much to �t into one quadruple. We need a form with exactly one operator and, at
most, two operands per statement. The recast version that follows manages to do this, employing temporary
variables to hold the intermediate results:

T1 = D / E

T2 = C * T1

T3 = -B

A = T3 + T2

A workable intermediate language would, of course, need some other features, like pointers. We're going to
suggest that we create our own intermediate language to investigate how optimizations work. To begin, we
need to establish a few rules:

• Instructions consist of one opcode, two operands, and a result. Depending on the instruction, the
operands may be empty.

• Assignments are of the form X := Y op Z, meaning X gets the result of op applied to Y and Z.
• All memory references are explicit load from or store to �temporaries� tn.
• Logical values used in branches are calculated separately from the actual branch.

8By �de�nitions,� we mean the assignment of values: not declarations.
9More generally, code can be cast as n-tuples. It depends on the level of the intermediate language.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

52 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

• Jumps go to absolute addresses.

If we were building a compiler, we'd need to be a little more speci�c. For our purposes, this will do. Consider
the following bit of C code:

while (j < n) {

k = k + j * 2;

m = j * 2;

j++;

}

This loop translates into the intermediate language representation shown here:

A:: t1 := j

t2 := n

t3 := t1 < t2

jmp (B) t3

jmp (C) TRUE

B:: t4 := k

t5 := j

t6 := t5 * 2

t7 := t4 + t6

k := t7

t8 := j

t9 := t8 * 2

m := t9

t10 := j

t11 := t10 + 1

j := t11

jmp (A) TRUE

C::

Each C source line is represented by several IL statements. On many RISC processors, our IL code is so
close to machine language that we could turn it directly into object code.10 Often the lowest optimization
level does a literal translation from the intermediate language to machine code. When this is done, the code
generally is very large and performs very poorly. Looking at it, you can see places to save a few instructions.
For instance, j gets loaded into temporaries in four places; surely we can reduce that. We have to do some
analysis and make some optimizations.

2.1.4.3 Basic Blocks

After generating our intermediate language, we want to cut it into basic blocks. These are code sequences
that start with an instruction that either follows a branch or is itself a target for a branch. Put another

10See Section 5.2.1 for some examples of machine code translated directly from intermediate language.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

53

way, each basic block has one entrance (at the top) and one exit (at the bottom). Figure 2.2 (Intermediate
language divided into basic blocks) represents our IL code as a group of three basic blocks. Basic blocks
make code easier to analyze. By restricting �ow of control within a basic block from top to bottom and
eliminating all the branches, we can be sure that if the �rst statement gets executed, the second one does
too, and so on. Of course, the branches haven't disappeared, but we have forced them outside the blocks in
the form of the connecting arrows � the �ow graph.

Intermediate language divided into basic blocks

Figure 2.2

We are now free to extract information from the blocks themselves. For instance, we can say with
certainty which variables a given block uses and which variables it de�nes (sets the value of). We might
not be able to do that if the block contained a branch. We can also gather the same kind of information
about the calculations it performs. After we have analyzed the blocks so that we know what goes in and
what comes out, we can modify them to improve performance and just worry about the interaction between
blocks.

2.1.5 Optimization Levels11

There are a wide variety of optimization techniques, and they are not all applicable in all situations. So the
user is typically given some choices as to whether or not particular optimizations are performed. Often this

11This content is available online at <http://cnx.org/content/m33692/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

54 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

is expressed in the form of an optimization level that is speci�ed on the compiler as a command-line option
such as �O3.

The di�erent levels of optimization controlled by a compiler �ag may include the following:

• No optimization: Generates machine code directly from the intermediate language, which can be very
large and slow code. The primary uses of no optimization are for debuggers and establishing the correct
program output. Because every operation is done precisely as the user speci�ed, it must be right.

• Basic optimizations:Similar to those described in this chapter. They generally work to minimize the
intermediate language and generate fast compact code.

• Interprocedural analysis: Looks beyond the boundaries of a single routine for optimization opportu-
nities. This optimization level might include extending a basic optimization such as copy propagation
across multiple routines. Another result of this technique is procedure inlining where it will improve
performance.

• Runtime pro�le analysis: It is possible to use runtime pro�les to help the compiler generate improved
code based on its knowledge of the patterns of runtime execution gathered from pro�le information.

• Floating-point optimizations: The IEEE �oating-point standard (IEEE 754) speci�es precisely how
�oating- point operations are performed and the precise side e�ects of these operations. The compiler
may identify certain algebraic transformations that increase the speed of the program (such as replac-
ing a division with a reciprocal and a multiplication) but might change the output results from the
unoptimized code.

• Data �ow analysis: Identi�es potential parallelism between instructions, blocks, or even successive loop
iterations.

• Advanced optimization: May include automatic vectorization, parallelization, or data decomposition
on advanced architecture computers.

These optimizations might be controlled by several di�erent compiler options. It often takes some time
to �gure out the best combination of compiler �ags for a particular code or set of codes. In some cases,
programmers compile di�erent routines using di�erent optimization settings for best overall performance.

2.1.6 Classical Optimizations12

Once the intermediate language is broken into basic blocks, there are a number of optimizations that can
be performed on the code in these blocks. Some optimizations are very simple and a�ect a few tuples
within a basic block. Other optimizations move code from one basic block to another without altering the
program results. For example, it is often valuable to move a computation from the body of a loop to the
code immediately preceding the loop.

In this section, we are going to list classical optimizations by name and tell you what they are for.
We're not suggesting that you make the changes; most compilers since the mid-1980s automatically perform
these optimizations at all but their lowest optimization level. As we said at the start of the chapter, if you
understand what the compiler can (and can't) do, you will become a better programmer because you will
be able to play to the compiler's strengths.

2.1.6.1 Copy Propagation

To start, let's look at a technique for untangling calculations. Take a look at the following segment of code:
notice the two computations involving X.

X = Y

12This content is available online at <http://cnx.org/content/m33696/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

55

Z = 1.0 + X

As written, the second statement requires the results of the �rst before it can proceed � you need X

to calculate Z. Unnecessary dependencies could translate into a delay at runtime.13 With a little bit of
rearrangement we can make the second statement independent of the �rst, by propagating a copy of Y. The
new calculation for Z uses the value of Y directly:

X = Y

Z = 1.0 + Y

Notice that we left the �rst statement, X=Y, intact. You may ask, �Why keep it?� The problem is that we
can't tell whether the value of X is needed elsewhere. That is something for another analysis to decide. If it
turns out that no other statement needs the new value of X, the assignment is eliminated later by dead code
removal.

2.1.6.2 Constant Folding

A clever compiler can �nd constants throughout your program. Some of these are �obvious� constants
like those de�ned in parameter statements. Others are less obvious, such as local variables that are never
rede�ned. When you combine them in a calculation, you get a constant expression. The little program below
has two constants, I and K:

PROGRAM MAIN

INTEGER I,K

PARAMETER (I = 100)

K = 200

J = I + K

END

Because I and K are constant individually, the combination I+K is constant, which means that J is a constant
too. The compiler reduces constant expressions like I+K into constants with a technique called constant
folding.

How does constant folding work? You can see that it is possible to examine every path along which a
given variable could be de�ned en route to a particular basic block. If you discover that all paths lead back
to the same value, that is a constant; you can replace all references to that variable with that constant. This
replacement has a ripple-through e�ect. If the compiler �nds itself looking at an expression that is made
up solely of constants, it can evaluate the expression at compile time and replace it with a constant. After
several iterations, the compiler will have located most of the expressions that are candidates for constant
folding.

A programmer can sometimes improve performance by making the compiler aware of the constant values
in your application. For example, in the following code segment:

X = X * Y

13This code is an example of a �ow dependence. I describe dependencies in detail in Section 3.1.1.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

56 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

the compiler may generate quite di�erent runtime code if it knew that Y was 0, 1, 2, or 175.32. If it does not
know the value for Y, it must generate the most conservative (not necessarily the fastest) code sequence. A
programmer can communicate these values through the use of the PARAMETER statement in FORTRAN. By
the use of a parameter statement, the compiler knows the values for these constants at runtime. Another
example we have seen is:

DO I = 1,10000

DO J=1,IDIM

.....

ENDDO

ENDDO

After looking at the code, it's clear that IDIM was either 1, 2, or 3, depending on the data set in use. Clearly
if the compiler knew that IDIM was 1, it could generate much simpler and faster code.

2.1.6.3 Dead Code Removal

Programs often contain sections of dead code that have no e�ect on the answers and can be removed.
Occasionally, dead code is written into the program by the author, but a more common source is the
compiler itself; many optimizations produce dead code that needs to be swept up afterwards.

Dead code comes in two types:

• Instructions that are unreachable
• Instructions that produce results that are never used

You can easily write some unreachable code into a program by directing the �ow of control around it �
permanently. If the compiler can tell it's unreachable, it will eliminate it. For example, it's impossible to
reach the statement I = 4 in this program:

PROGRAM MAIN

I = 2

WRITE (*,*) I

STOP

I = 4

WRITE (*,*) I

END

The compiler throws out everything after the STOP statement and probably gives you a warning. Unreachable
code produced by the compiler during optimization will be quietly whisked away.

Computations with local variables can produce results that are never used. By analyzing a variable's
de�nitions and uses, the compiler can see whether any other part of the routine references it. Of course the
compiler can't tell the ultimate fate of variables that are passed between routines, external or common, so
those computations are always kept (as long as they are reachable).14 In the following program, computations
involving k contribute nothing to the �nal answer and are good candidates for dead code elimination:

14If a compiler does su�cient interprocedural analysis, it can even optimize variables across routine boundaries. Interproce-
dural analysis can be the bane of benchmark codes trying to time a computation without using the results of the computation.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

57

main ()

{

int i,k;

i = k = 1;

i += 1;

k += 2;

printf ("%d\n",i);
}

Dead code elimination has often produced some amazing benchmark results from poorly written benchmarks.
See for an example of this type of code.

2.1.6.4 Strength Reduction

Operations or expressions have time costs associated with them. Sometimes it's possible to replace a more
expensive calculation with a cheaper one. We call this strength reduction. The following code fragment
contains two expensive operations:

REAL X,Y

Y = X**2

J = K*2

For the exponentiation operation on the �rst line, the compiler generally makes an embedded mathematical
subroutine library call. In the library routine, X is converted to a logarithm, multiplied, then converted back.
Overall, raising X to a power is expensive � taking perhaps hundreds of machine cycles. The key is to notice
that X is being raised to a small integer power. A much cheaper alternative would be to express it as X*X,
and pay only the cost of multiplication. The second statement shows integer multiplication of a variable K

by 2. Adding K+K yields the same answer, but takes less time.
There are many opportunities for compiler-generated strength reductions; these are just a couple of them.

We will see an important special case when we look at induction variable simpli�cation. Another example
of a strength reduction is replacing multiplications by integer powers of two by logical shifts.

2.1.6.5 Variable Renaming

In Section 5.1.1, we talked about register renaming. Some processors can make runtime decisions to replace
all references to register 1 with register 2, for instance, to eliminate bottlenecks. Register renaming keeps
instructions that are recycling the same registers for di�erent purposes from having to wait until previous
instructions have �nished with them.

The same situation can occur in programs � the same variable (i.e., memory location) can be recycled
for two unrelated purposes. For example, see the variable x in the following fragment:

x = y * z;

q = r + x + x;

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

58 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

x = a + b;

When the compiler recognizes that a variable is being recycled, and that its current and former uses are
independent, it can substitute a new variable to keep the calculations separate:

x0 = y * z;

q = r + x0 + x0;

x = a + b;

Variable renaming is an important technique because it clari�es that calculations are independent of each
other, which increases the number of things that can be done in parallel.

2.1.6.6 Common Subexpression Elimination

Subexpressions are pieces of expressions. For instance, A+B is a subexpression of C*(A+B). If A+B appears in
several places, like it does below, we call it a common subexpression:

D = C * (A + B)

E = (A + B)/2.

Rather than calculate A + B twice, the compiler can generate a temporary variable and use it wherever A +

B is required:

temp = A + B

D = C * temp

E = temp/2.

Di�erent compilers go to di�erent lengths to �nd common subexpressions. Most pairs, such as A+B, are
recognized. Some can recognize reuse of intrinsics, such as SIN(X). Don't expect the compiler to go too far
though. Subexpressions like A+B+C are not computationally equivalent to reassociated forms like B+C+A, even
though they are algebraically the same. In order to provide predictable results on computations, FORTRAN
must either perform operations in the order speci�ed by the user or reorder them in a way to guarantee
exactly the same result. Sometimes the user doesn't care which way A+B+C associates, but the compiler
cannot assume the user does not care.

Address calculations provide a particularly rich opportunity for common subexpression elimination. You
don't see the calculations in the source code; they're generated by the compiler. For instance, a reference to
an array element A(I,J) may translate into an intermediate language expression such as:

address(A) + (I-1)*sizeof_datatype(A)

+ (J-1)*sizeof_datatype(A) * column_dimension(A)

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

59

If A(I,J) is used more than once, we have multiple copies of the same address computation. Common
subexpression elimination will (hopefully) discover the redundant computations and group them together.

2.1.6.7 Loop-Invariant Code Motion

Loops are where many high performance computing programs spend a majority of their time. The com-
piler looks for every opportunity to move calculations out of a loop body and into the surrounding code.
Expressions that don't change after the loop is entered (loop-invariant expressions) are prime targets. The
following loop has two loop-invariant expressions:

DO I=1,N

A(I) = B(I) + C * D

E = G(K)

ENDDO

Below, we have modi�ed the expressions to show how they can be moved to the outside:

temp = C * D

DO I=1,N

A(I) = B(I) + temp

ENDDO

E = G(K)

It is possible to move code before or after the loop body. As with common subexpression elimination, address
arithmetic is a particularly important target for loop- invariant code motion. Slowly changing portions of
index calculations can be pushed into the suburbs, to be executed only when needed.

2.1.6.8 Induction Variable Simpli�cation

Loops can contain what are called induction variables. Their value changes as a linear function of the loop
iteration count. For example, K is an induction variable in the following loop. Its value is tied to the loop
index:

DO I=1,N

K = I*4 + M

...

ENDDO

Induction variable simpli�cation replaces calculations for variables like K with simpler ones. Given a starting
point and the expression's �rst derivative, you can arrive at K's value for the nth iteration by stepping
through the n-1 intervening iterations:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

60 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

K = M

DO I=1,N

K = K + 4

...

ENDDO

The two forms of the loop aren't equivalent; the second won't give you the value of K given any value of I.
Because you can't jump into the middle of the loop on the nth iteration, K always takes on the same values
it would have if we had kept the original expression.

Induction variable simpli�cation probably wouldn't be a very important optimization, except that array
address calculations look very much like the calculation for K in the example above. For instance, the address
calculation for A(I) within a loop iterating on the variable I looks like this:

address = base_address(A) + (I-1) * sizeof_datatype(A)

Performing all that math is unnecessary. The compiler can create a new induction variable for references to
A and simplify the address calculations:

outside the loop...

address = base_address(A) - (1 * sizeof_datatype(A))

indie the loop...

address = address + sizeof_datatype(A)

Induction variable simpli�cation is especially useful on processors that can automatically increment a register
each time it is used as a pointer for a memory reference. While stepping through a loop, the memory reference
and the address arithmetic can both be squeezed into a single instruction�a great savings.

2.1.6.9 Object Code Generation

Precompilation, lexical analysis, parsing, and many optimization techniques are somewhat portable, but
code generation is very speci�c to the target processor. In some ways this phase is where compilers earn
their keep on single-processor RISC systems.

Anything that isn't handled in hardware has to be addressed in software. That means if the processor
can't resolve resource con�icts, such as overuse of a register or pipeline, then the compiler is going to have to
take care of it. Allowing the compiler to take care of it isn't necessarily a bad thing � it's a design decision.
A complicated compiler and simple, fast hardware might be cost e�ective for certain applications. Two
processors at opposite ends of this spectrum are the MIPS R2000 and the HP PA-8000. The �rst depends
heavily on the compiler to schedule instructions and fairly distribute resources. The second manages both
things at runtime, though both depend on the compiler to provide a balanced instruction mix.

In all computers, register selection is a challenge because, in spite of their numbers, registers are precious.
You want to be sure that the most active variables become register resident at the expense of others. On
machines without register renaming (see Section 5.1.1), you have to be sure that the compiler doesn't try
to recycle registers too quickly, otherwise the processor has to delay computations as it waits for one to be
freed.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

61

Some instructions in the repertoire also save your compiler from having to issue others. Examples are
auto-increment for registers being used as array indices or conditional assignments in lieu of branches. These
both save the processor from extra calculations and make the instruction stream more compact.

Lastly, there are opportunities for increased parallelism. Programmers generally think serially, specifying
steps in logical succession. Unfortunately, serial source code makes serial object code. A compiler that hopes
to e�ciently use the parallelism of the processor will have to be able to move instructions around and �nd
operations that can be issued side by side. This is one of the biggest challenges for compiler writers today. As
superscalar and very long instruction word (VLIW) designs become capable of executing more instructions
per clock cycle, the compiler will have to dig deeper for operations that can execute at the same time.

2.1.7 Closing Notes15

This chapter has been a basic introduction into how an optimizing compiler operates. However, this is not
the last we will talk about compilers. In order to perform the automatic vectorization, parallelization, and
data decomposition, compilers must further analyze the source code. As we encounter these topics, we will
discuss the compiler impacts and how programmers can best interact with compilers.

For single-processor modern RISC architectures, compilers usually generate better code than most assem-
bly language programmers. Instead of compensating for a simplistic compiler by adding hand optimizations,
we as programmers must keep our programs simple so as not to confuse the compiler. By understanding the
patterns that compilers are quite capable of optimizing, we can focus on writing straightforward programs
that are portable and understandable.

2.1.8 Exercises16

Exercise 2.1.8.1
Does your compiler recognize dead code in the program below? How can you be sure? Does the
compiler give you a warning?

main()

{

int k=1;

if (k == 0)

printf ("This statement is never executed.\n");
}

Exercise 2.1.8.2
Compile the following code and execute it under various optimization levels.

Try to guess the di�erent types of optimizations that are being performed to improve the
performance as the optimization is increased.

REAL*8 A(1000000)

DO I=1,1000000

A(I) = 3.1415927

15This content is available online at <http://cnx.org/content/m33699/1.3/>.
16This content is available online at <http://cnx.org/content/m33700/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

62 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

ENDDO

DO I=1,1000000

A(I) = A(I) * SIN(A(I)) + COS(A(I)) ENDDO

PRINT *,"All Done"

Exercise 2.1.8.3
Take the following code segment and compile it at various optimization levels. Look at the gener-
ated assembly language code (�S option on some compilers) and �nd the e�ects of each optimization
level on the machine language. Time the program to see the performance at the di�erent optimiza-
tion levels. If you have access to multiple architectures, look at the code generated using the same
optimization levels on di�erent architectures.

REAL*8 A(1000000)

COMMON/BLK/A

.... Call Time

DO I=1,1000000

A(I) = A(I) + 1.234

ENDDO

.... Call Time

END

Why is it necessary to put the array into a common block?

2.2 Timing and Pro�ling

2.2.1 Introduction17

Perhaps getting your code to produce the right answers is enough. After all, if you only plan to use the
program once in a while, or if it only takes a few minutes to run, execution time isn't going to matter that
much. But it might not always be that way. Typically, people start taking interest in the runtime of their
programs for two reasons:

• The workload has increased.
• They are considering a new machine.

It's clear why you might care about the performance of your program if the workload increases. Trying to
cram 25 hours of computing time into a 24-hour day is an administrative nightmare. But why should people
who are considering a new machine care about the runtime? After all, the new machine is presumably faster
than the old one, so everything should take less time. The reason is that when people are evaluating new
machines, they need a basis of comparison�a benchmark. People often use familiar programs as benchmarks.
It makes sense: you want a benchmark to be representative of the kind of work you do, and nothing is more
representative of the work you do than the work you do!

Benchmarking sounds easy enough, provided you have timing tools. And you already know the meaning
of time.18 You just want to be sure that what those tools are reporting is the same as what you think you're

17This content is available online at <http://cnx.org/content/m33704/1.3/>.
18Time is money.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

63

getting; especially if you have never used the tools before. To illustrate, imagine if someone took your watch
and replaced it with another that expressed time in some funny units or three overlapping sets of hands. It
would be very confusing; you might have a problem reading it at all. You would also be justi�ably nervous
about conducting your a�airs by a watch you don't understand.

UNIX timing tools are like the six-handed watch, reporting three di�erent kinds of time measurements.
They aren't giving con�icting information � they just present more information than you can jam into a
single number. Again, the trick is learning to read the watch. That's what the �rst part of this chapter is
about. We'll investigate the di�erent types of measurements that determine how a program is doing.

If you plan to tune a program, you need more than timing information. Where is time being spent �
in a single loop, subroutine call overhead, or with memory problems? For tuners, the latter sections of this
chapter discuss how to pro�le code at the procedural and statement levels. We also discuss what pro�les
mean and how they predict the approach you have to take when, and if, you decide to tweak the code for
performance, and what your chances for success will be.

2.2.2 Timing19

We assume that your program runs correctly. It would be rather ridiculous to time a program that's not
running right, though this doesn't mean it doesn't happen. Depending on what you are doing, you may
be interested in knowing how much time is spent overall, or you may be looking at just a portion of the
program. We show you how to time the whole program �rst, and then talk about timing individual loops or
subroutines.

2.2.2.1 Timing a Whole Program

Under UNIX, you can time program execution by placing the time command before everything else you
normally type on the command line. When the program �nishes, a timing summary is produced. For
instance, if your program is called foo, you can time its execution by typing time foo. If you are using the
C shell or Korn shell, time is one of the shell's built-in commands. With a Bourne shell, time is a separate
command executable in /bin. In any case, the following information appears at the end of the run:

• User time
• System time
• Elapsed time

These timing �gures are easier to understand with a little background. As your program runs, it switches
back and forth between two fundamentally di�erent modes: user mode and kernel mode. The normal
operating state is user mode. It is in user mode that the instructions the compiler generated on your behalf
get executed, in addition to any subroutine library calls linked with your program.20 It might be enough to
run in user mode forever, except that programs generally need other services, such as I/O, and these require
the intervention of the operating system � the kernel. A kernel service request made by your program, or
perhaps an event from outside your program, causes a switch from user mode into kernel mode.

Time spent executing in the two modes is accounted for separately. The user time �gure describes time
spent in user mode. Similarly, system time is a measure of the time spent in kernel mode. As far as user time
goes, each program on the machine is accounted for separately. That is, you won't be charged for activity in
somebody else's application. System time accounting works the same way, for the most part; however, you
can, in some instances, be charged for some system services performed on other people's behalf, in addition
to your own. Incorrect charging occurs because your program may be executing at the moment some outside
activity causes an interrupt. This seems unfair, but take consolation in the fact that it works both ways:
other users may be charged for your system activity too, for the same reason.

19This content is available online at <http://cnx.org/content/m33706/1.3/>.
20Cache miss time is buried in here too.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

64 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

Taken together, user time and system time are called CPU time. Generally, the user time is far greater
than the system time. You would expect this because most applications only occasionally ask for system
services. In fact, a disproportionately large system time probably indicates some trouble. For instance,
programs that are repeatedly generating exception conditions, such as page faults, misaligned memory ref-
erences, or �oating-point exceptions, use an inordinate amount of system time. Time spent doing things like
seeking on a disk, rewinding a tape, or waiting for characters at the terminal doesn't show up in CPU time.
That's because these activities don't require the CPU; the CPU is free to go o� and execute other programs.

The third piece of information (corresponding to the third set of hands on the watch), elapsed time, is a
measure of the actual (wall clock) time that has passed since the program was started. For programs that
spend most of their time computing, the elapsed time should be close to the CPU time. Reasons why elapsed
time might be greater are:

• You are timesharing the machine with other active programs.21

• Your application performs a lot of I/O.
• Your application requires more memory bandwidth than is available on the machine.
• Your program was paging or swapped.

People often record the CPU time and use it as an estimate for elapsed time. Using CPU time is okay on
a single CPU machine, provided you have seen the program run when the machine was quiet and noticed
the two numbers were very close together. But for multiprocessors, the total CPU time can be far di�erent
from the elapsed time. Whenever there is a doubt, wait until you have the machine to your- self and time
your program then, using elapsed time. It is very important to produce timing results that can be veri�ed
using another run when the results are being used to make important purchasing decisions.

If you are running on a Berkeley UNIX derivative, the C shell's built-in time command can report a
number of other useful statistics. The default form of the output is shown in Figure 2.3 (The built-in csh
time function). Check with your csh manual page for more possibilities.

In addition to �gures for CPU and elapsed time, csh time command produces information about CPU
utilization, page faults, swaps, blocked I/O operations (usually disk activity), and some measures of how
much physical memory our pro- gram occupied when it ran. We describe each of them in turn.

2.2.2.1.1 Percent utilization

Percent utilization corresponds to the ratio of elapsed time to CPU time. As we mentioned above, there can
be a number of reasons why the CPU utilization wouldn't be 100% or mighty close. You can often get a
hint from the other �elds as to whether it is a problem with your program or whether you were sharing the
machine when you ran it.

2.2.2.1.2 Average real memory utilization

The two average memory utilization measurements shown in Figure 2.3 (The built-in csh time function)
characterize the program's resource requirements as it ran.

The �rst measurement, shared-memory space, accounts for the average amount of real memory taken by
your program's text segment � the portion that holds the machine instructions. It is called �shared� because
several concurrently running copies of a program can share the same text segment (to save memory). Years
ago, it was possible for the text segment to consume a signi�cant portion of the memory system, but these
days, with memory sizes starting around 32 MB, you have to compile a pretty huge source program and use
every bit of it to create a shared-memory usage �gure big enough to cause concern. The shared-memory
space requirement is usually quite low relative to the amount of memory available on your machine.

21The uptime command gives you a rough indication of the other activity on your machine. The last three �elds tell the
average number of processes ready to run during the last 1, 5, and 15 minutes, respectively.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

65

The built-in csh time function

Figure 2.3

The second average memory utilization measurement, unshared-memory space, describes the average real
storage dedicated to your program's data structures as it ran. This storage includes saved local variables
and COMMON for FORTRAN, and static and external variables for C. We stress the word �real� here and above
because these numbers talk about physical memory usage, taken over time. It may be that you have allocated
arrays with 1 trillion elements (virtual space), but if your program only crawls into a corner of that space,
your runtime memory requirements will be pretty low.

What the unshared-memory space measurement doesn't tell you, unfortunately, is your program's demand
for memory at its greediest. An application that requires 100 MB 1/10th of the time and 1 KB the rest
of the time appears to need only 10 MB on average � not a revealing picture of the program's memory
requirements.

2.2.2.1.3 Blocked I/O operations

The two �gures for blocked I/O operations primarily describe disk usage, though tape devices and some
other peripherals may also be used with blocked I/O. Character I/O operations, such as terminal input and
output, do not appear here. A large number of blocked I/O operations could explain a lower-than-expected
CPU utilization.

2.2.2.1.4 Page faults and swaps

An unusually high number of page faults or any swaps probably indicates a system choked for memory, which
would also explain a longer-than-expected elapsed time. It may be that other programs are competing for the
same space. And don't forget that even under optimal conditions, every program su�ers some number of page
faults, as explained in Section 1.1.1. Techniques for minimizing page faults are described in Section 2.4.1.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

66 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

2.2.2.2 Timing a Portion of the Program

For some benchmarking or tuning e�orts, measurements taken on the �outside� of the program tell you
everything you need to know. But if you are trying to isolate performance �gures for individual loops or
portions of the code, you may want to include timing routines on the inside too. The basic technique is
simple enough:

1. Record the time before you start doing X.
2. Do X.
3. Record the time at completion of X.
4. Subtract the start time from the completion time.

If, for instance, X's primary job is to calculate particle positions, divide by the total time to obtain a number
for particle positions/second. You have to be careful though; too many calls to the timing routines, and
the observer becomes part of the experiment. The timing routines take time too, and their very presence
can increase instruction cache miss or paging. Furthermore, you want X to take a signi�cant amount of
time so that the measurements are meaningful. Paying attention to the time between timer calls is really
important because the clock used by the timing functions has a limited resolution. An event that occurs
within a fraction of a second is hard to measure with any accuracy.

2.2.2.3 Getting Time Information

In this section, we discuss methods for getting various timer values during the execution of your program.
For FORTRAN programs, a library timing function found on many machines is called etime, which takes

a two-element REAL*4 array as an argument and �lls the slots with the user CPU time and system CPU
time, respectively. The value returned by the function is the sum of the two. Here's how etime is often used:

real*4 tarray(2), etime

real*4 start, finish

start = etime(tarray)

finish = etime(tarray)

write (*,*) 'CPU time: ', finish - start

Not every vendor supplies an etime function; in fact, one doesn't provide a timing routine for FORTRAN at
all. Try it �rst. If it shows up as an unde�ned symbol when the program is linked, you can use the following
C routine. It provides the same functionality as etime:

#include <sys/times.h>
#define TICKS 100.

float etime (parts)

struct {

float user;

float system;

} *parts;

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

67

{

struct tms local;

times (&local);

parts->user= (float) local.tms_utime/TICKS;

parts->system = (float) local.tms_stime/TICKS;

return (parts->user + parts->system);

}

There are a couple of things you might have to tweak to make it work. First of all, linking C routines
with FORTRAN routines on your computer may require you to add an underscore (_) after the function
name. This changes the entry to float etime_ (parts). Furthermore, you might have to adjust the TICKS
parameter. We assumed that the system clock had a resolution of 1/100 of a second (true for the Hewlett-
Packard machines that this version of etime was written for). 1/60 is very common. On an RS-6000 the
number would be 1000. You may �nd the value in a �le named /usr/include/sys/param.h on your machine,
or you can determine it empirically.

A C routine for retrieving the wall time using calling gettimeofday is shown below. It is suitable for use
with either C or FORTRAN programs as it uses call-by-value parameter passing:

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

void hpcwall(double *retval)

{

static long zsec = 0;

static long zusec = 0;

double esec;

struct timeval tp;

struct timezone tzp;

gettimeofday(&tp, &tzp);

if (zsec == 0) zsec = tp.tv_sec;

if (zusec == 0) zusec = tp.tv_usec;

*retval = (tp.tv_sec - zsec) + (tp.tv_usec - zusec) * 0.000001 ;

}

void hpcwall_(double *retval) { hpcwall(retval); } /* Other convention */

Given that you will often need both CPU and wall time, and you will be continu- ally computing the
di�erence between successive calls to these routines, you may want to write a routine to return the elapsed
wall and CPU time upon each call as follows:

SUBROUTINE HPCTIM(WTIME,CTIME)

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

68 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

IMPLICIT NONE

*

REAL WTIME,CTIME

COMMON/HPCTIMC/CBEGIN,WBEGIN

REAL*8 CBEGIN,CEND,WBEGIN,WEND

REAL ETIME,CSCRATCH(2)

*

CALL HPCWALL(WEND)

CEND=ETIME(CSCRATCH)

*

WTIME = WEND - WBEGIN

CTIME = CEND - CBEGIN

*

WBEGIN = WEND

CBEGIN = CEND

END

2.2.2.4 Using Timing Information

You can get a lot information from the timing facilities on a UNIX machine. Not only can you tell how long
it takes to perform a given job, but you can also get hints about whether the machine is operating e�ciently,
or whether there is some other problem that needs to be factored in, such as inadequate memory.

Once the program is running with all anomalies explained away, you can record the time as a baseline.
If you are tuning, the baseline will be a reference with which you can tell how much (or little) tuning has
improved things. If you are benchmarking, you can use the baseline to judge how much overall incremental
performance a new machine will give you. But remember to watch the other �gures � paging, CPU
utilization, etc. These may di�er from machine to machine for reasons unrelated to raw CPU performance.
You want to be sure you are getting the full picture.

2.2.3 Subroutine Pro�ling22

Sometimes you want more detail than the overall timing of the application. But you don't have time to
modify the code to insert several hundred etime calls into your code. Pro�les are also very useful when you
have been handed a strange 20,000-line application program and told to �gure out how it works and then
improve its performance.

Most compilers provide a facility to automatically insert timing calls into your code at the entry and exit
of each routine at compile time. While your program runs, the entry and exit times are recorded and then
dumped into a �le. A separate utility summarizes the execution patterns and produces a report that shows
the percentage of the time spent in each of your routines and the library routines.

The pro�le gives you a sense of the shape of the execution pro�le. That is, you can see that 10% of the
time is spent in subroutine A, 5% in subroutine B, etc. Naturally, if you add all of the routines together they
should account for 100% of the overall time spent. From these percentages you can construct a picture � a
pro�le � of how execution is distributed when the program runs. Though not representative of any particular
pro�ling tool, the histograms in Figure 2.4 (Sharp pro�le � dominated by routine 1) and Figure 2.5 (Flat
pro�le � no routine predominates) depict these percentages, sorted from left to right, with each vertical
column representing a di�erent routine. They help illustrate di�erent pro�le shapes.

22This content is available online at <http://cnx.org/content/m33713/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

69

Sharp pro�le � dominated by routine 1

Figure 2.4

A sharp pro�le says that most of the time is spent in one or two procedures, and if you want to improve
the program's performance you should focus your e�orts on tuning those procedures. A minor optimization
in a heavily executed line of code can sometimes have a great e�ect on the overall runtime, given the right
opportunity. A �at pro�le,23 on the other hand, tells you that the runtime is spread across many routines,
and e�ort spent optimizing any one or two will have little bene�t in speeding up the program. Of course,
there are also programs whose execution pro�le falls somewhere in the middle.

23The term ��at pro�le� is a little overloaded. We are using it to describe a pro�le that shows an even distribution of time
throughout the program. You will also see the label �at pro�le used to draw distinction from a call graph pro�le, as described
below.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

70 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

Flat pro�le � no routine predominates

Figure 2.5

We cannot predict with absolute certainty what you are likely to �nd when you pro�le your programs, but
there are some general trends. For instance, engineering and scienti�c codes built around matrix solutions
often exhibit very sharp pro�les. The runtime is dominated by the work performed in a handful of routines.
To tune the code, you need to focus your e�orts on those routines to make them more e�cient. It may
involve restructuring loops to expose parallelism, providing hints to the compiler, or rearranging memory
references. In any case, the challenge is tangible; you can see the problems you have to �x.

There are limits to how much tuning one or two routines will improve your runtime, of course. An often
quoted rule of thumb is Amdahl's Law, derived from remarks made in 1967 by one of the designers of the
IBM 360 series, and founder of Amdahl Computer, Gene Amdahl. Strictly speaking, his remarks were about
the performance potential of parallel computers, but people have adapted Amdahl's Law to describe other
things too. For our purposes, it goes like this: Say you have a program with two parts, one that can be
optimized so that it goes in�nitely fast and another that can't be optimized at all. Even if the optimizable
portion makes up 50% of the initial runtime, at best you will be able to cut the total runtime in half. That
is, your runtime will eventually be dominated by the portion that can't be optimized. This puts an upper
limit on your expectations when tuning.

Even given the �nite return on e�ort suggested by Amdahl's Law, tuning a program with a sharp pro�le
can be rewarding. Programs with �at pro�les are much more di�cult to tune. These are often system codes,
nonnumeric applications, and varieties of numerical codes without matrix solutions. It takes a global tuning
approach to reduce, to any justi�able degree, the runtime of a program with a �at pro�le. For instance,
you can sometimes optimize instruction cache usage, which is complicated because of the program's equal
distribution of activity among a large number of routines. It can also help to reduce subroutine call overhead
by folding callees into callers. Occasionally, you can �nd a memory reference problem that is endemic to the
whole program � and one that can be �xed all at once.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

71

When you look at a pro�le, you might �nd an unusually large percentage of time spent in the library
routines such as log, exp, or sin. Often these functions are done in software routines rather than inline.
You may be able to rewrite your code to eliminate some of these operations. Another important pattern to
look for is when a routine takes far longer than you expect. Unexpected execution time may indicate you
are accessing memory in a pattern that is bad for performance or that some aspect of the code cannot be
optimized properly.

In any case, to get a pro�le, you need a pro�ler. One or two subroutine pro�lers come standard with
the software development environments on all UNIX machines. We discuss two of them: prof and gprof. In
addition, we mention a few line-by-line pro�lers. Subroutine pro�lers can give you a general overall view of
where time is being spent. You probably should start with prof, if you have it (most machines do). Otherwise,
use gprof. After that, you can move to a line-by- line pro�ler if you need to know which statements take the
most time.

2.2.3.1 prof

prof is the most common of the UNIX pro�ling tools. In a sense, it is an extension of the compiler, linker,
and object libraries, plus a few extra utilities, so it is hard to look at any one thing and say �this pro�les
your code.� prof works by periodically sampling the program counter as your application runs. To enable
pro�ling, you must recompile and relink using the �p �ag. For example, if your program has two modules,
stu�.c and junk.c, you need to compile and link according to the following code:

% cc stuff.c -p -O -c

% cc junk.c -p -O -c

% cc stuff.o junk.o -p -o stuff

This creates a stu� binary that is ready for pro�ling. You don't need to do anything special to run it. Just
treat it normally by entering stuff. Because runtime statistics are being gathered, it takes a little longer
than usual to execute.24 At completion, there is a new �le called mon.out in the directory where you ran it.
This �le contains the history of stu� in binary form, so you can't look at it directly. Use the prof utility to
read mon.out and create a pro�le of stu�. By default, the information is written to your screen on standard
output, though you can easily redirect it to a �le:

% prof stuff > stuff.prof

To explore how the prof command works, we have created the following ridiculous little application, loops.c.
It contains a main routine and three subroutines for which you can predict the time distribution just by
looking at the code.

main () {

int l;

24Remember: code with pro�ling enabled takes longer to run. You should recompile and relink the whole thing without the
�p �ag when you have �nished pro�ling.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

72 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

for (l=0;l<1000;l++) {

if (l == 2*(l/2)) foo ();

bar();

baz();

}

}

foo (){

int j;

for (j=0;j<200;j++)

}

bar () {

int i;

for (i=0;i<200;i++);

}

baz () {

int k;

for (k=0;k<300;k++);

}

Again, you need to compile and link loops with the �p �ag, run the program, and then run the prof utility
to extract a pro�le, as follows:

% cc loops.c -p -o loops

% ./loops

% prof loops > loops.prof

The following example shows what a loops.prof should look like. There are six columns.

%Time Seconds Cumsecs #Calls msec/call Name

56.8 0.50 0.50 1000 0.500 _baz

27.3 0.24 0.74 1000 0.240 _bar

15.9 0.14 0.88 500 0.28 _foo

0.0 0.00 0.88 1 0. _creat

0.0 0.00 0.88 2 0. _profil

0.0 0.00 0.88 1 0. _main

0.0 0.00 0.88 3 0. _getenv

0.0 0.00 0.88 1 0. _strcpy

0.0 0.00 0.88 1 0. _write

The columns can be described as follows:

• %Time Percentage of CPU time consumed by this routine
• Seconds CPU time consumed by this routine
• Cumsecs A running total of time consumed by this and all preceding routines in the list
• Calls The number of times this particular routine was called

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

73

• msec/call Seconds divided by number of calls giving the average length of time taken by each invo-
cation of the routine

• Name The name of this routine

The top three routines listed are from loops.c itself. You can see an entry for the �main� routine more than
halfway down the list. Depending on the vendor, the names of the routines may contain leading or trailing
underscores, and there will always be some routines listed you don't recognize. These are contributions from
the C library and possibly the FORTRAN libraries, if you are using FORTRAN. Pro�ling also introduces
some overhead into the run, and often shows up as one or two subroutines in the prof output. In this case,
the entry for _profil represents code inserted by the linker for collecting runtime pro�ling data.

If it was our intention to tune loops, we would consider a pro�le like the one in the �gure above to be
a fairly good sign. The lead routine takes 50% of the runtime, so at least there is a chance we could do
something with it that would have a signi�cant impact on the overall runtime. (Of course with a program
as trivial as loops, there is plenty we can do, since loops does nothing.)

2.2.3.2 gprof

Just as it's important to know how time is distributed when your program runs, it's also valuable to be
able to tell who called who in the list of routines. Imagine, for instance, if something labeled _exp showed
up high in the list in the prof output. You might say: �Hmmm, I don't remember calling anything named
exp(). I wonder where that came from.� A call tree helps you �nd it.

Subroutines and functions can be thought of as members of a family tree. The top of the tree, or root, is
actually a routine that precedes the main routine you coded for the application. It calls your main routine,
which in turn calls others, and so on, all the way down to the leaf nodes of the tree. This tree is properly
known as a call graph.25 The relationship between routines and nodes in the graph is one of parents and
children. Nodes separated by more than one hop are referred to as ancestors and descendants.

Figure 6-4 graphically depicts the kind of call graph you might see in a small application. main is the
parent or ancestor of most of the rest of the routines. G has two parents, E and C. Another routine, A,
doesn't appear to have any ancestors or descendants at all. This problem can happen when routines are not
compiled with pro�ling enabled, or when they aren't invoked with a subroutine call � such as would be the
case if A were an exception handler.

The UNIX pro�ler that can extract this kind of information is called gprof. It replicates the abilities of
prof, plus it gives a call graph pro�le so you can see who calls whom, and how often. The call graph pro�le
is handy if you are trying to �gure out how a piece of code works or where an unknown routine came from,
or if you are looking for candidates for subroutine inlining.

To use call graph pro�ling you need go through the same steps as with prof, except that a �pg �ag is
substituted for the �p �ag.26 Additionally, when it comes time to produce the actual pro�le, you use the
gprof utility instead of prof. One other di�erence is that the name of the statistics �le is gmon.out instead
of mon.out:

% cc -pg stuff.c -c

% cc stuff.o -pg -o stuff

% stuff

% gprof stuff > stuff.gprof

25It doesn't have to be a tree. Any subroutine can have more than one parent. Furthermore, recursive subroutine calls
introduce cycles into the graph, in which a child calls one of its parents.

26On HP machines, the �ag is �G.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

74 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

Simple call graph

Figure 2.6

The output from gprof is divided into three sections:

• Call graph pro�le
• Timing pro�le
• Index

The �rst section textually maps out the call graph. The second section lists routines, the percentage of
time devoted to each, the number of calls, etc. (similar to prof). The third section is a cross reference
so that you can locate routines by number, rather than by name. This section is especially useful for large
applications because routines are sorted based on the amount of time they use, and it can be di�cult to
locate a particular routine by scanning for its name. Let's invent another trivial application to illustrate
how gprof works. Figure 2.7 (FORTRAN example) shows a short piece of FORTRAN code, along with a
diagram of how the routines are connected together. Subroutines A and B are both called by MAIN, and, in
turn, each calls C. The following example shows a section of the output from gprof 's call graph pro�le:27

27In the interest of conserving space, we clipped out the section most relevant to our discussion and included it in this
example. There was a lot more to it, including calls of setup and system routines, the likes of which you will see when you run
gprof.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

75

FORTRAN example

Figure 2.7

called/total parents

index %time self descendants called+self name index

called/total children

....

0.00 8.08 1/1 _main [2]

[3] 99.9 0.00 8.08 1 _MAIN_ [3]

3.23 1.62 1/1 _b_ [4]

1.62 1.62 1/1 _a_ [5]

3.23 1.62 1/1 _MAIN_ [3]

[4] 59.9 3.23 1.62 1 _b_ [4]

1.62 0.00 1/2 _c_ [6]

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

76 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

1.62 1.62 1/1 _MAIN_ [3]

[5] 40.0 1.62 1.62 1 _a_ [5]

1.62 0.00 1/2 _c_ [6]

1.62 0.00 1/2 _a_ [5]

1.62 0.00 1/2 _b_ [4]

[6] 39.9 3.23 0.00 2 _c_ [6]

Sandwiched between each set of dashed lines is information describing a given routine and its relationship to
parents and children. It is easy to tell which routine the block represents because the name is shifted farther
to the left than the others. Parents are listed above, children below. As with prof, underscores are tacked
onto the labels.28 A description of each of the columns follows:

• index You will notice that each routine name is associated with a number in brackets ([n]). This is
a cross-reference for locating the routine elsewhere in the pro�le. If, for example, you were looking at
the block describing _MAIN_ and wanted to know more about one of its children, say _a_, you could
�nd it by scanning down the left side of the page for its index, [5].

• %time The meaning of the %time �eld is a little di�erent than it was for prof. In this case it describes
the percentage of time spent in this routine plus the time spent in all of its children. It gives you a
quick way to determine where the busiest sections of the call graph can be found.

• self Listed in seconds, the self column has di�erent meanings for parents, the routine in question,
and its children. Starting with the middle entry � the routine itself � the self �gure shows how
much overall time was dedicated to the routine. In the case _b_, for instance, this amounts to 3.23
seconds.
Each self column entry shows the amount of time that can be attributed to calls from the parents. If
you look at routine _c_, for example, you will see that it consumed a total time of 3.23 seconds. But
note that it had two parents: 1.62 seconds of the time was attributable to calls from _a_, and 1.62
seconds to _b_.
For the children, the self �gure shows how much time was spent executing each child due to calls
from this routine. The children may have consumed more time overall, but the only time accounted
for is time-attributable to calls from this routine. For example, _c_ accumulated 3.23 seconds overall,
but if you look at the block describing _b_, you see _c_ listed as a child with only 1.62 seconds. That's
the total time spent executing _c_ on behalf of _b_.

• descendants As with the self column, �gures in the descendants column have di�erent meanings for
the routine, its parents, and children. For the routine itself, it shows the number of seconds spent in
all of its descendants.
For the routine's parents, the descendants �gure describes how much time spent in the routine can be
traced back to calls by each parent. Looking at routine _c_ again, you can see that of its total time,
3.23 seconds, 1.62 seconds were attributable to each of its two parents, _a_ and _b_.
For the children, the descendants column shows how much of the child's time can be attributed to calls
from this routine. The child may have accumulated more time overall, but the only time displayed is
time associated with calls from this routine.

• calls The calls column shows the number of times each routine was invoked, as well as the distri-
bution of those calls associated with both parents and children. Starting with the routine itself, the

28You may have noticed that there are two main routines: _MAIN_ and _main. In a FORTRAN program, _MAIN_ is the actual
FORTRAN main routine. It's called as a subroutine by _main, provided from a system library at link time. When you're
pro�ling C code, you won't see _MAIN_.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

77

�gure in the calls column shows the total number of entries into the routine. In situations where the
routine called itself, you will also see a +n immediately appended, showing that additional n calls were
made recursively.
Parent and child �gures are expressed as ratios. For the parents, the ratio m/n says �of the n times
the routine was called, m of those calls came from this parent.� For the child, it says �of the n times
this child was called, m of those calls came from this routine.�

2.2.3.3 gprof's Flat Pro�le

As we mentioned previously, gprof also produces a timing pro�le (also called a ��at� pro�le, just to confuse
things) similar to the one produced by prof. A few of the �elds are di�erent from prof, and there is some
extra information, so it will help if we explain it brie�y. The following example shows the �rst few lines from
a gprof �at pro�le for stu�. You will recognize the top three routines from the original program. The others
are library functions included at link-time.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

39.9 3.23 3.23 2 1615.07 1615.07 _c_ [6]

39.9 6.46 3.23 1 3230.14 4845.20 _b_ [4]

20.0 8.08 1.62 1 1620.07 3235.14 _a_ [5]

0.1 8.09 0.01 3 3.33 3.33 _ioctl [9]

0.0 8.09 0.00 64 0.00 0.00 .rem [12]

0.0 8.09 0.00 64 0.00 0.00 _f_clos [177]

0.0 8.09 0.00 20 0.00 0.00 _sigblock [178]

...

Here's what each column means:

• %time Again, we see a �eld that describes the runtime for each routine as a percent- age of the overall
time taken by the program. As you might expect, all the entries in this column should total 100%
(nearly).

• cumulative seconds For any given routine, the column called �cumulative seconds� tallies a running
sum of the time taken by all the preceding routines plus its own time. As you scan towards the bottom,
the numbers asymptotically approach the total runtime for the program.

• self seconds Each routine's individual contribution to the runtime.
• calls The number of times this particular routine was called.
• self ms/call Seconds spent inside the routine, divided by the number of calls. This gives the average

length of time taken by each invocation of the routine. The �gure is presented in milliseconds.
• total ms/call Seconds spent inside the routine plus its descendants, divided by the number of calls.
• name The name of the routine. Notice that the cross-reference number appears here too.

2.2.3.4 Accumulating the Results of Several gprof Runs

It is possible to accumulate statistics from multiple runs so that you can get a picture of how a program is
doing with a variety of data sets. For instance, say that you wanted to pro�le an application � call it bar
� with three di�erent sets of input data. You could perform the runs separately, saving the gmon.out �les
as you go, and then combine the results into a single pro�le at the end:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

78 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

% f77 -pg bar.f -o bar

% bar < data1.input

% mv gmon.out gmon.1

% bar < data2.input

% mv gmon.out gmon.2

% bar < data3.input

% gprof bar -s gmon.1 gmon.2 gmon.out > gprof.summary.out

In the example pro�le, each run along the way creates a new gmon.out �le that we renamed to make room
for the next one. At the end, gprof combines the infor- mation from each of the data �les to produce a
summary pro�le of bar in the �le gprof.summary.out. Additionally (you don't see it here), gprof creates a
�le named gmon.sum that contains the merged data from the original three data �les. gmon.sum has the
same format as gmon.out, so you can use it as input for other merged pro�les down the road.

In form, the output from a merged pro�le looks exactly the same as for an individual run. There are a
couple of interesting things you will note, however. For one thing, the main routine appears to have been
invoked more than once � one time for each run, in fact. Furthermore, depending on the application,
multiple runs tend to either smooth the contour of the pro�le or exaggerate its features. You can imagine
how this might happen. If a single routine is consistently called while others come and go as the input data
changes, it takes on increasing importance in your tuning e�orts.

2.2.3.5 A Few Words About Accuracy

For processors running at 600 MHz and more, the time between 60 Hz and 100 Hz samples is a veritable
eternity. Furthermore, you can experience quantization errors when the sampling frequency is �xed, as is
true of steady 1/100th or 1/60th of a second samples. To take an exaggerated example, assume that the
timeline in Figure 2.8 (Quantization errors in pro�ling) shows alternating calls to two subroutines, BAR and
FOO. The tick marks represent the sample points for pro�ling.

Quantization errors in pro�ling

Figure 2.8

BAR and FOO take turns running. In fact, BAR takes more time than FOO. But because the sampling interval
closely matches the frequency at which the two subroutines alternate, we get a quantizing error: most of the

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

79

samples happen to be taken while FOO is running. Therefore, the pro�le tells us that FOO took more CPU
time than BAR.

We have described the tried and true UNIX subroutine pro�lers that have been available for years. In
many cases, vendors have much better tools available for the asking or for a fee. If you are doing some
serious tuning, ask your vendor representative to look into other tools for you.

2.2.4 Basic Block Pro�lers29

There are several good reasons to desire a �ner level of detail than you can see with a subroutine pro�ler.
For humans trying to understand how a subroutine or function is used, a pro�ler that tells which lines of
source code were actually executed, and how often, is invaluable; a few clues about where to focus your
tuning e�orts can save you time. Also, such a pro�ler saves you from discovering that a particularly clever
optimization makes no di�erence because you put it in a section of code that never gets executed.

As part of an overall strategy, a subroutine pro�le can direct you to a handful of routines that account
for most of the runtime, but it takes a basic block pro�ler30 to get you to the associated source code lines.

Basic block pro�lers can also provide compilers with information they need to perform their own opti-
mizations. Most compilers work in the dark. They can restructure and unroll loops, but they cannot tell
when it will pay o�. Worse yet, misplaced optimizations often have an adverse e�ect of slowing down the
code! This can be the result of added instruction cache burden, wasted tests introduced by the compiler,
or incorrect assumptions about which way a branch would go at runtime. If the compiler can automatically
interpret the results of a basic block pro�le, or if you can supply the compiler with hints, it often means a
reduced run- time with little e�ort on your part.

There are several basic block pro�lers in the world. The closest thing to a standard, tcov, is shipped with
Sun workstations; it's standard because the installed base is so big. On MIPS-based workstations, such as
those from Silicon Graphics and DEC, the pro�ler (packaged as an extension to prof) is called pixie. We
explain brie�y how to run each pro�ler using a reasonable set of switches. You can consult your manual
pages for other options.

2.2.4.1 tcov

tcov, available on Sun workstations and other SPARC machines that run SunOS, gives execution statistics
that describe the number of times each source statement was executed. It is very easy to use. Assume for
illustration that we have a source program called foo.c. The following steps create a basic block pro�le:

% cc -a foo.c -o foo

% foo

% tcov foo.c

The -a option tells the compiler to include the necessary support for tcov.31 Several �les are created in the
process. One called foo.d accumulates a history of the exe- cution frequencies within the program foo. That
is, old data is updated with new data each time foo is run, so you can get an overall picture of what happens
inside foo, given a variety of data sets. Just remember to clean out the old data if you want to start over.
The pro�le itself goes into a �le called foo.tcov.

Let's look at an illustration. Below is a short C program that performs a bubble sort of 10 integers:

29This content is available online at <http://cnx.org/content/m33710/1.3/>.
30A basic block is a section of code with only one entrance and one exit. If you know how many times the block was entered,

you know how many times each of the statements in the block was executed, which gives you a line-by-line pro�le. The concept
of a basic block is explained in detail in Section 2.1.1

31On Sun Solaris systems, the �xa option is used.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

80 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

int n[] = {23,12,43,2,98,78,2,51,77,8};

main ()

{

int i, j, ktemp;

for (i=10; i>0; i--) {

for (j=0; j<i; j++) {

if (n[j] < n[j+1]) {

ktemp = n[j+1], n[j+1] = n[j], n[j] = ktemp;

}

}

}

}

tcov produces a basic block pro�le that contains execution counts for each source line, plus some summary
statistics (not shown):

int n[] = {23,12,43,2,98,78,2,51,77,8};

main ()

1 -> {

int i, j, ktemp;

10 -> for (i=10; i>0; i--) {

10, 55 -> for (j=0; j<i; j++) {

55 -> if (n[j] < n[j+1]) {

23 -> ktemp = n[j+1], n[j+1] = n[j], n[j] = ktemp;

}

}

}

1 -> }

The numbers to the left tell you the number of times each block was entered. For instance, you can see that
the routine was entered just once, and that the highest count occurs at the test n[j] < n[j+1]. tcov shows
more than one count on a line in places where the compiler has created more than one block.

