The Meaning of Clinical Death
Dublin Core
Subject
Description
Clinical death is the medical term for cessation of blood circulation and breathing, the two necessary criteria to sustain human and many other organisms' lives. It occurs when the heart stops beating in a regular rhythm, a condition called cardiac arrest. The term is also sometimes used in resuscitation research.
Stopped blood circulation has historically proven irreversible in most cases. Prior to the invention of cardiopulmonary resuscitation (CPR), defibrillation, epinephrine injection, and other treatments in the 20th century, the absence of blood circulation (and vital functions related to blood circulation) was historically considered the official definition of death. With the advent of these strategies, cardiac arrest came to be called clinical death rather than simply death, to reflect the possibility of post-arrest resuscitation.
At the onset of clinical death, consciousness is lost within several seconds. Measurable brain activity stops within 20 to 40 seconds. Irregular gasping may occur during this early time period, and is sometimes mistaken by rescuers as a sign that CPR is not necessary. During clinical death, all tissues and organs in the body steadily accumulate a type of injury called ischemic injury.
Most tissues and organs of the body can survive clinical death for considerable periods. Blood circulation can be stopped in the entire body below the heart for at least 30 minutes, with injury to the spinal cord being a limiting factor. Detached limbs may be successfully reattached after 6 hours of no blood circulation at warm temperatures. Bone, tendon, and skin can survive as long as 8 to 12 hours.
The brain, however, appears to accumulate ischemic injury faster than any other organ. Without special treatment after circulation is restarted, full recovery of the brain after more than 3 minutes of clinical death at normal body temperature is rare. Usually brain damage or later brain death results after longer intervals of clinical death even if the heart is restarted and blood circulation is successfully restored. Brain injury is therefore the chief limiting factor for recovery from clinical death.
Although loss of function is almost immediate, there is no specific duration of clinical death at which the non-functioning brain clearly dies. The most vulnerable cells in the brain, CA1 neurons of the hippocampus, are fatally injured by as little as 10 minutes without oxygen. However, the injured cells do not actually die until hours after resuscitation. This delayed death can be prevented in vitro by a simple drug treatment even after 20 minutes without oxygen. In other areas of the brain, viable human neurons have been recovered and grown in culture hours after clinical death. Brain failure after clinical death is now known to be due to a complex series of processes called reperfusion injury that occur after blood circulation has been restored, especially processes that interfere with blood circulation during the recovery period. Control of these processes is the subject of ongoing research.
In 1990, the laboratory of resuscitation pioneer Peter Safar discovered that reducing body temperature by three degrees Celsius after restarting blood circulation could double the time window of recovery from clinical death without brain damage from 5 minutes to 10 minutes. This induced hypothermia technique is beginning to be used in emergency medicine. The combination of mildly reducing body temperature, reducing blood cell concentration, and increasing blood pressure after resuscitation was found especially effective—allowing for recovery of dogs after 12 minutes of clinical death at normal body temperature with practically no brain injury. The addition of a drug treatment protocol has been reported to allow recovery of dogs after 16 minutes of clinical death at normal body temperature with no lasting brain injury. Cooling treatment alone has permitted recovery after 17 minutes of clinical death at normal temperature, but with brain injury.
Under laboratory conditions at normal body temperature, the longest period of clinical death of a cat (after complete circulatory arrest) survived with eventual return of brain function is one hour.....
Input by Sofia Nelly
Stopped blood circulation has historically proven irreversible in most cases. Prior to the invention of cardiopulmonary resuscitation (CPR), defibrillation, epinephrine injection, and other treatments in the 20th century, the absence of blood circulation (and vital functions related to blood circulation) was historically considered the official definition of death. With the advent of these strategies, cardiac arrest came to be called clinical death rather than simply death, to reflect the possibility of post-arrest resuscitation.
At the onset of clinical death, consciousness is lost within several seconds. Measurable brain activity stops within 20 to 40 seconds. Irregular gasping may occur during this early time period, and is sometimes mistaken by rescuers as a sign that CPR is not necessary. During clinical death, all tissues and organs in the body steadily accumulate a type of injury called ischemic injury.
Most tissues and organs of the body can survive clinical death for considerable periods. Blood circulation can be stopped in the entire body below the heart for at least 30 minutes, with injury to the spinal cord being a limiting factor. Detached limbs may be successfully reattached after 6 hours of no blood circulation at warm temperatures. Bone, tendon, and skin can survive as long as 8 to 12 hours.
The brain, however, appears to accumulate ischemic injury faster than any other organ. Without special treatment after circulation is restarted, full recovery of the brain after more than 3 minutes of clinical death at normal body temperature is rare. Usually brain damage or later brain death results after longer intervals of clinical death even if the heart is restarted and blood circulation is successfully restored. Brain injury is therefore the chief limiting factor for recovery from clinical death.
Although loss of function is almost immediate, there is no specific duration of clinical death at which the non-functioning brain clearly dies. The most vulnerable cells in the brain, CA1 neurons of the hippocampus, are fatally injured by as little as 10 minutes without oxygen. However, the injured cells do not actually die until hours after resuscitation. This delayed death can be prevented in vitro by a simple drug treatment even after 20 minutes without oxygen. In other areas of the brain, viable human neurons have been recovered and grown in culture hours after clinical death. Brain failure after clinical death is now known to be due to a complex series of processes called reperfusion injury that occur after blood circulation has been restored, especially processes that interfere with blood circulation during the recovery period. Control of these processes is the subject of ongoing research.
In 1990, the laboratory of resuscitation pioneer Peter Safar discovered that reducing body temperature by three degrees Celsius after restarting blood circulation could double the time window of recovery from clinical death without brain damage from 5 minutes to 10 minutes. This induced hypothermia technique is beginning to be used in emergency medicine. The combination of mildly reducing body temperature, reducing blood cell concentration, and increasing blood pressure after resuscitation was found especially effective—allowing for recovery of dogs after 12 minutes of clinical death at normal body temperature with practically no brain injury. The addition of a drug treatment protocol has been reported to allow recovery of dogs after 16 minutes of clinical death at normal body temperature with no lasting brain injury. Cooling treatment alone has permitted recovery after 17 minutes of clinical death at normal temperature, but with brain injury.
Under laboratory conditions at normal body temperature, the longest period of clinical death of a cat (after complete circulatory arrest) survived with eventual return of brain function is one hour.....
Input by Sofia Nelly
Source
http://youtu.be/jd-G5OrH39c
Publisher
Date
2017-12-02T19:30:00.000Z
Contributor
Sofia Nelly
Rights
Creative Commons License
This video represents licensed content on YouTube, meaning that the content has been claimed by a YouTube content partner.
This video represents licensed content on YouTube, meaning that the content has been claimed by a YouTube content partner.
Moving Image Item Type Metadata
Imported Thumbnail
https://i.ytimg.com/vi/jd-G5OrH39c/default.jpg
Files
Collection
Citation
“The Meaning of Clinical Death,” Open Educational Resources (OER) , accessed January 22, 2025, https://oer.uinsyahada.ac.id/items/show/41.