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Preface

This book provides an algorithmic perspective to autonomous
robotics to students with a sophomore-level of linear algebra
and probability theory. Robotics is an emerging field at the
intersection of mechanical and electrical engineering with com-
puter science. With computers becoming more powerful, mak-
ing robots smart is getting more and more into the focus of at-
tention and robotics research most challenging frontier. While
there are a large number of textbooks on the mechanics and
dynamics of robots that address sophomore-level undergradu-
ates available, books that provide a broad algorithmic perspec-
tive are mostly limited to the graduate level. This book has
therefore been developed not to create “yet another textbook,
but better than the others”, but to allow me to teach robotics
to the 3rd and 4th year undergraduates at the Department of
Computer Science at the University of Colorado.

Although falling under the umbrella of “Artificial Intelli-
gence”, standard AI techniques are not sufficient to tackle prob-
lems that involve uncertainty, such as a robot’s interaction in
the real world. This book uses simple trigonometry to de-
velop the kinematic equations of simple manipulators and mo-
bile robots, then introduces path planning, sensing, and hence
uncertainty. The robot localization problem is introduced by
formally introducing error propagation, which leads to Markov
localization, the Particle filter and finally the Extended Kalman
Filter, and Simultaneous Localization and Mapping.

Instead of focusing on the state-of-the-art solutions to a par-
ticular sub-problem, emphasis of the book is on a concise step-
by-step development and recurrent examples that capture the
essence of a problem, but might not necessarily be the best
solution. For example, odometry and line-fitting are used to
explain forward kinematics and least-squares solutions, respec-

11



Contents

tively, and later serve as motivating examples for error propa-
gation and the Kalman filter in a localization context.

Also, the book is explicitely robot-agnostic, reflecting the
timeliness of fundamental concepts. Instead, a series of possi-
ble project-based curricula are described in an Appendix and
available online, ranging from a maze-solving competition that
can be realized with most miniature differential-wheel robots
that include a camera to manipulation experiments with the
Baxter robot, all of which can be entirely conducted in simula-
tion.

This book is released under a Creative Commons license,
which allows anyone to copy and share this book, although not
for commercial purposes and not to create derivatives of these
works. This license comes very close to the “copyright” of a
standard textbook, except that you are free to copy it for non-
commercial purposes. I have chosen this format as it seems to
maintain the best trade-off between a freely available textbook
resource that others hopefully contribute to and maintaining a
consistent curriculum that others can refer to.

Writing this book would not have been possible without the
excellent work of others before me, most notably “Introduc-
tion to Robotics: Mechanics and Control” by John Craig and
“Introduction to Autonomous Mobile Robots” by Roland Sieg-
wart, Illah Nourbakhsh and David Scaramuzza, and innumer-
able other books and websites from which I learned and bor-
rowed examples and notation.

Nikolaus Correll
Boulder, Colorado, April 23, 2016
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1. Introduction

Robotics celebrated its 50th birthday in 2011, dating back to
the first commercial robot in 1961 (the Unimate). In a “Tonight
Show” from the time, this robot did amazing things: it opens a
bottle of beer, pours it, puts a golf ball into the hole, and even
conducts an orchestra. This robot does all what we expect
a good robot to do: it is dexterous, it is accurate, and even
creative. Since this robot’s appearance on the Tonight show,
more than 50 years have passed — so how incredible must be
the capabilities of today’s robots and what must they be able
to do?

Interestingly, we just recently learned doing all the things
demonstrated by Unimate autonomously. Unimate indeed did
what was shown on TV, but all motions have been prepro-
grammed and the environment has been carefully staged. Only
the advent of cheap and powerful sensors and computation has
recently enabled robots to detect an object by themselves, plan
motions to it and grasp it. Yet, robotics is still far away from
doing these tasks with human-like performance.

This book introduces you to the computational fundamen-
tals of autonomous robots. Robots are autonomous when they
make decisions in response to their environment vs. simply fol-
lowing a pre-programmed set of motions. They achieve this
using techniques from signal processing, control theory, and
artificial intelligence, among others. These techniques are cou-
pled with the mechanics, the sensors, and the actuators of the
robot. Designing a robot therefore requires a deep understand-
ing of both algorithms and its interfaces to the physical world.

The goals of this introductory chapter are to introduce the
kind of problems roboticists deal with and how they solve it.

15



1. Introduction

Figure 1.1.: A wind-up toy that does not fall off the table using purely
mechanical control. A fly-wheel that turns orthogonal to
the robot’s motion induces a right turn as soon as it hits
the ground once the front caster wheel goes off the edge.

1.1. Intelligence and embodiment

Our notion of “intelligent behavior” is strongly biased by our
understanding of the brain and how computers work: intelli-
gence is located in our heads. In fact, however, a lot of behavior
that looks intelligent can be achieved by very simple means. For
example, mechanical wind-up toys can avoid falling off an edge
simply by using a fly-wheel that rotates at a right angle to their
direction of motion and a caster wheel. Once the caster wheel
loses contact with the ground—that is the robot has reached
the edge—the fly-wheel kicks in and pulls the robot to the right
(Figure 1.1).

A robot vacuum cleaner might solve the same problem very
differently: it employs infrared sensors that are pointed down-
wards to detect edges such as stairs and then issues a command
to make an avoiding turn. Once electronics are on-board, this
is a much more efficient, albeit much more complex, approach.

Whereas the above examples provide different approaches
to implement intelligent behaviors, similar trade-offs exist for
robotic planning. For example, ants can find the shortest path
between their nest and a food source by simply choosing the
trail that already has more pheromones, the chemicals ants
communicate with, on it. As shorter paths have ants not only
moving faster towards the food, but also returning faster, their
pheromone trails build up quicker (Figure 1.2). But ants are
not stuck to this solution. Every now and then, ants give the
longer path another shot, eventually finding new food sources.

16



1.2. A roboticists’ problem

Figure 1.2.: Ants finding the shortest path from their nest (bottom) to
a food source (top). From left to right: The ants initially
have equal preference for the left and the right branch,
both going back and forth. As ants return faster on the
shorter branch there will be more pheromones present on
the short branch once a new ant arrives from the nest.

What looks like intelligent behavior at the swarm level, is essen-
tially achieved by a pheromone sensor that occasionally fails.
A modern industrial robot would solve the problem completely
different: it would first acquire some representation of the en-
vironment in the form of a map populated with obstacles, and
then plan a path using an algorithm.

Which solution to achieve a certain desired behavior is best
depends on the resources that are available to the designer. We
will now study a more elaborate problem for which many, more
or less efficient, solutions exist.

1.2. A roboticists’ problem

Imagine the following scenario. You are a robot in a maze-like
environment such as a cluttered warehouse, hospital or office
building. There is a chest full of gold coins hidden somewhere
inside. Unfortunately, you don’t have a map of the maze. In
case you find the chest, you may only take a couple of coins
at a time, and bring them to the exit door where your car is
parked.

Think about a strategy that will allow you to harvest as
many coins in the shortest time as possible. Think about
the cognitive and perception capabilities you would make

17



1. Introduction

use of. Now discuss alternative strategies, if you would not
have these capabilities, i.e., what if you were blind, had no
memory?

These are exactly the same problems a robot would have.
A robot is a mobile machine that has sensors and computa-
tion, which allows it to reason about its environment. Current
robots are far from the capabilities that humans have, there-
fore it makes a lot of sense to think about what strategies you
would employ to solve a problem, if you were lacking important
perception or computational capabilities.

Before we move forward to discuss potential strategies for
robots with impeded sensory systems, lets quickly consider an
optimal strategy. You will need to explore the maze without
entering any branch twice. You can use a technique known as
depth-first search to do this, but will need to be able to not only
map the environment, but also localize in the environment, e.g.,
by recognizing places and dead-reckoning on the map. Once
you have found the gold, you will need to plan the shortest
path back to the exit, which you can then use to go back and
forth until all the gold is harvested.

1.3. Ratslife

Ratslife is a miniature robot maze competition developed by
Olivier Michel from Cyberbotics S.A. The Ratslife environ-
ment can easily be created from LEGO bricks, card board or
wood and the game can be played with any two mobile robots,
preferably ones with the ability to identify markers in the en-
vironment. These include simple differential-wheel educational
platforms with onboard cameras or even a smart-phone driven
robot. Figure 1.3 shows a simple sample environment that can
be constructed from craft materials and can be used to teach
the practical aspects of mobile robots for competitions.

In RatsLife, two miniature robots compete on searching for
four “feeders” that are hidden in a maze. Once a robot reaches
a feeder, it receives “energy” to go on for another 60s, and the

18



1.3. Ratslife

Figure 1.3.: A simple maze made from cardboard, wood or Lego bricks
with one or more charging stations. Locations in the
maze are marked with unique markers that can be rec-
ognized by a simple robot.

feeder becomes temporarily unavailable. After a short while,
the feeder becomes available again. The feeders can be either
controlled by a referee who also takes care of time-keeping or
constructed as part of a simple curriculum on electronics or
mechatronics.

It should be clear by now, how YOU would solve these tasks
using your abilities, and you should have also thought about
fall-back strategies in case some of your sensors are unavailable.
Here are some possible algorithms for a robot, ordered after the
capabilities that it provides:

• Imagine you have a robot that can only drive (actuation)
and bounce off a wall. The resulting random walk will
eventually let the robot reach a feeder. As the allowed
time to do so is limited, it is likely that the robot’s energy
will soon deplete.

• Now imagine a robot that has a sensor that gives it the
ability to estimates its distance from a wall. This could
be a whisker, an infrared distance sensor, an ultra-sound
distance sensor, or a laser range finder. The robot could
now use this sensor to keep following a wall to its right.
Using this strategy for solving the maze, it will eventually
explore the entire maze except for islands inside of it.

• Finally, think about a robot that could identify simple
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1. Introduction

patterns using vision, has distance sensors to avoid walls,
and an “odometer” to keep track of its wheel rotations.
Using these capabilities, a potential winning strategy would
be to explore the environment, identify markers in the en-
vironment using vision and use them to create a map of all
feeder locations, calculate the shortest path from feeder
to feeder and keep going back and forth between them.
Strategy-wise, it might make sense to wait just in front of
the feeder and approach it only shortly before the robot
runs out of power.

1.4. Challenges of Mobile Autonomous Robots

Being able to stitch sensor information together to map the
environment just by counting your own steps and orienting
yourself by using distinct features of the environment is known
as Simultaneous Localization and Mapping (SLAM). The key
challenge here is that the length of the steps you take are un-
certain (a wheeled robot might slip or have slightly differently
sized wheels, e.g.) and it is not possible to recognize places
with 100% accuracy (not even for a human). In order to be
able to implement something like the last algorithm on a real
robot, we will therefore need to understand

• How does a robot move? How does rotation of its wheels
affects its position and speed in the world?

• How do we have to control the wheel-speed in order to
reach a desired position?

• What sensors exist for a robot to perceive its own status
and its environment?

• How can we extract structured information from a vast
amount of sensor data?

• How can we localize in the world?

• How can error be represented and how can we reason in
the face of uncertainty?

20



1.5. Challenges of Autonomous Manipulation

In order to answer these questions, we will rely on trigonom-
etry, linear algebra, and probability theory. Specific concepts
that will be used throughout this book are basic trigonometry,
matrix notation, Bayes’ formula, and the concept of probabil-
ity distributions. You will see that robotics is actually a great
vehicle to add meaning to these concepts!

1.5. Challenges of Autonomous Manipulation

Think about the last time you worked with your hands. This
includes typing on your keyboard, writing on a piece of paper,
sewing a button onto a shirt, and using a hammer or a screw-
driver. You will notice that these activities require a wide range
of dexterity, that is the ability to manipulate objects with pre-
cision, a wide range of forces, and a wide range of sensorial
capabilities. You will also notice that some tasks go beyond
your capabilities, such as putting yarn through a hole in fabric,
grasping a screw, or driving a nail into a piece of wood, but can
be easily solved with the right tool.

So far, robotic hands are far from reaching the dexterity of
a human hand. Yet, with the right tool (called “end-effector”
in robotics speech) some tasks can be solved even better, that
is faster and more precisely, than by humans. As for solving
a mobile robotics problem, manipulation problems require you
to think about the right mix of reasoning and mechanism de-
sign. For example, grasping tiny parts might be impossible with
tweezers, but really easy when using a sucking mechanism. Or,
picking up a test tube that is hardly visible with the robots’
sensors can be picked up almost blindly when using a funnel-
like mechanism at your end-effector. Unfortunately, these tricks
will most likely limit the versatility of your robot, requiring you
to think about the problem and the users’s need as a whole.

Take-home lessons

• How to best solve a problem is a function of the avail-
able sensing, actuation, computation and communication
abilities of the available platform. Usually, there exist

21



1. Introduction

trade-offs that allow you to solve a problem using a min-
imal set of resources, but compromise performance such
as speed, accuracy or reliability.

• Robotics problems are different from problems in pure
Artificial Intelligence, that do not deal with unreliable
sensing or actuation.

• The unreliability of sensors, actuators and communica-
tion links require a probabilistic notion of the system and
reason with uncertainty.

Exercises

1. What kind of sensors do you need to solve the “Ratslife” game?
Think both about trivial and close-to-optimal approaches.

2. What devices in your home could be considered robots? Why
and why not?

3. Which industries have been recently revolutionized by robotics?
Into which industries were robots introduced first?

4. What sensors are you using when grasping an object? Enu-
merate them all. Which ones are absolutely necessary for good
performance?

5. Think about robots vacuuming your floor or mowing your lawn.
Do they use any planning? Why or why not?

6. What kind of sensors would you need in a car that drives com-
pletely autonomously? Think first about the kind of informa-
tion that the car needs to be aware of and then discuss possible
sensors that could capture this information.

7. Implement a simple line-following using a robot of your choice.
How does the thickness of the line affect the sensor placement
on the robot? How does its curvature affect the robot’s speed?

8. Implement a maze solving algorithm that uses simple wall-
following using a robot of your choice. How does the sensor
geometry affect the robot’s performance? What are the pa-
rameters that you find yourself tuning?
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2. Locomotion and Manipulation

Autonomous robots are systems that sense, actuate, compute,
and communicate. Actuation, the focus of this chapter, is
the ability of the robot to move and to manipulate the world.
Specifically, we differentiate between locomotion as the ability
of the robot to move and manipulation as the ability to move
objects in the environment of the robot. Both activities are
closely related: during locomotion the robot uses its motors to
exert forces on its environment (ground, water or air) to move
itself; during manipulation it uses motors to exert forces on
objects to move them relative to the environment. This might
not even require different motors. Insects are good examples
for this: both can use their 6 legs not only for locomotion, but
also for picking up and manipulating objects. The goals of this
chapter are

• introduce the concepts of locomotion, manipulation and
their duality

• explain static vs. dynamic stability

• introduce “degrees-of-freedom”

• and introduce forward kinematics of static arms.

2.1. Locomotion and Manipulation Examples

Locomotion includes very different concepts of motion includ-
ing rolling, walking, running, jumping, sliding (undulatory lo-
comotion), crawling, climbing, swimming, and flying. They
are drastically different in terms of energy consumption, kine-
matics, stability, and capabilities required by the robot that
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2. Locomotion and Manipulation

implements them. Yet, the above definitions are loose and am-
biguous: for example, “swimming” can be done using many
different forms of propulsion systems. Similarly, a sliding mo-
tion on the ground might result into swimming with only few
modifications.

The way in which the individual parts of a robot can move
with respect to each other and the environment is called the
kinematics of the robot. Kinematics are only concerned with
the position and speed (first derivative of position) of those
parts, but not its dynamics, which include acceleration (second
derivative of position) and jerk (third derivative of position).

Commercially, the most dominant form of locomotion is rolling.
This is due to the fact that rolling provides by far the most ef-
ficient energy-speed ratio (Figure 2.1), making the invention
of the wheel one of the greatest technological breakthroughs
in history. Consequently, humans have modified their environ-
ment to have smooth surfaces of large extent such as the road
network, but also warehouse and residential floors. In contrast,
evolution has not evolved a single animal with wheel-like actu-
ators.

Can you find examples of robots from the above cate-
gories? Identify the different types of actuators that are
used in them.

Due to the dominance of rolling robots, the electric motor
is among the most popular actuators. Except for the stepper
motor, which uses large electromagnets to rotate an internal
spindle by a few degrees every time, the physics of the electri-
cal motor requires it to revolve at very high speeds (multiple
thousand rotations per minute). Therefore, motors are almost
always used in conjunction with gears to reduce the speed and
increase the torque, that is the force that the motor can exert
to rotate an axis. In order to be able to measure the number of
revolutions and the axis’ position, motors are also often com-
bined with rotary encoders. Motors that combine an electric
motor with a gear-box, encoder, and controller to move toward
desired position are known as servo motors, and are popular
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2.1. Locomotion and Manipulation Examples

Figure 2.1.: Power consumption vs. speed for various means of loco-
motion. From Todd (1985).
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among hobbyists. Another popular class of actuator, in par-
ticular for legged robots, are linear actuators, that might exist
in electric, pneumatic or hydraulic form. Finally, there exist a
wide array of specialty actuators such as Shape-Memory Alloys,
Electroactive Polymers or Piezo-elements, which often allow for
extreme miniaturization, but do not provide attractive energy-
to-force ratios and are difficult to control.

Most actuators (and mechanisms) capable of locomotion can
also be used for manipulation with only minor modifications.
Most industrial manipulators consist of a chain of rotary ac-
tuators that are connected by links. Most industrial robots
have six or more independently rotating axes. We will see why
further down below. Modern industrial manipulators have the
ability to not only control the position of each of its joints, but
precisely control the torque and force at each individual joint,
making the arm arbitrary compliant, which is the inverse of
stiffness in a mechanical sense. For dexterous manipulation a
robot does not only need an arm, but also a gripper or hand.
Grasping is a hard problem on its own and deserves its own
chapter.

2.2. Static and Dynamic Stability

A fundamental difference between locomotion mechanisms is
whether they are statically or dynamically stable. A statically
stable mechanism will not fall even when all of its joints freeze
(Figure 2.2, left). A dynamically stable robot instead requires
constant motion to prevent it from falling. Technically, stabil-
ity requires the robot to keep it’s center of mass to fall within
the polygon spanned by its ground-contact points. For example
a quadruped robot’s feet span a rectangle. Once such a robot
lifts one of its feet, this rectangle becomes a triangle. If the pro-
jection of the center of mass of the robot along the direction of
gravity is outside of this triangle, the robot will fall. A dynam-
ically stable robot can overcome this problem by changing its
configuration so rapidly that a fall is prevented. An example
of a purely dynamically stable robot is an inverted pendulum
on a cart (Figure 2.2, middle). Such a robot has no statically
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Figure 2.2.: From left to right: statically stable robot. Dynamically
stable inverted pendulum robot. Static and dynamically
stable robot (depending on configuration).

stable configurations and needs to keep moving all the time to
keep the pendulum upright. While dynamic stability is desir-
able for high-speed, agile motions, robots should be designed so
that they can easily switch into a statically stable configuration
(Figure 2.2, right).

An example of a robot that has both statically and dynami-
cally stable configurations is a quadruped (“four legs”) runner.
Unlike walking, a running robot will always have two legs in the
air and alternate between them faster than the robot could fall
in either direction. Although statically stable walking is possi-
ble with only 4 legs, most animals (and robots) require 6 legs
for statically stable walking and use dynamically stable gaits
(such as galloping) when they have four legs. Six legs allow the
animal to move three legs at a time while the three other legs
maintain a stable pose.

2.3. Degrees-of-Freedom

The concept of degrees-of-freedom, often abbreviated as DOF,
is important for defining the possible positions and orientations
a robot can reach. An object in the physical world can have up
to six degrees of freedom, namely forward/backward, sideways,
and up/down as well as rotations around those axes. These
rotations are known as pitch, yaw and roll and are illustrated
in Figure 2.3.

How many of those directions a robot can move in depends
on the configuration of its actuators and the constraints the
robot has with the environment. These relationships are not
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Figure 2.3.: Pitch, yaw and roll around the principal axis of an air-
plane.

always intuitive and require more rigorous mathematical treat-
ment (Chapter 3). The goal of this section is to introduce the
degrees of freedom of standard mechanisms that are recurrent
in robot design such as wheels or simple arms. For wheeled
platforms, the degrees-of-freedom are defined by the types of
wheels used and their orientation. Common wheel types are
listed in Table 2.1.

Only robots that use exclusively wheels with three degrees-of-
freedom (3-DOF wheels) will be able to freely move on a plane.
This is because the pose of a robot on a plane is fully given by
its position (two values) and its orientation (one value). Robots
that don’t have wheels with three degrees of freedom will have
kinematic constraints that prevent them from reaching every
possible point at every possible orientation. For example, a bi-
cycle wheel can only roll into one direction and turn on the spot.
Moving the bicycle wheel orthogonal to its direction of rolling is
not possible, unless it is forcefully dragged (“skidding”), which
requires more involved treatment not covered in this book. On
the other hand, not having three degrees of freedom does not
mean that not all poses in the plane can be reached. A good
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2.3. Degrees-of-Freedom

Wheel type Example Degrees-of-Freedom

Standard Front-wheel of a
wheelbarrow

Two
• Rotation around

the wheel axle
• Rotation around

its contact point
with the ground

Caster wheel Office chair Three
• Rotation around

the wheel axle
• Rotation around

its contact point
with the ground
• Rotation around

the caster axis

Swedish wheel Standard wheel
with non-
actuated rollers
around its cir-
cumference

Three
• Rotation around

the wheel axle
• Rotation around

its contact point
with the ground
• Rotation around

the roller axles

Spherical wheel Ball Bearing Three
• Rotation in any

direction
• Rotation around

its contact point

Table 2.1.: Different types of wheels and their degrees of freedom.
Adopted from Siegwart et al. (2011),
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analogue are figures on a chess-board. For example, a knight
can reach every cell on a chess-board but might require multi-
ple moves to do so. This is similar to a car, which can parallel
park using back-and-forth motions. Instead, a bishop can only
reach either black or white fields on the board.

Similar reasoning applies to aerial and underwater robots.
Here, the position of the robot is affected by the position and
orientation of thrusters, either in the form of jets or propellers,
mounted on the robot. Things become complicated quickly,
however, as the dynamics of the system are subject to fluid-
and aerodynamic effects, which also change as a function of size
of the robot. This book will not go into the details of flying
and swimming robots, but the general principles of localization
and planning will be applicable to them as well.

Think about possible wheel, propeller and thruster con-
figurations. Don’t limit yourself to robots, but consider
also street and aerial vehicles and be creative — if you can
think about a setup that makes sense, i.e., allows for rea-
sonable mobility — somebody will already have built it and
analyzed it. What are the advantages and disadvantages of
each?

For manipulating arms, degrees of freedom usually refer to
the positions and orientations, i.e., rotations around the pri-
mary axes, the end-effector can reach. As a rule of thumb,
each joint usually adds a degree of freedom unless they are
redundant, that is, moving in the same direction. Figure 2.4
shows a series of manipulators operating in a plane. By this,
the degrees of freedom of the end-effector are limited to moving
up and down, sideways, and rotating around its pivot point. As
a plane only has those three degrees of freedom, adding addi-
tional joints cannot increase the degrees of freedom unless they
allow the robot to also move in and out of the plane.

An exact definition of the number of degrees of freedom is
tricky and requires deriving analytical expressions for the end-
effector position and orientation, which will be subject to Chap-
ter 3.
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2.3. Degrees-of-Freedom

Figure 2.4.: From left to right: Manipulators with one, two, three
and three DOF. The degrees of freedom of moving in a
plane are the position of the end-effector with respect to
its height and displacement with respect to the base, as
well as its orientation.

Choosing the “right” kinematics is a trade-off between me-
chanical complexity, maneuverability, achievable precision, cost,
and ease of control. The very popular differential-wheel drive
consisting of two independently controlled wheels that share a
common axis such as on the iRobot Roomba is cheap, highly
maneuverable and easy to control, but makes it hard to drive in
a straight line. This requires both motors to turn at the exact
same speed and both wheels to have the exact same diameter,
which is hard to achieve in practice. This problem is solved well
by car-like steering mechanisms, but they have poor maneuver-
ability and are difficult to control (think parallel-parking).

Take-home lessons

• In order to do planning for a robot, you need to under-
stand how its control parameters map to actions in the
physical world.

• The kinematics of a robot are fully defined by the position
and orientation of its wheels, joints and links no matter
whether it swims, flys, crawls or drives.

• Many robotic systems cannot be fully understand by con-
sidering kinematics alone, but require you to model their
dynamics as well. This book will be limited to model-
ing kinematics, which is sufficient for low-speed, mobile
robots and arms.
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Exercises

1. What are the degrees of freedom of a lawnmower with four
standard wheels? Why are you still able to mow your entire
lawn?

2. Is a car statically or dynamically stable? What about a Seg-
way?

3. What are the degrees of freedom of an office chair with all
caster-wheels?

4. What are the maximum degrees of freedom for objects driving
on the plane?

5. What are the maximum degrees of freedom for objects that can
freely move in the world?

6. Calculate the degrees of freedom of a differential wheels robot
with a front caster wheel. What happens when you add a
second caster wheel?

7. Calculate the degrees of freedom of a standard car. How can
you still reach every point on the plane?

8. A steering wheel allows you to change the yaw of your car. Can
you also change its pitch and its roll?
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3. Forward and Inverse Kinematics

In order to plan a robot’s movements, we have to understand
the relationship between the actuators that we can control
and the robot’s resulting position in the environment. For
static arms, this is rather straightforward: if we know the po-
sition/angle of each joint, we can calculate the position of its
end-effectors using trigonometry. This process is known as for-
ward kinematics. If we want to calculate the position each
joint needs to be at, we need to invert this relationship. This is
known as inverse kinematics. For mobile robots, this process is
usually more involved, as speeds need to be integrated, which
we refer to as odometry .

The goals of this chapter are:

• introduce coordinate systems and their transformations,

• to introduce the forward kinematics of simple arms and
mobile robots

• understand the concept of holonomy,

• show how solutions for the inverse kinematics for both
static and mobile robots can be derived,

• provide an intuition on the relationship between inverse
kinematics and path-planning.

3.1. Coordinate Systems and Frames of Reference

Every robot assumes a position in the real world that can be
described by its position (x, y and z) and orientation (pitch,
yaw and roll) along the three major axes of a Cartesian Co-
ordinate system (See also Section 2.3, “Degrees of freedom”).
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3. Forward and Inverse Kinematics

Figure 3.1.: A coordinate system indicating the direction of the coor-
dinate axes and rotation around them. These directions
have been derived using the right-hand rules.

Such a coordinate system is shown in Figure 3.1. Note that the
directions and orientations of the coordinate axes are arbitrary.
This books uses the “right hand rules”, which are illustrated
in Figure 3.1 to determine axes labels and directions through-
out. Pitch, yaw, and roll, are also known as bank, attitude, and
heading in other communities. This makes sense, considering
the colloquial use of the word “heading”, which corresponds to
a rotation around the z-axis of a vehicle driving on the x-y-
plane.

Defining all three position axes and orientations might be
cumbersome. What level of detail we care about, where the
origin of this coordinate system is, and even what kind of co-
ordinate system we chose, depends on the specific application.
For example, a simple mobile robot would typically require a
representation with respect to a room, a building, or the earth’s
coordinate system (given by the longitude and latitude of each
point on the earth), whereas a static manipulator usually has
the origin of its coordinate system at it’s base. More com-
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Figure 3.2.: Two nested coordinate systems (frames of reference).

plicated systems, such as mobile manipulators or multi-legged
robots, make life much easier by defining multiple coordinate
systems, e.g. one for each leg and one that describes the posi-
tion of the robot in the world frame. These local coordinate
systems are known as Frames of Reference. An example of two
nested coordinate systems is shown in Figure 3.2. In this ex-
ample, a robot located at the origin of x′, y′ and z′ might plan
its motions in its own reference frame, which can then be ex-
pressed in the coordinate system x, y and z by performing a
translation and a rotation as we will later see.

Depending on it’s degrees-of-freedom, that is the number of
independent translations and rotations a robot can achieve in
Cartesian space, it is also customary to ignore components of
position and orientation that remain constant. For example a
simple floor-cleaning robot’s pose might be completely defined
by it’s x and y coordinates in a room as well as its orientation,
i.e. its rotation around the z-axis.
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3. Forward and Inverse Kinematics

3.1.1. Matrix notation

Given some kind of fixed coordinate system, we can describe
the position of a robot’s end-effector by a 3x1 position vector.
As there can be many coordinate systems defined on a robot
and the environment, we identify the coordinate system a point
relates to by a preceeding super-script, e.g., AP to indicate that
point P is in coordinate system {A}. Each point consists of
three elements AP = [pxpypz]

T .
More formally, AP is a linear combination of the three basis

vectors that span A:

AP = px

 1
0
0

+ py

 0
1
0

+ pz

 0
0
1

 (3.1)

As we know, not only the position of the robot is important,
but also its orientation. In order to describe the orientation of a
point, we will attach a coordinate system to it. Let X̂B, ŶB and
ẐB be unit vectors that correspond to the principal axes of a
coordinate system {B}. When expressed in coordinate system
{A}, they are denoted AX̂B,

A ŶB and AẐB. In order to express
a vector that is given in one coordinate system in another, we
need to project each of its components to the unit vectors that
span the target coordinate system. For example considering
only the axis AX̂B

AX̂B = (X̂B · X̂A, X̂B · ŶA, X̂B · ẐA)T (3.2)

consists of the projections of X̂B onto X̂A, ŶA and ẐA. Here,
| · | denotes the scalar product (also known as dot or inner
product). Note that all vectors in (3.2) are unit vectors, i.e.
their length is one. By definition of the scalar product, A ·B =
‖A‖‖B‖ cosα = cosα, indeed reduces the projection of X̂B

onto the unit vectors of {A}. This projection is illustrated in
Figure 3.3.