2.2.4.2 pixie

pixie is a little di�erent from tcov. Rather than reporting the number of times each source line was executed,
pixie reports the number of machine clock cycles devoted to executing each line. In theory, you could use
this to calculate the amount of time spent per statement, although anomalies like cache misses are not
represented.

pixie works by �pixifying� an executable �le that has been compiled and linked in the normal way. Below
we run pixie on foo to create a new executable called foo.pixie:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

81

% cc foo.c -o foo

% pixie foo

% foo.pixie

% prof -pixie foo

Also created was a �le named foo.Addrs, which contains addresses for the basic blocks within foo. When the
new program, foo.pixie , is run, it creates a �le called foo.Counts , containing execution counts for the basic
blocks whose addresses are stored in foo.Addrs. pixie data accumulates from run to run. The statistics are
retrieved using prof and a special �pixie �ag.

pixie's default output comes in three sections and shows:

• Cycles per routine
• Procedure invocation counts
• Cycles per basic line

Below, we have listed the output of the third section for the bubble sort:

procedure (file) line bytes cycles % cum %

main (foo.c) 7 44 605 12.11 12.11

_cleanup (flsbuf.c) 59 20 500 10.01 22.13

fclose (flsbuf.c) 81 20 500 10.01 32.14

fclose (flsbuf.c) 94 20 500 10.01 42.15

_cleanup (flsbuf.c) 54 20 500 10.01 52.16

fclose (flsbuf.c) 76 16 400 8.01 60.17

main (foo.c) 10 24 298 5.97 66.14

main (foo.c) 8 36 207 4.14 70.28

....

Here you can see three entries for the main routine from foo.c, plus a number of system library routines.
The entries show the associated line number and the number of machine cycles dedicated to executing that
line as the program ran. For instance, line 7 of foo.c took 605 cycles (12% of the runtime).

2.2.5 Virtual Memory32

In addition to the negative performance impact due to cache misses, the virtual memory system can also
slow your program down if it is too large to �t in the memory of the system or is competing with other large
jobs for scarce memory resources.

Under most UNIX implementations, the operating system automatically pages pieces of a program that
are too large for the available memory out to the swap area. The program won't be tossed out completely;
that only happens when memory gets extremely tight, or when your program has been inactive for a while.
Rather, individual pages are placed in the swap area for later retrieval. First of all, you need to be aware
that this is happening if you don't already know about it. Second, if it is happening, the memory access
patterns are critical. When references are too widely scattered, your runtime will be completely dominated
by disk I/O.

If you plan in advance, you can make a virtual memory system work for you when your program is too
large for the physical memory on the machine. The techniques are exactly the same as those for tuning a

32This content is available online at <http://cnx.org/content/m33712/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

82 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

software-managed out-of-core solution, or loop nests. The process of �blocking� memory references so that
data consumed in neighborhoods uses a bigger portion of each virtual memory page before rotating it out
to disk to make room for another.33

2.2.5.1 Gauging the Size of Your Program and the Machine's Memory

How can you tell if you are running out-of-core? There are ways to check for pag- ing on the machine,
but perhaps the most straightforward check is to compare the size of your program against the amount of
available memory. You do this with the size command:

% size myprogram

On a System V UNIX machine, the output looks something like this:

53872 + 53460 + 10010772 = 10118104

On a Berkeley UNIX derivative you see something like this:

text data bss hex decimal

53872 53460 10010772 9a63d8 10118104

The �rst three �elds describe the amount of memory required for three di�erent portions of your program.
The �rst, text, accounts for the machine instructions that make up your program. The second, data, includes
initialized values in your pro- gram such as the contents of data statements, common blocks, externals,
character strings, etc. The third component, bss, (block started by symbol), is usually the largest. It
describes an uninitialized data area in your program. This area would be made of common blocks that are
not set by a block data. The last �eld is a total for all three sections added together, in bytes.34

Next, you need to know how much memory you have in your system. Unfortunately, there isn't a standard
UNIX command for this. On the RS/6000, /etc/lscfg tells you. On an SGI machine, /etc/hinv does it. Many
System V UNIX implementations have an /etc/memsize command. On any Berkeley derivative, you can
type:

% ps aux

33We examine the techniques for blocking in Chapter 8.
34Warning: The size command won't give you the full picture if your program allocates memory dynamically, or keeps data

on the stack. This area is especially important for C programs and FORTRAN programs that create large arrays that are not
in COMMON.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

83

This command gives you a listing of all the processes running on the machine. Find the process with the
largest value in the %MEM. Divide the value in the RSS �eld by the percentage of memory used to get a rough
�gure for how much memory your machine has:

memory = RSS/(%MEM/100)

For instance, if the largest process shows 5% memory usage and a resident set size (RSS) of 840 KB, your
machine has 840000/(5/100) = 16 MB of memory.35 If the answer from the size command shows a total
that is anywhere near the amount of memory you have, you stand a good chance of paging when you run �
especially if you are doing other things on the machine at the same time.

2.2.5.2 Checking for Page Faults

Your system's performance monitoring tools tell you if programs are paging. Some paging is OK; page faults
and �page-ins� occur naturally as programs run. Also, be careful if you are competing for system resources
along with other users. The pic- ture you get won't be the same as when you have the computer to yourself.

To check for paging activity on a Berkeley UNIX derivative, use the vmstat command. Commonly people
invoke it with a time increment so that it reports paging at regular intervals:

% vmstat 5

This command produces output every �ve seconds.

procs memory page disk faults cpu

r b w avm fre re at pi po fr de sr s0 d1 d2 d3 in sy cs us sy id

0 0 0 824 21568 0 0 0 0 0 0 0 0 0 0 0 20 37 13 0 1 98

0 0 0 840 21508 0 0 0 0 0 0 0 1 0 0 0 251 186 156 0 10 90

0 0 0 846 21460 0 0 0 0 0 0 0 2 0 0 0 248 149 152 1 9 89

0 0 0 918 21444 0 0 0 0 0 0 0 4 0 0 0 258 143 152 2 10 89

Lots of valuable information is produced. For our purposes, the important �elds are avm or active virtual
memory, the fre or free real memory, and the pi and po numbers showing paging activity. When the fre

�gure drops to near zero, and the po �eld shows a lot of activity, it's an indication that the memory system
is overworked.

On a SysV machine, paging activity can be seen with the sar command:

% sar -r 5 5

This command shows you the amount of free memory and swap space presently available. If the free memory
�gure is low, you can assume that your program is paging:

35You could also reboot the machine! It will tell you how much memory is available when it comes up.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

84 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

Sat Apr 18 20:42:19

[r] freemem freeswap

4032 82144

As we mentioned earlier, if you must run a job larger than the size of the memory on your machine, the
same sort of advice that applied to conserving cache activity applies to paging activity.36 Try to minimize
the stride in your code, and where you can't, blocking memory references helps a whole lot.

A note on memory performance monitoring tools: you should check with your workstation vendor to see
what they have available beyond vmstat or sar. There may be much more sophisticated (and often graphical)
tools that can help you understand how your program is using memory.

2.2.6 Closing Notes37

We have seen some of the tools for timing and pro�ling. Even though it seems like we covered a lot, there are
other kinds of pro�les we would like to be able to cover � cache miss measurements, runtime dependency
analysis, �op measurements, and so on. These pro�les are good when you are looking for particular anomalies,
such as cache miss or �oating-point pipeline utilization. Pro�lers for these quantities exist for some machines,
but they aren't widely distributed.

One thing to keep in mind: when you pro�le code you sometimes get a very limited view of the way a
program is used. This is especially true if it can perform many types of analyses for many di�erent sets of
input data. Working with just one or two pro�les can give you a distorted picture of how the code operates
overall. Imagine the following scenario: someone invites you to take your very �rst ride in an automobile.
You get in the passenger's seat with a sketch pad and a pen, and record everything that happens. Your
observations include some of the following:

• The radio is always on.
• The windshield wipers are never used.
• The car moves only in a forward direction.

The danger is that, given this limited view of the way a car is operated, you might want to disconnect the
radio's on/o� knob, remove the windshield wipers, and eliminate the reverse gear. This would come as a real
surprise to the next person who tries to back the car out on a rainy day! The point is that unless you are
careful to gather data for all kinds of uses, you may not really have a picture of how the program operates.
A single pro�le is �ne for tuning a benchmark, but you may miss some important details on a multipurpose
application. Worse yet, if you optimize it for one case and cripple it for another, you may do far more harm
than good.

Pro�ling, as we saw in this chapter, is pretty mechanical. Tuning requires insight. It's only fair to warn
you that it isn't always rewarding. Sometimes you pour your soul into a clever modi�cation that actually
increases the runtime. Argh! What went wrong? You'll need to depend on your pro�ling tools to answer
that.

2.2.7 Exercises38

Exercise 2.2.7.1
Pro�le the following program using gprof. Is there any way to tell how much of the time spent in
routine c was due to recursive calls?

36By the way, are you getting the message �Out of memory?� If you are running csh, try typing unlimit to see if the message
goes away. Otherwise, it may mean that you don't have enough swap space available to run the job.

37This content is available online at <http://cnx.org/content/m33714/1.3/>.
38This content is available online at <http://cnx.org/content/m33718/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

85

main()

{

int i, n=10;

for (i=0; i<1000; i++) {

c(n);

a(n);

}

}

c(n)

int n;

{

if (n > 0) {

a(n-1);

c(n-1);

}

}

a(n)

int n;

{

c(n);

}

Exercise 2.2.7.2
Pro�le an engineering code (�oating-point intensive) with full optimization on and o�. How does
the pro�le change? Can you explain the change?

Exercise 2.2.7.3
Write a program to determine the overhead of the getrusage and the etime calls. Other than
consuming processor time, how can making a system call to check the time too often alter the
application performance?

2.3 Eliminating Clutter

2.3.1 Introduction39

We have looked at code from the compiler's point of view and at how to pro�le code to �nd the trouble
spots. This is good information, but if you are dissatis�ed with a code's performance, you might still be
wondering what to do about it. One possibility is that your code is too obtuse for the compiler to optimize
properly. Excess code, too much modularization, or even previous optimization-related �improvements� can
clutter up your code and confuse the compilers. Clutter is anything that contributes to the runtime without
contributing to the answer. It comes in two forms:
Things that contribute to overhead
Subroutine calls, indirect memory references, tests within loops, wordy tests, type conversions, variables
preserved unnecessarily

39This content is available online at <http://cnx.org/content/m33720/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

86 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

Things that restrict compiler �exibility
Subroutine calls, indirect memory references, tests within loops, ambiguous pointers

It's not a mistake that some of the same items appear in both lists. Subroutine calls or if-statements
within loops can both bite and scratch you by taking too much time and by creating fences � places in
the program where instructions that appear before can't be safely intermixed with instructions that appear
after, at least not without a great deal of care. The goal of this chapter is to show you how to eliminate
clutter, so you can restructure what's left over for the fastest execution. We save a few speci�c topics that
might �t here, especially those regarding memory references, for later chapters where they are treated as
subjects by themselves.

Before we start, we'll remind you: as you look for ways to improve what you have, keep your eyes and
mind open to the possibility that there might be a fundamentally better way to do something�a more
e�cient sorting technique, random number generator, or solver. A di�erent algorithm may buy you far more
speed than tuning. Algorithms are beyond the scope of this book, but what we are discussing here should
help you recognize �good� code, or help you to code a new algorithm to get the best performance.

2.3.2 Subroutine Calls40

A typical corporation is full of frightening examples of overhead. Say your department has prepared a stack
of paperwork to be completed by another department. What do you have to do to transfer that work? First,
you have to be sure that your portion is completed; you can't ask them to take over if the materials they
need aren't ready. Next, you need to package the materials � data, forms, charge numbers, and the like.
And �nally comes the o�cial transfer. Upon receiving what you sent, the other department has to unpack
it, do their job, repackage it, and send it back.

A lot of time gets wasted moving work between departments. Of course, if the overhead is minimal
compared to the amount of useful work being done, it won't be that big a deal. But it might be more
e�cient for small jobs to stay within one department. The same is true of subroutine and function calls.
If you only enter and exit modules once in a relative while, the overhead of saving registers and preparing
argument lists won't be signi�cant. However, if you are repeatedly calling a few small subroutines, the
overhead can buoy them to the top of the pro�le. It might be better if the work stayed where it was, in the
calling routine.

Additionally, subroutine calls inhibit compiler �exibility. Given the right opportunity, you'd like your
compiler to have the freedom to intermix instructions that aren't dependent upon each other. These are
found on either side of a subroutine call, in the caller and callee. But the opportunity is lost when the
compiler can't peer into subroutines and functions. Instructions that might overlap very nicely have to stay
on their respective sides of the arti�cial fence.

It helps if we illustrate the challenge that subroutine boundaries present with an exaggerated example.
The following loop runs very well on a wide range of processors:

DO I=1,N

A(I) = A(I) + B(I) * C

ENDDO

The code below performs the same calculations, but look at what we have done:

40This content is available online at <http://cnx.org/content/m33721/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

87

DO I=1,N

CALL MADD (A(I), B(I), C)

ENDDO

SUBROUTINE MADD (A,B,C)

A = A + B * C

RETURN

END

Each iteration calls a subroutine to do a small amount of work that was formerly within the loop. This is a
particularly painful example because it involves �oating- point calculations. The resulting loss of parallelism,
coupled with the procedure call overhead, might produce code that runs 100 times slower. Remember, these
operations are pipelined, and it takes a certain amount of �wind-up� time before the throughput reaches one
operation per clock cycle. If there are few �oating-point operations to perform between subroutine calls, the
time spent winding up and winding down pipelines �gures prominently.

Subroutine and function calls complicate the compiler's ability to e�ciently man- age COMMON and
external variables, delaying until the last possible moment actually storing them in memory. The compiler
uses registers to hold the �live� values of many variables. When you make a call, the compiler cannot tell
whether the subroutine will be changing variables that are declared as external or COMMON. Therefore, it's
forced to store any modi�ed external or COMMON variables back into memory so that the callee can �nd
them. Likewise, after the call has returned, the same variables have to be reloaded into registers because the
compiler can no longer trust the old, register-resident copies. The penalty for saving and restoring variables
can be substantial, especially if you are using lots of them. It can also be unwarranted if variables that ought
to be local are speci�ed as external or COMMON, as in the following code:

COMMON /USELESS/ K

DO K=1,1000

IF (K .EQ. 1) CALL AUX

ENDDO

In this example, K has been declared as a COMMON variable. It is used only as a do-loop counter, so there
really is no reason for it to be anything but local. However, because it is in a COMMON block, the call to
AUX forces the compiler to store and reload K each iteration. This is because the side e�ects of the call are
unknown.

So far, it looks as if we are preparing a case for huge main programs without any subroutines or functions!
Not at all. Modularity is important for keeping source code compact and understandable. And frankly, the
need for maintainability and modularity is always more important than the need for small performance
improvements. However, there are a few approaches for streamlining subroutine calls that don't require you
to scrap modular coding techniques: macros and procedure inlining.

Remember, if the function or subroutine does a reasonable amount of work, procedure call overhead isn't
going to matter very much. However, if one small routine appears as a leaf node in one of the busiest sections
of the call graph, you might want to think about inserting it in appropriate places in the program.

2.3.2.1 Macros

Macros are little procedures that are substituted inline at compile time. Unlike subroutines or functions,
which are included once during the link, macros are replicated every place they are used. When the compiler
makes its �rst pass through your program, it looks for patterns that match previous macro de�nitions and
expands them inline. In fact, in later stages, the compiler sees an expanded macro as source code.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

88 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

Macros are part of both C and FORTRAN (although the FORTRAN notion of a macro, the statement
function, is reviled by the FORTRAN community, and won't survive much longer).41 For C programs,
macros are created with a #define construct, as demonstrated here:

#define average(x,y) ((x+y)/2)

main ()

{

float q = 100, p = 50;

float a;

a = average(p,q);

printf ("%f\n",a);
}

The �rst compilation step for a C program is a pass through the C preprocessor, cpp. This happens
automatically when you invoke the compiler. cpp expands #define statements inline, replacing the pattern
matched by the macro de�nition. In the program above, the statement:

a = average(p,q);

gets replaced with:

a = ((p+q)/2);

You have to be careful how you de�ne the macro because it literally replaces the pattern located by cpp.
For instance, if the macro de�nition said:

#define multiply(a,b) (a*b)

and you invoked it as:

c = multiply(x+t,y+v);

41The statement function has been eliminated in FORTRAN 90.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

89

the resulting expansion would be x+t*y+v � probably not what you intended.
If you are a C programmer you may be using macros without being conscious of it. Many C header �les

(.h) contain macro de�nitions. In fact, some �standard� C library functions are really de�ned as macros in
the header �les. For instance, the function getchar can be linked in when you build your program. If you
have a statement:

#include <stdio.h>

in your �le, getchar is replaced with a macro de�nition at compile time, replacing the C library function.
You can make cpp macros work for FORTRAN programs too.42 For example, a FORTRAN version of

the C program above might look like this:

#define AVERAG(X,Y) ((X+Y)/2)

C

PROGRAM MAIN

REAL A,P,Q

DATA P,Q /50.,100./

A = AVERAG(P,Q)

WRITE (*,*) A

END

Without a little preparation, the #define statement is rejected by the FORTRAN compiler. The program
�rst has to be preprocessed through cpp to replace the use of AVERAG with its macro de�nition. It makes
compilation a two-step procedure, but that shouldn't be too much of a burden, especially if you are building
your programs under the control of the make utility. We would also suggest you store FORTRAN programs
containing cpp directives under �lename.F to distinguish them from unadorned FORTRAN. Just be sure
you make your changes only to the .F �les and not to the output from cpp. This is how you would preprocess
FORTRAN .F �les by hand:

% /lib/cpp -P < average.F > average.f

% f77 average.f -c

The FORTRAN compiler never sees the original code. Instead, the macro de�nition is substituted inline as
if you had typed it yourself:

C

PROGRAM MAIN

REAL A,P,Q

42Some programmers use the standard UNIX m4 preprocessor for FORTRAN

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

90 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

DATA P,Q /50.,100./ A = ((P+Q)/2)

WRITE (*,*) A

END

By the way, some FORTRAN compilers recognize the .F extension already, making the two-step process
unnecessary. If the compiler sees the .F extension it invokes cpp automatically, compiles the output, and
throws away the intermediate .f �le. Try compiling a .F on your computer to see if it works.

Also, be aware that macro expansions may make source lines extend past column 72, which will probably
make your FORTRAN compiler complain (or worse: it might pass unnoticed). Some compilers support
input lines longer than 72 characters. On the Sun compilers the �e option allows extended input lines up to
132 characters long.

2.3.2.2 Procedure Inlining

Macro de�nitions tend to be pretty short, usually just a single statement. Some- times you have slightly
longer (but not too long) bits of code that might also bene�t from being copied inline, rather than called as
a subroutine or function. Again, the reason for doing this is to eliminate procedure call overhead and expose
paral- lelism. If your compiler is capable of inlining subroutine and function de�nitions into the modules
that call them, then you have a very natural, very portable way to write modular code without su�ering the
cost of subroutine calls.

Depending on the vendor, you can ask the compiler for procedure inlining by:

• Specifying which routines should be inlined on the compiler's command line
• Putting inlining directives into the source program
• Letting the compiler inline automatically

The directives and compile line options are not standard, so you have to check your compiler documentation.
Unfortunately, you may learn that there is no such feature (�yet,� always yet), or that it's an expensive extra.
The third form of inlining in the list, automatic, is available from just a few vendors. Automatic inlining
depends on a sophisticated compiler that can view the de�nitions of several modules at once.

There are some words of caution with regard to procedure inlining. You can easily do too much of it. If
everything and anything is ingested into the body of its parents, the resulting executable may be so large that
it repeatedly spills out of the instruction cache and becomes a net performance loss. Our advice is that you
use the caller/callee information pro�lers give you and make some intelligent decisions about inlining, rather
than trying to inline every subroutine available. Again, small routines that are called often are generally the
best candidates for inlining.

2.3.3 Branches43

People sometimes take a week to make a decision, so we can't fault a computer if it takes a few tens of
nanoseconds. However, if an if-statement appears in some heavily traveled section of the code, you might
get tired of the delay. There are two basic approaches to reducing the impact of branches:

• Streamline them.
• Move them out to the computational suburbs. Particularly, get them out of loops.

In Section 2.3.4 we show you some easy ways to reorganize conditionals so they execute more quickly.

43This content is available online at <http://cnx.org/content/m33722/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

91

2.3.4 Branches With Loops44

Numerical codes usually spend most of their time in loops, so you don't want anything inside a loop that
doesn't have to be there, especially an if-statement. Not only do if-statements gum up the works with extra
instructions, they can force a strict order on the iterations of a loop. Of course, you can't always avoid
conditionals. Sometimes, though, people place them in loops to process events that could have been handled
outside, or even ignored.

To take you back a few years, the following code shows a loop with a test for a value close to zero:

PARAMETER (SMALL = 1.E-20)

DO I=1,N

IF (ABS(A(I)) .GE. SMALL) THEN

B(I) = B(I) + A(I) * C

ENDIF

ENDDO

The idea was that if the multiplier, A(I), were reasonably small, there would be no reason to perform the
math in the center of the loop. Because �oating-point operations weren't pipelined on many machines, a
comparison and a branch was cheaper; the test would save time. On an older CISC or early RISC processor,
a comparison and branch is probably still a savings. But on other architectures, it costs a lot less to just
perform the math and skip the test. Eliminating the branch eliminates a control dependency and allows
the compiler to pipeline more arithmetic operations. Of course, the answer could change slightly if the test
is eliminated. It then becomes a question of whether the di�erence is signi�cant. Here's another example
where a branch isn't necessary. The loop �nds the absolute value of each element in an array:

DO I=1,N

IF (A(I) .LT. 0.) A(I) = -A(I)

ENDDO

But why perform the test at all? On most machines, it's quicker to perform the abs() operation on every
element of the array.

We do have to give you a warning, though: if you are coding in C, the absolute value, fabs(), is a
subroutine call. In this particular case, you are better o� leaving the conditional in the loop.45

When you can't always throw out the conditional, there are things you can do to minimize negative
performance. First, we have to learn to recognize which conditionals within loops can be restructured and
which cannot. Conditionals in loops fall into several categories:

• Loop invariant conditionals
• Loop index dependent conditionals
• Independent loop conditionals
• Dependent loop conditionals
• Reductions

44This content is available online at <http://cnx.org/content/m33723/1.3/>.
45The machine representation of a �oating-point number starts with a sign bit. If the bit is 0, the number is positive. If

it is 1, the number is negative. The fastest absolute value function is one that merely �ands� out the sign bit. See macros in
/usr/include/macros.h and /usr/include/math.h.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

92 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

• Conditionals that transfer control

Let's look at these types in turn.

2.3.4.1 Loop Invariant Conditionals

The following loop contains an invariant test:

DO I=1,K

IF (N .EQ. 0) THEN

A(I) = A(I) + B(I) * C

ELSE

A(I) = 0.

ENDIF

ENDDO

�Invariant� means that the outcome is always the same. Regardless of what happens to the variables A, B,
C, and I, the value of N won't change, so neither will the outcome of the test.

You can recast the loop by making the test outside and replicating the loop body twice � once for when
the test is true, and once for when it is false, as in the following example:

IF (N .EQ. 0) THEN

DO I=1,K

A(I) = A(I) + B(I) * C

ENDDO

ELSE

DO I=1,K

A(I) = 0

ENDDO

ENDIF

The e�ect on the runtime is dramatic. Not only have we eliminated K-1 copies of the test, we have also
assured that the computations in the middle of the loop are not control-dependent on the if-statement, and
are therefore much easier for the compiler to pipeline.

We remember helping someone optimize a program with loops containing similar conditionals. They were
checking to see whether debug output should be printed each iteration inside an otherwise highly optimizable
loop. We can't fault the person for not realizing how much this slowed the program down. Performance
wasn't important at the time. The programmer was just trying to get the code to produce good answers.
But later on, when performance mattered, by cleaning up invariant conditionals, we were able to speed up
the program by a factor of 100.

2.3.4.2 Loop Index Dependent Conditionals

For loop index dependent conditionals, the test is true for certain ranges of the loop index variables. It isn't
always true or always false, like the conditional we just looked at, but it does change with a predictable
pattern, and one that we can use to our advantage. The following loop has two index variables, I and J.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

93

DO I=1,N

DO J=1,N

IF (J .LT. I)

A(J,I) = A(J,I) + B(J,I) * C

ELSE

A(J,I) = 0.0

ENDIF

ENDDO

ENDDO

Notice how the if-statement partitions the iterations into distinct sets: those for which it is true and those
for which it is false. You can take advantage of the predictability of the test to restructure the loop into
several loops � each custom-made for a di�erent partition:

DO I=1,N

DO J=1,I-1

A(J,I) = A(J,I) + B(J,I) * C

ENDDO

DO J=I,N

A(J,I) = 0.0

ENDDO

ENDDO

The new version will almost always be faster. A possible exception is when N is a small value, like 3, in
which case we have created more clutter. But then, the loop probably has such a small impact on the total
runtime that it won't matter which way it's coded.

2.3.4.3 Independent Loop Conditionals

It would be nice if you could optimize every loop by partitioning it. But more often than not, the conditional
doesn't directly depend on the value of the index variables. Although an index variable may be involved in
addressing an array, it doesn't create a recognizable pattern in advance � at least not one you can see when
you are writing the program. Here's such a loop:

DO I=1,N

DO J=1,N

IF (B(J,I) .GT. 1.0) A(J,I) = A(J,I) + B(J,I) * C

ENDDO

ENDDO

There is not much you can do about this type of conditional. But because every iteration is independent,
the loop can be unrolled or can be performed in parallel.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

94 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

2.3.4.4 Dependent Loop Conditionals

When the conditional is based on a value that changes with each iteration of the loop, the compiler has no
choice but to execute the code exactly as written. For instance, the following loop has an if-statement with
built-in scalar recursion:

DO I=1,N

IF (X .LT. A(I)) X = X + B(I)*2.

ENDDO

You can't know which way the branch will go for the next iteration until you are done with the current
iteration. To recognize the dependency, try to unroll the loop slightly by hand. If you can't start the second
test until the �rst has �nished, you have a dependent loop conditional. You may want to look at these types
of loops to see if you can eliminate the iteration-to-iteration value.

2.3.4.5 Reductions

Keep an eye out for loops in which the if-statement is performing a max or min function on a array. This is
a reduction, so called because it reduces a array to a scalar result (the previous example was a reduction too,
by the way). Again, we are getting a little bit ahead of ourselves, but since we are talking about if-statements
in loops, I want to introduce a trick for restructuring reductions max and min to expose more parallelism.
The following loop searches for the maximum value, z, in the array a by going through the elements one at
a time:

for (i=0; i<n; i++)

z = a[i] > z ? a[i] : z;

As written, it's recursive like the loop from the previous section. You need the result of a given iteration
before you can proceed to the next. However, since we are looking for the greatest element in the whole
array, and since that will be the same element (essentially) no matter how we go about looking for it, we
can restructure the loop to check several elements at a time (we assume n is evenly divisible by 2 and do not
include the preconditioning loop):

z0 = 0.;

z1 = 0.;

for (i=0; i< n-1; i+=2) {

z0 = z0 < a[i] ? a[i] : z0;

z1 = z1 < a[i+1] ? a[i+1] : z1;

}

z = z0 < z1 ? z1 : z0;

Do you see how the new loop calculates two new maximum values each iteration? These maximums are
then compared with one another, and the winner becomes the new o�cial max. It's analogous to a play-o�

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

95

arrangement in a Ping-Pong tournament. Whereas the old loop was more like two players competing at a
time while the rest sat around, the new loop runs several matches side by side. In general this particular
optimization is not a good one to code by hand. On parallel processors, the compiler performs the reduction
in its own way. If you hand-code similar to this example, you may inadvertently limit the compiler's �exibility
on a parallel system.

2.3.4.6 Conditionals That Transfer Control

Let's step back a second. Have you noticed a similarity among all the loops so far? We have looked only at
a particular type of conditional, conditional assignments � based on the outcome of the test, a variable gets
reassigned. Of course, not every conditional ends up in an assignment. You can have statements that transfer
�ow of control, such as subroutine calls or goto statements. In the following example, the programmer is
carefully checking before dividing by zero.

However, this test has an extremely negative impact on the performance because it forces the iterations
to be done precisely in order:

DO I=1,N

DO J=1,N

IF (B(J,I) .EQ. 0) THEN

PRINT *,I,J

STOP

ENDIF

A(J,I) = A(J,I) / B(J,I)

ENDDO

ENDDO

Avoiding these tests is one of the reasons that the designers of the IEEE �oating- point standard added the
trap feature for operations such as dividing by zero. These traps allow the programmer in a performance-
critical section of the code to achieve maximum performance yet still detect when an error occurs.

2.3.5 Other Clutter46

Clutter comes in many forms. Consider the previous sections as having dealt with large pieces of junk you
might �nd in the front hall closet: an ironing board, hockey sticks, and pool cues. Now we are down to the
little things: a widowed checker, a tennis ball, and a hat nobody owns. We want to mention a few of them
here. We apologize in advance for changing subjects a lot, but that's the nature of cleaning out a closet!

2.3.5.1 Data Type Conversions

Statements that contain runtime type conversions su�er a little performance penalty each time the statement
is executed. If the statement is located in a portion of the program where there is a lot of activity, the total
penalty can be signi�cant.

People have their reasons for writing applications with mixed typing. Often it is a matter of saving
memory space, memory bandwidth, or time. In the past, for instance, double-precision calculations took
twice as long as their single-precision counterparts, so if some of the calculations could be arranged to take
place in single precision, there could be a performance win.47 But any time saved by performing part of
the calculations in single precision and part in double precision has to be measured against the additional

46This content is available online at <http://cnx.org/content/m33724/1.3/>.
47Nowadays, single-precision calculations can take longer than double-precision calculations from register to register.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

96 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

overhead caused by the runtime type conversions. In the following code, the addition of A(I) to B(I) is
mixed type:

INTEGER NUMEL, I

PARAMETER (NUMEL = 1000)

REAL*8 A(NUMEL)

REAL*4 B(NUMEL)

DO I=1,NUMEL

A(I) = A(I) + B(I)

ENDDO

In each iteration, B(I) has to be promoted to double precision before the addition can occur. You don't see
the promotion in the source code, but it's there, and it takes time.

C programmers beware: in Kernighan and Ritchie (K&R) C, all �oating-point calculations in C programs
take place in double precision � even if all the variables involved are declared as �oat. It is possible for you
to write a whole K+R application in one precision, yet su�er the penalty of many type conversions.

Another data type�related mistake is to use character operations in IF tests. On many systems, character
operations have poorer performance than integer operations since they may be done via procedure calls. Also,
the optimizers may not look at code using character variables as a good candidate for optimization. For
example, the following code:

DO I=1,10000

IF (CHVAR(I) .EQ. 'Y') THEN

A(I) = A(I) + B(I)*C

ENDIF

ENDDO

might be better written using an integer variable to indicate whether or not a computation should be
performed:

DO I=1,10000

IF (IFLAG(I) .EQ. 1) THEN

A(I) = A(I) + B(I)*C

ENDIF

ENDDO

Another way to write the code, assuming the IFLAG variable was 0 or 1, would be as follows:

DO I=1,10000

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

97

A(I) = A(I) + B(I)*C*IFLAG(I)

ENDDO

The last approach might actually perform slower on some computer systems than the approach using the IF
and the integer variable.

2.3.5.2 Doing Your Own Common Subexpression Elimination

So far we have given your compiler the bene�t of the doubt. Common subexpression elimination � the
ability of the compiler to recognize repeated patterns in the code and replace all but one with a temporary
variable � probably works on your machine for simple expressions. In the following lines of code, most
compilers would recognize a+b as a common subexpression:

c = a + b + d

e = q + a + b

becomes:

temp = a + b

c = temp + d

e = q + temp

Substituting for a+b eliminates some of the arithmetic. If the expression is reused many times, the savings can
be signi�cant. However, a compiler's ability to recognize common subexpressions is limited, especially when
there are multiple components, or their order is permuted. A compiler might not recognize that a+b+c and
c+b+a are equivalent.48 For important parts of the program, you might consider doing common subexpression
elimination of complicated expressions by hand. This guarantees that it gets done. It compromises beauty
somewhat, but there are some situations where it is worth it.

Here's another example in which the function sin is called twice with the same argument:

x = r*sin(a)*cos(b);

y = r*sin(a)*sin(b);

z = r*cos(a);

becomes:

temp = r*sin(a);

48And because of over�ow and round-o� errors in �oating-point, in some situations they might not be equivalent.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

98 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

x = temp*cos(b);

y = temp*sin(b);

z = r*cos(a);

We have replaced one of the calls with a temporary variable. We agree, the savings for eliminating one
transcendental function call out of �ve won't win you a Nobel prize, but it does call attention to an important
point: compilers typically do not perform common subexpression elimination over subroutine or function
calls. The compiler can't be sure that the subroutine call doesn't change the state of the argument or some
other variables that it can't see.

The only time a compiler might eliminate common subexpressions containing function calls is when they
are intrinsics, as in FORTRAN. This can be done because the compiler can assume some things about their
side e�ects. You, on the other hand, can see into subroutines, which means you are better quali�ed than the
compiler to group together common subexpressions involving subroutines or functions.

2.3.5.3 Doing Your Own Code Motion

All of these optimizations have their biggest payback within loops because that's where all of a program's
activity is concentrated. One of the best ways to cut down on runtime is to move unnecessary or repeated
(invariant) instructions out of the main �ow of the code and into the suburbs. For loops, it's called hoisting
instructions when they are pulled out from the top and sinking when they are pushed down below. Here's
an example:

DO I=1,N

A(I) = A(I) / SQRT(X*X + Y*Y)

ENDDO

becomes:

TEMP = 1 / SQRT(X*X + Y*Y)

DO I=1,N

A(I) = A(I) * TEMP

ENDDO

We hoisted an expensive, invariant operation out of the loop and assigned the result to a temporary variable.
Notice, too, that we made an algebraic simpli�cation when we exchanged a division for multiplication by an
inverse. The multiplication will execute much more quickly. Your compiler might be smart enough to make
these transformations itself, assuming you have instructed the compiler that these are legal transformations;
but without crawling through the assembly language, you can't be positive. Of course, if you rearrange
code by hand and the runtime for the loop suddenly goes down, you will know that the compiler has been
sandbagging all along.

Sometimes you want to sink an operation below the loop. Usually, it's some calculation performed each
iteration but whose result is only needed for the last. To illustrate, here's a sort of loop that is di�erent from
the ones we have been looking at. It searches for the �nal character in a character string:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

99

while (*p != ' ')

c = *p++;

becomes:

while (*p++ != ' ');

c = *(p-1);

The new version of the loop moves the assignment of c beyond the last iteration. Admittedly, this transfor-
mation would be a reach for a compiler and the savings wouldn't even be that great. But it illustrates the
notion of sinking an operation very well.

Again, hoisting or sinking instructions to get them out of loops is something your compiler should be
capable of doing. But often you can slightly restructure the calculations yourself when you move them to
get an even greater bene�t.

2.3.5.4 Handling Array Elements in Loops

Here's another area where you would like to trust the compiler to do the right thing. When making repeated
use of an array element within a loop, you want to be charged just once for loading it from memory. Take
the following loop as an example. It reuses X(I) twice:

DO I=1,N

XOLD(I) = X(I)

X(I)= X(I) + XINC(I)

ENDDO

In reality, the steps that go into retrieving X(I) are just additional common subex- pressions: an address
calculation (possibly) and a memory load operation. You can see that the operation is repeated by rewriting
the loop slightly:

DO I=1,N

TEMP= X(I)

XOLD(I) = TEMP

X(I)= TEMP + XINC(I)

ENDDO

FORTRAN compilers should recognize that the same X(I) is being used twice and that it only needs to
be loaded once, but compilers aren't always so smart. You sometimes have to create a temporary scalar

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

100 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

variable to hold the value of an array element over the body of a loop. This is particularly true when there
are subroutine calls or functions in the loop, or when some of the variables are external or COMMON. Make
sure to match the types between the temporary variables and the other variables. You don't want to incur
type conversion overhead just because you are �helping� the compiler. For C compilers, the same kind of
indexed expres- sions are an even greater challenge. Consider this code:

doinc(int xold[],int x[],int xinc[],int n)

{

for (i=0; i<n; i++) {

xold[i] = x[i];

x[i]= x[i] + xinc[i];

}

}

Unless the compiler can see the de�nitions of x, xinc, and xold, it has to assume that they are pointers
leading back to the same storage, and repeat the loads and stores. In this case, introducing temporary
variables to hold the values x, xinc, and xold is an optimization the compiler wasn't free to make.

Interestingly, while putting scalar temporaries in the loop is useful for RISC and superscalar machines,
it doesn't help code that runs on parallel hardware. A parallel compiler looks for opportunities to eliminate
the scalars or, at the very least, to replace them with temporary vectors. If you run your code on a parallel
machine from time to time, you might want to be careful about introducing scalar temporary variables into
a loop. A dubious performance gain in one instance could be a real performance loss in another.

2.3.6 Closing Notes49

In this chapter, we introduced tuning techniques for eliminating program clutter � anything that contributes
to the runtime without contributing to the answer. We saw many examples of tuning techniques � enough
that you may be asking yourself, �What's left?� Well, as we will see in the upcoming chapters, there are a
couple of ways we can help the compiler:

• Find more parallelism
• Use memory as e�ectively as possible

Sometimes this means we make changes that are not beautiful. However, they are often quick.

2.3.7 Exercises50

Exercise 2.3.7.1
How would you simplify the following loop conditional?

DO I=1,N

A(I) = A(I) * B

IF (I .EQ. N/2) A(I) = 0.

ENDDO

49This content is available online at <http://cnx.org/content/m33725/1.3/>.
50This content is available online at <http://cnx.org/content/m33727/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

101

Exercise 2.3.7.2
Time this loop on your computer, both with and without the test. Run it with three sets of data:
one with all A(I)s less than SMALL, one with all A(I)s greater than SMALL, and one with an even
split. When is it better to leave the test in the loop, if ever?

PARAMETER (SMALL = 1.E-20)

DO I=1,N

IF (ABS(A(I)) .GE. SMALL) THEN

B(I) = B(I) + A(I) * C

ENDIF

ENDDO

Exercise 2.3.7.3
Write a simple program that calls a simple subroutine in its inner loop. Time the program
execution. Then tell the compiler to inline the routine and test the performance again. Finally,
modify the code to perform the operations in the body of the loop and time the code. Which option
ran faster? You may have to look at the generated machine code to �gure out why.

2.4 Loop Optimizations

2.4.1 Introduction51

In nearly all high performance applications, loops are where the majority of the execution time is spent.
In Section 2.3.1 we examined ways in which application developers introduced clutter into loops, possibly
slowing those loops down. In this chapter we focus on techniques used to improve the performance of these
�clutter-free� loops. Sometimes the compiler is clever enough to generate the faster versions of the loops,
and other times we have to do some rewriting of the loops ourselves to help the compiler.

It's important to remember that one compiler's performance enhancing modi�cations are another com-
piler's clutter. When you make modi�cations in the name of performance you must make sure you're helping
by testing the performance with and without the modi�cations. Also, when you move to another architecture
you need to make sure that any modi�cations aren't hindering performance. For this reason, you should
choose your performance-related modi�cations wisely. You should also keep the original (simple) version
of the code for testing on new architectures. Also if the bene�t of the modi�cation is small, you should
probably keep the code in its most simple and clear form.

We look at a number of di�erent loop optimization techniques, including:

• Loop unrolling
• Nested loop optimization
• Loop interchange
• Memory reference optimization
• Blocking
• Out-of-core solutions

Someday, it may be possible for a compiler to perform all these loop optimizations automatically. Typically
loop unrolling is performed as part of the normal compiler optimizations. Other optimizations may have to

51This content is available online at <http://cnx.org/content/m33728/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

102 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

be triggered using explicit compile-time options. As you contemplate making manual changes, look carefully
at which of these optimizations can be done by the compiler. Also run some tests to determine if the compiler
optimizations are as good as hand optimizations.

2.4.2 Operation Counting52

Before you begin to rewrite a loop body or reorganize the order of the loops, you must have some idea of
what the body of the loop does for each iteration. Operation counting is the process of surveying a loop to
understand the operation mix. You need to count the number of loads, stores, �oating-point, integer, and
library calls per iteration of the loop. From the count, you can see how well the operation mix of a given
loop matches the capabilities of the processor. Of course, operation counting doesn't guarantee that the
compiler will generate an e�cient representation of a loop.53 But it generally provides enough insight to the
loop to direct tuning e�orts.

Bear in mind that an instruction mix that is balanced for one machine may be imbalanced for another.
Processors on the market today can generally issue some combination of one to four operations per clock
cycle. Address arithmetic is often embedded in the instructions that reference memory. Because the compiler
can replace complicated loop address calculations with simple expressions (provided the pattern of addresses
is predictable), you can often ignore address arithmetic when counting operations.54

Let's look at a few loops and see what we can learn about the instruction mix:

DO I=1,N

A(I,J,K) = A(I,J,K) + B(J,I,K)

ENDDO

This loop contains one �oating-point addition and three memory references (two loads and a store). There
are some complicated array index expressions, but these will probably be simpli�ed by the compiler and
executed in the same cycle as the memory and �oating-point operations. For each iteration of the loop, we
must increment the index variable and test to determine if the loop has completed.

A 3:1 ratio of memory references to �oating-point operations suggests that we can hope for no more than
1/3 peak �oating-point performance from the loop unless we have more than one path to memory. That's
bad news, but good information. The ratio tells us that we ought to consider memory reference optimizations
�rst.

The loop below contains one �oating-point addition and two memory operations � a load and a store.
Operand B(J) is loop-invariant, so its value only needs to be loaded once, upon entry to the loop:

DO I=1,N

A(I) = A(I) + B(J)

ENDDO

Again, our �oating-point throughput is limited, though not as severely as in the previous loop. The ratio of
memory references to �oating-point operations is 2:1.

52This content is available online at <http://cnx.org/content/m33729/1.3/>.
53Take a look at the assembly language output to be sure, which may be going a bit overboard. To get an assembly language

listing on most machines, compile with the �S �ag. On an RS/6000, use the �qlist �ag.
54The compiler reduces the complexity of loop index expressions with a technique called induction variable simpli�cation.

See Section 2.1.1.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

103

The next example shows a loop with better prospects. It performs element-wise multiplication of two
vectors of complex numbers and assigns the results back to the �rst. There are six memory operations (four
loads and two stores) and six �oating-point operations (two additions and four multiplications):

for (i=0; i<n; i++) {

xr[i] = xr[i] * yr[i] - xi[i] * yi[i];

xi[i] = xr[i] * yi[i] + xi[i] * yr[i];

}

It appears that this loop is roughly balanced for a processor that can perform the same number of memory
operations and �oating-point operations per cycle. However, it might not be. Many processors perform a
�oating-point multiply and add in a single instruction. If the compiler is good enough to recognize that the
multiply-add is appropriate, this loop may also be limited by memory references; each iteration would be
compiled into two multiplications and two multiply-adds.

Again, operation counting is a simple way to estimate how well the requirements of a loop will map onto
the capabilities of the machine. For many loops, you often �nd the performance of the loops dominated by
memory references, as we have seen in the last three examples. This suggests that memory reference tuning
is very important.

2.4.3 Basic Loop Unrolling55

The most basic form of loop optimization is loop unrolling. It is so basic that most of today's compilers do
it automatically if it looks like there's a bene�t. There has been a great deal of clutter introduced into old
dusty-deck FORTRAN programs in the name of loop unrolling that now serves only to confuse and mislead
today's compilers.

We're not suggesting that you unroll any loops by hand. The purpose of this section is twofold. First,
once you are familiar with loop unrolling, you might recognize code that was unrolled by a programmer (not
you) some time ago and simplify the code. Second, you need to understand the concepts of loop unrolling
so that when you look at generated machine code, you recognize unrolled loops.

The primary bene�t in loop unrolling is to perform more computations per iteration. At the end of each
iteration, the index value must be incremented, tested, and the control is branched back to the top of the
loop if the loop has more iterations to process. By unrolling the loop, there are less �loop-ends� per loop
execution. Unrolling also reduces the overall number of branches signi�cantly and gives the processor more
instructions between branches (i.e., it increases the size of the basic blocks).

For illustration, consider the following loop. It has a single statement wrapped in a do-loop:

DO I=1,N

A(I) = A(I) + B(I) * C

ENDDO

You can unroll the loop, as we have below, giving you the same operations in fewer iterations with less loop
overhead. You can imagine how this would help on any computer. Because the computations in one iteration
do not depend on the computations in other iterations, calculations from di�erent iterations can be executed
together. On a superscalar processor, portions of these four statements may actually execute in parallel:

55This content is available online at <http://cnx.org/content/m33732/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

104 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

DO I=1,N,4

A(I) = A(I) + B(I) * C

A(I+1) = A(I+1) + B(I+1) * C

A(I+2) = A(I+2) + B(I+2) * C

A(I+3) = A(I+3) + B(I+3) * C

ENDDO

However, this loop is not exactly the same as the previous loop. The loop is unrolled four times, but what
if N is not divisible by 4? If not, there will be one, two, or three spare iterations that don't get executed.
To handle these extra iterations, we add another little loop to soak them up. The extra loop is called a
preconditioning loop:

II = IMOD (N,4)

DO I=1,II

A(I) = A(I) + B(I) * C

ENDDO

DO I=1+II,N,4

A(I) = A(I) + B(I) * C

A(I+1) = A(I+1) + B(I+1) * C

A(I+2) = A(I+2) + B(I+2) * C

A(I+3) = A(I+3) + B(I+3) * C

ENDDO

The number of iterations needed in the preconditioning loop is the total iteration count modulo for this
unrolling amount. If, at runtime, N turns out to be divisible by 4, there are no spare iterations, and the
preconditioning loop isn't executed.

Speculative execution in the post-RISC architecture can reduce or eliminate the need for unrolling a loop
that will operate on values that must be retrieved from main memory. Because the load operations take
such a long time relative to the computations, the loop is naturally unrolled. While the processor is waiting
for the �rst load to �nish, it may speculatively execute three to four iterations of the loop ahead of the �rst
load, e�ectively unrolling the loop in the Instruction Reorder Bu�er.

2.4.4 Qualifying Candidates for Loop Unrolling Up one level 56

Assuming a large value for N, the previous loop was an ideal candidate for loop unrolling. The iterations
could be executed in any order, and the loop innards were small. But as you might suspect, this isn't always
the case; some kinds of loops can't be unrolled so easily. Additionally, the way a loop is used when the
program runs can disqualify it for loop unrolling, even if it looks promising.

In this section we are going to discuss a few categories of loops that are generally not prime candidates
for unrolling, and give you some ideas of what you can do about them. We talked about several of these in
the previous chapter as well, but they are also relevant here.

56This content is available online at <http://cnx.org/content/m33733/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

105

2.4.4.1 Loops with Low Trip Counts

To be e�ective, loop unrolling requires a fairly large number of iterations in the original loop. To understand
why, picture what happens if the total iteration count is low, perhaps less than 10, or even less than 4.
With a trip count this low, the preconditioning loop is doing a proportionately large amount of the work.
It's not supposed to be that way. The preconditioning loop is supposed to catch the few leftover iterations
missed by the unrolled, main loop. However, when the trip count is low, you make one or two passes through
the unrolled loop, plus one or two passes through the preconditioning loop. In other words, you have more
clutter; the loop shouldn't have been unrolled in the �rst place.

Probably the only time it makes sense to unroll a loop with a low trip count is when the number of
iterations is constant and known at compile time. For instance, suppose you had the following loop:

PARAMETER (NITER = 3)

DO I=1,NITER

A(I) = B(I) * C

ENDDO

Because NITER is hardwired to 3, you can safely unroll to a depth of 3 without worrying about a precon-
ditioning loop. In fact, you can throw out the loop structure altogether and leave just the unrolled loop
innards:

PARAMETER (NITER = 3)

A(1) = B(1) * C

A(2) = B(2) * C

A(3) = A(3) * C

Of course, if a loop's trip count is low, it probably won't contribute signi�cantly to the overall runtime,
unless you �nd such a loop at the center of a larger loop. Then you either want to unroll it completely or
leave it alone.

2.4.4.2 Fat Loops

Loop unrolling helps performance because it fattens up a loop with more calculations per iteration. By the
same token, if a particular loop is already fat, unrolling isn't going to help. The loop overhead is already
spread over a fair number of instructions. In fact, unrolling a fat loop may even slow your program down
because it increases the size of the text segment, placing an added burden on the memory system (we'll
explain this in greater detail shortly). A good rule of thumb is to look elsewhere for performance when the
loop innards exceed three or four statements.

2.4.4.3 Loops Containing Procedure Calls

As with fat loops, loops containing subroutine or function calls generally aren't good candidates for unrolling.
There are several reasons. First, they often contain a fair number of instructions already. And if the
subroutine being called is fat, it makes the loop that calls it fat as well. The size of the loop may not be
apparent when you look at the loop; the function call can conceal many more instructions.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

106 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

Second, when the calling routine and the subroutine are compiled separately, it's impossible for the
compiler to intermix instructions. A loop that is unrolled into a series of function calls behaves much like
the original loop, before unrolling.

Last, function call overhead is expensive. Registers have to be saved; argument lists have to be prepared.
The time spent calling and returning from a subroutine can be much greater than that of the loop overhead.
Unrolling to amortize the cost of the loop structure over several calls doesn't buy you enough to be worth
the e�ort.

The general rule when dealing with procedures is to �rst try to eliminate them in the �remove clutter�
phase, and when this has been done, check to see if unrolling gives an additional performance improvement.

2.4.4.4 Loops with Branches in Them

In Section 2.3.1 we showed you how to eliminate certain types of branches, but of course, we couldn't get
rid of them all. In cases of iteration-independent branches, there might be some bene�t to loop unrolling.
The IF test becomes part of the operations that must be counted to determine the value of loop unrolling.
Below is a doubly nested loop. The inner loop tests the value of B(J,I):

DO I=1,N

DO J=1,N

IF (B(J,I) .GT. 1.0) A(J,I) = A(J,I) + B(J,I) * C

ENDDO

ENDDO

Each iteration is independent of every other, so unrolling it won't be a problem. We'll just leave the outer
loop undisturbed:

II = IMOD (N,4)

DO I=1,N

DO J=1,II

IF (B(J,I) .GT. 1.0)

+ A(J,I) = A(J,I) + B(J,I) * C

ENDDO

DO J=II+1,N,4

IF (B(J,I) .GT. 1.0)

+ A(J,I) = A(J,I) + B(J,I) * C

IF (B(J+1,I) .GT. 1.0)

+ A(J+1,I) = A(J+1,I) + B(J+1,I) * C

IF (B(J+2,I) .GT. 1.0)

+ A(J+2,I) = A(J+2,I) + B(J+2,I) * C

IF (B(J+3,I) .GT. 1.0)

+ A(J+3,I) = A(J+3,I) + B(J+3,I) * C

ENDDO

ENDDO

This approach works particularly well if the processor you are using supports conditional execution. As
described earlier, conditional execution can replace a branch and an operation with a single conditionally

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

107

executed assignment. On a superscalar processor with conditional execution, this unrolled loop executes
quite nicely.

2.4.5 Nested Loops57

When you embed loops within other loops, you create a loop nest. The loop or loops in the center are called
the inner loops. The surrounding loops are called outer loops. Depending on the construction of the loop
nest, we may have some �exibility in the ordering of the loops. At times, we can swap the outer and inner
loops with great bene�t. In the next sections we look at some common loop nestings and the optimizations
that can be performed on these loop nests.

Often when we are working with nests of loops, we are working with multidimensional arrays. Computing
in multidimensional arrays can lead to non-unit-stride memory access. Many of the optimizations we perform
on loop nests are meant to improve the memory access patterns.

First, we examine the computation-related optimizations followed by the memory optimizations.

2.4.5.1 Outer Loop Unrolling

If you are faced with a loop nest, one simple approach is to unroll the inner loop. Unrolling the innermost
loop in a nest isn't any di�erent from what we saw above. You just pretend the rest of the loop nest doesn't
exist and approach it in the nor- mal way. However, there are times when you want to apply loop unrolling
not just to the inner loop, but to outer loops as well � or perhaps only to the outer loops. Here's a typical
loop nest:

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

a[i][j][k] = a[i][j][k] + b[i][j][k] * c;

To unroll an outer loop, you pick one of the outer loop index variables and replicate the innermost loop
body so that several iterations are performed at the same time, just like we saw in the Section 2.4.4. The
di�erence is in the index variable for which you unroll. In the code below, we have unrolled the middle (j)
loop twice:

for (i=0; i<n; i++)

for (j=0; j<n; j+=2)

for (k=0; k<n; k++) {

a[i][j][k] = a[i][j][k] + b[i][k][j] * c;

a[i][j+1][k] = a[i][j+1][k] + b[i][k][j+1] * c;

}

We left the k loop untouched; however, we could unroll that one, too. That would give us outer and inner
loop unrolling at the same time:

57This content is available online at <http://cnx.org/content/m33734/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

108 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

for (i=0; i<n; i++)

for (j=0; j<n; j+=2)

for (k=0; k<n; k+=2) {

a[i][j][k] = a[i][j][k] + b[i][k][j] * c;

a[i][j+1][k] = a[i][j+1][k] + b[i][k][j+1] * c;

a[i][j][k+1] = a[i][j][k+1] + b[i][k+1][j] * c;

a[i][j+1][k+1] = a[i][j+1][k+1] + b[i][k+1][j+1] * c;

}

We could even unroll the i loop too, leaving eight copies of the loop innards. (Notice that we completely
ignored preconditioning; in a real application, of course, we couldn't.)