We can now do this for all three vectors that span coordinate
system {B} and stack these three vectors together into a 3x3
matrix to obtain the rotation matrix

A
BR = [AX̂B

AŶB
AẐB] (3.3)
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Figure 3.3.: Top: A coordinate system {B} with position given by AP
and orientation given by X̂B, ŶB, and ẐB. Bottom: The
projection of the unit vector X̂B onto the unit vectors
that span coordinate system {A} after moving {B} into
the origin of {A}. As all vectors are unit vectors, A ·B =
‖A‖‖B‖ cosα = cosα.
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which describes {B} relative to {A}. It is important to note
that all columns in A

BR are unit vectors, so that the rotation
matrix is orthonormal. This is important as this allows us to
easily obtain the inverse of ABR as A

BR
T or B

AR =A
B RT .

Why the unit vectors of a coordinate system {B} expressed
in coordinate system {A} actually make up a rotation matrix,
can be easily seen when re-arranging equation 3.1 in matrix
form

AP =

 1 0 0
0 1 0
0 0 1

 px
py
pz

 , (3.4)

where the rotation matrix is nothing but the identity as both
points already are in the same coordinate system.

We have now established how to express the orientation of a
coordinate system using a rotation matrix. Usually, coordinate
systems don’t lie on top of each other, but are also displaced
from each other. Together, position and orientation is known
as a frame, which is a set of four vectors, one for the position
and three for the orientation, and we can write

{B} = {ABR,A P} (3.5)

to describe the coordinate frame {B} with respect to {A} using
a vector AP and a rotation matrix A

BR. Robots usually have
many such frames defined along their bodies.

3.1.2. Mapping from one frame to another

Having introduced the concept of frames, we need the abil-
ity to map coordinates in one frame to coordinates in another
frame. For example, lets consider frame {B} having the same
orientation as frame {A} and sitting at location AP in space.
As the orientation of both frames is the same, we can express
a point BQ in frame {A} as

AQ =B Q+A P (3.6)

Actually, adding two vectors that are in different reference
frames, i.e., BQ +A P , is only possible if both of them have
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the same orientation. We can, however, convert from one ref-
erence frame to the other using the rotation matrix:

AP =A
B RBP (3.7)

and therefore solve the mapping problem regardless of the ori-
entation of {A} to {B}:

AQ =A
B RBQ+A P (3.8)

Using this notation, we can see that leading subscripts cancel
the leading superscripts of the following vector/rotation matrix.
Whereas we have now a solution to transfer a point from one
frame of reference to another by combining a rotation and a
translation, it would be more appealing to write something like
that:

AQ =A
B TBQ (3.9)

In order to do this, we need to introduce a 4x1 position vector
such that

[
AQ

]
=

[
A
BR

AP

0 0 0 1

] [
BQ
1

]
(3.10)

and A
BT is a 4x4 matrix. Note that the added ‘1‘s and [0001]

do not affect the other entries in the matrix during matrix mul-
tiplication. A 4x4 matrix of this form is called a homogenous
transform.

The inverse of an homogeneous transform can be constructed
by inverting rotation and translation part independently, lead-
ing to[

A
BR

AP

0 0 0 1

]−1

=

[
A
BR

T −ABRTAP
0 0 0 1

]
(3.11)

We have now established a convenient notation to convert
points from one coordinate system to another. There are many
possible ways this can be done, in particular how rotation can
be represented (see below), but all can be converted from one
into the other.
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3.1.3. Transformation arithmetic

Transformations can be combined: consider for example an arm
with two links, reference frame {A} at the base, {B} at its first
joint, and {C} at its end-effector. Given the transforms B

CT
and A

BT , we can write

AP =A
B TBC T

CP =A
C T

CP (3.12)

to convert a point in the reference frame of the end-effector
to that of its base. As this works for rotation and translation
operators independently, we can construct A

CT as

A
CT =

[
A
BR

B
CR

A
BR

BPC +A PB
0 0 0 1

]
(3.13)

where APB and BPC are the translations from {A} to {B} and
from {B} to {C}, respectively.

3.1.4. Other representations for orientation

So far, we have represented orientation by a 3x3 matrix who’s
column vectors are orthogononal unit vectors describing the
orientation of a coordinate system. Orientation is therefore
represented with nine different values. We chose this represen-
tation mainly because it is the most intuitive to explain and is
derived from simple geometry.

In fact, three values are sufficient to describe orientation.
This becomes clear when considering that orthogonality (dot
product of all columns is zero) and vector length (each vector
must have length 1) impose six constraints on the nine values in
the rotation matrix. Indeed, an orientation can be represented
about a rotation by certain angles around the x, the y, and the
z-axis of the reference coordinate system. This is known as the
X − Y − Z fixed angle notation. Mathematically, this can be
represented by a rotation matrix of the form

A
BRXY Z(γ, β, α) =

 cosα −sinα 0
sinα cosα 0

0 0 1

 cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ

 1 0 0
0 cosγ −sinγ
0 sinγ cosγ


(3.14)
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While the X−Y −Z fixed angles approach expresses a coor-
dinate frame using rotations with respect to the original coor-
dinate frame, say {A}, another possible description is to start
with a coordinate frame {B} that is coincident with frame {A},
then rotate around the Z-axis with angle α, then the Y-axis
with angle β and finally around the X-axis with angle γ. This
representation is called Z-Y-X Euler angles. As the coordinate
axis do not necessarily need to be different, there are twelve
possible valid combinations of sub-sequent rotations:

XYX, XZX, YXY, YZY, ZXZ, ZYZ, XYZ, XZY, YZX, YXZ,
ZXY and ZYX

There are only twelve, as sub-sequent rotations around the same
axis are not valid. Such rotations would not add any informa-
tion, but are equivalent to a rotation by the sum of both angles.

It is important to know about the subtle differences between
the different available transformations as there is no “right” or
“wrong”, but different manufacturers and fields use different
conventions. There is only one caveat: each of the rotation
matrices can look like subsequent rotations around the same
axis for certain values of angles. For example, this happens for
the XYZ rotation matrix if the angle of rotation around the
Y-axis is 90o. These cases are known as a singularity .

Among these, the preferred representation for computational
and stability reasons are Quaternions. A quaternion is a 4-tuple
that extends the complex numbers with very general applica-
tions in mathematics and representing orientation and rotation
in particular. The basic idea is that each rotation can be rep-
resented as a rotation around a single axis (a vector in space)
by a specific angle. Given such an axis K̂ = [kxkykz]

T and
an angle θ, one can calculate the so-called Euler parameters or
unit quaternion:
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ε1 = kxsin
θ

2
(3.15)

ε2 = kysin
θ

2
(3.16)

ε3 = kzsin
θ

2
(3.17)

ε4 = cos
θ

2
(3.18)

These four quantities are constrained by the relationship

ε21 + ε22 + ε23 + ε24 = 1 (3.19)

which might be visualized by a point on a unit hyper-sphere.
Analogous to rotation matrices, two quaternions εi and ε′i can
be multiplied using the following equation

ε4 ε1 ε2 ε3
−ε1 ε4 −ε3 ε2
−ε2 ε3 ε4 −ε1
−ε3 −ε2 ε1 ε4

c




ε′4
ε′1
ε′2
ε′3

 (3.20)

Unlike multiplying two rotation matrices, which requires 27
multiplications and 18 additions, multiplying two quaternions
only requires 16 multiplications and 12 additions, making the
operation computationally more efficient. In addition, the quater-
nion representation does not suffer from singularities for spe-
cific joint angles, making the approach computationally more
robust.

Why any rotation can be expressed by a single vector can be
seen when considering the properties of orthonomal rotation
matrices. They have three Eigenvalues λ = 1 and a complex
pair λ1,2 = cos θ ± i sin θ. Eigenvalues and Eigenvectors are
defined as Rv = λv. For the case of λ = 1, the corresponding
Eigenvector v is unchanged by rotation. This is only possible
if v is the actual axis of rotation. The angle of rotation is now
given by θ, which can be inferred from the complex pair.
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3.2. Forward kinematics of selected Mechanisms

Now that we have introduced the notion of local coordinate
frames, we are interested in how to calculate the pose and speed
of these coordinate frames as a function of the robot’s actuators.
We will first consider simple mechanisms where we can deter-
mine the relationship between actuators and the pose of various
frames on the robot both in the position and speed domain. We
will then consider the special class of non-holonomous mecha-
nisms using a series of wheeled robots, for which the forward
kinematics can only be calculated in the speed domain.

3.2.1. Forward kinematics of a simple arm

Figure 3.4.: A simple 2-DOF arm.

Consider a robot arm made out of two links and two joints
that is mounted to a table. Let the length of the first link be l1
and the length of the second link be l2. You could specify the
position of the link closer to the table by the angle α and the
angle of the second link relative to the first link using the angle
β. Suitable conventions and coordinate systems are shown in
Figure 3.4

We can now calculate the position of the joint between the
first and the second link using simple trigonometry:

x1 = cosαl1 (3.21)

y1 = sinαl1 (3.22)

Similarly, the position of the end-effector is given by
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x2 = cos(α+ β)l2 + x1 (3.23)

y2 = sin(α+ β)l2 + z1 (3.24)

or together, the position of the end-effector (x, y) is given by

x = cos(α+ β)l2 + cosαl1 (3.25)

y = sin(α+ β)l2 + sinαl1 (3.26)

The above equations are the kinematic equations of this robot
as they relate its control parameters α and β to the position
of its end-effector given in the local coordinate system spanned
by x and z with the origin at the robot’s base. Note that both
α and β shown in the figure are positive: Both links rotate
around the z-axis. Using the right-hand rule, the direction of
positive angles is defined to be counter-clockwise.

The configuration space , i.e., the set of angles each actuator
can be set to, of this robot is given by −π

2 < α < π
2 as it is

not supposed to run into the table, and −π < β < π. The con-
figuration space is given with respect to the robot’s joints and
allows us to calculate the workspace of the robot, i.e., the physi-
cal space it can move to, using the forward kinematic equations.
This terminology will be identical for mobile robots. An exam-
ple of configuration and work-space for both a manipulator and
a mobile robot is shown in Figure 3.5.

The orientation of the arm’s end-effector is given by α+β. We
can now write down a transformation that includes a rotation
around the z-axis

cosαβ −sinαβ 0 cosαβ l2 + cosαl1
sinαβ cosαβ 0 sinαβ l2 + sinαl1
0 0 1 0
0 0 0 1

 (3.27)

The notation sinαβ and cosαβ are short-hand for sin(α + β)
and cos(α+ β), respectively.

This transformation now allows us to translate from the robot’s
base to the robot’s end-effector as a function of the actuator po-
sitions α and β. This transformation will be helpful if we want
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to calculate suitable joint angles in order to reach a certain
pose or if we want to convert measurements taken relative to
the end-effector back into the base’s coordinate system.

3.2.2. Forward Kinematics of a Differential Wheels Robot

Whereas the pose of a robotic manipulator is uniquely defined
by its joint angles—which can be made available using encoders
in almost real-time—this is not the case for a mobile robot.
Here, the encoder values simply refer to wheel orientation and
need to be integrated over time, which will be a huge source of
uncertainty as we will later see. What complicates matters is
that for so-called non-holonomic systems, it is not sufficient to
simply measure the distance that each wheel traveled, but also
when each movement was executed.

Figure 3.5.: Configuration space (left) and workspace (right) for a
non-holonomic mobile robot (top) and a holonomic ma-
nipulator (bottom). Closed trajectories in configuration
space result in closed trajectories in the workspace if the
robot’s kinematics is holonomic.

A system is non-holonomic when closed trajectories in its
configuration space (reminder: the configuration space of a
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two-link robotic arm is spanned by the possible values of each
angle) may not have it return to its original state. A sim-
ple arm is holonomic, as each joint position corresponds to a
unique position in space. Going through whatever trajectory
that comes back to the starting point in configuration space,
will put the robot at the exact same position. A train on a
track is holonomic: moving its wheels backwards by the same
amount they have been moving forward brings the train to the
exact same position in space. A car and a differential-wheel
robot are non-holonomic vehicles: performing a straight line
and then a right-turn leads to the same amount of wheel rota-
tion than doing a right turn first and then going in a straight
line; getting the robot to its initial position requires not only
to rewind both wheels by the same amount, but also getting
their relative speeds right. The configuration and correspond-
ing workspace trajectories for a non-holonomic and a holonomic
robot are shown in Figure 3.5. Here, a robot first moves on a
straight line (both wheels turn an equal amount). Then the
left wheel remains fixed and only the right wheel turns for-
ward. Then the right wheel remain fixed and the left wheel
turns backward. Finally, the right wheel turns backward, ar-
riving at the initial encoder values (zero). Yet, the robot does
not return to its origin. Performing a similar trajectory in the
configuration space of a two-link manipulator instead, let the
robot return to its initial position.

It should be clear by now that for a mobile robot, not only
traveled distance per wheel matters, but also the speed of each
wheel as a function of time. Instead, this information was not
required to uniquely determine the pose of a manipulating arm.
Lets introduce the following conventions. We will establish a
world coordinate system {I}, which is known as the inertial
frame by convention (Figure 3.6). We establish a coordinate
system {R} on the robot and express the robot’s speed Rξ̇ as
a vector Rξ̇ = [Rẋ,R ẏ,R θ̇]T . Here Rẋ and Rẏ correspond to
the speed along the x and y directions in {R}, whereas Rθ̇
corresponds to the rotation around the imaginary z-axis, that
you can imagine to be sticking out of the ground. We denote
speeds with dots over the variable name, as speed is simply
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the derivative of distance. Think about the robot’s position in
{R} real quick. It is always zero, as the coordinate system is
fixed on the robot. Therefore, velocities are the only interesting
quantities in this coordinate system and we need to understand
how velocities in {R} map to positions in {I}, which we denote
by Iξ = [Ix,I y,I θ]T . These coordinate systems are shown in
Figure 3.6.

Figure 3.6.: Mobile robot with local coordinate system {R} and world
frame {I}. The arrows indicate the positive direction of
position and orientation vectors.

Notice that the positioning of the coordinate frames and their
orientation are arbitrary. Here, we chose to place the coordinate
system in the center of the robot’s axle and align Rx with its
default driving direction.

In order to calculate the robot’s position in the inertial frame,
we need to first find out, how speed in the robot coordinate
frame maps to speed in the inertial frame. This can be done
again by employing trigonometry. There is only one complica-
tion: a movement into the robot’s x-axis might lead to move-
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ment along both the x-axis and the y-axis of the world coordi-
nate frame. By looking at the figure above, we can derive the
following components to ẋI . First,

ẋI,x = cos(θ)ẋR. (3.28)

There is also a component of motion coming from ẏR (ignor-
ing the kinematic constraints for now, see below). For negative
θ, as in Figure 3.6, a move along yR would let the robot move
into positive XI direction. The projection from ẏR is therefore
given by

˙xI,y = −sin(θ) ˙yR. (3.29)

We can now write

ẋI = cos(θ)ẋR − sin(θ) ˙yR. (3.30)

Similar reasoning leads to

ẏI = sin(θ)ẋR + cos(θ) ˙yR (3.31)

and

θ̇I = ˙θR (3.32)

which is the case because both robot’s and world coordinate
system share the same z-axis in this example. We can now
conveniently write

ξ̇I =I
R T (θ) ˙ξR (3.33)

with

I
RT (θ) =

 cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (3.34)

We are now left with the problem of how to calculate the
speed ˙ξR in robot coordinates. For this, we make use of the
kinematic constraints of the robotic wheels. For a standard
wheel, the kinematic constraints are that every rotation of the
wheel leads to strictly forward or backward motion and does not
allow side-way motion or sliding. We can therefore calculate
the forward speed of a wheel ẋ using its rotational speed φ̇
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(assuming the encoder value/angle is expressed as φ) and radius
r by

ẋ = φ̇r. (3.35)

This becomes apparent when considering that the circumfer-
ence of a wheel with radius r is 2πr. The distance a wheel rolls
when turned by the angle φ (in radians) is therefore x = φr, see
also Figure 3.7, right. Taking the derivative of this expression
on both sides leads to the above expression.

Figure 3.7.: Left: Differential wheel robot pivoting around its left
wheel. Right: A wheel with radius r moves by φr when
rotated by φ degrees.

How each of the two wheels in our example contributes to
the speed of the robot’s center—where its coordinate system is
anchored—requires the following trick: we calculate the contri-
bution of each individual wheel while assuming all other wheels
remaining un-actuated. In this example, the distance traveled
by the center point is exactly half of that traveled by each indi-
vidual wheel, assuming the non-actuated wheel rotating around
its ground contact point (Figure 3.7). We can therefore write

ẋR =
rφ̇l
2

+
rφ̇r
2

(3.36)

given the speeds φ̇l and φ̇r of the left and the right wheel,
respectively.

Think about how the robot’s speed along its y-axis is
affected by the wheel-speed given the coordinate system in
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the drawing above. Think about the kinematic constraints
that the standard wheels impose.

Hard to believe at first, but the speed of the robot along its
y-axis is always zero. This is because the constraints of the
standard wheel tell us that the robot can never slide. We are
now left with calculating the rotation of the robot around its z-
axis. That there is such a thing can be immediately seen when
imaging the robot’s wheels spinning in opposite directions. We
will again consider each wheel independently. Assuming the
left wheel to be non-actuated, spinning the right wheel forwards
will lead to counter-clockwise rotation. Given an axle diameter
(distance between the robot’s wheels) d, we can now write

ωrd = φrr (3.37)

with ωr the angle of rotation around the left wheel (Figure 3.7,
right). Taking the derivative on both sides yields speeds and
we can write

ω̇r =
φ̇rr

d
(3.38)

Adding the rotation speeds up (with the one around the right
wheel being negative based on the right-hand grip rule), leads
to

θ̇ =
φ̇rr

d
− φ̇lr

d
(3.39)

Putting it all together, we can write

 ẋI
ẏI
θ̇

 =

 cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


 rφ̇l

2 + rφ̇r
2

0
φ̇rr
d −

φ̇lr
d

 (3.40)

From Forward Kinematics to Odometry

Equation 3.40 only provides us with the relationship between
the robot’s wheel-speed and its speed in the inertial frame. Cal-
culating its actual pose in the inertial frame is known as odom-
etry . Technically, it requires integrating (3.40) from 0 to the
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current time T . As this is not possible, but for very special
cases, one can approximate the robot’s pose by summing up
speeds over discrete time intervals, or more precisely xI(T )

yI(T )
θ(T )

 =

∫ T

0

 ẋI(t)
ẏI(t)

θ̇(t)

 dt ≈
k=T∑
k=0

 ∆xI(k)
∆yI(k)
∆θ(k)

∆t

(3.41)
which can be calculated incrementally as

xI(k + 1) = xI(k) + ∆x(k) (3.42)

using ∆x(k) ≈ ẋI(t) and similar expressions for yI and θ. Note
that (3.42) is just an approximation. The larger ∆t becomes,
the more inaccurate this approximation becomes as the robot’s
speed might change during the interval.

Don’t let the notion of an integral worry you! As robots’
computers are fundamentally discrete, integrals usually
turn into sums, which are nothing than for-loops.

3.2.3. Forward kinematics of Car-like steering

Differential wheel drives are very popular in mobile robotics as
they are very easy to build, maintain, and control. Although
not holonomic, a differential drive can approximate the func-
tion of a fully holonomic robot by first driving on the spot to
achieve the desired heading and then driving straight. Draw-
backs of the differential drive are its reliance on a caster wheel,
which performs poorly at high speeds, and difficulties in driving
straight lines as this requires both motors to drive at the exact
same speed.

These drawbacks are mitigated by car-like mechanisms, which
are driven by a single motor and can steer their front wheels.
This mechanism is known as “Ackermann steering” . Acker-
mann steering should not be confused with “turntable” steering
where the front wheels are fixed on an axis with central pivot
point. Instead, each wheel has its own pivot point and the sys-
tem is constrained in such a way that all wheels of the car drive
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on circles with a common center point, avoiding skid. As the
Ackermann mechanism lets all wheels drive on circles with a
common center point, its kinematics can be approximated by
those of a tricycle with rear-wheel drive, or even simpler by a
bicycle. This is shown in Figure 3.8.

Figure 3.8.: Left: Kinematics of car-like steering and the equivalent
bicycle model. Right: Mechanism of an Ackermann ve-
hicle.

Let the car have the shape of a box with length L between
rear and front axis. Let the center point of the common circle
described by all wheels be distanceR from the car’s longitudinal
center line. Then, the steering angle φ is given by

tanφ =
L

R
(3.43)

The angles of the left and the right wheel, φl and φr can
be calculated using the fact that all wheels of the car rotate
around circles with a common center point. With the distance
between the two front wheels l, we can write

L

R− l/2
= tan (π/2− φr) (3.44)

L

R+ l/2
= tan (π/2− φl) (3.45)

This is important, as it allows us to calculate the resulting wheel
angles resulting from a specific angle φ and test whether they
are within the constraints of the actual vehicle.
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Assuming the wheelspeed to be ω̇ and the wheel radius r, we
can calculate the speeds in the robot’s coordinate frame to

ẋr = ω̇r (3.46)

ẏr = 0 (3.47)

θ̇r =
ω̇r tanφ

L
(3.48)

using (3.43) to calculate the circle radius R.

3.3. Forward Kinematics using the
Denavit-Hartenberg scheme

So far, we have considered the forward kinematics of wheeled
mechanisms and simple arms and derived relationships between
actuator parameters and velocities using basic trigonometry. In
the specific case of multi-link arms, we can also think about the
forward kinematics as a chain of homogenous transformations
with respect to a coordinate system mounted at the base of a
manipulator or a fixed position in the room. Deriving these
transformations can be confusing and can be facilitated by fol-
lowing a “recipe” such as conceived by Denavit and Hartenberg.
The so-called Denavit-Hartenberg (DH) scheme has evolved as
quasi-standard and can easily be automatized, i.e., applied to
a 3D model of a robotic arm, e.g.

A manipulating arm consists of links that are connected by
joints. Joints can be either rotational or prismatic, i.e., change
their length and thus providing additional degrees of freedom.
Knowing the length of all rigid links, the position of the ma-
nipulators end-effector is fully described by its joint angles and
joint offset (for prismatic joints).

In oder to use the DH-convention, we first need to define a
coordinate system at each joint. We chose the z-axis to be the
axis of rotation for a hinge joint and the axis of translation for a
prismatic joint. We can now find the common normal between
the z-axes of two subsequent joints, i.e., a line that is orthogonal
to each z-axis and intersects both. With the direction of the
x-axis at the base arbitrary, subsequent x-axis are chosen such
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3. Forward and Inverse Kinematics

that they lie on the common normal shared between two joints.
Whereas the direction of the z-axis is given by the positive
direction of rotation (right hand rule), the x-axis points away
from the previous joint. This allows defining the y-axis using
the right-hand rule. Note that these rules, in particular the
requirement that x-axes lie along the commom normal, might
result in coordinate systems with their origins outside the joint.

The transformation between two joints is then fully described
by the following four parameters:

1. The length r of the common normal between the z-axes
of two joints i and i− 1 (link length).

2. The angle α between the z-axes of the two joints with
respect to the common normal (link twist), i.e., the angle
between the old and the new z-axis, measured about the
common normal.

3. The distance d between the joint axes (link offset), i.e., the
offset along the previous z-axis to the common normal.

4. The rotation θ around the common axis along which the
link offset is measured (joint angle), i.e., the angle from
the old x-axis to the new x-axis, about the previous z-
axis.

Two of the D-H parameters describe the link between the
joints, and the other two describe the link’s connection to a
neighboring link. Depending on the link/joint type, these num-
bers are fixed or can be controlled. For example, in a revolute
joint θ is the varying joint angle, while all other quantities are
fixed. Similarly, for a prismatic joint d is the joint variable. An
example of two revolute joints is shown in Figure 3.9.

The coordinate transform from one link (i−1) to another (i)
can now be constructed using the following matrix:

llnn−1T =


cos θn − sin θn cosαn sin θn sinαn rn cos θn
sin θn cos θn cosαn − cos θn sinαn rn sin θn

0 sinαn cosαn dn
0 0 0 1


=

(
R t

0 0 0 1

)
(3.49)
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Figure 3.9.: Example of selected Denavit-Hartenberg parameters for
three revolute joints. The z-axes of joint i and i + 1 are
parallel.
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with the rotation matrix R and the translation vector t. This
matrix can be constructed by a series of rotations and transla-
tions, one for each DH parameter:

n
n−1T = T ′z(dn)Ṙ′z(θn)Ṫx(rn)Ṙx(αn) (3.50)

with

T ′z(dn) =


1 0 0 0
0 1 0 0
0 0 1 dn
0 0 0 1

 R′z(θn) =


cos θn − sin θn 0 0
sin θn cos θn 0 0

0 0 1 0

0 0 0 1


(3.51)

and

Tx(rn) =


1 0 0 rn
0 1 0 0
0 0 1 0

0 0 0 1

 Rx(αn) =


1 0 0 0
0 cosαn − sinαn 0
0 sinαn cosαn 0

0 0 0 1


(3.52)

These are a translation of dn along the previous z-axis (T ′z(dn)),
a rotation of θn about the previous z-axis (R′z(θn)), a transla-
tion of rn along the new x-axis (Tx(rn))and a rotation of αn
around the new x-axis (Rx(αn)).

Like for any homogeneous transfrom, the inverse n
n−1T

−1n is
given by

n−1
n T =

(
R−1 −R−1T

0 0 0 1

)
(3.53)

with the inverse of R simply being its transpose.

3.4. Inverse Kinematics of Selected Mechanisms

The forward kinematics of a system are given by a transforma-
tion matrix from the base of a manipulator (or a corner of the
room) to the end-effector of a manipulator (or a mobile robot).
As such, they are an exact description of the pose of the robot.
In order to find the joint angles that lead to the desired pose, we
will need to solve these equations for joint angles as a function
of the desired pose. For a mobile robot, we can do this only
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for velocities in the local coordinate system, and need more
sophisticated methods to calculate appropriate trajectories for
the robot.

3.4.1. Solvability

As the resulting equations are heavily non-linear, it makes sense
to briefly think about whether we can solve them at all for
specific parameters before trying. Here, the workspace of a
robot becomes important. The workspace is the sub-space that
can be reached by the robot in any orientation. Clearly, there
will be no solutions for the inverse kinematic problem outside
of the workspace of the robot.

A second question to ask is how many solutions we actually
expect and what it means to have multiple solutions geometri-
cally. Multiple solutions to achieve a desired pose correspond to
multiple ways in which a robot can reach a target. For example
a three-link arm that wants to reach a point that can be reached
without fully extending all links (leading to a single solution),
can do this by folding its links in a concave and a convex fash-
ion. How many solutions there are for a given mechanism and
pose quickly becomes non-intuitive. For example a 6-DOF arm
can reach certain points with up to 16 different conformations.

3.4.2. Inverse Kinematics of a Simple Manipulator Arm

We will now look at the kinematics of a 2-link arm that we
introduced earlier. We need to solve the equations determining
the robot’s forward kinematics by solving for α and β. This is
tricky, however, as we have to deal with complicated trigono-
metric expressions.

To get an intuition, assume there to be only one link, l1. Solv-

ing (3.21) for α yields actually two solutions
[
cos−1 x1

l1
,− cos−1 x1

l1

]
,

as cosine is symmetric for positive and negative values. Indeed,
for any possible position on the x−axis ranging from −l1 to l1,
there exist two solutions. One with the arm above the table,
one with the arm within the table. (At the extremes of the
workspace, both solutions are the same.)
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Solving for both degrees of freedom actually yields eight so-
lutions, of which only two are feasible:

α→ cos−1

(
x2y + y3 −

√
4x4 − x6 + 4x2y2 − 2x4y2 − x2y4

2(x2 + y2)

)
(3.54)

and

β → − cos−1
(
1/2(−2 + x2 + y2)

)
(3.55)

What will drastically simplify this problem, is to not only
specificy the desired position, but also the orientation of the
end-effector. In this case, a desired pose can be specified by

cosφ −sinφ 0 x
sinφ cosφ 0 y

0 0 1 0
0 0 0 1

 (3.56)

A solution can now be found by simply equating the individual
entries of the transformation (3.27) with those of the desired
pose. Specifically, we can observe:

cosφ = cos(α+ β) (3.57)

x = cosαβ l2 + cosαl1

y = sinαβ l2 + sinαl1

These can be reduced to

φ = α+ β (3.58)

cosα =
cosαβ l2−x

l1
= cosφl2−x

l1

sinα =
sinαβ l2−y

l1
= sinφl2−y

l1

(3.59)

Providing the orientation of the robot in addition to the desired
position therefore allows solving for α and β just as a function
of x, y and φ.

As such solutions quickly become unhandy with more dimen-
sions, however, you can calculate a numerical solution using an
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Figure 3.10.: Distance to (x = 1, y = 1) over the configuration space
of a two-arm manipulator. Minima corresponds to exact
inverse kinematic solutions.

approach that we will later see is very similar to path planning
in mobile robotics. One way to do this is to plot the distance
of the end-effector from the desired solution in configuration
space. To do this, you need to solve the forward kinematics
for every point in configuration space and use the Euclidian
distance to the desired target as height. In our example this
would be

fx,y(α, β) =

√
(sin(α+ β) + sin(α)− y)

2
+ (cos(α+ β) + cos(a)− x)

2

(3.60)

This is plotted for α = [−π/2, π/2] and β = [−π, π] and x = 1,
y = 1 in Figure 3.10. This function has a minima, in this case
zero, for values of α and β that bring the manipulator to (1, 1).
These values are (α→ 0, b→ −π

2 ) and (α→ −π
2 , b→

π
2 ).