2.4.5.2 Outer Loop Unrolling to Expose Computations

Say that you have a doubly nested loop and that the inner loop trip count is low � perhaps 4 or 5 on
average. Inner loop unrolling doesn't make sense in this case because there won't be enough iterations to
justify the cost of the preconditioning loop. However, you may be able to unroll an outer loop. Consider
this loop, assuming that M is small and N is large:

DO I=1,N

DO J=1,M

A(J,I) = B(J,I) + C(J,I) * D

ENDDO

ENDDO

Unrolling the I loop gives you lots of �oating-point operations that can be overlapped:

II = IMOD (N,4)

DO I=1,II

DO J=1,M

A(J,I) = B(J,I) + C(J,I) * D

ENDDO

ENDDO

DO I=II,N,4

DO J=1,M

A(J,I) = B(J,I) + C(J,I) * D

A(J,I+1) = B(J,I+1) + C(J,I+1) * D

A(J,I+2) = B(J,I+2) + C(J,I+2) * D

A(J,I+3) = B(J,I+3) + C(J,I+3) * D

ENDDO

ENDDO

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

109

In this particular case, there is bad news to go with the good news: unrolling the outer loop causes strided
memory references on A, B, and C. However, it probably won't be too much of a problem because the inner
loop trip count is small, so it naturally groups references to conserve cache entries.

Outer loop unrolling can also be helpful when you have a nest with recursion in the inner loop, but not
in the outer loops. In this next example, there is a �rst- order linear recursion in the inner loop:

DO J=1,M

DO I=2,N

A(I,J) = A(I,J) + A(I-1,J) * B

ENDDO

ENDDO

Because of the recursion, we can't unroll the inner loop, but we can work on several copies of the outer loop
at the same time. When unrolled, it looks like this:

JJ = IMOD (M,4)

DO J=1,JJ

DO I=2,N

A(I,J) = A(I,J) + A(I-1,J) * B

ENDDO

ENDDO

DO J=1+JJ,M,4

DO I=2,N

A(I,J) = A(I,J) + A(I-1,J) * B

A(I,J+1) = A(I,J+1) + A(I-1,J+1) * B

A(I,J+2) = A(I,J+2) + A(I-1,J+2) * B

A(I,J+3) = A(I,J+3) + A(I-1,J+3) * B

ENDDO

ENDDO

You can see the recursion still exists in the I loop, but we have succeeded in �nding lots of work to do
anyway.

Sometimes the reason for unrolling the outer loop is to get a hold of much larger chunks of things that
can be done in parallel. If the outer loop iterations are independent, and the inner loop trip count is high,
then each outer loop iteration represents a signi�cant, parallel chunk of work. On a single CPU that doesn't
matter much, but on a tightly coupled multiprocessor, it can translate into a tremendous increase in speeds.

2.4.6 Loop Interchange58

Loop interchange is a technique for rearranging a loop nest so that the right stu� is at the center. What
the right stu� is depends upon what you are trying to accomplish. In many situations, loop interchange also
lets you swap high trip count loops for low trip count loops, so that activity gets pulled into the center of
the loop nest.59

58This content is available online at <http://cnx.org/content/m33736/1.3/>.
59It's also good for improving memory access patterns.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

110 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

2.4.6.1 Loop Interchange to Move Computations to the Center

When someone writes a program that represents some kind of real-world model, they often structure the
code in terms of the model. This makes perfect sense. The computer is an analysis tool; you aren't writing
the code on the computer's behalf. However, a model expressed naturally often works on one point in space
at a time, which tends to give you insigni�cant inner loops � at least in terms of the trip count. For
performance, you might want to interchange inner and outer loops to pull the activity into the center, where
you can then do some unrolling. Let's illustrate with an example. Here's a loop where KDIM time-dependent
quantities for points in a two-dimensional mesh are being updated:

PARAMETER (IDIM = 1000, JDIM = 1000, KDIM = 3)

...

DO I=1,IDIM

DO J=1,JDIM

DO K=1,KDIM

D(K,J,I) = D(K,J,I) + V(K,J,I) * DT

ENDDO

ENDDO

ENDDO

In practice, KDIM is probably equal to 2 or 3, where J or I, representing the number of points, may be in the
thousands. The way it is written, the inner loop has a very low trip count, making it a poor candidate for
unrolling.

By interchanging the loops, you update one quantity at a time, across all of the points. For tuning
purposes, this moves larger trip counts into the inner loop and allows you to do some strategic unrolling:

DO K=1,KDIM

DO J=1,JDIM

DO I=1,IDIM

D(K,J,I) = D(K,J,I) + V(K,J,I) * DT

ENDDO

ENDDO

ENDDO

This example is straightforward; it's easy to see that there are no inter-iteration dependencies. But how
can you tell, in general, when two loops can be inter- changed? Interchanging loops might violate some
dependency, or worse, only violate it occasionally, meaning you might not catch it when optimizing. Can we
interchange the loops below?

DO I=1,N-1

DO J=2,N

A(I,J) = A(I+1,J-1) * B(I,J)

C(I,J) = B(J,I)

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

111

ENDDO

ENDDO

While it is possible to examine the loops by hand and determine the dependencies, it is much better if
the compiler can make the determination. Very few single-processor compilers automatically perform loop
interchange. However, the compilers for high-end vector and parallel computers generally interchange loops
if there is some bene�t and if interchanging the loops won't alter the program results.60

2.4.7 Memory Access Patterns61

The best pattern is the most straightforward: increasing and unit sequential. For an array with a single
dimension, stepping through one element at a time will accomplish this. For multiply-dimensioned arrays,
access is fastest if you iterate on the array subscript o�ering the smallest stride or step size. In FORTRAN
programs, this is the leftmost subscript; in C, it is the rightmost. The FORTRAN loop below has unit stride,
and therefore will run quickly:

DO J=1,N

DO I=1,N

A(I,J) = B(I,J) + C(I,J) * D

ENDDO

ENDDO

In contrast, the next loop is slower because its stride is N (which, we assume, is greater than 1). As N
increases from one to the length of the cache line (adjusting for the length of each element), the performance
worsens. Once N is longer than the length of the cache line (again adjusted for element size), the performance
won't decrease:

DO J=1,N

DO I=1,N

A(J,I) = B(J,I) + C(J,I) * D

ENDDO

ENDDO

Here's a unit-stride loop like the previous one, but written in C:

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[i][j] = a[i][j] + c[i][j] * d;

60When the compiler performs automatic parallel optimization, it prefers to run the outermost loop in parallel to minimize
overhead and unroll the innermost loop to make best use of a superscalar or vector processor. For this reason, the compiler
needs to have some �exibility in ordering the loops in a loop nest.

61This content is available online at <http://cnx.org/content/m33738/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

112 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

Unit stride gives you the best performance because it conserves cache entries. Recall how a data cache
works.62 Your program makes a memory reference; if the data is in the cache, it gets returned immediately.
If not, your program su�ers a cache miss while a new cache line is fetched from main memory, replacing
an old one. The line holds the values taken from a handful of neighboring memory locations, including the
one that caused the cache miss. If you loaded a cache line, took one piece of data from it, and threw the
rest away, you would be wasting a lot of time and memory bandwidth. However, if you brought a line into
the cache and consumed everything in it, you would bene�t from a large number of memory references for a
small number of cache misses. This is exactly what you get when your program makes unit-stride memory
references.

The worst-case patterns are those that jump through memory, especially a large amount of memory, and
particularly those that do so without apparent rhyme or reason (viewed from the outside). On jobs that
operate on very large data structures, you pay a penalty not only for cache misses, but for TLB misses too.63

It would be nice to be able to rein these jobs in so that they make better use of memory. Of course, you
can't eliminate memory references; programs have to get to their data one way or another. The question is,
then: how can we restructure memory access patterns for the best performance?

In the next few sections, we are going to look at some tricks for restructuring loops with strided, albeit
predictable, access patterns. The tricks will be familiar; they are mostly loop optimizations from Sec-
tion 2.3.1, used here for di�erent reasons. The underlying goal is to minimize cache and TLB misses as much
as possible. You will see that we can do quite a lot, although some of this is going to be ugly.

2.4.7.1 Loop Interchange to Ease Memory Access Patterns

Loop interchange is a good technique for lessening the impact of strided memory references. Let's revisit
our FORTRAN loop with non-unit stride. The good news is that we can easily interchange the loops; each
iteration is independent of every other:

DO J=1,N

DO I=1,N

A(J,I) = B(J,I) + C(J,I) * D

ENDDO

ENDDO

After interchange, A, B, and C are referenced with the leftmost subscript varying most quickly. This modi�-
cation can make an important di�erence in performance. We traded three N-strided memory references for
unit strides:

DO I=1,N

DO J=1,N

A(J,I) = B(J,I) + C(J,I) * D

ENDDO

ENDDO

62See Section 1.1.1.
63The Translation Lookaside Bu�er (TLB) is a cache of translations from virtual memory addresses to physical memory

addresses. For more information, refer back to Section 1.1.1.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

113

2.4.7.2 Matrix Multiplication

Matrix multiplication is a common operation we can use to explore the options that are available in optimizing
a loop nest. A programmer who has just �nished reading a linear algebra textbook would probably write
matrix multiply as it appears in the example below:

DO I=1,N

DO J=1,N

SUM = 0

DO K=1,N

SUM = SUM + A(I,K) * B(K,J)

ENDDO

C(I,J) = SUM

ENDDO

ENDDO

The problem with this loop is that the A(I,K) will be non-unit stride. Each iteration in the inner loop
consists of two loads (one non-unit stride), a multiplication, and an addition.

Given the nature of the matrix multiplication, it might appear that you can't eliminate the non-unit
stride. However, with a simple rewrite of the loops all the memory accesses can be made unit stride:

DO J=1,N

DO I=1,N

C(I,J) = 0.0

ENDDO

ENDDO

DO K=1,N

DO J=1,N

SCALE = B(K,J)

DO I=1,N

C(I,J) = C(I,J) + A(I,K) * SCALE

ENDDO

ENDDO

ENDDO

Now, the inner loop accesses memory using unit stride. Each iteration performs two loads, one store, a
multiplication, and an addition. When comparing this to the previous loop, the non-unit stride loads have
been eliminated, but there is an additional store operation. Assuming that we are operating on a cache-based
system, and the matrix is larger than the cache, this extra store won't add much to the execution time. The
store is to the location in C(I,J) that was used in the load. In most cases, the store is to a line that is
already in the in the cache. The B(K,J) becomes a constant scaling factor within the inner loop.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

114 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

2.4.8 When Interchange Won't Work64

In the matrix multiplication code, we encountered a non-unit stride and were able to eliminate it with a
quick interchange of the loops. Unfortunately, life is rarely this simple. Often you �nd some mix of variables
with unit and non-unit strides, in which case interchanging the loops moves the damage around, but doesn't
make it go away.

The loop to perform a matrix transpose represents a simple example of this dilemma:

DO I=1,N DO 20 J=1,M

DO J=1,M DO 10 I=1,N

A(J,I) = B(I,J) A(J,I) = B(I,J)

ENDDO ENDDO

ENDDO ENDDO

Whichever way you interchange them, you will break the memory access pattern for either A or B. Even
more interesting, you have to make a choice between strided loads vs. strided stores: which will it be?65

We really need a general method for improving the memory access patterns for bothA and B, not one or the
other. We'll show you such a method in Section 2.4.9.

2.4.9 Blocking to Ease Memory Access Patterns66

Blocking is another kind of memory reference optimization. As with loop interchange, the challenge is to
retrieve as much data as possible with as few cache misses as possible. We'd like to rearrange the loop nest
so that it works on data in little neighborhoods, rather than striding through memory like a man on stilts.
Given the following vector sum, how can we rearrange the loop?

DO I=1,N

DO J=1,N

A(J,I) = A(J,I) + B(I,J)

ENDDO

ENDDO

This loop involves two vectors. One is referenced with unit stride, the other with a stride of N. We can
interchange the loops, but one way or another we still have N-strided array references on either A or B, either
of which is undesirable. The trick is to block references so that you grab a few elements of A, and then a
few of B, and then a few of A, and so on � in neighborhoods. We make this happen by combining inner and
outer loop unrolling:

64This content is available online at <http://cnx.org/content/m33741/1.3/>.
65I can't tell you which is the better way to cast it; it depends on the brand of computer. Some perform better with the

loops left as they are, sometimes by more than a factor of two. Others perform better with them interchanged. The di�erence
is in the way the processor handles updates of main memory from cache.

66This content is available online at <http://cnx.org/content/m33756/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

115

DO I=1,N,2

DO J=1,N,2

A(J,I) = A(J,I) + B(I,J)

A(J+1,I) = A(J+1,I) + B(I,J+1)

A(J,I+1) = A(J,I+1) + B(I+1,J)

A(J+1,I+1) = A(J+1,I+1) + B(I+1,J+1)

ENDDO

ENDDO

Use your imagination so we can show why this helps. Usually, when we think of a two-dimensional array, we
think of a rectangle or a square (see Figure 2.9 (Arrays A and B)). Remember, to make programming easier,
the compiler provides the illusion that two-dimensional arrays A and B are rectangular plots of memory as
in Figure 2.9 (Arrays A and B). Actually, memory is sequential storage. In FORTRAN, a two-dimensional
array is constructed in memory by logically lining memory �strips� up against each other, like the pickets
of a cedar fence. (It's the other way around in C: rows are stacked on top of one another.) Array storage
starts at the upper left, proceeds down to the bottom, and then starts over at the top of the next column.
Stepping through the array with unit stride traces out the shape of a backwards �N,� repeated over and over,
moving to the right.

Arrays A and B

Figure 2.9

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

116 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

How array elements are stored

Figure 2.10

Imagine that the thin horizontal lines of Figure 2.10 (How array elements are stored) cut memory storage
into pieces the size of individual cache entries. Picture how the loop will traverse them. Because of their
index expressions, references to A go from top to bottom (in the backwards �N� shape), consuming every bit
of each cache line, but references to B dash o� to the right, using one piece of each cache entry and discarding
the rest (see Figure 2.11 (2×2 squares), top). This low usage of cache entries will result in a high number of
cache misses.

If we could somehow rearrange the loop so that it consumed the arrays in small rectangles, rather than
strips, we could conserve some of the cache entries that are being discarded. This is exactly what we
accomplished by unrolling both the inner and outer loops, as in the following example. Array A is referenced
in several strips side by side, from top to bottom, while B is referenced in several strips side by side, from
left to right (see Figure 2.11 (2×2 squares), bottom). This improves cache performance and lowers runtime.

For really big problems, more than cache entries are at stake. On virtual memory machines, memory
references have to be translated through a TLB. If you are dealing with large arrays, TLB misses, in addition
to cache misses, are going to add to your runtime.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

117

2×2 squares

Figure 2.11

Here's something that may surprise you. In the code below, we rewrite this loop yet again, this time
blocking references at two di�erent levels: in 2×2 squares to save cache entries, and by cutting the original
loop in two parts to save TLB entries:

DO I=1,N,2

DO J=1,N/2,2

A(J,I) = A(J,I) + B(I,J)

A(J+1,I) = A(J+1,I) + B(I+1,J)

A(J,I+1) = A(J,I+1) + B(I+1,J)

A(J+1,I+1) = A(J+1,I+1) + B(I+1,J+1)

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

118 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

ENDDO

ENDDO

DO I=1,N,2

DO J=N/2+1,N,2

A(J,I) = A(J,I) + B(I,J)

A(J+1,I) = A(J+1,I) + B(I+1,J)

A(J,I+1) = A(J,I+1) + B(I+1,J)

A(J+1,I+1) = A(J+1,I+1) + B(I+1,J+1)

ENDDO

ENDDO

You might guess that adding more loops would be the wrong thing to do. But if you work with a reasonably
large value of N, say 512, you will see a signi�cant increase in performance. This is because the two arrays
A and B are each 256 KB × 8 bytes = 2 MB when N is equal to 512 � larger than can be handled by the
TLBs and caches of most processors.

The two boxes in Figure 2.12 (Picture of unblocked versus blocked references) illustrate how the �rst few
references to A and B look superimposed upon one another in the blocked and unblocked cases. Unblocked
references to B zing o� through memory, eating through cache and TLB entries. Blocked references are more
sparing with the memory system.

Picture of unblocked versus blocked references

Figure 2.12

You can take blocking even further for larger problems. This code shows another method that limits the
size of the inner loop and visits it repeatedly:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

119

II = MOD (N,16)

JJ = MOD (N,4)

DO I=1,N

DO J=1,JJ

A(J,I) = A(J,I) + B(J,I)

ENDDO

ENDDO

DO I=1,II

DO J=JJ+1,N

A(J,I) = A(J,I) + B(J,I)

A(J,I) = A(J,I) + 1.0D0

ENDDO

ENDDO

DO I=II+1,N,16

DO J=JJ+1,N,4

DO K=I,I+15

A(J,K) = A(J,K) + B(K,J)

A(J+1,K) = A(J+1,K) + B(K,J+1)

A(J+2,K) = A(J+2,K) + B(K,J+2)

A(J+3,K) = A(J+3,K) + B(K,J+3)

ENDDO

ENDDO

ENDDO

Where the inner I loop used to execute N iterations at a time, the new K loop executes only 16 iterations.
This divides and conquers a large memory address space by cutting it into little pieces.

While these blocking techniques begin to have diminishing returns on single-processor systems, on large
multiprocessor systems with nonuniform memory access (NUMA), there can be signi�cant bene�t in carefully
arranging memory accesses to maximize reuse of both cache lines and main memory pages.

Again, the combined unrolling and blocking techniques we just showed you are for loops with mixed
stride expressions. They work very well for loop nests like the one we have been looking at. However, if all
array references are strided the same way, you will want to try loop unrolling or loop interchange �rst.

2.4.10 Programs That Require More Memory Than You Have67

People occasionally have programs whose memory size requirements are so great that the data can't �t in
memory all at once. At any time, some of the data has to reside outside of main memory on secondary
(usually disk) storage. These out-of- core solutions fall into two categories:

• Software-managed, out-of-core solutions
• Virtual memory�managed, out-of-core solutions

With a software-managed approach, the programmer has recognized that the problem is too big and has
modi�ed the source code to move sections of the data out to disk for retrieval at a later time. The other
method depends on the computer's memory system handling the secondary storage requirements on its own,
some- times at a great cost in runtime.

67This content is available online at <http://cnx.org/content/m33770/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

120 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

2.4.10.1 Software-Managed, Out-of-Core Solutions

Most codes with software-managed, out-of-core solutions have adjustments; you can tell the program how
much memory it has to work with, and it takes care of the rest. It is important to make sure the adjustment
is set correctly. Code that was tuned for a machine with limited memory could have been ported to another
without taking into account the storage available. Perhaps the whole problem will �t easily.

If we are writing an out-of-core solution, the trick is to group memory references together so that they
are localized. This usually occurs naturally as a side e�ect of partitioning, say, a matrix factorization into
groups of columns. Blocking references the way we did in the previous section also corrals memory references
together so you can treat them as memory �pages.� Knowing when to ship them o� to disk entails being
closely involved with what the program is doing.

2.4.11 Closing Notes68

Loops are the heart of nearly all high performance programs. The �rst goal with loops is to express them as
simply and clearly as possible (i.e., eliminates the clutter). Then, use the pro�ling and timing tools to �gure
out which routines and loops are taking the time. Once you �nd the loops that are using the most time, try
to determine if the performance of the loops can be improved.

First try simple modi�cations to the loops that don't reduce the clarity of the code. You can also
experiment with compiler options that control loop optimizations. Once you've exhausted the options of
keeping the code looking clean, and if you still need more performance, resort to hand-modifying to the
code. Typically the loops that need a little hand-coaxing are loops that are making bad use of the memory
architecture on a cache-based system. Hopefully the loops you end up changing are only a few of the overall
loops in the program.

However, before going too far optimizing on a single processor machine, take a look at how the program
executes on a parallel system. Sometimes the modi�cations that improve performance on a single-processor
system confuses the parallel-processor compiler. The compilers on parallel and vector systems generally have
more powerful optimization capabilities, as they must identify areas of your code that will execute well on
their specialized hardware. These compilers have been interchanging and unrolling loops automatically for
some time now.

2.4.12 Exercises69

Exercise 2.4.12.1
Why is an unrolling amount of three or four iterations generally su�cient for simple vector loops
on a RISC processor? What relationship does the unrolling amount have to �oating-point pipeline
depths?

Exercise 2.4.12.2
On a processor that can execute one �oating-point multiply, one �oating-point addi-

tion/subtraction, and one memory reference per cycle, what's the best performance you could
expect from the following loop?

DO I = 1,10000

A(I) = B(I) * C(I) - D(I) * E(I)

ENDDO

68This content is available online at <http://cnx.org/content/m33773/1.3/>.
69This content is available online at <http://cnx.org/content/m33777/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

121

Exercise 2.4.12.3
Try unrolling, interchanging, or blocking the loop in subroutine BAZFAZ to increase the performance.
What method or combination of methods works best? Look at the assembly language created by
the compiler to see what its approach is at the highest level of optimization.

note: Compile the main routine and BAZFAZ separately; adjust NTIMES so that the untuned run
takes about one minute; and use the compiler's default optimization level.

PROGRAM MAIN

IMPLICIT NONE

INTEGER M,N,I,J

PARAMETER (N = 512, M = 640, NTIMES = 500)

DOUBLE PRECISION Q(N,M), R(M,N)

C

DO I=1,M

DO J=1,N

Q(J,I) = 1.0D0

R(I,J) = 1.0D0

ENDDO

ENDDO

C

DO I=1,NTIMES

CALL BAZFAZ (Q,R,N,M)

ENDDO

END

SUBROUTINE BAZFAZ (Q,R,N,M)

IMPLICIT NONE

INTEGER M,N,I,J

DOUBLE PRECISION Q(N,M), R(N,M)

C

DO I=1,N

DO J=1,M

R(I,J) = Q(I,J) * R(J,I)

ENDDO

ENDDO

C

END

Exercise 2.4.12.4
Code the matrix multiplication algorithm in the �straightforward� manner and compile it with
various optimization levels. See if the compiler performs any type of loop interchange.

Try the same experiment with the following code:

DO I=1,N

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

122 CHAPTER 2. PROGRAMMING AND TUNING SOFTWARE

DO J=1,N

A(I,J) = A(I,J) + 1.3

ENDDO

ENDDO

Do you see a di�erence in the compiler's ability to optimize these two loops? If you see a di�erence,
explain it.

Exercise 2.4.12.5
Code the matrix multiplication algorithm both the ways shown in this chapter. Execute the
program for a range of values for N. Graph the execution time divided by N3 for values of N
ranging from 50×50 to 500×500. Explain the performance you see.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

Chapter 3

Shared-Memory Parallel Processors

3.1 Understanding Parallelism

3.1.1 Introduction1

In a sense, we have been talking about parallelism from the beginning of the book. Instead of calling it
�parallelism,� we have been using words like �pipelined,� �superscalar,� and �compiler �exibility.� As we
move into programming on multiprocessors, we must increase our understanding of parallelism in order to
understand how to e�ectively program these systems. In short, as we gain more parallel resources, we need
to �nd more parallelism in our code.

When we talk of parallelism, we need to understand the concept of granularity. The granularity of
parallelism indicates the size of the computations that are being performed at the same time between
synchronizations. Some examples of parallelism in order of increasing grain size are:

• When performing a 32-bit integer addition, using a carry lookahead adder, you can partially add bits
0 and 1 at the same time as bits 2 and 3.

• On a pipelined processor, while decoding one instruction, you can fetch the next instruction.
• On a two-way superscalar processor, you can execute any combination of an integer and a �oating-point

instruction in a single cycle.
• On a multiprocessor, you can divide the iterations of a loop among the four processors of the system.
• You can split a large array across four workstations attached to a network. Each workstation can

operate on its local information and then exchange boundary values at the end of each time step.

In this chapter, we start at instruction-level parallelism (pipelined and superscalar) and move toward thread-
level parallelism, which is what we need for multiprocessor systems. It is important to note that the di�erent
levels of parallelism are generally not in con�ict. Increasing thread parallelism at a coarser grain size often
exposes more �ne-grained parallelism.

The following is a loop that has plenty of parallelism:

DO I=1,16000

A(I) = B(I) * 3.14159

ENDDO

1This content is available online at <http://cnx.org/content/m32775/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

123

124 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

We have expressed the loop in a way that would imply that A(1) must be computed �rst, followed by
A(2), and so on. However, once the loop was completed, it would not have mattered if A(16000), were
computed �rst followed by A(15999), and so on. The loop could have computed the even values of I and
then computed the odd values of I. It would not even make a di�erence if all 16,000 of the iterations were
computed simultaneously using a 16,000-way superscalar processor.2 If the compiler has �exibility in the
order in which it can execute the instructions that make up your program, it can execute those instructions
simultaneously when parallel hardware is available.

One technique that computer scientists use to formally analyze the potential parallelism in an algorithm
is to characterize how quickly it would execute with an �in�nite-way� superscalar processor.

Not all loops contain as much parallelism as this simple loop. We need to identify the things that limit
the parallelism in our codes and remove them whenever possible. In previous chapters we have already
looked at removing clutter and rewriting loops to simplify the body of the loop.

This chapter also supplements Section 2.1.1, in many ways. We looked at the mechanics of compiling
code, all of which apply here, but we didn't answer all of the �whys.� Basic block analysis techniques form
the basis for the work the compiler does when looking for more parallelism. Looking at two pieces of data,
instructions, or data and instructions, a modern compiler asks the question, �Do these things depend on
each other?� The three possible answers are yes, no, and we don't know. The third answer is e�ectively the
same as a yes, because a compiler has to be conservative whenever it is unsure whether it is safe to tweak
the ordering of instructions.

Helping the compiler recognize parallelism is one of the basic approaches specialists take in tuning code.
A slight rewording of a loop or some supplementary information supplied to the compiler can change a �we
don't know� answer into an opportunity for parallelism. To be certain, there are other facets to tuning
as well, such as optimizing memory access patterns so that they best suit the hardware, or recasting an
algorithm. And there is no single best approach to every problem; any tuning e�ort has to be a combination
of techniques.

3.1.2 Dependencies3

Imagine a symphony orchestra where each musician plays without regard to the conductor or the other
musicians. At the �rst tap of the conductor's baton, each musician goes through all of his or her sheet
music. Some �nish far ahead of others, leave the stage, and go home. The cacophony wouldn't resemble
music (come to think of it, it would resemble experimental jazz) because it would be totally uncoordinated.
Of course this isn't how music is played. A computer program, like a musical piece, is woven on a fabric
that unfolds in time (though perhaps woven more loosely). Certain things must happen before or along with
others, and there is a rate to the whole process.

With computer programs, whenever event A must occur before event B can, we say that B is dependent
on A. We call the relationship between them a dependency. Sometimes dependencies exist because of
calculations or memory operations; we call these data dependencies. Other times, we are waiting for a
branch or do-loop exit to take place; this is called a control dependency. Each is present in every program
to varying degrees. The goal is to eliminate as many dependencies as possible. Rearranging a program so
that two chunks of the computation are less dependent exposes parallelism, or opportunities to do several
things at once.

3.1.2.1 Control Dependencies

Just as variable assignments can depend on other assignments, a variable's value can also depend on the
�ow of control within the program. For instance, an assignment within an if-statement can occur only if
the conditional evaluates to true. The same can be said of an assignment within a loop. If the loop is never
entered, no statements inside the loop are executed.

2Interestingly, this is not as far-fetched as it might seem. On a single instruction multiple data (SIMD) computer such as
the Connection CM-2 with 16,384 processors, it would take three instruction cycles to process this entire loop.

3This content is available online at <http://cnx.org/content/m32777/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

125

When calculations occur as a consequence of the �ow of control, we say there is a control dependency,
as in the code below and shown graphically in Figure 3.1 (Control dependency). The assignment located
inside the block-if may or may not be executed, depending on the outcome of the test X .NE. 0. In other
words, the value of Y depends on the �ow of control in the code around it. Again, this may sound to you
like a concern for compiler designers, not programmers, and that's mostly true. But there are times when
you might want to move control-dependent instructions around to get expensive calculations out of the way
(provided your compiler isn't smart enough to do it for you). For example, say that Figure 3.2 (A little
section of your program) represents a little section of your program. Flow of control enters at the top and
goes through two branch decisions. Furthermore, say that there is a square root operation at the entry point,
and that the �ow of control almost always goes from the top, down to the leg containing the statement A=0.0.
This means that the results of the calculation A=SQRT(B) are almost always discarded because A gets a new
value of 0.0 each time through. A square root operation is always �expensive� because it takes a lot of time
to execute. The trouble is that you can't just get rid of it; occasionally it's needed. However, you could
move it out of the way and continue to observe the control dependencies by making two copies of the square
root operation along the less traveled branches, as shown in Figure 3.3 (Expensive operation moved so that
it's rarely executed). This way the SQRT would execute only along those paths where it was actually needed.

Control dependency

Figure 3.1

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

126 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

A little section of your program

Figure 3.2

This kind of instruction scheduling will be appearing in compilers (and even hardware) more and more
as time goes on. A variation on this technique is to calculate results that might be needed at times when
there is a gap in the instruction stream (because of dependencies), thus using some spare cycles that might
otherwise be wasted.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

127

Expensive operation moved so that it's rarely executed

Figure 3.3

3.1.2.2 Data Dependencies

A calculation that is in some way bound to a previous calculation is said to be data dependent upon that
calculation. In the code below, the value of B is data dependent on the value of A. That's because you can't
calculate B until the value of A is available:

A = X + Y + COS(Z)

B = A * C

This dependency is easy to recognize, but others are not so simple. At other times, you must be careful
not to rewrite a variable with a new value before every other computation has �nished using the old value.
We can group all data dependencies into three categories: (1) �ow dependencies, (2) antidependencies,
and (3) output dependencies. Figure 3.4 (Types of data dependencies) contains some simple examples to
demonstrate each type of dependency. In each example, we use an arrow that starts at the source of the
dependency and ends at the statement that must be delayed by the dependency. The key problem in each
of these dependencies is that the second statement can't execute until the �rst has completed. Obviously in
the particular output dependency example, the �rst computation is dead code and can be eliminated unless
there is some intervening code that needs the values. There are other techniques to eliminate either output
or antidependencies. The following example contains a �ow dependency followed by an output dependency.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

128 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

Types of data dependencies

Figure 3.4

X = A / B

Y = X + 2.0

X = D - E

While we can't eliminate the �ow dependency, the output dependency can be eliminated by using a scratch
variable:

Xtemp = A/B

Y = Xtemp + 2.0

X = D - E

As the number of statements and the interactions between those statements increase, we need a better way
to identify and process these dependencies. Figure 3.5 (Multiple dependencies) shows four statements with
four dependencies.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

129

Multiple dependencies

Figure 3.5

None of the second through fourth instructions can be started before the �rst instruction completes.

3.1.2.3 Forming a DAG

One method for analyzing a sequence of instructions is to organize it into a directed acyclic graph (DAG).4

Like the instructions it represents, a DAG describes all of the calculations and relationships between variables.
The data �ow within a DAG proceeds in one direction; most often a DAG is constructed from top to bottom.
Identi�ers and constants are placed at the �leaf � nodes � the ones on the top. Operations, possibly with
variable names attached, make up the internal nodes. Variables appear in their �nal states at the bottom.
The DAG's edges order the relationships between the variables and operations within it. All data �ow
proceeds from top to bottom.

To construct a DAG, the compiler takes each intermediate language tuple and maps it onto one or more
nodes. For instance, those tuples that represent binary operations, such as addition (X=A+B), form a portion
of the DAG with two inputs (A and B) bound together by an operation (+). The result of the operation may
feed into yet other operations within the basic block (and the DAG) as shown in Figure 3.6 (A trivial data
�ow graph).

4A graph is a collection of nodes connected by edges. By directed, we mean that the edges can only be traversed in speci�ed
directions. The word acyclic means that there are no cycles in the graph; that is, you can't loop anywhere within it.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

130 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

A trivial data �ow graph

Figure 3.6

For a basic block of code, we build our DAG in the order of the instructions. The DAG for the previous
four instructions is shown in Figure 3.7 (A more complex data �ow graph). This particular example has
many dependencies, so there is not much opportunity for parallelism. Figure 3.8 (Extracting parallelism from
a DAG) shows a more straightforward example shows how constructing a DAG can identify parallelism.

From this DAG, we can determine that instructions 1 and 2 can be executed in parallel. Because we
see the computations that operate on the values A and B while processing instruction 4, we can eliminate a
common subexpression during the construction of the DAG. If we can determine that Z is the only variable
that is used outside this small block of code, we can assume the Y computation is dead code.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

131

A more complex data �ow graph

Figure 3.7

By constructing the DAG, we take a sequence of instructions and determine which must be executed in a
particular order and which can be executed in parallel. This type of data �ow analysis is very important in
the codegeneration phase on super-scalar processors. We have introduced the concept of dependencies and
how to use data �ow to �nd opportunities for parallelism in code sequences within a basic block. We can
also use data �ow analysis to identify dependencies, opportunities for parallelism, and dead code between
basic blocks.

3.1.2.4 Uses and De�nitions

As the DAG is constructed, the compiler can make lists of variable uses and de�nitions, as well as other
information, and apply these to global optimizations across many basic blocks taken together. Looking at
the DAG in Figure 3.8 (Extracting parallelism from a DAG), we can see that the variables de�ned are Z, Y,
X, C, and D, and the variables used are A and B. Considering many basic blocks at once, we can say how far a
particular variable de�nition reaches � where its value can be seen. From this we can recognize situations
where calculations are being discarded, where two uses of a given variable are completely independent,
or where we can overwrite register-resident values without saving them back to memory. We call this
investigation data �ow analysis.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

132 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

Extracting parallelism from a DAG

Figure 3.8

To illustrate, suppose that we have the �ow graph in Figure 3.9 (Flow graph for data �ow analysis).
Beside each basic block we've listed the variables it uses and the variables it de�nes. What can data �ow
analysis tell us?

Notice that a value for A is de�ned in block X but only used in block Y. That means that A is dead upon
exit from block Y or immediately upon taking the right-hand branch leaving X; none of the other basic blocks
uses the value of A. That tells us that any associated resources, such as a register, can be freed for other
uses.

Looking at Figure 3.9 (Flow graph for data �ow analysis) we can see that D is de�ned in basic block X,
but never used. This means that the calculations de�ning D can be discarded.

Something interesting is happening with the variable G. Blocks X and W both use it, but if you look
closely you'll see that the two uses are distinct from one another, meaning that they can be treated as two
independent variables.

A compiler featuring advanced instruction scheduling techniques might notice that W is the only block
that uses the value for E, and so move the calculations de�ning E out of block Y and into W, where they are
needed.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

133

Flow graph for data �ow analysis

Figure 3.9

In addition to gathering data about variables, the compiler can also keep information about subexpres-
sions. Examining both together, it can recognize cases where redundant calculations are being made (across
basic blocks), and substitute previously computed values in their place. If, for instance, the expression H*I

appears in blocks X, Y, and W, it could be calculated just once in block X and propagated to the others that
use it.

3.1.3 Loops5

Loops are the center of activity for many applications, so there is often a high payback for simplifying or
moving calculations outside, into the computational suburbs. Early compilers for parallel architectures used
pattern matching to identify the bounds of their loops. This limitation meant that a hand-constructed
loop using if-statements and goto-statements would not be correctly identi�ed as a loop. Because modern
compilers use data �ow graphs, it's practical to identify loops as a particular subset of nodes in the �ow graph.
To a data �ow graph, a hand constructed loop looks the same as a compiler-generated loop. Optimizations
can therefore be applied to either type of loop.

Once we have identi�ed the loops, we can apply the same kinds of data-�ow analysis we applied above.
Among the things we are looking for are calculations that are unchanging within the loop and variables that
change in a predictable (linear) fashion from iteration to iteration.

5This content is available online at <http://cnx.org/content/m32784/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

134 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

How does the compiler identify a loop in the �ow graph? Fundamentally, two conditions have to be met:

• A given node has to dominate all other nodes within the suspected loop. This means that all paths to
any node in the loop have to pass through one particular node, the dominator. The dominator node
forms the header at the top of the loop.

• There has to be a cycle in the graph. Given a dominator, if we can �nd a path back to it from one of
the nodes it dominates, we have a loop. This path back is known as the back edge of the loop.

The �ow graph in Figure 3.10 (Flowgraph with a loop in it) contains one loop and one red herring. You can
see that node B dominates every node below it in the subset of the �ow graph. That satis�es Condition 1
(list, p. 134) and makes it a candidate for a loop header. There is a path from E to B, and B dominates E,
so that makes it a back edge, satisfying Condition 2 (list, p. 134). Therefore, the nodes B, C, D, and E form
a loop. The loop goes through an array of linked list start pointers and traverses the lists to determine the
total number of nodes in all lists. Letters to the extreme right correspond to the basic block numbers in the
�ow graph.

Flowgraph with a loop in it

Figure 3.10

At �rst glance, it appears that the nodes C and D form a loop too. The problem is that C doesn't dominate
D (and vice versa), because entry to either can be made from B, so condition 1 (list, p. 134) isn't satis�ed.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

135

Generally, the �ow graphs that come from code segments written with even the weakest appreciation for a
structured design o�er better loop candidates.

After identifying a loop, the compiler can concentrate on that portion of the �ow graph, looking for
instructions to remove or push to the outside. Certain types of subexpressions, such as those found in array
index expressions, can be simpli�ed if they change in a predictable fashion from one iteration to the next.

In the continuing quest for parallelism, loops are generally our best sources for large amounts of paral-
lelism. However, loops also provide new opportunities for those parallelism-killing dependencies.

3.1.4 Loop-Carried Dependencies 6

The notion of data dependence is particularly important when we look at loops, the hub of activity inside
numerical applications. A well-designed loop can produce millions of operations that can all be performed
in parallel. However, a single misplaced dependency in the loop can force it all to be run in serial. So the
stakes are higher when looking for dependencies in loops.

Some constructs are completely independent, right out of the box. The question we want to ask is �Can
two di�erent iterations execute at the same time, or is there a data dependency between them?� Consider
the following loop:

DO I=1,N

A(I) = A(I) + B(I)

ENDDO

For any two values of I and K, can we calculate the value of A(I) and A(K) at the same time? Below, we
have manually unrolled several iterations of the previous loop, so they can be executed together:

A(I) = A(I) + B(I)

A(I+1) = A(I+1) + B(I+1)

A(I+2) = A(I+2) + B(I+2)

You can see that none of the results are used as an operand for another calculation. For instance, the
calculation for A(I+1) can occur at the same time as the calculation for A(I) because the calculations are
independent; you don't need the results of the �rst to determine the second. In fact, mixing up the order of
the calculations won't change the results in the least. Relaxing the serial order imposed on these calculations
makes it possible to execute this loop very quickly on parallel hardware.

3.1.4.1 Flow Dependencies

For comparison, look at the next code fragment:

DO I=2,N

A(I) = A(I-1) + B(I)

ENDDO

6This content is available online at <http://cnx.org/content/m32782/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

136 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

This loop has the regularity of the previous example, but one of the subscripts is changed. Again, it's useful
to manually unroll the loop and look at several iterations together:

A(I) = A(I-1) + B(I)

A(I+1) = A(I) + B(I+1)

A(I+2) = A(I+1) + B(I+2)

In this case, there is a dependency problem. The value of A(I+1) depends on the value of A(I), the value of
A(I+2) depends on A(I+1), and so on; every iteration depends on the result of a previous one. Dependencies
that extend back to a previous calculation and perhaps a previous iteration (like this one), are loop carried
�ow dependencies or backward dependencies. You often see such dependencies in applications that perform
Gaussian elimination on certain types of matrices, or numerical solutions to systems of di�erential equations.
However, it is impossible to run such a loop in parallel (as written); the processor must wait for intermediate
results before it can proceed.

In some cases, �ow dependencies are impossible to �x; calculations are so dependent upon one another
that we have no choice but to wait for previous ones to complete. Other times, dependencies are a function
of the way the calculations are expressed. For instance, the loop above can be changed to reduce the
dependency. By replicating some of the arithmetic, we can make it so that the second and third iterations
depend on the �rst, but not on one another. The operation count goes up � we have an extra addition that
we didn't have before � but we have reduced the dependency between iterations:

DO I=2,N,2

A(I) = A(I-1) + B(I)

A(I+1) = A(I-1) + B(I) + B(I+1)

ENDDO

The speed increase on a workstation won't be great (most machines run the recast loop more slowly).
However, some parallel computers can trade o� additional calculations for reduced dependency and chalk
up a net win.

3.1.4.2 Antidependencies

It's a di�erent story when there is a loop-carried antidependency, as in the code below:

DO I=1,N

A(I) = B(I) * E

B(I) = A(I+2) * C

ENDDO

In this loop, there is an antidependency between the variable A(I) and the variable A(I+2). That is, you
must be sure that the instruction that uses A(I+2) does so before the previous one rede�nes it. Clearly, this
is not a problem if the loop is executed serially, but remember, we are looking for opportunities to overlap

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

137

instructions. Again, it helps to pull the loop apart and look at several iterations together. We have recast
the loop by making many copies of the �rst statement, followed by copies of the second:

A(I) = B(I) * E

A(I+1) = B(I+1) * E

A(I+2) = B(I+2) * E

...

B(I) = A(I+2) * C ← assignment makes use of the new

B(I+1) = A(I+3) * C value of A(I+2) incorrect.

B(I+2) = A(I+4) * C

The reference to A(I+2) needs to access an �old� value, rather than one of the new ones being calculated.
If you perform all of the �rst statement followed by all of the second statement, the answers will be wrong.
If you perform all of the second statement followed by all of the �rst statement, the answers will also be
wrong. In a sense, to run the iterations in parallel, you must either save the A values to use for the second
statement or store all of the B value in a temporary area until the loop completes.

We can also directly unroll the loop and �nd some parallelism:

1 A(I) = B(I) * E

2 B(I) = A(I+2) * C →
3 A(I+1) = B(I+1) * E | Output dependency

4 B(I+1) = A(I+3) * C |

5 A(I+2) = B(I+2) * E ←
6 B(I+2) = A(I+4) * C

Statements 1�4 could all be executed simultaneously. Once those statements completed execution, statements
5�8 could execute in parallel. Using this approach, there are su�cient intervening statements between the
dependent statements that we can see some parallel performance improvement from a superscalar RISC
processor.

3.1.4.3 Output Dependencies

The third class of data dependencies, output dependencies, is of particular interest to users of parallel
computers, particularly multiprocessors. Output dependencies involve getting the right values to the right
variables when all calculations have been completed. Otherwise, an output dependency is violated. The loop
below assigns new values to two elements of the vector A with each iteration:

DO I=1,N

A(I) = C(I) * 2.

A(I+2) = D(I) + E

ENDDO

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

138 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

As always, we won't have any problems if we execute the code sequentially. But if several iterations are
performed together, and statements are reordered, then incorrect values can be assigned to the last elements
of A. For example, in the naive vectorized equivalent below, A(I+2) takes the wrong value because the
assignments occur out of order:

A(I) = C(I) * 2.

A(I+1) = C(I+1) * 2.

A(I+2) = C(I+2) * 2.

A(I+2) = D(I) + E ← Output dependency violated

A(I+3) = D(I+1) + E

A(I+4) = D(I+2) + E

Whether or not you have to worry about output dependencies depends on whether you are actually paral-
lelizing the code. Your compiler will be conscious of the danger, and will be able to generate legal code �
and possibly even fast code, if it's clever enough. But output dependencies occasionally become a problem
for programmers.

3.1.4.4 Dependencies Within an Iteration

We have looked at dependencies that cross iteration boundaries but we haven't looked at dependencies within
the same iteration. Consider the following code fragment:

DO I = 1,N

D = B(I) * 17

A(I) = D + 14

ENDDO

When we look at the loop, the variable D has a �ow dependency. The second statement cannot start until
the �rst statement has completed. At �rst glance this might appear to limit parallelism signi�cantly. When
we look closer and manually unroll several iterations of the loop, the situation gets worse:

D = B(I) * 17

A(I) = D + 14

D = B(I+1) * 17

A(I+1) = D + 14

D = B(I+2) * 17

A(I+2) = D + 14

Now, the variable D has �ow, output, and antidependencies. It looks like this loop has no hope of running in
parallel. However, there is a simple solution to this problem at the cost of some extra memory space, using
a technique called promoting a scalar to a vector. We de�ne D as an array withN elements and rewrite the
code as follows:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

139

DO I = 1,N

D(I) = B(I) * 17

A(I) = D(I) + 14

ENDDO

Now the iterations are all independent and can be run in parallel. Within each iteration, the �rst statement
must run before the second statement.

3.1.4.5 Reductions

The sum of an array of numbers is one example of a reduction � so called because it reduces a vector to a
scalar. The following loop to determine the total of the values in an array certainly looks as though it might
be able to be run in parallel:

SUM = 0.0

DO I=1,N

SUM = SUM + A(I)

ENDDO

However, if we perform our unrolling trick, it doesn't look very parallel:

SUM = SUM + A(I)

SUM = SUM + A(I+1)

SUM = SUM + A(I+2)

This loop also has all three types of dependencies and looks impossible to parallelize. If we are willing to
accept the potential e�ect of rounding, we can add some parallelism to this loop as follows (again we did not
add the preconditioning loop):

SUM0 = 0.0

SUM1 = 0.0

SUM2 = 0.0

SUM3 = 0.0

DO I=1,N,4

SUM0 = SUM0 + A(I)

SUM1 = SUM1 + A(I+1)

SUM2 = SUM2 + A(I+2)

SUM3 = SUM3 + A(I+3)

ENDDO

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

140 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

SUM = SUM0 + SUM1 + SUM2 + SUM3

Again, this is not precisely the same computation, but all four partial sums can be computed independently.
The partial sums are combined at the end of the loop.

Loops that look for the maximum or minimum elements in an array, or multiply all the elements of an
array, are also reductions. Likewise, some of these can be reorganized into partial results, as with the sum, to
expose more computations. Note that the maximum and minimum are associative operators, so the results
of the reorganized loop are identical to the sequential loop.

3.1.5 Ambiguous References7

Every dependency we have looked at so far has been clear cut; you could see exactly what you were dealing
with by looking at the source code. But other times, describing a dependency isn't so easy. Recall this loop
from the �Antidependencies� section Section 3.1.4.2 (Antidependencies) earlier in this chapter:

DO I=1,N

A(I) = B(I) * E

B(I) = A(I+2) * C

ENDDO

Because each variable reference is solely a function of the index, I, it's clear what kind of dependency we
are dealing with. Furthermore, we can describe how far apart (in iterations) a variable reference is from
its de�nition. This is called the dependency distance. A negative value represents a �ow dependency; a
positive value means there is an antidependency. A value of zero says that no dependency exists between
the reference and the de�nition. In this loop, the dependency distance for A is +2 iterations.

However, array subscripts may be functions of other variables besides the loop index. It may be di�cult
to tell the distance between the use and de�nition of a particular element. It may even be impossible to tell
whether the dependency is a �ow dependency or an antidependency, or whether a dependency exists at all.
Consequently, it may be impossible to determine if it's safe to overlap execution of di�erent statements, as
in the following loop:

DO I=1,N

A(I) = B(I) * E

B(I) = A(I+K) * C ← K unknown

ENDDO

If the loop made use of A(I+K), where the value of K was unknown, we wouldn't be able to tell (at least
by looking at the code) anything about the kind of dependency we might be facing. If K is zero, we have a
dependency within the iteration and no loop-carried dependencies. If K is positive we have an antidependency
with distance K. Depending on the value for K, we might have enough parallelism for a superscalar processor.
If K is negative, we have a loop-carried �ow dependency, and we may have to execute the loop serially.

Ambiguous references, like A(I+K) above, have an e�ect on the parallelism we can detect in a loop. From
the compiler perspective, it may be that this loop does contain two independent calculations that the author

7This content is available online at <http://cnx.org/content/m32788/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

141

whimsically decided to throw into a single loop. But when they appear together, the compiler has to treat
them conservatively, as if they were interrelated. This has a big e�ect on performance. If the compiler has
to assume that consecutive memory references may ultimately access the same location, the instructions
involved cannot be overlapped. One other option is for the compiler to generate two versions of the loop
and check the value for K at runtime to determine which version of the loop to execute.

A similar situation occurs when we use integer index arrays in a loop. The loop below contains only a
single statement, but you can't be sure that any iteration is independent without knowing the contents of
the K and J arrays:

DO I=1,N

A(K(I)) = A(K(I)) + B(J(I)) * C

ENDDO

For instance, what if all of the values for K(I) were the same? This causes the same element of the array A

to be rereferenced with each iteration! That may seem ridiculous to you, but the compiler can't tell.
With code like this, it's common for every value of K(I) to be unique. This is called a permutation. If

you can tell a compiler that it is dealing with a permutation, the penalty is lessened in some cases. Even so,
there is insult being added to injury. Indirect references require more memory activity than direct references,
and this slows you down.

3.1.5.1 Pointer Ambiguity in Numerical C Applications

FORTRAN compilers depend on programmers to observe aliasing rules. That is, programmers are not
supposed to modify locations through pointers that may be aliases of one another. They can become aliases
in several ways, such as when two dummy arguments receive pointers to the same storage locations:

CALL BOB (A,A)

...

END

SUBROUTINE BOB (X,Y) ← X,Y become aliases

C compilers don't enjoy the same restrictions on aliasing. In fact, there are cases where aliasing could be
desirable. Additionally, C is blessed with pointer types, increasing the opportunities for aliasing to occur.
This means that a C compiler has to approach operations through pointers more conservatively than a
FORTRAN compiler would. Let's look at some examples to see why.

The following loop nest looks like a FORTRAN loop cast in C. The arrays are declared or allocated all at
once at the top of the routine, and the starting address and leading dimensions are visible to the compiler.
This is important because it means that the storage relationship between the array elements is well known.
Hence, you could expect good performance:

#define N ...

double *a[N][N], c[N][N], d;

for (i=0; i<N; i++)

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

142 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

for (j=0; j<N; j++)

a[i][j] = a[i][j] + c[j][i] * d;

Now imagine what happens if you allocate the rows dynamically. This makes the address calculations more
complicated. The loop nest hasn't changed; however, there is no guaranteed stride that can get you from
one row to the next. This is because the storage relationship between the rows is unknown:

#define N ...

double *a[N], *c[N], d;

for (i=0; i<N; i++) {

a[i] = (double *) malloc (N*sizeof(double));

c[i] = (double *) malloc (N*sizeof(double));

}

for (i=0; i<N; i++)

for (j=0; j<N; j++)

a[i][j] = a[i][j] + c[j][i] * d;

In fact, your compiler knows even less than you might expect about the storage relationship. For instance,
how can it be sure that references to a and c aren't aliases? It may be obvious to you that they're not. You
might point out that malloc never overlaps storage. But the compiler isn't free to assume that. Who knows?
You may be substituting your own version of malloc!

Let's look at a di�erent example, where storage is allocated all at once, though the declarations are not
visible to all routines that are using it. The following subroutine bob performs the same computation as
our previous example. However, because the compiler can't see the declarations for a and c (they're in the
main routine), it doesn't have enough information to be able to overlap memory references from successive
iterations; the references could be aliases:

#define N...

main()

{

double a[N][N], c[N][N], d;

...

bob (a,c,d,N);

}

bob (double *a,double *c,double d,int n)

{

int i,j;

double *ap, *cp;

for (i=0;i<n;i++) {

ap = a + (i*n);

cp = c + i;

for (j=0; j<n; j++)

*(ap+j) = *(ap+j) + *(cp+(j*n)) * d;

}

}

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

143

To get the best performance, make available to the compiler as many details about the size and shape of your
data structures as possible. Pointers, whether in the form of formal arguments to a subroutine or explicitly
declared, can hide important facts about how you are using memory. The more information the compiler
has, the more it can overlap memory references. This information can come from compiler directives or from
making declarations visible in the routines where performance is most critical.

3.1.6 Closing Notes8

You already knew there was a limit to the amount of parallelism in any given program. Now you know
why. Clearly, if a program had no dependencies, you could execute the whole thing at once, given suitable
hardware. But programs aren't in�nitely parallel; they are often hardly parallel at all. This is because they
contain dependencies of the types we saw above.

When we are writing and/or tuning our loops, we have a number of (sometimes con�icting) goals to keep
in mind:

• Balance memory operations and computations.
• Minimize unnecessary operations.
• Access memory using unit stride if at all possible.
• Allow all of the loop iterations to be computed in parallel.

In the coming chapters, we will begin to learn more about executing our programs on parallel multiprocessors.
At some point we will escape the bonds of compiler automatic optimization and begin to explicitly code the
parallel portions of our code.

To learn more about compilers and data�ow, read The Art of Compiler Design: Theory and Practice by
Thomas Pittman and James Peters (Prentice-Hall).

3.1.7 Exercises9

Exercise 3.1.7.1
Identify the dependencies (if there are any) in the following loops. Can you think of ways to
organize each loop for more parallelism?

a.

DO I=1,N-2

A(I+2) = A(I) + 1.

ENDDO

b.

DO I=1,N-1,2

A(I+1) = A(I) + 1.

ENDDO

c.

8This content is available online at <http://cnx.org/content/m32789/1.3/>.
9This content is available online at <http://cnx.org/content/m32792/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

144 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

DO I=2,N

A(I) = A(I-1) * 2.