You can now think about inverse kinematics as a path find-
ing problem from anywhere in the configuration space to the
nearest minima. A formal approach to doing this will be dis-
cussed in Section 3.5. How to find shortest paths in space, that
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is finding the shortest route for a robot to get from A to B will
be a subject of chapter 4.

3.4.3. Inverse Kinematics of Mobile Robots

As there is no unique relationship between the amount of ro-
tation of a robot’s individual wheels and its position in space,
but for simple holonomic platforms such as a robot on a track,
we will treat the inverse kinematics problem at first only for
the velocities of the local robot coordinate frame.

Lets first establish how to calculate the necessary speed of the
robot’s center given a desired speed ξ̇I in world coordinates. We
can transform the expression ξ̇I = T (θ) ˙ξR by multiplying both
sides with the inverse of T (θ):

T−1(θ)ξ̇I = T−1(θ)T (θ) ˙ξR (3.61)

which leads to ˙ξR = T−1(θ)ξ̇I . Here

T−1 =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 (3.62)

which can be determined by actually performing the matrix
inversion or by deriving the trigonometric relationships from
the drawing. Similarly, we can now solve ẋR

˙yR
θ̇

 =

 rφ̇l
2 + rφ̇r

2
0

φ̇rr
d −

φ̇lr
d

 (3.63)

for φl, φr

φ̇l = (2ẋR/r − θ̇d)/2 (3.64)

φ̇r = (2ẋR/r + θ̇d)/2

allowing us to calculate the robot’s wheelspeed as a function
of a desired ẋR and θ̇, which can be calculated using (3.61).

Note that this approach does not allow us to deal with ẏR 6=
0, which might result from a desired speed in the inertial frame.
Non-zero values for translation in y-direction are simply ignored
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by the inverse kinematic solution, and driving toward a specific
point either requires feedback control (Section 3.5.2) or path
planning (Chapter 4).

3.5. Inverse Kinematics using Feedback-Control

Solving the inverse kinematic problem for non-holonomic mo-
bile robots require us to find a sequence of actuation commands.
One way of doing this is to employ feedback control . In a nut-
shell, feedback control uses the error between actual and desired
position to calculate a trajectory piece that drives the robot a
little closer to its desired pose. The process is then repeated
until the error is marginally small. This approach can not only
be used for mobile robots, but also for manipulator arms with
kinematics that are too complicated to solve analytically.

3.5.1. Feedback control for mobile robots

Assume the robot’s position given by xr, yr and θr and the
desired pose as xg, yg and θg with the subscript g indicating
“goal”. We can now calculate the error in the desired pose by

ρ =
√

(xr − xg)2 + (yr − yg)2 (3.65)

α = θr − tan−1 yr − yg
xr − xg

η = θg − θr

which is illustrated in Figure 3.11. These errors can turned
directly into robot’s speeds, for example using a simple propor-
tional controller with gains p1, p2 and p3:

ẋ = p1ρ (3.66)

θ̇ = p2α+ p3η (3.67)

which will let the robot drive in a curve until it reaches the
desired pose.
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Figure 3.11.: Difference in desired and actual pose as a function of
distance ρ, bearing α and heading η.

3.5.2. Inverse Jacobian Technique

The two-link arm (Figure 3.4) involved only two free param-
eters, but was already pretty complex to solve analytically if
the end-effector pose was not specified. One can imagine that
things become very hard with more degrees of freedom or more
complex geometries. (Mechanisms in which some axes intersect
are simpler to solve than others, for example.) Fortunately,
there are simple numerical techniques that work reasonably
well. One of them known is as Inverse Jacobian technique:

As we can easily calculate the resulting pose for every possi-
ble joint angle combination using the forward kinematic equa-
tions, we can calculate the error between desired and actual
pose. This error actually provides us with a direction that the
end-effector needs to move. As we only need to move tiny bits
at a time and can then re-calculate the error, this is an attrac-
tive method to generate a trajectory that moves the arm to
where we want it go and thereby solving the inverse kinematics
problem.

In order to do this, we need an expression that relates the
desired speed of the robot’s end-effector, i.e., the direction in
which we want to move, to the speed at which we need to change
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our joints. Let the translational speed of a robot be given by

v =

 ẋ
ẏ
ż

 . (3.68)

As the robot can potentially not only translate, but also ro-
tate, we also need to specify its angular velocity. Let these
velocities be given as a vector

ω =

 ωx
ωy
ωz

 . (3.69)

This notation is also called a velocity screw. We can now
write translational and rotational velocities in a 6x1 vector as
(v ω)T . Let the joint angles/positions be j = (j1, . . . , jn).

Given a relationship between end-effector velocities j̇ and
joint velocities J , we can write

(v ω)T = J(j̇1, . . . , j̇n)T (3.70)

with n the number of joints. J is also known as the Jacobian
matrix and contains all partial derivatives that relate every joint
angles to every velocities. In practice, J looks like

(
v
ω

)
=


∂x
∂j1

. . . ∂x
∂jn

...
...

∂ωz
∂j1

. . . ∂ωz
∂jn

 (j1, . . . , jn)T (3.71)

This notation is important as it tells us how small changes in
the joint space will affect the end-effector’s position in cartesian
space. Better yet, the forward kinematics of a mechanism can
always be calculated, as well as their analytical derivatives, al-
lowing us to calculate numerical values for the entries of matrix
J for every possible joint angle/position.

It would now be desirable to just invert J in order to cal-
culate the necessary joint speeds for every desired end-effector
speeds. Unfortunately, J is only invertible if there are exactly
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6 independent joints, so that J is quadratic and has full rank.
If this is not the case, we can use the pseudo-inverse instead:

J+ =
JT

JJT
= JT (JJT )−1 (3.72)

As you can see, JT cancels from the equation leaving 1/J , while
being applicable to non-quadratic matrices.

This solution might or might not be numerically stable, de-
pending on the current joint values. If the inverse of J is
mathematically not feasible, we speak of a singularity of the
mechanism. This happens for example when two joint axes line
up, therefore effectively removing a degree of freedom from the
mechanism, or at the boundary of the workspace. Mathemati-
cally speaking the rank of the Jacobian is smaller than six.

We can now write a simple feedback controller that drives our
error e as the difference between desired and actual position to
zero:

∆j = −J+e (3.73)

That is, we move each joint a tiny bit into the direction that
minimizes e. It can be easily seen that the joint speeds are
only zero if e has become zero. A problem arises, however,
when the end-effector has to go through a singularity to get to
its goal. Then, the solution to J+ “explodes” and joint speeds
go to infinity. In order to work around this, we can introduce
damping to the controller.

This can be achieved by not only minimizing the error, but
also the joint velocities. Thus, the minimization problem be-
comes

‖J∆j − e‖+ λ2‖∆j‖2 (3.74)

where λ is some constant. One can show that the resulting
controller that achieves this has the form

∆j = (JTJ + λ2I)−1J+e (3.75)

This is known as the Damped Least-Squares method. Prob-
lems with this approach are local minima and singularities of
the mechanism, that might render this solution infeasible.
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Take-home lessons

• Forward kinematics are equivalent to finding a coordinate
transform from a world coordinate system into a coordi-
nate system on the robot. Such a transform is a combi-
nation of a (3x1) translation vector and a (3x3) rotation
matrix that consists of the unit vectors of the robot co-
ordinate system. Both translation and rotation can be
combined into a 4x4 homogeneous transform matrix.

• Forward and Inverse Kinematics of a mobile robot are
performed with respect to the speed of the robot and not
its position.

• For calculating the effect of each wheel on the speed of
the robot, you need to consider the contribution of each
wheel independently.

• Calculating the inverse kinematics analytically becomes
quickly infeasible. You can then plan in configuration
space of the robot using path-planning techniques.

• The inverse kinematics of a robot involves solving the
equations for the forward kinematics for the joint angles.
This process is often cumbersome if not impossible for
complicated mechanisms.

• A simple numerical solution is provided by taking all par-
tial derivatives of the forward kinematics in order to get
an easily invertible expression that relates joint speeds to
end-effector speeds. The inverse kinematics problem can
then be formulated as feedback control problem, which
will move the end-effector towards its desired pose using
small steps. Problems with this approach are local min-
ima and singularities of the mechanism, that might render
this solution infeasible.
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Exercises

Coordinate systems

1. a) Write out the entries of a rotation matrix A
BR assuming

basis vectors XA, YA, ZA, and XB , YB , ZB .

b) Write out the entries of rotation matrix B
AR.

2. Assume two coordinate systems that are co-located in the same
origin, but rotated around the z-axis by the angle α. Derive
the rotation matrix from one coordinate system into the other
and verify that each entry of this matrix is indeed the scalar
product of each basis vector of one coordinate system with
every other basis vector in the second coordinate system.

3. Consider two coordinate systems {B} and {C}, whose orienta-
tion is given by the rotation matrix C

BR and have distance BP .
Provide the homogenous transform C

BT and its inverse B
CT .

4. Consider the frame {B} that is defined with respect to frame
{A} as {B} = {ABR,A P}. Provide a homogeneous transfrom
from {A} to {B}.

Forward and inverse kinematics

1. Consider a differential wheel robot with a broken motor, i.e.,
one of the wheels cannot be actuated anymore. Derive the
forward kinematics of this platform. Assume the right motor
is broken.

2. Consider a tri-cycle with two independent standard wheels in
the rear and the stearable, driven front-wheel. Chose a suitable
coordinate system and use φ as the steering wheel angle and
wheel-speed ω̇. Provide forward and inverse kinematics.
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Path-planning is an important primitive for autonomous mobile
robots that lets robots find the shortest—or otherwise optimal—
path between two points. Optimal paths could be paths that
minimize the amount of turning, the amount of braking or
whatever a specific application requires. Algorithms to find
a shortest path are important not only in robotics, but also in
network routing, video games and understanding protein fold-
ing.

Path-planning requires a map of the environment and the
robot to be aware of its location with respect to the map. We
will assume for now that the robot is able to localize itself,
is equipped with a map, and capable of avoiding temporary
obstacles on its way. How to create a map, how to localize a
robot, and how to deal with uncertain position information will
be major foci of the reminder of this book. The goals of this
chapter are to

• introduce suitable map representations,

• explain basic path-planning algorithms ranging from Di-
jkstra, to A*, D* and RRT,

• introduce variations of the path-planning problem, such
as coverage path planning.

4.1. Map representations

In order to plan a path, we somehow need to represent the
environment in the computer. We differentiate between two
complementary approaches: discrete and continuous approxi-
mations. In a discrete approximation, a map is sub-divided
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into chunks of equal (e.g., a grid or hexagonal map) or dif-
fering sizes (e.g., rooms in a building). The latter maps are
also known as topological maps. Discrete maps lend themselves
well to a graph representation. Here, every chunk of the map
corresponds to a vertex (also known as “node”), which are con-
nected by edges, if a robot can navigate from one vertex to
the other. For example a road-map is a topological map, with
intersections as vertices and roads as edges, labeled with their
length (Figure 4.2). Computationally, a graph might be stored
as an adjacency or incidence list/matrix. A continuous approx-
imation requires the definition of inner (obstacles) and outer
boundaries, typically in the form of a polygon, whereas paths
can be encoded as sequences of points defined by real numbers.
Despite the memory advantages of a continuous representation,
discrete maps are the dominant representation in robotics.

For mapping obstacles, the most common map is the occu-
pancy grid map. In a grid map, the environment is discretized
into squares of arbitrary resolution, e.g. 1cm x 1cm, on which
obstacles are marked. In a probabilistic occupancy grid, grid
cells can also be marked with the probability that they contain
an obstacle. This is particularly important when the position
of the robot that senses an obstacle is uncertain. Disadvan-
tages of grid maps are their large memory requirements as well
as computational time to traverse data structures with large
numbers of vertices. A solution to this is storing the grid map
as k-d tree. A k-d tree recursively breaks the environment into
k pieces. For k = 4, an area is broken into four pieces. Each of
these pieces is again broken into four pieces and so on, until the
desired resolution is reached. These pieces can easily be stored
in a graph with each vertex having four children, which are the
four pieces the vertex is broken into, or is a leaf of the tree.
What makes this data structure attractive is that not all ver-
tices need to be broken down to the smallest possible resolution.
Instead only areas, which contain obstacles need to be further
broken down. A grid map containing obstacles and the corre-
sponding k-d tree, here a quadtree, are shown in Figure 4.1.
There is no silver bullet, and each application might require a
different solution that could be a combination of different map
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Figure 4.1.: A grid map and its corresponding quadtree (k-d tree).

types.

There exist also every possible combination of discrete and
continuous representation. For example, roadmaps for GPS
systems are stored as topological maps that store the GPS co-
ordinates of every vertex, but might also contain overlays of
aerial and street photography or even 3D point clouds stored
in a 8-d tree, also known as a Octree. These different maps are
then used at different stages of the path planning stage.

4.2. Path-Planning Algorithms

The problem to find a “shortest” path from one vertex to an-
other through a connected graph is of interest in multiple do-
mains, most prominently in the internet, where it is used to
find an optimal route for a data packet. The term “shortest”
refers here to the minimum cumulative edge cost, which could
be physical distance (in a robotic application), delay (in a net-
working application) or any other metric that is important for
a specific application. An example graph with arbitrary edge-
lengths is shown in Figure 4.2.

4.2.1. Robot embodiment

In order to deal with the physical embodiment of the robot,
which complicates the path-planning process, the robot is re-
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Figure 4.2.: A generic path planning problem from vertex I to vertex
VI. The shortest path is I-II-III-V-VI with length 13.

duced to a point-mass and all the obstacles in the environment
are grown by half of the longest extension of the robot from its
center. This representation is known as configuration space as
it reduces the representation of the robot to its x and y coor-
dinates in the plane. An example is shown in Figure 4.3. The
configuration space can now either be used as a basis for a grid
map or a continuous representation.

Figure 4.3.: A map with obstacles and its representation in configura-
tion space, which can be obtained by growing each obstacle
by the robot’s extension.
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4.2.2. Dijkstra’s algorithm

One of the earliest and simplest algorithms is Dijkstra’s algo-
rithm (Dijkstra 1959). Starting from the initial vertex where
the path should start, the algorithm marks all direct neighbors
of the initial vertex with the cost to get there. It then proceeds
from the vertex with the lowest cost to all of its adjacent ver-
tices and marks them with the cost to get to them via itself
if this cost is lower. Once all neighbors of a vertex have been
checked, the algorithm proceeds to the vertex with the next
lowest cost. Once the algorithm reaches the goal vertex, it ter-
minates and the robot can follow the edges pointing towards
the lowest edge cost.

In Figure 4.2, Dijkstra would first mark nodes II, III and IV
with cost 3, 5 and 7 respectively. It would then continue to
explore all edges of node II, which so far has the lowest cost.
This would lead to the discovery that node III can actually be
reached in 3+1 < 5 steps, and node III would be relabeled with
cost 4. In order to completely evaluate node II, Dijkstra needs
to evaluate the remaining edge before moving on and label node
VI with 3 + 12 = 15.

The node with the lowest cost is now node III (4). We can
now relabel node VI with 14, which is smaller than 15, and
label node V with 4 + 5 = 9, whereas node IV remains at
4 + 3 = 7. Although we have already found two paths to the
goal, one of which better than the other, we cannot stop as
there still exist nodes with unexplored edges and overall cost
lower than 14. Indeed, continuing to explore from node V leads
to a shortest path I-II-III-V-VI of cost 13, with no remaining
nodes to explore.

As Dijkstra would not stop until there is no node with lower
cost than the current cost to the goal, we can be sure that a
shortest path will be found if it exists. We can say that the
algorithm is complete.

As Dijkstra will always explore nodes with the least overall
cost first, the environment is explored comparably to a wave
front originating from the start vertex, eventually arriving at
the goal. This is of course highly inefficient in particular if
Dijkstra is exploring nodes away from the goal. This can be
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visualized by adding a couple of nodes to the left of node I in
Figure 4.2. Dijkstra will explore all of these nodes until their
cost exceeds the lowest found for the goal. This can also be
seen when observing Dijkstra’s algorithm on a grid, as shown
in Figure 4.4.

Figure 4.4.: Dijkstra’s algorithm finding a shortest path from ‘S’ to
’G’ assuming the robot can only travel laterally (not di-
agonally) with cost one per grid cell. Note the few num-
ber of cells that remain unexplored once the shortest path
(grey) is found, as Dijkstra would always consider a cell
with the lowest path cost first.

4.2.3. A*

Instead of exploring in all directions, knowledge of an approxi-
mate direction of the goal could help avoiding exploring nodes
that are obviously wrong to a human observer. Such special
knowledge that such an observer has can be encoded using a
heuristic function, a fancier word for a “rule of thumb”. For
example, we could give priority to nodes that have a lower es-
timated distance to the goal than others. For this, we would
mark every node not only with the actual distance that it took
us to get there (as in Dijkstra’s algorithm), but also with the
estimated cost “as the crows flies”, for example by calculating
the Euclidean distance or the Manhattan distance between the
vertex we are looking at and the goal vertex. This algorithm is
known as A* (Hart, Nilsson & Raphael 1968). Depending on
the environment, A* might accomplish search much faster than
Dijkstra’s algorithm, and performs the same in the worst case.
This is illustrated in Figure 4.5 using the Manhattan distance
metric, which does not allow for diagonal movements.
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Figure 4.5.: Finding a shortest path from ‘S’ to ’G’ assuming the robot
can only travel laterally (not diagonally) with cost one per
grid cell using the A* algorithm. Much like Dijkstra, A*
evaluates only the cell with the lowest cost, but takes an
estimate of the remaining distance into account.

An extension of A* that addresses the problem of expensive
re-planning when obstacles appear in the path of the robot,
is known as D* (Stentz 1994). Unlike A*, D* starts from the
goal vertex and has the ability to change the costs of parts
of the path that include an obstacle. This allows D* to re-
plan around an obstacle while maintaining most of the already
calculated path.

A* and D* become computationally expensive when either
the search space is large, e.g., due to a fine-grain resolution
required for the task, or the dimensions of the search prob-
lem are high, e.g. when planning for an arm with multiple
degrees of freedom. Solutions to these problems are provided
by sampling-based path planning algorithms that are described
further below.

4.3. Sampling-based Path Planning

The previous sections have introduced a series of complete al-
gorithms for the path planning problem, i.e. they will find a
solution eventually if it exists. Complete solutions are often un-
feasible, however, when the possible state space is large. This
is the case for robots with multiple degrees of freedom such
as arms. In practice, most algorithms are only resolution com-
plete, i.e., only complete if the resolution is fine-grained enough,
as the state-space needs to be somewhat discretized for them to
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Figure 4.6.: Counterclockwise: Random exploration of a 2D search
space by randomly sampling points and connecting them
to the graph until a feasible path between start and goal
is found.

operate (e.g., into a grid) and some solutions might be missed
as a function of the resolution of the discretization.

Instead of evaluating all possible solutions or using a non-
complete Jacobian-based inverse kinematic solution, sampling-
based planners create possible paths by randomly adding points
to a tree until some solution is found or time expires. As the
probability to find a path approaches one when time goes to in-
finity, sampling-based path planners are probabilistic complete.
Prominent examples of sampling-based planners are Rapidly-
exploring Random Trees (RRT)(LaValle 1998) and Probabilis-
tic Roadmaps(PRM) (Kavraki, Svestka, Latombe & Overmars
1996). An example execution of RRT for an unknown goal,
thereby reducing the path-planning problem to a search prob-
lem is shown in Figure 4.6.

This example illustrates well how a sampling-based planner
can quickly explore a large portion of space and refines a so-
lution as time goes on. Whereas RRT can be understood as

80



4.3. Sampling-based Path Planning

growing a single tree from a robot’s starting point until one of
its branches hit a goal, probabilistic road-maps create a tree by
randomly sampling points in the state-space, testing whether
they are collision-free, connecting them with neighboring points
using paths that reflect the kinematics of a robot, and then us-
ing classical graph shortest path algorithms to find shortest
paths on the resulting structure. The advantage of this ap-
proach is clearly that such a probabilistic roadmap has to be
created only once (assuming the environment is not changing)
and can then be used for multiple queries. PRMs are therefore
a multi-query path-planning algorithm. In contrast, RRT’s are
known as single-query path-planning algorithms.

In practice, the boundary between the different historic al-
gorithms has become very diffuse, and single-query and multi-
query variants of both RRT and PRM exist. It is important to
note that there is no silver bullet algorithm/heuristic and even
their parameter-sets are highly problem-specific. We will there-
fore limit our discussion on useful heuristics that are common
to sampling-based planners.

4.3.1. Basic Algorithm

Let X be a d-dimensional state-space. This can either be the
robot’s state given in terms of translation and rotations (6 di-
mensions), a subset thereof, or the joint space with one di-
mension per possible joint angle. Let G ⊂ X be a d-ball (d-
dimensional sphere) in the state-space that is considered to be
the goal, and t the allowed time. A tree planner proceeds as
follows:

Tree=Init(X,start);

WHILE ElapsedTime() < t AND NoGoalFound(G) DO

newpoint = StateToExpandFrom(Tree);

newsegment = CreatePathToTree(newpoint);

IF ChooseToAdd(newsegment) THEN

Tree=Insert(Tree,newsegment);

ENDIF

ENDWHILE

return Tree
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This process can be repeated on the resulting tree as long as
time allows. This is known as an AnyTime algorithm. Given
a suitable distance metric, the cost-to-goal can be stored at
each node of the tree (much easier if growing the tree from the
goal to start), which allows retrieving the shortest path easily.
There are four key points in this algorithm:

1. Finding the next point to add to the tree (or discard)
(StateToExpandFrom).

2. Finding out where and how to connect this point to the
tree taking into account the robot kinematics (CreatePath-
ToTree).

3. Testing whether this path is suitable, i.e., collision-free.

4. Finding the next point to add.

A prominent method is to pick a random point in the state-
space and connect it to the closest existing point in the tree
or to the goal. This requires searching all nodes in the tree
and calculating their distance to the candidate point. Other
approaches put preferences on nodes with fewer out-degrees
(those which do not yet have very many connections) and chose
a new point within its vicinity. Both approaches make it likely
to quickly explore the entire state-space.

If there are constraints imposed on the robot’s path, for ex-
ample the robot needs to hold a cup and therefore is not sup-
posed to rotate its wrist, this dimension can simply be taken
out of the state-space.

Once a possible path is found, this space can be reduced to
the ellipsoid that bounds the maximal path-length. This ellip-
soid can be constructed by mounting a wire of the maximum
path length between start and goal and pushing it outward
with a pen. All the area that can be reached with the pen
constrained by the wire can contain a point that can possibly
lead to a shorter path. This approach is particularly effective
when running multiple copies of the same planner in parallel
and exchanging the shortest paths once they are found (Otte
& Correll 2013).
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4.3.2. Connecting Points to the Tree

A new point is classically connected to the closest point already
in the tree or to the goal. This can be done by calculating the
distance to all points already in the tree. This does not neces-
sarily generate the shortest path, however. A recent improve-
ment has been made by RRT*, which connects the point to the
tree in a way that minimizes the overall path length. This can
be done by considering all points in the tree within a d-ball (on
a 2D map, d = 2, i.e. a circle) from of fixed radius from the
point to add and finding the point that minimizes the overall
path length to the start.

Adding a point to the tree is also a good time to take into
account the specific kinematics of a robot, for example a car.
Here, a local planner can be used to generate a suitable trajec-
tory that takes into account the orientation of the vehicle at
each point in the tree.

4.3.3. Collision Checking

Efficient algorithms for testing collisions deserve a dedicated
lecture. While the problem is intuitive in configuration-space
planning in 2D (the robot reduces to a point) and can be solved
using a simple point-in-polygon test, the problem is more in-
volved for manipulators that are subject to self-collision.

As collision checking takes up to 90% of the execution time
in the path planning problem, a successful method to increase
computational speed is “lazy collision evaluation”. Instead of
checking every point for a possible collision, the algorithm first
finds a suitable path. Only then, it checks every segment of this
path for collisions. In case some segments are in collision, they
are deleted and the algorithm goes on, but keeps the segments
of the successful path that were collision-free.

4.4. Path Smoothing

As paths are randomly sampled, they will be most likely shakey
and not optimal. For exampe, a grid-map will generate a se-
ries of sharp turns and a sampling-based approach will return
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zig-zag random paths. Results can be drastically improved by
running an additional algorithm that smoothes the path. One
way of doing this is to connect points of the path using splines,
curves or even trajectory snippets that are known to be fea-
sible for a specific platform. Alternatively, one can also use
a model of the actual platform and use a feedback controller
such as described in Section 3.5.1 for mobile robots and Sec-
tion 3.5.2 for arms, sample a series of points in front of the
robot, and generate a trajectory that the robot can actually
drive. When combined with dynamics, this approach is known
as model-predictive control . Care needs to be taken, however,
that the resulting paths are indeed collision free.

4.5. Planning at different length-scales

In practice, no one map representation and planning algorithm
might be sufficient. To plan a route for a car, for example,
might involve a coarse search over the street network such as
performed by your car’s navigation system, but not involve
planning which lane to actually choose. Planning lanes and
how to navigate round-abouts and intersections will then in-
volve another layer of discrete planning. How to actually move
the robot within a lane and avoid local obstacles, might then
be best done with a sampling-based planning algorithm. Fi-
nally, trajectories need to be turned into wheel speeds and turn
angles, possibly using some form of feedback control. This hier-
archy is depicted in Figure 4.7. Here, downward-pointing arrays
indicate input that one planning layer provides to the one be-
low. Upward-pointing arrows instead indicate exceptions that
cannot be handled by the lower levels. For example, a feedback
controller cannot handle obstacles well, requiring the sampling-
based planning layer to come up with a new trajectory. Should
the entire road be blocked, this planner would need to hand-off
control the lane-based planner. A similar case can be made
for manipulating robots, which also need to combine multiple
different representations and controllers to plan and execute
trajectories efficiently.

Note that this representation does not include a reasoning
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Figure 4.7.: Path-planning across different length scales, requiring a
variety of map representations and planning paradigms.
Arrows indicate information passed between layers.
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level that encodes traffic rules and common sense. While some
of these might be encoded using cost-functions, such as maxi-
mizing distance from obstacles or insuring smooth riding, other
more complex behaviors such as adapting driving in the pres-
ence of cyclists or properties of the ground need to be imple-
mented in an additional vertical layer that has access to all
planning layers.

4.6. Other path-planning applications

Once the environment has been discretized into a graph, we
can employ other algorithms from graph theory to plan de-
sirable robot trajectories. For example, floor coverage can be
achieved by performing a depth-first search (DFS) or a breadth-
first-search (BFS) on a graph where each vertex has the size of
the coverage tool of the robot. “Coverage” is not only inter-
esting for cleaning a floor: the same algorithms can be used to
perform an exhaustive search of a configuration space, such as
in the example shown in Figure 3.10, where we plotted the er-
ror of a manipulator arm in reaching a desired position over its
configuration space. Finding a minimum in this plot using an
exhaustive search solves the inverse kinematics problem. Sim-
ilarly, the same algorithm can be used to systematically follow
all links on a website till a desired depth (or actually retrieving
the entire world-wide web).

Doing a DFS or a BFS might generate efficient coverage
paths, but they are far from optimal as many vertices might
be visited twice. A path that connects all vertices in a graph
but passes every vertex only once is known as a Hamiltonian
Path. A Hamiltonian path that returns to its starting vertex is
known as a Hamiltonian Cycle. This problem is also known as
the Traveling Salesman Problem (TSP), in which a route needs
to be calculated that visits every city on his tour only once and
is known to be NP Complete.
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4.7. Summary and Outlook

Path planning is an ongoing research problem. Finding collision
free paths for mechanisms with high degrees of freedom such
as multiple arms operating in a common space, multi-robot
systems, or systems involving dynamics (and therefore adding
the derivatives of the state variables to the planning problem)
might take unacceptably long to solve.

Although sampling-based path planners can drastically speed
up the time to find some solution, there are not optimal and
struggle with specific situations such as narrow passages. There
is no “silver bullet” algorithm for solving all path planning
problems and heuristics that lead to massive speed-up in one
scenario might be detrimental in others. Also, algorithmic pa-
rameters are mostly ad-hoc and correctly tuning them to a
specific environment might drastically increase performance.

Take-home lessons

• The first step in path planning is choosing a map repre-
sentation that is appropriate to the application.

• The second step is to reduce the robot to a point-mass,
which allows planning in the configuration space.

• This allows the application of generic shortest path find-
ing algorithms, which have applications in a large variety
of domains, not limited to robotics.

• A sampling-based planning algorithm finds paths by sam-
pling random points in the environment. Heuristics are
used to maximize the exploration of space and bias the
direction of search. This makes these algorithms fast, but
neither optimal nor complete.

• As the resulting paths are random, multiple trials might
lead to totally different results.

• There is no one-size-fits-all algorithm for a path-planning
algorithm and care must be taken to select the right
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paradigm (single-query vs. multi-query), heuristics, and
parameters.

Exercises

1. How does the computational complexity of Dijkstra’s algorithm
change when moving from 2D to 3D search spaces?

2. A* uses a “heuristic” to bias the search in the expected direc-
tion of the goal. Why can it only use a heuristic, not the actual
length?

3. Assuming points are sampled uniformly at random in a ran-
domized planning algorithm. Calculate the limiting behaviour
of the following ratio (number of points in tree)/(number of
points sampled) as the number of points sampled goes to in-
finity. Assume the total area Atotal and the area of free space
Afree within are known.

4. Assuming a kd-tree is used as a nearest-neighbour data struc-
ture, and points are sample uniformly at random, calculate the
run-time of inserting a point into a tree of size N . Use “big-Oh”
notation, e.g. O(N).

5. What other practical runtime concerns must one consider be-
sides computational complexity alone when doing sampling
based motion planning? Can you suggest ways to deal with
these other concerns?
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Robots are systems that sense, actuate, and compute. So far,
we have studied the basic physical principles of actuation, i.e.,
locomotion and manipulation, and computation, i.e., inverse
kinematics and path-planning. We now need to understand the
basic principles of robotic sensors that provide the data-basis
for computation.

The goals of this chapter are

• provide an overview of sensors commonly used on robotic
systems

• outline the physical principles that are responsible for un-
certainty in sensor-based reasoning

5.1. Robotic Sensors

The development of sensors is classically driven by industries
other than robotics. These include submarines, automatically
opening doors, safety devices for industry, servos for remote-
controlled toys, and more recently the cell-phone, automobiles
and gaming consoles. These industries are mostly responsible
for making “exotic” sensors available at low cost by identifying
mass-market applications, e.g., accelerometers and gyroscopes
now being used in mass-market smart phones or the 3D depth
sensor “Kinect” as part of its XBox gaming console.

Recap the sensors that you are interacting with daily.
What sensors do you have in your phone, in your house
and kitchen, or in your car?
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As we will see later on, sensors are hard to classify by their
application. In fact, most problems benefit from every possible
source of information that they can obtain. For example, lo-
calization can be achieved by counting encoder increments, but
also by measuring acceleration, or using vision. All of these ap-
proaches differ drastically in their precision and the kind of data
that they provide, but none of them is able to completely solve
the localization problem on its own. This chapter is therefore
organized by the physical quantities (and derivatives thereof),
a sensor is measuring, instead of the higher level state estimates
it can contribute to.

Think about the kind of data that you could obtain from
an encoder, an accelerometer, or a vision sensor on a non-
holonomic robot. What are the fundamental differences?

Although an encoder is able to measure position, it is used
in this function only on robotic arms. If the robot is non-
holonomic, closed tours in its configuration space, i.e., robot
motions that return the encoder values to their initial position,
do not necessarily drive the robot back to its starting point.
In those robots, encoders are therefore mainly useful to mea-
sure speed. An accelerometer instead, by definition, measures
the derivative of speed. Vision, finally, allows to calculate the
absolute position (or the integral of speed) if the environment
is equipped with unique features. An additional fundamental
difference between those three sensors is the amount and kind
of data they provide. An accelerometer samples real-valued
quantities that are digitized with some precision. An odometer
instead delivers discrete values that correspond to encoder in-
crements. Finally, a vision sensor delivers an array of digitized
real-valued quantities (namely colors). Although the informa-
tion content of this sensor exceeds that of the other sensors
by far, cherry-picking the information that are really useful re-
mains a hard, and largely unsolved, problem.
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Figure 5.1.: From left to right: encoder pattern used in a quadrature
encoder, resulting sensor signal (forward motion), abso-
lute encoder pattern (gray coding).

5.2. Proprioception of robot kinematics and
internal forces

Proprioception refers to the perception of internal states of a
robot. This is different from exteroception, which describes
sensing of anything outside of the robot. Proprioception in-
cludes awareness of the robot’s joint angles, its speeds, as well
torques and forces.

The main internal sensor is therefore the encoder. Encoders
can be used for sensing joint position and speed, as well as
— when used together with a spring — a simple force sen-
sor. There are both incremental and absolute encoders. The
latter are mostly used in industrial applications, but are not
common in mobile robotics. There are magnetical and optical
encoders, which both rely on a magnetic or optical beacon turn-
ing together with the motor and being sensed by an appropriate
sensor that counts every pass-through. The most common en-
coder in robotics is the optical quadrature encoder . It relies on
a pattern rotating with the motor and an optical sensor that
can register black/white transitions. Whereas those patterns
can be precision manufactured, simple encoders can be made
by simply laser-cutting a pattern such as shown in Figure 5.1
and reading it with a light sensor.

While a single sensor would be sufficient to detect rotation
and its speed, it does not allow for the determining the direction
of motion. Quadrature encoders therefore have two sensors, A
and B, that register an interleaving pattern with distance of a
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quarter phase. If A leads B, for example, the disk is rotating in
a clockwise direction. If B leads A, then the disk is rotating in
a counter-clockwise direction. It is also possible to create abso-
lute encoders, an example of which is shown in Figure 5.1, right.
This pattern encodes 3-bits, encoding 8 different segments on
a disc. Notice that the pattern is arranged in such a way that
there is only one bit changing from one segment to the other.
This is known as “Gray code”. The function of linear encoders
is analogous, both for incremental and absolute encoders.

If combined with a spring, such as in a series elastic actuator,
rotary and linear encoders can be used as simple force/torque
sensors using Hooke’s law (F = kx, force equals distance times
spring constant). Whereas the series elastic actuator is the most
illustrative examples, most load cells operate on the premise of
measuring displacements within materials of known properties.
Here, measuring changes in resistance or capacitance might be
easier choices.

Other means of measuring the actual force at the end-effector
or joint torques is measuring the actual current consumed at
each joint. Knowing a mechanism’s pose allows to calculate the
resulting forces and torques across the mechanism as well as the
currents required for empty loading conditions. Derivations of
these then correspond to additional forces that can hence be
calculated.

Finally, there are other means of proprioception, such as sim-
ple sensors that can detect when a robot gets picked up, e.g.

5.3. Sensors using light

The small form factor and low price of light-sensitive semi-
conductors have led to a proliferation of light-based sensing
relying on a multitude of physical effects. These include reflec-
tion, phase shift, and time of flight.

5.3.1. Reflection

Reflection is one of the principles that is easiest to exploit: the
closer an object is, the more it reflects light shined at it. This
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Figure 5.2.: Typical response of an infrared distance sensor as a func-
tion of distance. Units are left dimensionless intension-
ally.

allows to easily measure distance to objects that reflect light
well and are not too far away. In order to make these sen-
sors as independent from an object’s color (but unfortunately
not totally independent), infrared is most commonly chosen.
A distance sensor is made from two components: an emitter
and a receiver. They work by emitting an infrared signal and
then measuring the strength of the reflected signal. A typi-
cal response is shown in Figure 5.2. The values obtained at
an analog-digital converter correspond to the voltage at the in-
frared receiver and are saturated for low distances (flat line),
and quadratically fall off thereafter.

When using more than one infrared sensor/emitter pair, e.g.,
using a camera and a projector, not only allows to measure the
distance of many points at once, but also to assess the structure
of the environment by calculating its impact on the deformation
of patterns. For example a straight line becomes a curve when
projected onto a round surface. This approach is known as
structured light and illustrated in Figure 5.3. Thanks to the
continuously increasing efficiency of computational systems, a
light-weight version of such an approach has become feasible
to be implemented at small scale and low cost at around 2010,
and emerged as a novel standard in robotic sensing.
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Figure 5.3.: From left to right: two complex physical objects, a pattern
of colored straight lines and their deformation when hit-
ting the surfaces, reconstructed 3D shape. From (Zhang
et al. 2002).

Instead of using line patterns, infrared-based depth image
sensors use a speckle pattern (a collection of randomly dis-
tributed dots with varying distances), and two computer vision
concepts: depth from focus and depth from stereo. When us-
ing a lens with a narrow focal depth, objects that are closer
or farther away appear blurred (you can easily observe this
on professional portrait photos, which often use this effect for
aesthetic purposes). Measuring the “bluriness” of a scene (for
known camera parameters) therefore allows for an initial esti-
mate of depth. Depth from stereo instead works by measuring
the disparity of the same object appearing in two images taken
by cameras that are a known distance apart. Being able to
identify the same object in both frames allows to calculate this
disparity, and from there the distance of the object. (The far-
ther the object is away, the smaller is the disparity.) This is
where the speckle pattern comes in handy, which simply re-
quires to search for blobs with similar size that are close to
each other.

5.3.2. Phase shift

As you can see in Figure 5.2, reflection can only be precise if
distances are short. Instead of measuring the strength (aka am-
plitude) of the reflected signal, laser distance sensors measure
the phase difference of the reflected wave. In order to do this,
the emitted light is modulated with a wave-length that exceeds
the maximum distance the scanner can measure. If you would
use visible light and do this much slower, you would see a light
that keeps getting brighter, then getting darker, briefly turns

96



5.3. Sensors using light

off and then starts getting brighter again. Thus, if you would
plot the amplitude, i.e. its brightness, of the emitted signal
vs. time you would see a wave that has zero-crossings when
the light is dark. As light travels with the speed of light, this
wave propagates through space with a constant distance (the
wavelength) between its zero crossings. When it gets reflected,
the same wave travels back (or at least parts of it that get scat-
tered right back). For example, modern laser scanners emit
signals with a frequency of 5 MHz (turning off 5 million times
in one second). Together with the speed of light of approx-
imately 300,000km/s, this leads to a wavelength of 60m and
makes such a laser scanner useful up to 30m.

When the laser is now at a distance that corresponds exactly
to one half the wave-length, the reflected signal it measures will
be dark at the exact same time its emitted wave goes through
a zero-crossing. Going closer to the obstacle results in an offset
that can be measured. As the emitter knows the shape of the
wave it emitted, it can calculate the phase difference between
emitted and received signal. Knowing the wave-length it can
now calculate the distance. As this process is independent from
ambient light (unless it has the exact same frequency as the
laser being used), the estimates can be very precise. This is
in contrast to a sensor that uses signal strength. As the signal
strength decays at least quadratically, small errors, e.g. due to
fluctuations in the power supply that drives the emitting light,
noise in the analog-digital converter, or simply differences in
the reflecting surface have drastic impact on the accuracy and
precision (see below for a more formal definition of this term).

As the laser distance measurement process is fast, such lasers
can be combined with rotating mirrors to sweep larger areas,
known as Laser Range Scanners. Such systems have been com-
bined into packages consisting of up to 64 scanning lasers, pro-
viding a depth map around a car while driving, e.g. It is also
possible to modulate projected images with a phase-changing
signal, which is the operational principle of early “time-of-
flight” cameras, which is not an accurate description of their
operation, however
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5.3.3. Time-of-flight

The most precise distance measurements light can provide is by
measuring its time of flight. This can be done by counting the
time a signal from the emitter becomes visible in the receiver.
As light travels very fast (3,000,000,000m/s), this requires high-
speed electronics that can measure time periods smaller than
nano-seconds in order to achieve centimeter accuracy. In prac-
tice this is done by combining the receiver with a very fast
(electronic) shutter that operates at the same frequency with
which light is emitted. As this timing is known, one can in-
fer the time light must have been traveling by measuring the
quantity of photons that have made it back from the reflective
surface within one shutter period. Considering a concrete ex-
ample, light travels 15m in 50ns. Therefore, it will take a pulse
50ns to return from an object at a distance of 7.5m. If the
camera sends out a pulse of 50ns length and then closes the
receiver with a shutter, the receiver will receive more photons
the closer the object is, but no photons if the object is farther
away than 7.5m. Given a fast enough and precise circuit that
acts as a shutter, it is sufficient to measure the actual amount
of light that returns from the emitter.

5.4. Sensors using sound

5.4.1. Ultra-sound distance sensors

Ultra-sound distance sensor: An ultra-sound distance sensor
operates by emitting an ultra-sound pulse and measures its re-
flection. Unlike a light-based sensor that measures the ampli-
tude of the reflected signal, a sound-based sensor measures the
time it took the sound to travel. This is possible, because sound
travels at much lower speed (300m/s) than light (300,000km/s).
The fact that the sensor actually has to wait for the signal to re-
turn leads to a trade-off between range and bandwidth. (Look
these definitions up above before you read on.) In other words,
allowing a longer range requires waiting longer, which in turn
limits how often the sensor can provide a measurement. Al-
though US distance sensors have become less and less common
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in robotics, they have an advantage over light-based sensors:
instead of sending out a ray, the ultra-sound pulse results in a
cone with an opening angle of 20 to 40 degrees. By this, US
sensors are able to detect small obstacles without the require-
ment of directly hitting them with a ray. This property makes
them the sensor of choice in automated parking helpers in cars.

5.4.2. Texture recognition

Audible sound consists of high frequency vibrations in the range
between 20 Hz and roughly 15 kHz. Microphones are therefore
ideally suited to measure vibrations in this range. This allows
them to double as the Pascinian corpuscle in human skin cells,
which is known to have a resonance frequency of 250 Hz and is
mostly responsible for texture recognition. Indeed, rubbing a
texture against a microphone can indeed be used for differenti-
ating between tens and hundreds of different textures (Hughes
& Correll 2014), with a number of commercial sensors avail-
able. These sensors usually calculate the frequency spectrum
of the recorded signal, which can then be classified using ma-
chine learning techniques. Being able to recognize a texture by
touch is important in applications like grasping and navigation
through cluttered terrain.

5.5. Inertia-based sensors

A moving mass does not loose its kinetic energy, but for friction.
Likewise, a resting mass will resist acceleration. Both effects are
due to “inertia” and can be exploited to measure acceleration
and speed.

5.5.1. Accelerometer

An accelerometer can be thought of as a mass on a dampened
spring. Considering a vertical spring with a mass hanging down
from it, we can measure the acting force F = kx (Hooke’s law)
by measuring the displacement x that the mass has stretched
the spring. Using the relationship F = am, we can now calcu-
late the acceleration a on the mass m. On earth, this accelera-
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tion is roughly 9.81kgm
s2

. In practice, these spring/mass systems
are realized using microelectromechanical systems (MEMS),
such as a cantilevered beam whose displacement can be mea-
sured, e.g., using a capacitive sensor. Accelerometers measure
up to three axes of translational accelerations. Infering a po-
sition from this requires integration twice, thereby amplifying
any noise, making position estimates using accelerometers alone
infeasible. As gravity provides a constant acceleration vector,
accelerometers are very good at estimating the pose of an object
with respect to gravity.

5.5.2. Gyroscopes

A gyroscope is an electro-mechanical device that can measure
rotational orientation. It is complementary to the accelerome-
ter that measures translational acceleration. Classically, a gy-
roscope consists of a rotating disc that could freely rotate in a
system of pivots and gimbals. When moving the system, the
inertial momentum keeps the original orientation of the disc,
allowing to measure the orientation of the system relative to
where the system was started. A variation of the gyroscope is
the rate gyro, which measures rotational speed.

What a rate gyro measures can most intuitively be illus-
trated by considering the implementation of an optical rate
gyro. In an optical gyro, a laser beam is split into two beams
and send around a circular path in two opposite directions.
If this setup is rotated against the direction of one of these
laser beams, one laser will have to travel slightly longer than
the other, leading to a measurable phase-shift at the receptor.
This phase shift is proportional to the rotational speed of the
setup. As light with the same frequency and phase will add,
and lights with the same frequency but opposite phases will
cancel each other, light at the detector will be darker for high
rotational velocities. As small-scale optical rate gyros are not
practical for multiple reasons, MEMS rate gyros rely on a mass
suspended by springs. The mass is actively vibrating, making
it subject to Coriolis forces, when the sensor is rotated. Coriolis
forces can be best understand by moving orthogonally to the
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direction of rotation on a vinyl disk player. In order to move
in a straight line, you will not only need to move forwards, but
also sideways. The necessary acceleration to change the speed
of this sideway motion is counteracting the Coriolis force, which
is both proportional to the lateral speed (the vibration of the
mass in a MEMS sensor) and the rotational velocity, which the
device wishes to measure. Note that the MEMS gyro would
only be able to measure acceleration if it were not vibrating.

Gyroscopes can measure the rotational speed around three
axes, which can be integrated to obtain absolute orientation. As
an accelerometer measures along three axes of translation, the
combination of both sensors can provide information on motion
in all six degrees of freedom. Together with a magnetometer
(compass), which provides absolute orientation, his combina-
tion is also known as Inertial Measurement Unit (IMU), .

5.6. Beacon-based sensors

Localizing an object by triangulation goes back to ancient civi-
lizations orienting themselves using the stars. As stars are only
visible during unclouded nights, seafarers have eventually in-
vented systems of artificial beacons emitting light, sound, and
eventually radio waves. The most sophisticated of such sys-
tems is the Global Positioning System (GPS). GPS consists
of a number of satellites in orbit, which are equipped with
knowledge about their precise location and have synchronized
clocks. These satellites broadcast a radio signal that travels at
the speed of light and is coded with its time of emission. GPS
receivers can therefore calculate the distance to each satellite by
comparing time of emission and time of arrival. As not only the
position (x,y,z), but also the time difference between the GPS
receiver’s clock and the synchronized clocks of the satellites is
unknown, four satellites are needed to obtain a “fix”. Due to
the way information from the satellites is coded, getting an
initial fix can take in the order of minutes, but eventually is
available multiple times a second. GPS measurements are nei-
ther precise nor accurate enough (see below) for small mobile
robots, and require to be combined with other sensors, such as
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IMUs and compasses. (The bearing shown on some GPS re-
ceivers is calculated from subsequent positions and is therefore
meaningless if the robot is not moving.)

There exist also a variety of indoor-GPS solutions, which con-
sists of either active or passive beacons that are mounted in the
environment at known locations. Passive beacons, for example
infrared reflecting stickers arranged in a certain pattern or 2D
barcodes, can be detected using cameras and their pose can be
calculated from their known dimensions. Active beacons in-
stead usually emit radio, ultrasound or a combination thereof,
which can then be used to estimate the robot’s range to this
beacon.

5.7. Terminology

It is now time to introduce a more precise definition of terms
such as “speed” and “resolution”, as well as additional taxon-
omy that is used in a robotic context.

Roboticists differentiate between active and passive sensors.
Active sensors emit energy of some sort and measure the reac-
tion of the environment. Passive sensors instead measure en-
ergy from the environment. For example, most distance sensors
are active sensors (as they sense the reflection of a signal they
emit), whereas an accelerometer, compass, or a push-button
are passive sensors.

The difference between the upper and the lower limit of the
quantity a sensor can measure its known as its range . This
should not be confused with the dynamic range, which is the
ratio between the highest and lowest value a sensor can mea-
sure. It is usually expressed on a logarithmic scale (to the basis
10), also known as “decibel”. The minimal distance between
two values a sensor can measure is known as its resolution. The
resolution of a sensor is given by the device physics (e.g., a light
detector can only count multiples of a quant), but usually lim-
ited by the analog-digital conversion process. The resolution of
a sensor should not be confused with its accuracy or its preci-
sion (which are two different concepts). For example, whereas
an infrared distance sensor might yield 4096 different values to
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Figure 5.4.: From left to right, the cross corresponds to the true value
of the signal: neither precise nor accurate, precise, but
not accurate, accurate, but not precise, and accurate and
precise.

encode distances from 0 to 10cm, which suggests a resolution
of around 24 micrometers, its precision is far above that (in the
order of millimeters) due to noise in the acquisition process.

Technically, a sensors accuracy is given by the difference be-
tween a sensors (average) output m and the true value v:

accuracy = 1− |m− v|
v

(5.1)

This measure provides you with a quantity that approaches one
for very accurate values and zero if the measurements group far
away from the actual mean. In practice, however, this measure
is only rarely used and accuracy is provided with absolute val-
ues or a percentage at which a value might exceed the true
measurement.

A sensor’s precision instead is given by the ratio of range
and statistical variance of the signal. Precision is therefore a
measure of repeatability of a signal, whereas accuracy describes
a systematic error that is introduced by the sensor physics. This
is illustrated in Figure 5.4.

A GPS sensor is usually precise within a few meters, but only
accurate to tens of meters. This becomes most obvious when
satellite configurations change, resulting in the precise region
jumping by a couple of meters. In practice, this can be avoided
by fusing this data with other sensors, e.g. from an IMU.

The speed at which a sensor can provide measurements is
known as its bandwidth. For example, if a sensor has a band-
width of 10 Hz, it will provide a signal ten times a second. This
is important to know, as querying the sensor more often is a
waste of computational time and potentially misleading.
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Take-home lessons

• Most of a robot’s sensors either address the problem of
robot localization or localizing and recognizing objects in
its vicinity.

• Each sensors has advantages and drawbacks that are quan-
tified in its range, precision, accuracy, and bandwidth.
Therefore, robust solutions to a problem can only be
achieved by combining multiple sensors with differing op-
eration principles.

• Solid-state sensors (i.e. without mechanical parts) can be
miniaturized and cheaply manufactured in quantity. This
has enabled a series of affordable IMUs and 3D depth
sensors that will provide the data basis for localization
and object recognition on mass-market robotic systems

Exercises

1. Given a laser scanner with an angular resolution of 0.01 rad
and a maximum range of 5.6 meters, what is the minimum
range d a robot needs to have from an object of 1cm width to
definitely sense it, i.e., hit it with at least one of its rays? You
can approximate the distance between two rays with the arc
length.

2. Why does the bandwidth of a Ultra-sound based distance sen-
sor decreases significantly when increasing its dynamic range,
but that of a laser range scanner does not for typical operation?

3. You are designing an autonomous electric car to transport
goods on campus. As you are worried about cost, you are
thinking about whether to use a laser scanner or an ultra-sound
sensor for detecting obstacles. As you drive rather slow, you
are required to sense up to 15 meters. The laser scanner you are
considering can sense up to this range and has a bandwidth of
10Hz. Assume 300m/s for the speed of sound in the following.

a) Calculate the time it takes until you hear back from the
US sensor when detecting an obstacle 15m away. Assume
that the robot is not moving at this point.
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b) Calculate the time it takes until you hear back from the
laser scanner. Hint: you don’t need the speed of light for
this, the answer is in the specs above.

c) Assume now that you are moving toward the obstacle.
Which sensor will give you a measurement that is closer
to your real distance at the time of reading and why?
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Vision is one of the information-rich sensor system both humans
and robots have available. Processing the wealth of informa-
tion that is generated by vision sensors is still a key challenge,
however. The goal of this chapter is to introduce

• images as two-dimensional signals,

• providing an intuition of the wealth of information hidden
in low-level information,

• introducing basic convolution and threshold-based image
processing algorithms.

6.1. Images as two-dimensional signals

Images are captured by cameras containing matrices of charge-
coupled devices (CCD) or similar semi-conductors that can turn
photons into electrical signals. These matrices can be read out
pixel by pixel and turned into digital values, for example an
array of 640 by 480 three-byte tuples corresponding to the red,
green, and blue (RGB) components the camera has seen. An
example of such data, for simplicity only one color channel, is
shown in Figure 6.1.

Looking at the data clearly reveals the white tile within the
black tiles at the lower-right corner of the chessboard. Higher
values correspond to brighter colors (white) and lower values
to darker colors. We also observe that although the tiles have
to have the same color, the actual values differ quite a bit. It
might make sense to think about these values much like we
would do if the data would be 1D signal: taking the “deriva-
tive”, e.g., along the horizontal rows, would indicate areas of big
changes, whereas the “frequency” of an image would indicate
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how quickly values change. Areas with smooth gradients, e.g.,
black and white tiles, would then have low frequencies, whereas
areas with strong gradients, would contain high frequency in-
formation.

Figure 6.1.: A chessboard floating inside the ISS, astronaut Gregory
Chamitoff. The inset shows a sample of the actual data
recorded by the image sensor. One can clearly recognize
the contours of the white tile.

This language opens the door to a series of signal process-
ing concepts, such as low-pass filters (supressing high frequency
information), high-pass filters (suppressing low frequency infor-
mation), or band-pass filters (letting only a range of frequencies
pass), analysis of the frequency spectrum of the image (the dis-
tribution of content at different frequencies), or “convolving”
the image with another two-dimensional function. The next
sections will provide both an intuition of what kind of mean-
ingful information is hidden in such abstract data and provide
concrete examples of signal processing techniques that make
this information appear.

6.2. From signals to information

Unfortunately, many phenomena that often have very different
or even opposite meaning look very similar when looking at
the low-level signal. For example, drastic changes in color val-
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ues do not necessarily mean that the color of a surface indeed
has changed. Similar patterns are generated by depth discon-
tinuities, specular highlights, changing lighting conditions, or
surface orientation changes. These examples are illustrated in
Figure 6.2 and make computer vision a hard problem.

Figure 6.2.: Inside of the international space station (left), highlighted
areas in which pixel values change drastically (right). Un-
derlying effects that produce similar responses: change in
surface properties (1), depth discontinuities (2), specular
highlights (3), changing lighting conditions such as shad-
ows (4), or surface orientation changes (5).

This example illustrates that signals alone are not sufficient
to understand a phenomenon, but require context. Here, the
context does not only refer to surrounding signals, but also
high-level conceptional knowledge such as the fact that light
sources create shadows and specular highlights, that objects
in the front appear larger, and so on. How important such
conceptional knowledge is, is illustrated by Figure 6.3.

Both images show an identical landscape that once appears
to be speckled with craters, once with bubble-like hills. At first
glance, both scenes are illuminated from the left, suggesting
a change in the landscape. Once information that the sun is
illuminating one picture from the left and the other from the
right, however, it becomes clear that the craters are simply dif-
ferently illuminated and what we perceive as bumps eventually
turns back into craters.

More surprisingly, conceptual knowledge is often sufficient to
make up for the lack of low-level cues in an image. An ex-
ample is shown in Figure 6.4. Here, a Dalmatian dog can be
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Figure 6.3.: Picture of the Apollo 15 landing site during different
times of the day. The landscape is identical, but appears
to be speckled with craters (lift) or hills (right). Knowing
that the sun is illuminating the scene from the left and
right, respectively, does explain this effect. Image credit:
NASA/GSFC/Arizona State University.

clearly recognized despite absence of cues for its outline, sim-
ply by extrapolating its appearance and pose from conceptual
knowledge.

These examples illustrate both the advantages and draw-
backs of a signal processing approach. While an algorithm will
detect interesting signals even there where we don’t see, or don’t
expect them (due to conceptional bias), image understanding
not only requires low-level processing, but intelligent combina-
tion of the low-level cue’s spatial relationship and conceptual
knowledge about the world.

6.3. Basic image operations

Basic image operations can be thought of as a filter that oper-
ates in the frequency or in the space (color) domain. Although
most filters directly operate in the color domain, knowing how
they affect the frequency domain is helpful in understanding
the filter’s function. For example, a filter that is supposed to
highlight edges, such as shown in Figure 6.2 should suppress low
frequencies, i.e., areas in which the color values do not change
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Figure 6.4.: The image of a Dalmatian dog can be clearly recognized by
most spectators even though low-level cues such as edges
are only present for ears, chin and parts of the legs. The
contours of the animals are highlighted in a flipped ver-
sion of the image in the inset.
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much, and amplify high-frequency information, i.e., areas in
which the color values change quickly. The goal of this section
is to provide a basic understanding of how basic image process-
ing operation works. The methods presented here, while still
valid, have been superseded by more sophisticated implemen-
tations that are widely available as software packages or within
desktop graphic software.

6.3.1. Convolution-based filters

A filter can be implemented using the convolution operator that
convolves function f() with function g().

f(x) ? g(x) =

∫ ∞
−∞

f(τ)g(x− τ)dτ (6.1)

We then call function g() a filter . As will become more clear
further below, the convolution literally shifts the function g()
across the function f() while multiplying the two. As images
are discrete signals, the convolution is usually discrete

f [x] ? g[x] =
∞∑

i=−∞
f [i]g[x− i] (6.2)

For 2D signals, like images, the convolution is also two-dimensional:

f [x, y] ? g[x, y] =
∞∑

i=−∞

∞∑
j=−∞

f [i, j]g[x− i, y − j] (6.3)

Although we have defined the convolution from negative infinity
to infinity, both images and filters are usually finite. Images are
constrained by their resolution, and filters are usually much
smaller than the images themselves. Also, the convolution is
commutative, therefore (6.3) is equivalent to

f [x, y] ? g[x, y] =
∞∑

i=−∞

∞∑
j=−∞

f [x− i, y − j]g[i, j]. (6.4)
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Gaussian smoothing

A very important filter is the Gaussian filter. It is shaped like
the Gaussian bell function and can be easily stored in a 2D
matrix. Implementing a Gaussian filter is surprisingly simple,
e.g., such as

g(x, y) =
1

10

 1 1 1
1 2 1
1 1 1

 (6.5)

Using this filter in Equation 6.4 on an infinitely large image f()
leads to

f [x, y] ? g[x, y] =
1∑

i=−1

1∑
j=−1

f [x− i, y − j]g[i, j] (6.6)

(assuming g(0, 0) addresses the center of the matrix). What
now happens is that each pixel f(x, y) becomes the average of
that of its neighbors, with its previous value weighted twice (as
g(0, 0) = 0.2) that of their neighbors. More concretely,

f(x, y) =
f(x + 1, y + 1)g(−1,−1) +f(x + 1, y)g(−1, 0) +f(x + 1, y − 1)g(−1, 1)
+f(x, y + 1)g(0,−1) +f(x, y)g(0, 0) +f(x, y − 1)g(0, 1)
+f(x− 1, y + 1)g(1,−1) +f(x− 1, y)g(1, 0) +f(x− 1, y − 1)g(1, 1)

(6.7)

Doing this for all x and all y literally corresponds to sliding the
filter g() along the image.

An example of filter g(x, y) in action is shown in Figure 6.5.
The filter acts as a low-pass filter , suppressing high frequency
components. Indeed, noise in the image is suppressed, leading
also to a smoother edge image, which is shown underneath.

Edge detection

Edge detection can be achieved using another convolution-based
filter, the Sobel kernel

sx(x, y) =

 −1 0 1
−2 0 2
−1 0 1

 sy(x, y) =

 1 2 1
0 0 0
−1 −2 −1


(6.8)

Here, sx(x, y) can be used to detect vertical edges, whereas
sy(x, y) highlights horizontal edges. Edge detectors, such as the
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6. Vision

Figure 6.5.: A noisy image before (top left) and after filtering with a
Gaussian kernel (top right). Corresponding edge images
are shown underneath.
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Canny edge detector therefore run at least two of such filters
over an image to detect both horizontal and vertical edges.