B = A(I-1)

ENDDO

d.

DO I=1,N

IF(N .GT. M)

A(I) = 1.

ENDDO

e.

DO I=1,N

A(I,J) = A(I,K) + B

ENDDO

f.

DO I=1,N-1

A(I+1,J) = A(I,K) + B

ENDDO

g.

for (i=0; i<n; i++)

a[i] = b[i];

Exercise 3.1.7.2
Imagine that you are a parallelizing compiler, trying to generate code for the loop below. Why are
references to A a challenge? Why would it help to know that K is equal to zero? Explain how you
could partially vectorize the statements involving A if you knew that K had an absolute value of
at least 8.

DO I=1,N

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

145

E(I,M) = E(I-1,M+1) - 1.0

B(I) = A(I+K) * C

A(I) = D(I) * 2.0

ENDDO

Exercise 3.1.7.3
The following three statements contain a �ow dependency, an antidependency and an output
dependency. Can you identify each? Given that you are allowed to reorder the statements, can you
�nd a permutation that produces the same values for the variables C and B? Show how you can
reduce the dependencies by combining or rearranging calculations and using temporary variables.

B = A + C

B = C + D

C = B + D

3.2 Shared-Memory Multiprocessors

3.2.1 Introduction10

In the mid-1980s, shared-memory multiprocessors were pretty expensive and pretty rare. Now, as hardware
costs are dropping, they are becoming commonplace. Many home computer systems in the under-$3000
range have a socket for a second CPU. Home computer operating systems are providing the capability to use
more than one processor to improve system performance. Rather than specialized resources locked away in
a central computing facility, these shared-memory processors are often viewed as a logical extension of the
desktop. These systems run the same operating system (UNIX or NT) as the desktop and many of the same
applications from a workstation will execute on these multiprocessor servers.

Typically a workstation will have from 1 to 4 processors and a server system will have 4 to 64 processors.
Shared-memory multiprocessors have a signi�cant advantage over other multiprocessors because all the
processors share the same view of the memory, as shown in Figure 3.11 (A shared-memory multiprocessor).

These processors are also described as uniform memory access (also known as UMA) systems. This
designation indicates that memory is equally accessible to all processors with the same performance.

The popularity of these systems is not due simply to the demand for high performance computing. These
systems are excellent at providing high throughput for a multiprocessing load, and function e�ectively as
high-performance database servers, network servers, and Internet servers. Within limits, their throughput
is increased linearly as more processors are added.

In this book we are not so interested in the performance of database or Internet servers. That is too
passé; buy more processors, get better throughput. We are interested in pure, raw, unadulterated compute
speed for our high performance application. Instead of running hundreds of small jobs, we want to utilize
all $750,000 worth of hardware for our single job.

The challenge is to �nd techniques that make a program that takes an hour to complete using one
processor, complete in less than a minute using 64 processors. This is not trivial. Throughout this book so
far, we have been on an endless quest for parallelism. In this and the remaining chapters, we will begin to
see the payo� for all of your hard work and dedication!

10This content is available online at <http://cnx.org/content/m32797/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

146 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

The cost of a shared-memory multiprocessor can range from $4000 to $30 million. Some example sys-
tems include multiple-processor Intel systems from a wide range of vendors, SGI Power Challenge Series,
HP/Convex C-Series, DEC AlphaServers, Cray vector/parallel processors, and Sun Enterprise systems. The
SGI Origin 2000, HP/Convex Exemplar, Data General AV-20000, and Sequent NUMAQ-2000 all are uniform-
memory, symmetric multiprocessing systems that can be linked to form even larger shared nonuniform
memory-access systems. Among these systems, as the price increases, the number of CPUs increases, the
performance of individual CPUs increases, and the memory performance increases.

In this chapter we will study the hardware and software environment in these systems and learn how to
execute our programs on these systems.

3.2.2 Symmetric Multiprocessing Hardware11

In Figure 3.11 (A shared-memory multiprocessor), we viewed an ideal shared-memory multiprocessor. In this
section, we look in more detail at how such a system is actually constructed. The primary advantage of these
systems is the ability for any CPU to access all of the memory and peripherals. Furthermore, the systems
need a facility for deciding among themselves who has access to what, and when, which means there will have
to be hardware support for arbitration. The two most common architectural underpinnings for symmetric
multiprocessing are buses and crossbars. The bus is the simplest of the two approaches. Figure 3.12 (A
typical bus architecture) shows processors connected using a bus. A bus can be thought of as a set of
parallel wires connecting the components of the computer (CPU, memory, and peripheral controllers), a set
of protocols for communication, and some hardware to help carry it out. A bus is less expensive to build,
but because all tra�c must cross the bus, as the load increases, the bus eventually becomes a performance
bottleneck.

A shared-memory multiprocessor

Figure 3.11

11This content is available online at <http://cnx.org/content/m32794/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

147

A typical bus architecture

Figure 3.12

A crossbar is a hardware approach to eliminate the bottleneck caused by a single bus. A crossbar is
like several buses running side by side with attachments to each of the modules on the machine � CPU,
memory, and peripherals. Any module can get to any other by a path through the crossbar, and multiple
paths may be active simultaneously. In the 4×5 crossbar of Figure 3.13 (A crossbar), for instance, there can
be four active data transfers in progress at one time. In the diagram it looks like a patchwork of wires, but
there is actually quite a bit of hardware that goes into constructing a crossbar. Not only does the crossbar
connect parties that wish to communicate, but it must also actively arbitrate between two or more CPUs
that want access to the same memory or peripheral. In the event that one module is too popular, it's the
crossbar that decides who gets access and who doesn't. Crossbars have the best performance because there
is no single shared bus. However, they are more expensive to build, and their cost increases as the number
of ports is increased. Because of their cost, crossbars typically are only found at the high end of the price
and performance spectrum.

Whether the system uses a bus or crossbar, there is only so much memory bandwidth to go around; four
or eight processors drawing from one memory system can quickly saturate all available bandwidth. All of
the techniques that improve memory performance (as described in) also apply here in the design of the
memory subsystems attached to these buses or crossbars.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

148 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

A crossbar

Figure 3.13

3.2.2.1 The E�ect of Cache

The most common multiprocessing system is made up of commodity processors connected to memory and
peripherals through a bus. Interestingly, the fact that these processors make use of cache somewhat mitigates
the bandwidth bottleneck on a bus-based architecture. By connecting the processor to the cache and viewing
the main memory through the cache, we signi�cantly reduce the memory tra�c across the bus. In this
architecture, most of the memory accesses across the bus take the form of cache line loads and �ushes.
To understand why, consider what happens when the cache hit rate is very high. In Figure 3.14 (High
cache hit rate reduces main memory tra�c), a high cache hit rate eliminates some of the tra�c that would
have otherwise gone out across the bus or crossbar to main memory. Again, it is the notion of �locality of
reference� that makes the system work. If you assume that a fair number of the memory references will hit
in the cache, the equivalent attainable main memory bandwidth is more than the bus is actually capable of.
This assumption explains why multiprocessors are designed with less bus bandwidth than the sum of what
the CPUs can consume at once.

Imagine a scenario where two CPUs are accessing di�erent areas of memory using unit stride. Both CPUs
access the �rst element in a cache line at the same time. The bus arbitrarily allows one CPU access to the
memory. The �rst CPU �lls a cache line and begins to process the data. The instant the �rst CPU has
completed its cache line �ll, the cache line �ll for the second CPU begins. Once the second cache line �ll has
completed, the second CPU begins to process the data in its cache line. If the time to process the data in
a cache line is longer than the time to �ll a cache line, the cache line �ll for processor two completes before
the next cache line request arrives from processor one. Once the initial con�ict is resolved, both processors
appear to have con�ict-free access to memory for the remainder of their unit-stride loops.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

149

High cache hit rate reduces main memory tra�c

Figure 3.14

In actuality, on some of the fastest bus-based systems, the memory bus is su�ciently fast that up to
20 processors can access memory using unit stride with very little con�ict. If the processors are accessing
memory using non-unit stride, bus and memory bank con�ict becomes apparent, with fewer processors.

This bus architecture combined with local caches is very popular for general-purpose multiprocessing
loads. The memory reference patterns for database or Internet servers generally consist of a combination of
time periods with a small working set, and time periods that access large data structures using unit stride.
Scienti�c codes tend to perform more non-unit-stride access than general-purpose codes. For this reason,
the most expensive parallel-processing systems targeted at scienti�c codes tend to use crossbars connected
to multibanked memory systems.

The main memory system is better shielded when a larger cache is used. For this reason, multiprocessors
sometimes incorporate a two-tier cache system, where each processor uses its own small on-chip local cache,
backed up by a larger second board-level cache with as much as 4 MB of memory. Only when neither can
satisfy a memory request, or when data has to be written back to main memory, does a request go out over
the bus or crossbar.

3.2.2.2 Coherency

Now, what happens when one CPU of a multiprocessor running a single program in parallel changes the
value of a variable, and another CPU tries to read it? Where does the value come from? These questions
are interesting because there can be multiple copies of each variable, and some of them can hold old or stale
values.

For illustration, say that you are running a program with a shared variable A. Processor 1 changes the
value of A and Processor 2 goes to read it.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

150 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

Multiple copies of variable A

Figure 3.15

In Figure 3.15 (Multiple copies of variable A), if Processor 1 is keeping A as a register-resident variable,
then Processor 2 doesn't stand a chance of getting the correct value when it goes to look for it. There is no
way that 2 can know the contents of 1's registers; so assume, at the very least, that Processor 1 writes the
new value back out. Now the question is, where does the new value get stored? Does it remain in Processor
1's cache? Is it written to main memory? Does it get updated in Processor 2's cache?

Really, we are asking what kind of cache coherency protocol the vendor uses to assure that all processors
see a uniform view of the values in �memory.� It generally isn't something that the programmer has to
worry about, except that in some cases, it can a�ect performance. The approaches used in these systems
are similar to those used in single-processor systems with some extensions. The most straight-forward cache
coherency approach is called a write-through policy : variables written into cache are simultaneously written
into main memory. As the update takes place, other caches in the system see the main memory reference
being performed. This can be done because all of the caches continuously monitor (also known as snooping
) the tra�c on the bus, checking to see if each address is in their cache. If a cache �notices� that it contains
a copy of the data from the locations being written, it may either invalidate its copy of the variable or
obtain new values (depending on the policy). One thing to note is that a write-through cache demands a
fair amount of main memory bandwidth since each write goes out over the main memory bus. Furthermore,
successive writes to the same location or bank are subject to the main memory cycle time and can slow the
machine down.

A more sophisticated cache coherency protocol is called copyback or writeback. The idea is that you
write values back out to main memory only when the cache housing them needs the space for something else.
Updates of cached data are coordinated between the caches, by the caches, without help from the processor.
Copyback caching also uses hardware that can monitor (snoop) and respond to the memory transactions of
the other caches in the system. The bene�t of this method over the write-through method is that memory
tra�c is reduced considerably. Let's walk through it to see how it works.

3.2.2.3 Cache Line States

For this approach to work, each cache must maintain a state for each line in its cache. The possible states
used in the example include:

Modi�ed: This cache line needs to be written back to memory.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

151

Exclusive: There are no other caches that have this cache line.
Shared: There are read-only copies of this line in two or more caches.
Empty/Invalid: This cache line doesn't contain any useful data.

This particular coherency protocol is often called MESI. Other cache coherency protocols are more compli-
cated, but these states give you an idea how multiprocessor writeback cache coherency works.

We start where a particular cache line is in memory and in none of the writeback caches on the systems.
The �rst cache to ask for data from a particular part of memory completes a normal memory access; the
main memory system returns data from the requested location in response to a cache miss. The associated
cache line is marked exclusive, meaning that this is the only cache in the system containing a copy of the
data; it is the owner of the data. If another cache goes to main memory looking for the same thing, the
request is intercepted by the �rst cache, and the data is returned from the �rst cache � not main memory.
Once an interception has occurred and the data is returned, the data is marked shared in both of the caches.

When a particular line is marked shared, the caches have to treat it di�erently than they would if they
were the exclusive owners of the data � especially if any of them wants to modify it. In particular, a write to
a shared cache entry is preceded by a broadcast message to all the other caches in the system. It tells them
to invalidate their copies of the data. The one remaining cache line gets marked as modi�ed to signal that
it has been changed, and that it must be returned to main memory when the space is needed for something
else. By these mechanisms, you can maintain cache coherence across the multiprocessor without adding
tremendously to the memory tra�c.

By the way, even if a variable is not shared, it's possible for copies of it to show up in several caches.
On a symmetric multiprocessor, your program can bounce around from CPU to CPU. If you run for a little
while on this CPU, and then a little while on that, your program will have operated out of separate caches.
That means that there can be several copies of seemingly unshared variables scattered around the machine.
Operating systems often try to minimize how often a process is moved between physical CPUs during context
switches. This is one reason not to overload the available processors in a system.

3.2.2.4 Data Placement

There is one more pitfall regarding shared memory we have so far failed to mention. It involves data
movement. Although it would be convenient to think of the multiprocessor memory as one big pool, we have
seen that it is actually a carefully crafted system of caches, coherency protocols, and main memory. The
problems come when your application causes lots of data to be traded between the caches. Each reference
that falls out of a given processor's cache (especially those that require an update in another processor's
cache) has to go out on the bus.

Often, it's slower to get memory from another processor's cache than from the main memory because of
the protocol and processing overhead involved. Not only do we need to have programs with high locality of
reference and unit stride, we also need to minimize the data that must be moved from one CPU to another.

3.2.3 Multiprocessor Software Concepts 12

Now that we have examined the way shared-memory multiprocessor hardware operates, we need to examine
how software operates on these types of computers. We still have to wait until the next chapters to begin
making our FORTRAN programs run in parallel. For now, we use C programs to examine the fundamentals
of multiprocessing and multithreading. There are several techniques used to implement multithreading, so
the topics we will cover include:

• Operating system�supported multiprocessing
• User space multithreading
• Operating system-supported multithreading

The last of these is what we primarily will use to reduce the walltime of our applications.

12This content is available online at <http://cnx.org/content/m32800/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

152 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

3.2.3.1 Operating System�Supported Multiprocessing

Most modern general-purpose operating systems support some form of multiprocessing. Multiprocessing
doesn't require more than one physical CPU; it is simply the operating system's ability to run more than
one process on the system. The operating system context-switches between each process at �xed time
intervals, or on interrupts or input-output activity. For example, in UNIX, if you use the ps command, you
can see the processes on the system:

% ps -a

PID TTY TIME CMD

28410 pts/34 0:00 tcsh

28213 pts/38 0:00 xterm

10488 pts/51 0:01 telnet

28411 pts/34 0:00 xbiff

11123 pts/25 0:00 pine

3805 pts/21 0:00 elm

6773 pts/44 5:48 ansys

...

% ps --a | grep ansys

6773 pts/44 6:00 ansys

For each process we see the process identi�er (PID), the terminal that is executing the command, the amount
of CPU time the command has used, and the name of the command. The PID is unique across the entire
system. Most UNIX commands are executed in a separate process. In the above example, most of the
processes are waiting for some type of event, so they are taking very few resources except for memory.
Process 677313 seems to be executing and using resources. Running ps again con�rms that the CPU time is
increasing for the ansys process:

% vmstat 5

procs memory page disk faults cpu

r b w swap free re mf pi po fr de sr f0 s0 -- -- in sy cs us sy id

3 0 0 353624 45432 0 0 1 0 0 0 0 0 0 0 0 461 5626 354 91 9 0

3 0 0 353248 43960 0 22 0 0 0 0 0 0 14 0 0 518 6227 385 89 11 0

Running the vmstat 5 command tells us many things about the activity on the system. First, there are
three runnable processes. If we had one CPU, only one would actually be running at a given instant. To
allow all three jobs to progress, the operating system time-shares between the processes. Assuming equal
priority, each process executes about 1/3 of the time. However, this system is a two-processor system, so
each process executes about 2/3 of the time. Looking across the vmstat output, we can see paging activity
(pi, po), context switches (cs), overall user time (us), system time (sy), and idle time (id).

Each process can execute a completely di�erent program. While most processes are completely inde-
pendent, they can cooperate and share information using interprocess communication (pipes, sockets) or
various operating system-supported shared-memory areas. We generally don't use multiprocessing on these
shared-memory systems as a technique to increase single-application performance.

13ANSYS is a commonly used structural-analysis package.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

153

3.2.3.2 Multiprocessing software

In this section, we explore how programs access multiprocessing features.14 In this example, the program
creates a new process using the fork() function. The new process (child) prints some messages and then
changes its identity using exec() by loading a new program. The original process (parent) prints some
messages and then waits for the child process to complete:

int globvar; /* A global variable */

main () {

int pid,status,retval;

int stackvar; /* A stack variable */

globvar = 1;

stackvar = 1;

printf("Main - calling fork globvar=%d stackvar=%d\n",globvar,stackvar);
pid = fork();

printf("Main - fork returned pid=%d\n",pid);
if (pid == 0) {

printf("Child - globvar=%d stackvar=%d\n",globvar,stackvar);
sleep(1);

printf("Child - woke up globvar=%d stackvar=%d\n",globvar,stackvar);
globvar = 100;

stackvar = 100;

printf("Child - modified globvar=%d stackvar=%d\n",globvar,stackvar);
retval = execl("/bin/date", (char *) 0);

printf("Child - WHY ARE WE HERE retval=%d\n",retval);
} else {

printf("Parent - globvar=%d stackvar=%d\n",globvar,stackvar);
globvar = 5;

stackvar = 5;

printf("Parent - sleeping globvar=%d stackvar=%d\n",globvar,stackvar);
sleep(2);

printf("Parent - woke up globvar=%d stackvar=%d\n",globvar,stackvar);
printf("Parent - waiting for pid=%d\n",pid);
retval = wait(&status);

status = status � 8; /* Return code in bits 15-8 */

printf("Parent - status=%d retval=%d\n",status,retval);
}

}

The key to understanding this code is to understand how the fork() function operates. The simple
summary is that the fork() function is called once in a process and returns twice, once in the original
process and once in a newly created process. The newly created process is an identical copy of the original
process. All the variables (local and global) have been duplicated. Both processes have access to all of the
open �les of the original process. Figure 3.16 (How a fork operates) shows how the fork operation creates a
new process.

14These examples are written in C using the POSIX 1003.1 application programming interface. This example runs on most
UNIX systems and on other POSIX-compliant systems including OpenNT, Open- VMS, and many others.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

154 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

The only di�erence between the processes is that the return value from the fork() function call is 0
in the new (child) process and the process identi�er (shown by the ps command) in the original (parent)
process. This is the program output:

recs % cc -o fork fork.c

recs % fork

Main - calling fork globvar=1 stackvar=1

Main - fork returned pid=19336

Main - fork returned pid=0

Parent - globvar=1 stackvar=1

Parent - sleeping globvar=5 stackvar=5

Child - globvar=1 stackvar=1

Child - woke up globvar=1 stackvar=1

Child - modified globvar=100 stackvar=100

Thu Nov 6 22:40:33

Parent - woke up globvar=5 stackvar=5

Parent - waiting for pid=19336

Parent - status=0 retval=19336

recs %

Tracing this through, �rst the program sets the global and stack variable to one and then calls fork().
During the fork() call, the operating system suspends the process, makes an exact duplicate of the process,
and then restarts both processes. You can see two messages from the statement immediately after the fork.
The �rst line is coming from the original process, and the second line is coming from the new process. If you
were to execute a ps command at this moment in time, you would see two processes running called �fork.�
One would have a process identi�er of 19336.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

155

How a fork operates

Figure 3.16

As both processes start, they execute an IF-THEN-ELSE and begin to perform di�erent actions in the
parent and child. Notice that globvar and stackvar are set to 5 in the parent, and then the parent sleeps for
two seconds. At this point, the child begins executing. The values for globvar and stackvar are unchanged
in the child process. This is because these two processes are operating in completely independent memory
spaces. The child process sleeps for one second and sets its copies of the variables to 100. Next, the child
process calls the execl() function to overwrite its memory space with the UNIX date program. Note that
the execl() never returns; the date program takes over all of the resources of the child process. If you
were to do a ps at this moment in time, you still see two processes on the system but process 19336 would
be called �date.� The date command executes, and you can see its output.15

The parent wakes up after a brief two-second sleep and notices that its copies of global and local variables
have not been changed by the action of the child process. The parent then calls the wait() function to

15It's not uncommon for a human parent process to �fork� and create a human child process that initially seems to have the
same identity as the parent. It's also not uncommon for the child process to change its overall identity to be something very
di�erent from the parent at some later point. Usually human children wait 13 years or so before this change occurs, but in
UNIX, this happens in a few microseconds. So, in some ways, in UNIX, there are many parent processes that are �disappointed�
because their children did not turn out like them!

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

156 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

determine if any of its children exited. The wait() function returns which child has exited and the status
code returned by that child process (in this case, process 19336).

3.2.3.3 User Space Multithreading

A thread is di�erent from a process. When you add threads, they are added to the existing process rather
than starting in a new process. Processes start with a single thread of execution and can add or remove
threads throughout the duration of the program. Unlike processes, which operate in di�erent memory spaces,
all threads in a process share the same memory space. Figure 3.17 (Creating a thread) shows how the creation
of a thread di�ers from the creation of a process. Not all of the memory space in a process is shared between
all threads. In addition to the global area that is shared across all threads, each thread has a thread private
area for its own local variables. It's important for programmers to know when they are working with shared
variables and when they are working with local variables.

When attempting to speed up high performance computing applications, threads have the advantage
over processes in that multiple threads can cooperate and work on a shared data structure to hasten the
computation. By dividing the work into smaller portions and assigning each smaller portion to a separate
thread, the total work can be completed more quickly.

Multiple threads are also used in high performance database and Internet servers to improve the overall
throughput of the server. With a single thread, the program can either be waiting for the next network
request or reading the disk to satisfy the previous request. With multiple threads, one thread can be waiting
for the next network transaction while several other threads are waiting for disk I/O to complete.

The following is an example of a simple multithreaded application.16 It begins with a single master
thread that creates three additional threads. Each thread prints some messages, accesses some global and
local variables, and then terminates:

#define_REENTRANT /* basic lines for threads */

#include <stdio.h>
#include <pthread.h>

#define THREAD_COUNT 3

void *TestFunc(void *);

int globvar; /* A global variable */

int index[THREAD_COUNT] /* Local zero-based thread index */

pthread_t thread_id[THREAD_COUNT]; /* POSIX Thread IDs */

main() {

int i,retval;

pthread_t tid;

globvar = 0;

printf("Main - globvar=%d\n",globvar);
for(i=0;i<THREAD_COUNT;i++) {

index[i] = i;

retval = pthread_create(&tid,NULL,TestFunc,(void *) index[i]);

printf("Main - creating i=%d tid=%d retval=%d\n",i,tid,retval);
thread_id[i] = tid;

}

16This example uses the IEEE POSIX standard interface for a thread library. If your system supports POSIX threads, this
example should work. If not, there should be similar routines on your system for each of the thread functions.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

157

printf("Main thread - threads started globvar=%d\n",globvar);
for(i=0;i<THREAD_COUNT;i++) {

printf("Main - waiting for join %d\n",thread_id[i]);
retval = pthread_join(thread_id[i], NULL) ;

printf("Main - back from join %d retval=%d\n",i,retval);
}

printf("Main thread - threads completed globvar=%d\n",globvar);
}

void *TestFunc(void *parm) {

int me,self;

me = (int) parm; /* My own assigned thread ordinal */

self = pthread_self(); /* The POSIX Thread library thread number */

printf("TestFunc me=%d - self=%d globvar=%d\n",me,self,globvar);
globvar = me + 15;

printf("TestFunc me=%d - sleeping globvar=%d\n",me,globvar);
sleep(2);

printf("TestFunc me=%d - done param=%d globvar=%d\n",me,self,globvar);
}

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

158 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

Creating a thread

Figure 3.17

The global shared areas in this case are those variables declared in the static area outside the main() code.
The local variables are any variables declared within a routine. When threads are added, each thread gets
its own function call stack. In C, the automatic variables that are declared at the beginning of each routine
are allocated on the stack. As each thread enters a function, these variables are separately allocated on that
particular thread's stack. So these are the thread-local variables.

Unlike the fork() function, the pthread_create() function creates a new thread, and then control is
returned to the calling thread. One of the parameters of the pthread_create() is the name of a function.

New threads begin execution in the function TestFunc() and the thread �nishes when it returns from
this function. When this program is executed, it produces the following output:

recs % cc -o create1 -lpthread -lposix4 create1.c

recs % create1

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

159

Main - globvar=0

Main - creating i=0 tid=4 retval=0

Main - creating i=1 tid=5 retval=0

Main - creating i=2 tid=6 retval=0

Main thread - threads started globvar=0

Main - waiting for join 4

TestFunc me=0 - self=4 globvar=0

TestFunc me=0 - sleeping globvar=15

TestFunc me=1 - self=5 globvar=15

TestFunc me=1 - sleeping globvar=16

TestFunc me=2 - self=6 globvar=16

TestFunc me=2 - sleeping globvar=17

TestFunc me=2 - done param=6 globvar=17

TestFunc me=1 - done param=5 globvar=17

TestFunc me=0 - done param=4 globvar=17

Main - back from join 0 retval=0

Main - waiting for join 5

Main - back from join 1 retval=0

Main - waiting for join 6

Main - back from join 2 retval=0

Main thread -- threads completed globvar=17

recs %

You can see the threads getting created in the loop. The master thread completes the pthread_create()

loop, executes the second loop, and calls the pthread_join() function. This function suspends the master
thread until the speci�ed thread completes. The master thread is waiting for Thread 4 to complete. Once
the master thread suspends, one of the new threads is started. Thread 4 starts executing. Initially the
variable globvar is set to 0 from the main program. The self, me, and param variables are thread-local
variables, so each thread has its own copy. Thread 4 sets globvar to 15 and goes to sleep. Then Thread 5
begins to execute and sees globvar set to 15 from Thread 4; Thread 5 sets globvar to 16, and goes to sleep.
This activates Thread 6, which sees the current value for globvar and sets it to 17. Then Threads 6, 5, and
4 wake up from their sleep, all notice the latest value of 17 in globvar, and return from the TestFunc()

routine, ending the threads.
All this time, the master thread is in the middle of a pthread_join() waiting for Thread 4 to complete.

As Thread 4 completes, the pthread_join() returns. The master thread then calls pthread_join()

repeatedly to ensure that all three threads have been completed. Finally, the master thread prints out the
value for globvar that contains the latest value of 17.

To summarize, when an application is executing with more than one thread, there are shared global areas
and thread private areas. Di�erent threads execute at di�erent times, and they can easily work together in
shared areas.

3.2.3.4 Limitations of user space multithreading

Multithreaded applications were around long before multiprocessors existed. It is quite practical to have
multiple threads with a single CPU. As a matter of fact, the previous example would run on a system with
any number of processors, including one. If you look closely at the code, it performs a sleep operation at each
critical point in the code. One reason to add the sleep calls is to slow the program down enough that you can
actually see what is going on. However, these sleep calls also have another e�ect. When one thread enters
the sleep routine, it causes the thread library to search for other �runnable� threads. If a runnable thread
is found, it begins executing immediately while the calling thread is �sleeping.� This is called a user-space
thread context switch. The process actually has one operating system thread shared among several logical

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

160 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

user threads. When library routines (such as sleep) are called, the thread library17 jumps in and reschedules
threads.

We can explore this e�ect by substituting the following SpinFunc() function, replacing TestFunc()

function in the pthread_create() call in the previous example:

void *SpinFunc(void *parm) {

int me;

me = (int) parm;

printf("SpinFunc me=%d - sleeping %d seconds ...\n", me, me+1);

sleep(me+1);

printf("SpinFunc me=%d -- wake globvar=%d...\n", me, globvar);

globvar ++;

printf("SpinFunc me=%d - spinning globvar=%d...\n", me, globvar);

while(globvar < THREAD_COUNT) ;

printf("SpinFunc me=%d -- done globvar=%d...\n", me, globvar);

sleep(THREAD_COUNT+1);

}

If you look at the function, each thread entering this function prints a message and goes to sleep for 1, 2,
and 3 seconds. Then the function increments globvar (initially set to 0 in main) and begins a while-loop,
continuously checking the value of globvar. As time passes, the second and third threads should �nish
their sleep(), increment the value for globvar, and begin the while-loop. When the last thread reaches
the loop, the value for globvar is 3 and all the threads exit the loop. However, this isn't what happens:

recs % create2 &

[1] 23921

recs %

Main - globvar=0

Main - creating i=0 tid=4 retval=0

Main - creating i=1 tid=5 retval=0

Main - creating i=2 tid=6 retval=0

Main thread - threads started globvar=0

Main - waiting for join 4

SpinFunc me=0 - sleeping 1 seconds ...

SpinFunc me=1 - sleeping 2 seconds ...

SpinFunc me=2 - sleeping 3 seconds ...

SpinFunc me=0 - wake globvar=0...

SpinFunc me=0 - spinning globvar=1...

recs % ps

PID TTY TIME CMD

23921 pts/35 0:09 create2

recs % ps

PID TTY TIME CMD

17The pthreads library supports both user-space threads and operating-system threads, as we shall soon see. Another popular
early threads package was called cthreads.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

161

23921 pts/35 1:16 create2

recs % kill -9 23921

[1] Killed create2

recs %

We run the program in the background18 and everything seems to run �ne. All the threads go to sleep for
1, 2, and 3 seconds. The �rst thread wakes up and starts the loop waiting for globvar to be incremented by
the other threads. Unfortunately, with user space threads, there is no automatic time sharing. Because we
are in a CPU loop that never makes a system call, the second and third threads never get scheduled so they
can complete their sleep() call. To �x this problem, we need to make the following change to the code:

while(globvar < THREAD_COUNT) sleep(1) ;

With this sleep19 call, Threads 2 and 3 get a chance to be �scheduled.� They then �nish their sleep calls,
increment the globvar variable, and the program terminates properly.

You might ask the question, �Then what is the point of user space threads?� Well, when there is a high
performance database server or Internet server, the multiple logical threads can overlap network I/O with
database I/O and other background computations. This technique is not so useful when the threads all
want to perform simultaneous CPU-intensive computations. To do this, you need threads that are created,
managed, and scheduled by the operating system rather than a user library.

3.2.3.5 Operating System-Supported Multithreading

When the operating system supports multiple threads per process, you can begin to use these threads to
do simultaneous computational activity. There is still no requirement that these applications be executed
on a multiprocessor system. When an application that uses four operating system threads is executed on
a single processor machine, the threads execute in a time-shared fashion. If there is no other load on the
system, each thread gets 1/4 of the processor. While there are good reasons to have more threads than
processors for noncompute applications, it's not a good idea to have more active threads than processors for
compute-intensive applications because of thread-switching overhead. (For more detail on the e�ect of too
many threads, see Appendix D, How FORTRAN Manages Threads at Runtime.

If you are using the POSIX threads library, it is a simple modi�cation to request that your threads be
created as operating-system rather rather than user threads, as the following code shows:

#define _REENTRANT /* basic 3-lines for threads */

#include <stdio.h>
#include <pthread.h>

#define THREAD_COUNT 2

void *SpinFunc(void *);

int globvar; /* A global variable */

int index[THREAD_COUNT]; /* Local zero-based thread index */

pthread_t thread_id[THREAD_COUNT]; /* POSIX Thread IDs */

pthread_attr_t attr; /* Thread attributes NULL=use default */

18Because we know it will hang and ignore interrupts.
19Some thread libraries support a call to a routine sched_yield() that checks for runnable threads. If it �nds a runnable

thread, it runs the thread. If no thread is runnable, it returns immediately to the calling thread. This routine allows a thread
that has the CPU to ensure that other threads make progress during CPU-intensive periods of its code.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

162 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

main() {

int i,retval;

pthread_t tid;

globvar = 0;

pthread_attr_init(&attr); /* Initialize attr with defaults */

pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

printf("Main - globvar=%d\n",globvar);
for(i=0;i<THREAD_COUNT;i++) {

index[i] = i;

retval = pthread_create(&tid,&attr,SpinFunc,(void *) index[i]);

printf("Main - creating i=%d tid=%d retval=%d\n",i,tid,retval);
thread_id[i] = tid;

}

printf("Main thread - threads started globvar=%d\n",globvar);
for(i=0;i<THREAD_COUNT;i++) {

printf("Main - waiting for join %d\n",thread_id[i]);
retval = pthread_join(thread_id[i], NULL) ;

printf("Main - back from join %d retval=%d\n",i,retval);
}

printf("Main thread - threads completed globvar=%d\n",globvar);
}

The code executed by the master thread is modi�ed slightly. We create an �attribute� data structure and
set the PTHREAD_SCOPE_SYSTEM attribute to indicate that we would like our new threads to be created and
scheduled by the operating system. We use the attribute information on the call to pthread_create().
None of the other code has been changed. The following is the execution output of this new program:

recs % create3

Main - globvar=0

Main - creating i=0 tid=4 retval=0

SpinFunc me=0 - sleeping 1 seconds ...

Main - creating i=1 tid=5 retval=0

Main thread - threads started globvar=0

Main - waiting for join 4

SpinFunc me=1 - sleeping 2 seconds ...

SpinFunc me=0 - wake globvar=0...

SpinFunc me=0 - spinning globvar=1...

SpinFunc me=1 - wake globvar=1...

SpinFunc me=1 - spinning globvar=2...

SpinFunc me=1 - done globvar=2...

SpinFunc me=0 - done globvar=2...

Main - back from join 0 retval=0

Main - waiting for join 5

Main - back from join 1 retval=0

Main thread - threads completed globvar=2

recs %

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

163

Now the program executes properly. When the �rst thread starts spinning, the operating system is context
switching between all three threads. As the threads come out of their sleep(), they increment their shared
variable, and when the �nal thread increments the shared variable, the other two threads instantly notice
the new value (because of the cache coherency protocol) and �nish the loop. If there are fewer than three
CPUs, a thread may have to wait for a time-sharing context switch to occur before it notices the updated
global variable.

With operating-system threads and multiple processors, a program can realistically break up a large
computation between several independent threads and compute the solution more quickly. Of course this
presupposes that the computation could be done in parallel in the �rst place.

3.2.4 Techniques for Multithreaded Programs20

Given that we have multithreaded capabilities and multiprocessors, we must still convince the threads to
work together to accomplish some overall goal. Often we need some ways to coordinate and cooperate
between the threads. There are several important techniques that are used while the program is running
with multiple threads, including:

• Fork-join (or create-join) programming
• Synchronization using a critical section with a lock, semaphore, or mutex
• Barriers

Each of these techniques has an overhead associated with it. Because these overheads are necessary to go
parallel, we must make sure that we have su�cient work to make the bene�t of parallel operation worth the
cost.

3.2.4.1 Fork-Join Programming

This approach is the simplest method of coordinating your threads. As in the earlier examples in this chapter,
a master thread sets up some global data structures that describe the tasks each thread is to perform and
then use the pthread_create() function to activate the proper number of threads. Each thread checks
the global data structure using its thread-id as an index to �nd its task. The thread then performs the task
and completes. The master thread waits at a pthread_join() point, and when a thread has completed,
it updates the global data structure and creates a new thread. These steps are repeated for each major
iteration (such as a time-step) for the duration of the program:

for(ts=0;ts<10000;ts++) { /* Time Step Loop */

/* Setup tasks */

for (ith=0;ith<NUM_THREADS;ith++) pthread_create(..,work_routine,..)

for (ith=0;ith<NUM_THREADS;ith++) pthread_join(...)

}

work_routine() {

/* Perform Task */

return;

}

The shortcoming of this approach is the overhead cost associated with creating and destroying an operating
system thread for a potentially very short task.

The other approach is to have the threads created at the beginning of the program and to have them
communicate amongst themselves throughout the duration of the application. To do this, they use such
techniques as critical sections or barriers.

20This content is available online at <http://cnx.org/content/m32802/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

164 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

3.2.4.2 Synchronization

Synchronization is needed when there is a particular operation to a shared variable that can only be performed
by one processor at a time. For example, in previous SpinFunc() examples, consider the line:

globvar++;

In assembly language, this takes at least three instructions:

LOAD R1,globvar

ADD R1,1

STORE R1,globvar

What if globvar contained 0, Thread 1 was running, and, at the precise moment it completed the LOAD into
Register R1 and before it had completed the ADD or STORE instructions, the operating system interrupted the
thread and switched to Thread 2? Thread 2 catches up and executes all three instructions using its registers:
loading 0, adding 1 and storing the 1 back into globvar. Now Thread 2 goes to sleep and Thread 1 is
restarted at the ADD instruction. Register R1 for Thread 1 contains the previously loaded value of 0; Thread
1 adds 1 and then stores 1 into globvar. What is wrong with this picture? We meant to use this code to
count the number of threads that have passed this point. Two threads passed the point, but because of a
bad case of bad timing, our variable indicates only that one thread passed. This is because the increment of
a variable in memory is not atomic. That is, halfway through the increment, something else can happen.

Another way we can have a problem is on a multiprocessor when two processors execute these instructions
simultaneously. They both do the LOAD, getting 0. Then they both add 1 and store 1 back to memory.21

Which processor actually got the honor of storing their 1 back to memory is simply a race.
We must have some way of guaranteeing that only one thread can be in these three instructions at the

same time. If one thread has started these instructions, all other threads must wait to enter until the �rst
thread has exited. These areas are called critical sections. On single-CPU systems, there was a simple
solution to critical sections: you could turn o� interrupts for a few instructions and then turn them back
on. This way you could guarantee that you would get all the way through before a timer or other interrupt
occurred:

INTOFF // Turn off Interrupts

LOAD R1,globvar

ADD R1,1

STORE R1,globvar

INTON // Turn on Interrupts

However, this technique does not work for longer critical sections or when there is more than one CPU. In
these cases, you need a lock, a semaphore, or a mutex. Most thread libraries provide this type of routine.
To use a mutex, we have to make some modi�cations to our example code:

21Boy, this is getting pretty picky. How often will either of these events really happen? Well, if it crashes your airline
reservation system every 100,000 transactions or so, that would be way too often.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

165

...

pthread_mutex_t my_mutex; /* MUTEX data structure */

...

main() {

...

pthread_attr_init(&attr); /* Initialize attr with defaults */

pthread_mutex_init (&my_mutex, NULL);

.... pthread_create(...)

...

}

void *SpinFunc(void *parm) {

...

pthread_mutex_lock (&my_mutex);

globvar ++;

pthread_mutex_unlock (&my_mutex);

while(globvar < THREAD_COUNT) ;

printf("SpinFunc me=%d -- done globvar=%d...\n", me, globvar);

...

}

The mutex data structure must be declared in the shared area of the program. Before the threads are
created, pthread_mutex_init must be called to initialize the mutex. Before globvar is incremented, we
must lock the mutex and after we �nish updating globvar (three instructions later), we unlock the mutex.
With the code as shown above, there will never be more than one processor executing the globvar++ line
of code, and the code will never hang because an increment was missed. Semaphores and locks are used in
a similar way.

Interestingly, when using user space threads, an attempt to lock an already locked mutex, semaphore, or
lock can cause a thread context switch. This allows the thread that �owns� the lock a better chance to make
progress toward the point where they will unlock the critical section. Also, the act of unlocking a mutex can
cause the thread waiting for the mutex to be dispatched by the thread library.

3.2.4.3 Barriers

Barriers are di�erent than critical sections. Sometimes in a multithreaded application, you need to have all
threads arrive at a point before allowing any threads to execute beyond that point. An example of this is
a time-based simulation. Each task processes its portion of the simulation but must wait until all of the
threads have completed the current time step before any thread can begin the next time step. Typically
threads are created, and then each thread executes a loop with one or more barriers in the loop. The rough
pseudocode for this type of approach is as follows:

main() {

for (ith=0;ith<NUM_THREADS;ith++) pthread_create(..,work_routine,..)

for (ith=0;ith<NUM_THREADS;ith++) pthread_join(...) /* Wait a long time */

exit()

}

work_routine() {

for(ts=0;ts<10000;ts++) { /* Time Step Loop */

/* Compute total forces on particles */

wait_barrier();

/* Update particle positions based on the forces */

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

166 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

wait_barrier();

}

return;

}

In a sense, our SpinFunc() function implements a barrier. It sets a variable initially to 0. Then as threads
arrive, the variable is incremented in a critical section. Immediately after the critical section, the thread
spins until the precise moment that all the threads are in the spin loop, at which time all threads exit the
spin loop and continue on.

For a critical section, only one processor can be executing in the critical section at the same time. For a
barrier, all processors must arrive at the barrier before any of the processors can leave.

3.2.5 A Real Example 22

In all of the above examples, we have focused on the mechanics of shared memory, thread creation, and
thread termination. We have used the sleep() routine to slow things down su�ciently to see interactions
between processes. But we want to go very fast, not just learn threading for threading's sake.

The example code below uses the multithreading techniques described in this chapter to speed up a sum
of a large array. The hpcwall routine is from Section 2.2.1.

This code allocates a four-million-element double-precision array and �lls it with random numbers be-
tween 0 and 1. Then using one, two, three, and four threads, it sums up the elements in the array:

#define _REENTRANT /* basic 3-lines for threads */

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

#define MAX_THREAD 4

void *SumFunc(void *);

int ThreadCount; /* Threads on this try */

double GlobSum; /* A global variable */

int index[MAX_THREAD]; /* Local zero-based thread index */

pthread_t thread_id[MAX_THREAD]; /* POSIX Thread IDs */

pthread_attr_t attr; /* Thread attributes NULL=use default */

pthread_mutex_t my_mutex; /* MUTEX data structure */

#define MAX_SIZE 4000000

double array[MAX_SIZE]; /* What we are summing... */

void hpcwall(double *);

main() {

int i,retval;

pthread_t tid;

double single,multi,begtime,endtime;

/* Initialize things */

for (i=0; i<MAX_SIZE; i++) array[i] = drand48();

pthread_attr_init(&attr); /* Initialize attr with defaults */

22This content is available online at <http://cnx.org/content/m32804/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

167

pthread_mutex_init (&my_mutex, NULL);

pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

/* Single threaded sum */

GlobSum = 0;

hpcwall(&begtime);

for(i=0; i<MAX_SIZE;i++) GlobSum = GlobSum + array[i];

hpcwall(&endtime);

single = endtime - begtime;

printf("Single sum=%lf time=%lf\n",GlobSum,single);

/* Use different numbers of threads to accomplish the same thing */

for(ThreadCount=2;ThreadCount<=MAX_THREAD; ThreadCount++) {

printf("Threads=%d\n",ThreadCount);
GlobSum = 0;

hpcwall(&begtime);

for(i=0;i<ThreadCount;i++) {

index[i] = i;

retval = pthread_create(&tid,&attr,SumFunc,(void *) index[i]);

thread_id[i] = tid;

}

for(i=0;i<ThreadCount;i++) retval = pthread_join(thread_id[i],NULL);

hpcwall(&endtime);

multi = endtime - begtime;

printf("Sum=%lf time=%lf\n",GlobSum,multi);
printf("Efficiency = %lf\n",single/(multi*ThreadCount));

} /* End of the ThreadCount loop */

}

void *SumFunc(void *parm){

int i,me,chunk,start,end;

double LocSum;

/* Decide which iterations belong to me */

me = (int) parm;

chunk = MAX_SIZE / ThreadCount;

start = me * chunk;

end = start + chunk; /* C-Style - actual element + 1 */

if (me == (ThreadCount-1)) end = MAX_SIZE;

printf("SumFunc me=%d start=%d end=%d\n",me,start,end);

/* Compute sum of our subset*/

LocSum = 0;

for(i=start;i<end;i++) LocSum = LocSum + array[i];

/* Update the global sum and return to the waiting join */

pthread_mutex_lock (&my_mutex);

GlobSum = GlobSum + LocSum;

pthread_mutex_unlock (&my_mutex);

}

First, the code performs the sum using a single thread using a for-loop. Then for each of the parallel sums,

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

168 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

it creates the appropriate number of threads that call SumFunc(). Each thread starts in SumFunc() and
initially chooses an area to operation in the shared array. The �strip� is chosen by dividing the overall array
up evenly among the threads with the last thread getting a few extra if the division has a remainder.

Then, each thread independently performs the sum on its area. When a thread has �nished its compu-
tation, it uses a mutex to update the global sum variable with its contribution to the global sum:

recs % addup

Single sum=7999998000000.000000 time=0.256624

Threads=2

SumFunc me=0 start=0 end=2000000

SumFunc me=1 start=2000000 end=4000000

Sum=7999998000000.000000 time=0.133530

Efficiency = 0.960923

Threads=3

SumFunc me=0 start=0 end=1333333

SumFunc me=1 start=1333333 end=2666666

SumFunc me=2 start=2666666 end=4000000

Sum=7999998000000.000000 time=0.091018

Efficiency = 0.939829

Threads=4

SumFunc me=0 start=0 end=1000000

SumFunc me=1 start=1000000 end=2000000

SumFunc me=2 start=2000000 end=3000000

SumFunc me=3 start=3000000 end=4000000

Sum=7999998000000.000000 time=0.107473

Efficiency = 0.596950

recs %

There are some interesting patterns. Before you interpret the patterns, you must know that this system is
a three-processor Sun Enterprise 3000. Note that as we go from one to two threads, the time is reduced to
one-half. That is a good result given how much it costs for that extra CPU. We characterize how well the
additional resources have been used by computing an e�ciency factor that should be 1.0. This is computed
by multiplying the wall time by the number of threads. Then the time it takes on a single processor is divided
by this number. If you are using the extra processors well, this evaluates to 1.0. If the extra processors are
used pretty well, this would be about 0.9. If you had two threads, and the computation did not speed up at
all, you would get 0.5.

At two and three threads, wall time is dropping, and the e�ciency is well over 0.9. However, at four
threads, the wall time increases, and our e�ciency drops very dramatically. This is because we now have
more threads than processors. Even though we have four threads that could execute, they must be time-
sliced between three processors.23 This is even worse that it might seem. As threads are switched, they move
from processor to processor and their caches must also move from processor to processor, further slowing
performance. This cache-thrashing e�ect is not too apparent in this example because the data structure is
so large, most memory references are not to values previously in cache.

It's important to note that because of the nature of �oating-point (see Section 1.2.1), the parallel sum
may not be the same as the serial sum. To perform a summation in parallel, you must be willing to tolerate
these slight variations in your results.

23It is important to match the number of runnable threads to the available resources. In compute code, when there are
more threads than available processors, the threads compete among themselves, causing unnecessary overhead and reducing
the e�ciency of your computation.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

169

3.2.6 Closing Notes24

As they drop in price, multiprocessor systems are becoming far more common. These systems have many
attractive features, including good price/performance, compatibility with workstations, large memories, high
throughput, large shared memories, fast I/O, and many others. While these systems are strong in multipro-
grammed server roles, they are also an a�ordable high performance computing resource for many organiza-
tions. Their cache-coherent shared-memory model allows multithreaded applications to be easily developed.

We have also examined some of the software paradigms that must be used to develop multithreaded
applications. While you hopefully will never have to write C code with explicit threads like the examples in
this chapter, it is nice to understand the fundamental operations at work on these multiprocessor systems.
Using the FORTRAN language with an automatic parallelizing compiler, we have the advantage that these
and many more details are left to the FORTRAN compiler and runtime library. At some point, especially
on the most advanced architectures, you may have to explicitly program a multithreaded program using the
types of techniques shown in this chapter.

One trend that has been predicted for some time is that we will begin to see multiple cache-coherent
CPUs on a single chip once the ability to increase the clock rate on a single chip slows down. Imagine that
your new $2000 workstation has four 1-GHz processors on a single chip. Sounds like a good time to learn
how to write multithreaded programs!

3.2.7 Exercises25

Exercise 3.2.7.1
Experiment with the fork code in this chapter. Run the program multiple times and see how the
order of the messages changes. Explain the results.

Exercise 3.2.7.2
Experiment with the create1 and create3 codes in this chapter. Remove all of the sleep()

calls. Execute the programs several times on single and multiprocessor systems. Can you explain
why the output changes from run to run in some situations and doesn't change in others?

Exercise 3.2.7.3
Experiment with the parallel sum code in this chapter. In the SumFunc() routine, change the
for-loop to:

for(i=start;i<end;i++) GlobSum = GlobSum + array[i];

Remove the three lines at the end that get the mutex and update the GlobSum. Execute the
code. Explain the di�erence in values that you see for GlobSum. Are the patterns di�erent on a
single processor and a multiprocessor? Explain the performance impact on a single processor and
a multiprocessor.

Exercise 3.2.7.4
Explain how the following code segment could cause deadlock � two or more processes waiting
for a resource that can't be relinquished:

...

call lock (lword1)

call lock (lword2)

...

call unlock (lword1)

call unlock (lword2)

.

24This content is available online at <http://cnx.org/content/m32807/1.3/>.
25This content is available online at <http://cnx.org/content/m32810/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

170 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

.

.

call lock (lword2)

call lock (lword1)

...

call unlock (lword2)

call unlock (lword1)

...

Exercise 3.2.7.5
If you were to code the functionality of a spin-lock in C, it might look like this:

while (!lockword);

lockword = !lockword;

As you know from the �rst sections of the book, the same statements would be compiled into explicit
loads and stores, a comparison, and a branch. There's a danger that two processes could each load
lockword, �nd it unset, and continue on as if they owned the lock (we have a race condition). This
suggests that spin-locks are implemented di�erently � that they're not merely the two lines of C
above. How do you suppose they are implemented?

3.3 Programming Shared-Memory Multiprocessors

3.3.1 Introduction26

In Section 3.2.1, we examined the hardware used to implement shared-memory parallel processors and the
software environment for a programmer who is using threads explicitly. In this chapter, we view these
processors from a simpler vantage point. When programming these systems in FORTRAN, you have the
advantage of the compiler's support of these systems. At the top end of ease of use, we can simply add a �ag
or two on the compilation of our well-written code, set an environment variable, and voilá, we are executing
in parallel. If you want some more control, you can add directives to particular loops where you know better
than the compiler how the loop should be executed.27 First we examine how well-written loops can bene�t
from automatic parallelism. Then we will look at the types of directives you can add to your program to
assist the compiler in generating parallel code. While this chapter refers to running your code in parallel,
most of the techniques apply to the vector-processor supercomputers as well.

3.3.2 Automatic Parallelization28

So far in the book, we've covered the tough things you need to know to do parallel processing. At this point,
assuming that your loops are clean, they use unit stride, and the iterations can all be done in parallel, all you

26This content is available online at <http://cnx.org/content/m32812/1.3/>.
27If you have skipped all the other chapters in the book and jumped to this one, don't be surprised if some of the terminology

is unfamiliar. While all those chapters seemed to contain endless boring detail, they did contain some basic terminology. So
those of us who read all those chapters have some common terminology needed for this chapter. If you don't go back and read
all the chapters, don't complain about the big words we keep using in this chapter!

28This content is available online at <http://cnx.org/content/m32821/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

171

have to do is turn on a compiler �ag and buy a good parallel processor. For example, look at the following
code:

PARAMETER(NITER=300,N=1000000)

REAL*8 A(N),X(N),B(N),C

DO ITIME=1,NITER

DO I=1,N

A(I) = X(I) + B(I) * C

ENDDO

CALL WHATEVER(A,X,B,C)

ENDDO

Here we have an iterative code that satis�es all the criteria for a good parallel loop. On a good parallel
processor with a modern compiler, you are two �ags away from executing in parallel. On Sun Solaris
systems, the autopar �ag turns on the automatic parallelization, and the loopinfo �ag causes the compiler
to describe the particular optimization performed for each loop. To compile this code under Solaris, you
simply add these �ags to your f77 call:

E6000: f77 -O3 -autopar -loopinfo -o daxpy daxpy.f

daxpy.f:

"daxpy.f", line 6: not parallelized, call may be unsafe

"daxpy.f", line 8: PARALLELIZED

E6000: /bin/time daxpy

real 30.9

user 30.7

sys 0.1

E6000:

If you simply run the code, it's executed using one thread. However, the code is enabled for parallel processing
for those loops that can be executed in parallel. To execute the code in parallel, you need to set the UNIX
environment to the number of parallel threads you wish to use to execute the code. On Solaris, this is done
using the PARALLEL variable:

E6000: setenv PARALLEL 1

E6000: /bin/time daxpy

real 30.9

user 30.7

sys 0.1

E6000: setenv PARALLEL 2

E6000: /bin/time daxpy

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

172 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

real 15.6

user 31.0

sys 0.2

E6000: setenv PARALLEL 4

E6000: /bin/time daxpy

real 8.2

user 32.0

sys 0.5

E6000: setenv PARALLEL 8

E6000: /bin/time daxpy

real 4.3

user 33.0

sys 0.8

Speedup is the term used to capture how much faster the job runs using N processors compared to the
performance on one processor. It is computed by dividing the single processor time by the multiprocessor
time for each number of processors. Figure 3.18 (Improving performance by adding processors) shows the
wall time and speedup for this application.

Improving performance by adding processors

Figure 3.18

Figure 3.19 (Ideal and actual performance improvement) shows this information graphically, plotting
speedup versus the number of processors.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

173

Ideal and actual performance improvement

Figure 3.19

Note that for a while we get nearly perfect speedup, but we begin to see a measurable drop in speedup at
four and eight processors. There are several causes for this. In all parallel applications, there is some portion
of the code that can't run in parallel. During those nonparallel times, the other processors are waiting for
work and aren't contributing to e�ciency. This nonparallel code begins to a�ect the overall performance as
more processors are added to the application.

So you say, �this is more like it!� and immediately try to run with 12 and 16 threads. Now, we see
the graph in Figure 3.21 (Diminishing returns) and the data from Figure 3.20 (Increasing the number of
threads).