Difference of Gaussians

An alternative method for detecting edges is the Difference of
Gaussians (DoG) method . The idea is to subtract two images
that have each been filtered using a Gaussian kernel with differ-
ent width. Both filters supress high-frequency information and
there difference therefore leads to a band-pass filtered signal,
from which both low and high frequencies have been removed.
As such, a DoG filter acts as a capable edge detection algo-
rithm. Here, one kernel is usually four to five times wider than
the other, therefore acting as a much stronger filter.

Differences of Gaussians can also be used to approximate the
Laplacian of Gaussian, i.e., the sum of the second derivatives
of a Gaussian kernel. Here, one kernel is roughly 1.6 times
wider than the other. The band-pass characteristic of DoG
and LoGs are important as they highlight high-frequency infor-
mation such as edges, yet suppress high-frequency noise in the
image.

6.3.2. Threshold-based operations

In order to find objects with a certain color or edge intensity,
tresholding an image will lead to a binary image that contains
“true-false” regions that fit the desired criteria. Thresholds
make use of operators like >,<,≤,≥ and combinations thereof.
There also exist adaptive versions that would adapt the thresh-
olds locally, e.g., to make up for changing lighting conditions.

Albeit thresholding is deceptively simple, finding correct thresh-
old values is a hard problem. In particular, actual pixel values
change drastically with changing lighting conditions and there
is no such thing as “red” or “green” when inspecting the actual
values under different conditions.
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Figure 6.6.: Examples of morphological operators erosion and dilation
and combinations thereof.

6.3.3. Morphological Operations

Another class of filters are morphological operators which con-
sists of a kernel describing the structure of the operation (this
can be as simple as an identity matrix) and a rule on how to
change a pixel value based on the values in the neighborhood
defined by the kernel.

Important morphological operators are erosion and dilation
. The erosion operator assigns a pixel value with the minimum
value that it can find in the neighborhood defined by the kernel.
The dilation operator assigns a pixel value with the maximum
value it can find in the neighborhood defined by the kernel.
This is useful, e.g., to fill holes in a line or remove noise. A
dilation followed by an erosion is known as a “Closing” and an
erosion followed by a dilation as an “Opening”. Subtracting
erosed and dilated images from each other can also serve as an
edge detector. Examples of such operators are shown in Figure
6.6.
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Exercises

1. Below are shown multiple “Kernels” that can be used for convolution-
based image filtering.

1 1 1
1 2 1
1 1 1

0 −1 0
0 −1 0
0 −1 0

1 1 1
1 −4 1
1 1 1

a) Identify the Kernel, which can blur an image.

b) What kind of features can be detected by the other two
kernels?

2. How many for-loops are needed to implement a 2D convolu-
tion? Explain your reasoning.
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A robot can obtain information about its environment by both
active (e.g., ultra-sound, light, and laser) or passive sensing
(e.g., acceleration, magnetic field, or cameras). There are only
few cases where this information is directly useful to a robot.Before
being able to arrive at semantic information such as “I’m in
the kitchen”, “this is a cup” or “this is a horse”, is identifying
higher-level features.

The goal of this chapter is to introduce a series of standard
feature detectors such as the

• Hough-transform to detect lines, circles and other shapes,

• numerical methods such as least-squares, split-and-merge
and RANSAC to find high-level features in noisy data,

• Scale-invariant features.

7.1. Feature detection as an information-reduction
problem

The information generated by sensors can be quite formidable.
For example, a simple webcam generates 640x480 color pix-
els (red, green and blue) or 921600 Bytes around 30 times per
second. A single-ray laser scanner still provides around 600 dis-
tance measurements 10 times per second. This is in contrast
to the information that a robot actually requires. Consider for
example the maze-solving competition “Ratslife” (Section 1.3)
in which the robot’s camera can be used to recognize one of
48 different color patterns (Figure 1.3) that are distributed in
the environment, or the presence or absence of a charger, essen-
tially reducing hundreds of bytes of camera data to around 6
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bit (26 = 64 different values) content. The goal of most image
processing algorithms is therefore to first reduce information
content in a meaningful way and then extract relevant infor-
mation. In chapter 6, we have seen convolution-based filters
such as blurring, detecting edges, or binary operations such
as thresholding. We are now interested in methods to extract
higher-level features such as lines and techniques to extract
them.

7.2. Features

Lines are particularly useful features for localization and can
correspond to walls in laser scans, markers on the floor or cor-
ners detected in a camera image. Whereas a Sobel filter (Sec-
tion 6.3.1) can help us to highlight lines and edges in images,
additional algorithms are needed to extract structured informa-
tion such as the orientation and position of a line with respect
to the robot.

A desirable property of a feature is that its extraction is re-
peatable and robust to rotation, scale, and noise in the data.
We need feature detectors that can extract the same feature
from sensor data, even if the robot has slightly turned or moved
farther or closer to the feature. There are many feature detec-
tors available that accomplish this, prominent examples are the
Harris corner detector (essentially detecting points in the image
where vertical and horizontal lines cross) and the SIFT feature
detector. Feature detection is important far beyond robotics
and is for example used in hand-held cameras that can auto-
matically stitch images together. Here, feature detectors will
“fire” on the same features in two images taken from slightly
different perspectives, which allows the camera to calculate the
transformation between the two.

This chapter focuses on two important classes of features:
line features and scale-invariant features in images (SIFT). Both
features provide tangible example for the least-squares and RANSAC
algorithms, which are also introduced in this chapter. Both fea-
tures are representative for a large class of detectors, and have
been chosen for their simplicity, providing a basis for under-
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standing the function of more complex feature detectors.

7.3. Line recognition

Why are lines a useful feature? As you will see next chapter, the
key challenge in estimating a robot’s pose is unreliable odom-
etry, in particular when it comes to turning. Here, a simple
infrared sensor measuring the distance to a wall can provide
the robot with a much better feel for what actually happened.
Similarly, if a robot has the ability to track markers in the en-
vironment using vision, it gets another estimate on how much
it is actually moving. How information from odometry and
other sensors can be fused not only to localize the robot, but
also to create maps of its environment, will be the focus of the
remainder of this book.

A laser scanner or similar device pointed against a wall will
return a suite of N points at position (xi, yi) in the robot’s
coordinate system. These points can also be represented in
polar coordinates (ρi, θi). We can now imagine a line running
through these points that is parametrized with a distance r and
an angle α. Here, r is the distance of the robot to the wall and α
its angle. As all sensors are noisy, each point will have distance
di from the “optimal” line running through the points. These
relationships are illustrated in Figure 7.1.

7.3.1. Line fitting using least squares

Using simple trigonometry we can now write

ρi cos(θi − α)− r = di. (7.1)

Different line candidates — parametrized by r and α — will
have different values for di. We can now write an expression
for the total error Sr,α as

Sr,α =

N∑
i=1

d2
i =

∑
i

(ρi cos(θi − α)− r)2 (7.2)

Here, we square each individual error to account for the fact
that a negative error, i.e. a point left of the line, is as bad as
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Figure 7.1.: A 2D point cloud recorded by a laser-scanner or similar
device. A line (dashed) is fitted through the points in a
least-square sense.

a positive error, i.e. a point right of the optimal line. In order
to optimize Sr,α, we need to take the partial derivatives with
respect to r and α, set them zero, and solve the resulting system
of equations for r and α.

∂S

∂α
= 0

∂S

∂r
= 0 (7.3)

Here, the symbol ∂ indicates that we are taking a partial
derivative. Solving for r and α is involved, but possible (Siegwart
et al. 2011):

α =
1

2
atan

(
1
N

∑
ρ2
i sin2θi − 2

N2

∑∑
ρiρjcosθisinθj

1
N

∑
ρ2
i cos2θi −

1
N2

∑∑
ρiρjcos(θi + θj)

)
(7.4)

and

r =

∑
ρicos(θi − α)

N
(7.5)

We can therefore calculate the distance and orientation of a
wall captured by our proximity sensors relative to the robot’s
positions or the height and orientation of a line in an image
based on a collection of points that we believe might belong to
a line.
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Figure 7.2.: Split-and-merge algorithm. Initial least-square fit of a
line (left). Splitting the data-set at the point with the
highest error (after picking a direction) allows fitting two
lines with overall lesser error.

This approach is known as the least-square method and can
be used to fit data to any parametric model. The general ap-
proach is to describe the fit between the data and the model
in terms of an error. The best fit will minimize this function,
which will therefore have a zero derivative at this point. If
the result cannot be obtained analytically as in this example,
numerical methods have to be used to find the best fit that
minimizes the quadratic error.

7.3.2. Split-and-merge algorithm

A key problem with this approach is that it is often unclear
how many lines there are and where a line starts and where
it ends. Looking through the camera, for example, we will
see vertical lines corresponding to wall corners and horizontal
ones that correspond to wall-floor intersections and the horizon;
using a distance sensor, the robot might detect a corner. We
therefore need an algorithm that can separate point clouds into
multiple lines. One possible approach is to find the outlier
with the strongest deviation from a fitted line and split the line
at this point. This is illustrated in Figure 7.2. This can be
done iteratively until each line has no outliers above a certain
threshold.
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Figure 7.3.: Random Sample and Consensus (RANSAC). Random
lines are evaluated by counting the number of points close
by (”inliers”), darker lines are better fits.

7.3.3. RANSAC: Random Sample and Consensus

If the number of “outliers” are large, a least square fit will
generate poor results as it will generate the “best” fit that ac-
comodates both “inliers” and “outliers”. Also, split-and-merge
algorithms will fail as they are extremely susceptive to noise:
depending on the actual parameters every outlier will split a po-
tential line into two. A solution to this problem is to randomly
sample possible lines and keep those that satisfy a certain de-
sired quality given by the number of points being somewhat
close to the best fit. This is illustrated in Figure 7.3, with
darker lines corresponding to better fits. RANSAC usually re-
quires two parameters, namely the number of points required
to consider a line to be a valid fit, and the maximum di from
a line to consider a point an inlier and not an outlier. The
algorithm proceeds as follows: select two random points from
the set and connect them with a line. Grow this line by di in
both directions and count the number of inliers. Repeat this
until one or more lines that have sufficient number of inliers are
found, or a maximum number of iterations are reached.

The RANSAC algorithm is fairly easy to understand in the
line fitting application, but can be used to fit arbitrary para-
metric models to any-dimensional data. Here, its main strength
is to cope with noisy data.

Given that RANSAC is random, finding a really good fit
will take quite some time. Therefore, RANSAC is usually used
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only as a first step to get an initial estimate, which can then
be improved by some kind of local optimization, such as least-
squares, e.g.

7.3.4. The Hough Transform

The Hough transform can best be understood as a voting scheme
to guess the parametrization of a feature such as a line, circle or
other curve (Duda & Hart 1972). For example, a line might be
represented by y = mx+c, where m and c are the gradient and
offset. A point in this parameter space (or “Hough-space”) then
corresponds to a specific line in x−y-space (or “image-space”).
The Hough-transform now proceeds as follows: for every pixel
in the image that could be part of a line, e.g., white pixels in
a thresholded image after Sobel filtering, construct all possible
lines that intersect this point. (Drawing an image of this would
look like a star). Each of these lines has a specifc m and c
associated with it, for which we can add a white dot in Hough-
space. Continuing to do this for every pixel of a line in an
image will yield many m− c pair, but only one that is common
among all those pixels of the line in the image: the actual m−c
parameters of this line. Thinking about the number of times a
point was highlighted in Hough-space as brightness, will turn a
line in image space into a bright spot in Hough-space (and the
other way round). In practice, a polar representation is chosen
for lines. This is shown in Figure 7.4. The Hough transform
also generalizes to other parametrization such as circles.

7.4. Scale-Invariant Feature Transforms

Scale-invariant feature transforms are a class of algorithms/signal-
processing techniques that allow to extract features that are
easily detectable across different scales (or distances to an ob-
ject), independent of their rotation, and to some extent robust
to affine transformations, i.e., views of the same object from dif-
ferent perspectives, and illumination changes. The most promi-
nent in this class is the SIFT algorithm (Lowe 1999), which
however has lost popularity due to closed-source and licensing
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Figure 7.4.: Lines in an image (left) transposed into Hough-space ρ
(distance from origin) and θ (angle of normal with respect
to origin). Bright spots in the Hough image (right) corre-
spond to parameters that have received the most “votes”
and clearly show the two lines at around 90o and 180o.

cost, and has been replaced in the past with SURF (Speed-Up
Robust Feature) and many others, which are freely available
and have slightly different performance and varying use cases.
As the math behind SURF is more involved, we focus on the
intuition behind SIFT and encourage the reader to download
and play with the various open-source implementations of other
feature detectors that are available open source.

7.4.1. Overview

SIFT proceeds in multiple steps. Descriptions of the algorithm
often include its application to object recognition, but these
algorithms are independent of feature generation (see below).

1. Differences of Gaussians (DoG) at different scales:

• Generate multiple scaled versions of the same image
by re-sampling every 2nd, 4th and so on pixel.

• Filtering each scaled picture with various Gaussian
filters of different variance.

• Calculating the difference between pairs of filtered
images. This is equivalent to a DoG filter.

2. Detecting local minima and maxima in the DoG images
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Figure 7.5.: After scale space extrema are detected (left), the SIFT al-
gorithm discards low contrast keypoints (center) and then
filters out those located on edges (right). c©Lukas Mach
CC-BY 3.0

across different scales (Figure 7.5, left) and reject those
with low contrast (Figure 7.5, right).

3. Reject extrema that are along edges by looking at the
second derivative around each extrema (Figure 7.5, right).
Edges have a much larger principal curvature across them
than along them.

4. Assign a “magnitude” and “orientation” to each remain-
ing extrema (keypoint). The magnitude is the squared
difference between neighboring pixels and the orientation
is the angle between magnitude along the y-axis vs. mag-
nitude along the x-axis. These calculations are made for
all pixels in a fixed neighborhood around the initial key-
point, e.g., in a 16x16 pixel neighborhood.

5. Collect orientations of neighboring pixels in a histogram,
e.g., 36 bins each covering 10 degrees. Maintain the orien-
tation corresponding to the strongest peak and associate
it with the keypoint.

6. Repeat step 4, but for four 4x4 pixel areas around the
keypoint in the image scale that has the most extreme
minima/maxima. Here, only 8 bins are used for the ori-
entation histogram. As there are 16 histograms in a 16x16
pixel area, the feature descriptor has 128 dimensions.
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7. The feature descriptor vector is normalized, tresholded,
and again normalized to make it more robust against il-
lumination changes.

8. Local gradient magnitude and orientation are grouped
into bins and create a 128-dimensional feature descrip-
tor.

The resulting 128 dimensional feature vectors are now scale-
invariant (due to step 2), rotation-invariant (due to step 5), and
robust to illumination changes (due to step 7).

7.4.2. Object Recognition using scale-invariant features

Scale-invariant features of training images can be stored in a
database and can be used to identify these objects in the future.
This is done by finding all features in an image and comparing
them with those in the database. This comparison is done
by using the Euclidian distance as metric and searching a k-
d tree (with d=128). In order to make this approach robust,
each object needs to be identified by at least 3 independent
features. For this, each descriptor stores the location, scale
and orientation of it relative to some common point on the
object. This allows each detected feature to “vote” for the
position of the object that it is most closely associated with
in the database. This is done using a Hough-transform. For
example, position (2 dimensions) and orientation (1 dimension)
can be discretized into bins (30 degree width for orientation);
bright spots in Hough-space then correspond to an object pose
that has been identified by multiple features.

Take-home lessons

1. Features are “interesting” information in sensor data that
are robust to variations in rotation and scale as well as
noise

2. Which features are most useful depends on the character-
istics of the sensor generating the data, the structure of
the environment, and the actual application.
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3. There are many feature detectors available some of which
operating as simple filters, others relying on machine learn-
ing techniques.

4. Lines are among the most important features in mobile
robotics as they are easy to extract from many different
sensors and provide strong clues for localization.

Exercises

1. Think about what information would make good features in
different operating scenarios: a supermarket, a warehouse, a
cave.

2. What other features could you detect using a Hough trans-
form? Can you find parameterizations for a circle, a square or
a triangle?

3. Do an online search for SIFT. What other similar feature de-
tectors can you find? Which provide source code that you can
use online?

4. A line can be represented by the function y = mx + c. Then,
the Hough-space is given by a 2D coordinate system spanned
by m and c.

a) Think about a line representation in polar coordinates.
What components has the Hough-space in this case?

b) Derive a parameterization for a circle and describe the
resulting Hough space.
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8. Uncertainty and Error
Propagation

Robots are systems that combine sensing, actuation, compu-
tation, and communication. Except for computation, all of its
sub-systems are subject to a high degree of uncertainty. This
can be observed in daily life: phone calls often are of poor qual-
ity, making it hard to understand the other party, characters
are difficult to read from far away, the front wheels of your
car slip when accelerating on a rainy road from a red light, or
your wireless device has a hard time getting a connection. In
robotics, measurements taken by on-board sensors are sensitive
to changing environmental conditions and subject to electrical
and mechanical limitations. Similarly, actuators are not ac-
curate as joints and gears have backlash and wheels do slip.
Finally, communication, in particular, wireless either via radio
or infrared, is notoriously unreliable.

The goals of this chapter are to understand

• how to treat uncertainty mathematically using probabil-
ity theory,

• how measurements with different uncertainty can be com-
bined,

• how error propagates when taking multiple measurements
in a row.

This chapter requires an understanding of random variables,
probability density functions, and in particular the Normal dis-
tribution. These concepts are explained in a robotic sensing
context in Appendix C.1.
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8.1. Uncertainty in Robotics as Random Variable

As quantities such as “distance to a wall”, “position on the
plane” or “I can see a blue cross (yes/no)” are uncertain, we
can consider them random variables. A random variable can
be thought of us the outcome of a “random” experiment, such
as the face shown when throwing a dice.

Experiments in robotics rarely involve explicit randomness.
Instead, sensors are intrinsically noisy due to the physical phe-
nomena associated with them. As sensor readings therefore can
be considered random variables, also quantities derived from
one or more sensors, such as the examples above, are random
variables. This chapter focusses on how to characterize the
uncertainty of such aggregated quantities from the uncertainty
that characterizes the individual sensors.

8.2. Error Propagation

It turns out that the Gaussian Distribution is very appropriate
to model prominent random processes in robotics: the robot’s
position and distance measurements. A differential wheel robot
that drives along a straight line, and is subject to slip, will actu-
ally increase its uncertainty the farther it drives. Initially at a
known location, the expected value (or mean) of its position will
be increasingly uncertain, corresponding to an increasing vari-
ance. This variance is obviously somehow related to the vari-
ance of the underlying mechanism, namely the slipping wheel
and (comparably small) encoder noise. Interestingly, we will
see its variance grow much faster orthogonal to the robot’s di-
rection, as small errors in orientation have a much larger effect
than small errors in longitudnal direction. This is illustrated in
Figure 8.1.

Similarly, when estimating distance and angle to a line fea-
ture from point cloud data, the uncertainty of the random vari-
ables describing distance and angle to the line are somewhat
related to the uncertainty of each point measured on the line.
These relationships are formally captured by the error propa-
gation law .
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Figure 8.1.: Two-dimensional Normal distribution depicting growing
uncertainty as the robot moves. Albeit starting with equal
uncertainty in x and y, the large effect of small errors in
orientation let the error grow faster in y-direction of the
robot.

The key intuition behind the error propagation law is that
the variance of each component that contributes to a random
variable should be weighted as a function of how strongly this
component influences this random variable. Measurements that
have little effect on the aggregated random variable should also
have little effect on its variance and vice versa. “How strongly”
something affects something else can be expressed by the ratio
of how little changes of something relate to little changes in
something else. This is nothing else than the partial derivative
of something with respect to something else. For example, let
y = f(x) be a function that maps a random variable x, e.g., a
sensor reading, to a random variable y, e.g., a feature. Let the
standard deviation of x be given by σx. We can then calculate
the variance σ2

y by

σ2
y =

∂df

∂x

2

σ2
x (8.1)

In case y = f(x) is a multivariable function that maps n in-
puts to m outputs, variances become covariance matrices. A
covariance matrix holds the variance of each variable along its

133



8. Uncertainty and Error Propagation

diagonal and is zero otherwise, if the random variables are not
correlated. We can then write

ΣY = JΣXJT (8.2)

where ΣX and ΣY are the covariance matrices holding the vari-
ances of the input and output variables, respectively, and J is a
mxn Jacobian matrix, which holds the partial derivatives ∂fi

∂xj
.

As J has n columns, each row contains partial derivatives with
respect to x1 to xn.

8.2.1. Example: Line Fitting

Lets consider an example of estimating angle α and distance r
of a line from a set of points given by (ρi, θi) using Equations
7.4–7.5. We can now express the relationship of changes of a
variable such as ρi to changes in α by

∂α

∂ρi
(8.3)

Similarly, we can calculate ∂α
∂θi

, ∂r
∂ρi

and ∂r
∂θi

. We can actually
do this, because we have derived analytical expressions for α
and r as a function of θi and ρi in Chapter 7.

We are now interested in deriving equations for calculating
the variance of α and r as a function of the variances of the
distance measurements. Lets assume each distance measure-
ment ρi has variance σ2

ρi and each angular measurement θi has
variance σ2

θi
. We now want to calculate σ2

α as the weighted sum

of σ2
ρi and σ2

θi
, each weighted by its influence on α. More gen-

erally, if we have I input variables Xi and J output variables
Yj , the covariance matrix of the output variables σY can be

expressed as σ2
Y = ∂df

∂X

2
σ2
X where σX is the covariance matrix

of input variables and J is a Jacobian matrix of a function f
that calculates Y from X and has the form

J =


∂f1
∂X1

. . . ∂f1
∂XI

... . . .
...

∂fJ
∂X1

. . . ∂fJ
∂XI

 (8.4)
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In the line fitting example FX would contain the partial
derivatives of α with respect to all ρi (i-entries) followed by
the partial derivates of α with respect to all θi in the first row.
In the second row, FX would hold the partial derivates of r
with respect to ρi followed by the partial derivates of r with
respect to θi. As there are two output variables, α and r, and
2*I input variables (each measurement consists of an angle and
distance), FX is a 2 x (2I) matrix.

The result is therefore a 2x2 covariance matrix that holds the
variances of α and r on its diagonal.

8.2.2. Example: Odometry

Whereas the line fitting example demonstrated a many-to-
one mapping, odometry requires to calculate the variance that
results from multiple sequential measurements. Error propaga-
tion allows us here to not only express the robot’s position, but
also the variance of this estimate. Our “laundry list” for this
task looks as follows:

1. What are the input variables and what are the output
variables?

2. What are the functions that calculate output from input?

3. What is the variance of the input variables?

As usual, we describe the robot’s position by a tuple (x, y, θ).
These are the three output variables. We can measure the dis-
tance each wheel travels ∆sr and ∆sl based on the encoder
ticks and the known wheel radius. These are the two input
variables. We can now calculate the change in the robot’s po-
sition by calculating

∆x = ∆scos(θ + ∆θ/2) (8.5)

∆y = ∆ssin(θ + ∆θ/2) (8.6)

∆θ =
∆sr −∆sl

2
(8.7)

with

∆s =
∆sr + ∆sl

2
(8.8)
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The new robot’s position is then given by

f(x, y, θ,∆sr,∆sl) = [x, y, θ]T + [∆x ∆y ∆θ]T (8.9)

We thus have now a function that relates our measurements to
our output variables. What makes things complicated here is
that the output variables are a function of their previous values.
Therefore, their variance does not only depend on the variance
of the input variables, but also on the previous variance of the
output variables. We therefore need to write

Σp′ = ∇pfΣp∇pfT +∇∆r,l
fΣ∆∇∆r,l

fT (8.10)

The first term is the error propagation from a position p =
[x, y, θ] to a new position p′. For this we need to calculate the
partial derivatives of f with respect to x, y and θ. This is a 3x3
matrix

∇pf =

[
∂f

∂x

∂f

∂y

∂f

∂θ

]
=

 1 0 −∆ssin(θ + ∆θ/2)
0 1 ∆scos(θ + ∆θ/2)
0 0 1


(8.11)

The second term is the error propagation of the actual wheel
slip. This requires calculating the partial derivatives of f with
respect to ∆sr and ∆sl, which is a 3x2 matrix. The first column
contains the partial derivatives of x, y, θ with respect to ∆sr.
The second column contains the partial derivatives of x, y, θ
with respect to ∆sl:

∇∆r,l
f =

 1
2 cos(θ + ∆θ/2) 1

2 cos(θ + ∆θ/2)
1
2 sin(θ + ∆θ/2) 1

2 cos(θ + ∆θ/2)
1
2 −1

2

 (8.12)

Finally, we need to define the covariance matrix for the mea-
surement noise. As the error is proportional to the distance
travelled, we can define Σ∆ by

Σ∆ =

[
kr|∆sr| 0

0 kl|∆sl|

]
(8.13)

Here kr and kl are constants that need to be found experi-
mentally and | · | indicating the absolute value of the distance

136



8.3. Take-home lessons

traveled. We also assume that the error of the two wheels is
independent, which is expressed by the zeros in the matrix.

We now have all ingredients for equation 8.10, allowing us to
calculate the covariance matrix of the robot’s pose much like
shown in Figure 8.1.

8.3. Take-home lessons

• Uncertainty can be expressed by means of a probability
density function.

• More often than not, the Gaussian distribution is chosen
as it allows treating error with powerful analytical tools.

• In order to calculate the uncertainty of a variable that is
derived from a series of measurements, we need to calcu-
late a weighted sum in which each measurement’s variance
is weighted by its impact on the output variable. This im-
pact is expressed by the partial derivative of the function
relating input to output.

Exercises

1. Given two observations q̂1 and q̂2 with variances σ1 and σ2 of
a normal distributed process with actual value q̂, an optimal
estimate can be calculated by minimizing the expression

S =
1

σ2
1

(q̂ − q̂1)2 +
1

σ2
2

(q̂ − q̂2)2

Calculate q̂ so that S is minimized.

2. An ultrasound sensor measures distance x = c∆t/2. Here, c
is the speed of sound and ∆t is the difference in time between
emitting and receiving a signal.

a) Let the variance of your time measurement ∆t be σ2
t .

What can you say about the variance of x, when c is
assumed to be constant? Hint: how does a change in ∆t
affect x?

b) Now assume that also c is changing depending on loca-
tion, weather, etc. and can be estimated with variance
σ2
c . What is the variance of x now?
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8. Uncertainty and Error Propagation

3. Consider a unicycle that turns with angular velocity φ̇ and has
radius r. Its speed is thus a function of φ̇ and r and is given
by

v = f(φ̇, r) = rφ̇

Assume that your measurement of φ̇ is noisy and has a standard
deviation σφ. Use the error propagation law to calculate the
resulting variance of your speed estimate σ2

v .
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9. Localization

Robots employ sensors and actuators that are subject to un-
certainty. Chapter 8 describes how to quantify this uncertainty
using probability density functions that associate a probability
with each possible outcome of a random process, such as the
reading of a sensor or the actual physical change of an actuator.
A possible way to localize a robot in its environment is to ex-
tract high-level features (Chapter 7), such as the distance to a
wall from a number of different sensors. As the underlying mea-
surements are uncertain, these measurements will be subject to
uncertainty. How to calculate the uncertainty of a feature from
the uncertainty of the sensors that detect this feature, is cov-
ered by the error propagation law. The key insight is that the
variance of a feature is the weighted sum of all contributing
sensors’ variances, weighed by their impact on the feature of
interest. This impact can be approximated by the derivative of
the function that maps a sensor’s input to the measurement of
the feature.

Unfortunately, uncertainty keeps propagating without the
ability to correct measurements. The goals of this chapter is
to present mathematical tools and algorithms that will enable
you to actually shrink the uncertainty of a measurement by
combining it with additional observations. In particular, this
chapter will cover

• Using landmarks to improve the accuracy of a discrete
position estimate (Markov Localization)

• Approximating continuous position estimates (Particle Fil-
ter)

• Optimal sensor fusion to estimate a continuous position
estimate (Extended Kalman Filter)
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9. Localization

9.1. Motivating Example

Imagine a floor with three doors, two of which are closer to-
gether, and the third farther down the corridor (Figure 9.1).
Imagine know that your robot is able to detect doors, i.e., is
able to tell whether it is in front of a wall or in front of a
door. Such features can serve the robot as a landmark. Given a
map of this simple environment and no information whatsoever
where our robot is located, we can use landmarks to drastically
reduce the space of possible locations once the robot has passed
one of the doors. One way of representing this belief is to de-
scribe the robot’s position with three Gaussian distributions,
each centered in front of a door and its variance a function
of the uncertainty with which the robot can detect a door’s
center. (This approach is known as a multi-hypothesis belief.)
What happens if the robot continues to move? From the error
propagation law we know:

1. The Gaussians describing the robot’s 3 possible locations
will move with the robot.

2. The variance of each Gaussian will keep increasing with
the distance the robot moves.

What happens if the robot arrives at another door? Given
a map of the environment, we can now map the three Gaus-
sian distributions to the location of the three doors. As all
three Gaussians will have moved, but the doors are not equally
spaced, only some of the peaks will coincide with the location of
a door. Assuming we trust our door detector much more than
our odometry estimate, we can now remove all beliefs that do
not coincide with a door. Again assuming our door detector
can detect the center of a door with some accuracy, our loca-
tion estimate’s uncertainty is now only limited by that of the
door detector.