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

174 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

Increasing the number of threads

Figure 3.20

Diminishing returns

Figure 3.21

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

175

What has happened here? Things were going so well, and then they slowed down. We are running this
program on a 16-processor system, and there are eight other active threads, as indicated below:

E6000:uptime

4:00pm up 19 day(s), 37 min(s), 5 users, load average: 8.00, 8.05, 8.14

E6000:

Once we pass eight threads, there are no available processors for our threads. So the threads must be time-
shared between the processors, signi�cantly slowing the overall operation. By the end, we are executing 16
threads on eight processors, and our performance is slower than with one thread. So it is important that
you don't create too many threads in these types of applications.

3.3.2.1 Compiler Considerations

Improving performance by turning on automatic parallelization is an example of the �smarter compiler� we
discussed in earlier chapters. The addition of a single compiler �ag has triggered a great deal of analysis on
the part of the compiler including:

• Which loops can execute in parallel, producing the exact same results as the sequential executions of
the loops? This is done by checking for dependencies that span iterations. A loop with no interiteration
dependencies is called a DOALL loop.

• Which loops are worth executing in parallel? Generally very short loops gain no bene�t and may
execute more slowly when executing in parallel. As with loop unrolling, parallelism always has a cost.
It is best used when the bene�t far outweighs the cost.

• In a loop nest, which loop is the best candidate to be parallelized? Generally the best performance
occurs when we parallelize the outermost loop of a loop nest. This way the overhead associated with
beginning a parallel loop is amortized over a longer parallel loop duration.

• Can and should the loop nest be interchanged? The compiler may detect that the loops in a nest
can be done in any order. One order may work very well for parallel code while giving poor memory
performance. Another order may give unit stride but perform poorly with multiple threads. The
compiler must analyze the cost/bene�t of each approach and make the best choice.

• How do we break up the iterations among the threads executing a parallel loop? Are the iterations
short with uniform duration, or long with wide variation of execution time? We will see that there
are a number of di�erent ways to accomplish this. When the programmer has given no guidance, the
compiler must make an educated guess.

Even though it seems complicated, the compiler can do a surprisingly good job on a wide variety of codes.
It is not magic, however. For example, in the following code we have a loop-carried �ow dependency:

PROGRAM DEP

PARAMETER(NITER=300,N=1000000)

REAL*4 A(N)

DO ITIME=1,NITER

CALL WHATEVER(A)

DO I=2,N

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

176 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

A(I) = A(I-1) + A(I) * C

ENDDO

ENDDO

END

When we compile the code, the compiler gives us the following message:

E6000: f77 -O3 -autopar -loopinfo -o dep dep.f

dep.f:

"dep.f", line 6: not parallelized, call may be unsafe

"dep.f", line 8: not parallelized, unsafe dependence (a)

E6000:

The compiler throws its hands up in despair, and lets you know that the loop at Line 8 had an unsafe
dependence, and so it won't automatically parallelize the loop. When the code is executed below, adding a
thread does not a�ect the execution performance:

E6000:setenv PARALLEL 1

E6000:/bin/time dep

real 18.1

user 18.1

sys 0.0

E6000:setenv PARALLEL 2

E6000:/bin/time dep

real 18.3

user 18.2

sys 0.0

E6000:

A typical application has many loops. Not all the loops are executed in parallel. It's a good idea to run a
pro�le of your application, and in the routines that use most of the CPU time, check to �nd out which loops
are not being parallelized. Within a loop nest, the compiler generally chooses only one loop to execute in
parallel.

3.3.2.2 Other Compiler Flags

In addition to the �ags shown above, you may have other compiler �ags available to you that apply across
the entire program:

• You may have a compiler �ag to enable the automatic parallelization of reduction operations. Because
the order of additions can a�ect the �nal value when computing a sum of �oating-point numbers, the
compiler needs permission to parallelize summation loops.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

177

• Flags that relax the compliance with IEEE �oating-point rules may also give the compiler more �ex-
ibility when trying to parallelize a loop. However, you must be sure that it's not causing accuracy
problems in other areas of your code.

• Often a compiler has a �ag called �unsafe optimization� or �assume no dependencies.� While this �ag
may indeed enhance the performance of an application with loops that have dependencies, it almost
certainly produces incorrect results.

There is some value in experimenting with a compiler to see the particular combination that will yield good
performance across a variety of applications. Then that set of compiler options can be used as a starting
point when you encounter a new application.

3.3.3 Assisting the Compiler29

If it were all that simple, you wouldn't need this book. While compilers are extremely clever, there is still a
lot of ways to improve the performance of your code without sacri�cing its portability. Instead of converting
the whole program to C and using a thread library, you can assist the compiler by adding compiler directives
to our source code.

Compiler directives are typically inserted in the form of stylized FORTRAN comments. This is done
so that a nonparallelizing compiler can ignore them and just look at the FORTRAN code, sans comments.
This allows to you tune your code for parallel architectures without letting it run badly on a wide range of
single-processor systems.

There are two categories of parallel-processing comments:

• Assertions
• Manual parallelization directives

Assertions tell the compiler certain things that you as the programmer know about the code that it might
not guess by looking at the code. Through the assertions, you are attempting to assuage the compiler's
doubts about whether or not the loop is eligible for parallelization. When you use directives, you are taking
full responsibility for the correct execution of the program. You are telling the compiler what to parallelize
and how to do it. You take full responsibility for the output of the program. If the program produces
meaningless results, you have no one to blame but yourself.

3.3.3.1 Assertions

In a previous example, we compiled a program and received the following output:

E6000: f77 -O3 -autopar -loopinfo -o dep dep.f

dep.f:

"dep.f", line 6: not parallelized, call may be unsafe

"dep.f", line 8: not parallelized, unsafe dependence (a)

E6000:

An uneducated programmer who has not read this book (or has not looked at the code) might exclaim, �What
unsafe dependence, I never put one of those in my code!� and quickly add a no dependencies assertion. This
is the essence of an assertion. Instead of telling the compiler to simply parallelize the loop, the programmer
is telling the compiler that its conclusion that there is a dependence is incorrect. Usually the net result is
that the compiler does indeed parallelize the loop.

We will brie�y review the types of assertions that are typically supported by these compilers. An assertion
is generally added to the code using a stylized comment.

29This content is available online at <http://cnx.org/content/m32814/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

178 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

3.3.3.1.1 No dependencies

A no dependencies or ignore dependencies directive tells the compiler that references don't overlap.
That is, it tells the compiler to generate code that may execute incorrectly if there are dependencies. You're
saying, �I know what I'm doing; it's OK to overlap references.� A no dependencies directive might help the
following loop:

DO I=1,N

A(I) = A(I+K) * B(I)

ENDDO

If you know that k is greater than -1 or less than -n, you can get the compiler to parallelize the loop:

C$ASSERT NO_DEPENDENCIES

DO I=1,N

A(I) = A(I+K) * B(I)

ENDDO

Of course, blindly telling the compiler that there are no dependencies is a prescription for disaster. If k

equals -1, the example above becomes a recursive loop.

3.3.3.1.2 Relations

You will often see loops that contain some potential dependencies, making them bad candidates for a no
dependencies directive. However, you may be able to supply some local facts about certain variables. This
allows partial parallelization without compromising the results. In the code below, there are two potential
dependencies because of subscripts involving k and j:

for (i=0; i<n; i++) {

a[i] = a[i+k] * b[i];

c[i] = c[i+j] * b[i];

}

Perhaps we know that there are no con�icts with references to a[i] and a[i+k]. But maybe we aren't so
sure about c[i] and c[i+j]. Therefore, we can't say in general that there are no dependencies. However, we
may be able to say something explicit about k (like �k is always greater than -1�), leaving j out of it. This
information about the relationship of one expression to another is called a relation assertion. Applying a
relation assertion allows the compiler to apply its optimization to the �rst statement in the loop, giving us
partial parallelization.30

Again, if you supply inaccurate testimony that leads the compiler to make unsafe optimizations, your
answer may be wrong.

30Notice that, if you were tuning by hand, you could split this loop into two: one parallelizable and one not.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

179

3.3.3.1.3 Permutations

As we have seen elsewhere, when elements of an array are indirectly addressed, you have to worry about
whether or not some of the subscripts may be repeated. In the code below, are the values of K(I) all unique?
Or are there duplicates?

DO I=1,N

A(K(I)) = A(K(I)) + B(I) * C

END DO

If you know there are no duplicates in K (i.e., that A(K(I)) is a permutation), you can inform the compiler
so that iterations can execute in parallel. You supply the information using a permutation assertion.

3.3.3.1.4 No equivalences

Equivalenced arrays in FORTRAN programs provide another challenge for the compiler. If any elements of
two equivalenced arrays appear in the same loop, most compilers assume that references could point to the
same memory storage location and optimize very conservatively. This may be true even if it is abundantly
apparent to you that there is no overlap whatsoever.

You inform the compiler that references to equivalenced arrays are safe with a no equivalences assertion.
Of course, if you don't use equivalences, this assertion has no e�ect.

3.3.3.1.5 Trip count

Each loop can be characterized by an average number of iterations. Some loops are never executed or go
around just a few times. Others may go around hundreds of times:

C$ASSERT TRIPCOUNT>100

DO I=L,N

A(I) = B(I) + C(I)

END DO

Your compiler is going to look at every loop as a candidate for unrolling or parallelization. It's working in
the dark, however, because it can't tell which loops are important and tries to optimize them all. This can
lead to the surprising experience of seeing your runtime go up after optimization!

A trip count assertion provides a clue to the compiler that helps it decide how much to unroll a loop
or when to parallelize a loop.31 Loops that aren't important can be identi�ed with low or zero trip counts.
Important loops have high trip counts.

3.3.3.1.6 Inline substitution

If your compiler supports procedure inlining, you can use directives and command-line switches to specify
how many nested levels of procedures you would like to inline, thresholds for procedure size, etc. The vendor
will have chosen reasonable defaults.

31The assertion is made either by hand or from a pro�ler.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

180 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

Assertions also let you choose subroutines that you think are good candidates for inlining. However,
subject to its thresholds, the compiler may reject your choices. Inlining could expand the code so much
that increased memory activity would claim back gains made by eliminating the procedure call. At higher
optimization levels, the compiler is often capable of making its own choices for inlining candidates, provided
it can �nd the source code for the routine under consideration.

Some compilers support a feature called interprocedural analysis. When this is done, the compiler looks
across routine boundaries for its data �ow analysis. It can perform signi�cant optimizations across routine
boundaries, including automatic inlining, constant propagation, and others.

3.3.3.1.7 No side e�ects

Without interprocedural analysis, when looking at a loop, if there is a subroutine call in the middle of the
loop, the compiler has to treat the subroutine as if it will have the worst possible side e�ects. Also, it has to
assume that there are dependencies that prevent the routine from executing simultaneously in two di�erent
threads.

Many routines (especially functions) don't have any side e�ects and can execute quite nicely in separate
threads because each thread has its own private call stack and local variables. If the routine is meaty, there
will be a great deal of bene�t in executing it in parallel.

Your computer may allow you to add a directive that tells you if successive sub-routine calls are inde-
pendent:

C$ASSERT NO_SIDE_EFFECTS

DO I=1,N

CALL BIGSTUFF (A,B,C,I,J,K)

END DO

Even if the compiler has all the source code, use of common variables or equivalences may mask call inde-
pendence.

3.3.3.2 Manual Parallelism

At some point, you get tired of giving the compiler advice and hoping that it will reach the conclusion to
parallelize your loop. At that point you move into the realm of manual parallelism. Luckily the programming
model provided in FORTRAN insulates you from much of the details of exactly how multiple threads are
managed at runtime. You generally control explicit parallelism by adding specially formatted comment lines
to your source code. There are a wide variety of formats of these directives. In this section, we use the
syntax that is part of the OpenMP (see 32) standard. You generally �nd similar capabilities in each of the
vendor compilers. The precise syntax varies slightly from vendor to vendor. (That alone is a good reason to
have a standard.)

The basic programming model is that you are executing a section of code with either a single thread or
multiple threads. The programmer adds a directive to summon additional threads at various points in the
code. The most basic construct is called the parallel region.

3.3.3.2.1 Parallel regions

In a parallel region, the threads simply appear between two statements of straight-line code. A very trivial
example might be the following using the OpenMP directive syntax:

32http://cnx.org/content/m32814/latest/www.openmp.org

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

181

PROGRAM ONE

EXTERNAL OMP_GET_THREAD_NUM, OMP_GET_MAX_THREADS

INTEGER OMP_GET_THREAD_NUM, OMP_GET_MAX_THREADS

IGLOB = OMP_GET_MAX_THREADS()

PRINT *,'Hello There'

C$OMP PARALLEL PRIVATE(IAM), SHARED(IGLOB)

IAM = OMP_GET_THREAD_NUM()

PRINT *, 'I am ', IAM, ' of ', IGLOB

C$OMP END PARALLEL

PRINT *,'All Done'

END

The C$OMP is the sentinel that indicates that this is a directive and not just another comment. The output
of the program when run looks as follows:

% setenv OMP_NUM_THREADS 4

% a.out

Hello There

I am 0 of 4

I am 3 of 4

I am 1 of 4

I am 2 of 4

All Done

%

Execution begins with a single thread. As the program encounters the PARALLEL directive, the other threads
are activated to join the computation. So in a sense, as execution passes the �rst directive, one thread
becomes four. Four threads execute the two statements between the directives. As the threads are executing
independently, the order in which the print statements are displayed is somewhat random. The threads wait
at the END PARALLEL directive until all threads have arrived. Once all threads have completed the parallel
region, a single thread continues executing the remainder of the program.

In Figure 3.22 (Data interactions during a parallel region), the PRIVATE(IAM) indicates that the IAM

variable is not shared across all the threads but instead, each thread has its own private version of the
variable. The IGLOB variable is shared across all the threads. Any modi�cation of IGLOB appears in all the
other threads instantly, within the limitations of the cache coherency.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

182 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

Data interactions during a parallel region

Figure 3.22

During the parallel region, the programmer typically divides the work among the threads. This pattern of
going from single-threaded to multithreaded execution may be repeated many times throughout the execution
of an application.

Because input and output are generally not thread-safe, to be completely correct, we should indicate that
the print statement in the parallel section is only to be executed on one processor at any one time. We use a
directive to indicate that this section of code is a critical section. A lock or other synchronization mechanism
ensures that no more than one processor is executing the statements in the critical section at any one time:

C$OMP CRITICAL

PRINT *, 'I am ', IAM, ' of ', IGLOB

C$OMP END CRITICAL

3.3.3.2.2 Parallel loops

Quite often the areas of the code that are most valuable to execute in parallel are loops. Consider the
following loop:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

183

DO I=1,1000000

TMP1 = (A(I) ** 2) + (B(I) ** 2)

TMP2 = SQRT(TMP1)

B(I) = TMP2

ENDDO

To manually parallelize this loop, we insert a directive at the beginning of the loop:

C$OMP PARALLEL DO

DO I=1,1000000

TMP1 = (A(I) ** 2) + (B(I) ** 2)

TMP2 = SQRT(TMP1)

B(I) = TMP2

ENDDO

C$OMP END PARALLEL DO

When this statement is encountered at runtime, the single thread again summons the other threads to join
the computation. However, before the threads can start working on the loop, there are a few details that
must be handled. The PARALLEL DO directive accepts the data classi�cation and scoping clauses as in the
parallel section directive earlier. We must indicate which variables are shared across all threads and which
variables have a separate copy in each thread. It would be a disaster to have TMP1 and TMP2 shared across
threads. As one thread takes the square root of TMP1, another thread would be resetting the contents of
TMP1. A(I) and B(I) come from outside the loop, so they must be shared. We need to augment the directive
as follows:

C$OMP PARALLEL DO SHARED(A,B) PRIVATE(I,TMP1,TMP2)

DO I=1,1000000

TMP1 = (A(I) ** 2) + (B(I) ** 2)

TMP2 = SQRT(TMP1)

B(I) = TMP2

ENDDO

C$OMP END PARALLEL DO

The iteration variable I also must be a thread-private variable. As the di�erent threads increment their way
through their particular subset of the arrays, they don't want to be modifying a global value for I.

There are a number of other options as to how data will be operated on across the threads. This
summarizes some of the other data semantics available:

Firstprivate: These are thread-private variables that take an initial value from the global variable of the
same name immediately before the loop begins executing.

Lastprivate: These are thread-private variables except that the thread that executes the last iteration of
the loop copies its value back into the global variable of the same name.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

184 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

Reduction: This indicates that a variable participates in a reduction operation that can be safely done in
parallel. This is done by forming a partial reduction using a local variable in each thread and then
combining the partial results at the end of the loop.

Each vendor may have di�erent terms to indicate these data semantics, but most support all of these common
semantics. Figure 3.23 (Variables during a parallel region) shows how the di�erent types of data semantics
operate.

Now that we have the data environment set up for the loop, the only remaining problem that must be
solved is which threads will perform which iterations. It turns out that this is not a trivial task, and a wrong
choice can have a signi�cant negative impact on our overall performance.

3.3.3.2.3 Iteration scheduling

There are two basic techniques (along with a few variations) for dividing the iterations in a loop between
threads. We can look at two extreme examples to get an idea of how this works:

C VECTOR ADD

DO IPROB=1,10000

A(IPROB) = B(IPROB) + C(IPROB)

ENDDO

C PARTICLE TRACKING

DO IPROB=1,10000

RANVAL = RAND(IPROB)

CALL ITERATE_ENERGY(RANVAL) ENDDO

ENDDO

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

185

Variables during a parallel region

Figure 3.23

In both loops, all the computations are independent, so if there were 10,000 processors, each processor
could execute a single iteration. In the vector-add example, each iteration would be relatively short, and the
execution time would be relatively constant from iteration to iteration. In the particle tracking example, each
iteration chooses a random number for an initial particle position and iterates to �nd the minimum energy.
Each iteration takes a relatively long time to complete, and there will be a wide variation of completion
times from iteration to iteration.

These two examples are e�ectively the ends of a continuous spectrum of the iteration scheduling challenges
facing the FORTRAN parallel runtime environment:
Static
At the beginning of a parallel loop, each thread takes a �xed continuous portion of iterations of the loop
based on the number of threads executing the loop.
Dynamic
With dynamic scheduling, each thread processes a chunk of data and when it has completed processing, a
new chunk is processed. The chunk size can be varied by the programmer, but is �xed for the duration of
the loop.

These two example loops can show how these iteration scheduling approaches might operate when ex-

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

186 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

ecuting with four threads. In the vector-add loop, static scheduling would distribute iterations 1�2500 to
Thread 0, 2501�5000 to Thread 1, 5001�7500 to Thread 2, and 7501�10000 to Thread 3. In Figure 3.24
(Iteration assignment for static scheduling), the mapping of iterations to threads is shown for the static
scheduling option.

Iteration assignment for static scheduling

Figure 3.24

Since the loop body (a single statement) is short with a consistent execution time, static scheduling
should result in roughly the same amount of overall work (and time if you assume a dedicated CPU for each
thread) assigned to each thread per loop execution.

An advantage of static scheduling may occur if the entire loop is executed repeatedly. If the same iterations
are assigned to the same threads that happen to be running on the same processors, the cache might actually
contain the values for A, B, and C from the previous loop execution.33 The runtime pseudo-code for static
scheduling in the �rst loop might look as follows:

C VECTOR ADD - Static Scheduled

ISTART = (THREAD_NUMBER * 2500) + 1

IEND = ISTART + 2499

DO ILOCAL = ISTART,IEND

A(ILOCAL) = B(ILOCAL) + C(ILOCAL)

ENDDO

It's not always a good strategy to use the static approach of giving a �xed number of iterations to each
thread. If this is used in the second loop example, long and varying iteration times would result in poor load

33The operating system and runtime library actually go to some lengths to try to make this happen. This is another reason
not to have more threads than available processors, which causes unnecessary context switching.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

187

balancing. A better approach is to have each processor simply get the next value for IPROB each time at the
top of the loop.

That approach is called dynamic scheduling, and it can adapt to widely varying iteration times. In
Figure 3.25 (Iteration assignment in dynamic scheduling), the mapping of iterations to processors using
dynamic scheduling is shown. As soon as a processor �nishes one iteration, it processes the next available
iteration in order.

Iteration assignment in dynamic scheduling

Figure 3.25

If a loop is executed repeatedly, the assignment of iterations to threads may vary due to subtle timing
issues that a�ect threads. The pseudo-code for the dynamic scheduled loop at runtime is as follows:

C PARTICLE TRACKING - Dynamic Scheduled

IPROB = 0

WHILE (IPROB <= 10000)

BEGIN_CRITICAL_SECTION

IPROB = IPROB + 1

ILOCAL = IPROB

END_CRITICAL_SECTION

RANVAL = RAND(ILOCAL)

CALL ITERATE_ENERGY(RANVAL)

ENDWHILE

ILOCAL is used so that each thread knows which iteration is currently processing. The IPROB value is altered
by the next thread executing the critical section.

While the dynamic iteration scheduling approach works well for this particular loop, there is a signi�cant
negative performance impact if the programmer were to use the wrong approach for a loop. For example, if
the dynamic approach were used for the vector-add loop, the time to process the critical section to determine
which iteration to process may be larger than the time to actually process the iteration. Furthermore, any

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

188 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

cache a�nity of the data would be e�ectively lost because of the virtually random assignment of iterations
to processors.

In between these two approaches are a wide variety of techniques that operate on a chunk of iterations.
In some techniques the chunk size is �xed, and in others it varies during the execution of the loop. In this
approach, a chunk of iterations are grabbed each time the critical section is executed. This reduces the
scheduling overhead, but can have problems in producing a balanced execution time for each processor. The
runtime is modi�ed as follows to perform the particle tracking loop example using a chunk size of 100:

IPROB = 1

CHUNKSIZE = 100

WHILE (IPROB <= 10000)

BEGIN_CRITICAL_SECTION

ISTART = IPROB

IPROB = IPROB + CHUNKSIZE

END_CRITICAL_SECTION

DO ILOCAL = ISTART,ISTART+CHUNKSIZE-1

RANVAL = RAND(ILOCAL)

CALL ITERATE_ENERGY(RANVAL)

ENDDO

ENDWHILE

The choice of chunk size is a compromise between overhead and termination imbalance. Typically the
programmer must get involved through directives in order to control chunk size.

Part of the challenge of iteration distribution is to balance the cost (or existence) of the critical section
against the amount of work done per invocation of the critical section. In the ideal world, the critical section
would be free, and all scheduling would be done dynamically. Parallel/vector supercomputers with hardware
assistance for load balancing can nearly achieve the ideal using dynamic approaches with relatively small
chunk size.

Because the choice of loop iteration approach is so important, the compiler relies on directives from the
programmer to specify which approach to use. The following example shows how we can request the proper
iteration scheduling for our loops:

C VECTOR ADD

C$OMP PARALLEL DO PRIVATE(IPROB) SHARED(A,B,C) SCHEDULE(STATIC)

DO IPROB=1,10000

A(IPROB) = B(IPROB) + C(IPROB)

ENDDO

C$OMP END PARALLEL DO

C PARTICLE TRACKING

C$OMP PARALLEL DO PRIVATE(IPROB,RANVAL) SCHEDULE(DYNAMIC)

DO IPROB=1,10000

RANVAL = RAND(IPROB)

CALL ITERATE_ENERGY(RANVAL)

ENDDO

C$OMP END PARALLEL DO

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

189

3.3.4 Closing Notes34

Using data �ow analysis and other techniques, modern compilers can peer through the clutter that we
programmers innocently put into our code and see the patterns of the actual computations. In the �eld of
high performance computing, having great parallel hardware and a lousy automatic parallelizing compiler
generally results in no sales. Too many of the benchmark rules allow only a few compiler options to be set.

Physicists and chemists are interested in physics and chemistry, not computer science. If it takes 1 hour to
execute a chemistry code without modi�cations and after six weeks of modi�cations the same code executes
in 20 minutes, which is better? Well from a chemist's point of view, one took an hour, and the other took
1008 hours and 20 minutes, so the answer is obvious.35 Although if the program were going to be executed
thousands of times, the tuning might be a win for the programmer. The answer is even more obvious if it
again takes six weeks to tune the program every time you make a modi�cation to the program.

In some ways, assertions have become less popular than directives. This is due to two factors: (1)
compilers are getting better at detecting parallelism even if they have to rewrite some code to do so, and
(2) there are two kinds of programmers: those who know exactly how to parallelize their codes and those
who turn on the �safe� auto-parallelize �ags on their codes. Assertions fall in the middle ground, somewhere
between where the programmer does not want to control all the details but kind of feels that the loop can
be parallelized.

You can get online documentation of the OpenMP syntax used in these examples at www.openmp.org36

.

3.3.5 Exercises37

Exercise 3.3.5.1
Take a static, highly parallel program with a relative large inner loop. Compile the application for
parallel execution. Execute the application increasing the threads. Examine the behavior when the
number of threads exceed the available processors. See if di�erent iteration scheduling approaches
make a di�erence.

Exercise 3.3.5.2
Take the following loop and execute with several di�erent iteration scheduling choices. For chunk-
based scheduling, use a large chunk size, perhaps 100,000. See if any approach performs better than
static scheduling:

DO I=1,4000000

A(I) = B(I) * 2.34

ENDDO

Exercise 3.3.5.3
Execute the following loop for a range of values for N from 1 to 16 million:

DO I=1,N

34This content is available online at <http://cnx.org/content/m32820/1.3/>.
35On the other hand, if the person is a computer scientist, improving the performance might result in anything from a poster

session at a conference to a journal article! This makes for lots of intra-departmental masters degree projects.
36http://cnx.org/content/m32820/latest/www.openmp.org
37This content is available online at <http://cnx.org/content/m32819/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

190 CHAPTER 3. SHARED-MEMORY PARALLEL PROCESSORS

A(I) = B(I) * 2.34

ENDDO

Run the loop in a single processor. Then force the loop to run in parallel. At what point do you
get better performance on multiple processors? Do the number of threads a�ect your observations?

Exercise 3.3.5.4
Use an explicit parallelization directive to execute the following loop in parallel with a chunk size
of 1:

J = 0

C$OMP PARALLEL DO PRIVATE(I) SHARED(J) SCHEDULE(DYNAMIC)

DO I=1,1000000

J = J + 1

ENDDO

PRINT *, J

C$OMP END PARALLEL DO

Execute the loop with a varying number of threads, including one. Also compile and execute the
code in serial. Compare the output and execution times. What do the results tell you about cache
coherency? About the cost of moving data from one cache to another, and about critical section
costs?

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

Chapter 4

Scalable Parallel Processing

4.1 Language Support for Performance

4.1.1 Introduction1

This chapter discusses the programming languages that are used on the largest parallel processing systems.
Usually when you are faced with porting and tuning your code on a new scalable architecture architecture,
you have to sit back and think about your application for a moment. Sometimes fundamental changes to
your algorithm are needed before you can begin to work on the new architecture. Don't be surprised if you
need to rewrite all or portions of the application in one of these languages. Modi�cations on one system may
not give a performance bene�t on another system. But if the application is important enough, it's worth
the e�ort to improve its performance.

In this chapter, we cover:

• FORTRAN 90
• HPF: High Performance FORTRAN

These languages are designed for use on high-end computing systems. We will follow a simple program
through each of these languages, using a simple �nite-di�erence computation that roughly models heat �ow.
It's a classic problem that contains a great deal of parallelism and is easily solved on a wide variety of parallel
architectures.

We introduce and discuss the concept of single program multiple data (SPMD) in that we treat MIMD
computers as SIMD computers. We write our applications as if a large SIMD system were going to solve the
problem. Instead of actually using a SIMD system, the resulting application is compiled for a MIMD system.
The implicit synchronization of the SIMD systems is replaced by explicit synchronization at runtime on the
MIMD systems.

4.1.2 Data-Parallel Problem: Heat Flow2

A classic problem that explores scalable parallel processing is the heat �ow problem. The physics behind
this problem lie in partial di�erential equations.

We will start with a one-dimensional metal plate (also known as a rod), and move to a two-dimensional
plate in later examples. We start with a rod that is at zero degrees celsius. Then we place one end in 100
degree steam and the other end in zero degree ice. We want to simulate how the heat �ows from one end to
another. And the resulting temperatures along points on the metal rod after the temperature has stabilized.

1This content is available online at <http://cnx.org/content/m33744/1.3/>.
2This content is available online at <http://cnx.org/content/m33751/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

191

192 CHAPTER 4. SCALABLE PARALLEL PROCESSING

To do this we break the rod into 10 segments and track the temperature over time for each segment.
Intuitively, within a time step, the next temperature of a portion of the plate is an average of the surrounding
temperatures. Given �xed temperatures at some points in the rod, the temperatures eventually converge to
a steady state after su�cient time steps. Figure 4.1 (Heat �ow in a rod) shows the setup at the beginning
of the simulation.

Heat �ow in a rod

Figure 4.1

A simplistic implementation of this is as follows:

PROGRAM HEATROD

PARAMETER(MAXTIME=200)

INTEGER TICKS,I,MAXTIME

REAL*4 ROD(10)

ROD(1) = 100.0

DO I=2,9

ROD(I) = 0.0

ENDDO

ROD(10) = 0.0

DO TICKS=1,MAXTIME

IF (MOD(TICKS,20) .EQ. 1) PRINT 100,TICKS,(ROD(I),I=1,10)

DO I=2,9

ROD(I) = (ROD(I-1) + ROD(I+1)) / 2

ENDDO

ENDDO

100 FORMAT(I4,10F7.2)

END

The output of this program is as follows:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

193

% f77 heatrod.f

heatrod.f:

MAIN heatrod:

% a.out

1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

21 100.00 87.04 74.52 62.54 51.15 40.30 29.91 19.83 9.92 0.00

41 100.00 88.74 77.51 66.32 55.19 44.10 33.05 22.02 11.01 0.00

61 100.00 88.88 77.76 66.64 55.53 44.42 33.31 22.21 11.10 0.00

81 100.00 88.89 77.78 66.66 55.55 44.44 33.33 22.22 11.11 0.00

101 100.00 88.89 77.78 66.67 55.56 44.44 33.33 22.22 11.11 0.00

121 100.00 88.89 77.78 66.67 55.56 44.44 33.33 22.22 11.11 0.00

141 100.00 88.89 77.78 66.67 55.56 44.44 33.33 22.22 11.11 0.00

161 100.00 88.89 77.78 66.67 55.56 44.44 33.33 22.22 11.11 0.00

181 100.00 88.89 77.78 66.67 55.56 44.44 33.33 22.22 11.11 0.00

%

Clearly, by Time step 101, the simulation has converged to two decimal places of accuracy as the numbers
have stopped changing. This should be the steady-state approximation of the temperature at the center of
each segment of the bar.

Now, at this point, astute readers are saying to themselves, "Um, don't look now, but that loop has a
�ow dependency." You would also claim that this won't even parallelize a little bit. It is so bad you can't
even unroll the loop for a little instruction-level parallelism!

A person familiar with the theory of heat �ow will also point out that the above loop doesn't exactly
implement the heat �ow model. The problem is that the values on the right side of the assignment in the
ROD loop are supposed to be from the previous time step, and that the value on the left side is the next
time step. Because of the way the loop is written, the ROD(I-1) value is from the next time step, as shown
in p. 193.

This can be solved using a technique called red-black, where we alternate between two arrays. Figure 4.3
(Using two arrays to eliminate a dependency) shows how the red-black version of the computation operates.
This kills two birds with one stone! Now the mathematics is precisely correct, and there is no recurrence.
Sounds like a real win-win situation.

Computing the new value for a cell

Figure 4.2

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

194 CHAPTER 4. SCALABLE PARALLEL PROCESSING

Using two arrays to eliminate a dependency

Figure 4.3

The only downside to this approach is that it takes twice the memory storage and twice the memory
bandwidth.3 The modi�ed code is as follows:

PROGRAM HEATRED

PARAMETER(MAXTIME=200)

INTEGER TICKS,I,MAXTIME

REAL*4 RED(10),BLACK(10)

RED(1) = 100.0

BLACK(1) = 100.0

DO I=2,9

RED(I) = 0.0

ENDDO

RED(10) = 0.0

BLACK(10) = 0.0

DO TICKS=1,MAXTIME,2

IF (MOD(TICKS,20) .EQ. 1) PRINT 100,TICKS,(RED(I),I=1,10)

3There is another red-black approach that computes �rst the even elements and then the odd elements of the rod in two
passes. This approach has no data dependencies within each pass. The ROD array never has all the values from the same
time step. Either the odd or even values are one time step ahead of the other. It ends up with a stride of two and doubles the
bandwidth but does not double the memory storage required to solve the problem.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

195

DO I=2,9

BLACK(I) = (RED(I-1) + RED(I+1)) / 2

ENDDO

DO I=2,9

RED(I) = (BLACK(I-1) + BLACK(I+1)) / 2

ENDDO

ENDDO

100 FORMAT(I4,10F7.2)

END

The output for the modi�ed program is:

% f77 heatred.f

heatred.f:

MAIN heatred:

% a.out

1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

21 100.00 82.38 66.34 50.30 38.18 26.06 18.20 10.35 5.18 0.00

41 100.00 87.04 74.52 61.99 50.56 39.13 28.94 18.75 9.38 0.00

61 100.00 88.36 76.84 65.32 54.12 42.91 32.07 21.22 10.61 0.00

81 100.00 88.74 77.51 66.28 55.14 44.00 32.97 21.93 10.97 0.00

101 100.00 88.84 77.70 66.55 55.44 44.32 33.23 22.14 11.07 0.00

121 100.00 88.88 77.76 66.63 55.52 44.41 33.30 22.20 11.10 0.00

141 100.00 88.89 77.77 66.66 55.55 44.43 33.32 22.22 11.11 0.00

161 100.00 88.89 77.78 66.66 55.55 44.44 33.33 22.22 11.11 0.00

181 100.00 88.89 77.78 66.67 55.55 44.44 33.33 22.22 11.11 0.00

%

Interestingly, the modi�ed program takes longer to converge than the �rst version. It converges at Time step
181 rather than 101. If you look at the �rst version, because of the recurrence, the heat ended up �owing up
faster from left to right because the left element of each average was the next-time-step value. It may seem
nifty, but it's wrong.4 Generally, in this problem, either approach converges to the same eventual values
within the limits of �oating-point representation.

This heat �ow problem is extremely simple, and in its red-black form, it's inherently very parallel with
very simple data interactions. It's a good model for a wide range of problems where we are discretizing
two-dimensional or three-dimensional space and performing some simple simulations in that space.

This problem can usually be scaled up by making a �ner grid. Often, the bene�t of scalable processors is
to allow a �ner grid rather than a faster time to solution. For example, you might be able to to a worldwide
weather simulation using a 200-mile grid in four hours on one processor. Using 100 processors, you may be
able to do the simulation using a 20-mile grid in four hours with much more accurate results. Or, using 400
processors, you can do the �ner grid simulation in one hour.

4There are other algorithmic approaches to solving partial di�erential equations, such as the "fast multipole method" that
accelerates convergence "legally." Don't assume that the brute force approach used here is the only method to solve this
particular problem. Programmers should always look for the best available algorithm (parallel or not) before trying to scale up
the "wrong" algorithm. For folks other than computer scientists, time to solution is more important than linear speed-up.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

196 CHAPTER 4. SCALABLE PARALLEL PROCESSING

4.1.3 Explicity Parallel Languages5

As we've seen throughout this book, one of biggest tuning challenges is getting the compiler to recognize
that a particular code segment can be parallelized. This is particularly true for numerical codes, where the
potential payback is greatest. Think about this: if you know that something is parallel, why should there be
any di�culty getting the compiler to recognize it? Why can't you just write it down, and have the compiler
say "Yes, this is to be done in parallel."

The problem is that the most commonly used languages don't o�er any constructs for expressing parallel
computations. You are forced to express yourself in primitive terms, as if you were a caveman with a grand
thought but no vocabulary to voice it. This is particularly true of FORTRAN and C. They do not support
a notion of parallel computations, which means that programmers must reduce calculations to sequential
steps. That sounds cumbersome, but most programmers do it so naturally that they don't even realize how
good they are at it.

For example, let's say we want to add two vectors, A and B. How would we do it? We would probably
write a little loop without a moment's thought:

DO I=1,N

C(I) = A(I) + B(I)

END DO

This seems reasonable, but look what happened. We imposed an order on the calculations! Wouldn't it be
enough to say "C gets A plus B"? That would free the compiler to add the vectors using any hardware
at its disposal, using any method it likes. This is what parallel languages are about. They seek to supply
primitives suitable for expressing parallel computations.

New parallel languages aren't being proposed as rapidly as they were in the mid-1980s. Developers have
realized that you can come up with a wonderful scheme, but if it isn't compatible with FORTRAN or C, few
people will care about it. The reason is simple: there are billions of lines of C and FORTRAN code, but only
a few lines of Fizgibbet, or whatever it is you call your new parallel language. Because of the predominance
of C and FORTRAN, the most signi�cant parallel language activities today seek to extend those languages,
thus protecting the 20 or 30 years of investment in programs already written.6 It is too tempting for the
developers of a new language to test their language on the eight-queens problem and the game of life, get
good results, then declare it ready for prime time and begin waiting for the hordes of programmers converting
to their particular language.

4.1.4 FORTRAN 907

The previous American National Standards Institute (ANSI) FORTRAN standard release, FORTRAN 77
(X3.9-1978), was written to promote portability of FORTRAN programs between di�erent platforms. It
didn't invent new language components, but instead incorporated good features that were already available
in production compilers. Unlike FORTRAN 77, FORTRAN 90 (ANSI X3.198-1992) brings new extensions
and features to the language. Some of these just bring FORTRAN up to date with newer languages like C
(dynamic memory allocation, scoping rules) and C++ (generic function interfaces). But some of the new
features are unique to FORTRAN (array operations). Interestingly, while the FORTRAN 90 speci�cation

5This content is available online at <http://cnx.org/content/m33754/1.3/>.
6One of the more signi�cant e�orts in the area of completely new languages is Streams and Iteration in a Single Assignment

Language (SISAL). It's a data �ow language that can easily integrate FORTRAN and C modules. The most interesting aspects
of SISAL are the number of large computational codes that were ported to SISAL and the fact that the SISAL proponents
generally compared their performance to the FORTRAN and C performance of the same applications.

7This content is available online at <http://cnx.org/content/m33757/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

197

was being developed, the dominant high performance computer architectures were scalable SIMD systems
such as the Connection Machine and shared-memory vector-parallel processor systems from companies like
Cray Research.

FORTRAN 90 does a surprisingly good job of meeting the needs of these very di�erent architectures.
Its features also map reasonably well onto the new shared uniform memory multiprocessors. However, as
we will see later, FORTRAN 90 alone is not yet su�cient to meet the needs of the scalable distributed and
nonuniform access memory systems that are becoming dominant at the high end of computing.

The FORTRAN 90 extensions to FORTRAN 77 include:

• Array constructs
• Dynamic memory allocation and automatic variables
• Pointers
• New data types, structures
• New intrinsic functions, including many that operate on vectors or matrices
• New control structures, such as a WHERE statement
• Enhanced procedure interfaces

4.1.4.1 FORTRAN 90 Array Constructs

With FORTRAN 90 array constructs, you can specify whole arrays or array sections as the participants in
unary and binary operations. These constructs are a key feature for "unserializing" applications so that they
are better suited to vector computers and parallel processors. For example, say you wish to add two vectors,
A and B. In FORTRAN 90, you can express this as a simple addition operation, rather than a traditional
loop. That is, you can write:

A = A + B

instead of the traditional FORTRAN 77 loop:

DO I=1,N

A(I) = A(I) + B(I)

ENDDO

The code generated by the compiler on your workstation may not look any di�erent, but for some of the
parallel machines available now and workstations just around the corner, the di�erence are signi�cant. The
FORTRAN 90 version states explicitly that the computations can be performed in any order, including all
in parallel at the same time.

One important e�ect of this is that if the FORTRAN 90 version experienced a �oating-point fault adding
element 17, and you were to look at the memory in a debugger, it would be perfectly legal for element 27 to
be already computed.

You are not limited to one-dimensional arrays. For instance, the element-wise addition of two two-
dimensional arrays could be stated like this:8

8Just in case you are wondering, A*B gives you an element-wise multiplication of array members� not matrix multiplication.
That is covered by a FORTRAN 90 intrinsic function.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

198 CHAPTER 4. SCALABLE PARALLEL PROCESSING

A = A + B

in lieu of:

DO J=1,M

DO I=1,N

A(I,J) = A(I,J) + B(I,J)

END DO

END DO

Naturally, when you want to combine two arrays in an operation, their shapes have to be compatible. Adding
a seven-element vector to an eight-element vector doesn't make sense. Neither would multiplying a 2×4 array
by a 3×4 array. When the two arrays have compatible shapes, relative to the operation being performed
upon them, we say they are in shape conformance, as in the following code:

DOUBLE PRECISION A(8), B(8)

...

A = A + B

Scalars are always considered to be in shape conformance with arrays (and other scalars). In a binary
operation with an array, a scalar is treated as an array of the same size with a single element duplicated
throughout.

Still, we are limited. When you reference a particular array, A, for example, you reference the whole
thing, from the �rst element to the last. You can imagine cases where you might be interested in specifying
a subset of an array. This could be either a group of consecutive elements or something like "every eighth
element" (i.e., a non-unit stride through the array). Parts of arrays, possibly noncontiguous, are called array
sections.

FORTRAN 90 array sections can be speci�ed by replacing traditional subscripts with triplets of the form
a:b:c, meaning "elements a through b, taken with an increment of c." You can omit parts of the triplet,
provided the meaning remains clear. For example, a:b means "elements a through b;" a: means "elements
from a to the upper bound with an increment of 1." Remember that a triplet replaces a single subscript, so
an n-dimension array can have n triplets.

You can use triplets in expressions, again making sure that the parts of the expression are in conformance.
Consider these statements:

REAL X(10,10), Y(100)

...

X(10,1:10) = Y(91:100)

X(10,:) = Y(91:100)

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

199

The �rst statement above assigns the last 10 elements of Y to the 10th row of X. The second statement
expresses the same thing slightly di�erently. The lone " : " tells the compiler that the whole range (1
through 10) is implied.

4.1.4.2 FORTRAN 90 Intrinsics

FORTRAN 90 extends the functionality of FORTRAN 77 intrinsics, and adds many new ones as well,
including some intrinsic subroutines. Most can be array-valued: they can return arrays sections or scalars,
depending on how they are invoked. For example, here's a new, array-valued use of the SIN intrinsic:

REAL A(100,10,2)

...

A = SIN(A)

Each element of array A is replaced with its sine. FORTRAN 90 intrinsics work with array sections too, as
long as the variable receiving the result is in shape conformance with the one passed:

REAL A(100,10,2)

REAL B(10,10,100)

...

B(:,:,1) = COS(A(1:100:10,:,1))

Other intrinsics, such as SQRT, LOG, etc., have been extended as well. Among the new intrinsics are:

Reductions: FORTRAN 90 has vector reductions such as MAXVAL, MINVAL, and SUM. For higher-order arrays
(anything more than a vector) these functions can perform a reduction along a particular dimension.
Additionally, there is a DOT_PRODUCT function for the vectors.

Matrix manipulation: Intrinsics MATMUL and TRANSPOSE can manipulate whole matrices.
Constructing or reshaping arrays: RESHAPE allows you to create a new array from elements of an old

one with a di�erent shape. SPREAD replicates an array along a new dimension. MERGE copies portions
of one array into another under control of a mask. CSHIFT allows an array to be shifted in one or more
dimensions.

Inquiry functions: SHAPE, SIZE, LBOUND, and UBOUND let you ask questions about how an array is con-
structed.

Parallel tests: Two other new reduction intrinsics, ANY and ALL, are for testing many array elements in
parallel.

4.1.4.3 New Control Features

FORTRAN 90 includes some new control features, including a conditional assignment primitive called WHERE,
that puts shape-conforming array assignments under control of a mask as in the following example. Here's
an example of the WHERE primitive:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

200 CHAPTER 4. SCALABLE PARALLEL PROCESSING

REAL A(2,2), B(2,2), C(2,2)

DATA B/1,2,3,4/, C/1,1,5,5/

...

WHERE (B .EQ. C)

A = 1.0

C = B + 1.0

ELSEWHERE

A = -1.0

ENDWHERE

In places where the logical expression is TRUE, A gets 1.0 and C gets B+1.0. In the ELSEWHERE clause, A gets
-1.0. The result of the operation above would be arrays A and C with the elements:

A = 1.0 -1.0 C = 2.0 5.0

-1.0 -1.0 1.0 5.0

Again, no order is implied in these conditional assignments, meaning they can be done in parallel. This lack
of implied order is critical to allowing SIMD computer systems and SPMD environments to have �exibility
in performing these computations.

4.1.4.4 Automatic and Allocatable Arrays

Every program needs temporary variables or work space. In the past, FORTRAN programmers have often
managed their own scratch space by declaring an array large enough to handle any temporary requirements.
This practice gobbles up memory (albeit virtual memory, usually), and can even have an e�ect on perfor-
mance. With the ability to allocate memory dynamically, programmers can wait until later to decide how
much scratch space to set aside. FORTRAN 90 supports dynamic memory allocation with two new language
features: automatic arrays and allocatable arrays.

Like the local variables of a C program, FORTRAN 90's automatic arrays are assigned storage only for
the life of the subroutine or function that contains them. This is di�erent from traditional local storage for
FORTRAN arrays, where some space was set aside at compile or link time. The size and shape of automatic
arrays can be sculpted from a combination of constants and arguments. For instance, here's a declaration
of an automatic array, B, using FORTRAN 90's new speci�cation syntax:

SUBROUTINE RELAX(N,A)

INTEGER N

REAL, DIMENSION (N) :: A, B

Two arrays are declared: A, the dummy argument, and B, an automatic, explicit shape array. When the
subroutine returns, B ceases to exist. Notice that the size of B is taken from one of the arguments, N.

Allocatable arrays give you the ability to choose the size of an array after examining other variables in
the program. For example, you might want to determine the amount of input data before allocating the
arrays. This little program asks the user for the matrix's size before allocating storage:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

201

INTEGER M,N

REAL, ALLOCATABLE, DIMENSION (:,:) :: X

...

WRITE (*,*) 'ENTER THE DIMENSIONS OF X'

READ (*,*) M,N

ALLOCATE (X(M,N))

...

do something with X

...

DEALLOCATE (X)

...

The ALLOCATE statement creates an M × N array that is later freed by the DEALLOCATE statement. As with C

programs, it's important to give back allocated memory when you are done with it; otherwise, your program
might consume all the virtual storage available.

4.1.4.5 Heat Flow in FORTRAN 90

The heat �ow problem is an ideal program to use to demonstrate how nicely FORTRAN 90 can express
regular array programs:

PROGRAM HEATROD

PARAMETER(MAXTIME=200)

INTEGER TICKS,I,MAXTIME

REAL*4 ROD(10)

ROD(1) = 100.0

DO I=2,9

ROD(I) = 0.0

ENDDO

ROD(10) = 0.0

DO TICKS=1,MAXTIME

IF (MOD(TICKS,20) .EQ. 1) PRINT 100,TICKS,(ROD(I),I=1,10)

ROD(2:9) = (ROD(1:8) + ROD(3:10)) / 2

ENDDO

100 FORMAT(I4,10F7.2)

END

The program is identical, except the inner loop is now replaced by a single statement that computes the
"new" section by averaging a strip of the "left" elements and a strip of the "right" elements.

The output of this program is as follows:

E6000: f90 heat90.f

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

202 CHAPTER 4. SCALABLE PARALLEL PROCESSING

E6000:a.out

1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

21 100.00 82.38 66.34 50.30 38.18 26.06 18.20 10.35 5.18 0.00

41 100.00 87.04 74.52 61.99 50.56 39.13 28.94 18.75 9.38 0.00

61 100.00 88.36 76.84 65.32 54.12 42.91 32.07 21.22 10.61 0.00

81 100.00 88.74 77.51 66.28 55.14 44.00 32.97 21.93 10.97 0.00

101 100.00 88.84 77.70 66.55 55.44 44.32 33.23 22.14 11.07 0.00

121 100.00 88.88 77.76 66.63 55.52 44.41 33.30 22.20 11.10 0.00

141 100.00 88.89 77.77 66.66 55.55 44.43 33.32 22.22 11.11 0.00

161 100.00 88.89 77.78 66.66 55.55 44.44 33.33 22.22 11.11 0.00

181 100.00 88.89 77.78 66.67 55.55 44.44 33.33 22.22 11.11 0.00

E6000:

If you look closely, this output is the same as the red-black implementation. That is because in FORTRAN
90:

ROD(2:9) = (ROD(1:8) + ROD(3:10)) / 2

is a single assignment statement. As shown in Figure 4.4 (Data alignment and computations), the right side
is completely evaluated before the resulting array section is assigned into ROD(2:9). For a moment, that
might seem unnatural, but consider the following statement:

I = I + 1

We know that if I starts with 5, it's incremented up to six by this statement. That happens because the
right side (5+1) is evaluated before the assignment of 6 into I is performed. In FORTRAN 90, a variable
can be an entire array. So, this is a red-black operation. There is an "old" ROD on the right side and a "new"
ROD on the left side!

To really "think" FORTRAN 90, it's good to pretend you are on an SIMD system with millions of little
CPUs. First we carefully align the data, sliding it around, and then� wham� in a single instruction, we
add all the aligned values in an instant. Figure 4.4 (Data alignment and computations) shows graphically
this act of "aligning" the values and then adding them. The data �ow graph is extremely simple. The top
two rows are read-only, and the data �ows from top to bottom. Using the temporary space eliminates the
seeming dependency. This approach of "thinking SIMD" is one of the ways to force ourselves to focus our
thoughts on the data rather than the control. SIMD may not be a good architecture for your problem but
if you can express it so that SIMD could work, a good SPMD environment can take advantage of the data
parallelism that you have identi�ed.

The above example actually highlights one of the challenges in producing an e�cient implementation of
FORTRAN 90. If these arrays contained 10 million elements, and the compiler used a simple approach, it
would need 30 million elements for the old "left" values, the old "right" values, and for the new values. Data
�ow optimization is needed to determine just how much extra data must be maintained to give the proper
results. If the compiler is clever, the extra memory can be quite small:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

203

Data alignment and computations

Figure 4.4

SAVE1 = ROD(1)

DO I=2,9

SAVE2 = ROD(I)

ROD(I) = (SAVE1 + ROD(I+1)) / 2

SAVE1 = SAVE2

ENDDO

This does not have the parallelism that the full red-black implementation has, but it does produce the correct
results with only two extra data elements. The trick is to save the old "left" value just before you wipe it
out. A good FORTRAN 90 compiler uses data �ow analysis, looking at a template of how the computation
moves across the data to see if it can save a few elements for a short period of time to alleviate the need for
a complete extra copy of the data.

The advantage of the FORTRAN 90 language is that it's up to the compiler whether it uses a complete
copy of the array or a few data elements to insure that the program executes properly. Most importantly, it
can change its approach as you move from one architecture to another.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

204 CHAPTER 4. SCALABLE PARALLEL PROCESSING

4.1.4.6 FORTRAN 90 Versus FORTRAN 77

Interestingly, FORTRAN 90 has never been fully embraced by the high performance community. There are
a few reasons why:

• There is a concern that the use of pointers and dynamic data structures would ruin performance and
lose the optimization advantages of FORTRAN over C. Some people would say that FORTRAN 90
is trying to be a better C than C. Others would say, "who wants to become more like the slower
language!" Whatever the reason, there was some controversy when FORTRAN 90 was implemented,
leading to some reluctance in adoption by programmers. Some vendors said, "You can use FORTRAN
90, but FORTRAN 77 will always be faster."

• Because vendors often implemented di�erent subsets of FORTRAN 90, it was not as portable as
FORTRAN 77. Because of this, users who needed maximum portability stuck with FORTRAN 77.

• Sometimes vendors purchased their fully compliant FORTRAN 90 compilers from a third party who
demanded high license fees. So, you could get the free (and faster according to the vendor) FORTRAN
77 or pay for the slower (wink wink) FORTRAN 90 compiler.

• Because of these factors, the number of serious applications developed in FORTRAN 90 was small.
So the benchmarks used to purchase new systems were almost exclusively FORTRAN 77. This fur-
ther motivated the vendors to improve their FORTRAN 77 compilers instead of their FORTRAN 90
compilers.

• As the FORTRAN 77 compilers became more sophisticated using data �ow analysis, it became rela-
tively easy to write portable "parallel" code in FORTRAN 77, using the techniques we have discussed
in this book.

• One of the greatest potential bene�ts to FORTRAN 90 was portability between SIMD and the par-
allel/vector supercomputers. As both of these architectures were replaced with the shared uniform
memory multiprocessors, FORTRAN 77 became the language that a�orded the maximum portability
across the computers typically used by high performance computing programmers.

• The FORTRAN 77 compilers supported directives that allowed programmers to �ne-tune the perfor-
mance of their applications by taking full control of the parallelism. Certain dialects of FORTRAN
77 essentially became parallel programming "assembly language." Even highly tuned versions of these
codes were relatively portable across the di�erent vendor shared uniform memory multiprocessors.

So, events conspired against FORTRAN 90 in the short run. However, FORTRAN 77 is not well suited for
the distributed memory systems because it does not lend itself well to data layout directives. As we need to
partition and distribute the data carefully on these new systems, we must give the compiler lots of �exibility.
FORTRAN 90 is the language best suited to this purpose.

4.1.4.7 FORTRAN 90 Summary

Well, that's the whirlwind tour of FORTRAN 90. We have probably done the language a disservice by
covering it so brie�y, but we wanted to give you a feel for it. There are many features that were not
discussed. If you would like to learn more, we recommend FORTRAN 90 Explained, by Michael Metcalf and
John Reid (Oxford University Press).

FORTRAN 90 by itself is not su�cient to give us scalable performance on distributed memory systems.
So far, compilers are not yet capable of performing enough data �ow analysis to decide where to store the
data and when to retrieve the memory. So, for now, we programmers must get involved with the data layout.
We must decompose the problem into parallel chunks that can be individually processed. We have several
options. We can use High Performance FORTRAN and leave some of the details to the compiler, or we can
use explicit message-passing and take care of all of the details ourselves.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

205

4.1.5 Problem Decomposition9

There are three main approaches to dividing or decomposing work for distribution among multiple CPUs:

Decomposing computations: We have already discussed this technique. When the decomposition is done
based on computations, we come up with some mechanism to divide the computations (such as the
iterations of a loop) evenly among our processors. The location of the data is generally ignored, and
the primary issues are iteration duration and uniformity. This is the preferred technique for the shared
uniform memory systems because the data can be equally accessed by any processor.

Decomposing data: When memory access is nonuniform, the tendency is to focus on the distribution of
the data rather than computations. The assumption is that retrieving "remote" data is costly and
should be minimized. The data is distributed among the memories. The processor that contains the
data performs the computations on that data after retrieving any other data necessary to perform the
computation.

Decomposing tasks: - When the operations that must be performed are very independent, and take some
time, a task decomposition can be performed. In this approach a master process/thread maintains a
queue of work units. When a processor has available resources, it retrieves the next "task" from the
queue and begins processing. This is a very attractive approach for embarrassingly parallel computa-
tions.10

In some sense, the rest of this chapter is primarily about data decomposition. In a distributed memory system,
the communication costs usually are the dominant performance factor. If your problem is so embarrassingly
parallel that it can be distributed as tasks, then nearly any technique will work. Data-parallel problems
occur in many disciplines. They vary from those that are extremely parallel to those that are just sort of
parallel. For example, fractal calculations are extremely parallel; each point is derived independently of the
rest. It's simple to divide fractal calculations among processors. Because the calculations are independent,
the processors don't have to coordinate or share data.

Our heat �ow problem when expressed in its red-black (or FORTRAN 90) form is extremely parallel but
requires some sharing of data. A gravitational model of a galaxy is another kind of parallel program. Each
point exerts an in�uence on every other. Therefore, unlike the fractal calculations, the processors do have
to share data.

In either case, you want to arrange calculations so that processors can say to one another, "you go over
there and work on that, and I'll work on this, and we'll get together when we are �nished."

Problems that o�er less independence between regions are still very good candidates for domain decompo-
sition. Finite di�erence problems, short-range particle interaction simulations, and columns of matrices can
be treated similarly. If you can divide the domain evenly between the processors, they each do approximately
the same amount of work on their way to a solution.

Other physical systems are not so regular or involve long-range interactions. The nodes of an unstructured
grid may not be allocated in direct correspondence to their physical locations, for instance. Or perhaps the
model involves long-range forces, such as particle attractions. These problems, though more di�cult, can
be structured for parallel machines as well. Sometimes various simpli�cations, or "lumping" of intermediate
e�ects, are needed. For instance, the in�uence of a group of distant particles upon another may be treated
as if there were one composite particle acting at a distance. This is done to spare the communications that
would be required if every processor had to talk to every other regarding each detail. In other cases, the
parallel architecture o�ers opportunities to express a physical system in di�erent and clever ways that make
sense in the context of the machine. For instance, each particle could be assigned to its own processor, and
these could slide past one another, summing interactions and updating a time step.

Depending on the architecture of the parallel computer and problem, a choice for either dividing or
replicating (portions of) the domain may add unacceptable overhead or cost to the whole project.

9This content is available online at <http://cnx.org/content/m33762/1.3/>.
10The distributed RC5 key-cracking e�ort was coordinated in this fashion. Each processor would check out a block of keys

and begin testing those keys. At some point, if the processor was not fast enough or had crashed, the central system would
reissue the block to another processor. This allowed the system to recover from problems on individual computers.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

206 CHAPTER 4. SCALABLE PARALLEL PROCESSING

For a large problem, the dollar value of main memory may make keeping separate local copies of the same
data out of the question. In fact, a need for more memory is often what drives people to parallel machines;
the problem they need to solve can't �t in the memory of a conventional computer.

By investing some e�ort, you could allow the domain partitioning to evolve as the program runs, in
response to an uneven load distribution. That way, if there were a lot of requests for As, then several
processors could dynamically get a copy of the A piece of the domain. Or the A piece could be spread out
across several processors, each handling a di�erent subset of the A de�nitions. You could also migrate unique
copies of data from place to place, changing their home as needed.

When the data domain is irregular, or changes over time, the parallel program encounters a load-balancing
problem. Such a problem becomes especially apparent when one portion of the parallel computations takes
much longer to complete than the others. A real-world example might be an engineering analysis on an
adaptive grid. As the program runs, the grid becomes more re�ned in those areas showing the most activity.
If the work isn't reapportioned from time to time, the section of the computer with responsibility for the
most highly re�ned portion of the grid falls farther and farther behind the performance of the rest of the
machine.

4.1.6 High Performance FORTRAN (HPF)11

In March 1992, the High Performance Fortran Forum (HPFF) began meeting to discuss and de�ne a set of
additions to FORTRAN 90 to make it more practical for use in a scalable computing environment. The plan
was to develop a speci�cation within the calendar year so that vendors could quickly begin to implement the
standard. The scope of the e�ort included the following:

• Identify scalars and arrays that will be distributed across a parallel machine.
• Say how they will be distributed. Will they be strips, blocks, or something else?
• Specify how these variables will be aligned with respect to one another.
• Redistribute and realign data structures at runtime.
• Add a FORALL control construct for parallel assignments that are di�cult or impossible to construct

using FORTRAN 90's array syntax.
• Make improvements to the FORTRAN 90 WHERE control construct.
• Add intrinsic functions for common parallel operations.

There were several sources of inspiration for the HPF e�ort. Layout directives were already part of the
FORTRAN 90 programming environment for some SIMD computers (i.e., the CM-2). Also, PVM, the �rst
portable message-passing environment, had been released a year earlier, and users had a year of experi-
ence trying to decompose by hand programs. They had developed some basic usable techniques for data
decomposition that worked very well but required far too much bookkeeping.12

The HPF e�ort brought together a diverse set of interests from all the major high performance computing
vendors. Vendors representing all the major architectures were represented. As a result HPF was designed
to be implemented on nearly all types of architectures.

There is an e�ort underway to produce the next FORTRAN standard: FORTRAN 95. FORTRAN 95 is
expected to adopt some but not all of the HPF modi�cations.

4.1.6.1 Programming in HPF

At its core, HPF includes FORTRAN 90. If a FORTRAN 90 program were run through an HPF compiler,
it must produce the same results as if it were run through a FORTRAN 90 compiler. Assuming an HPF
program only uses FORTRAN 90 constructs and HPF directives, a FORTRAN 90 compiler could ignore the
directives, and it should produce the same results as an HPF compiler.

11This content is available online at <http://cnx.org/content/m33765/1.3/>.
12As we shall soon see.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

207

As the user adds directives to the program, the semantics of the program are not changed. If the
user completely misunderstands the application and inserts extremely ill-conceived directives, the program
produces correct results very slowly. An HPF compiler doesn't try to "improve on" the user's directives. It
assumes the programmer is omniscient.13

Once the user has determined how the data will be distributed across the processors, the HPF compiler
attempts to use the minimum communication necessary and overlaps communication with computation
whenever possible. HPF generally uses an "owner computes" rule for the placement of the computations. A
particular element in an array is computed on the processor that stores that array element.

All the necessary data to perform the computation is gathered from remote processors, if necessary, to
perform the computation. If the programmer is clever in decomposition and alignment, much of the data
needed will be from the local memory rather then a remote memory. The HPF compiler is also responsible
for allocating any temporary data structures needed to support communications at runtime.

In general, the HPF compiler is not magic - it simply does a very good job with the communication
details when the programmer can design a good data decomposition. At the same time, it retains portability
with the single CPU and shared uniform memory systems using FORTRAN 90.

4.1.6.2 HPF data layout directives

Perhaps the most important contributions of HPF are its data layout directives. Using these directives, the
programmer can control how data is laid out based on the programmer's knowledge of the data interactions.
An example directive is as follows:

REAL*4 ROD(10)

!HPF$ DISTRIBUTE ROD(BLOCK)

The !HPF$ pre�x would be a comment to a non-HPF compiler and can safely be ignored by a straight
FORTRAN 90 compiler. The DISTRIBUTE directive indicates that the ROD array is to be distributed across
multiple processors. If this directive is not used, the ROD array is allocated on one processor and com-
municated to the other processors as necessary. There are several distributions that can be done in each
dimension:

REAL*4 BOB(100,100,100),RICH(100,100,100)

!HPF$ DISTRIBUTE BOB(BLOCK,CYCLIC,*)

!HPF$ DISTRIBUTE RICH(CYCLIC(10))

These distributions operate as follows:

BLOCK The array is distributed across the processors using contiguous blocks of the index value. The blocks
are made as large as possible.

CYCLIC The array is distributed across the processors, mapping each successive element to the "next"
processor, and when the last processor is reached, allocation starts again on the �rst processor.

CYCLIC(n) The array is distributed the same as CYCLIC except that n successive elements are placed on
each processor before moving on to the next processor.

13Always a safe assumption.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

208 CHAPTER 4. SCALABLE PARALLEL PROCESSING

note: All the elements in that dimension are placed on the same processor. This is most useful
for multidimensional arrays.

Distributing array elements to processors

Figure 4.5

Figure 4.5 (Distributing array elements to processors) shows how the elements of a simple array would
be mapped onto three processors with di�erent directives.

It must allocate four elements to Processors 1 and 2 because there is no Processor 4 available for the
leftover element if it allocated three elements to Processors 1 and 2. In Figure 4.5 (Distributing array
elements to processors), the elements are allocated on successive processors, wrapping around to Processor
1 after the last processor. In Figure 4.5 (Distributing array elements to processors), using a chunk size with
CYCLIC is a compromise between pure BLOCK and pure CYCLIC.

To explore the use of the *, we can look at a simple two-dimensional array mapped onto four processors. In
Figure 4.6 (Two-dimensional distributions), we show the array layout and each cell indicates which processor
will hold the data for that cell in the two-dimensional array. In Figure 4.6 (Two-dimensional distributions),
the directive decomposes in both dimensions simultaneously. This approach results in roughly square patches
in the array. However, this may not be the best approach. In the following example, we use the * to indicate
that we want all the elements of a particular column to be allocated on the same processor. So, the column
values equally distribute the columns across the processors. Then, all the rows in each column follow where
the column has been placed. This allows unit stride for the on-processor portions of the computation and is
bene�cial in some applications. The * syntax is also called on-processor distribution.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

209

Two-dimensional distributions

Figure 4.6

When dealing with more than one data structure to perform a computation, you can either separately
distribute them or use the ALIGN directive to ensure that corresponding elements of the two data structures
are to be allocated together. In the following example, we have a plate array and a scaling factor that must
be applied to each column of the plate during the computation:

DIMENSION PLATE(200,200),SCALE(200)

!HPF$ DISTRIBUTE PLATE(*,BLOCK)

!HPF$ ALIGN SCALE(I) WITH PLATE(J,I)

Or:

DIMENSION PLATE(200,200),SCALE(200)

!HPF$ DISTRIBUTE PLATE(*,BLOCK)

!HPF$ ALIGN SCALE(:) WITH PLATE(*,:)

In both examples, the PLATE and the SCALE variables are allocated to the same processors as the corresponding
columns of PLATE. The * and : syntax communicate the same information. When * is used, that dimension
is collapsed, and it doesn't participate in the distribution. When the : is used, it means that dimension
follows the corresponding dimension in the variable that has already been distributed.

You could also specify the layout of the SCALE variable and have the PLATE variable "follow" the layout
of the SCALE variable:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

210 CHAPTER 4. SCALABLE PARALLEL PROCESSING

DIMENSION PLATE(200,200),SCALE(200)

!HPF$ DISTRIBUTE SCALE(BLOCK)

!HPF$ ALIGN PLATE(J,I) WITH SCALE(I)

You can put simple arithmetic expressions into the ALIGN directive subject to some limitations. Other
directives include:

PROCESSORS Allows you to create a shape of the processor con�guration that can be used to align other
data structures.

REDISTRIBUTE and REALIGN Allow you to dynamically reshape data structures at runtime as the commu-
nication patterns change during the course of the run.

TEMPLATE Allows you to create an array that uses no space. Instead of distributing one data structure and
aligning all the other data structures, some users will create and distribute a template and then align
all of the real data structures to that template.

The use of directives can range from very simple to very complex. In some situations, you distribute the one
large shared structure, align a few related structures and you are done. In other situations, programmers
attempt to optimize communications based on the topology of the interconnection network (hypercube, multi-
stage interconnection network, mesh, or toroid) using very detailed directives. They also might carefully
redistribute the data at the various phases of the computation.

Hopefully your application will yield good performance without too much e�ort.

4.1.6.3 HPF control structures

While the HPF designers were in the midst of de�ning a new language, they set about improving on what
they saw as limitations in FORTRAN 90. Interestingly, these modi�cations are what is being considered as
part of the new FORTRAN 95 standard.

The FORALL statement allows the user to express simple iterative operations that apply to the entire
array without resorting to a do-loop (remember, do-loops force order). For example:

FORALL (I=1:100, J=1:100) A(I,J) = I + J

This can be expressed in native FORTRAN 90 but it is rather ugly, counterintuitive, and prone to error.
Another control structure is the ability to declare a function as "PURE." A PURE function has no

side e�ects other than through its parameters. The programmer is guaranteeing that a PURE function
can execute simultaneously on many processors with no ill e�ects. This allows HPF to assume that it will
only operate on local data and does not need any data communication during the duration of the function
execution. The programmer can also declare which parameters of the function are input parameters, output
parameters, and input-output parameters.

4.1.6.4 HPF intrinsics

The companies who marketed SIMD computers needed to come up with signi�cant tools to allow e�cient
collective operations across all the processors. A perfect example of this is the SUM operation. To SUM the
value of an array spread across N processors, the simplistic approach takes N steps. However, it is possible
to accomplish it in log(N) steps using a technique called parallel-pre�x-sum. By the time HPF was in

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

211

development, a number of these operations had been identi�ed and implemented. HPF took the opportunity
to de�ne standardized syntax for these operations.

A sample of these operations includes:

SUM_PREFIX Performs various types of parallel-pre�x summations.
ALL_SCATTER Distributes a single value to a set of processors.
GRADE_DOWN Sorts into decreasing order.
IANY Computes the logical OR of a set of values.

While there are a large number of these intrinsic functions, most applications use only a few of the operations.

4.1.6.5 HPF extrinsics

In order to allow the vendors with diverse architectures to provide their particular advantage, HPF included
the capability to link "extrinsic" functions. These functions didn't need to be written in FORTRAN 90/HPF
and performed a number of vendor-supported capabilities. This capability allowed users to perform such
tasks as the creation of hybrid applications with some HPF and some message passing.

High performance computing programmers always like the ability to do things their own way in order to
eke out that last drop of performance.

4.1.6.6 Heat Flow in HPF

To port our heat �ow application to HPF, there is really only a single line of code that needs to be added.
In the example below, we've changed to a larger two-dimensional array:

INTEGER PLATESIZ,MAXTIME

PARAMETER(PLATESIZ=2000,MAXTIME=200)

!HPF$ DISTRIBUTE PLATE(*,BLOCK)

REAL*4 PLATE(PLATESIZ,PLATESIZ)

INTEGER TICK

PLATE = 0.0

* Add Boundaries

PLATE(1,:) = 100.0

PLATE(PLATESIZ,:) = -40.0

PLATE(:,PLATESIZ) = 35.23

PLATE(:,1) = 4.5

DO TICK = 1,MAXTIME

PLATE(2:PLATESIZ-1,2:PLATESIZ-1) = (

+ PLATE(1:PLATESIZ-2,2:PLATESIZ-1) +

+ PLATE(3:PLATESIZ-0,2:PLATESIZ-1) +

+ PLATE(2:PLATESIZ-1,1:PLATESIZ-2) +

+ PLATE(2:PLATESIZ-1,3:PLATESIZ-0)) / 4.0

PRINT 1000,TICK, PLATE(2,2)

1000 FORMAT('TICK = ',I5, F13.8)

ENDDO

*

END

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

212 CHAPTER 4. SCALABLE PARALLEL PROCESSING

You will notice that the HPF directive distributes the array columns using the BLOCK approach, keeping all
the elements within a column on a single processor. At �rst glance, it might appear that (BLOCK,BLOCK) is the
better distribution. However, there are two advantages to a (*,BLOCK) distribution. First, striding down a
column is a unit-stride operation and so you might just as well process an entire column. The more signi�cant
aspect of the distribution is that a (BLOCK,BLOCK) distribution forces each processor to communicate with
up to eight other processors to get its neighboring values. Using the (*,BLOCK) distribution, each processor
will have to exchange data with at most two processors each time step.

When we look at PVM, we will look at this same program implemented in a SPMD-style message-passing
fashion. In that example, you will see some of the details that HPF must handle to properly execute this code.
After reviewing that code, you will probably choose to implement all of your future heat �ow applications
in HPF!

4.1.6.7 HPF Summary

In some ways, HPF has been good for FORTRAN 90. Companies such as IBM with its SP-1 needed to
provide some high-level language for those users who didn't want to write message-passing codes. Because
of this, IBM has invested a great deal of e�ort in implementing and optimizing HPF. Interestingly, much
of this e�ort will directly bene�t the ability to develop more sophisticated FORTRAN 90 compilers. The
extensive data �ow analysis required to minimize communications and manage the dynamic data structures
will carry over into FORTRAN 90 compilers even without using the HPF directives.

Time will tell if the HPF data distribution directives will no longer be needed and compilers will be
capable of performing su�cient analysis of straight FORTRAN 90 code to optimize data placement and
movement.

In its current form, HPF is an excellent vehicle for expressing the highly data-parallel, grid-based appli-
cations. Its weaknesses are irregular communications and dynamic load balancing. A new e�ort to develop
the next version of HPF is under- way to address some of these issues. Unfortunately, it is more di�cult to
solve these runtime problems while maintaining good performance across a wide range of architectures.

4.1.7 Closing Notes14

In this chapter, we have covered some of the e�orts in the area of languages that have been developed to allow
programs to be written for scalable computing. There is a tension between pure FORTRAN-77, FORTRAN
90, HPF, and message passing as to which will be the ultimate tools for scalable, high performance computing.

Certainly, there have been examples of great successes for both FORTRAN 90 (Thinking Machines CM-5)
and HPF (IBM SP and others) as languages that can make excellent use of scalable computing systems. One
of the problems of a high-level language approach is that sometimes using an abstract high-level language
actually reduces e�ective portability.

The languages are designed to be portable, but if the vendor of your particular scalable computer doesn't
support the language variant in which you have chosen to write your application, then it isn't portable.
Even if the vendor has your language available, it may not be tuned to generate the best code for their
architecture.

One solution is to purchase your compilers from a third-party company such as Paci�c Sierra or Kuck
and Associates. These vendors sell one compiler that runs across a wide range of systems. For users who
can a�ord these options, these compilers a�ord a higher level of portability.

One of the fundamental issues is the chicken-and-egg problem. If users don't use a language, vendors
won't improve the language. If all the in�uential users (with all the money) use message passing, then the
existence of an excellent HPF compiler is of no real value to those users.

The good news is that both FORTRAN 90 and HPF provide one road map to portable scalable computing
that doesn't require explicit message passing. The only question is which road we users will choose.

14This content is available online at <http://cnx.org/content/m33775/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

213

4.2 Message-Passing Environments

4.2.1 Introduction15

A message-passing interface is a set of function and subroutine calls for C or FORTRAN that give you a way
to split an application for parallel execution. Data is divided and passed out to other processors as messages.
The receiving processors unpack them, do some work, and send the results back or pass them along to other
processors in the parallel computer.

In some ways, message passing is the �assembly language� of parallel processing. You get ultimate
responsibility, and if you are talented (and your problem cooperates), you get ultimate performance. If you
have a nice scalable problem and are not satis�ed with the resulting performance, you pretty much have
yourself to blame. The compiler is completely unaware of the parallel aspects of the program.

The two most popular message-passing environments are parallel virtual machine (PVM) and message-
passing interface (MPI). Most of the important features are available in either environment. Once you have
mastered message passing, moving from PVM to MPI won't cause you much trouble. You may also operate
on a system that provides only a vendor-speci�c message-passing interface. However, once you understand
message passing concepts and have properly decomposed your application, usually it's not that much more
e�ort to move from one message-passing library to another.16

4.2.2 Parallel Virtual Machine17

The idea behind PVM is to assemble a diverse set of network-connected resources into a �virtual machine.�
A user could marshal the resources of 35 idle workstations on the Internet and have their own personal
scalable processing system. The work on PVM started in the early 1990s at Oak Ridge National Labs. PVM
was pretty much an instant success among computer scientists. It provided a rough framework in which to
experiment with using a network of workstations as a parallel processor.

In PVM Version 3, your virtual machine can consist of single processors, shared-memory multiprocessors,
and scalable multiprocessors. PVM attempts to knit all of these resources into a single, consistent, execution
environment.

To run PVM, you simply need a login account on a set of network computers that have the PVM software
installed. You can even install it in your home directory. To create your own personal virtual machine, you
would create a list of these computers in a �le:

% cat hostfile

frodo.egr.msu.edu

gollum.egr.msu.edu

mordor.egr.msu.edu

%

After some nontrivial machinations with paths and environment variables, you can start the PVM console:

% pvm hostfile

pvmd already running.

15This content is available online at <http://cnx.org/content/m33781/1.3/>.
16Notice I said �not that much more e�ort.�
17This content is available online at <http://cnx.org/content/m33779/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

214 CHAPTER 4. SCALABLE PARALLEL PROCESSING

pvm> conf

1 host, 1 data format

HOST DTID ARCH SPEED

frodo 40000 SUN4SOL2 1000

gollum 40001 SUN4SOL2 1000

mordor 40002 SUN4SOL2 1000

pvm> ps

HOST TID FLAG 0x COMMAND

frodo 40042 6/c,f pvmgs

pvm> reset

pvm> ps

HOST TID FLAG 0x COMMAND

pvm>

Many di�erent users can be running virtual machines using the same pool of resources. Each user has their
own view of an empty machine. The only way you might detect other virtual machines using your resources
is in the percentage of the time your applications get the CPU.

There is a wide range of commands you can issue at the PVM console. The ps command shows the running
processes in your virtual machine. It's quite possible to have more processes than computer systems. Each
process is time-shared on a system along with all the other load on the system. The reset command performs
a soft reboot on your virtual machine. You are the virtual system administrator of the virtual machine you
have assembled.

To execute programs on your virtual computer, you must compile and link your programs with the PVM
library routines:18

% aimk mast slav

making in SUN4SOL2/ for SUN4SOL2

cc -O -I/opt/pvm3/include -DSYSVBFUNC -DSYSVSTR -DNOGETDTBLSIZ

-DSYSVSIGNAL -DNOWAIT3 -DNOUNIXDOM -o mast

../mast.c -L/opt/pvm3/lib/SUN4SOL2 -lpvm3 -lnsl -lsocket

mv mast �crs/pvm3/bin/SUN4SOL2

cc -O -I/opt/pvm3/include -DSYSVBFUNC -DSYSVSTR -DNOGETDTBLSIZ

-DSYSVSIGNAL -DNOWAIT3 -DNOUNIXDOM -o slav

../slav.c -L/opt/pvm3/lib/SUN4SOL2 -lpvm3 -lnsl -lsocket

mv slav �crs/pvm3/bin/SUN4SOL2

%

When the �rst PVM call is encountered, the application contacts your virtual machine and enrolls itself in
the virtual machine. At that point it should show up in the output of the ps command issued at the PVM
console.

From that point on, your application issues PVM calls to create more processes and interact with those
processes. PVM takes the responsibility for distributing the processes on the di�erent systems in the virtual
machine, based on the load and your assessment of each system's relative performance. Messages are moved
across the network using user datagram protocol (UDP) and delivered to the appropriate process.

Typically, the PVM application starts up some additional PVM processes. These can be additional copies
of the same program or each PVM process can run a di�erent PVM application. Then the work is distributed
among the processes, and results are gathered as necessary.

18Note: the exact compilation may be di�erent on your system.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

215

There are several basic models of computing that are typically used when working with PVM:

Master/Slave: : When operating in this mode, one process (usually the initial process) is designated as
the master that spawns some number of worker processes. Work units are sent to each worker process,
and the results are returned to the master. Often the master maintains a queue of work to be done and
as a slave �nishes, the master delivers a new work item to the slave. This approach works well when
there is little data interaction and each work unit is independent. This approach has the advantage
that the overall problem is naturally load-balanced even when there is some variation in the execution
time of individual processes.

Broadcast/Gather: : This type of application is typically characterized by the fact that the shared data
structure is relatively small and can be easily copied into every processor's node. At the beginning
of the time step, all the global data structures are broadcast from the master process to all of the
processes. Each process then operates on their portion of the data. Each process produces a partial
result that is sent back and gathered by the master process. This pattern is repeated for each time
step.

SPMD/Data decomposition: : When the overall data structure is too large to have a copy stored in
every process, it must be decomposed across multiple processes. Generally, at the beginning of a time
step, all processes must exchange some data with each of their neighboring processes. Then with their
local data augmented by the necessary subset of the remote data, they perform their computations.
At the end of the time step, necessary data is again exchanged between neighboring processes, and the
process is restarted.

The most complicated applications have nonuniform data �ows and data that migrates around the system
as the application changes and the load changes on the system.

In this section, we have two example programs: one is a master-slave operation, and the other is a data
decomposition-style solution to the heat �ow problem.

4.2.2.1 Queue of Tasks

In this example, one process (mast) creates �ve slave processes (slav) and doles out 20 work units (add one
to a number). As a slave process responds, it's given new work or told that all of the work units have been
exhausted:

% cat mast.c

#include <stdio.h>
#include "pvm3.h"

#define MAXPROC 5

#define JOBS 20

main()

{

int mytid,info;

int tids[MAXPROC];

int tid,input,output,answers,work;

mytid = pvm_mytid();

info=pvm_spawn("slav", (char**)0, 0, "", MAXPROC, tids);

/* Send out the first work */

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

216 CHAPTER 4. SCALABLE PARALLEL PROCESSING

for(work=0;work<MAXPROC;work++) {

pvm_initsend(PvmDataDefault);

pvm_pkint(&work, 1, 1) ;

pvm_send(tids[work],1) ;/* 1 = msgtype */

}

/* Send out the rest of the work requests */

work = MAXPROC;

for(answers=0; answers < JOBS ; answers++) {

pvm_recv(-1, 2); /* -1 = any task 2 = msgtype */

pvm_upkint(&tid, 1, 1);

pvm_upkint(&input, 1, 1);

pvm_upkint(&output, 1, 1);

printf("Thanks to %d 2*%d=%d\n",tid,input,output);
pvm_initsend(PvmDataDefault);

if (work < JOBS) {

pvm_pkint(&work, 1, 1) ;

work++;

} else {

input = -1;

pvm_pkint(&input, 1, 1) ; /* Tell them to stop */

}

pvm_send(tid,1) ;

}

pvm_exit();

}

%

One of the interesting aspects of the PVM interface is the separation of calls to prepare a new message, pack
data into the message, and send the message. This is done for several reasons. PVM has the capability to
convert between di�erent �oating-point formats, byte orderings, and character formats. This also allows a
single message to have multiple data items with di�erent types.

The purpose of the message type in each PVM send or receive is to allow the sender to wait for a particular
type of message. In this example, we use two message types. Type one is a message from the master to the
slave, and type two is the response.

When performing a receive, a process can either wait for a message from a speci�c process or a message
from any process.

In the second phase of the computation, the master waits for a response from any slave, prints the
response, and then doles out another work unit to the slave or tells the slave to terminate by sending a
message with a value of -1.

The slave code is quite simple � it waits for a message, unpacks it, checks to see if it is a termination
message, returns a response, and repeats:

% cat slav.c

#include <stdio.h>
#include "pvm3.h"

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

217

/* A simple program to double integers */

main()

{

int mytid;

int input,output;

mytid = pvm_mytid();

while(1) {

pvm_recv(-1, 1); /* -1 = any task 1=msgtype */

pvm_upkint(&input, 1, 1);

if (input == -1) break; /* All done */

output = input * 2;

pvm_initsend(PvmDataDefault);

pvm_pkint(&mytid, 1, 1);

pvm_pkint(&input, 1, 1);

pvm_pkint(&output, 1, 1);

pvm_send(pvm_parent(), 2);

}

pvm_exit();

}

%

When the master program is executed, it produces the following output:

% pheat

Thanks to 262204 2*0=0

Thanks to 262205 2*1=2

Thanks to 262206 2*2=4

Thanks to 262207 2*3=6

Thanks to 262204 2*5=10

Thanks to 262205 2*6=12

Thanks to 262206 2*7=14

Thanks to 262207 2*8=16

Thanks to 262204 2*9=18

Thanks to 262205 2*10=20

Thanks to 262206 2*11=22

Thanks to 262207 2*12=24

Thanks to 262205 2*14=28

Thanks to 262207 2*16=32

Thanks to 262205 2*17=34

Thanks to 262207 2*18=36

Thanks to 262204 2*13=26

Thanks to 262205 2*19=38

Thanks to 262206 2*15=30

Thanks to 262208 2*4=8

%

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

218 CHAPTER 4. SCALABLE PARALLEL PROCESSING

Clearly the processes are operating in parallel, and the order of execution is somewhat random. This code
is an excellent skeleton for handling a wide range of computations. In the next example, we perform an
SPMD-style computation to solve the heat �ow problem using PVM.

4.2.2.2 Heat Flow in PVM

This next example is a rather complicated application that implements the heat �ow problem in PVM. In
many ways, it gives some insight into the work that is performed by the HPF environment. We will solve a
heat �ow in a two-dimensional plate with four heat sources and the edges in zero-degree water, as shown in
Figure 4.7 (A two-dimensional plate with four constant heat sources).

A two-dimensional plate with four constant heat sources

Figure 4.7

The data will be spread across all of the processes using a (*, BLOCK) distribution. Columns are distributed
to processes in contiguous blocks, and all the row elements in a column are stored on the same process. As
with HPF, the process that �owns� a data cell performs the computations for that cell after retrieving any
data necessary to perform the computation.

We use a red-black approach but for simplicity, we copy the data back at the end of each iteration. For
a true red-black, you would perform the computation in the opposite direction every other time step.

Note that instead of spawning slave process, the parent process spawns additional copies of itself. This
is typical of SPMD-style programs. Once the additional processes have been spawned, all the processes wait
at a barrier before they look for the process numbers of the members of the group. Once the processes have
arrived at the barrier, they all retrieve a list of the di�erent process numbers:

% cat pheat.f

PROGRAM PHEAT

INCLUDE '../include/fpvm3.h'

INTEGER NPROC,ROWS,COLS,TOTCOLS,OFFSET

PARAMETER(NPROC=4,MAXTIME=200)

PARAMETER(ROWS=200,TOTCOLS=200)

PARAMETER(COLS=(TOTCOLS/NPROC)+3)

REAL*8 RED(0:ROWS+1,0:COLS+1), BLACK(0:ROWS+1,0:COLS+1)

LOGICAL IAMFIRST,IAMLAST

INTEGER INUM,INFO,TIDS(0:NPROC-1),IERR

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

219

INTEGER I,R,C

INTEGER TICK,MAXTIME

CHARACTER*30 FNAME

* Get the SPMD thing going - Join the pheat group

CALL PVMFJOINGROUP('pheat', INUM)

* If we are the first in the pheat group, make some helpers

IF (INUM.EQ.0) THEN

DO I=1,NPROC-1

CALL PVMFSPAWN('pheat', 0, 'anywhere', 1, TIDS(I), IERR)

ENDDO

ENDIF

* Barrier to make sure we are all here so we can look them up

CALL PVMFBARRIER('pheat', NPROC, INFO)

* Find my pals and get their TIDs - TIDS are necessary for sending

DO I=0,NPROC-1

CALL PVMFGETTID('pheat', I, TIDS(I))

ENDDO

At this point in the code, we have NPROC processes executing in an SPMD mode. The next step is to determine
which subset of the array each process will compute. This is driven by the INUM variable, which ranges from
0 to 3 and uniquely identi�es these processes.

We decompose the data and store only one quarter of the data on each process. Using the INUM variable,
we choose our continuous set of columns to store and compute. The OFFSET variable maps between a �global�
column in the entire array and a local column in our local subset of the array. Figure 4.8 (Assigning grid
elements to processors) shows a map that indicates which processors store which data elements. The values
marked with a B are boundary values and won't change during the simulation. They are all set to 0. This
code is often rather tricky to �gure out. Performing a (BLOCK, BLOCK) distribution requires a two-dimensional
decomposition and exchanging data with the neighbors above and below, in addition to the neighbors to the
left and right:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

220 CHAPTER 4. SCALABLE PARALLEL PROCESSING

Assigning grid elements to processors

Figure 4.8

* Compute my geometry - What subset do I process? (INUM=0 values)

* Actual Column = OFFSET + Column (OFFSET = 0)

* Column 0 = neighbors from left

* Column 1 = send to left

* Columns 1..mylen My cells to compute

* Column mylen = Send to right (mylen=50)

* Column mylen+1 = Neighbors from Right (Column 51)

IAMFIRST = (INUM .EQ. 0)

IAMLAST = (INUM .EQ. NPROC-1)

OFFSET = (ROWS/NPROC * INUM)

MYLEN = ROWS/NPROC

IF (IAMLAST) MYLEN = TOTCOLS - OFFSET

PRINT *,'INUM:',INUM,' Local',1,MYLEN,

+ ' Global',OFFSET+1,OFFSET+MYLEN

* Start Cold

DO C=0,COLS+1

DO R=0,ROWS+1

BLACK(R,C) = 0.0

ENDDO

ENDDO

Now we run the time steps. The �rst act in each time step is to reset the heat sources. In this simulation,
we have four heat sources placed near the middle of the plate. We must restore all the values each time
through the simulation as they are modi�ed in the main loop:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

221

* Begin running the time steps

DO TICK=1,MAXTIME

* Set the heat persistent sources

CALL STORE(BLACK,ROWS,COLS,OFFSET,MYLEN,

+ ROWS/3,TOTCOLS/3,10.0,INUM)

CALL STORE(BLACK,ROWS,COLS,OFFSET,MYLEN,

+ 2*ROWS/3,TOTCOLS/3,20.0,INUM)

CALL STORE(BLACK,ROWS,COLS,OFFSET,MYLEN,

+ ROWS/3,2*TOTCOLS/3,-20.0,INUM)

CALL STORE(BLACK,ROWS,COLS,OFFSET,MYLEN,

+ 2*ROWS/3,2*TOTCOLS/3,20.0,INUM)

Now we perform the exchange of the �ghost values� with our neighboring processes. For example, Process 0
contains the elements for global column 50. To compute the next time step values for column 50, we need
column 51, which is stored in Process 1. Similarly, before Process 1 can compute the new values for column
51, it needs Process 0's values for column 50.

Figure 4.9 (Pattern of communication for ghost values) shows how the data is transferred between pro-
cessors. Each process sends its leftmost column to the left and its rightmost column to the right. Because
the �rst and last processes border unchanging boundary values on the left and right respectively, this is not
necessary for columns one and 200. If all is done properly, each process can receive its ghost values from
their left and right neighbors.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

222 CHAPTER 4. SCALABLE PARALLEL PROCESSING

Pattern of communication for ghost values

Figure 4.9

The net result of all of the transfers is that for each space that must be computed, it's surrounded by
one layer of either boundary values or ghost values from the right or left neighbors:

* Send left and right

IF (.NOT. IAMFIRST) THEN

CALL PVMFINITSEND(PVMDEFAULT,TRUE)

CALL PVMFPACK(REAL8, BLACK(1,1), ROWS, 1, INFO)

CALL PVMFSEND(TIDS(INUM-1), 1, INFO)

ENDIF

IF (.NOT. IAMLAST) THEN

CALL PVMFINITSEND(PVMDEFAULT,TRUE)

CALL PVMFPACK(REAL8, BLACK(1,MYLEN), ROWS, 1, INFO)

CALL PVMFSEND(TIDS(INUM+1), 2, INFO)

ENDIF

* Receive right, then left

IF (.NOT. IAMLAST) THEN

CALL PVMFRECV(TIDS(INUM+1), 1, BUFID)

CALL PVMFUNPACK (REAL8, BLACK(1,MYLEN+1), ROWS, 1, INFO

ENDIF

IF (.NOT. IAMFIRST) THEN

CALL PVMFRECV(TIDS(INUM-1), 2, BUFID)

CALL PVMFUNPACK (REAL8, BLACK(1,0), ROWS, 1, INFO)

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

223

ENDIF

This next segment is the easy part. All the appropriate ghost values are in place, so we must simply perform
the computation in our subspace. At the end, we copy back from the RED to the BLACK array; in a real
simulation, we would perform two time steps, one from BLACK to RED and the other from RED to BLACK, to
save this extra copy:

* Perform the flow

DO C=1,MYLEN

DO R=1,ROWS

RED(R,C) = (BLACK(R,C) +

+ BLACK(R,C-1) + BLACK(R-1,C) +

+ BLACK(R+1,C) + BLACK(R,C+1)) / 5.0

ENDDO

ENDDO

* Copy back - Normally we would do a red and black version of the loop

DO C=1,MYLEN

DO R=1,ROWS

BLACK(R,C) = RED(R,C)

ENDDO

ENDDO

ENDDO

Now we �nd the center cell and send to the master process (if necessary) so it can be printed out. We also
dump out the data into �les for debugging or later visualization of the results. Each �le is made unique by
appending the instance number to the �lename. Then the program terminates:

CALL SENDCELL(RED,ROWS,COLS,OFFSET,MYLEN,INUM,TIDS(0),

+ ROWS/2,TOTCOLS/2)

* Dump out data for verification

IF (ROWS .LE. 20) THEN

FNAME = '/tmp/pheatout.' // CHAR(ICHAR('0')+INUM)

OPEN(UNIT=9,NAME=FNAME,FORM='formatted')

DO C=1,MYLEN

WRITE(9,100)(BLACK(R,C),R=1,ROWS)

100 FORMAT(20F12.6)

ENDDO

CLOSE(UNIT=9)

ENDIF

* Lets all go together

CALL PVMFBARRIER('pheat', NPROC, INFO)

CALL PVMFEXIT(INFO)

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

224 CHAPTER 4. SCALABLE PARALLEL PROCESSING

END

The SENDCELL routine �nds a particular cell and prints it out on the master process. This routine is called
in an SPMD style: all the processes enter this routine although all not at precisely the same time. Depending
on the INUM and the cell that we are looking for, each process may do something di�erent.

If the cell in question is in the master process, and we are the master process, print it out. All other
processes do nothing. If the cell in question is stored in another process, the process with the cell sends it
to the master processes. The master process receives the value and prints it out. All the other processes do
nothing.

This is a simple example of the typical style of SPMD code. All the processes execute the code at roughly
the same time, but, based on information local to each process, the actions performed by di�erent processes
may be quite di�erent:

SUBROUTINE SENDCELL(RED,ROWS,COLS,OFFSET,MYLEN,INUM,PTID,R,C)

INCLUDE '../include/fpvm3.h'

INTEGER ROWS,COLS,OFFSET,MYLEN,INUM,PTID,R,C

REAL*8 RED(0:ROWS+1,0:COLS+1)

REAL*8 CENTER

* Compute local row number to determine if it is ours

I = C - OFFSET

IF (I .GE. 1 .AND. I.LE. MYLEN) THEN

IF (INUM .EQ. 0) THEN

PRINT *,'Master has', RED(R,I), R, C, I

ELSE

CALL PVMFINITSEND(PVMDEFAULT,TRUE)

CALL PVMFPACK(REAL8, RED(R,I), 1, 1, INFO)

PRINT *, 'INUM:',INUM,' Returning',R,C,RED(R,I),I

CALL PVMFSEND(PTID, 3, INFO)

ENDIF

ELSE

IF (INUM .EQ. 0) THEN

CALL PVMFRECV(-1 , 3, BUFID)

CALL PVMFUNPACK (REAL8, CENTER, 1, 1, INFO)

PRINT *, 'Master Received',R,C,CENTER

ENDIF

ENDIF

RETURN

END

Like the previous routine, the STORE routine is executed on all processes. The idea is to store a value into
a global row and column position. First, we must determine if the cell is even in our process. If the cell is
in our process, we must compute the local column (I) in our subset of the overall matrix and then store the
value:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

225

SUBROUTINE STORE(RED,ROWS,COLS,OFFSET,MYLEN,R,C,VALUE,INUM)

REAL*8 RED(0:ROWS+1,0:COLS+1)

REAL VALUE

INTEGER ROWS,COLS,OFFSET,MYLEN,R,C,I,INUM

I = C - OFFSET

IF (I .LT. 1 .OR. I .GT. MYLEN) RETURN

RED(R,I) = VALUE

RETURN

END

When this program executes, it has the following output:

% pheat

INUM: 0 Local 1 50 Global 1 50

Master Received 100 100 3.4722390023541D-07

%

We see two lines of print. The �rst line indicates the values that Process 0 used in its geometry computation.
The second line is the output from the master process of the temperature at cell (100,100) after 200 time
steps.

One interesting technique that is useful for debugging this type of program is to change the number of
processes that are created. If the program is not quite moving its data properly, you usually get di�erent
results when di�erent numbers of processes are used. If you look closely, the above code performs correctly
with one process or 30 processes.

Notice that there is no barrier operation at the end of each time step. This is in contrast to the way
parallel loops operate on shared uniform memory multiprocessors that force a barrier at the end of each loop.
Because we have used an �owner computes� rule, and nothing is computed until all the required ghost data
is received, there is no need for a barrier. The receipt of the messages with the proper ghost values allows a
process to begin computing immediately without regard to what the other processes are currently doing.

This example can be used either as a framework for developing other grid-based computations, or as a
good excuse to use HPF and appreciate the hard work that the HPF compiler developers have done. A well-
done HPF implementation of this simulation should outperform the PVM implementation because HPF can
make tighter optimizations. Unlike us, the HPF compiler doesn't have to keep its generated code readable.

4.2.2.3 PVM Summary

PVM is a widely used tool because it a�ords portability across every architecture other than SIMD. Once
the e�ort has been invested in making a code message passing, it tends to run well on many architectures.

The primary complaints about PVM include:

• The need for a pack step separate from the send step
• The fact that it is designed to work in a heterogeneous environment that may incur some overhead
• It doesn't automate common tasks such as geometry computations

But all in all, for a certain set of programmers, PVM is the tool to use. If you would like to learn more
about PVM see PVM � A User's Guide and Tutorial for Networked Parallel Computing, by Al Geist, Adam
Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy Sunderam (MIT Press). Information
is also available at www.netlib.org/pvm3/19 .

19http://cnx.org/content/m33779/latest/www.netlib.org/pvm3/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

226 CHAPTER 4. SCALABLE PARALLEL PROCESSING

4.2.3 Message-Passing Interface20

The Message-Passing Interface (MPI) was designed to be an industrial-strength message-passing environment
that is portable across a wide range of hardware environments.

Much like High Performance FORTRAN, MPI was developed by a group of computer vendors, application
developers, and computer scientists. The idea was to come up with a speci�cation that would take the
strengths of many of the existing proprietary message passing environments on a wide variety of architectures
and come up with a speci�cation that could be implemented on architectures ranging from SIMD systems
with thousands of small processors to MIMD networks of workstations and everything in between.

Interestingly, the MPI e�ort was completed a year after the High Performance FORTRAN (HPF) e�ort
was completed. Some viewed MPI as a portable message-passing interface that could support a good HPF
compiler. Having MPI makes the compiler more portable. Also having the compiler use MPI as its message-
passing environment insures that MPI is heavily tested and that su�cient resources are invested into the
MPI implementation.

4.2.3.1 PVM Versus MPI

While many of the folks involved in PVM participated in the MPI e�ort, MPI is not simply a follow-on to
PVM. PVM was developed in a university/research lab environment and evolved over time as new features
were needed. For example, the group capability was not designed into PVM at a fundamental level. Some
of the underlying assumptions of PVM were based �on a network of workstations connected via Ethernet�
model and didn't export well to scalable computers.21 In some ways, MPI is more robust than PVM, and
in other ways, MPI is simpler than PVM. MPI doesn't specify the system management details as in PVM;
MPI doesn't specify how a virtual machine is to be created, operated, and used.

4.2.3.2 MPI Features

MPI has a number of useful features beyond the basic send and receive capabilities. These include:

Communicators: : A communicator is a subset of the active processes that can be treated as a group
for collective operations such as broadcast, reduction, barriers, sending, or receiving. Within each
communicator, a process has a rank that ranges from zero to the size of the group. A process may be a
member of more than one communicator and have a di�erent rank within each communicator. There
is a default communicator that refers to all the MPI processes that is called MPI_COMM_WORLD.

Topologies: : A communicator can have a topology associated with it. This arranges the processes that
belong to a communicator into some layout. The most common layout is a Cartesian decomposition.
For example, 12 processes may be arranged into a 3×4 grid.22 Once these topologies are de�ned, they
can be queried to �nd the neighboring processes in the topology. In addition to the Cartesian (grid)
topology, MPI also supports a graph-based topology.

Communication modes: : MPI supports multiple styles of communication, including blocking and non-
blocking. Users can also choose to use explicit bu�ers for sending or allow MPI to manage the bu�ers.
The nonblocking capabilities allow the overlap of communication and computation. MPI can support
a model in which there is no available memory space for bu�ers and the data must be copied directly
from the address space of the sending process to the memory space of the receiving process. MPI
also supports a single call to perform a send and receive that is quite useful when processes need to
exchange data.

Single-call collective operations: : Some of the calls in MPI automate collective operations in a single
call. For example, the broadcast operation sends values from the master to the slaves and receives
the values on the slaves in the same operation. The net result is that the values are updated on all

20This content is available online at <http://cnx.org/content/m33783/1.3/>.
21One should not diminish the positive contributions of PVM, however. PVM was the �rst widely avail- able portable message-

passing environment. PVM pioneered the idea of heterogeneous distributed computing with built-in format conversion.
22Sounds a little like HPF, no?

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

227

processes. Similarly, there is a single call to sum a value across all of the processes to a single value.
By bundling all this functionality into a single call, systems that have support for collective operations
in hardware can make best use of this hardware. Also, when MPI is operating on a shared-memory
environment, the broadcast can be simpli�ed as all the slaves simply make a local copy of a shared
variable.

Clearly, the developers of the MPI speci�cation had signi�cant experience with developing message-passing
applications and added many widely used features to the message-passing library. Without these features,
each programmer needed to use more primitive operations to construct their own versions of the higher-level
operations.

4.2.3.3 Heat Flow in MPI

In this example, we implement our heat �ow problem in MPI using a similar decomposition to the PVM
example. There are several ways to approach the prob- lem. We could almost translate PVM calls to
corresponding MPI calls using the MPI_COMM_WORLD communicator. However, to showcase some of the MPI
features, we create a Cartesian communicator:

PROGRAM MHEATC

INCLUDE 'mpif.h'

INCLUDE 'mpef.h'

INTEGER ROWS,COLS,TOTCOLS

PARAMETER(MAXTIME=200)

* This simulation can be run on MINPROC or greater processes.

* It is OK to set MINPROC to 1 for testing purposes

* For a large number of rows and columns, it is best to set MINPROC

* to the actual number of runtime processes

PARAMETER(MINPROC=2) PARAMETER(ROWS=200,TOTCOLS=200,COLS=TOTCOLS/MINPROC)

DOUBLE PRECISION RED(0:ROWS+1,0:COLS+1),BLACK(0:ROWS+1,0:COLS+1)

INTEGER S,E,MYLEN,R,C

INTEGER TICK,MAXTIME

CHARACTER*30 FNAME

The basic data structures are much the same as in the PVM example. We allocate a subset of the heat arrays
in each process. In this example, the amount of space allocated in each process is set by the compile-time
variable MINPROC. The simulation can execute on more than MINPROC processes (wasting some space in each
process), but it can't execute on less than MINPROC processes, or there won't be su�cient total space across
all of the processes to hold the array:

INTEGER COMM1D,INUM,NPROC,IERR

INTEGER DIMS(1),COORDS(1)

LOGICAL PERIODS(1)

LOGICAL REORDER

INTEGER NDIM

INTEGER STATUS(MPI_STATUS_SIZE)

INTEGER RIGHTPROC, LEFTPROC

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

228 CHAPTER 4. SCALABLE PARALLEL PROCESSING

These data structures are used for our interaction with MPI. As we will be doing a one-dimensional Cartesian
decomposition, our arrays are dimensioned to one. If you were to do a two-dimensional decomposition, these
arrays would need two elements:

PRINT *,'Calling MPI_INIT'

CALL MPI_INIT(IERR)

PRINT *,'Back from MPI_INIT'

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, NPROC, IERR)

The call to MPI_INIT creates the appropriate number of processes. Note that in the output, the PRINT
statement before the call only appears once, but the second PRINT appears once for each process. We call
MPI_COMM_SIZE to determine the size of the global communicator MPI_COMM_WORLD. We use this value to set
up our Cartesian topology:

* Create new communicator that has a Cartesian topology associated

* with it - MPI_CART_CREATE returns COMM1D - A communicator descriptor

DIMS(1) = NPROC

PERIODS(1) = .FALSE.

REORDER = .TRUE.

NDIM = 1

CALL MPI_CART_CREATE(MPI_COMM_WORLD, NDIM, DIMS, PERIODS,

+ REORDER, COMM1D, IERR)

Now we create a one-dimensional (NDIM=1) arrangement of all of our processes (MPI_COMM_WORLD). All of the
parameters on this call are input values except for COMM1D and IERR. COMM1D is an integer �communicator
handle.� If you print it out, it will be a value such as 134. It is not actually data, it is merely a handle that is
used in other calls. It is quite similar to a �le descriptor or unit number used when performing input-output
to and from �les.

The topology we use is a one-dimensional decomposition that isn't periodic. If we speci�ed that we wanted
a periodic decomposition, the far-left and far-right processes would be neighbors in a wrapped-around fashion
making a ring. Given that it isn't periodic, the far-left and far-right processes have no neighbors.

In our PVM example above, we declared that Process 0 was the far-right process, Process NPROC-1 was
the far-left process, and the other processes were arranged linearly between those two. If we set REORDER
to .FALSE., MPI also chooses this arrangement. However, if we set REORDER to .TRUE., MPI may choose to
arrange the processes in some other fashion to achieve better performance, assuming that you are commu-
nicating with close neighbors.

Once the communicator is set up, we use it in all of our communication operations:

* Get my rank in the new communicator

CALL MPI_COMM_RANK(COMM1D, INUM, IERR)

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

229

Within each communicator, each process has a rank from zero to the size of the communicator minus 1. The
MPI_COMM_RANK tells each process its rank within the communicator. A process may have a di�erent rank in
the COMM1D communicator than in the MPI_COMM_WORLD communicator because of some reordering.

Given a Cartesian topology communicator,23 we can extract information from the communicator using
the MPI_CART_GET routine:

* Given a communicator handle COMM1D, get the topology, and my position

* in the topology

CALL MPI_CART_GET(COMM1D, NDIM, DIMS, PERIODS, COORDS, IERR)

In this call, all of the parameters are output values rather than input values as in the MPI_CART_CREATE

call. The COORDS variable tells us our coordinates within the communicator. This is not so useful in our
one-dimensional example, but in a two-dimensional process decomposition, it would tell our current position
in that two-dimensional grid:

* Returns the left and right neighbors 1 unit away in the zeroth dimension

* of our Cartesian map - since we are not periodic, our neighbors may

* not always exist - MPI_CART_SHIFT handles this for us

CALL MPI_CART_SHIFT(COMM1D, 0, 1, LEFTPROC, RIGHTPROC, IERR)

CALL MPE_DECOMP1D(TOTCOLS, NPROC, INUM, S, E)

MYLEN = (E - S) + 1

IF (MYLEN.GT.COLS) THEN

PRINT *,'Not enough space, need',MYLEN,' have ',COLS

PRINT *,TOTCOLS,NPROC,INUM,S,E

STOP

ENDIF

PRINT *,INUM,NPROC,COORDS(1),LEFTPROC,RIGHTPROC, S, E

We can use MPI_CART_SHIFT to determine the rank number of our left and right neighbors, so we can exchange
our common points with these neighbors. This is necessary because we can't simply send to INUM-1 and
INUM+1 if MPI has chosen to reorder our Cartesian decomposition. If we are the far-left or far-right process,
the neighbor that doesn't exist is set to MPI_PROC_NULL, which indicates that we have no neighbor. Later
when we are performing message sending, it checks this value and sends messages only to real processes. By
not sending the message to the �null process,� MPI has saved us an IF test.

To determine which strip of the global array we store and compute in this process, we call a utility
routine called MPE_DECOMP1D that simply does several calculations to evenly split our 200 columns among
our processes in contiguous strips. In the PVM version, we need to perform this computation by hand.

The MPE_DECOMP1D routine is an example of an extended MPI library call (hence the MPE pre�x). These
extensions include graphics support and logging tools in addition to some general utilities. The MPE library

23Remember, each communicator may have a topology associated with it. A topology can be grid, graph, or none. Interest-
ingly, the MPI_COMM_WORLD communicator has no topology associated with it.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

230 CHAPTER 4. SCALABLE PARALLEL PROCESSING

consists of routines that were useful enough to standardize but not required to be supported by all MPI
implementations. You will �nd the MPE routines supported on most MPI implementations.

Now that we have our communicator group set up, and we know which strip each process will handle,
we begin the computation:

* Start Cold

DO C=0,COLS+1

DO R=0,ROWS+1

BLACK(R,C) = 0.0

ENDDO

ENDDO

As in the PVM example, we set the plate (including boundary values) to zero.
All processes begin the time step loop. Interestingly, like in PVM, there is no need for any synchronization.