Things are just slightly more complicated if our door detector
is also subject to uncertainty: there is a chance that we are in
front of a door, but haven’t noticed it. Then, it would be a
mistake to remove this belief. Instead, we just weight all beliefs
with the probability that there could be a door. Say our door
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detector detects false-positives with a 10% chance. Then, there
is a 10% chance to be at any location that is not in front of
door, even if our detector tells us we are in front of a door.
Similarly, our detector might detect false-negatives with 20%
chance, i.e., tell us there is no door even though the robot is
just in front of it. Thus, we would need to weigh all locations in
front of a door with 20% chance and all locations not in front
of a door with 80% likelihood if our robot tells us there is no
door, even if we are indeed in front of one.

9.2. Markov Localization

Calculating the probability to be at a certain location given the
likelihood of certain observations is nothing else as a conditional
probability. There is a formal way to describe such situations:
Bayes’ Rule (Section C.2):

P (A|B) =
P (A)P (B|A)

P (B)
(9.1)

9.2.1. Perception Update

How does this map into a Localization framework? Lets as-
sume, event A is equivalent to be at a specific location loc.
Lets also assume that event B corresponds to the event to see
a particular feature feat. We can now rewrite Bayes’ rule to

P (loc|feat) =
P (loc)P (feat|loc)

P (feat)
(9.2)

Rephrasing Bayes’ rule in this way, we can calculate the prob-
ability to be at location loc, given that we see feature feat. This
is known as Perception Update. For example, loc could corre-
spond to door 1, 2 or 3, and feat could be the event of sensing
a door. What do we need to know to make use of this equation?

1. We need to know the prior probability to be at location
loc P (loc)

2. We need to know the probability to see the feature at this
location P (feat|loc)
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9. Localization

Figure 9.1.: A robot localizing itself using a “door detector” in a
known map. Top: Upon encountering a door, the robot
can be in front of any of the three doors. Middle: When
driving to the right, the Gaussian distributions represent-
ing its location also shift to the right and widen, repre-
senting growing uncertainty. Bottom: After detecting the
second door, the robot can discard hypotheses that are not
in front of the door and gains certainty on its location.
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3. We need the probability to encounter the feature feat
P (feat)

Lets start with (3), which might be the most confusing part
of information we need to collect. The answer is simple, no
matter what P (feat) is, it will cancel out as the probability
to be at any of the possible locations has to sum up to 1. (A
simpler, although less accurate, explanation would be that the
probability to sense a feature is constant and therefore does not
matter.)

The prior probability to be at location loc, P (loc), is called
the belief model. In the case of the 3-door example, it is the
value of the Gaussian distribution underneath the door corre-
sponding to loc.

Finally, we need to know the probability to see the feature
feat at location loc P (feat|loc). If your sensor were perfect,
this probability is simply 1 if the feature exists at this location,
or 0 if the feature cannot be observed at this location. If your
sensor is not perfect, P (feat|loc) corresponds to the likelihood
for the sensor to see the feature if it exists.

The final missing piece is how to best represent possible lo-
cations. In the graphical example in Figure 9.1 we assumed
Gaussian distributions for each possible location. Alternatively,
we can also discretize the world into a grid and calculate the
likelihood of the robot to be in any of its cells. In our 3-door
world, it might make sense to choose grid cells that have just
the width of a door.

9.2.2. Action Update

One of the assumptions in the above thought experiment was
that we know with certainty that the robot moved right. We
will now more formally study how to treat uncertainty from
motion. Recall, that odometry input is just another sensor
that we assume to have a Gaussian distribution; if our odometer
tells us that the robot traveled a meter, it could have traveled
a little less or a little more, with decreasing likelihood. We can
therefore calculate the posterior probability of the robot moving
from a position loc′ to loc given its odometer input odo:
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9. Localization

P (loc′− > loc|odo) = P (loc′− > loc)P (odo|loc′− > loc)/P (odo)
(9.3)

This is again Bayes’ rule. The unconditional probability
P (loc′− > loc) is the prior probability for the robot to have
been at location loc′. The term P (odo|loc′− > loc) corresponds
to the probability to get odometer reading odo after traveling
from a position loc′ to loc. If getting a reading of the amount
odo is reasonable for the distance from loc′ to loc this proba-
bility is high. If its unreasonable, for example if the distance
is much larger than the robot could possibly ever have driven,
this probability should be very low.

As the robot’s location is uncertain, the real challenge is now
that the robot could have potentially been everywhere to start
with. We therefore have to calculate the posterior probability
P (loc|odo) for all possible positions loc′. This can be accom-
plished by summing over all possible locations:

P (loc|odo) =
∑
loc′

P (loc′− > loc)P (odo|loc′− > loc) (9.4)

In other words, the law of total probability requires us to con-
sider all possible locations the robot could have ever been at.
This step is known as Action Update. In practice we don’t need
to calculate this for all possible locations, but only those that
are technically feasible given the maximum speed of the robot.
We note also that the sum notation technically corresponds to a
convolution (Section C.3) of the probability distribution of the
robot’s location in the environment with the robots odometry
error probability distribution.

9.2.3. Summary and Examples

We have now learned two methods to update the belief distri-
bution of where the robot could be in the environment. First, a
robot can use external landmarks to update its position. This
is known as perception update in and relies on exterioception.
Second, a robot can observe its internal sensors. This is known
as action update and relies on proprioception. The combination
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Figure 9.2.: An office environment consisting of two rooms connected
by a hallway. A topological map is super-imposed.

of action and perception updates is known as Markov Localiza-
tion. You can think about the action update to increase the
uncertainty of the robot’s position and the perception update
to shrink it. (You can also think about the action update as a
discrete version of the error propagation model.) Also here we
are using the robotics kinematic model and the noise model of
your odometer to calculate P (odo|loc′− > loc).

Example 1: Topological Map This example describes one of the
first successful real robot systems that employed Markov Local-
ization in an office environment. The experiment is described
in more detail in a 1994 article of AI Magazine. The office en-
vironment consisted of two rooms and a corridor that can be
modeled by a topological map (Figure 9.2). In a topological
map, areas that the robot can be in are modeled as vertices,
and navigable connections between them are modeled as edges
of a graph. The location of the robot can now be represented
as a probability distribution over the vertices of this graph.

The robot has the following sensing abilities:

• It can detect a wall to its left or right.

• It can detect an open door to its left or right.

• It can detect a closed door to its left or right.

• It can detect whether it is an open hallway.
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9. Localization

Wall Closed dr Open dr Open hwy Foyer

Nothing detected 70% 40% 5% 0.1% 30%
Closed door detected 30% 60% 0% 0% 5%
Open door detected 0% 0% 90% 10% 15%
Open hallway detected 0% 0% 0.1% 90% 50%

Table 9.1.: Conditional probabilities of the Dervish robot detecting
certain features in the Stanford laboratory.

Unfortunately, the robot’s sensors are not at all reliable. The
researchers have experimentally found the probabilities to ob-
tain a certain sensor response for specific physical positions us-
ing their robot in their environment. These values are provided
in Table 9.1.

For example, the success rate to detect a closed door is only
60%, whereas a foyer looks like an open door in 15% of the
trials. This data corresponds to the conditional probability to
detect a certain feature given a certain location.

Consider now the following initial belief state distribution:
p(1 − 2) = 0.8 and p(2 − 3) = 0.2. Here, 1 − 2 etc. refers to
the position on the topological map in Figure 9.2. You know
that the robot faces east with certainty. The robot now drives
for a while until it reports “open hallway on its left and open
door on its right”. This actually corresponds to location 2, but
the robot can in fact be anywhere. For example there is a 10%
chance that the open door is in fact an open hallway, i.e. the
robot is really at position 4. How can we calculate the new
probability distribution of the robot’s location? Here are the
possible trajectories that could happen:

The robot could move from 2−3 to 3, 3−4 and finally 4. We
have chosen this sequence as the probability to detect an open
door on its right is zero for 3 and 3 − 4, which leaves position
4 as the only option if the robot has started at 2-3. In order
for this hypothesis to be true, the following events need to have
happened, their probabilities are given in parentheses:

1. The robot must have started at 2− 3 (20%)

2. Not have seen the open door at the left of 3 (5%) and not
have seen the wall at the right (70%)
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3. Not have seen the wall to its left (70%) and not have seen
the wall to its right (70%) at node 3− 4

4. Correctly identify the open hallway to its left (90%) and
mistake the open hallway to its right for an open door
(10%)

Together, the likelihood that the robot got from position 2−3 to
position 4 is therefore given by 0.2∗0.05∗0.7∗0.7∗0.7∗0.9∗0.1 =
0.03%, that is very unlikely.

The robot could also move from 1− 2 to 2, 2− 3, 3, 3− 4 or
4. We can evaluate these hypotheses in a similar way:

• The chance that it correctly detects the open hallway and
door at position 2 is 0.9∗09, so the chance to be at position
2 is 0.8 ∗ 0.9 ∗ 0.9 = 64%.

• The chance to have seen an open door instead of a wall
at 2 − 3, 3, and 3 − 4 is zero, so the robot cannot have
ended up at these positions.

• In order to reach position 4, the robot must not have seen
the hallway on its left and the open door to its right when
passing position 2. The probability for this is 0.001∗0.05.
The robot must then have detected nothing at 2-3 (0.7 ∗
0.7), nothing at 3 (0.05 ∗ 0.7), nothing at 3-4 (0.7 ∗ 0.7),
and finally mistaken the hallway on its right for an open
door at position 4 (0.9 ∗ 0.1). Multiplied together, this
outcome is very unlikely.

Given this information, we can now calculate the posterior
probability to be at a certain location on the topological map
by adding up the probabilities for every possible path to get
there.

Example 2: Grid-based Markov Localization Instead of using a
coarse topological map, we can also model the environment as
a fine-grained grid. Each cell is marked with a probability cor-
responding to the likelihood of the robot being at this exact
location (Figure 9.3). We assume that the robot is able to de-
tect walls with some certainty. The images in the right column
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Figure 9.3.: Markov localization on a grid. The left colum shows the
likelihood to be in a specific cell as grey value (dark colors
correspond to high likelihoods). The right column shows
the actual robot location. Arrows indicate previous mo-
tion. Initially, the position of the robot is unknown, but
recorded upwards motion makes positions at the top of
the map more likely. After the robot has encountered a
wall, positions away from walls become unlikely. After
rightwards and down motions, the possible positions have
shrunk to a small area.
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show the actual location of the robot. Initially, the robot does
not see a wall and therefore could be almost anywhere. The
robot now moves northwards. The action update now prop-
agates the probability of the robot being somewhere upwards.
As soon as the robot encounters the wall, the perception update
bumps up the likelihood to be anywhere near a wall. As there
is some uncertainty associated with the wall detector, the robot
cannot only be directly at the wall, but anywhere — with de-
creasing probability — close by. As the action update involved
continuous motion to the north, the likelihood to be close to
the south wall is almost zero. The robot then performs a right
turn and travels along the wall in clockwise direction. As soon
as it hits the east wall, it is almost certain about its position,
which then again decreases.

9.3. Particle Filter

Although grid-based Markov Localization can provide compelling
results, it can be computationally very expensive, in particular
when the environment is large and the resolution of the grid
is small. This is in part due to the fact that we need to carry
the probability to be at a certain location forward for every
cell on the grid, regardless of how small this probability is. An
elegant solution to this problem is the particle filter. It works
as follows:

1. Represent the robots position by N particles that are ran-
domly distributed around its estimated initial position.
For this, we can either use one or more Gaussian distri-
butions around the initial estimate(s) of where the robot
is, or chose an uniform distribution (Figure 9.4).

2. Every time the robot moves, we will move each particle
in the exact same way, but add noise to each movement
much like we would expect it the real robot to exhibit.
Without a perception update, the particles will spread
apart farther and farther.

3. Upon a perception event, we evaluate every single particle
using our sensor model. What would the likelihood be
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to have a perception event such as we observed at this
location? We can then use Bayes’ rule to update each
particles position.

4. Once in a while or during perception events that render
certain particles infeasible , particles that have a too low
probability can be deleted, while those with the highest
probability can be replicated.

9.4. The Kalman Filter

The location of a robot is subject to uncertainty due to wheel-
slip and encoder noise. We learned in the past how the variance
in position can be derived from the variance of the robot’s drive
train using the error propagation law and the forward kinemat-
ics of the robot. One can see that this is error is continuously
increasing unless the robot has additional observations, e.g., of
a static object with known location. This update can be for-
mally done using Bayes’ rule, which relates the likelihood to be
at a certain position given that the robot sees a certain feature
to the likelihood to see this feature at the hypothetical location.
For example, a robot that drives towards a wall will become less
and less certain of its position (action update) until it encoun-
ters the wall (perception update). It can then use its sensor
model that relates its observation with possible positions. Its
real location must be therefore somewhere between its original
belief and where the sensor tells it to be. Bayes’ rule allows
us to perform this location for discrete locations and discrete
sensor error distributions. This is inconvenient as we are used
to represent our robot’s position with a 2D Gaussian distri-
bution. Also, it seems much easier to just change the mean
and variances of this Gaussian instead of updating hundreds of
variables. The goals of this section are

• to introduce a technique known as the Kalman filter to
perform action and perception updates exclusively using
Gaussian distributions.

• to formally introduce the notion of a feature map.
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Figure 9.4.: Particle filter example. Possible positions and orienta-
tions of the robot are initially uniformly distributed. Par-
ticles move based on the robot’s motion model. Particles
that would require the robot to move through a wall in ab-
sence of a wall perception event are deleted (stars). After
a perception event, particles too far of a wall become un-
likely and their positions are resampled in the vicinity of
a wall. Eventually, the particle filter converges.
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• to develop an example that puts everything we learned so
far together: forward kinematics, error propagation and
feature estimation.

9.4.1. Probabilistic Map based localization

In order to localize a robot using a map, we need to perform
the following steps

1. Calculate an estimate of our new position using the for-
ward kinematics and knowledge of the wheel-speeds that
we sent to the robot until the robot encounters some
uniquely identifiable feature.

2. Calculate the relative position of the feature (a wall, a
landmark or beacon) to the robot.

3. Use knowledge of where the feature is located in global
coordinates to predict what the robot should see.

4. Calculate the difference between what the robot actually
sees and what it believes it should see.

5. Use the result from (4) to update its belief by weighing
each observation with its variance.

Steps 1-2 are based on the lectures on “Forward Kinematics”
and “Line detection “. Step 3 uses again simple forward kine-
matics to calculate the position of a feature stored in global
coordinates in a map in robot coordinates. Step 4 is a simple
subtraction of what the sensor sees and what the map says.
Step 5 introduces the Kalman filter. Its derivation is involved,
but its intuition is simple: why just averaging between where
I think I am and what my sensors tell me, if my sensors are
much more reliable and should carry much higher weight?

9.4.2. Optimal Sensor Fusion

The Kalman filter is an optimal way to fuse observations that
follow a Gaussian distribution. The Kalman filter has an up-
date and a prediction step. The update step uses a dynamical
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model of the system (such as the forward kinematics of your
robot) and the prediction step uses a sensor model (such as the
error distribution calibrated from its sensors). The Kalman fil-
ter does not only update the state of the system (the robot’s
position) but also its variance. For this, it requires knowledge
of all the variances involved in the system (e.g., wheel-slip and
sensor error) and uses them to weigh each measurement accord-
ingly. Before providing the equations for the Kalman filter, we
will make use a simple example that explains what “optimal”
means in this context.

Let q̂1 and q̂2 be two different estimates of a random variable
and σ2

1 and σ2
2 their variances, respectively. Let q be the true

value. This could be the robot’s position, e.g. The observations
have different variances when they are obtained by different
means, say using odometry for q̂1 and by using the location
of a known feature for q̂2. We can now define the weighted
mean-square error

S =
n∑
i=1

1

σi
(q − q̂i)2 (9.5)

that is, S is the sum of the errors of each observation q̂i weighted
by its standard deviation σi. Each error is weighted with its
standard deviation to put more emphasis on observations whose
standard deviation is low. Minimizing S for n = 2 yields the
following optimal expression for q:

q =
q̂1σ

2
2

σ2
1 + σ2

2

+
q̂2σ

2
1

σ2
1 + σ2

2

(9.6)

or, equivalently,

q = q̂1 +
σ2

1

σ2
1 + σ2

2

(q̂2 − q̂1) (9.7)

.

We have now derived an expression for fusing two observa-
tions with different errors that provably minimizes the error
between our estimate and the real value. As q is a linear com-
bination of two random variables (Section C.4, the new variance
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is given by

σ2 =
1

1
σ2
1

+ 1
σ2
2

. (9.8)

Interestingly, the resulting variance is smaller than both σ1 and
σ2, that is adding additional observation always helps in reduc-
ing accuracy instead of introducing more uncertainty.

9.4.3. Integrating prediction and update: The Kalman Filter

Although we have introduced the problem above as fusing two
observations of the same quantity and weighing them by their
variance, we can also interpret the equation above as an update
step that calculates a new estimate of an observation based on
its old estimate and a measurement. Remember step (4) from
above: q̂2− q̂1 is nothing else as the difference between what the
robot actually sees and what it thinks it should see. This term
is known as innovation in Kalman lingo. We can now rewrite
(9.7) from above into

x̂k+1 = x̂k +Kk+1ỹk+1 (9.9)

Here, x̂k is the state we are interested in at time k, Kk+1 =
σ2
1

σ2
1+σ2

2
the Kalman gain, and ỹk+1 = q̂2 − q̂1 the innovation.

Unfortunately, there are few systems that allow us to directly
measure the information we are interested in. Rather, we obtain
a sensor measurement zk that we need to convert into our state
somehow. You can think about this the other way round too
and predict your measurement zk from your state xk. This is
done using the observation model Hk, so that

ỹk = zk −Hkxk (9.10)

In our example Hk was just the identity matrix; in a robot
position estimation problem Hk is a function that would predict
how a robot would see a certain feature. As you can see, all the
weighing based on variances is done in the Kalman gain K. The
perception update step shown above, also known as prediction
step is only half of what the Kalman filter does. The first step
is the update step, which corresponds to the action update we
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already know. In fact, the variance update in the Kalman filter
is exactly the same as we learned during error propagation.
Before going into any more details on the Kalman filter, it is
time for a brief disclaimer: the Kalman filter only works for
linear systems. Forward kinematics of even the simplest robots
are mostly non-linear, and so are observation models that relate
sensor observations and the robot position. Non-linear systems
can be dealt with the Extended Kalman Filter.

9.5. Extended Kalman Filter

In the extended Kalman filter, the state transition and observa-
tion models need not be linear functions of the state but may in-
stead be differentiable functions. The action update step looks
as follows:

x̂k′|k−1 = f(x̂k−1|k−1,uk−1) (9.11)

Here f() is a function of the old state xk−1 and control input
uk−1. This is nothing else as the odometry update we are used
to, where f() is a function describing the forward kinematics of
the robot, xk its position and uk the wheel-speed we set.

We can also calculate the covariance matrix of the robot po-
sition

P k′|k−1 = ∇x,y,θfP k−1|k−1∇x,y,θfT +∇∆r,l
fQk−1∇∆r,l

f
(9.12)

This is nothing else as the error propagation law applied to
the odometry of the robot with Qk the covariance matrix of the
wheel-slip and the Jacobian matrices of the forward kinematic
equations f() with respect to the robot’s position (indicated by
the index x, y, θ) and with respect to the wheel-slip of the left
and right wheel.

The perception update (or prediction) step looks as follows:

cccx̂k|k′ = x̂k′|k−1 + Kk′ ỹk′ (9.13)

P k|k′ = (I −Kk′Hk′)P k′|k−1 (9.14)
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9. Localization

At this point the indices k should start making sense. We
are calculating everything twice: once we update from k− 1 to
an intermediate result k′ during the action update, and obtain
the final result after the perception update where we go from
k′ to k.

We need to calculate three additional variables:

1. The innovation ỹk = zk − h(x̂k|k−1)

2. The covariance of the innovation Sk = HkP k|k−1H
>
k +

Rk

3. The (near-optimal) Kalman gain Kk = P k|k−1H
>
k S
−1
k

Here h() is the observation model and H its Jacobian. How
these equations are derived is involved (and is one of the fun-
damental results in control theory), but the idea is the same as
introduced above: we wish to minimize the error of the predic-
tion.

9.5.1. Odometry using the Kalman Filter

We will show how a mobile robot equipped with a laser scan-
ner can correct its position estimate by relying on unreliable
odometry, unreliable sensing, but a correct map, in an optimal
way. Whereas the update step is equivalent to forward kinemat-
ics and error propagation we have seen before, the observation
model and the “innovation” require additional steps to perform
odometry.

1.Prediction Update We assume for now that the reader is fa-
miliar with calculating x̂k′|k−1 = f(x, y, θ)T and its variance
P k′|k−1. Here, Qk−1, the covariance matrix of the wheel-slip
error, is given by

Qk−1 =

[
kr|∆sr 0

0 kl|∆sl|

]
(9.15)

where ∆s is the wheel movement of the left and right wheel
and k are constants. See also the odometry lab for detailed
derivations of these calculations and how to estimate kr and kl.
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The state vector x̂k′|k−1 is a 3x1 vector, the covariance matrix
Pk′|k−1 is a 3x3 matrix, and ∇∆r,l

that is used during error
propagation is a 3x2 matrix. See the error propagation lecture
for details on how to calculate ∇∆r,l

.

2. Observation Let us now assume that we can detect line fea-
tures zk,i = (αi, ri)

T , where α and r are the angle and distance
of the line from the coordinate system of the robot. These line
features are subject to variances σα,i and σr,i, which make up
the diagonal of Rk. See the line detection lecture for a deriva-
tion of how angle and distance as well as their variance can
be calculated from a laser scanner. The observation is a 2x1
matrix.

3. Measurement Prediction We assume that we can uniquely
identify the lines we are seeing and retrieve their real position
from a map. This is much easier for unique features, but can be
done also for lines by assuming that our error is small enough
and we therefore can search through our map and pick the
closest lines. As features are stored in global coordinates, we
need to transpose them into how the robot would see them. In
practice this is nothing but a list of lines, each with an angle and
a distance, but this time with respect to the origin of the global
coordinate system. Transposing them into robot coordinates is
straightforward. With x̂k = (xk, yk, θk)

T and mi = (αi, ri) the
corresponding entry from the map, we can write

h(x̂k|k−1) =

[
αk,i
rk,i

]
= h(x,mi) =

[
αi − θ

ri − (xcos(αi) + ysin(αi)

]
(9.16)

and calculate its Jacobian Hk as the partial derivatives of
α to x, y, θ in the first row, and the partial derivatives of r in
the second. How to calculate h() to predict the radius at which
the robot should see the feature with radius ri from the map is
illustrated in the figure below.
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9. Localization

Example on how to predict the distance to a feature the
robot would see given its estimated position and its known
location from a map.

4. Matching We are now equipped with a measurement zk
and a prediction h(x̂k|k−1) based on all features stored in our
map. We can now calculate the innovation

ỹk = zk − h(x̂k|k−1) (9.17)

which is simple the difference between each feature that we
can see and those that we predict from the map. The innovation
is again a 2x1 matrix.

5. Estimation We now have all the ingredients to perform the
perception update step of the Kalman filter:

x̂k|k′ = x̂k′|k−1 + Kk′ ỹk′ (9.18)

P k|k′ = (I −Kk′Hk′)P k′|k−1 (9.19)

It will provide us with an update of our position that fuses
our odometry input and information that we can extract from
features in the environment in a way that takes into account
their variances. That is, if the variance of your previous po-
sition is high (because you have no idea where you are), but
the variance of your measurement is low (maybe from a GPS
or a symbol on the Ratslife wall), the Kalman filter will put
more emphasis on your sensor. If your sensors are poor (maybe
because you cannot tell different lines/walls apart), more em-
phasis will be on the odometry.

As the state vector is a 3x1 vector and the innovation a 2x1
matrix, the Kalman gain must be a 3x2 matrix. This can also
be seen when looking at the covariance matrix that must come
out as a 3x3 matrix, and knowing that the Jacobian of the
observation function is a 2x3 matrix. We can now calculate the
covariance of the innovation and the Kalman gain using
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9.5. Extended Kalman Filter

Sk = HkP k|k−1H
>
k + Rk (9.20)

Kk = P k|k−1H
>
k S
−1
k (9.21)

Take home lessons

• If the robot has no additional sensors and its odometry is
noisy, error propagation will lead to ever increasing un-
certainty of a robots position regardless of using Markov
localization or the Kalman filter.

• Once the robot is able to sense features with known lo-
cations, Bayes’ rule can be used to update the posterior
probability of a possible position. The key insight is that
the conditional probability to be at a certain position
given a certain observation can be inferred from the like-
lihood to actually make this observation given a certain
position.

• A complete solution that performs this process for dis-
crete locations is known as Markov Localization.

• The Extended Kalman Filter is the optimal way to fuse
observations of different random variables that are Gaus-
sian distributed. It is dervied by minimizing the least-
square error between prediction and real value.

• Possible random variables could be the estimate of your
robot position from odometry and observations of static
beacons with known location (but uncertain sensing) in
the environment.

• In order to take advantage of the approach, you will need
differentiable functions that relate measurements to state
variables as well as an estimate of the covariance matrix
of your sensors.

• An approximation that combines benefits of Markov Lo-
calization (multiple hypothesis) and the Kalman filter
(continuous representation of position estimates) is the
Particle filter.
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9. Localization

Exercises

1. Assume that the ceiling is equipped with infra-red markers that
the robot can identify with some certainty. Your task is to
develop a probabilistic localization scheme, and you would like
to calculate the probability p(marker|reading) to be close to a
certain marker given a certain sensing reading and information
about how the robot has moved.

a) Derive an expression for p(marker|reading) assuming that
you have an estimate of the probability to correctly iden-
tify a marker p(reading|marker) and the probability p(marker)
of being underneath a specific marker.

b) Now assume that the likelihood that you are reading a
marker correctly is 90%, that you get a wrong reading
is 10%, and that you do not see a marker when passing
right underneath it is 50%. Consider a narrow corridor
that is equipped with 4 markers. You know with certainty
that you started from the entry closests to marker 1 and
move right in a straight line. The first reading you get
is “ Marker 3”. Calculate the probability to be indeed
underneath marker 3.

c) Could the robot also possibly be underneath marker 4?
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10. Grasping

A robot’s end-effector, usually a hand or gripper, is defined by
its 6-DOF pose as well as the parameters of its joints such as
the opening of the claw or the position of each finger. So far,
we have assumed that a robot only needs to plan for a 6-DOF
pose that allows the robot to grasp an object from this position.
Calculating which position this is and which parameters the
end-effector to set is known as grasp planning. This chapter
will focus on

1. What makes a good grasp?

2. How to find good grasps?

3. What makes a good grasp?

Think about a three-fingered hand and the problem to grasp
a cup. Grasps that are immediately obvious are (1) coming
from above and grasping the hull of the cup and (2) wrapping
the fingers around the cup. Lets assume that the shape of the
cup is cylindric. Then, both of these grasps entirely rely on
friction to hold the object. If the normal forces exerted by the
fingers are not strong enough, the cup will slip. (It would be
possible to re-grasp the object and support it from underneath
with one finger if grasped with borderline friction.) A simple
model for friction is Coloumb’s Friction Law

It is governed by the equation:

Ft ≤ µFn (10.1)

where Ft is the force of friction exerted by each surface on the
other and Fn is the normal force. The force Ft acts in tangential
direction of the normal force applied by, e.g., a finger’s tip,
where µ is an empirical coefficient of friction.
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10. Grasping

The friction coefficient µ is low for glass on glass and high
for rubber on wood. Coloumb’s Fricition law states that the
higher the friction coefficient, the more normal force translates
into tangential forces that can resist two surfaces from moving
against each other. We are therefore interested in designing
grippers with high friction coefficients to avoid objects from
slipping.

When do objects slip? Lets say we have a fingertip pressing
down on a surface in any orientation. There will be a force
normal to the surface Fn, which defines the tangential force
Ft in any direction. Sweeping the tangential force around the
normal force creates a cone with an opening angle of 2tan−1µ.
If the net force on the object is not within this cone, the object
slips. This becomes more intuitive when thinking about how
different values of µ affect the shape of this cone. If µ is high,
the cone will be relatively flat, letting the object accept forces
from many different directions without slipping. If µ is low, the
cone will be relatively narrow, requiring the force to be normal
to the object’s surface to prevent slippage.

A force applied to a rigid body will exert both a force as well
as a torque to the body’s center of gravity. This is called a
wrench. If we consider the possible forces that we can apply
to a rigid body without having the end-effector slip to form a
space (namely the cone described earlier), we can talk about
the grasping wrench space, which is the corresponding space of
all suitable wrenches.

We can also define wrench spaces that suit a specific task,
such as picking up an object or opening a door by turning its
knob. We can then say that the grasp is good, when the task
wrench space is a subset of the grasping wrench space, and will
fail otherwise. We can also look at the ratio of forces actually
applied to the object and the minimum needed to perform a
desired wrench. If this ratio is high, for example, when the
robot has to squeeze an object heavily to prevent it from slip-
ping, this grasp is not as good as one, where the ratio is low
and all of the force the robot is exerting is actually going into
the desired wrench.
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It is usually not possible to find close-form expressions for the
grasping wrench space. Instead, one can sample the space of
suitable force vectors, e.g., by picking a couple of forces that are
on the boundary of the cone’s base, and calculate the convex
hull over the resulting wrenches.

In summary: we can use Coloumb’s law of friction to de-
termine the direction of forces that we can apply to a certain
contact point without that the object slips. These forces trans-
late into wrenches to the object’s center of gravity. A grasp fits
a certain task if the wrenches that would fulfill the task can be
effectuated without slip. The less force is waisted to overcome
slip, the better is the grasp.

10.1. How to find good grasps?

We are able to determine whether a contact point leads to a
good grasp by comparing the grasping wrench spaces that fulfill
the task and those that is created by a set of contact points.
The question is now how to find good contact points? This is
challenging as end-effectors (such as hands) are already quite
complicated. A suitable method is therefore to use random
sampling, that is bringing the end-effector to random positions,
close its fingers around the object, and see what happens when
generating wrenches that fulfill the task’s requirements.