The messages implicitly synchronize our loops.
The �rst step is to store the permanent heat sources. We need to use a routine because we must make

the store operations relative to our strip of the global array:

* Begin running the time steps

DO TICK=1,MAXTIME

* Set the persistent heat sources

CALL STORE(BLACK,ROWS,COLS,S,E,ROWS/3,TOTCOLS/3,10.0,INUM)

CALL STORE(BLACK,ROWS,COLS,S,E,2*ROWS/3,TOTCOLS/3,20.0,INUM)

CALL STORE(BLACK,ROWS,COLS,S,E,ROWS/3,2*TOTCOLS/3,-20.0,INUM)

CALL STORE(BLACK,ROWS,COLS,S,E,2*ROWS/3,2*TOTCOLS/3,20.0,INUM)

All of the processes set these values independently depending on which process has which strip of the overall
array.

Now we exchange the data with our neighbors as determined by the Cartesian communicator. Note that
we don't need an IF test to determine if we are the far-left or far-right process. If we are at the edge, our
neighbor setting is MPI_PROC_NULL and the MPI_SEND and MPI_RECV calls do nothing when given this as a
source or destination value, thus saving us an IF test.

Note that we specify the communicator COMM1D because the rank values we are using in these calls are
relative to that communicator:

* Send left and receive right

CALL MPI_SEND(BLACK(1,1),ROWS,MPI_DOUBLE_PRECISION,

+ LEFTPROC,1,COMM1D,IERR)

CALL MPI_RECV(BLACK(1,MYLEN+1),ROWS,MPI_DOUBLE_PRECISION,

+ RIGHTPROC,1,COMM1D,STATUS,IERR)

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

231

* Send Right and Receive left in a single statement

CALL MPI_SENDRECV(

+ BLACK(1,MYLEN),ROWS,COMM1D,RIGHTPROC,2,

+ BLACK(1,0),ROWS,COMM1D,LEFTPROC, 2,

+ MPI_COMM_WORLD, STATUS, IERR)

Just to show o�, we use both the separate send and receive, and the combined send and receive. When
given a choice, it's probably a good idea to use the combined operations to give the runtime environment
more �exibility in terms of bu�ering. One downside to this that occurs on a network of workstations (or
any other high-latency interconnect) is that you can't do both send operations �rst and then do both receive
operations to overlap some of the communication delay.

Once we have all of our ghost points from our neighbors, we can perform the algorithm on our subset of
the space:

* Perform the flow

DO C=1,MYLEN

DO R=1,ROWS

RED(R,C) = (BLACK(R,C) +

+ BLACK(R,C-1) + BLACK(R-1,C) +

+ BLACK(R+1,C) + BLACK(R,C+1)) / 5.0

ENDDO

ENDDO

* Copy back - Normally we would do a red and black version of the loop

DO C=1,MYLEN

DO R=1,ROWS

BLACK(R,C) = RED(R,C)

ENDDO

ENDDO

ENDDO

Again, for simplicity, we don't do the complete red-black computation.24 We have no synchronization at the
bottom of the loop because the messages implicitly synchronize the processes at the top of the next loop.

Again, we dump out the data for veri�cation. As in the PVM example, one good test of basic correctness
is to make sure you get exactly the same results for varying numbers of processes:

* Dump out data for verification

IF (ROWS .LE. 20) THEN

FNAME = '/tmp/mheatcout.' // CHAR(ICHAR('0')+INUM)

OPEN(UNIT=9,NAME=FNAME,FORM='formatted')

DO C=1,MYLEN

WRITE(9,100)(BLACK(R,C),R=1,ROWS)

24Note that you could do two time steps (one black-red-black iteration) if you exchanged two ghost columns at the top of the
loop.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

232 CHAPTER 4. SCALABLE PARALLEL PROCESSING

100 FORMAT(20F12.6)

ENDDO

CLOSE(UNIT=9)

ENDIF

To terminate the program, we call MPI_FINALIZE:

* Lets all go together

CALL MPI_FINALIZE(IERR)

END

As in the PVM example, we need a routine to store a value into the proper strip of the global array. This
routine simply checks to see if a particular global element is in this process and if so, computes the proper
location within its strip for the value. If the global element is not in this process, this routine simply returns
doing nothing:

SUBROUTINE STORE(RED,ROWS,COLS,S,E,R,C,VALUE,INUM)

REAL*8 RED(0:ROWS+1,0:COLS+1)

REAL VALUE

INTEGER ROWS,COLS,S,E,R,C,I,INUM

IF (C .LT. S .OR. C .GT. E) RETURN

I = (C - S) + 1

* PRINT *,'STORE, INUM,R,C,S,E,R,I',INUM,R,C,S,E,R,I,VALUE RED(R,I) = VALUE

RETURN

END

When this program is executed, it has the following output:

% mpif77 -c mheatc.f mheatc.f:

MAIN mheatc:

store:

% mpif77 -o mheatc mheatc.o -lmpe

% mheatc -np 4

Calling MPI_INIT

Back from MPI_INIT

Back from MPI_INIT

Back from MPI_INIT

Back from MPI_INIT

0 4 0 -1 1 1 50

2 4 2 1 3 101 150

3 4 3 2 -1 151 200

1 4 1 0 2 51 100

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

233

%

As you can see, we call MPI_INIT to activate the four processes. The PRINT statement immediately after
the MPI_INIT call appears four times, once for each of the activated processes. Then each process prints
out the strip of the array it will process. We can also see the neighbors of each process including -1 when a
process has no neighbor to the left or right. Notice that Process 0 has no left neighbor, and Process 3 has
no right neighbor. MPI has provided us the utilities to simplify message-passing code that we need to add
to implement this type of grid- based application.

When you compare this example with a PVM implementation of the same problem, you can see some of
the contrasts between the two approaches. Programmers who wrote the same six lines of code over and over
in PVM combined them into a single call in MPI. In MPI, you can think �data parallel� and express your
program in a more data-parallel fashion.

In some ways, MPI feels less like assembly language than PVM. However, MPI does take a little getting
used to when compared to PVM. The concept of a Cartesian communicator may seem foreign at �rst, but
with understanding, it becomes a �exible and powerful tool.

4.2.3.4 Heat in MPI Using Broadcast/Gather

One style of parallel programming that we have not yet seen is the broadcast/gather style. Not all appli-
cations can be naturally solved using this style of programming. However, if an application can use this
approach e�ectively, the amount of modi�cation that is required to make a code run in a message-passing
environment is minimal.

Applications that most bene�t from this approach generally do a lot of computation using some small
amount of shared information. One requirement is that one complete copy of the �shared� information must
�t in each of the processes.

If we keep our grid size small enough, we can actually program our heat �ow application using this
approach. This is almost certainly a less e�cient implementation than any of the earlier implementations
of this problem because the core computation is so simple. However, if the core computations were more
complex and needed access to values farther than one unit away, this might be a good approach.

The data structures are simpler for this approach and, actually, are no di�erent than the single-process
FORTRAN 90 or HPF versions. We will allocate a complete RED and BLACK array in every process:

PROGRAM MHEAT

INCLUDE 'mpif.h'

INCLUDE 'mpef.h'

INTEGER ROWS,COLS

PARAMETER(MAXTIME=200)

PARAMETER(ROWS=200,COLS=200)

DOUBLE PRECISION RED(0:ROWS+1,0:COLS+1),BLACK(0:ROWS+1,0:COLS+1)

We need fewer variables for the MPI calls because we aren't creating a communicator. We simply use the
default communicator MPI_COMM_WORLD. We start up our processes, and �nd the size and rank of our process
group:

INTEGER INUM,NPROC,IERR,SRC,DEST,TAG

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

234 CHAPTER 4. SCALABLE PARALLEL PROCESSING

INTEGER S,E,LS,LE,MYLEN

INTEGER STATUS(MPI_STATUS_SIZE)

INTEGER I,R,C

INTEGER TICK,MAXTIME

CHARACTER*30 FNAME

PRINT *,'Calling MPI_INIT'

CALL MPI_INIT(IERR)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, NPROC, IERR)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, INUM, IERR)

CALL MPE_DECOMP1D(COLS, NPROC, INUM, S, E, IERR)

PRINT *,'My Share ', INUM, NPROC, S, E

Since we are broadcasting initial values to all of the processes, we only have to set things up on the master
process:

* Start Cold

IF (INUM.EQ.0) THEN

DO C=0,COLS+1

DO R=0,ROWS+1

BLACK(R,C) = 0.0

ENDDO

ENDDO

ENDIF

As we run the time steps (again with no synchronization), we set the persistent heat sources directly. Since
the shape of the data structure is the same in the master and all other processes, we can use the real array
coordinates rather than mapping them as with the previous examples. We could skip the persistent settings
on the nonmaster processes, but it doesn't hurt to do it on all processes:

* Begin running the time steps

DO TICK=1,MAXTIME

* Set the heat sources

BLACK(ROWS/3, COLS/3)= 10.0

BLACK(2*ROWS/3, COLS/3) = 20.0

BLACK(ROWS/3, 2*COLS/3) = -20.0

BLACK(2*ROWS/3, 2*COLS/3) = 20.0

Now we broadcast the entire array from process rank zero to all of the other processes in the MPI_COMM_WORLD
communicator. Note that this call does the sending on rank zero process and receiving on the other processes.
The net result of this call is that all the processes have the values formerly in the master process in a single
call:

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

235

* Broadcast the array

CALL MPI_BCAST(BLACK,(ROWS+2)*(COLS+2),MPI_DOUBLE_PRECISION,

+ 0,MPI_COMM_WORLD,IERR)

Now we perform the subset computation on each process. Note that we are using global coordinates because
the array has the same shape on each of the processes. All we need to do is make sure we set up our particular
strip of columns according to S and E:

* Perform the flow on our subset

DO C=S,E

DO R=1,ROWS

RED(R,C) = (BLACK(R,C) +

+ BLACK(R,C-1) + BLACK(R-1,C) +

+ BLACK(R+1,C) + BLACK(R,C+1)) / 5.0

ENDDO

ENDDO

Now we need to gather the appropriate strips from the processes into the appropriate strip in the master
array for rebroadcast in the next time step. We could change the loop in the master to receive the messages
in any order and check the STATUS variable to see which strip it received:

* Gather back up into the BLACK array in master (INUM = 0)

IF (INUM .EQ. 0) THEN

DO C=S,E

DO R=1,ROWS

BLACK(R,C) = RED(R,C)

ENDDO

ENDDO

DO I=1,NPROC-1

CALL MPE_DECOMP1D(COLS, NPROC, I, LS, LE, IERR)

MYLEN = (LE - LS) + 1

SRC = I TAG = 0

CALL MPI_RECV(BLACK(0,LS),MYLEN*(ROWS+2),

+ MPI_DOUBLE_PRECISION, SRC, TAG,

+ MPI_COMM_WORLD, STATUS, IERR)

* Print *,'Recv',I,MYLEN

ENDDO

ELSE

MYLEN = (E - S) + 1

DEST = 0

TAG = 0

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

236 CHAPTER 4. SCALABLE PARALLEL PROCESSING

CALL MPI_SEND(RED(0,S),MYLEN*(ROWS+2),MPI_DOUBLE_PRECISION,

+ DEST, TAG, MPI_COMM_WORLD, IERR)

Print *,'Send',INUM,MYLEN

ENDIF

ENDDO

We use MPE_DECOMP1D to determine which strip we're receiving from each process.
In some applications, the value that must be gathered is a sum or another single value. To accomplish

this, you can use one of the MPI reduction routines that coalesce a set of distributed values into a single
value using a single call.

Again at the end, we dump out the data for testing. However, since it has all been gathered back onto
the master process, we only need to dump it on one process:

* Dump out data for verification

IF (INUM .EQ.0 .AND. ROWS .LE. 20) THEN

FNAME = '/tmp/mheatout'

OPEN(UNIT=9,NAME=FNAME,FORM='formatted')

DO C=1,COLS

WRITE(9,100)(BLACK(R,C),R=1,ROWS)

100 FORMAT(20F12.6)

ENDDO

CLOSE(UNIT=9)

ENDIF

CALL MPI_FINALIZE(IERR)

END

When this program executes with four processes, it produces the following output:

% mpif77 -c mheat.f

mheat.f:

MAIN mheat:

% mpif77 -o mheat mheat.o -lmpe

% mheat -np 4

Calling MPI_INIT

My Share 1 4 51 100

My Share 0 4 1 50

My Share 3 4 151 200

My Share 2 4 101 150

%

The ranks of the processes and the subsets of the computations for each process are shown in the output.
So that is a somewhat contrived example of the broadcast/gather approach to parallelizing an applica-

tion. If the data structures are the right size and the amount of computation relative to communication is
appropriate, this can be a very e�ective approach that may require the smallest number of code modi�cations
compared to a single-processor version of the code.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

237

4.2.3.5 MPI Summary

Whether you chose PVM or MPI depends on which library the vendor of your system prefers. Sometimes
MPI is the better choice because it contains the newest features, such as support for hardware-supported
multicast or broadcast, that can signi�cantly improve the overall performance of a scatter-gather application.

A good text on MPI is Using MPI � Portable Parallel Programmingwith the Message-Passing Interface,
by William Gropp, Ewing Lusk, and Anthony Skjellum (MIT Press). You may also want to retrieve and
print the MPI speci�cation from http://www.netlib.org/mpi/25 .

4.2.4 Closing Notes26

In this chapter we have looked at the �assembly language� of parallel programming. While it can seem
daunting to rethink your application, there are often some simple changes you can make to port your code
to message passing. Depending on the application, a master-slave, broadcast-gather, or decomposed data
approach might be most appropriate.

It's important to realize that some applications just don't decompose into message passing very well.
You may be working with just such an application. Once you have some experience with message passing,
it becomes easier to identify the critical points where data must be communicated between processes.

While HPF, PVM, and MPI are all mature and popular technologies, it's not clear whether any of these
technologies will be the long-term solution that we will use 10 years from now. One possibility is that we
will use FORTRAN 90 (or FORTRAN 95) without any data layout directives or that the directives will be
optional. Another interesting possibility is simply to keep using FORTRAN 77. As scalable, cache-coherent,
non-uniform memory systems become more popular, they will evolve their own data allocation primitives.
For example, the HP/Exemplar supports the following data storage attributes: shared, node-private, and
thread-private. As dynamic data structures are allocated, they can be placed in any one of these classes.
Node-private memory is shared across all the threads on a single node but not shared beyond those threads.
Perhaps we will only have to declare the storage class of the data but not the data layout for these new
machines.

PVM and MPI still need the capability of supporting a fault-tolerant style of computing that allows an
application to complete as resources fail or otherwise become available. The amount of compute power that
will be available to applications that can tolerate some unreliability in the resources will be very large. There
have been a number of moderately successful attempts in this area such as Condor, but none have really
caught on in the mainstream.

To run the most powerful computers in the world at their absolute maximum performance levels, the
need to be portable is somewhat reduced. Making your particular application go ever faster and scale to
ever higher numbers of processors is a fascinating activity. May the FLOPS be with you!

25http://www.netlib.org/mpi/
26This content is available online at <http://cnx.org/content/m33784/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

238 CHAPTER 4. SCALABLE PARALLEL PROCESSING

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

Appendixes

5.1 Appendix C: High Performance Microprocessors

5.1.1 Introduction1

5.1.1.1 High Performance Microprocessors

It has been said that history is rewritten by the victors. It is clear that high performance RISC-based
microprocessors are de�ning the current history of high performance computing. We begin our study with the
basic building blocks of modern high performance computing: the high performance RISC microprocessors.

A complex instruction set computer (CISC) instruction set is made up of powerful primitives, close in
functionality to the primitives of high-level languages like C or FORTRAN. It captures the sense of �don't
do in software what you can do in hardware.� RISC, on the other hand, emphasizes low-level primitives, far
below the complexity of a high-level language. You can compute anything you want using either approach,
though it will probably take more machine instructions if you're using RISC. The important di�erence is
that with RISC you can trade instruction-set complexity for speed.

To be fair, RISC isn't really all that new. There were some important early machines that pioneered
RISC philosophies, such as the CDC 6600 (1964) and the IBM 801 project (1975). It was in the mid-1980s,
however, that RISC machines �rst posed a direct challenge to the CISC installed base. Heated debate broke
out � RISC versus CISC � and even lingers today, though it is clear that the RISC2 approach is in greatest
favor; late-generation CISC machines are looking more RISC-like, and some very old families of CISC, such
as the DEC VAX, are being retired.

This chapter is about CISC and RISC instruction set architectures and the di�erences between them.
We also describe newer processors that can execute more than one instruction at a time and can execute
instructions out of order.

5.1.2 Why CISC?3

You might ask, �If RISC is faster, why did people bother with CISC designs in the �rst place?� The short
answer is that in the beginning, CISC was the right way to go; RISC wasn't always both feasible and
a�ordable. Every kind of design incorporates trade-o�s, and over time, the best systems will make them
di�erently. In the past, the design variables favored CISC.

5.1.2.1 Space and Time

To start, we'll ask you how well you know the assembly language for your work- station. The answer is
probably that you haven't even seen it. Why bother? Compilers and development tools are very good, and if

1This content is available online at <http://cnx.org/content/m33671/1.3/>.
2One of the most interesting remaining topics is the de�nition of �RISC.� Don't be fooled into thinking there is one de�nition

of RISC. The best I have heard so far is from John Mashey: �RISC is a label most commonly used for a set of instruction set
architecture characteristics chosen to ease the use of aggressive implementation techniques found in high performance processors
(regardless of RISC, CISC, or irrelevant).�

3This content is available online at <http://cnx.org/content/m33672/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

239

240 APPENDIX

you have a problem, you can debug it at the source level. However, 30 years ago, �respectable� programmers
understood the machine's instruction set. High-level language compilers were commonly available, but
they didn't generate the fastest code, and they weren't terribly thrifty with memory. When programming,
you needed to save both space and time, which meant you knew how to program in assembly language.
Accordingly, you could develop an opinion about the machine's instruction set. A good instruction set
was both easy to use and powerful. In many ways these qualities were the same: �powerful� instructions
accomplished a lot, and saved the programmer from specifying many little steps � which, in turn, made
them easy to use. But they had other, less apparent (though perhaps more important) features as well:
powerful instructions saved memory and time.

Back then, computers had very little storage by today's standards. An instruction that could roll all the
steps of a complex operation, such as a do-loop, into single opcode4 was a plus, because memory was precious.
To put some stakes in the ground, consider the last vacuum-tube computer that IBM built, the model 704
(1956). It had hardware �oating-point, including a division operation, index registers, and instructions that
could operate directly on memory locations. For instance, you could add two numbers together and store the
result back into memory with a single command. The Philco 2000, an early transistorized machine (1959),
had an operation that could repeat a sequence of instructions until the contents of a counter was decremented
to zero � very much like a do-loop. These were complex operations, even by today's standards. However,
both machines had a limited amount of memory � 32-K words. The less memory your program took up,
the more you had available for data, and the less likely that you would have to resort to overlaying portions
of the program on top of one another.

Complex instructions saved time, too. Almost every large computer following the IBM 704 had a memory
system that was slower than its central processing unit (CPU). When a single instruction can perform several
operations, the overall number of instructions retrieved from memory can be reduced. Minimizing the number
of instructions was particularly important because, with few exceptions, the machines of the late 1950s were
very sequential; not until the current instruction was completed did the computer initiate the process of
going out to memory to get the next instruction.5 By contrast, modern machines form something of a
bucket brigade � passing instructions in from memory and �guring out what they do on the way � so there
are fewer gaps in processing.

If the designers of early machines had had very fast and abundant instruction memory, sophisticated
compilers, and the wherewithal to build the instruction �bucket brigade� � cheaply � they might have
chosen to create machines with simple instruction sets. At the time, however, technological choices indicated
that instructions should be powerful and thrifty with memory.

5.1.2.2 Beliefs About Complex Instruction Sets

So, given that the lot was cast in favor of complex instruction sets, computer architects had license to experi-
ment with matching them to the intended purposes of the machines. For instance, the do-loop instruction on
the Philco 2000 looked like a good companion for procedural languages like FORTRAN. Machine designers
assumed that compiler writers could generate object programs using these powerful machine instructions, or
possibly that the compiler could be eliminated, and that the machine could execute source code directly in
hardware.

You can imagine how these ideas set the tone for product marketing. Up until the early 1980s, it was
common practice to equate a bigger instruction set with a more powerful computer. When clock speeds
were increasing by multiples, no increase in instruction set complexity could fetter a new model of computer
enough so that there wasn't still a tremendous net increase in speed. CISC machines kept getting faster, in
spite of the increased operation complexity.

4Opcode = operation code = instruction.
5In 1955, IBM began constructing a machine known as Stretch. It was the �rst computer to process several instructions

at a time in stages, so that they streamed in, rather than being fetched in a piece- meal fashion. The goal was to make it 25
times faster than the then brand-new IBM 704. It was six years before the �rst Stretch was delivered to Los Alamos National
Laboratory. It was indeed faster, but it was expensive to build. Eight were sold for a loss of $20 million.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

APPENDIX 241

As it turned out, assembly language programmers used the complicated machine instructions, but com-
pilers generally did not. It was di�cult enough to get a compiler to recognize when a complicated instruction
could be used, but the real problem was one of optimizations: verbatim translation of source constructs isn't
very e�cient. An optimizing compiler works by simplifying and eliminating redundant computations. After
a pass through an optimizing compiler, opportunities to use the complicated instructions tend to disappear.

5.1.3 Fundamental of RISC6

A RISC machine could have been built in 1960. (In fact, Seymour Cray built one in 1964 � the CDC 6600.)
However, given the same costs of components, technical barriers, and even expectations for how computers
would be used, you would probably still have chosen a CISC design � even with the bene�t of hindsight.

The exact inspiration that led to developing high performance RISC microprocessors in the 1980s is a
subject of some debate. Regardless of the motivation of the RISC designers, there were several obvious
pressures that a�ected the development of RISC:

• The number of transistors that could �t on a single chip was increasing. It was clear that one would
eventually be able to �t all the components from a processor board onto a single chip.

• Techniques such as pipelining were being explored to improve performance. Variable-length instructions
and variable-length instruction execution times (due to varying numbers of microcode steps) made
implementing pipelines more di�cult.

• As compilers improved, they found that well-optimized sequences of stream- lined instructions often
outperformed the equivalent complicated multi-cycle instructions. (See Appendix A, Processor Archi-
tectures, and Appendix B, Looking at Assembly Language.)

The RISC designers sought to create a high performance single-chip processor with a fast clock rate. When
a CPU can �t on a single chip, its cost is decreased, its reliability is increased, and its clock speed can be
increased. While not all RISC processors are single-chip implementation, most use a single chip.

To accomplish this task, it was necessary to discard the existing CISC instruction sets and develop a new
minimal instruction set that could �t on a single chip. Hence the term reduced instruction set computer. In
a sense reducing the instruction set was not an �end� but a means to an end.

For the �rst generation of RISC chips, the restrictions on the number of components that could be
manufactured on a single chip were severe, forcing the designers to leave out hardware support for some
instructions. The earliest RISC processors had no �oating-point support in hardware, and some did not
even support integer multiply in hardware. However, these instructions could be implemented using software
routines that combined other instructions (a microcode of sorts).

These earliest RISC processors (most severely reduced) were not overwhelming successes for four reasons:

• It took time for compilers, operating systems, and user software to be retuned to take advantage of
the new processors.

• If an application depended on the performance of one of the software-implemented instructions, its
performance su�ered dramatically.

• Because RISC instructions were simpler, more instructions were needed to accomplish the task.
• Because all the RISC instructions were 32 bits long, and commonly used CISC instructions were as

short as 8 bits, RISC program executables were often larger.

As a result of these last two issues, a RISC program may have to fetch more memory for its instructions
than a CISC program. This increased appetite for instructions actually clogged the memory bottleneck until
su�cient caches were added to the RISC processors. In some sense, you could view the caches on RISC
processors as the microcode store in a CISC processor. Both reduced the overall appetite for instructions
that were loaded from memory.

6This content is available online at <http://cnx.org/content/m33673/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

242 APPENDIX

While the RISC processor designers worked out these issues and the manufacturing capability improved,
there was a battle between the existing (now called CISC) processors and the new RISC (not yet successful)
processors. The CISC processor designers had mature designs and well-tuned popular software. They also
kept adding performance tricks to their systems. By the time Motorola had evolved from the MC68000 in
1982 that was a CISC processor to the MC68040 in 1989, they referred to the MC68040 as a RISC processor.7

However, the RISC processors eventually became successful. As the amount of logic available on a single
chip increased, �oating-point operations were added back onto the chip. Some of the additional logic was
used to add on-chip cache to solve some of the memory bottleneck problems due to the larger appetite
for instruction memory. These and other changes moved the RISC architectures from the defensive to the
o�ensive.

RISC processors quickly became known for their a�ordable high-speed �oating- point capability compared
to CISC processors.8 This excellent performance on scienti�c and engineering applications e�ectively created
a new type of computer system, the workstation. Workstations were more expensive than personal computers
but their cost was su�ciently low that workstations were heavily used in the CAD, graphics, and design
areas. The emerging workstation market e�ectively created three new computer companies in Apollo, Sun
Microsystems, and Silicon Graphics.

Some of the existing companies have created competitive RISC processors in addition to their CISC
designs. IBM developed its RS-6000 (RIOS) processor, which had excellent �oating-point performance. The
Alpha from DEC has excellent performance in a number of computing benchmarks. Hewlett-Packard has
developed the PA-RISC series of processors with excellent performance. Motorola and IBM have teamed to
develop the PowerPC series of RISC processors that are used in IBM and Apple systems.

By the end of the RISC revolution, the performance of RISC processors was so impressive that single
and multiprocessor RISC-based server systems quickly took over the minicomputer market and are currently
encroaching on the traditional mainframe market.

5.1.3.1 Characterizing RISC

RISC is more of a design philosophy than a set of goals. Of course every RISC processor has its own
personality. However, there are a number of features commonly found in machines people consider to be
RISC:

• Instruction pipelining
• Pipelining �oating-point execution
• Uniform instruction length
• Delayed branching
• Load/store architecture
• Simple addressing modes

This list highlights the di�erences between RISC and CISC processors. Naturally, the two types of
instruction-set architectures have much in common; each uses registers, memory, etc. And many of these
techniques are used in CISC machines too, such as caches and instruction pipelines. It is the fundamental
di�erences that give RISC its speed advantage: focusing on a smaller set of less powerful instructions makes
it possible to build a faster computer.

However, the notion that RISC machines are generally simpler than CISC machines isn't correct. Other
features, such as functional pipelines, sophisticated memory systems, and the ability to issue two or more
instructions per clock make the latest RISC processors the most complicated ever built. Furthermore, much
of the complexity that has been lifted from the instruction set has been driven into the compilers, making a
good optimizing compiler a prerequisite for machine performance.

Let's put ourselves in the role of computer architect again and look at each item in the list above to
understand why it's important.

7And they did it without ever taking out a single instruction!
8The typical CISC microprocessor in the 1980s supported �oating-point operations in a separate coprocessor.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

APPENDIX 243

5.1.3.2 Pipelines

Everything within a digital computer (RISC or CISC) happens in step with a clock: a signal that paces the
computer's circuitry. The rate of the clock, or clock speed, determines the overall speed of the processor.
There is an upper limit to how fast you can clock a given computer.

A number of parameters place an upper limit on the clock speed, including the semiconductor technology,
packaging, the length of wires tying the pieces together, and the longest path in the processor. Although
it may be possible to reach blazing speed by optimizing all of the parameters, the cost can be prohibitive.
Furthermore, exotic computers don't make good o�ce mates; they can require too much power, produce too
much noise and heat, or be too large. There is incentive for manufacturers to stick with manufacturable and
marketable technologies.

Reducing the number of clock ticks it takes to execute an individual instruction is a good idea, though cost
and practicality become issues beyond a certain point. A greater bene�t comes from partially overlapping
instructions so that more than one can be in progress simultaneously. For instance, if you have two additions
to perform, it would be nice to execute them both at the same time. How do you do that? The �rst,
and perhaps most obvious, approach, would be to start them simultaneously. Two additions would execute
together and complete together in the amount of time it takes to perform one. As a result, the throughput
would be e�ectively doubled. The downside is that you would need hardware for two adders in a situation
where space is usually at a premium (especially for the early RISC processors).

Other approaches for overlapping execution are more cost-e�ective than side-by-side execution. Imagine
what it would be like if, a moment after launching one operation, you could launch another without waiting
for the �rst to complete. Perhaps you could start another of the same type right behind the �rst one � like
the two additions. This would give you nearly the performance of side-by-side execution without duplicated
hardware. Such a mechanism does exist to varying degrees in all computers � CISC and RISC. It's called
a pipeline. A pipeline takes advantage of the fact that many operations are divided into identi�able steps,
each of which uses di�erent resources on the processor.9

A Pipeline

Figure 5.1

Figure 5.1 (A Pipeline) shows a conceptual diagram of a pipeline. An operation entering at the left
proceeds on its own for �ve clock ticks before emerging at the right. Given that the pipeline stages are
independent of one another, up to �ve operations can be in �ight at a time as long as each instruction is

9Here is a simple analogy: imagine a line at a fast-food drive up window. If there is only one window, one customer orders
and pays, and the food is bagged and delivered to the customer before the second customer orders. For busier restaurants,
there are three windows. First you order, then move ahead. Then at a second window, you pay and move ahead. At the third
window you pull up, grab the food and roar o� into the distance. While your wait at the three-window (pipelined) drive-up
may have been slightly longer than your wait at the one-window (non-pipelined) restaurant, the pipeline solution is signi�cantly
better because multiple customers are being processed simultaneously.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

244 APPENDIX

delayed long enough for the previous instruction to clear the pipeline stage. Consider how powerful this
mechanism is: where before it would have taken �ve clock ticks to get a single result, a pipeline produces as
much as one result every clock tick.

Pipelining is useful when a procedure can be divided into stages. Instruction processing �ts into that
category. The job of retrieving an instruction from memory, �guring out what it does, and doing it are
separate steps we usually lump together when we talk about executing an instruction. The number of steps
varies, depending on whose processor you are using, but for illustration, let's say there are �ve:

1. Instruction fetch: The processor fetches an instruction from memory.
2. Instruction decode: The instruction is recognized or decoded.
3. Operand Fetch: The processor fetches the operands the instruction needs. These operands may be in

registers or in memory.
4. Execute: The instruction gets executed.
5. Writeback: The processor writes the results back to wherever they are supposed to go �possibly

registers, possibly memory.

Ideally, instruction

1. Will be entering the operand fetch stage as instruction
2. enters instruction decode stage and instruction
3. starts instruction fetch, and so on.

Our pipeline is �ve stages deep, so it should be possible to get �ve instructions in �ight all at once. If
we could keep it up, we would see one instruction complete per clock cycle.

Simple as this illustration seems, instruction pipelining is complicated in real life. Each step must be able
to occur on di�erent instructions simultaneously, and delays in any stage have to be coordinated with all
those that follow. In Figure 5.2 (Three instructions in �ight through one pipeline) we see three instructions
being executed simultaneously by the processor, with each instruction in a di�erent stage of execution.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

APPENDIX 245

Three instructions in �ight through one pipeline

Figure 5.2

For instance, if a complicated memory access occurs in stage three, the instruction needs to be delayed
before going on to stage four because it takes some time to calculate the operand's address and retrieve it
from memory. All the while, the rest of the pipeline is stalled. A simpler instruction, sitting in one of the
earlier stages, can't continue until the tra�c ahead clears up.

Now imagine how a jump to a new program address, perhaps caused by an if statement, could disrupt
the pipeline �ow. The processor doesn't know an instruction is a branch until the decode stage. It usually
doesn't know whether a branch will be taken or not until the execute stage. As shown in Figure 5.3
(Detecting a branch), during the four cycles after the branch instruction was fetched, the processor blindly
fetches instructions sequentially and starts these instructions through the pipeline.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

246 APPENDIX

Detecting a branch

Figure 5.3

If the branch �falls through,� then everything is in great shape; the pipeline simply executes the next
instruction. It's as if the branch were a �no-op� instruction. However, if the branch jumps away, those three
partially processed instructions never get executed. The �rst order of business is to discard these �in-�ight�
instructions from the pipeline. It turns out that because none of these instructions was actually going to
do anything until its execute stage, we can throw them away without hurting anything (other than our
e�ciency). Somehow the processor has to be able to clear out the pipeline and restart the pipeline at the
branch destination.

Unfortunately, branch instructions occur every �ve to ten instructions in many programs. If we executed
a branch every �fth instruction and only half our branches fell through, the lost e�ciency due to restarting
the pipeline after the branches would be 20 percent.

You need optimal conditions to keep the pipeline moving. Even in less-than-optimal conditions, instruc-
tion pipelining is a big win � especially for RISC processors. Interestingly, the idea dates back to the
late 1950s and early 1960s with the UNI- VAC LARC and the IBM Stretch. Instruction pipelining became
mainstreamed in 1964, when the CDC 6600 and the IBM S/360 families were introduced with pipelined
instruction units � on machines that represented RISC-ish and CISC designs, respectively. To this day,
ever more sophisticated techniques are being applied to instruction pipelining, as machines that can overlap
instruction execution become commonplace.

5.1.3.3 Pipelined Floating-Point Operations

Because the execution stage for �oating-point operations can take longer than the execution stage for �xed-
point computations, these operations are typically pipelined, too. Generally, this includes �oating-point
addition, subtraction, multiplication, comparisons, and conversions, though it might not include square
roots and division. Once a pipelined �oating-point operation is started, calculations continue through the

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

APPENDIX 247

several stages without delaying the rest of the processor. The result appears in a register at some point in
the future.

Some processors are limited in the amount of overlap their �oating-point pipelines can support. Internal
components of the pipelines may be shared (for adding, multiplying, normalizing, and rounding intermediate
results), forcing restrictions on when and how often you can begin new operations. In other cases, �oating-
point operations can be started every cycle regardless of the previous �oating- point operations. We say that
such operations are fully pipelined.

The number of stages in �oating-point pipelines for a�ordable computers has decreased over the last
10 years. More transistors and newer algorithms make it possible to perform a �oating-point addition or
multiplication in just one to three cycles. Generally the most di�cult instruction to perform in a single cycle
is the �oating-point multiply. However, if you dedicate enough hardware to it, there are designs that can
operate in a single cycle at a moderate clock rate.

5.1.3.4 Uniform Instruction Length

Our sample instruction pipeline had �ve stages: instruction fetch, instruction decode, operand fetch, execu-
tion, and writeback. We want this pipeline to be able to process �ve instructions in various stages without
stalling. Decomposing each operation into �ve identi�able parts, each of which is roughly the same amount
of time, is challenging enough for a RISC computer. For a designer working with a CISC instruction set, it's
especially di�cult because CISC instructions come in varying lengths. A simple �return from subroutine�
instruction might be one byte long, for instance, whereas it would take a longer instruction to say �add reg-
ister four to memory location 2005 and leave the result in register �ve.� The number of bytes to be fetched
must be known by the fetch stage of the pipeline as shown in Figure 5.4 (Variable length instructions make
pipelining di�cult).

Variable length instructions make pipelining di�cult

Figure 5.4

The processor has no way of knowing how long an instruction will be until it reaches the decode stage
and determines what it is. If it turns out to be a long instruction, the processor may have to go back to
memory and get the portion left behind; this stalls the pipeline. We could eliminate the problem by requiring
that all instructions be the same length, and that there be a limited number of instruction formats as shown
in Figure 5.5 (Variable-length CISC versus �xed-length RISC instructions). This way, every instruction
entering the pipeline is known a priori to be complete � not needing another memory access. It would
also be easier for the processor to locate the instruction �elds that specify registers or constants. Altogether
because RISC can assume a �xed instruction length, the pipeline �ows much more smoothly.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

248 APPENDIX

Variable-length CISC versus �xed-length RISC instructions

Figure 5.5

5.1.3.5 Delayed Branches

As described earlier, branches are a signi�cant problem in a pipelined architecture. Rather than take a
penalty for cleaning out the pipeline after a misguessed branch, many RISC designs require an instruction
after the branch. This instruction, in what is called the branch delay slot, is executed no matter what way
the branch goes. An instruction in this position should be useful, or at least harmless, whichever way the
branch proceeds. That is, you expect the processor to execute the instruction following the branch in either
case, and plan for it. In a pinch, a no-op can be used. A slight variation would be to give the processor the
ability to annul (or squash) the instruction appearing in the branch delay slot if it turns out that it shouldn't
have been issued after all:

ADD R1,R2,R1 add r1 to r2 and store in r1

SUB R3,R1,R3 subtract r1 from r3, store in r3

BRA SOMEWHERE branch somewhere else

LABEL1 ZERO R3 instruction in branch delay slot

...

While branch delay slots appeared to be a very clever solution to eliminating pipeline stalls associated with
branch operations, as processors moved toward exe- cuting two and four instructions simultaneously, another
approach was needed.10

A more robust way of eliminating pipeline stalls was to �predict� the direction of the branch using a table
stored in the decode unit. As part of the decode stage, the CPU would notice that the instruction was a

10Interestingly, while the delay slot is no longer critical in processors that execute four instructions simultaneously, there
is not yet a strong reason to remove the feature. Removing the delay slot would be nonupwards-compatible, breaking many
existing codes. To some degree, the branch delay slot has become �baggage� on those �new� 10-year-old architectures that must
continue to support it.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

APPENDIX 249

branch and consult a table that kept the recent behavior of the branch; it would then make a guess. Based
on the guess, the CPU would immediately begin fetching at the predicted location. As long as the guesses
were correct, branches cost exactly the same as any other instruction.

If the prediction was wrong, the instructions that were in process had to be can- celled, resulting in
wasted time and e�ort. A simple branch prediction scheme is typically correct well over 90% of the time,
signi�cantly reducing the overall negative performance impact of pipeline stalls due to branches. All recent
RISC designs incorporate some type of branch prediction, making branch delay slots e�ectively unnecessary.

Another mechanism for reducing branch penalties is conditional execution. These are instructions that
look like branches in source code, but turn out to be a special type of instruction in the object code. They are
very useful because they replace test and branch sequences altogether. The following lines of code capture
the sense of a conditional branch:

IF (B < C) THEN

A = D

ELSE

A = E

ENDIF

Using branches, this would require at least two branches to ensure that the proper value ended up in A.
Using conditional execution, one might generate code that looks as follows:

COMPARE B < C

IF TRUE A = D conditional instruction

IF FALSE A = E conditional instruction

This is a sequence of three instructions with no branches. One of the two assignments executes, and the
other acts as a no-op. No branch prediction is needed, and the pipeline operates perfectly. There is a cost
to taking this approach when there are a large number of instructions in one or the other branch paths that
would seldom get executed using the traditional branch instruction model.

5.1.3.6 Load/Store Architecture

In a load/store instruction set architecture, memory references are limited to explicit load and store instruc-
tions. Each instruction may not make more than one memory reference per instruction. In a CISC processor,
arithmetic and logical instructions can include embedded memory references. There are three reasons why
limiting loads and stores to their own instructions is an improvement:

• First, we want all instructions to be the same length, for the reasons given above. However, �xed
lengths impose a budget limit when it comes to describing what the operation does and which registers
it uses. An instruction that both referenced memory and performed some calculation wouldn't �t
within one instruction word.

• Second, giving every instruction the option to reference memory would com- plicate the pipeline because
there would be two computations to perform� the address calculation plus whatever the instruction
is supposed to do � but there is only one execution stage. We could throw more hardware at it,
but by restricting memory references to explicit loads and stores, we can avoid the problem entirely.
Any instruction can perform an address calculation or some other operation, but no instruction can
do both.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

250 APPENDIX

• The third reason for limiting memory references to explicit loads and stores is that they can take more
time than other instructions � sometimes two or three clock cycles more. A general instruction with
an embedded memory reference would get hung up in the operand fetch stage for those extra cycles,
waiting for the reference to complete. Again we would be faced with an instruction pipeline stall.

Explicit load and store instructions can kick o� memory references in the pipeline's execute stage, to be
completed at a later time (they might complete immediately; it depends on the processor and the cache).
An operation downstream may require the result of the reference, but that's all right, as long as it is far
enough downstream that the reference has had time to complete.

5.1.3.7 Simple Addressing Modes

Just as we want to simplify the instruction set, we also want a simple set of memory addressing modes. The
reasons are the same: complicated address calculations, or those that require multiple memory references,
will take too much time and stall the pipeline. This doesn't mean that your program can't use elegant data
structures; the compiler explicitly generates the extra address arithmetic when it needs it, as long as it can
count on a few fundamental addressing modes in hardware. In fact, the extra address arithmetic is often
easier for the compiler to optimize into faster forms (see Section 5.2.1 and Section 2.1.6.8 (Induction Variable
Simpli�cation)).

Of course, cutting back the number of addressing modes means that some memory references will take
more real instructions than they might have taken on a CISC machine. However, because everything executes
more quickly, it generally is still a performance win.

5.1.4 Second-Generation RISC Processors11

The Holy Grail for early RISC machines was to achieve one instruction per clock. The idealized RISC
computer running at, say, 50 MHz, would be able to issue 50 million instructions per second assuming
perfect pipeline scheduling. As we have seen, a single instruction will take �ve or more clock ticks to get
through the instruction pipeline, but if the pipeline can be kept full, the aggregate rate will, in fact, approach
one instruction per clock. Once the basic pipelined RISC processor designs became successful, competition
ensued to determine which company could build the best RISC processor.

Second-generation RISC designers used three basic methods to develop competitive RISC processors:

• Improve the manufacturing processes to simply make the clock rate faster. Take a simple design; make
it smaller and faster. This approach was taken by the Alpha processors from DEC. Alpha processors
typically have had clock rates double those of the closest competitor.

• Add duplicate compute elements on the space available as we can manufacture chips with more transis-
tors. This could allow two instructions to be executed per cycle and could double performance without
increasing clock rate. This technique is called superscalar.

• Increase the number of stages in the pipeline above �ve. If the instructions can truly be decom-
posed evenly into, say, ten stages, the clock rate could theoretically be doubled without requiring new
manufacturing processes. This technique was called superpipelining. The MIPS processors used this
technique with some success.

5.1.4.1 Superscalar Processors

The way you get two or more instructions per clock is by starting several operations side by side, possibly
in separate pipelines. In Figure 5.6 (Decomposing a serial stream), if you have an integer addition and a
multiplication to perform, it should be possible to begin them simultaneously, provided they are independent
of each other (as long as the multiplication does not need the output of the addition as one of its operands

11This content is available online at <http://cnx.org/content/m33675/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

APPENDIX 251

or vice versa). You could also execute multiple �xed-point instructions � compares, integer additions, etc.
� at the same time, provided that they, too, are independent. Another term used to describe superscalar
processors is multiple instruction issue processors.

Decomposing a serial stream

Figure 5.6

The number and variety of operations that can be run in parallel depends on both the program and
the processor. The program has to have enough usable parallelism so that there are multiple things to do,
and the processor has to have an appropriate assortment of functional units and the ability to keep them
busy. The idea is conceptually simple, but it can be a challenge for both hardware designers and compiler
writers. Every opportunity to do several things in parallel exposes the danger of violating some precedence
(i.e., performing computations in the wrong order).

5.1.4.2 Superpipelined Processors

Roughly stated, simpler circuitry can run at higher clock speeds. Put yourself in the role of a CPU designer
again. Looking at the instruction pipeline of your processor, you might decide that the reason you can't get
more speed out of it is that some of the stages are too complicated or have too much going on, and they are
placing limits on how fast the whole pipeline can go. Because the stages are clocked in unison, the slowest
of them forms a weak link in the chain.

If you divide the complicated stages into less complicated portions, you can increase the overall speed
of the pipeline. This is called superpipelining. More instruction pipeline stages with less complexity per
stage will do the same work as a pipelined processor, but with higher throughput due to increased clock
speed. Figure 5.7 (MIPS R4000 instruction pipeline) shows an eight-stage pipeline used in the MIPS R4000
processor.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

252 APPENDIX

MIPS R4000 instruction pipeline

Figure 5.7

Theoretically, if the reduced complexity allows the processor to clock faster, you can achieve nearly
the same performance as superscalar processors, yet without instruction mix preferences. For illustration,
picture a superscalar processor with two units � �xed- and �oating-point � executing a program that is
composed solely of �xed-point calculations; the �oating-point unit goes unused. This reduces the superscalar
performance by one half compared to its theoretical maximum. A superpipelined processor, on the other
hand, will be perfectly happy to handle an unbalanced instruction mix at full speed.

Superpipelines are not new; deep pipelines have been employed in the past, notably on the CDC 6600.
The label is a marketing creation to draw contrast to superscalar processing, and other forms of e�cient,
high-speed computing.

Superpipelining can be combined with other approaches. You could have a superscalar machine with
deep pipelines (DEC AXP and MIPS R-8000 are examples). In fact, you should probably expect that
faster pipelines with more stages will become so commonplace that nobody will remember to call them
superpipelines after a while.

5.1.5 RISC Means Fast12

We all know that the �R� in RISC means �reduced.� Lately, as the number of components that can be
manufactured on a chip has increased, CPU designers have been looking at ways to make their processors
faster by adding features. We have already talked about many of the features such as on-chip multipliers,
very fast �oating-point, lots of registers, and on-chip caches. Even with all of these features, there seems to
be space left over. Also, because much of the design of the control section of the processor is automated, it
might not be so bad to add just a �few� new instructions here and there. Especially if simulations indicate
a 10% overall increase in speed!

So, what does it mean when they add 15 instructions to a RISC instruction set architecture (ISA)? Would
we call it �not-so-RISC�? A suggested term for this trend is FISC, or fast instruction set computer. The
point is that reducing the number of instructions is not the goal. The goal is to build the fastest possible
processor within the manufacturing and cost constraints.13

Some of the types of instructions that are being added into architectures include:

• More addressing modes
• Meta-instructions such as �decrement counter and branch if non-zero�
• Specialized graphics instructions such as the Sun VIS set, the HP graphics instructions, the MIPS

Digital Media Extentions (MDMX), and the Intel MMX instructions

12This content is available online at <http://cnx.org/content/m33679/1.3/>.
13People will argue forever but, in a sense, reducing the instruction set was never an end in itself, it was a means to an end.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

APPENDIX 253

Interestingly, the reason that the �rst two are feasible is that adder units take up so little space, it is possible
to put one adder into the decode unit and another into the load/store unit. Most visualization instruction
sets take up very little chip area. They often provide �ganged� 8-bit computations to allow a 64-bit register
to be used to perform eight 8-bit operations in a single instruction.

5.1.6 Out-of-Order Execution: The Post-RISC Architecture14

We're never satis�ed with the performance level of our computing equipment and neither are the processor
designers. Two-way superscalar processors were very successful around 1994. Many designs were able to
execute 1.6�1.8 instructions per cycle on average, using all of the tricks described so far. As we became able
to manufacture chips with an ever-increasing transistor count, it seemed that we would naturally progress to
four-way and then eight-way superscalar processors. The fundamental problem we face when trying to keep
four functional units busy is that it's di�cult to �nd contiguous sets of four (or eight) instructions that can
be executed in parallel. It's an easy cop-out to say, �the compiler will solve it all.�

The solution to these problems that will allow these processors to e�ectively use four functional units per
cycle and hide memory latency is out-of-order execution and speculative execution. Out-of-order execution
allows a later instruction to be processed before an earlier instruction is completed. The processor is �betting�
that the instruction will execute, and the processor will have the precomputed �answer� the instruction needs.
In some ways, portions of the RISC design philosophy are turned inside-out in these new processors.

5.1.6.1 Speculative Computation

To understand the post-RISC architecture, it is important to separate the concept of computing a value for
an instruction and actually executing the instruction. Let's look at a simple example:

LD R10,R2(R0) Load into R10 from memory

... 30 Instructions of various kinds (not FDIV)

FDIV R4,R5,R6 R4 = R5 / R6

Assume that (1) we are executing the load instruction, (2) R5 and R6 are already loaded from earlier
instructions, (3) it takes 30 cycles to do a �oating-point divide, and (4) there are no instructions that need
the divide unit between the LD and the FDIV. Why not start the divide unit computing the FDIV right
now, storing the result in some temporary scratch area? It has nothing better to do. When or if we arrive
at the FDIV, we will know the result of the calculation, copy the scratch area into R4, and the FDIV will
appear to execute in one cycle. Sound farfetched? Not for a post-RISC processor.

The post-RISC processor must be able to speculatively compute results before the processor knows
whether or not an instruction will actually execute. It accomplishes this by allowing instructions to start
that will never �nish and allowing later instructions to start before earlier instructions �nish.

To store these instructions that are in limbo between started and �nished, the post-RISC processor needs
some space on the processor. This space for instructions is called the instruction reorder bu�er (IRB).

5.1.6.2 The Post-RISC Pipeline

The post-RISC processor pipeline in Figure 5.8 (Post-RISC pipeline) looks somewhat di�erent from the
RISC pipeline. The �rst two stages are still instruction fetch and decode. Decode includes branch prediction
using a table that indicates the probable behavior of a branch. Once instructions are decoded and branches
are predicted, the instructions are placed into the IRB to be computed as soon as possible.

14This content is available online at <http://cnx.org/content/m33677/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

254 APPENDIX

Post-RISC pipeline

Figure 5.8

The IRB holds up to 60 or so instructions that are waiting to execute for one reason or another. In a sense,
the fetch and decode/predict phases operate until the bu�er �lls up. Each time the decode unit predicts a
branch, the following instructions are marked with a di�erent indicator so they can be found easily if the
prediction turns out to be wrong. Within the bu�er, instructions are allowed to go to the computational
units when the instruction has all of its operand values. Because the instructions are computing results
without being executed, any instruction that has its input values and an available computation unit can be
computed. The results of these computations are stored in extra registers not visible to the programmer
called rename registers. The processor allocates rename registers, as they are needed for instructions being
computed.

The execution units may have one or more pipeline stages, depending on the type of the instruction. This
part looks very much like traditional superscalar RISC processors. Typically up to four instructions can begin
computation from the IRB in any cycle, provided four instructions are available with input operands and
there are su�cient computational units for those instructions.

Once the results for the instruction have been computed and stored in a rename register, the instruction
must wait until the preceding instructions �nish so we know that the instruction actually executes. In
addition to the computed results, each instruction has �ags associated with it, such as exceptions. For

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

APPENDIX 255

example, you would not be happy if your program crashed with the following message: �Error, divide by
zero. I was precomputing a divide in case you got to the instruction to save some time, but the branch
was mispredicted and it turned out that you were never going to execute that divide anyway. I still had to
blow you up though. No hard feelings? Signed, the post-RISC CPU.� So when a speculatively computed
instruction divides by zero, the CPU must simply store that fact until it knows the instruction will execute
and at that moment, the program can be legitimately crashed.

If a branch does get mispredicted, a lot of bookkeeping must occur very quickly. A message is sent to all
the units to discard instructions that are part of all control �ow paths beyond the incorrect branch.

Instead of calling the last phase of the pipeline �writeback,� it's called �retire.� The retire phase is what
�executes� the instructions that have already been computed. The retire phase keeps track of the instruction
execution order and retires the instructions in program order, posting results from the rename registers to
the actual registers and raising exceptions as necessary. Typically up to four instructions can be retired per
cycle.

So the post-RISC pipeline is actually three pipelines connected by two bu�ers that allow instructions to
be processed out of order. However, even with all of this speculative computation going on, the retire unit
forces the processor to appear as a simple RISC processor with predictable execution and interrupts.

5.1.7 Closing Notes15

Congratulations for reaching the end of a long chapter! We have talked a little bit about old computers,
CISC, RISC, post-RISC, and EPIC, and mentioned supercomputers in passing. I think it's interesting to
observe that RISC processors are a branch o� a long-established tree. Many of the ideas that have gone into
RISC designs are borrowed from other types of computers, but none of them evolved into RISC � RISC
started at a discontinuity. There were hints of a RISC revolution (the CDC 6600 and the IBM 801 project)
but it really was forced on the world (for its own good) by CPU designers at Berkeley and Stanford in the
1980s.

As RISC has matured, there have been many improvements. Each time it appears that we have reached
the limit of the performance of our microprocessors there is a new architectural breakthrough improving our
single CPU performance. How long can it continue? It is clear that as long as competition continues, there
is signi�cant performance headroom using the out-of-order execution as the clock rates move from a typical
200 MHz to 500+ MHz. DEC's Alpha 21264 is planned to have four-way out-of-order execution at 500 MHz
by 1998. As of 1998, vendors are beginning to reveal their plans for processors clocked at 1000 MHz or 1
GHz.

Unfortunately, developing a new processor is a very expensive task. If enough companies merge and
competition diminishes, the rate of innovation will slow. Hopefully we will be seeing four processors on a
chip, each 16-way out-of-order superscalar, clocked at 1 GHz for $200 before we eliminate competition and
let the CPU designers rest on their laurels. At that point, scalable parallel processing will suddenly become
interesting again.

How will designers tackle some of the fundamental architectural problems, perhaps the largest being
memory systems? Even though the post-RISC architecture and the EPIC alleviate the latency problems
somewhat, the memory bottleneck will always be there. The good news is that even though memory
performance improves more slowly than CPU performance, memory system performance does improve over
time. We'll look next at techniques for building memory systems.

As discussed in Section , the exercises that come at the end of most chapters in this book are not like the
exercises in most engineering texts. These exercises are mostly thought experiments, without well-de�ned
answers, designed to get you thinking about the hardware on your desk.

15This content is available online at <http://cnx.org/content/m33683/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

256 APPENDIX

5.1.8 Exercises16

Exercise 5.1.8.1
Speculative execution is safe for certain types of instructions; results can be discarded if it turns out
that the instruction shouldn't have executed. Floating- point instructions and memory operations
are two classes of instructions for which speculative execution is trickier, particularly because of
the chance of generating exceptions. For instance, dividing by zero or taking the square root of
a negative number causes an exception. Under what circumstances will a speculative memory
reference cause an exception?