To close the end-effector’s fingers around the object requires
collision checking. To see what happens, requires dynamic sim-
ulation. In short, collision checking routines model an object
using a mesh of triangles that can be generated using CAD
tools. These triangles are the leafs of a tree that has a coarse
bounding object at the top. This coarse bounding object is
then split into smaller and smaller elements. Collision checking
can now quickly test whether an object collides at all and then
recursively refine the exact triangles that collide and finally find
the exact points of collision. Dynamic simulation applies New-
tonian mechanics to an object (i.e., forces lead to acceleration
of a body) and moves the object at very small time-steps. De-
tecting a collision usually involves moving the objects one step
back and then iteratively approaching them until their proxim-
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ity exceeds a certain treshold.
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11. Simultaneous Localization and
Mapping

Robots are able to keep track of their position using a model
of the noise arising in their drive train and their forward kine-
matics to propagate this error into a spatial probability density
function (Section 8.2). The variance of this distribution can
shrink as soon as the robot sees uniquely identifiable features
with known locations. This can be done for discrete locations
using Bayes’ rule (Section 9.2) and for continuous distributions
using the Extended Kalman Filter (Section 11.3). The key in-
sight here was that every observation will reduce the variance
of the robot’s position estimate. Here, the Kalman filter per-
forms an optimal fusion of two observations by weighting them
with their variance, i.e., unreliable information counts less than
reliable one. In the robot localization problem, one of the ob-
servations is typically the robot’s position estimate whereas the
other observation comes from a feature with known location on
a map. So far, we have assumed that these locations are known.
This chapter will introduce

• the concept of covariance (or, what all the non-diagonal
elements in the covariance matrix are about),

• how to estimate the robot’s location and that of features
in the map at the same time (Simultaneous Localization
and Mapping or SLAM)

11.1. Introduction

The SLAM problem has been considered as the holy grail of
mobile robotics for a long time. This lecture will introduce one
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11. Simultaneous Localization and Mapping

of the first comprehensive solutions to the problem, which has
now be superseded by computationally more efficient versions.
We will begin with studying a series of special cases.

11.1.1. Special Case I: Single Feature

Consider a map that has only a single feature. We assume that
the robot is able to obtain the relative range and angle of this
feature, each with a certain variance. An example of this and
how to calculate the variance of an observation based on sen-
sor uncertainty is described in the line fitting example (Section
8.2.1). This feature could be a wall, but also a graphical tag
that the robot can uniquely identify. The position of this mea-
surement mi = [αi, ri] in global coordinates is unknown, but
can now easily be calculated if an estimate of the robot’s po-
sition x̂k is known. The variance of mi’s components is now
the variance of the robot’s position plus the variance of the
observation.

Now consider the robot moving closer to the obstacle and
obtaining additional observations. Although its uncertainty in
position is growing, it can now rely on the feature mi to re-
duce the variance of its old position (as long as its known that
the feature is not moving). Also, repeated observations of the
same feature from different angles might improve the quality
of its observation. The robot has therefore a chance to keep
its variance very close to that with which it initially observed
the feature and stored it into its map. We can actually do this
using the EKF framework from Section 9.5. There, we assumed
that features have a known location (no variance), but that the
robot’s sensing introduces a variance. This variance was prop-
agated into the covariance matrix of the innovation (S). We
can now simply add the variance of the estimate of the feature’s
position to that of the robot’s sensing process.

11.1.2. Special Case II: Two Features

Consider now a map that has two features. Visiting one after
the other, the robot will be able to store both of them in its
map, although with a higher variance for the feature observed
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last. Although the observations of both features are indepen-
dent from each other, the relationship between their variances
depend on the trajectory of the robot. The differences between
these two variances are much lower if the robot connect them in
a straight line than when it performs a series of turns between
them. In fact, even if the variances of both features are huge
(because the robot has already driven for quite a while before
first encountering them), but the features are close together,
the probability density function over their distance would be
very small. The latter can also be understood as the covari-
ance of the two random variables (each consisting of range and
angle). In probability theory, the covariance is the measure of
how much two variables are changing together. Obviously, the
covariance between the locations of two features that are vis-
ited immediately after each other by a robot is much higher
as those far apart. It should therefore be possible to use the
covariance between features to correct estimates of features in
retrospect. For example, if the robot returns to the first fea-
ture it has observed, it will be able to reduce the variance of
its position estimate. As it knows that it has not traveled very
far since it observed the last feature, it can then correct this
feature’s position estimate.

11.2. The Covariance Matrix

When estimating quantities with multiple variables, such as the
position of a robot that consists of its x-position, its y-position
and its orientation, matrix notation has been a convenient way
of writing down equations. For error propagation, we have
written the variances of each input variable into the diagonal
of a covariance matrix. For example, when using a differential
wheel robot, uncertainty in position expressed by σx, σy and σθ
were grounded in the uncertainty of its left and right wheel.
We have entered the variances of the left and right wheel into a
2x2 matrix and obtained a 3x3 matrix that had σx, σy and σθ
in its diagonal. Here, we set all other entries of the matrix to
zero and ignored entries in the resulting matrix that were not
in its diagonal. The reason we could actually do this is because
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uncertainty in the left and right wheel are independent random
processes: there is no reason that the left wheel slips, just be-
cause the right wheel slips. Thus the covariance — the measure
on how much two random variables are changing together —
of these is zero. This is not the case for the robot’s position:
uncertainty in one wheel will affect all output random variables
(σx, σy and σθ) at the same time, which is expressed by their
non-zero covariances — the non-zero entries off the diagonal of
the output covariance matrix.

11.3. EKF SLAM

The key idea in EKF SLAM is to extend the state vector from
the robot’s position to contain the position of all features. Thus,
the state

x̂k′|k−1 = (x, y, θ)T (11.1)

becomes

x̂k = (x, y, θ, α1, r1, . . . , αN , rN )T (11.2)

assuming N features, which is a (3 + 2N)x1 vector. The action
update (or “prediction update”) is identical to that if features
are already known; the robot simply updates its position using
odometry and updates the variance of it s position using error
propagation. The covariance matrix is now a (3+2N)x(3+2N)
matrix that initially holds the variances on position and those
of each feature in its diagonal.

The interesting things happen during the perception update.
Here it is important that only one feature is observed at a
time. Thus, if the robot observes multiple features at once, one
needs to do multiple, consecutive perception updates. Care
needs to be taken that the matrix multiplications work out. In
practice you will need to set only those values of the observation
vector (a (3+2N)x1 vector) that correspond to the feature that
you observe. Similar considerations apply to the observation
function and its Jacobian.
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11.4. Graph-based SLAM

Usually, a robot obtains an initial estimate of where it is us-
ing some onboard sensors (odometry, optical flow, etc.) and
uses this estimate to localize features (walls, corners, graphical
patterns) in the environment. As soon as a robot revisits the
same feature twice, it can update the estimate on its location.
This is because the variance of an estimate based on two inde-
pendent measurements will always be smaller than any of the
variances of the individual measurements. As consecutive ob-
servations are not independent, but rather closely correlated,
the refined estimate can then be propagated along the robot’s
path. This is formalized in EKF-based SLAM. A more intu-
itive understanding is provided by a spring-mass analogy: each
possible pose (mass) is constrained to its neighboring pose by
a spring. The higher the uncertainty of the relative transfor-
mation between two poses (e.g., obtained using odometry), the
weaker the spring. Every time a robot gains confidence on a rel-
ative pose, the spring is stiffened instead. Eventually, all poses
will be pulled in place. This approach is known as Graph-based
SLAM .

11.4.1. SLAM as a Maximum-Likelihood Estimation Problem

The classical formulation of SLAM describes the problem as
maximizing the posterior probability of all points on the robot’s
trajectory given the odometry input and the observations. For-
mally,

p(x1:T ,m|z1:T , u1:T ) (11.3)

where x1:T are all discrete positions from time 1 to time T , z are
the observations, and u are the odometry measurements. This
formulation makes heavily use of the temporal structure of the
problem. In practice, solving the SLAM problem requires

1. A motion update model, i.e., the probability p(xt|xt−1, ut)
to be at location xt given an odometry measurement ut
and being at location xt−1.

2. A sensor model, i.e., the probability p(zt|xt,mt) to make
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observation zt given the robot is at location xt and the
map mt.

A possible solution to this problem is provided by the Extended
Kalman Filter, which maintains a probability density function
for the robot pose as well as the positions of all features on the
map. Being able to uniquely identify features in the environ-
ment is of outmost importance and is known as the data asso-
ciation problem. Like EKF-based SLAM, graph-based SLAM
does not solve this problem and will fail if features are confused.

In graph-based SLAM, a robot’s trajectory forms the nodes
of a graph whose edges are transformations (translation and
rotation) that have a variance associated with it. An alterna-
tive view is the spring-mass analogy mentioned above. Instead
of having each spring wiggle a node into place, graph-based
SLAM aims at finding those locations that maximize the joint
likelihood of all observations. As such, graph-based SLAM is a
maximum likelihood estimation problem.

Lets revisit the normal distribution:

1

σ
√

2π
e
−(x−µ)2

2σ2 (11.4)

It provides the probability for a measurement to have value
x given that this measurement is normal distributed with mean
µ and variance σ2. We can now associate such a distribution
with every node-to-node transformation, aka constraint. This
can be pairs of distance and angle, e.g. In the literature the
measurement of a transformation between node i and a node j
is denoted zij . Its expected value is denoted ẑij . This value is
expected for example based on a map of the environment that
consists of previous observations.

Formulating a normal distribution of measurements zij with
mean ẑij and a covariance matrix Σij (containing all variances
of the components of zij in its diagonal) is now straightforward.
As graph-based SLAM is most often formulated as information
filter, usually the inverse of the covariance matrix (aka infor-
mation matrix) is used, which we denote by Ωij = Σ−1

ij .
As we are interested in maximizing the joint probability of

all measurements
∏
zij over all edge pairings ij following the
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maximum likelihood estimation framework, it is customary to
express the PDF using the log-likelihood. By taking the natural
logarithm on both sides of the PDF expression, the exponential
function vanishes and ln

∏
zij becomes

∑
lnzij or

∑
lij , where

lij is the log-likelihood distribution for zij .

lij ∝ (zij − ẑij(xi, xj))TΩij(zij − ẑij(xi, xj)) (11.5)

Again, the log-likelihood for observation zij is directly de-
rived from the definition of the normal distribution, but using
the information matrix instead of the covariance matrix and is
ridden of the exponential function by taking the logarithm on
both sides.

The optimization problem can now be formulated as

x∗ = arg min
x

∑
<i,j>∈C

eTijΩijeij (11.6)

with eij(xi, xj) = zij − ẑij(xi, xj) the error between measure-
ment and expected value. Note that the sum actually needs to
be minimized as the individual terms are technically the nega-
tive log-likelihood.

11.4.2. Numerical Techniques for Graph-based SLAM

Solving the MLE problem is non-trivial, especially if the num-
ber of constraints, i.e., observations that relate one feature to
another, provided is large. A classical approach is to linearize
the problem at the current configuration and reducing it to a
problem of the form Ax = b. The intuition here is to calculate
the impact of small changes in the positions of all nodes on all
eij . After performing this motion, linearization and optimiza-
tion can be repeated until convergence.

More recently, more powerful numerical methods have been
developed. Instead of solving the MLE, on can employ a stochas-
tic gradient descent algorithm. A gradient descent algorithm is
an iterative approach to find the optimum of a function by mov-
ing along its gradient. Whereas a gradient descent algorithm
would calculate the gradient on a fitness landscape from all
available constraints, a stochastic gradient descent picks only a
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(non-necessarily random) subset. Intuitive examples are fitting
a line to a set of n points, but taking only a subset of these
points when calculating the next best guess. As gradient de-
scent works iteratively, the hope is that the algorithm takes a
large part of the constraints into account. For solving Graph-
based SLAM, a stochastic gradient descent algorithm would
not take into account all constraints available to the robot, but
iteratively work on one constraint after the other. Here, con-
straints are observations on the mutual pose of nodes i and j.
Optimizing these constraints now requires moving both nodes
i and j so that the error between where the robot thinks the
nodes should be and what it actually sees gets reduced. As this
is a trade-off between multiple, maybe conflicting observations,
the result will approximate a Maximum Likelihood estimate.

More specifically, with eij the error between an observation
and what the robot expects to see, based on its previous obser-
vation and sensor model, one can distribute the error along the
entire trajectory between both features that are involved in the
constraint. That is, if the constraint involves features i and j,
not only i and j’s pose will be updated but all points inbetween
will be moved a tiny bit.

In Graph-based SLAM, edges encode the relative translation
and rotation from one node to the other. Thus, altering a rela-
tionship between two nodes will automatically propagate to all
nodes in the network. This is because the graph is essentially a
chain of nodes whose edges consist of odometry measurements.
This chain then becomes a graph whenever observations (using
any sensor) introduce additional constraints. Whenever such
a “loop-closure” occurs, the resulting error will be distributed
over the entire trajectory that connects the two nodes. This is
not always necessary, for example when considering the robot
driving a figure-8 pattern. If a loop-closure occurs in one half
of the 8, the nodes in the other half of the 8 are probably not
involved.

This can be addressed by constructing a minimum spanning-
tree (MST) of the constraint graph. The MST is constructed
by doing a Depth-First Search (DFS) on the constraint graph
following odometry constraints. At a loop-closure, i.e., an edge
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in the graph that imposes a constraint to a previously seen pose,
the DFS backtracks to this node and continues from there to
construct the spanning tree. Updating all poses affected by
this new constraint still requires modifying all nodes along the
path between the two features that are involved, but inserting
additional constraints is greatly simplified. Whenever a robot
observes new relationships between any two nodes, only the
nodes on the shortest path between the two features on the
MST need to be updated.

Further reading

• G. Grisetti, R. Kuemmerle, C. Stachniss and W. Bur-
gard. A Tutorial on Graph-Based SLAM. IEEE Intelli-
gent Transportation Systems Magazine, 2(4):31-43, 2010.

• E. Olson, J. Leonard and S. Teller. Fast Iterative Align-
ment of Pose Graphs with Poor Initial Estimates. Proc.
of ICRA, pp 2262-2269, Orlando, FL, 2006.

• G. Grisetti, C. Stachniss, S. Grzonka and W. Burgard.
A Tree Parameterization for Efficiently Computing Maxi-
mum Likelihood Maps using Gradient Descent. Robotics:
Science and Systems (RSS), Atlanta, GA, USA, 2007.
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12. RGB-D SLAM

Range sensors have emerged as one of the most effective sen-
sors to make robots autonomous. Unlike vision, range data
makes the construction of a 3D model of the robot’s environ-
ment straightforward and the Velodyne sensor, that combines
64 scanning lasers into one package, was key in mastering the
DARPA Grand Challenge. 3D range data has become even
more important in robotics with the advent of cheap (priced
at a tenth than the cheapest 2D laser scanner) RGB-D (color
image plus depth) cameras. Point cloud data allows fitting of
lines using RANSAC, which can serve as features in EKF-based
localization, but can also be used for improving odometry, loop-
closure detection, and mapping. The goals of this chapter are

• introduce the Iterative Closest Point (ICP) algorithm

• show how ICP can be improved by providing initial guesses
via RANSAC

• show how SIFT features can be used to improve point se-
lection and loop-closure in ICP to achieve RGB-D map-
ping

12.1. Converting range data into point cloud data

Point cloud data can be thought of a 3D matrix that maps
a certain volume in 3D space. Each cell in this matrix, also
known as Voxel , corresponds to whether there is an obstacle in
this volume or not. Different intensity values could correspond
to the uncertainty with which this space is to be known to be
an obstacle. An efficient method to turn range information
into such an uncertainty 3D map is described in (Curless &
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Levoy 1996) and became known as Truncated Surface Distance
Function (TSDF), commonly referred to as “Point cloud”.

12.2. The Iterative Closest Point (ICP) algorithm

The Iterative Closest Point (ICP) algorithm was presented in
the early 1990ies for registration of 3D range data to CAD mod-
els of objects. A more in-depth overview of what is described
here is given in (Rusinkiewicz & Levoy 2001). The key problem
can be reduced to find the best transformation that minimizes
the distance between two point clouds. This is the case when
matching snapshots from a range sensor or matching a range
image with a point cloud sampled from a 3D representation of
an object.

In robotics, ICP found an application to match scans from
2D laser range scanners. For example, the transformation that
minimizes the error between two consecutive snapshots of the
environment is proportional to the motion of the robot. This
is a hard problem as it is unclear, which points in the two con-
secutive snapshots are “pairs”, which of the points are outliers
(due to noisy sensors), and which points need to be discarded
as not all points overlap in both snapshots. Stitching a series
of snapshots together theoretically allows to create a 2D map
of the environment. This is difficult, however, as the error be-
tween every snapshots —similar to odometry — accumulates.
The ICP algorithm also works in 3D where it allows to infer
the change in 6D pose of a camera and creation of 3D maps.
In addition, ICP has proven useful for identifying objects from
a database of 3D objects.

Before providing a solution to the mapping problem, we will
focus on the ICP algorithm to match 2 consecutive frames.
Variants of the ICP algorithm can be broken down into 6 con-
secutive steps:

1. Selection of points in one or both meshes or point clouds.

2. Matching/Pairing these points to samples in the other
point cloud/mesh.

182



12.2. The Iterative Closest Point (ICP) algorithm

3. Weighting the corresponding pairs.

4. Rejecting certain pairs.

5. Assigning an error metric based on the point pairs.

6. Minimizing the error metric.

7. Point Selection

Depending on the number of points generated by the range sen-
sor, it might make sense to use only a few selected points to
calculate the optimal transformation between two point clouds,
and then test this transformation on all points. Depending on
the source of the data, it also turns out that some points are
more suitable than others as it is easier to identify matches for
them. This is the case for RGB-D data, where SIFT features
have been used successfully. This is also the case for planar ob-
jects with grooves, where sampling should ensure that angles
of normal vectors of sampling points are broadly distributed.
Which method to use is therefore strongly dependent on the
kind of data being used and should be considered for each spe-
cific problem.

12.2.1. Matching Points

The key step in ICP is to match one point to its corresponding
point. For example, a laser scanner hits a certain point at a
wall with its 67th ray. After the scanner has been moved by
10cm , the closest hit on the wall to this point might have
been by the 3rth ray of the laser. Here, it is actually very
unlikely that the laser hits the exact same point on the wall
twice, therefore introducing a non-zero error even for optimal
pairing. Prominent methods are to find the closest point in
the other point cloud or to find the intersection of the source
points normal with the destination surface (for matching point
clouds to meshes). More recently, SIFT has allowed to match
points based on their visual appearance. Similarly to sorting
through SIFT features, finding the closest matching point can
be accelerated by representing the point cloud in a k-d tree.
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12.2.2. Weighting of Pairs

As some pairs are better matches than others, weighting them
in some smart way might drastically improve the quality of the
resulting transformation. One approach is to give more weight
to points that have smaller distances from each other. Another
approach is to take into account the color of the point (in RGB-
D images) or use the distance of their SIFT features (weighting
pairs with low distances higher than pairs with high distances).
Finally, expected noise can be used to weight pairings. For
example, the estimates made by a laser scanner are much more
faithful when taken orthogonally to a plane than when taken
at a steep angle.

12.2.3. Rejecting of Pairs

A key problem in ICP are outliers either from sensor noise or
simply from incomplete overlap between two consecutive range
images. A prime approach in dealing with this problem is to
reject pairings of which one of the points lies on a boundary of
the point cloud as these points are likely to match with points in
non-overlapping regions. As a function of the underlying data,
it might also make sense to reject pairings with too high of a
distance. This is a threshold-based equivalent to distance-based
weighting as described above.

12.2.4. Error Metric and Minimization Algorithm

After points have been selected and matched, pairs have been
weighted and rejected, the match between two point clouds
needs to be expressed by a suitable error metric, which needs
then to be minimized. A straightforward approach is to con-
sider the sum of squared distances between each pair. This
formulation can often be solved analytically. Let

A = {a1, . . . , am} (12.1)

B = {b1, . . . , bn} (12.2)

be point clouds in Rn. The goal is now to find a vector t ∈ Rn
so that an error function φ(A+t, B) is minimized. In 6D (trans-
lation and rotation), an equivalent notation can be found for a
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transformation (see forward kinematics). An error function for
the squared distance is then given by

φ(A+ t, B) =
1

m

∑
a∈A
‖a+ t−NB(a+ t)‖2 (12.3)

Here NB(a+ t) is a function that provides the nearest neighbor
of a translated by b in B. A key problem now is that the actual
value of t affects the outcome of the pairing. What might look
like a good match initially often turns out not be the final
pairing. A simple numerical approach to this problem is to find
t iteratively.

Initially t = 0 and nearest neighbors/pairings are established.
We can now calculate a δt that optimizes the least-square prob-
lem based on this matching using any solver available for the
optimization problem (for a least-square solution δt can be ob-
tained analytically by solving for the minimum of the polyno-
mial by setting its derivative to zero). We can then shift all
points in A by δt and start over. That is, we calculate new
pairings and derive a new δt. We can continue to do this, until
the cost function reaches a local minimum.

Instead of formulating the cost function as a “point-to-point”
distance, a “point-to-plane” has become popular. Here, the
cost function consist of the sum of squared distances from each
source point to the plane that contains the destination point
and is oriented perpendicular to the destination normal. This
makes particularly sense when matching a point cloud to a
mesh/CAD model of an object. In this case there are no ana-
lytical solutions to finding the optimal transformation, but any
optimization method such a Levenberg-Marquardt can be used.

12.3. RGB-D Mapping

The ICP algorithm can be used to stitch consecutive range im-
ages together to create a 3D map of the environment (Henry,
Krainin, Herbst, Ren & Fox 2010). Together with RGB infor-
mation, it is possible to create complete 3D walk throughs of
an environment. An example of such a walk through using the
method described in (Whelan, Johannsson, Kaess, Leonard &
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Figure 12.1.: Fused point cloud data from a walk trough of an office
environment using “Kintinious”. Picture courtesy of
John Leonard.

McDonald 2013) is shown in Figure 12.1. A problem with ICP
is that errors in each transformation propagate making maps
created using this method as odd as maps created by simple
odometry. Here, the SLAM algorithm can be used to correct
previous errors once a loop closure is detected.

The intuition behind SLAM is to consider each transforma-
tion between consecutive snapshots as a spring with variable
stiffness. Whenever the robot returns to a previously seen
location, i.e., a loop-closure has been determined, additional
constraints are introduced and the collection of snapshots con-
nected by springs become a mesh. Everytime the robot then
re-observes a transformation between any of the snapshots, it
can “stiffen” the spring connecting the two. As all of the snap-
shots are connected, this new constraints propagates through
the network and literally pull each snapshots in place.

RGB-D Mapping uses a variant of ICP that is enhanced by
SIFT features for point selection and matching. Maps are build
incrementally. SIFT features, and their spatial relationship,
are used for detecting loop closures. Once a loop closure is
detected, an additional constraint is added to the pose graph
and a SLAM-like optimization algorithm corrects the pose of
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all previous observations.
As ICP only works when both point clouds are already closely

aligned, which might not be the case for a fast moving robot
with a relatively noisy sensor (the XBox Kinect has an error
of 3cm for a few meters of range vs. millimeters in laser range
scanners), RGB-D Mapping uses RANSAC to find an initial
transformation. Here, RANSAC works as for line fitting: it
keeps guessing possible transformations for 3 pairs of SIFT fea-
ture points and then counts the number of inliers when match-
ing the two point clouds, one of which being transformed using
the random guess.
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A. Trigonometry

Trigonometry relates angles and lengths of triangles. Figure
A.1 shows a right-angled triangle and conventions to label its
corners, sides, and angles. In the following, we assume all tri-
angles to have at least one right angle (90 degrees or π

2 ) as all
planar triangles can be dissected into two right-angled triangles.

Figure A.1.: Left: A right-angled triangle with common notation.
Right: Trigonometric relationships on the unit circle and
angles corresponding to the four quadrants.

The sum of all angles in any triangle is 180 degrees or 2π, or

α+ β + γ = 180o (A.1)

If the triangle is right-angled, the relationship between edges a,
b, and c, where c is the edge opposite of the right angle is

a2 + b2 = c2 (A.2)

The relationship between angles and edge lengths are captured
by the trigonometric functions:

sinα = opposite
hypothenuse = a

c (A.3)

cosα = adjacent
hypothenuse = b

c (A.4)

tanα = opposite
adjacent = sinα

cosα = a
b (A.5)
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Here, the hypothenuse is the side of the triangle that is oppo-
site to the right angle. The adjacent and opposite are relative
to a specific angle. For example, in Figure A.1, the adjacent of
angle α is side b and the opposite of α is edge a.

Relations between a single angle and the edge lengths are
captured by the law of cosines:

a2 = b2 + c2 − 2bc cosα (A.6)

A.1. Inverse trigonometry

In order to calculate an angle given two edges, one uses inverse
functions sin−1, cos−1, and tan−1. (Not to be confused with
1

sin etc.) As functions can, by definition, only map one value
to exactly one other value, sin−1 and tan−1 are only defined
in the interval [−90o; +90o] and cos−1 is defined in the interval
[0o; 180o]. This makes it impossible to calculate angles in the
2nd and 3rd, or the 3rd and 4th quadrant, respectively (Figure
A.1). In order to overcome this problem, most programming
languages implement a function atan2(opposite,adjacent),
which evaluates the sign of the numerator and denumerator,
provided as two separate parameters.

A.2. Trigonometric identities

Sine and cosine are periodic, leading to the following identities:

sin θ = − sin(−θ) = − cos(θ +
π

2
) = cos(θ − π

2
) (A.7)

cos θ = cos(−θ) = sin(θ +
π

2
) = − sin(θ − π

2
) (A.8)

The sine or cosine for sums or differences between angles can
be calculated using the following identities:

cos(θ1 + θ2) = c12 = c1c2 − s1s2 (A.9)

sin(θ1 + θ2) = s12 = c1s2 + s1c2 (A.10)

cos(θ1 − θ2) = c1c2 + s1s2 (A.11)

sin(θ1 − θ2) = s1c2 − c1s2 (A.12)
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The sum of the squares of sine and cosine for the same angle
is one:

cos(θ) cos(θ) + sin(θ) sin(θ) = 1 (A.13)
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B. Linear Algebra

Linear algebra concerns vector spaces and linear mappings be-
tween them. It is central to robotics as it allows describing
positions and speeds of the robot within the world as well as
moving parts connected to it.

B.1. Dot product

The dot product (or scalar product) is the sum of the products
of the individual entries of two vectors. Let â = (a1, . . . , ai)

T

and b̂ = (b1, . . . , bi) be two vectors. Then, there dot product
â · b̂ is given by

â · b̂ =
∑
i

= aibi (B.1)

The dot product therefore takes two sequences of numbers and
returns a single scalar.

In robotics, the dot product is mostly relevant due to its
geometric interpretation:

â · b̂ = ‖â‖‖b̂‖ cos θ (B.2)

with θ the angle between vectors â and b̂.

If â and b̂ are orthogonal, it follows â · b̂ = 0. If â and b̂ are
parallel, it follows â · b̂ = ‖â‖‖b̂‖.

B.2. Cross product

The cross product â× b̂ of two vectors is defined as a vector ĉ
that is perpendicular to both â and b̂. Is direction is given by
the right-hand rule and its magnitude is equal to the area of
the parallelogram that the vectors span.
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Let Let â = (a1, a2, a3)T and b̂ = (b1, a2, a3) be two vectors
in R3. Then, there cross product â× b̂ is given by

â× b̂ =

 a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 (B.3)

B.3. Matrix product

Given an n ×m matrix A and a m × p matrix B, the matrix
product AB is defined by

(AB)ij =
m∑
k=1

AikBkj (B.4)

where the index ij indicates the i-th row and j-th column entry
of the resulting n × p matrix. Each entry therefore consists of
the scalar product of the i-th row of A with the j-th column of
B.

Note that for this two work, the right hand matrix (here B)
has to have as many columns as the left hand matrix (here A)
has rows. Therefore, the operation is not commutative, i.e.,
AB 6= BA.

For example, multiplying a 3x3 matrix with a 3x1 matrix (a
vector), works as follows: Let

A =

a b c
p q r
u v w

 B =

xy
z

 .

Then their matrix product is:

AB =

a b c
p q r
u v w

xy
z

 =

 ax+ by + cz
px+ qy + rz
ux+ vy + wz


B.4. Matrix inversion

Given a matrix A, finding the inverse B = A−1 involves solving
the system of equations that satisfies

AB = BA = I (B.5)
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With I the identity matrix. (The identity matrix is zero every-
where expect at its diagonal entries, which are one.)

In the particular case of orthonormal matrices, which columns
are all orthogonal to each other and of length one, the inverse
is equivalent to the transpose, i.e.

A−1 = AT (B.6)

In case a matrix is not quadratic, we can calculate the pseudo-
inverse, which is defined by

A+ = AT (AAT )−1. (B.7)
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C. Statistics

C.1. Random Variables and Probability
Distributions

Random variables can describe either discrete variables, such
as the result from throwing a dice, or continuous variables such
as measuring a distance. In order to learn about the likelihood
that a random variable has a certain outcome, we can repeat
the experiment many times and record the resulting random
variates, that is the actual values of the random variable, and
the number of times they occurred. For a perfectly cubic dice
we will see that the random variable can hold natural numbers
from 1 to 6, that have the same likelihood of 1/6.