Exercise 5.1.8.2
Picture a machine with �oating-point pipelines that are 100 stages deep (that's ridiculously deep),
each of which can deliver a new result every nanosecond. That would give each pipeline a peak
throughput rate of 1 G�op, and a worst- case throughput rate of 10 M�ops. What characteristics
would a program need to have to take advantage of such a pipeline?

5.2 Appendix B: Looking at Assembly Language

5.2.1 Assembly Language17

In this appendix, we take a look at the assembly language produced by a number of di�erent compilers on a
number of di�erent architectures. In this survey we revisit some of the issues of CISC versus RISC, and the
strengths and weaknesses of di�erent architectures.

For this survey, two roughly identical segments of code were used. The code was a relatively long loop
adding two arrays and storing the result in a third array. The loops were written both in FORTRAN and C.

The FORTRAN loop was as follows:

SUBROUTINE ADDEM(A,B,C,N)

REAL A(10000),B(10000),C(10000)

INTEGER N,I

DO 10 I=1,N

A(I) = B(I) + C(I)

ENDDO

END

The C version was:

for(i=0;i<n;i++) a[i] = b[i] + c[i];

We have gathered these examples over the years from a number of di�erent compilers, and the results are not
particularly scienti�c. This is not intended to review a particular architecture or compiler version, but rather
just to show an example of the kinds of things you can learn from looking at the output of the compiler.

16This content is available online at <http://cnx.org/content/m33682/1.3/>.
17This content is available online at <http://cnx.org/content/m33787/1.3/>.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

APPENDIX 257

5.2.1.1 Intel 8088

The Intel 8088 processor used in the original IBM Personal Computer is a very traditional CISC processing
system with features severely limited by its transistor count. It has very few registers, and the registers
generally have rather speci�c functions. To support a large memory model, it must set its segment register
leading up to each memory operation. This limitation means that every memory access takes a minimum of
three instructions. Interestingly, a similar pattern occurs on RISC processors.

You notice that at one point, the code moves a value from the ax register to the bx register because it
needs to perform another computation that can only be done in the ax register. Note that this is only an
integer computation, as the Intel

mov word ptr -2[bp],0 # bp is I

$11:

mov ax,word ptr -2[bp] # Load I

cmp ax,word ptr 18[bp] # Check I>=N

bge $10

shl ax,1 # Multiply I by 2

mov bx,ax # Done - now move to bx

add bx,word ptr 10[bp] # bx = Address of B + Offset

mov es,word ptr 12[bp] # Top part of address

mov ax,es: word ptr [bx] # Load B(i)

mov bx,word ptr -2[bp] # Load I

shl bx,1 # Multiply I by 2

add bx,word ptr 14[bp] # bx = Address of C + Offset

mov es,word ptr 16[bp] # Top part of address

add ax,es: word ptr [bx] # Load C(I)

mov bx,word ptr -2[bp] # Load I

shl bx,1 # Multiply I by 2

add bx,word ptr 6[bp] # bx = Address of A + Offset

mov es,word ptr 8[bp] # Top part of address

mov es: word ptr [bx],ax # Store

$9:

inc word ptr -2[bp] # Increment I in memory

jmp $11

$10:

Because there are so few registers, the variable I is kept in memory and loaded several times throughout the
loop. The inc instruction at the end of the loop actually updates the value in memory. Interestingly, at the
top of the loop, the value is then reloaded from memory.

In this type of architecture, the available registers put such a strain on the �exibility of the compiler,
there is often not much optimization that is practical.

5.2.1.2 Motorola MC68020

In this section, we examine another classic CISC processor, the Motorola MC68020, which was used to build
Macintosh computers and Sun workstations. We happened to run this code on a BBN GP-1000 Butter�y
parallel processing system made up of 96 MC68020 processors.

The Motorola architecture is relatively easy to program in assembly language. It has plenty of 32-bit
registers, and they are relatively easy to use. It has a CISC instruction set that keeps assembly language
programming quite simple. Many instructions can perform multiple operations in a single instruction.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

258 APPENDIX

We use this example to show a progression of optimization levels, using a f77 compiler on a �oating-point
version of the loop. Our �rst example is with no optimization:

! Note d0 contains the value I

L5:

movl d0,L13 ! Store I to memory if loop ends

lea a1@(-4),a0 ! a1 = address of B

fmoves a0@(0,d0:l:4),fp0 ! Load of B(I)

lea a3@(-4),a0 ! a3 = address of C

fadds a0@(0,d0:l:4),fp0 ! Load of C(I) (And Add)

lea a2@(-4),a0 ! a2 = address of A

fmoves fp0,a0@(0,d0:l:4) ! Store of A(I)

addql #1,d0 ! Increment I

subql #1,d1 ! Decrement "N"

tstl d1

bnes L5

The value for I is stored in the d0 register. Each time through the loop, it's incremented by 1. At the
same time, register d1 is initialized to the value for N and decremented each time through the loop. Each
time through the loop, I is stored into memory, so the proper value for I ends up in memory when the
loop terminates. Registers a1, a2, and a3 are preloaded to be the �rst address of the arrays B, A, and C

respectively. However, since FORTRAN arrays begin at 1, we must subtract 4 from each of these addresses
before we can use I as the o�set. The lea instructions are e�ectively subtracting 4 from one address register
and storing it in another.

The following instruction performs an address computation that is almost a one-to- one translation of an
array reference:

fmoves a0@(0,d0:l:4),fp0 ! Load of B(I)

This instruction retrieves a �oating-point value from the memory. The address is computed by �rst multi-
plying d0 by 4 (because these are 32-bit �oating-point numbers) and adding that value to a0. As a matter
of fact, the lea and fmoves instructions could have been combined as follows:

fmoves a1@(-4,d0:l:4),fp0 ! Load of B(I)

To compute its memory address, this instruction multiplies d0 by 4, adds the contents of a1, and then
subtracts 4. The resulting address is used to load 4 bytes into �oating-point register fp0. This is almost a
literal translation of fetching B(I). You can see how the assembly is set up to track high-level constructs.

It is almost as if the compiler were �trying� to show o� and make use of the nifty assembly language
instructions.

Like the Intel, this is not a load-store architecture. The fadds instruction adds a value from memory to
a value in a register (fp0) and leaves the result of the addition in the register. Unlike the Intel 8088, we

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

APPENDIX 259

have enough registers to store quite a few of the values used throughout the loop (I, N, the address of A, B,
and C) in registers to save memory operations.

5.2.1.2.1 C on the MC68020

In the next example, we compiled the C version of the loop with the normal optimization (-O) turned on.
We see the C perspective on arrays in this code. C views arrays as extensions to pointers in C; the loop
index advances as an o�set from a pointer to the beginning of the array:

! d3 = I

! d1 = Address of A

! d2 = Address of B

! d0 = Address of C

! a6@(20) = N

moveq #0,d3 ! Initialize I

bras L5 ! Jump to End of the loop

L1: movl d3,a1 ! Make copy of I

movl a1,d4 ! Again

asll #2,d4 ! Multiply by 4 (word size)

movl d4,a1 ! Put back in an address register

fmoves a1@(0,d2:l),fp0 ! Load B(I)

movl a6@(16),d0 ! Get address of C

fadds a1@(0,d0:l),fp0 ! Add C(I)

fmoves fp0,a1@(0,d1:l) ! Store into A(I)

addql #1,d3 ! Increment I

L5:

cmpl a6@(20),d3

bits L1

We �rst see the value of I being copied into several registers and multiplied by 4 (using a left shift of 2,
strength reduction). Interestingly, the value in register a1 is I multiplied by 4. Registers d0, d1, and d2

are the addresses of C, B, and A respectively. In the load, add, and store, a1 is the base of the address
computation and d0, d1, and d2 are added as an o�set to a1 to compute each address.

This is a simplistic optimization that is primarily trying to maximize the values that are kept in registers
during loop execution. Overall, it's a relatively literal translation of the C language semantics from C to
assembly. In many ways, C was designed to generate relatively e�cient code without requiring a highly
sophisticated optimizer.

5.2.1.2.2 More optimization

In this example, we are back to the FORTRAN version on the MC68020. We have compiled it with the
highest level of optimization (-OLM) available on this compiler. Now we see a much more aggressive approach
to the loop:

! a0 = Address of C(I)

! a1 = Address of B(I)

! a2 = Address of A(I)

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

260 APPENDIX

L3:

fmoves a1@,fp0 ! Load B(I)

fadds a0@,fp0 ! Add C(I)

fmoves fp0,a2@ ! Store A(I)

addql #4,a0 ! Advance by 4

addql #4,a1 ! Advance by 4

addql #4,a2 ! Advance by 4

subql #1,d0 ! Decrement I

tstl d0

bnes L3

First o�, the compiler is smart enough to do all of its address adjustment outside the loop and store the
adjusted addresses of A, B, and C in registers. We do the load, add, and store in quick succession. Then we
advance the array addresses by 4 and perform the subtraction to determine when the loop is complete.

This is very tight code and bears little resemblance to the original FORTRAN code.

5.2.1.3 SPARC Architecture

These next examples were performed using a SPARC architecture system using FORTRAN. The SPARC
architecture is a classic RISC processor using load-store access to memory, many registers and delayed
branching. We �rst examine the code at the lowest optimization:

.L18: ! Top of the loop

ld [%fp-4],%l2 ! Address of B

sethi %hi(GPB.addem.i),%l0 ! Address of I in %l0

or %l0,%lo(GPB.addem.i),%l0

ld [%l0+0],%l0 ! Load I

sll %l0,2,%l1 ! Multiply by 4

add %l2,%l1,%l0 ! Figure effective address of B(I)

ld [%l0+0],%f3 ! Load B(I)

ld [%fp-8],%l2 ! Address of C

sethi %hi(GPB.addem.i),%l0 ! Address of I in %l0

or %l0,%lo(GPB.addem.i),%l0

ld [%l0+0],%l0 ! Load I

sll %l0,2,%l1 ! Multiply by 4

add %l2,%l1,%l0 ! Figure effective address of B(I)

ld [%l0+0],%f2 ! Load C(I)

fadds %f3,%f2,%f2 ! Do the Floating Point Add

ld [%fp-12],%l2 ! Address of A

sethi %hi(GPB.addem.i),%l0 ! Address of i in %l0

or %l0,%lo(GPB.addem.i),%l0

ld [%l0+0],%l0 ! Load I

sll %l0,2,%l1 ! Multiply by 4

add %l2,%l1,%l0 ! Figure effective address of A(I)

st %f2,[%l0+0] ! Store A(I)

sethi %hi(GPB.addem.i),%l0 ! Address of i in %l0

or %l0,%lo(GPB.addem.i),%l0

ld [%l0+0],%l0 ! Load I

add %l0,1,%l1 ! Increment I

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

APPENDIX 261

sethi %hi(GPB.addem.i),%l0 ! Address of I in %l0

or %l0,%lo(GPB.addem.i),%l0

st %l1,[%l0+0] ! Store I

sethi %hi(GPB.addem.i),%l0 ! Address of I in %l0

or %l0,%lo(GPB.addem.i),%l0

ld [%l0+0],%l1 ! Load I

ld [%fp-20],%l0 ! Load N

cmp %l1,%l0 ! Compare

ble .L18

nop ! Branch Delay Slot

This is some pretty poor code. We don't need to go through it line by line, but there are a few quick
observations we can make. The value for I is loaded from memory �ve times in the loop. The address of I
is computed six times throughout the loop (each time takes two instructions). There are no tricky memory
addressing modes, so multiplying I by 4 to get a byte o�set is done explicitly three times (at least they use
a shift). To add insult to injury, they even put a NO-OP in the branch delay slot.

One might ask, �Why do they ever generate code this bad?� Well, it's not because the compiler isn't
capable of generating e�cient code, as we shall see below. One explanation is that in this optimization level,
it simply does a one-to-one translation of the tuples (intermediate code) into machine language. You can
almost draw lines in the above example and precisely identify which instructions came from which tuples.

One reason to generate the code using this simplistic approach is to guarantee that the program will
produce the correct results. Looking at the above code, it's pretty easy to argue that it indeed does exactly
what the FORTRAN code does. You can track every single assembly statement directly back to part of a
FORTRAN statement.

It's pretty clear that you don't want to execute this code in a high performance production environment
without some more optimization.

5.2.1.3.1 Moderate optimization

In this example, we enable some optimization (-O1):

save %sp,-120,%sp ! Rotate the register window

add %i0,-4,%o0 ! Address of A(0)

st %o0,[%fp-12] ! Store on the stack

add %i1,-4,%o0 ! Address of B(0)

st %o0,[%fp-4] ! Store on the stack

add %i2,-4,%o0 ! Address of C(0)

st %o0,[%fp-8] ! Store on the stack

sethi %hi(GPB.addem.i),%o0 ! Address of I (top portion)

add %o0,%lo(GPB.addem.i),%o2 ! Address of I (lower portion)

ld [%i3],%o0 ! %o0 = N (fourth parameter)

or %g0,1,%o1 ! %o1 = 1 (for addition)

st %o0,[%fp-20] ! store N on the stack

st %o1,[%o2] ! Set memory copy of I to 1

ld [%o2],%o1 ! o1 = I (kind of redundant)

cmp %o1,%o0 ! Check I > N (zero-trip?)

bg .L12 ! Don't do loop at all

nop ! Delay Slot

ld [%o2],%o0 ! Pre-load for Branch Delay Slot

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

262 APPENDIX

.L900000110: ! Top of the loop

ld [%fp-4],%o1 ! o1 = Address of B(0)

sll %o0,2,%o0 ! Multiply I by 4

ld [%o1+%o0],%f2 ! f2 = B(I)

ld [%o2],%o0 ! Load I from memory

ld [%fp-8],%o1 ! o1 = Address of C(0)

sll %o0,2,%o0 ! Multiply I by 4

ld [%o1+%o0],%f3 ! f3 = C(I)

fadds %f2,%f3,%f2 ! Register-to-register add

ld [%o2],%o0 ! Load I from memory (not again!)

ld [%fp-12],%o1 ! o1 = Address of A(0)

sll %o0,2,%o0 ! Multiply I by 4 (yes, again)

st %f2,[%o1+%o0] ! A(I) = f2

ld [%o2],%o0 ! Load I from memory

add %o0,1,%o0 ! Increment I in register

st %o0,[%o2] ! Store I back into memory

ld [%o2],%o0 ! Load I back into a register

ld [%fp-20],%o1 ! Load N into a register

cmp %o0,%o1 ! I > N ??

ble,a .L900000110

ld [%o2],%o0 ! Branch Delay Slot

This is a signi�cant improvement from the previous example. Some loop constant computations (subtracting
4) were hoisted out of the loop. We only loaded I 4 times during a loop iteration. Strangely, the compiler
didn't choose to store the addresses of A(0), B(0), and C(0) in registers at all even though there were plenty
of registers. Even more perplexing is the fact that it loaded a value from memory immediately after it had
stored it from the exact same register!

But one bright spot is the branch delay slot. For the �rst iteration, the load was done before the loop
started. For the successive iterations, the �rst load was done in the branch delay slot at the bottom of the
loop.

Comparing this code to the moderate optimization code on the MC68020, you can begin to get a sense
of why RISC was not an overnight sensation. It turned out that an unsophisticated compiler could generate
much tighter code for a CISC processor than a RISC processor. RISC processors are always executing extra
instructions here and there to compensate for the lack of slick features in their instruction set. If a processor
has a faster clock rate but has to execute more instructions, it does not always have better performance than
a slower, more e�cient processor.

But as we shall soon see, this CISC advantage is about to evaporate in this particular example.

5.2.1.3.2 Higher optimization

We now increase the optimization to -O2. Now the compiler generates much better code. It's important you
remember that this is the same compiler being used for all three examples.

At this optimization level, the compiler looked through the code su�ciently well to know it didn't even
need to rotate the register windows (no save instruction). Clearly the compiler looked at the register usage
of the entire routine:

! Note, didn't even rotate the register Window

! We just use the %o registers from the caller

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

APPENDIX 263

! %o0 = Address of first element of A (from calling convention)

! %o1 = Address of first element of B (from calling convention)

! %o2 = Address of first element of C (from calling convention)

! %o3 = Address of N (from calling convention)

addem_:

ld [%o3],%g2 ! Load N

cmp %g2,1 ! Check to see if it is <1

bl .L77000006 ! Check for zero trip loop

or %g0,1,%g1 ! Delay slot - Set I to 1

.L77000003:

ld [%o1],%f0 ! Load B(I) First time Only

.L900000109:

ld [%o2],%f1 ! Load C(I)

fadds %f0,%f1,%f0 ! Add

add %g1,1,%g1 ! Increment I

add %o1,4,%o1 ! Increment Address of B

add %o2,4,%o2 ! Increment Address of C

cmp %g1,%g2 ! Check Loop Termination

st %f0,[%o0] ! Store A(I)

add %o0,4,%o0 ! Increment Address of A

ble,a .L900000109 ! Branch w/ annul

ld [%o1],%f0 ! Load the B(I)

.L77000006:

retl ! Leaf Return (No window)

nop ! Branch Delay Slot

This is tight code. The registers o0, o1, and o2 contain the addresses of the �rst elements of A, B, and C

respectively. They already point to the right value for the �rst iteration of the loop. The value for I is never
stored in memory; it is kept in global register g1. Instead of multiplying I by 4, we simply advance the
three addresses by 4 bytes each iteration.

The branch delay slots are utilized for both branches. The branch at the bottom of the loop uses the
annul feature to cancel the following load if the branch falls through.

The most interesting observation regarding this code is the striking similarity to the code and the code
generated for the MC68020 at its top optimization level:

L3:

fmoves a1@,fp0 ! Load B(I)

fadds a0@,fp0 ! Add C(I)

fmoves fp0,a2@ ! Store A(I)

addql #4,a0 ! Advance by 4

addql #4,a1 ! Advance by 4

addql #4,a2 ! Advance by 4

subql #1,d0 ! Decrement I

tstl d0

bnes L3

The two code sequences are nearly identical! For the SPARC, it does an extra load because of its load-store
architecture. On the SPARC, I is incremented and compared to N, while on the MC68020, I is decremented
and compared to zero.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

264 APPENDIX

This aptly shows how the advancing compiler optimization capabilities quickly made the �nifty� features
of the CISC architectures rather useless. Even on the CISC processor, the post-optimization code used the
simple forms of the instructions because they produce they fastest execution time.

Note that these code sequences were generated on an MC68020. An MC68060 should be able to eliminate
the three addql instructions by using post-increment, saving three instructions. Add a little loop unrolling,
and you have some very tight code. Of course, the MC68060 was never a broadly deployed workstation
processor, so we never really got a chance to take it for a test drive.

5.2.1.4 Convex C-240

This section shows the results of compiling on the Convex C-Series of parallel/vector supercomputers. In
addition to their normal registers, vector computers have vector registers that contain up to 256 64-bit
elements. These processors can perform operations on any subset of these registers with a single instruction.

It is hard to claim that these vector supercomputers are more RISC or CISC. They have simple lean
instruction sets and, hence, are RISC-like. However, they have instructions that implement loops, and so
they are somewhat CISC-like.

The Convex C-240 has scalar registers (s2), vector registers (v2), and address registers (a3). Each
vector register has 128 elements. The vector length register controls how many of the elements of each
vector register are processed by vector instructions. If vector length is above 128, the entire register is
processed.

The code to implement our loop is as follows:

L4: mov.ws 2,vl ; Set the Vector length to N

ld.w 0(a5),v0 ; Load B into Vector Register

ld.w 0(a2),v1 ; Load C into Vector Register

add.s v1,v0,v2 ; Add the vector registers

st.w v2,0(a3) ; Store results into A

add.w #-128,s2 ; Decrement "N"

add.w #512,a2 ; Advance address for A

add.w #512,a3 ; Advance address for B

add.w #512,a5 ; Advance address for C

lt.w #0,s2 ; Check to see if "N" is < 0

jbrs.t L4

Initially, the vector length register is set to N. We assume that for the �rst iteration, N is greater than 128.
The next instruction is a vector load instruction into register v0. This loads 128 32-bit elements into this
register. The next instruction also loads 128 elements, and the following instruction adds those two registers
and places the results into a third vector register. Then the 128 elements in Register v2 are stored back
into memory. After those elements have been processed, N is decremented by 128 (after all, we did process
128 elements). Then we add 512 to each of the addresses (4 bytes per element) and loop back up. At some
point, during the last iteration, if N is not an exact multiple of 128, the vector length register is less than
128, and the vector instructions only process those remaining elements up to N.

One of the challenges of vector processors is to allow an instruction to begin executing before the previous
instruction has completed. For example, once the load into Register v1 has partially completed, the processor
could actually begin adding the �rst few elements of v0 and v1 while waiting for the rest of the elements of
v1 to arrive. This approach of starting the next vector instruction before the previous vector instruction has
completed is called chaining. Chaining is an important feature to get maximum performance from vector
processors.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

APPENDIX 265

5.2.1.5 IBM RS-6000

The IBM RS-6000 is generally credited as the �rst RISC processor to have cracked the Linpack 100×100
benchmark. The RS-6000 is characterized by strong �oating-point performance and excellent memory band-
width among RISC workstations. The RS-6000 was the basis for IBM's scalable parallel processor: the
IBM-SP1 and SP2.

When our example program is run on the RS-6000, we can see the use of a CISC- style instruction in
the middle of a RISC processor. The RS-6000 supports a branch- on-count instruction that combines the
decrement, test, and branch operations into a single instruction. Moreover, there is a special register (the
count register) that is part of the instruction fetch unit that stores the current value of the counter. The
fetch unit also has its own add unit to perform the decrements for this instruction.

These types of features creeping into RISC architectures are occuring because there is plenty of chip
space for them. If a wide range of programs can run faster with this type of instruction, it's often added.

The assembly code on the RS-6000 is:

ai r3,r3,-4 # Address of A(0)

ai r5,r5,-4 # Address of B(0)

ai r4,r4,-4 # Address of C(0)

bcr BO_IF_NOT,CR0_GT

mtspr CTR,r6 # Store in the Counter Register

__L18:

lfsu fp0,4(r4) # Pre Increment Load

lfsu fp1,4(r5) # Pre Increment Load

fa fp0,fp0,fp1

frsp fp0,fp0

stfsu fp0,4(r3) # Pre-increment Store

bc BO_dCTR_NZERO,CR0_LT,__L18 # Branch on Counter

The RS-6000 also supports a memory addressing mode that can add a value to its address register before using
the address register. Interestingly, these two features (branch on count and pre-increment load) eliminate
several instructions when compared to the more �pure� SPARC processor. The SPARC processor has 10
instructions in the body of its loop, while the RS-6000 has 6 instructions.

The advantage of the RS-6000 in this particular loop may be less signi�cant if both processors were
two-way superscalar. The instructions were eliminated on the RS-6000 were integer instructions. On a
two-way superscalar processor, those integer instructions may simply execute on the integer units while the
�oating-point units are busy performing the �oating-point computations.

5.2.1.6 Conclusion

In this section, we have attempted to give you some understanding of the variety of assembly language that
is produced by compilers at di�erent optimization levels and on di�erent computer architectures. At some
point during the tuning of your code, it can be quite instructive to take a look at the generated assembly
language to be sure that the compiler is not doing something really stupid that is slowing you down.

Please don't be tempted to rewrite portions in assembly language. Usually any problems can be solved
by cleaning up and streamlining your high-level source code and setting the proper compiler �ags.

It is interesting that very few people actually learn assembly language any more. Most folks �nd that
the compiler is the best teacher of assembly language. By adding the appropriate option (often -S), the
compiler starts giving you lessons. I suggest that you don't print out all of the code. There are many pages
of useless variable declarations, etc. For these examples, I cut out all of that useless information. It is best

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

266 APPENDIX

to view the assembly in an editor and only print out the portion that pertains to the particular loop you are
tuning.

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

INDEX 267

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A access patterns, � 2.4.7(111), � 2.4.9(114)
accuracy, � 1.2.6(36)
active virtual memory, � 2.2.5(81)
advanced optimization, � 2.1.5(53)
algebra, � 1.2.4(33), � 1.2.5(34)
ambiguous pointers, � 2.3.1(85)
ambiguous references, � 3.1.5(140)
Amdahl's law, � 2.2.3(68)
antidependencies, � 3.1.4(135)
array sections, � 4.1.4(196)
array-valued, � 4.1.4(196)
assembly language, � 5.2.1(256)
assertions, � 3.3.3(177)
assignment primitive, � 4.1.4(196)
associative transformation, � 1.2.4(33),
� 1.2.5(34)
automatic parallelization, � 3.3.2(170)
average memory utilization, � 2.2.2(63)

B back edge, � 3.1.3(133)
backwards dependencies, � 3.1.4(135)
bandwidth, � 1.1.7(20)
bank stall, � 1.1.7(20)
basic block, � 2.2.4(79)
basic block pro�ler, � 2.2.4(79)
basic blocks, � 2.1.4(49)
basic optimization, � 2.1.5(53)
benchmark, � 2.2.1(62)
benchmarks, � (3)
bin, � 2.2.2(63)
binary coded decimal, � 1.2.3(29)
block, � 2.4.9(114)
block reference, � 2.4.9(114)
blocked I/O, � 2.2.2(63)
blocking, � 2.4.1(101)
branches, � 2.3.3(90), � 2.3.4(90), � 2.4.4(104)
broadcast/gather, � 4.2.3(225)
buses, � 3.2.2(146)
bypassing cache, � 1.1.7(20)

C C++, � 2.1.3(48)
cache, � 2.2.6(84)

cache coherency protocol, � 3.2.2(146)
cache organization, � 1.1.5(13)
caches, � 1.1.2(8), � 1.1.4(9)
caching, � 1.1.4(9)
CISC, � 5.1.2(239)
clutter, � 2.3.5(95), � 2.3.6(100), � 2.3.7(100)
coherency, � 3.2.2(146)
common subexpression, � 2.1.6(54)
common subexpression elimination, � 2.3.5(95)
compiler, � 2.1.1(47), � 2.1.3(48), � 2.1.4(49),
� 2.1.6(54), � 2.1.7(61), � 2.1.8(61),
� 3.1.6(143), � 3.1.7(143), � 3.3.3(177)
compiler �exibility, � 3.1.1(123)
compilers, � 2.1.2(47), � 2.3.3(90)
complex instruction set computer, � 5.1.2(239)
computer architecture, � (3)
constant expression, � 2.1.6(54)
constant folding, � 2.1.6(54)
control dependency, � 3.1.2(124)
copyback, � 3.2.2(146)
CPU speed, � 1.1.1(7)
CPU time, � 2.2.2(63)
critical sections, � 3.2.4(163)
crossbars, � 3.2.2(146)

D data, � 3.1.2(124)
data dependency, � 3.1.2(124)
data �ow analysis, � 2.1.5(53), � 3.1.2(124),
� 3.3.4(188)
data placement, � 3.2.2(146)
data type conversion, � 2.3.5(95)
data-parallel, � 4.1.2(191), � 4.1.5(204)
dead code, � 2.1.6(54)
decomposing computations, � 4.1.5(204)
decomposing data, � 4.1.5(204)
decomposing task, � 4.1.5(204)
dependencies, � 3.1.3(133)
dependency distance, � 3.1.5(140)
direct mapping, � 1.1.5(13)
direct-mapped cache, � 1.1.5(13)
directed acyclic graph, � 3.1.2(124)
disk I/O, � 2.2.5(81)

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

268 INDEX

division by zero, � 1.2.10(43)
DRAM, � 1.1.2(8), � 1.1.7(20)
dynamic random access memory, � 1.1.2(8)
dynamic scheduling, � 3.3.3(177)

E elapsed time, � 2.2.2(63)
etime, � 2.2.2(63), � 2.2.3(68), � 2.2.7(84)

F fat loops, � 2.4.4(104)
fences, � 2.3.1(85)
�xed point, � 1.2.3(29)
�at pro�le, � 2.2.3(68)
�oat, � 2.3.5(95)
�oating-point analysis, � 2.1.5(53)
�oating-point number, � 1.2.2(29), � 1.2.3(29),
� 1.2.9(42)
�oating-point numbers, � 1.2.1(29),
� 1.2.4(33), � 1.2.5(34), � 1.2.6(36), � 1.2.7(37),
� 1.2.8(40), � 1.2.10(43), � 1.2.11(43),
� 1.2.12(44), � 1.2.13(45)
�op measurements, � 2.2.6(84)
�ow dependencies, � 3.1.4(135)
�ow of control, � 3.1.2(124)
fork-join programming, � 3.2.4(163)
FORTRAN, � 1.1.2(8), � 1.2.11(43),
� 2.1.2(47), � 2.1.3(48), � 2.1.6(54), � 2.3.2(86),
� 2.3.5(95), � 2.4.3(103), � 2.4.5(107),
� 2.4.7(111), � 2.4.9(114), � 2.4.11(120),
� 2.4.12(120), � 3.1.5(140), � 3.1.7(143),
� 3.2.3(151), � 3.3.1(170), � 3.3.3(177),
� 4.1.1(191), � 4.1.3(195), � 4.1.7(212),
� 4.2.1(213), � 4.2.3(225), � 5.2.1(256)
FORTRAN 77, � 4.1.4(196), � 4.2.4(237)
FORTRAN 90, � 4.1.4(196), � 4.1.5(204),
� 4.1.6(206), � 4.2.4(237)
free real memory, � 2.2.5(81)
fully associative cache, � 1.1.5(13)

G gradual under�ow, � 1.2.9(42)
granularity, � 3.1.1(123)
greatest common divisor, � 1.2.3(29)
guard digits, � 1.2.6(36)

H heat �ow, � 4.1.2(191), � 4.1.4(196),
� 4.1.6(206), � 4.2.2(213), � 4.2.3(225)
High performance computing, � (3),
� 4.1.1(191), � 4.1.2(191), � 4.1.3(195),
� 4.1.4(196), � 4.1.7(212), � 5.1.1(239),
� 5.1.2(239), � 5.1.3(241), � 5.1.4(250),
� 5.1.5(252), � 5.1.6(253), � 5.1.7(255),
� 5.1.8(255), � 5.2.1(256)
high performance FORTRAN, � 4.1.5(204),
� 4.1.6(206), � 4.1.7(212)

hoisting, � 2.3.5(95)
HPF control structures, � 4.1.6(206)
HPF intrinsic structures, � 4.1.6(206)

I IEEE, � 1.2.7(37)
IEEE operations, � 1.2.8(40)
IND array, � 1.1.4(9)
indirect memory references, � 2.3.1(85)
induction variable simpli�cation, � 2.1.6(54)
induction variables, � 2.1.6(54)
inexact operation, � 1.2.10(43)
inlining, � 2.3.2(86)
inner loop, � 2.4.5(107)
instruction set, � 5.1.2(239)
instruction-level parallelism, � 3.1.1(123)
Intel 8088, � 5.2.1(256)
interchange, � 2.4.8(113)
intermediate language, � 2.1.4(49)
interprocedural analysis, � 2.1.5(53),
� 3.3.3(177)
invalid operations, � 1.2.10(43)
invariant, � 2.3.4(90)
iteration scheduling, � 3.3.3(177)

K kernel mode, � 2.2.2(63)

L language, � 2.1.3(48), � 4.1.7(212)
language support, � 4.1.1(191), � 4.1.6(206)
large caches, � 1.1.7(20)
latency, � 1.1.7(20)
loop, � 2.3.7(100), � 3.1.3(133), � 3.3.5(189),
� 4.1.2(191)
loop conditioning, � 2.3.7(100)
loop index dependent, � 2.3.4(90)
loop interchange, � 2.4.1(101), � 2.4.6(109)
loop nest, � 2.4.6(109)
loop nests, � 2.4.5(107)
loop omptimization, � 2.4.4(104), � 2.4.5(107)
loop optimization, � 2.4.2(102), � 2.4.3(103),
� 2.4.6(109), � 2.4.7(111), � 2.4.8(113),
� 2.4.9(114), � 2.4.10(119)
loop optimizations, � 2.4.11(120), � 2.4.12(120)
loop unrolling, � 2.4.1(101), � 2.4.3(103),
� 2.4.4(104), � 2.4.5(107)
loop-carried dependencies, � 3.1.4(135)
loop-invariant expression, � 2.1.6(54)
loops, � 2.2.3(68), � 2.3.4(90), � 2.4.11(120),
� 2.4.12(120), � 3.1.4(135)

M macros, � 2.3.2(86)
malloc, � 3.1.5(140)
mantissa/exponent, � 1.2.3(29)
mapping, � 1.1.5(13)

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

INDEX 269

matrix manipulations, � 4.1.4(196)
memory, � (3), � 1.1.1(7), � 1.1.2(8), � 1.1.3(9),
� 1.1.4(9), � 1.1.6(17), � 1.1.7(20), � 1.1.8(27),
� 1.1.9(28), � 2.4.7(111), � 2.4.9(114),
� 2.4.10(119)
memory access time, � 1.1.2(8)
memory cycle time, � 1.1.2(8)
memory hierarchy, � 1.1.2(8)
memory reference optimization, � 2.4.1(101)
message-passing, � 4.2.1(213)
message-passing environments, � 4.2.2(213),
� 4.2.3(225), � 4.2.4(237)
message-passing interface, � 4.2.1(213),
� 4.2.3(225)
microprocessors, � (3)
mixed stride, � 2.4.9(114)
mixed type, � 2.3.5(95)
move computation, � 2.4.6(109)
multiprocessing, � 3.2.2(146)
multiprocessors, � 3.2.1(145), � 3.2.3(151),
� 3.2.4(163), � 3.2.5(166), � 3.2.6(168),
� 3.2.7(169), � 3.3.1(170), � 3.3.2(170),
� 3.3.3(177), � 3.3.4(188), � 3.3.5(189)
multithreading, � 3.2.3(151), � 3.2.4(163)

N nested loop optimization, � 2.4.1(101)
no dependencies, � 3.3.3(177)
no equivalence assertion, � 3.3.3(177)
no optimization, � 2.1.5(53)
numerical analysis, � 1.2.1(29)

O on-processor distribution, � 4.1.6(206)
operation counting, � 2.4.2(102)
optimization, � 2.1.3(48), � 2.1.6(54),
� 2.1.7(61), � 2.1.8(61), � 3.1.6(143),
� 3.1.7(143), � 5.2.1(256)
optimization levels, � 2.1.5(53)
optimize, � 2.1.4(49)
optimizing compiler, � 2.1.1(47)
optimizing compilers, � 2.1.2(47)
out-of-core solutions, � 2.4.1(101),
� 2.4.10(119)
outer loop, � 2.4.5(107)
output dependencies, � 3.1.4(135)
over�ow to in�nity, � 1.2.10(43)

P page faults, � 1.1.6(17), � 2.2.2(63), � 2.2.5(81)
page tables, � 1.1.6(17)
pages, � 1.1.6(17)
parallel, � 4.1.4(196)
parallel languages, � 4.1.3(195)
parallel loops, � 3.3.3(177)

parallel programming, � 3.3.5(189)
parallel region, � 3.3.3(177)
parallel virtual machine, � 4.2.1(213),
� 4.2.2(213)
parallelism, � 2.3.6(100), � 2.3.7(100),
� 3.1.1(123), � 3.1.4(135), � 3.1.5(140),
� 3.1.6(143), � 3.1.7(143)
parallelization, � 3.3.3(177)
percent utilization, � 2.2.2(63)
permutation, � 3.1.5(140)
permutation assertion, � 3.3.3(177)
piplined, � 3.1.1(123)
pixie, � 2.2.4(79)
pointer chasing, � 1.1.4(9)
pointers, � 2.1.3(48)
Post-RISC, � 5.1.6(253)
preconditioning loop, � 2.4.3(103)
procedure calls, � 2.4.4(104)
pro�lers, � 2.2.4(79)
pro�ling, � 2.2.1(62), � 2.2.2(63), � 2.2.3(68),
� 2.2.4(79), � 2.2.5(81), � 2.2.6(84), � 2.2.7(84),
� 2.4.11(120), � 2.4.12(120)
program clutter, � 2.3.6(100), � 2.3.7(100)
programming, � 3.3.1(170), � 3.3.2(170),
� 3.3.3(177), � 3.3.4(188), � 3.3.5(189),
� 4.1.6(206)
propagation, � 2.1.6(54)

Q quadruples, � 2.1.4(49)

R rational numbers, � 1.2.2(29), � 1.2.3(29)
reality, � 1.2.2(29)
reduced instruction set computer, � 5.1.5(252),
� 5.1.6(253)
reduced instruction set computing,
� 5.1.3(241), � 5.1.4(250)
reduction operations, � 3.3.2(170)
reductions, � 3.1.4(135)
registers, � 1.1.2(8), � 1.1.3(9)
relation assertion, � 3.3.3(177)
representation, � 1.2.3(29)
RISC, � 2.1.7(61), � 2.1.8(61), � 5.1.3(241),
� 5.1.4(250), � 5.1.5(252)
runtime pro�le analysis, � 2.1.5(53)

S scale parallel computing, � 3.2.3(151)
set-associative cache, � 1.1.5(13)
shape conformance, � 4.1.4(196)
shared-memory, � 3.2.1(145), � 3.2.3(151),
� 3.2.4(163), � 3.2.5(166), � 3.2.6(168),
� 3.2.7(169), � 3.3.1(170), � 3.3.2(170),
� 3.3.3(177), � 3.3.4(188), � 3.3.5(189)

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

270 INDEX

shared-memory space, � 2.2.2(63)
signi�cand, � 1.2.8(40)
sinking, � 2.3.5(95)
size, � 2.2.5(81)
snooping, � 3.2.2(146)
software, � 3.2.3(151)
SPARC, � 5.2.1(256)
spatial locality of reference, � 1.1.4(9)
speedup, � 3.3.2(170)
SRAM, � 1.1.2(8), � 1.1.4(9), � 1.1.7(20)
statement function, � 2.3.2(86)
static random access memory, � 1.1.2(8),
� 1.1.4(9)
streamlining, � 2.3.3(90)
strength reduction, � 2.1.6(54)
stride, � 2.4.7(111)
subroutine calls, � 2.3.1(85), � 2.3.2(86)
subroutine pro�ling, � 2.2.3(68)
superscalar, � 3.1.1(123)
swap area, � 2.2.5(81)
swaps, � 2.2.2(63)
synchronization, � 3.2.4(163)
system time, � 2.2.2(63)

T tag, � 1.1.5(13)
techniques, � 3.2.4(163)
temporal locality of reference, � 1.1.4(9)
thrashing, � 1.1.5(13)
thread, � 3.2.3(151)

thread private, � 3.2.3(151)
thread-level parallelism, � 3.1.1(123)
thread-local variables, � 3.2.3(151)
time, � 2.2.2(63)
time-based simulation, � 3.2.4(163)
timing, � 2.2.1(62), � 2.2.2(63), � 2.2.3(68),
� 2.2.4(79), � 2.2.5(81), � 2.2.6(84), � 2.2.7(84),
� 2.4.11(120), � 2.4.12(120)
translation lookaside bu�er, � 1.1.6(17)
trip count assertion, � 3.3.3(177)
trip counts, � 2.4.4(104)
tuning techniques, � 2.3.6(100), � 2.3.7(100)

U uniform memory access, � 3.2.1(145)
unit stride, � 1.1.4(9)
user datagram protocols, � 4.2.2(213)
user mode, � 2.2.2(63)
user time, � 2.2.2(63)
user=space thread context switch, � 3.2.3(151)

V variable renaming, � 2.1.6(54)
virtual memory, � 1.1.6(17), � 2.2.5(81)

W wait states, � 1.1.2(8)
wordy tests, � 2.3.1(85)
workload, � 2.2.1(62)
write-through policy, � 3.2.2(146)
writeback, � 3.2.2(146)

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

ATTRIBUTIONS 271

Attributions

Collection: High Performance Computing
Edited by: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/col11136/1.5/
License: http://creativecommons.org/licenses/by/3.0/

Module: "1.0 Introduction to the Connexions Edition"
Used here as: "Introduction to the Connexions Edition"
By: Charles Severance
URL: http://cnx.org/content/m32709/1.1/
Pages: 1-2
Copyright: Charles Severance
License: http://creativecommons.org/licenses/by/3.0/

Module: "Introduction to High Performance Computing"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32676/1.3/
Pages: 3-5
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Memory - Introduction"
Used here as: "Introduction"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32733/1.3/
Pages: 7-8
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Memory - Memory Technology"
Used here as: "Memory Technology"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32716/1.3/
Pages: 8-9
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Memory - Registers"
Used here as: "Registers"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32681/1.3/
Page: 9
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Memory - Caches"
Used here as: "Caches"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32725/1.3/
Pages: 9-13
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

272 ATTRIBUTIONS

Module: "Memory - Cache Organization"
Used here as: "Cache Organization"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32722/1.3/
Pages: 13-17
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Memory - Virtual Memory"
Used here as: "Virtual Memory"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32728/1.3/
Pages: 17-20
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Memory - Improving Memory Performance"
Used here as: "Improving Memory Performance"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32736/1.3/
Pages: 20-27
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Memory - Closing Notes"
Used here as: "Closing Notes"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32690/1.3/
Pages: 27-28
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Memory - Exercises"
Used here as: "Exercises"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32698/1.3/
Page: 28
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Floating-Point Numbers - Introduction"
Used here as: "Introduction"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32739/1.3/
Page: 29
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

ATTRIBUTIONS 273

Module: "Floating-Point Numbers - Reality"
Used here as: "Reality"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32741/1.3/
Page: 29
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Floating-Point Numbers - Representation"
Used here as: "Representation"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32772/1.3/
Pages: 29-33
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Floating-Point Numbers - E�ects of Floating-Point Representation"
Used here as: "E�ects of Floating-Point Representation"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32755/1.3/
Pages: 33-34
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Floating-Point Numbers - More Algebra That Doesn't Work"
Used here as: "More Algebra That Doesn't Work"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32754/1.3/
Pages: 34-36
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Floating-Point Numbers - Improving Accuracy Using Guard Digits"
Used here as: "Improving Accuracy Using Guard Digits"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32744/1.3/
Pages: 36-37
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Floating-Point Numbers - History of IEEE Floating-Point Format"
Used here as: "History of IEEE Floating-Point Format"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32770/1.3/
Pages: 37-40
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

274 ATTRIBUTIONS

Module: "Floating-Point Numbers - IEEE Operations"
Used here as: "IEEE Operations"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32756/1.3/
Pages: 40-42
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Floating-Point Numbers - Special Values"
Used here as: "Special Values"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32758/1.3/
Pages: 42-43
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Floating-Point Numbers - Exceptions and Traps"
Used here as: "Exceptions and Traps"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32760/1.3/
Page: 43
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Floating-Point Numbers - Compiler Issues"
Used here as: "Compiler Issues"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32762/1.3/
Pages: 43-44
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Floating-Point Numbers - Closing Notes"
Used here as: "Closing Notes"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32768/1.3/
Pages: 44-45
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Floating-Point Numbers - Exercises"
Used here as: "Exercises"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32765/1.3/
Page: 45
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

ATTRIBUTIONS 275

Module: "What a Compiler Does - Introduction"
Used here as: "Introduction"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33690/1.3/
Page: 47
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "What a Compiler Does - History of Compilers"
Used here as: "History of Compilers"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33686/1.3/
Pages: 47-48
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "What a Compiler Does - Which Language To Optimize"
Used here as: "Which Language To Optimize"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33687/1.3/
Pages: 48-49
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "What a Compiler Does - Optimizing Compiler Tour"
Used here as: "Optimizing Compiler Tour"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33694/1.3/
Pages: 49-53
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "What a Compiler Does - Optimization Levels"
Used here as: "Optimization Levels"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33692/1.3/
Pages: 53-54
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "What a Compiler Does - Classical Optimizations"
Used here as: "Classical Optimizations"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33696/1.3/
Pages: 54-61
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

276 ATTRIBUTIONS

Module: "What a Compiler Does - Closing Notes"
Used here as: "Closing Notes"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33699/1.3/
Page: 61
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "What a Compiler Does - Exercises"
Used here as: "Exercises"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33700/1.3/
Pages: 61-62
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Timing and Pro�ling - Introduction"
Used here as: "Introduction"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33704/1.3/
Pages: 62-63
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Timing and Pro�ling - Timing"
Used here as: "Timing"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33706/1.3/
Pages: 63-68
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Timing and Pro�ling - Subroutine Pro�ling"
Used here as: "Subroutine Pro�ling"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33713/1.3/
Pages: 68-79
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Timing and Pro�ling - Basic Block Pro�lers"
Used here as: "Basic Block Pro�lers"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33710/1.3/
Pages: 79-81
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

ATTRIBUTIONS 277

Module: "Timing and Pro�ling - Virtual Memory"
Used here as: "Virtual Memory"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33712/1.3/
Pages: 81-84
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Timing and Pro�ling - Closing Notes"
Used here as: "Closing Notes"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33714/1.3/
Page: 84
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Timing and Pro�ling - Exercises"
Used here as: "Exercises"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33718/1.3/
Pages: 84-85
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Eliminating Clutter - Introduction"
Used here as: "Introduction"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33720/1.3/
Pages: 85-86
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Eliminating Clutter - Subroutine Calls"
Used here as: "Subroutine Calls"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33721/1.3/
Pages: 86-90
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Eliminating Clutter - Branches"
Used here as: "Branches"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33722/1.3/
Page: 90
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

278 ATTRIBUTIONS

Module: "Eliminating Clutter - Branches With Loops"
Used here as: "Branches With Loops"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33723/1.3/
Pages: 90-95
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Eliminating Clutter - Other Clutter"
Used here as: "Other Clutter"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33724/1.3/
Pages: 95-100
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Eliminating Clutter - Closing Notes"
Used here as: "Closing Notes"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33725/1.3/
Page: 100
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Eliminating Clutter - Exercises"
Used here as: "Exercises"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33727/1.3/
Pages: 100-101
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Loop Optimizations - Introduction"
Used here as: "Introduction"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33728/1.3/
Pages: 101-102
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Loop Optimizations - Operation Counting"
Used here as: "Operation Counting"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33729/1.3/
Pages: 102-103
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

ATTRIBUTIONS 279

Module: "Loop Optimizations - Basic Loop Unrolling"
Used here as: "Basic Loop Unrolling"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33732/1.3/
Pages: 103-104
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Loop Optimizations - Qualifying Candidates for Loop Unrolling"
Used here as: "Qualifying Candidates for Loop Unrolling Up one level "
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33733/1.3/
Pages: 104-107
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Loop Optimizations - Nested Loops"
Used here as: "Nested Loops"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33734/1.3/
Pages: 107-109
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Loop Optimizations - Loop Interchange"
Used here as: "Loop Interchange"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33736/1.3/
Pages: 109-111
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Loop Optimizations - Memory Access Patterns"
Used here as: "Memory Access Patterns"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33738/1.3/
Pages: 111-113
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Loop Optimizations - When Interchange Won't Work"
Used here as: "When Interchange Won't Work"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33741/1.3/
Pages: 113-114
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

280 ATTRIBUTIONS

Module: "Loop Optimizations - Blocking to Ease Memory Access Patterns"
Used here as: "Blocking to Ease Memory Access Patterns"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33756/1.3/
Pages: 114-119
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Loop Optimizations - Programs That Require More Memory Than You Have"
Used here as: "Programs That Require More Memory Than You Have"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33770/1.3/
Pages: 119-120
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Loop Optimizations - Closing Notes"
Used here as: "Closing Notes"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33773/1.3/
Page: 120
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Loop Optimizations - Exercises"
Used here as: "Exercises"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33777/1.3/
Pages: 120-122
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Understanding Parallelism - Introduction"
Used here as: "Introduction"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32775/1.3/
Pages: 123-124
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Understanding Parallelism - Dependencies"
Used here as: "Dependencies"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32777/1.3/
Pages: 124-133
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

ATTRIBUTIONS 281

Module: "Understanding Parallelism - Loops"
Used here as: "Loops"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32784/1.3/
Pages: 133-135
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Understanding Parallelism - Loop-Carried Dependencies"
Used here as: "Loop-Carried Dependencies "
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32782/1.3/
Pages: 135-140
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Understanding Parallelism - Ambiguous References"
Used here as: "Ambiguous References"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32788/1.3/
Pages: 140-143
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Understanding Parallelism - Closing Notes"
Used here as: "Closing Notes"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32789/1.3/
Page: 143
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Understanding Parallelism - Exercises"
Used here as: "Exercises"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32792/1.3/
Pages: 143-145
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Shared-Memory Multiprocessors - Introduction"
Used here as: "Introduction"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32797/1.3/
Pages: 145-146
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

282 ATTRIBUTIONS

Module: "Shared-Memory Multiprocessors - Symmetric Multiprocessing Hardware"
Used here as: "Symmetric Multiprocessing Hardware"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32794/1.3/
Pages: 146-151
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Shared-Memory Multiprocessors - Multiprocessor Software Concepts"
Used here as: "Multiprocessor Software Concepts "
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32800/1.3/
Pages: 151-163
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Shared-Memory Multiprocessors - Techniques for Multithreaded Programs"
Used here as: "Techniques for Multithreaded Programs"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32802/1.3/
Pages: 163-166
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Shared-Memory Multiprocessors - A Real Example"
Used here as: "A Real Example "
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32804/1.3/
Pages: 166-168
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Shared-Memory Multiprocessors - Closing Notes"
Used here as: "Closing Notes"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32807/1.3/
Pages: 168-169
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Shared-Memory Multiprocessors - Exercises"
Used here as: "Exercises"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32810/1.3/
Pages: 169-170
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

ATTRIBUTIONS 283

Module: "Programming Shared-Memory Multiprocessors - Introduction"
Used here as: " Introduction"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32812/1.3/
Page: 170
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Programming Shared-Memory Multiprocessors - Automatic Parallelization"
Used here as: "Automatic Parallelization"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32821/1.3/
Pages: 170-177
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Programming Shared-Memory Multiprocessors - Assisting the Compiler"
Used here as: "Assisting the Compiler"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32814/1.3/
Pages: 177-188
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Programming Shared-Memory Multiprocessors - Closing Notes"
Used here as: "Closing Notes"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32820/1.3/
Pages: 188-189
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Programming Shared-Memory Multiprocessors - Exercises"
Used here as: "Exercises"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m32819/1.3/
Pages: 189-190
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Language Support for Performance - Introduction"
Used here as: "Introduction"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33744/1.3/
Page: 191
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

284 ATTRIBUTIONS

Module: "Language Support for Performance - Data-Parallel Problem: Heat Flow"
Used here as: "Data-Parallel Problem: Heat Flow"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33751/1.3/
Pages: 191-195
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Language Support for Performance - Explicity Parallel Languages"
Used here as: "Explicity Parallel Languages"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33754/1.3/
Pages: 195-196
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Language Support for Performance - FORTRAN 90"
Used here as: "FORTRAN 90"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33757/1.3/
Pages: 196-204
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Language Support for Performance - Problem Decomposition"
Used here as: "Problem Decomposition"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33762/1.3/
Pages: 204-206
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Language Support for Performance - High Performance FORTRAN (HPF)"
Used here as: "High Performance FORTRAN (HPF)"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33765/1.3/
Pages: 206-212
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Language Support for Performance - Closing Notes"
Used here as: "Closing Notes"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33775/1.3/
Page: 212
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

ATTRIBUTIONS 285

Module: "Message-Passing Environments - Introduction"
Used here as: "Introduction"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33781/1.3/
Page: 213
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Message-Passing Environments - Parallel Virtual Machine"
Used here as: "Parallel Virtual Machine"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33779/1.3/
Pages: 213-225
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Message-Passing Environments - Message-Passing Interface"
Used here as: "Message-Passing Interface"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33783/1.3/
Pages: 225-237
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "Message-Passing Environments - Closing Notes"
Used here as: "Closing Notes"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33784/1.3/
Page: 237
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "What is High Performance Computing - Introduction"
Used here as: "Introduction"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33671/1.3/
Page: 239
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "What is High Performance Computing - Why CISC?"
Used here as: "Why CISC?"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33672/1.3/
Pages: 239-241
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

286 ATTRIBUTIONS

Module: "What is High Performance Computing - Fundamental of RISC"
Used here as: "Fundamental of RISC"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33673/1.3/
Pages: 241-250
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "What is High Performance Computing - Second-Generation RISC Processors"
Used here as: "Second-Generation RISC Processors"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33675/1.3/
Pages: 250-252
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "What is High Performance Computing - RISC Means Fast"
Used here as: "RISC Means Fast"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33679/1.3/
Pages: 252-253
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "What is High Performance Computing - Out-of-Order Execution: The Post-RISC Architecture"
Used here as: "Out-of-Order Execution: The Post-RISC Architecture"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33677/1.3/
Pages: 253-255
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "What is High Performance Computing - Closing Notes"
Used here as: "Closing Notes"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33683/1.3/
Page: 255
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Module: "What is High Performance Computing - Exercises"
Used here as: "Exercises"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33682/1.3/
Pages: 255-256
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

ATTRIBUTIONS 287

Module: "Appendix B to "High Performance Computing": Looking at Assembly Language"
Used here as: "Assembly Language"
By: Charles Severance, Kevin Dowd
URL: http://cnx.org/content/m33787/1.3/
Pages: 256-266
Copyright: Charles Severance, Kevin Dowd
License: http://creativecommons.org/licenses/by/3.0/

Available for free at Connexions <http://cnx.org/content/col11136/1.5>

High Performance Computing
The purpose of this book, High Performance Computing has always been to teach new programmers and
scientists about the basics of High Performance Computing. This book is for learners with a basic under-
standing of modern computer architecture, not advanced degrees in computer engineering, as it is an easily
understood introduction and overview of the topic. Originally published by O'Reilly Media in 1998, the book
has since gone out of print and has now been released under the Creative Commons Attribution License on
Connexions.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