The function that describes the probability of a random vari-
able to take certain values is called a probability distribution.
As the likelihood of all possible random variates in the dice ex-
periment is the same, the dice follows what we call a uniform
distribution. More accurately, as the outcomes of rolling a dice
are discrete numbers, it is actually a discrete uniform distribu-
tion. Most random variables are not uniformly distributed, but
some variates are more likely than others. For example, when
considering a random variable that describes the sum of two
simultaneously thrown dice, we can see that the distribution is
anything but uniform:
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2 : 1 + 1 → 1
6

1
6

3 : 1 + 2, 2 + 1 → 21
6

1
6

4 : 1 + 3, 2 + 2, 3 + 1 → 31
6

1
6

5 : 1 + 4, 2 + 3, 3 + 2, 4 + 1 → 41
6

1
6

6 : 1 + 5, 2 + 4, 3 + 3, 4 + 2, 5 + 1 → 51
6

1
6

7 : 1 + 6, 2 + 5, 3 + 4, 4 + 3, 5 + 2, 6 + 1 → 61
6

1
6

8 : 2 + 6, 3 + 5, 4 + 4, 5 + 3, 6 + 2 → 51
6

1
6

9 : 3 + 6, 4 + 5, 5 + 4, 6 + 3 → 41
6

1
6

10 : 4 + 6, 5 + 5, 6 + 4 → 31
6

1
6

11 : 5 + 6, 6 + 5 → 21
6

1
6

12 : 6 + 6 → 1
6

1
6

As one can see, there are many more possibilities to sum
up to a 7 than there are to a 3, e.g. While it is possible to
store probability distributions such as this one as a look-up
table to predict the outcome of an experiment (or that of a
measurement), we can also calculate the sum of two random
processes analytically (Section C.3).

C.1.1. The Normal Distribution

One of the most prominent distribution is the Gaussian or Nor-
mal Distribution. The Normal distribution is characterized by
a mean and a variance. Here, the mean corresponds to the
average value of a random variable (or the peak of the distri-
bution) and the variance is a measure of how broadly variates
are spread around the mean (or the width of the distribution).

The Normal distribution is defined by the following function

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (C.1)

where µ is the mean and σ2 the variance. (σ on its own is known
as the standard deviation.) Then, f(x) is the probability for a
random variable X to have value x.

The mean is calculated by

µ =

∫ ∞
−∞

xf(x)dx (C.2)

or in other words, each possible value x is weighted by its like-
lihood and added up.
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Figure C.1.: Normal distribution for different variances and µ = 0.

The variance is calculated by

σ2 =

∫ ∞
−∞

(x− µ)2f(x)dx (C.3)

or in other words, we calculate the deviation of each random
variable from the mean, square it, and weigh it by its likelihood.
Although it is tantalizing to perform this calculation also for
the double dice experiment, the resulting value is questionable,
as the double dice experiment does not follow a Normal dis-
tribution. We know this, because we actually enumerated all
possible outcomes. For other experiments, such as grades in the
classes you are taking, we don’t know what the real distribution
is.

C.1.2. Normal distribution in two dimensions

The Normal Distribution is not limited to random processes
with only one random variable. For example, the X/Y position
of a robot in the plane is a random process with two dimensions.
In case of a multi-variate distribution with k dimensions, the
random variable X is a k-dimensional vector of random vari-
ables, µ is a k-dimensional vector of means, and σ gets replaced
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with Σ, a k-by-k dimensional covariance matrix (a matrix that
carries the variances of each random variable in its diagonal).

C.2. Conditional Probabilities and Bayes Rule

Let A and B be random events with probabilities P (A) and
P (B). We can now say that the probability P (A ∩ B) that
event A and B happen is given by

P (A ∩B) = P (A)P (B|A) = P (B)P (A|B) (C.4)

. Here, P (B|A) is the conditional probability that B happens,
knowing that event A happens. Likewise, P (A|B) is the prob-
ability that event A happens given that B happens.

Bayes’ Rule relates a conditional probability to its inverse. In
other words, if we know the probability of event A to happen
given that event B is happening, we can calculate the probabil-
ity of B to occur given that A is happening. Bayes’ rule can be
derived from the simple observation that the probability of A
and B to happen together (P (A∩B)) is given by P (A)P (B|A)
or the probability of A to happen and the probability of B
to happen given that A happens (Equation C.4). From this,
deriving Bayes’ rule is straightforward:

P (A|B) =
P (A)P (B|A)

P (B)
(C.5)

In words, if we know the probability that B happens given
that A happens, we can calculate that A happens given that B
happens.

C.3. Sum of two random processes

Let X and Y the random variables associated with the numbers
shown on two dice (see above), and Z = X + Y . With P (X =
x), P (Y = y), and P (Z = z) being the probabilities associated
with the random variables taking specific values x, y or z. Given
z = x+y,the event Z = z is the union of the independent events

200



C.4. Linear Combinations of Independent Gaussian Random Variables

X = k and Y = z − k. We can therefore write

P (Z = z) =

∞∑
k=−∞

P (X = k)P (Y = z − k) (C.6)

which is the exact definition of a convolution, also written as

P (Z) = P (X) ? P (Y ) (C.7)

Numerically calculating the convolution always works, and
can be done analytically for some probability distributions.

Conveniently, the convolution of two Gaussian distributions
is again a Gaussian distribution with a variance that corre-
sponds to the sum of the variances of the indivdiual Gaussians.

C.4. Linear Combinations of Independent Gaussian
Random Variables

Let X1, X2, . . ., Xn be n independent random variables with
means µ1, µ2, . . ., µn and variances σ2

1, σ2
2, . . ., and σ2

n. Let Y
be a random variable that is a linear combination of Xi with
weights ai so that Y =

∑n
i=1 aiXi.

As the sum of two Gaussian random variables is again a Gaus-
sian, Y is Gaussian distributed with a mean

µY =

n∑
i=1

aiµi (C.8)

and a variance

σ2
Y =

n∑
i=1

a2
iσ

2
i (C.9)

C.5. Testing Statistical Significance

Robotics is an experimental discipline. This means that algo-
rithms and systems you develop need to be validated by real
hardware experiments. Doing an experiment to validate your
hypothesis is at the core of the scientific method and doing it
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right is a discipline on its own. The key is to show that your
results is not simply a result of chance. In practice, this is
impossible to show. Instead, it is possible to express the likeli-
hood that your results have not been obtained by chance. This
is known as the statistical significance level. How to calculate
the statistical significance level depends on the problem you are
studying. This section will introduce three common problems
in robotics:

1. testing whether data is indeed distributed according to a
specific distribution

2. testing whether two sets of data are generated from dif-
ferent distributions

3. testing whether true-false experiments are a sequence of
luck or not

C.5.1. Null Hypothesis on Distributions

The Null Hypothesis is a term from the statistical significance
literature and formally captures your main claim. A statistical
test can either reject the Null Hypothesis or fail to reject it. It
can never be proven as there will always be a non-zero prob-
ability that all your experiments are just a lucky coincidence.
The statistical significance level of a Null Hypothesis is known
as the p-value.

An import class of Null Hypothesis are on the distribution
of data. Consider the following example from Lab 1 (message
passing in ROS). Students were asked to experimentally study
the time it takes to pass a message from one process to another:

Histogram of the time it takes to send a ROS message
from one process to another based on 10 trials.

We observe three peaks in this Histogram. What can we say
about message passing times? For example

• H0: Message passing times follow a Gaussian distribution.
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• H0: Message passing times follow a bi-modal distribution.

• H0: Message passing times follow a log-normal distribu-
tion.

The first Null Hypothesis implies that messages take some-
times a little longer and sometimes a little shorter, but have
an average and a variance. The second Null Hypothesis im-
plies that usually messages take some low average time, but
occasionally are delayed due to the influence of some other pro-
cess, for example operating system duties. You can now test
each of these hypotheses by calculating the parameters of the
distribution to expect and calculate the joint probability that
each of your measurements are actually drawn from this dis-
tribution. You will find, that all of the above hypotheses are
almost equally likely. Together, none of your tests will reject
your hypothesis. You therefore will need more data:

Histogram of message passing times in ROS based on a
1000 trials.

You can now again calculate parameters for each distribu-
tion you suspect. For example, you can calculate the mean and
variance of this data and plot the resulting Gaussian distribu-
tion. In this example, the Gaussian distribution will have a
mean slightly offset to the right of the peak. You can also fit
the data to a log-normal distribution. You can now calculate
the likelihood for the data actually be drawn from either of the
two distributions. You will see that the joint probability (the
product of all likelihoods) for all data points is actually much
higher than that for any Gaussian distribution or any bimodal
distribution that you are able to fit.

Formally, this can be done by following Pearsons χ2-Test
(read Chi-Squared Test). This test calculates a value that will
approximate a χ2-distribution from all samples and the likeli-
hood of that sample based on the expected distribution. Plug-
ging the resulting value into the χ2-distribution leads to the
statistical significance level (or p-value).
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The value of the test-statistic is calculated as follows:

χ2 =

n∑
i=1

(Oi − Ei)2

Ei
(C.10)

where

• χ2 = Pearson’s cumulative test statistic, which asymp-
totically approaches a chi-squared distribution.

• Oi = an observed frequency in the data histogram

• Ei = an expected (theoretical) frequency, asserted by the
null hypothesis, i.e., the distribution you think the data
should follow

• n = the number samples.

This example also illustrates how statistical tests can be used
to determine if you have enough data. If you don’t, you will get
very poor p-values. In practice, it is up to you what likelihood
you determine to be significant. Standard significance levels
are 10%, 5% and 1%. If you are unsatisfied with your p-values
you can collect more data and check, whether your p-value
improves.

C.5.2. Testing whether two distributions are independent

Testing whether the data of two experiments are independent
is probably the most common statistical test. For example, you
might run 10 experiments using algorithm 1 and 10 experiments
using algorithm 2. It is up to you to show that the resulting
distributions are indeed statistically significantly different. In
other words, you need to show that the differences between the
algorithm indeed lead to a systematic improvement, and that
it was not purely luck that one set of experiments turned out
“better” than another.

If you have good reasons to believe that your data is normal
distributed, there exist a series of simple tests. For example,
to test whether two sets of data are distributed with Gaussian
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distributions that have the same mean, can be done using dis-
tribution is Gaussian can be done using Student’s t-test. A gen-
eralization of Student’s t-test to 3 or more groups is ANOVA.
These tests have to be done with care as most distributions in
robotics are not normal distributed. Examples where Gaussian
distributions are commonly assumed are sensor noise on dis-
tance measurements such as obtained by infrared or odometry.

If data is not Gaussian distributed, there exist a series of nu-
merical tests to test the likelihood that two distributions are
independent. For example, you could test the message passing
time with and without running some computationally expen-
sive image processing routines. You can then test whether the
additional computation affects message passing time. If it does,
both distributions need to be significantly different. Just us-
ing Student’s t-test does not work as the distributions are not
Gaussian!

Instead, testing whether two sets of data have the same
mean, needs to be done numerically. A common test is Mann-
Wilcoxon’s Ranked Sum test. An implementation of this test is
part of most mathematical calculation programs such as Matlab
or Mathematica. An algorithm to calculate this test statistic
and the corresponding p-values is available on the Wikipedia
page above. An extension of the Mann-Wilcoxon’s Ranked Sum
test for 3 or more groups is the Kruskal-Wallis one-way analysis
of variance test.

C.5.3. Statistical Significance of True-False Tests

There exists a class of experiments that do not lead to distribu-
tions, but result in simple true-false outcomes. For example, a
question one might ask is “does the robot correctly understand
a spoken command”. This class of experiments is captured by
the Lady tasting tea example. Here, a lady claims that she can
identify the brewing method of a cup of tea: tea prepared by
first adding milk and tea prepared by later adding milk. Unfor-
tunately, it is easy to cheat as the likelihood of guessing right
is 50%. Testing the hypothesis that the lady can indeed differ-
entiate the two brewing methods therefore requires to conduct
a series of experiments to reduce the likelihood of winning by
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guesswork. In order to this, one needs to calculate the number
of total permutations (or, possible outcomes over the entire se-
ries of experiments). For example, one could present the lady
8 cups of tea, 4 brewed one way and four the other. One can
now enumerate all possible outcomes of this experiment, rang-
ing from all cups guessed correctly to all cups guessed wrong.
There are a total of 70 possible outcomes (see the example pro-
vided here). Guessing all cups correctly has now a likelihood
of 1/70 or 1.4%. The likelihood to make a single mistake (16
possible outcomes in this example) is around 23%.

C.5.4. Summary

Statistical significance test allow you to express the likelihood
that your experiment is just the result of chance. There exist
different tests for different underlying distributions. Therefore,
your first task is to convincingly argue what the underlying
distribution of your data is. Formally testing how your data is
distributed can be achieved using the Chi-Square Test. In order
to test whether two sets of data are coming from two different
distributions can then be achieved using Student’s t-test (if the
distribution is Gaussian) or using the Mann-Wilcoxon Ranked
Sum test if the probability distribution is non-parametric.
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D. How to write a research paper

The final deliverable of a robotics class often is a write-up on a
“research” project, modeled after research done in industry or
academia. Roughly, there are three classes of papers:

1. Original research

2. Tutorial

3. Survey

The goal of this chapter is to provide guidelines on how to
think about your project as a research project and how to report
on your results as original research.

D.1. Original

Classically, a scientific paper follows the following organization:

1. Abstract

2. Introduction

3. Materials & Methods

4. Results

5. Discussion

6. Conclusion

The abstract summarizes your paper in a few sentences. What
is the problem you want to solve, what is the method you are
employing, what are you doing to assess your work, and what
is the final outcome.
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The introduction should describe the problem that you are
solving and why it is important. A good guideline to write a
good introduction are the Heilmeier questions:

1. What are you trying to do? Articulate your objectives
using absolutely no jargon.

2. How is it done today, and what are the limits of current
practice?

3. What’s new in your approach and why do you think it
will be successful?

4. Who cares?

5. If you’re successful, what difference will it make?

6. What are the midterm and final “exams” to check for
success?

Originally conceived for proposal writing by the head of DARPA,
there are additional questions including “What will it cost?”,
“How long will it take?”, and “What are the risks and pay-off”,
which are left out for the purpose of writing a research paper.
In the context of scientific research, the question “What are
you trying to do?” is best answered in the form of a hypothesis,
see below.

The materials & matters section describes all the tools that
you used to solve your problem, as well as your original contri-
bution, e.g., an algorithm that you came up with. This section
is hardly ever labeled as such, but might consist of a series of
individual section describing the robotic platform you are us-
ing, the software packages, and flowcharts and descriptions on
how your system works. Make sure you motivate your design
choices using conclusive language or experimental data. Vali-
dating these design choices could be your first results.

The results section contains data or proofs on how to solve
the problem you addressed or why it cannot be solved. It is im-
portant that your data is conclusive! You have to address con-
cerns that your results are just a lucky coincidence. You there-
fore need to run multiple experiments and/or formally prove
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the workings of your system either using language or math, see
also Section C.5.

The discussion should address limitations of your approach,
the conclusiveness of its results, and general concerns someone
who reads your work might have. Put yourself in the role of
an external reviewer who seeks to criticize your work. How
could you have sabotaged your own experiment? What are the
real hurdles that you still need to overcome for your solution to
work in practice? Criticizing your own work does not weaken
it, it makes it stronger! Not only does it become clear where
its limitations are, it is also more clear where other people can
step in.

The conclusion should summarize the contribution of your
paper. It is a good place to outline potential future work for
you and others to do. This future work should not be random
stuff that you could possibly think about, but come out of your
discussion and the remaining challenges that you describe there.
Another way to think about is that the “future work” section
of your conclusion summarizes your discussion.

It is important not to mix the different sections up. For ex-
ample, your result section should exclusively focus on describ-
ing your observations and reporting on data, i.e., facts. Don’t
conjecture here why things came out as they are. You do this
either in your hypothesis — the whole reason you conduct ex-
periments in the first place — or in the discussion. Similarly,
don’t provide additional results in your discussion section.

Try to make the paper as accessible to as many reader styles
and attention spans as possible. While this sounds impossible
at first, a good way to address this is to think about multiple
avenues a reader might take. For example, the reader should
get a pretty comprehensive picture on what you do by just read-
ing the abstract, just reading the introduction, or just reading
all the figure captions. (Think about other avenues, every one
you address makes your paper stronger.) It is often possible to
provide this experience by adding short sentences that quickly
recall the main hypothesis of your work. For example, when de-
scribing your robotic platform in the materials section, it does
not hurt to introduce the section by something like “In order
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to show that [the main hypothesis of our work], we selected...”.
Similarly, you can try to read through your figure captions if
they provide enough information to follow the paper and un-
derstand its main results on their own. Its not a problem to
be repetitive in a scientific paper, stressing your one-sentence
elevator pitch (or hypothesis, see below) throughout the paper
is actually a good thing.

D.2. Hypothesis: Or, what do we learn from this
work?

Classically, a hypothesis is a proposed explanation for an ob-
served phenomenon. From this, the hypothesis has emerged as
the corner stone of the scientific method and is a very efficient
way to organize your thoughts and come up with a one sentence
summary of your work. A proper formulation of your hypothe-
sis should directly lead to the method that you have chosen to
test your hypothesis. A good way to think about your hypoth-
esis is “What do you want to learn?” or “What do we learn
from this work?”.

It can be somewhat hard to actually frame your work into a
single sentence, so what to do if a single hypothesis seems not
to apply? One reason might be that you are actually trying
to accomplish too many things. Can you really describe them
all in depth in a 6-page document? If yes, maybe some are
very minor compared to the others. If this is the case, they
are either supportive of your main idea and can be rolled into
this bigger piece of work or they are totally disconnected. If
they are disconnected, leave them out for the sake of improving
the conciseness of your main message. Finally, you might feel
that you don’t have a main message, but consider all the things
you done equally worthy, and despite answering the Heilmeier
questions you cannot fill up more than three pages. In this
case you might consider picking one of your approaches and
dig deeper by comparing it with different methods.

Being able to come up with a one-sentence elevator pitch
framed as a hypothesis will actually help you to set the scope
of the work that you need to do for a research or class project.
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D.3. Survey and Tutorial

How good do you need to implement, design or describe a cer-
tain component of your project? Well, good enough to follow
through with your research objective.

D.3. Survey and Tutorial

The goal of a survey is to provide an overview over a body of
work — potentially from different communities — and classify
it into different categories. Doing this synthesis and estab-
lishing common language and formalism is the survey’s main
contribution. A survey following such an outline is a possible
deliverable for an independent study or a PhD prelim, but it
does not lend itself to describe your efforts on a focused re-
search project. Rather, it might result from your involvement
in a relatively new area in which you feel important connections
between disjoint communities and common language have not
been established.

A different category of survey critically examines concurring
methods to solve a particular problem. For example, you might
have set out to study manipulation, but got stuck in selecting
the right sensor suite from the many available options. What
sensor is actually best to accomplish a specific task? A survey
which answers this question experimentally will follow the same
structure as a research paper (see above).

A tutorial is closely related to a survey, but focuses more
on explaining specific technical content, e.g, the workings of a
specific class of algorithms or tool, commonly used in a commu-
nity. A tutorial might be an appropriate way to describe your
efforts in a research project, which can serve as illustration to
explain the workings of a specific method you used.

D.4. Writing it up!

Writing a research report that contains equations, figures and
references requires some tedious book-keeping. Although tech-
nically possible, word processing programs quickly reach their
limitations and will lead to frustration. In the scientific com-
munity LATEX has emerged as a quasi standard for typesetting
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research documentation. LATEX is a mark-up language that
strictly divides function and layout. Rather than formatting
individual items as bold, italic and the like, you mark them up
as emphasized, section head etc, and specify how things look
elsewhere. This is usually provided by a template provided by
the publisher (or your own). While LATEX has quite a learning
curve compared to other word processing software, it is quickly
worth the effort as soon as you need to start worrying about
references, figures or even indices.

Further Reading

• W. Strunk and E. White. The Elements of Style (4th
Edition). Longan, 1999.

• T. Oetiker, H. Partl, I. Hyna and E. Schlegl. The Not So
Short Introduction to LATEX 2ε. Available online.
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E. Sample curricula

This book is designed to cover two full semesters at undergrad-
uate level, CSCI 3302 and CSCI 4302 at CU Boulder, or a single
semester “crash course” at graduate level. There are multiple
avenues that an instructor could take, each with their unique
theme and a varying set of prerequisites on the students.

E.1. An introduction to autonomous mobile robots

This describes a possible one semester curriculum, which takes
the students from the kinematics of a differential-wheel plat-
form to SLAM. This curriculum is involved and requires a firm
background in trigonometry, probability theory and linear al-
gebra. This might be too ambitious for third-year Computer
Science students, but fares well with Aerospace and Electrical
Engineering students, who often have a stronger, and more ap-
plied, mathematical background. This curriculum is therefore
also well suited as “advanced class”, e.g. in the fourth year of
a CS curriculum.

E.1.1. Overview

The curriculum is motivated by a maze-solving competition
that is described in Section 1.3. Solving the game can be accom-
plished using a variety of algorithms ranging from wall follow-
ing (which requires simple proportional control) to Depth-first
Search on the maze to full SLAM. Here, the rules are designed
such that creating a map of the environment leads to a com-
petitive advantage on the long run.
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E.1.2. Materials

The competition can be easily re-created using card board or
LEGO bricks and any miniature, differential wheel platform
that is equipped with a camera to recognize simple markers
in the environment (which serve as landmarks for SLAM). The
setup can also easily be simulated in a physics-based simulation
environment, which allows scaling this curriculum to a large
number of participants. The setup used at CU Boulder using
the e-Puck robot and the Webots simulator is shown in Figure
E.1.

Figure E.1.: The “Ratslife” maze competition created from LEGO
bricks and e-Puck robots (left). The same environment
simulated in Webots.

E.1.3. Content

After introducing the field and the curriculum using Chapter 1
“Introduction”, another week can be spend on basic concepts
from Chapter 2 “Locomotion and Manipulation”, which in-
cludes concepts like “Static and Dynamic Stability” and “Degrees-
of-Freedom”. The lab portions of the class can at this time
be used to introduce the software and hardware used in the
competition. For example, students can experiment with the
programming environment of the real robot or setup a simple
world in the simulator themselves.

The lecture can then take up pace with Chapter 3. Here, the
topics “Coordinate Systems and Frames of Reference”, “For-
ward Kinematics of a Differential Wheels Robot”, and “Inverse
Kinematics of Mobile Robots” are on the critical path, whereas
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other sections in Chapter 3 are optional. It is worth mentioning
that the forward kinematics of non-holonomic platforms, and
in particular the motivation for considering their treatment in
velocity rather than position space, are not straightforward and
therefore at least some treatment of arm kinematics is recom-
mended. These concepts can easily be turned into practical
experience during the lab session.

The ability to implement point-to-point motions in config-
uration space thanks to knowledge of inverse kinematics, di-
rectly lends itself to “Map representations” and “Path Plan-
ning” treated in Chapter 4. For the purpose of maze solv-
ing, simple algorithms like Dijkstra’s and A* are sufficient, and
sampling-based approaches can be skipped. Implementing a
path-planning algorithm both in simulation and on the real
robot will provide first-hand experience of uncertainty.

The lecture can then proceed to “Sensors” (Chapter 5), which
should be used to motivate uncertainty using concepts like ac-
curacy and precision. These concepts can be formalized using
materials in Chapter C “Statistics”, and quantified during lab.
Here, having students record the histogram of sensor noise dis-
tributions is a valuable exercise.

Chapters 6 and 7, which are on “Vision” and “Feature extrac-
tion”, do not need to extend further than needed to understand
and implement simple algorithms for detecting the unique fea-
tures in the maze environment. In practice, these can usually
be detected using basic convolution-based filters from Chap-
ter 6, and simple post-processing, introducing the notion of a
“feature”, but without reviewing more complex image feature
detectors. The lab portion of the lab should be aimed at iden-
tifying markers in the environment, and can be scaffolded as
much as necessary.

Indepth experimentation with sensors, including vision, serves
as a foundation for a more formal treatment of uncertainty in
Chapter 8 “Uncertainty and Error Propagation”. Depending
on whether the “Example: Line Fitting” example has been
treated in Chapter 7, it can be used here to demonstrate error
propagation from sensor uncertainty, and should be simplified
otherwise. In lab, students can actually measure the distribu-
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tion of robot position over hundreds of individual trials (this is
an exercise that can be done collectively if enough hardware is
available), and verify their math using these observations. Al-
ternatively, code to perform these experiments can be provided,
giving the students more time to catching up.

The localization problem introduced in Chapter 9 is best in-
troduced using Markov localization, from which more advanced
concepts such as the particle filter and the Kalman filter can be
derived. Performing these experiments in the lab is involved,
and are best done in simulation, which allows neat ways to
visualize the probability distributions changing.

The lecture can be concluded with “EKF SLAM” in Chapter
11. Actually implementing EKF SLAM is beyond the scope of
an undergraduate robotics class and is achieved only by very
few students who go beyond the call of duty. Instead, students
should be able to experience the workings of the algorithm in
simulation, e.g., using one of the many available Matlab imple-
mentations, or scaffolded in the experimental platform by the
instructor.

The lab portion of the class can be concluded by a compe-
tition in which student teams compete against each other. In
practice, winning teams differentiate themselves by the most
rigorous implementation, often using one of the less complex
algorithms, e.g., wall following or simple exploration. Here, it
is up to the instructor incentivizing a desired approach.

Depending on the pace of the class in lecture as well as the
time that the instructor wishes to reserve for implementation of
the final project, lectures can be offset by debates, as described
in Section E.3.

E.2. An introduction to autonomous manipulation

Although robotic manipulation is a much less mature field than
autonomous mobile robots, teaching its basics, such as those
treated in this book, is slightly easier, mainly due to the fact
that concepts like uncertainty and non-holonomy are mostly
absent. Robotic manipulation is also well suited for a practice-
based curriculum due to the wide array of cheap, multi-DOF
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robotic arms. These, of course, quickly reach their limitations
to demonstrate advanced topics such as dynamics or force con-
trol, which are beyond the scope of this book.

E.2.1. Overview

A manipulation-driven curriculum can be motivated by a “grand
challenge” task such as robotic agriculture, robotic construction
or assisted living, all of which have a manipulation problem at
their core. Although a class project is likely to be limited to
a toy-example, taking advantage of modern motion-planning
frameworks and visualization tools, e.g. ROS/Moveit!, makes
it easy to put the class into an industry-relevant framework and
expose the students to state of the art platforms in simulation.

E.2.2. Materials

Possible class project range from “robot gardening” or “robots
building robots”, for which setups can easily be created. These
include real or plastic cherry tomato or strawberry plants and
robotic construction kits such as Modular Robotics “Cubelets”,
which easily snap together and have the advantage to form
structures that are robots themselves, adding additional moti-
vation. The robot arm, such as the open-source, 7-DOF CLAM
arm, can be mounted on a portable structure that contains fixed
a set of fixed (3D) cameras. In order to allow a large number of
students to get familiar with the necessary software and hard-
ware, the instructor can provide a virtual machine with a prein-
stalled Linux environment and simulation tools. In particular,
using the “Robot Operating Systems” (ROS) allows recording
so-called “bag”-files of sensor values, including entire sequences
of joint recordings and RGB-D video. This allows the students
to work on a large part of the homeworks and project prepara-
tion from a computer lab or from home, maximizing availability
of real hardware.
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E.2.3. Content

The first two weeks of this curriculum can be mostly identical
to that described in Section E.1.3. If a message passing system
such as ROS is used, a good exercise is to record a histogram of
message passing times in order to get familiar with the software.

In Chapter 3, the focus is instead on manipulating arms, in-
cluding the Denavit-Hartenberg scheme and numerical methods
for inverse kinematics. In turn, the topics “Forward Kinemat-
ics of a Differential Wheels Robot”, and “Inverse Kinematics
of Mobile Robots” do not necessarily need to be included. For-
ward and inverse kinematics can be easily turned into lab ses-
sions using Matlab/Mathematica, simulation or a real robot
platform. If the class uses a more complex or industrial robot
arm, an alternative path is to record joint trajectories in a ROS
bag and letting the students explore this data, e.g., sketching

E.3. Class debates

Class debates are a good way to decompress at the end of class
and require the students to put the materials they learned in
a broader context. Student teams prepare pro and contra ar-
guments for a statement of current technical or societal con-
cern, exercising presentation and research skills. Sample top-
ics include Robots putting humans out of work is a risk that
needs to be mitigated ; Robots should not have the capability to
autonomously discharge weapons / drive around in cities (au-
tonomous cars); or Robots need to be made from components
other than links, joints, and gears in order to reach the agility
of people.

The students are instructed to make as much use as possible
of technical arguments that are grounded in the course materi-
als and in additional literature. For example, students can use
the inherent uncertainty of sensors to argue for or against en-
abling robots to use deadly weapons. Similarly, students relate
the importance and impact of current developments in robotics
to earlier inventions that led to industrialization, when consid-
ering the risk of robots putting humans out of work.

222



E.3. Class debates

Although suspicious as first, students usually receive this for-
mat very well. While there is agreement that debates help to
prepare them for the engineering profession by improving pre-
sentation skills, preparing engineers to think about questions
posed by society, and reflecting up-to-date topics, the debates
seem to have little effect on changing the students’ actual opin-
ions on a topic. For example, in a questionnaire administered
after class, only two students responded positively. Students are
also undecided about whether the debates helped them to bet-
ter understand the technical content of the class. Yet students
find the debate concept important enough that they prefer it
over a more in-depth treatment of the technical content of the
class, and disagree that debates should be given less time in
class. However, students are undecided whether debates are
important enough to merit early inclusion in the curriculum or
to be part of every class in engineering.

Concerning the overall format, students find that discussion
time was too short when allotting 10 minutes per position and
15 minutes for discussion and rebuttal. Also, students tend to
agree that debates are an opportunity to decompress (“relax-
ing”), which is desirable as this period of class coincides with
wrapping up the course project.
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